
MICHIGAN ENVIRONMENT, GREAT LAKES, AND ENERGY - OIL, GAS AND MINERALS DIVISION

		IV			IENT, GREAT LA	· · · · · · · · · · · · · · · · · · ·								
Application for Permit To:				Part	615 Sup	ervisor o	r of Wells Part 625 Mineral Wells							
		C)eepe	en							MSM			
	ar	nd Op	perate	e a Well		L				L L	s the Well	Direc	ctional	
			d/or fals		1 PA 1994, as amer formation may resu ent.						ES	Direc		
List all	prev	ious p	ermit ı	numbers						L				
36991													4 additional	
Confor	man	ce bon	d		Bond Num	nber	Bond A	mount		da	ys to proce	ess th	nis application	
Blanke	et			OnFile	DEPN011	4507721	440000	0.00		YE	S			
Lease HODG			ne (be	e as brief as p	ossible)			/ell Numt -36	ber					
Surface	e Ow	ner												
Applica	nt (n	ame o	f pern	nittee as bond	ed)									
MICHI	GAN	ΡΟΤΑ	SH O	PERATING LI	_C									
Addres	s: 6	00 17	TH ST	REET, SUITE	2300		Phone							
	C	ENVE	R				231-577	-9616						
	C	0												
	8	0203												
MICHI	GAN	ΡΟΤΑ	SH O	PERATING LI	_C									
Addres	s: 2	960 S	IMMS	DRIVE			Phone							
	L	AKEV	/00D				231-577	-9616						
	C	0												
	8	0215												
Loc Туре	Sec	Twp	Rng	County	Township Name	Quarter Quarter Quarter	Quarter Quarter	Quarte r	Footage NS	e NS	Footage EW	EW		
SURF	36	17N	9W	OSCEOLA	HERSEY	SE	SW	SE	267	S	1324	Е	Section Line	
													Drilling Unit	
BH	36	17N	9W	OSCEOLA	HERSEY	SW	SW	SW	200	S	302	W	Section Line	
													Drilling Unit	
Kind of	Тоо	S		Is sour oil or gas expected? H2S Cont. Plan Enclosed Base of Lowest known fresh water aquifer				h water aquifer						
Rotary				Y		N			GLAC	IAL D	RIFT	714		
Intende	ed tot	al dep	th											
MD				TVD		Formatior	n at total	depth	Producing/injection formation Objective pool, field, or project					
7384 4060 DUI				DUNDEE			DUNDEE HERSEY POTASH							

APD 1000

			Hole					Casir	ng			Cemen	
Depth (MD)	Formation		Hole Diam	Mud	Gel Viscosity	Diameter	Wt Ft	Grade	Condition	Depth (MD)	Sacks	T.O.C.	W.O.C.
920	,		14.75 N			11.75		K-55	EXT	920	500		
5479			10.625			8.625		N-80	EXT	5479	1600		
4394	DUNE	DEE	7.875	9	40	5.5		K-55		4394	323		12
7387	DUNE	DEE	7.875	9	40	5.5				7387			
Surface			ALREADY CE	MENT	ED								
		NTING I	PROGRAM. IDE	NTITEY	′ ALL CEME	NT CLASSE	ES, ADD	ITIVES,	AND VOLUM	ES (IN C	U. FT.) FC	OR EACH (CASING
Conting	gency												
Interme			ALREADY CE	MENT	ED								
Interme	ediate 2	2											
Produc	tion/Inj	ection	300 SK CLAS EXCESS)	S A 1.4	47 CUFT/S	K = 450CU	IFT: TA	IL: 323	SK CLASS /	A 1.18 C	UFT/SK =	= 382 CU	FT (30%
Form	n Submis	sion Deta	ails:										
Туре	e: A	PD				S	Status:	ACCE	PTED				
Nam	ie: 42	259				Γ	Date:	5/6/20 AM	24 11:43:00				
Subr	mitted	by:											

MICHIGAN POTASH OPERATING, LLC

HODGES ET AL 1-36(D) NON-HAZARDOUS NON-COMMERCIAL PART 625 MINERAL WELL, BRINE INJECTION

APPLICATION FOR PERMIT TO DRILL AND OPERATE OSCEOLA COUNTY, MICHIGAN

MAY 2024

THE UNITED STATES POTASH PROJECT

A Submission to

PERMIT APPLICATION SUPPLIMENT

TABLE OF CONTENTS

The U.S. Potash Project
1 DESCRIBE IN DETAIL THE PURPOSE OF THE WELL AND ITS ANTICIPATED LIFE EXPECTANCY
NEED FOR PROPOSED ACTION
2 NOTIFICATION: AT THE SAME TIME AS SUBMITTING THE PERMIT APPLICATION, MAIL VIA FIRST-CLASS UNITED STATES MAIL, A COPY OF THE FIRST PAGE OF THE PERMIT APPLICATION AND COVER LETTER TO THE CLERK OF THE TOWNSHIP AND THE SURFACE OWNER OF RECORD OF THE LAND ON WHICH THE WELL IS TO BE LOCATED
3 FORM EQP 7200-1, APPLICATION FOR PERMIT TO DRILL, DEEPEN, OPERATE, WITH AN ORIGINAL SIGNATURE FROM THE APPLICANT OR THE APPLICANT'S AGENT. SEE INSTRUCTIONS ON REVERSE OF FORM
4 FORM EQP 7200-2, SURVEY RECORD OF WELL LOCATION SIGNED AND SEALED BY A SURVEYOR LICENSED IN THE STATE OF MICHIGAN WHICH IDENTIFIES:
5 FORM EQP 7200-4, WELLHEAD BLOWOUT CONTROL SYSTEM 21 -
6 FORM EQP 7500-3, ENVIRONMENTAL IMPACT ASSESSMENT FOR MINERAL WELLS AND SURFACE FACILITIES
7 FORM EQP 7200-18, SOIL EROSION AND SEDIMENTATION CONTROL PLAN
8 PROVIDE A CONFORMANCE BOND 31 -
9 THE PERMIT APPLICATION FEE AS SPECIFIED BY STATUTE 31 -
10 AN ORGANIZATION REPORT, FORM EQP 7200-13, IF NOT ON FILE WITH THE SUPERVISOR
11 DESCRIPTION OF THE DRILLING PROGRAM, INCLUDING THE DRILLING FLUID AND MUD PROGRAM, HOW THE FLUIDS WILL BE HANDLED AND ULTIMATE DISPOSITION OF THE DRILLING FLUIDS. INCLUDE A DISCUSSION OF WHETHER OVER PRESSURED ZONES ARE ANTICIPATED AND HOW THE MUD PROGRAM WILL BE MODIFIED TO ACCOMMODATE SUCH A CONDITION
CURRENT WELLBORE DIAGRAM 32 -
PROPOSED WELLBORE DIAGRAM
Construction Procedure:
PROPOSED INJECTIVITY STEP RATE TEST:
PROPOSED MUD PROGRAM
Proposed Directional Plan:
12 DESCRIPTION OF THE CEMENTING PROGRAM INCLUDING THE TYPE, PROPERTIES AND COMPRESSIVE STRENGTH OF CEMENT TO BE USED ON EACH CASING STRING. INDICATE IF DV TOOLS WILL BE USED
13 DESCRIPTION OF THE PROPOSED WIRELINE LOGGING PROGRAM 41 -
14 DESCRIPTION OF THE TESTING PROGRAM, INCLUDING PRESSURE TESTS ON CASING STRINGS, AND ANY PLANNED DRILL STEM TESTS
15 DESCRIPTION OF ANY PLANNED CORING PROGRAM 42 -
ADDITIONAL INFORMATION REQUIRED FOR AN APPLICATION FOR A PERMIT TO DRILL AND OPERATE A DISPOSAL WELL OR TO CONVERT A PREVIOUSLY DRILLED WELL TO SUCH A WELL 43 -
1 FORM EQP 7200-14, INJECTION WELL DATA
1. NOTIFICATION INFORMATION

Application for Permit to Drill Part 625 Mineral Well, Brine Injection

Michigan Potash Operating, LLC

3. ENCLOSE A COPY OF THE COMPLETION REPORTS: FOR ALL WELLS AND THE PLUGGING RECORDS FOR ALL PLUGGED WELLS SHOWN ON THE PLAT.	
PLEASE SEE APPENDIX 1, FOR THE EXTENDED AOR, WHICH INCLUDES ALL WELLS WITHIN 1,320 FEET OF THE PROPOSED WELLS.	
4. IF THIS IS AN EXISTING WELL: TO BE CONVERTED TO AN INJECTION WELL, ENCLOSE THIS FORM WITH A FULL PERMIT APPLICATION PACKAGE PER EQC -	7200 46
5. Identify and describe all faults, structural features, karst, mines, and lost circulation zones	
6. Attach a proposed plugging and abandonment plan (EQP 7200-6):	
7. PROVIDE INFORMATION DEMONSTRATING THAT CONSTRUCTION OF THE WELL WILL PREVENT THE MOVEMENT OF FLUID	46 -
2 A CALCULATION OF THE AREA OF REVIEW IN THE INJECTION INTERVAL OVER THE ANTICIPATED LIFE OF THE WELL.	
A CALCULATION OF THE AREA OF INFLUENCE IN THE INJECTION INTERVAL OVER THE ANTICIPATED LIFE OF THE WELL:	
Base of the Lowermost USDW	
Site Specific Variables and Critical Pressure Rise	
 A DESCRIPTION OF THE AREA OF REVIEW	
• FIGURE AT IS A LOCATOR MAP, SHOWING THE PROPOSED SURFACE WELL LOCATION FOR THE HODGES ET AL 1-30(D), AS WELL AS JOHNSON 1 THE MPC 8D	
Figure A2(a) is a map illustrating a 2 mile AOR	
 FIGURE A2(B) IS A MAP ALLOSTINGTING A 2 MILE ACTUAL FIGURE A2(B) IS A MAP SHOWING ALL DEEP WELLS THAT PENETRATE THE CONFINING ZONE 	
3 A DISCUSSION OF THE AFFECT OF INJECTION ON THE PRESENT AND POTENTIAL MINERAL RESOURCES IN THE AREA OF REV	
Figure A3 shows all producing wells	
FIGURE A4 SHOWS ACTIVE CLASS I NON-HAZARDOUS INJECTION WELLS	
FIGURE A5 SHOWS ESTABLISHED CLASS IT KON THILD GODS INDEFICING WELLS	
4 A PLAT WHICH SHOWS THE LOCATION AND TOTAL DEPTH OF THE PROPOSED WELL, SHOWS EACH ABANDONED, PRODUCI	
DRY HOLE WITHIN THE AREA OF INFLUENCE, AND EACH OPERATOR OF A MINERAL OR OIL AND GAS WELL WITHIN THE AREA INFLUENCE.	OF
FIGURE A6 CUMULATIVE AOR AND MAP SHOWING ALL WELL TYPES	57 -
• FIGURE A7 IS A MAP PRESENTING A ¼ MILE AREA AROUND THE HODGES 1-36(D) WELL PATH	57 -
• FIGURE A8 IS A PLAT MAP SHOWING THIRD PARTY SURVEY	
TABULATION OF ACTIVE PRODUCING OIL AND GAS WELLS WITHIN THE AOR ARE AS FOLLOWS:	
TABULATION OF PART 625 MINERAL BRINE DISPOSAL INJECTION WELLS WITHIN THE AOR	
TABULATION OF PART 625 MINERAL PRODUCTION INJECTION WELLS	
TABULATION OF WELL DATA FOR ALL ABANDONED WELLS, PLUGGED WELLS, AND DRY HOLES	
5 IF A WELL IS PROPOSED TO BE CONVERTED TO A DISPOSAL WELL, A COPY OF THE COMPLETION REPORT, TOGETHER WITH WRITTEN GEOLOGIC DESCRIPTION LOG OR RECORD AND BOREHOLE AND STRATUM EVALUATION LOGS FOR THE WELL	
THE ORIGINAL HODGES ET AL 1-36 COMPLETION REPORT	- 64 -
Original Geological cutting descriptions	
6 PLUGGING RECORDS OF ALL ABANDONED WELLS AND CASING, SEALING, AND COMPLETION RECORDS OF ALL OTHER WELL ARTIFICIAL PENETRATIONS WITHIN THE AREA OF REVIEW OF THE PROPOSED WELL LOCATION AND A MAP IDENTIFYING ALL ARTIFICIAL PENETRATIONS. AN APPLICANT SHALL ALSO SUBMIT A PLAN REFLECTING THE STEPS OR MODIFICATIONS BELIEV NECESSARY TO PREVENT PROPOSED INJECTED WASTE PRODUCTS FROM MIGRATING UP, INTO, OR THROUGH INADEQUATED PLUGGED, SEALED, OR COMPLETED WELLS.	SUCH 'ED LY
7 A MAP SHOWING THE VERTICAL AND AREAL EXTENT OF SURFACE WATERS AND SUBSURFACE AQUIFERS CONTAINING WA LESS THAN 10,000-PPM TOTAL DISSOLVED SOLIDS. A SUMMARY OF THE PRESENT AND POTENTIAL FUTURE USE OF THE WA MUST ACCOMPANY THE MAP	TERS
• FIGURE B1 SHOWS THE VERTICAL AND AREA EXTENT OF SUBSURFACE AQUIFERS,	
• FIGURE B2 IS A MAP SHOWING THE STATIC WATER LEVEL	
• FIGURE B3 IS A SURFACE SOIL MAP	
DISCUSSION OF REGIONAL HYDROGEOLOGY	
DISCUSSION OF LOCAL (AOR) HYDROGEOLOGY.	
Figure B4 is a map showing hydro-geological investigation wells	
FIGURE B5 STRATIGRAPHIC DESCRIPTION OF USDW IN THE AOR.	
• FIGURE B6 IS A TYPE CURVE OF THE NATURAL GAMMA RAY RADIOACTIVITY OF THE HYDROLOGICAL UNIT	80 -

Michigan Potash Operating, LLC

-		
	e B7 is PPG Hodges 85-9,	
	E B8 IS A HYDROLOGICAL CROSS SECTION	
• FIGUE	E B9 IS A HYDROLOGICAL CROSS SECTION	80 -
• FIGUE	e B10 is a hydrological cross section	80 -
• FIGUE	e B11 is a hydrological cross section	80 -
Lowermost	USDW	81 -
QUATERNAR	Aquifers	81 -
	UIFERS	
SOURCE OF I	IFORMATION FOR THE GEOLOGIC DATA AND FORMATION TDS	83 -
8 GEOLOGIC I	AAPS AND STRATIGRAPHIC CROSS SECTIONS OF THE LOCAL AND REGIONAL GEOLOGY	85 -
R EGIONAL G	OLOGIC SETTING	85 -
• FIGUE	e C1 is a generalized map of the Michigan Basin.	85 -
• FIGUE	E C2 IS THE MICHIGAN STRATIGRAPHIC COLUMN ILLUSTRATING THE LITHOLOGY OF THE SEDIMENTS WHICH FILL THE MICHIGAN BASIN AND O	CCUR IN
THE AOR		85 -
• FIGUE	E C3 IS A DETAILED REPRODUCTION OF THE NORTHWEST-SOUTHEAST REGIONAL CROSS-SECTION AS PRESENTED BY FENIX AND SCISSON, 198	4,
WHICH TRAN	ECTS THE AOR. THE SECTION UTILIZES THE DEEPEST WELL IN THE AREA	85 -
• FIGUE	e C4 is a detailed portion of Figure C3	86 -
LOCAL GEOLO	DGIC SETTING	86 -
• FIGUE	E C5 IS A LOCAL CROSS SECTION THROUGH THE AOR CONSTRUCTED USING GEOPHYSICAL WELL LOGS THAT SHOW POROSITY, BULK DENSITY,	
NATURAL GAI	/MA RAY, CALIPER LOG RESPONSES	86 -
• FIGUE	e C6 is a cross sectional trace of the path from East to West,	86 -
	E C7 IS A CROSS SECTIONAL TRACE OF THE PATH OF THE MPC 8D AND HODGES 1-36(D), FROM EAST TO WEST, CONSTRUCTED USING	
	WELL LOGS THAT SHOW POROSITY, BULK DENSITY, NATURAL GAMMA RAY, CALIPER RESPONSES	86 -
	E C8 IS A STRUCTURE MAP OF THE DUNDEE/REED CITY DOLOMITE	
THE FLUID IN	RATION. INCLUDE A CHARACTERIZATION OF THE COMPATIBILITY OF THE INJECTATE WITH THE INJECTION ZONE A THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WITH ROOM ON THE INJECTION ZONE.)
THE FLUID IN REACT IN THE	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.) 87 -
THE FLUID IN REACT IN THE 10 INFORMAT	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE) 87 - 89 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.) 87 - 89 - 89 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: EOLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA) 87 - 89 - 89 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: ECOLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID	 87 - 89 - 89 - 90 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID	 87 - 89 - 89 - 90 - 90 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: ECOLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION.	 87 - 89 - 89 - 90 - 90 - 90 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISO	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION. DPACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE.	 87 - 89 - 90 - 90 - 90 - 91 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE C9 P INJECTION FIGURE C10 10.B AN ISI • FIGURE	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE COLOGICAL NAME OF THE STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION DPACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE E C11 IS AN ISOPACH MAP OF THE REED CITY DOLOMITE GROUP OF THE DUNDEE FORMATION.	 87 - 89 - 89 - 90 - 90 - 90 - 91 - 91 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE INJECTION FIGURE C10 10.B AN ISC • FIGURE 10.C LITHO	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: ECOLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA	 87 - 89 - 90 - 90 - 90 - 91 - 91 - 91 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISC • FIGUR 10.C LITHO 10.D EFFEC	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION PACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE. E C11 IS AN ISOPACH MAP OF THE REED CITY DOLOMITE GROUP OF THE DUNDEE FORMATION OGY, GRAIN MINERALOGY AND MATRIX CEMENTING OF THE INJECTION ZONE. TIVE POROSITY OF THE INJECTION ZONE INCLUDING THE METHOD OF DETERMINATION	 87 - 89 - 90 - 90 - 91 - 91 - 91 - 91 - 91 - 92 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISI • FIGUR 10.C LITHO 10.D EFFEC FIGURE C13	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE CORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION OPACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE. E C11 IS AN ISOPACH MAP OF THE REED CITY DOLOMITE GROUP OF THE DUNDEE FORMATION OGY, GRAIN MINERALOGY AND MATRIX CEMENTING OF THE INJECTION ZONE. TIVE POROSITY OF THE INJECTION ZONE INCLUDING THE METHOD OF DETERMINATION DENSITY-NEUTRON POROSITY PLOT AND CORRELATION TO DETROIT RIVER-BELL SHALE SECTION	 87 - 89 - 90 - 90 - 90 - 91 - 92 - 94 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISO • FIGURE 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTIO	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE CORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA	<pre> 87 89 90 90 90 91 91 91 91 91 91 92 94 - ICAL</pre>
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE INJECTION FIGURE C10 10.B AN ISC • FIGURE 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTIC VARIATIONS I	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	• - 87 - 89 - 90 - 90 - 90 - 91 - 91 - 91 - 91 - 92 - 92 - 94 - 1CAL 95 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE INJECTION FIGURE C10 10.B AN ISC • FIGURE 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTION VARIATIONS I FIGURE C14	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. ION TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE CORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION PACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE E C11 IS AN ISOPACH MAP OF THE REED CITY DOLOMITE GROUP OF THE DUNDEE FORMATION OGY, GRAIN MINERALOGY AND MATRIX CEMENTING OF THE INJECTION ZONE TIVE POROSITY OF THE INJECTION ZONE INCLUDING THE METHOD OF DETERMINATION DENSITY-NEUTRON POROSITY PLOT AND CORRELATION TO DETROIT RIVER-BELL SHALE SECTION CAL AND HORIZONTAL PERMEABILITY OF THE INJECTION ZONE AND THE METHOD USED TO DETERMINE PERMEABILITY. HORIZONTAL AND VERT N PERMEABILITY EXPECTED WITHIN THE AREA OF INFLUENCE HODGES 1-36 PERMEABILITY	• • • 87 - • • 89 - • • 89 - • • 90 - • • 90 - • • 90 - • • 91 - • • 91 - • • 91 - • • 91 - • • 92 - • • 92 - • • 94 - 1CAL • • 95 - • • 96 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE INJECTION FIGURE C10 10.B AN ISU • FIGURE 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTIN VARIATIONS I FIGURE C14 10.F THE C	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. TON TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE ORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION DPACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE. E C11 IS AN ISOPACH MAP OF THE REED CITY DOLOMITE GROUP OF THE DUNDEE FORMATION LOGY, GRAIN MINERALOGY AND MATRIX CEMENTING OF THE INJECTION ZONE. TIVE POROSITY OF THE INJECTION ZONE INCLUDING THE METHOD OF DETERMINATION. DENSITY-NEUTRON POROSITY PLOT AND CORRELATION TO DETROIT RIVER-BELL SHALE SECTION CAL AND HORIZONTAL PERMEABILITY OF THE INJECTION ZONE AND THE METHOD USED TO DETERMINE PERMEABILITY. HORIZONTAL AND VERT N PERMEABILITY EXPECTED WITHIN THE AREA OF INFLUENCE. HODGES 1-36 PERMEABILITY CCURRENCE AND EXTENT OF NATURAL FRACTURES AND/OR SOLUTION FEATURES WITHIN THE AREA OF INFLUENCE.	<pre> 87 89 90 90 91 91 91 91 91 92 94 - ICAL 95 96 90 90 90 90 90</pre>
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISO 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTION VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE. ION TO CHARACTERIZE THE PROPOSED INJECTION ZONE, INCLUDING: COLOGICAL NAME OF THE STRATUM OR STRATA MAKING UP THE INJECTION ZONE AND THE TOP AND BOTTOM DEPTHS OF THE INJECTION ZONE CORTION OF MICHIGAN STRATIGRAPHIC COLUMN BELL SHALE – SALINA E C10 IS A GRAPHICAL ILLUSTRATION OF THE STRATIGRAPHIC HORIZONS CURRENTLY BEING UTILIZED IN THE STATE OF MICHIGAN FOR FLUID GRAPHICAL DEPICTION OF FORMATIONS USED FOR CLASS I AND CLASS II INJECTION PACH MAP SHOWING THICKNESS AND AREAL EXTENT OF THE INJECTION ZONE E C11 IS AN ISOPACH MAP OF THE REED CITY DOLOMITE GROUP OF THE DUNDEE FORMATION OGY, GRAIN MINERALOGY AND MATRIX CEMENTING OF THE INJECTION ZONE TIVE POROSITY OF THE INJECTION ZONE INCLUDING THE METHOD OF DETERMINATION DENSITY-NEUTRON POROSITY PLOT AND CORRELATION TO DETROIT RIVER-BELL SHALE SECTION CAL AND HORIZONTAL PERMEABILITY OF THE INJECTION ZONE AND THE METHOD USED TO DETERMINE PERMEABILITY. HORIZONTAL AND VERT N PERMEABILITY EXPECTED WITHIN THE AREA OF INFLUENCE HODGES 1-36 PERMEABILITY	87 - 89 - 90 - 90 - 91 - 91 - 91 - 95 - 96 - 97 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISO • FIGUR 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTION VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	<pre> 87 89 90 90 90 91 91 91 91 91 91 95 96 96 97 - Y PAST</pre>
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISO • FIGUR 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTION VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A FLUID INJECT	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	<pre> 87 89 90 90 90 91 91 91 91 91 91 95 96 96 97 - Y PAST 99</pre>
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISO • FIGURE 10.C LITHO 10.D EFFEG FIGURE C13 10.E VERTH VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A FLUID INJECT	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	<pre> 87 89 90 90 90 91 91 91 91 91 91 91 95 96 96 96 97 - Y PAST 99</pre>
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGURE INJECTION FIGURE C10 10.B AN ISU • FIGURE 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTION VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A FLUID INJECTION FIGURE C15 10.I FORMAT	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE	87 - 89 - 90 - 90 - 91 - 91 - 91 - 95 - 96 - 97 - Y PAST 99 - 99 - 99 - 99 - 99 - 99 - 99 - 100 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR 10.B AN ISO 10.B AN ISO 10.B AN ISO 10.C LITHO 10.D EFFEO FIGURE C13 10.C VERTION VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A FLUID INJECTION FIGURE C15 10.I FORM. 10.J THE V	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	<pre> 87 89 90 90 90 91 91 91 91 91 91 92 94 - ICAL 95 96 96 97 - Y PAST 99 99 99 100 102 - </pre>
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR INJECTION FIGURE C10 10.B AN ISC • FIGUR 10.C LITHO 10.D EFFEC FIGURE C13 10.E VERTION VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A FLUID INJECTION FIGURE C15 10.I FORMAT	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	 a. - 87 - a. - 89 - b. - 90 - c. - 90 - c. - 90 - c. - 90 - c. - 91 - c. - 95 - c. - 96 - c. - 96 - c. - 96 - c. - 96 - c. - 97 - c. - 99 - c. - 99 - c. - 100 - c. - 103 -
THE FLUID IN REACT IN THE 10 INFORMAT 10.A THE G FIGURE C9 P • FIGUR 10.B AN ISO • FIGURE C10 10.B AN ISO • FIGURE C10 10.C LITHO 10.C LITHO 10.C LITHO 10.C LITHO 10.C EFFEC FIGURE C13 10.E VERTHO VARIATIONS I FIGURE C14 10.F THE C 10.G CHEM 10.H THE A FLUID INJECTI FIGURE C15 10.I FORMAT 10.J THE V 11 INFORMAT	THE INJECTION ZONE ALONG WITH A CHARACTERIZATION OF THE POTENTIAL FOR MULTIPLE WASTE STREAMS TO WELL BORE OR IN THE INJECTION ZONE.	<pre> 87 89 90 90 90 91 91 91 91 91 91 91 95 96 96 96 96 97 - Y PAST 99 99 102 103</pre>

Michigan Potash Operating, LLC

FIGURE C14 IS AN ISOPACH MAP OF THE BELL SHALE SHOWING THE AREAL EXTENT	- 103 -
11.C LITHOLOGY, GRAIN MINERALOGY AND MATRIX CEMENTING OF THE CONFINING ZONE	103 -
11.D EFFECTIVE POROSITY OF THE CONFINING ZONE INCLUDING THE METHOD OF DETERMINATION	103 -
11.E VERTICAL AND HORIZONTAL PERMEABILITY OF THE CONFINING ZONE AND THE METHOD USED TO DETERMIN	INE. HORIZONTAL AND VERTICAL VARIATIONS IN
PERMEABILITY EXPECTED WITHIN THE AREA OF INFLUENCE.	104 -
11.F THE OCCURRENCE AND EXTENT OF NATURAL FRACTURES AND/OR SOLUTION FEATURES WITHIN THE AREA	OF INFLUENCE 104 -
11.G CHEMICAL AND PHYSICAL CHARACTERISTICS OF THE FLUIDS CONTAINED IN THE CONFINING ZONE AND FLU	ID SATURATIONS 104 -
11.H Formation fracture pressure, the method used to determine fracture pressure and the exp	ECTED DIRECTION OF FRACTURE PROPAGATION
104 -	
11.1 The vertical distance between the top of the confining zone from the base of the lowest free	SH WATER STRATA 105 -
12 INFORMATION DEMONSTRATING INJECTION OF LIQUIDS INTO THE PROPOSED ZONE WILL GRADIENT AND INFORMATION SHOWING INJECTION INTO THE PROPOSED GEOLOGICAL STR THROUGH THE CONFINING ZONE. INFORMATION SHOWING THE ANTICIPATED DISPERSION, INJECTED FLUIDS AND BEHAVIOR OF TRANSIENT PRESSURE GRADIENTS IN THE INJECTION ZO INJECTION.	ATA WILL NOT INITIATE FRACTURES , DIFFUSION AND/OR DISPLACEMENT OF DNE DURING AND FOLLOWING
13 PROPOSED OPERATING DATA INCLUDING ALL OF THE FOLLOWING DATA	
13.A THE ANTICIPATED DAILY INJECTION RATES AND PRESSURES.	107 -
13 B The types of fluids to be injected	- 108 -

15 FOR A PROPOSED DISPOSAL WELL TO DISPOSE OF WASTE PRODUCTS INTO A ZONE THAT WOULD LIKELY CONSTITUTE A PRODUCING OIL OR GAS POOL OR NATURAL BRINE POOL, A LIST OF ALL OFFSET OPERATORS AND CERTIFICATION THAT THE PERSON MAKING APPLICATION FOR A WELL HAS NOTIFIED ALL OFFSET OPERATORS OF THE PERSON'S INTENTION BY CERTIFIED MAIL. IF WITHIN 21 DAYS AFTER THE MAILING DATE AN OFFSET OPERATOR FILES A SUBSTANTIVE OBJECTION WITH THE SUPERVISOR, THEN THE APPLICATION SHALL NOT BE GRANTED WITHOUT A HEARING PURSUANT TO PART 12 OF THESE RULES. A HEARING MAY ALSO BE SCHEDULED BY THE SUPERVISOR TO DETERMINE THE NEED OR DESIRABILITY OF GRANTING PERMISSION FOR THE PROPOSED WELL..-111 -

14 A PROPOSED PLUGGING AND ABANDONMENT PLAN	112 -	
PROPOSED PLUGGED WELLBORE DIAGRAM.	112 -	

Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

HODGES ET AL 1-36 FINAL WELLBORE API No.: 21-133-36991-0000 OSCEOLA COUNTY, MI GL @ 1.164.2' DIAGRAM - P&A KB @ 1,180.4' SW, SE, SE Sec. 36, T17N-R09W WELL COMPLETION DATE: DRY HOLE (NA), 12/21/83 SHL: 43.81518° / -85.32938° (N83) PLUGGING COMPLETION DATE: 9/9/85 BHL: 43.815224° / -85.343119° (N83) Locate well. Excavate to find casing. Weld on 8-5/8" stub. Quaternary H - 0' TVD Quaternary G - 98' TVD CUT OFF AND CAPPED 11-3/4" AND 8-5/8" PIPE 3' BELOW GROUND LEVEL. Quaternary F1 - 159' TVD Quaternary F - 187" TVD Quaternary E - 351' TVD 20" CONDUCTOR DRIVEN TO 71' 14-3/4" Hole Quaternary E/1 - 437' TVD Quaternary D - 514' TVD SURFACE CASING (3' - 920'): 11-3/4" 60# Jurrasic Red Beds - 712' TVD K-55. Cement to surface (500 sx). 10-5/8" Hole Michigan - 1,247' TVD INTERMEDIATE CASING (0' - 5,479'): 8-5/8" (ID = 7.921") 32# N-80. Cement to surface (1,600 sx). Window cut in casing 2,700' - 2,800' TVD. Marshall Sandstone - 1,713' TVD Coldwater Shale - 1,897' TVD NON-SLOTTED LINER (0' - 4,394' MD; 3,876' TVD): 5-1/2" 17# K-55. Cement: 300 sx Class A. Antrim Shale - 2.638' TVD KOP (2,700' - 2,800') P&A CEMENT: 486 sx Class A (0' MD to 4,394' MD) CEMENT: 323 sx Class A. PACKER (3,850' MD; 3,824' TVD) CEMENT RETAINER 4,394' MD Traverse Formation - 3,286' TVD 140 SX (3,212' - 4,052') Bell Shale - 3,821' TVD; 3,872' MD Dundee / Reed City - 3,876' TVD; 3,928' MD DVT ECP Detroit River Group - 4,156' TVD END OF CURVE (4,394' MD; 4,035' TVD)

112 -

Michigan Potash Operating, LLC

1 Describe in detail the purpose of the well and its anticipated life expectancy

NEED FOR PROPOSED ACTION

Potassium is one of the three primary nutrients essential to support carbohydrate production and plant life. It a natural fertilizer to improve productivity, efficiency, and yields of agribusiness.

The major source of potassium is potash (potassium chloride), extracted form sylvinite, a naturally occurring mineral containing both potassium chloride (potash) and sodium chloride (table salt). Since 1965, world consumption of potash grew from 14 million to an approximate 80 million short tons today. In 50 years, potash consumption has increased over 5 fold, and is necessary for global food security. In the last two decades, potash consumption has more than doubled.

The American farmer, the most efficient in the world, consumes about ten million short tons of potash annually. Over 96% of U.S. potash consumption is imported. Domestic potash supply comes principally from the Designated Potash Area in New Mexico; established in 1939 as a strategic resource. Over the past 80 years, the Designated Potash Area has become critically depleted, producing less than 300,000 tons of muriate of potash, or 3% of the US needs.

Despite being required for food growth, potash is the world's tightest controlled commodity. It is utilized throughout the globe, but commercial production occurs in only 12 countries and from 11 companies, creating high concentration risk. Current supply chain disruption has increased potash prices by 300% in two years, resulting in increased food prices, creating a global fertilizer, food, and inflationary security crisis.

The State of Michigan controls *one of three* domestic supplies for potash. Michigan potash was discovered in 1980, making it the youngest global commercial deposit of sylvinite. Potash is a U.S. Department of the Interior designated Strategic and Critical Mineral, and shortage of which poses critical and national harm. Michigan has the only proven and probable, commercial, potash available and ready for development.

Fertilizer is the American farmer's greatest cost of production. A Further increase in U.S. imports and tighter control of potash has resulted in a currently distressed supply chain. This has resulted in less staple crop growth, which in turn is quickly leading to global food shortages, price instability, and significantly higher costs and food costs, and food shortages.

Michigan's potash is critically important to the American farmer, who provides our food.

- The State of Michigan, as a contributive part of the U.S. soybean and corn belt, is a large producer of sugar beets and potatoes, and resides within the greatest potash demand region in all of North America.
- There are 53,000 Farms in Michigan. A 91 Billion dollar economic contribution to the State.
- The State of Michigan contains the world's purest and highest grade potash and it resides in the U.S. corn belt, closest to the U.S. farmer.
- Discovered in 1980, and successfully produced between 1989 and 2013, this concentrated area is only *one of three* known potash producing regions in the United States. The other two have been critically depleted. There is only one, marginal potash producer in the United States.
- The known, delineated, deposit in Michigan has the capability to more than triple domestic potash production for over a century.

The proposed action will:

- Create a competitive potassium fertilizer price for the US farmer, which helps the noblest of professions. Helping our farmer, means supporting their choice to 'keep the farm' and grow food for us.
- Potassium levels and crops the most critical component to a farmer's water management, allowing growers to get the most efficient use of what water they have available for a specific crop.
- Reduce over-irrigation, and increase crop water use and efficiency.
- Provide domestic production of a material critical to the US farmer, the nation's agricultural health, and the nation's food security.
- Reduce the need for import and improve the nation's balance of trade.
- Reduce transportation costs to key agricultural areas throughout the US.

• Create a new and sizable opportunity in Rural Western Michigan, providing jobs directly and indirectly to an area with a great need.

ALTERNATIVES TO THE PROPOSED ACTION

There are no commercial alternatives for potash as 50% of the world's supply is controlled by nations that are, on occasion, antagonistic to our initiatives (Russia, Belarus, China). The principle alternative is to not undertake the action.

THE PROPOSED ACTION

The proposed action is the perpetuation of pre-established potash production from Hersey Michigan, where production has occurred since 1989, but ceased in 2013. The MPC team was historically responsible for the development of the Hersey area potash, and maintains a continuity of expertise particular to the subsurface, surface, and environmental stewardship.

Michigan potash deposits occur at great depths, over 7,600' below ground level. Therefore, deep, directionally drilled wells are utilized to access the deposit. This creates a favorable means of potash and salt extraction, which impacts less than 1.0% of the surface. In other words, there is minimal to no surface disturbance, substantially reducing environmental impact and risk.

During the manufacturing of potash, sodium chloride, or "table salt", is also made. Michigan Potash Operating does make food grade quality salt, but there is an excess, and therefore, some salt has to be re-dissolved and re-injected. Although expressly clean brine, small increases in Magnesium and Calcium (natural human supplements) reduce operating and water conservation efficiency in the MPC process, and therefore are removed from the system so as to maintain upwards of 96% water recycling efficiency.

This is the purpose of the subject Part 625 NON-HAZARDOUS, NON-COMMERCIAL injection permit application. The Proposed Action requires that excess salt water, or an increases in 'Hard Water' by magnesium or calcium be re-injected. The disposed water, is cleaner than the resident displaced water.

The drilling and operation of Part 625 brine injection well (EPA Class I, Non-Hazardous, Non-Commercial) in the state of Michigan are currently subject to approval and permitting processes governed separately by the U.S. Environmental Protection Agency (EPA) and the Michigan Department of Environment, Great Lakes, and Energy (EGLE).

In the state of Michigan, there are numerous Part 625 brine operations; principally for extracting sodium chloride, which has a long history in Michigan. One such area, is immediately offset and currently operating less than one and a half (1.5) miles away.

The Michigan Department of Environment, Great Lakes, and Energy calls for the submittal of comprehensive project supporting data in the form of a series of attachments and project clarifications, respectfully submitted hereto.

Michigan Potash Operating proposes to develop the proposed Part 625 brine injection wells (as defined 324.62501(d).

The anticipated life of the projected well is 20 years, subject to operating conditions, which may enable it to exist for a longer or shorter duration.

The proposed injection horizon is the Dundee formation and the subgroup Reed City Dolomite, from approximately 3,821 - 4,156 TVD below surface.

Extensive work has been performed to identify and understand the lowermost underground source of drinking water ("USDW") within the Area of Review ("AOR"). The lowest possible USDW is the base of the glacial till. The deepest anticipated occurrence of glacial till in the AOR can range from 614 to 712 feet. The Glacial till measures 712 feet in the subject wellbore. Below the glacial till and into the sub-cropping Jurassic Red Beds, TDS is typically in excess of 35,000; TDS tends to increase rapidly in the Jurassic Red Beds towards the center of the Michigan Basin. Over 308 historical hydrological test holes and approximately 60 piezometers, and 50 drawdown tests, cataloging over 33,833 feet of groundwater and soil data was amalgamated for the purposes of adequately understanding and protecting as part of the separate Part 625 Artificial Brine Wells (EPA Class III) and related potash permitting efforts; these data coincide with the Hodges Et Al 1-36(D) (Hodges 1-36) Michigan Potash Area of Review ("AOR"). This area has been extensively studied and consists of one of the highest density gatherings of data of glacial till and hydrogeological data not only in Michigan, but possibly in Indiana and Illinois as well.

Injection well operating procedures, and environmental, health, and safety precautions are well established due to well understood and best practice operations currently in the immediate area of review; where several Part 625 injection wells and artificial brine wells are currently active and have been since 1984.

The proposed well is a re-entry well and shall be located as follows:

Well Name:Hodges Et Al 1-36(D)Location:Township 17 North, Range 9 West, Hershey Township, Michigan Meridian
Surface: Section 36: SE ¼, SW ¼, SE ¼NAD 83 SHL Lat, Long: 43.815180, -85.329380
NAD 83 BHL Lat, Long: 43.815024, -85.343111

Michigan Potash Operating, LLC

2 Notification: At the same time as submitting the permit application, mail via first-class United States mail, a copy of the first page of the permit application and cover letter to the clerk of the township and the surface owner of record of the land on which the well is to be located.

Letters were sent to Hersey township, Osceola County. The surface owners are Mary Brinistool who has also been notified by mail.

May 3 2024

Mary Brininstool PO Box 1007 Evart, MI 49631

Re: Notification of Drilling Operations Hodges Etal 1-36(D) Well <u>Township 17 North, Range 9 West, Hersey Township</u> Section 36: SW/4 SE/4 Osceola County, Michigan

To Whom It May Concern:

In accordance with the Michigan Statue R324.201(2)(d), this letter serves as a written notice by Michigan Potash Operating of its intention to drill the Part 625 Mineral Well, the Hodges Etal 1-36D from the above captioned location. The proposed operations are a re-entry of the existing location. Michigan Potash Operating, LLC operations are estimated to begin within the next 180 days pending receipt of the required permits, approval of title and rig availability.

As the surface owner, it is your responsibility to notify any affected tenant farmer, lessee or other party that may own or have an interest in any crops or surface improvements that could be affected by these proposed operations.

Please see the first page of the enclosed drilling application.

If you have any questions please don't hesitate to call me at 231-577-9616.

Sincerely

Michigan Potash Operating, LLC

Theodore A. Pagano General Manager

May 3 2024

Hersey Township Clerk Susan Martinez PO Box 290 Hersey, MI 49639

Re: Notification of Drilling Operations Hodges Etal 1-36(D) Well Township 17 North, Range 9 West, Hersey Township Section 36: SW/4 SE/4 Osceola County, Michigan

To Whom It May Concern:

In accordance with the Michigan Statue R324.201(2)(d), this letter serves as a written notice by Michigan Potash Operating of its intention to drill the Part 625 Mineral Well, the Hodges Etal 1-36D from the above captioned location. The proposed operations are a re-entry of the existing location. Michigan Potash Operating, LLC operations are estimated to begin within the next 180 days pending receipt of the required permits, approval of title and rig availability.

Please see the first page of the enclosed drilling application.

If you have any questions, please don't hesitate to call me at 231-577-9616.

Sincerely

Michigan Potash Operating, LLC

Theodore A. Pagano General Manager

Received and returned, on this day of 2024.

By:

Ms. Susan Martinez Hersey Twp., Osceola County

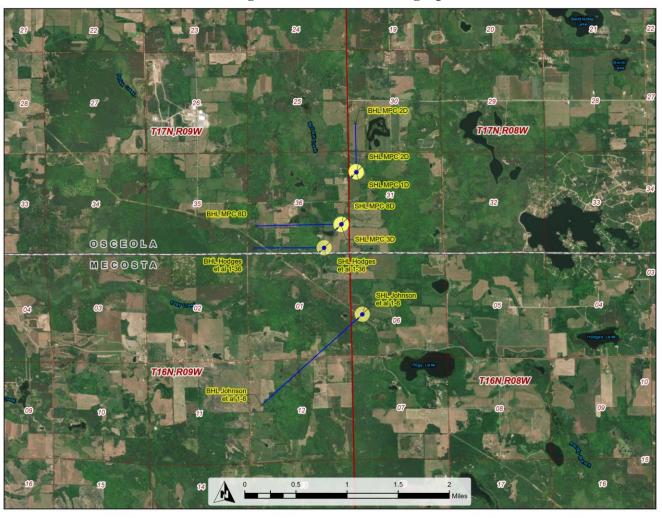
600 17th Street, Suite 2300, c/o Steptoe Johnson Denver, CO 80202, USA

Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

3 Form EQP 7200-1, Application for Permit to Drill, Deepen, Operate, with an original signature from the applicant or the applicant's agent. See instructions on reverse of form.

EGLE	MICHIGAN DEPAR	MENT OF E	NVIRONMEN	IT, GREAT LAKES	, AND ENERG	GY - OIL, GA	S, AND MIN	IERALS DIV	VISION		
	ICATION FOR		т то:		upervisor of W		Part 625 N			Fee end	closed
			NVERT	Oil and Ga			Waste Disp		\boxtimes		
	ND OPERATI			Brine Dispo			Brine Produ			No, revis	
By authority of	Part 615 or Part 625 of A	Act 451 PA 1994	t, as amended.	Hydrocarbo			Processed	brine dispo:		ication	
	ubmission and/or falsifica may result in fines and/o		mation	Injection fo	r Secondary		Storage Test, fee so	had an rev		No, leg o drainh	
1	ious permit numbers		3. Fed	Recovery	ise SSN)		cate well and			STOP STOP STOP	
36991			10000	70592				N			
4 36991an	ce bond 5.	Attached	6. Bond nu	mber	7. Bond a	mount					
Blanket		On file	DEPN011	4507721	440,000					+ +	
8. Applicant (name of permittee as										
Michigan Pota	sh Operating, LLC										
9. Address				Phone				0	20		
	ish Operating, LLC			231-577-9	0619	w		Sec.	36		
600 17th Stree					EGLE 4 addition	nal					E
Denver, CO 8	0203				cess this applic Yes No	ation.	0.4	4.1.4	~ ~ -	414	
10			— Z.	Vell num	CONTRACTOR OF CONTRACTOR		SW	1/4	SE	1/4	
Hodges Et Al	ell name (be as brief a	as possible)	1.4	1-36	ber						_
			· · · -				BHL			SH	1L
11. Surface ow	ner 🖾 Private 🛛		ederal 🔲	ndian 🗌 Other	, identify		302 FWL 20			1324' F	EL 267' FSL
12. Surface loc	ation					Towns	hin	S	County		
The second se	4 of SW 1/4	of SE	1/4 of Sec	с 36 т 17	7N R 09W	Herse	1000 · 1000		Osceol	a	
	I, bottom hole location					Towns	-		County		
	4 of SW 1/4		1/4 of Sec	с 36 т17	7N R 09W	Herse			Osceol	a	
14. The surface	e location for this well	is					•				
267	feet from neare	st (N/S) S	secti	on line A	ND 1324	feet from	nearest (EA	N) East	sec	tion line	e
15. Is this a dire	ectional well? No	—	If yes, compl	ete line15. The be	ottom hole loca			<i>'</i>			
200	feet from neare	and the second second second			ND 302		nearest (E/	N) W	sec	tion line	e
16. The bottom	hole location (whethe	er straight or d	lirectional) of	this well is							
200	feet from neare	st (N/S) S	drillin	ng unit line A	ND 302	feet from	nearest (E/	N) W	drill	ing unit	t line
17. Kind of tool				gas expected?			f lowest kno	wn fresh wa			
	Cable Combination			a ☐ H₂S Cont. p		Formation				oth 714	54 g
20. Intended to	NOT SHE WAS AN	1990 - C	Formation at	a second a second second second second	22. Producing			-		eld, or p	project
MD 7387	TVD 4060		indee/Reed		Dundee/Reed			Hersey Po	tasn		
24.	HOLE	PROPOSED I	DRILLING, C	ASING AND CEN CAS		SEALING	PROGRAM	CEMENT			UD
Depth (MD)	Geol. Formation	Bit Dia.	O.D. Size	Wt/Ft Grade		Depth (MD) Sacks	T.O.C.	W.O.C	Wt.	Vis.
920'		14-3/4	11-3/4	K-5		920	500	Surface		NA	NA
5,479	Michigan NA	10-5/8	8-5/8	N-8		5,479	1600	Surf	NA	NA	NA
5,479	INA	10-5/6	0-5/0	19-0		5,479	1000	Suit	INA		INA
NEW	LATERAL	DELOW			COOK .	2 000			ļ		
NEW	LATERAL	BELOW	5.1/2	WHIPS	e veronvo-mas	2,800	323	Guiferra	12	0	10.1
7,387	Dundee	7-7/8	5-1/2	K5		4,394	2722 (C200)	Surface	- A 20012A	9	40+
7,387	Dundee MENTING PROGRAM	7-7/8	5-1/2	Slotted		7,387	NA			G STP	40+
Surface Alread				T SLASSES, AD	STIVES, AND	AOLOMIC2	un 00. FT.	I ON EAU	n oAan	JUL	into.
	149 96782 101 20										
	ready Cemented				families.				6.		
Production/Inject	tion Lead: 300 sk C	lass A 1.47c	uft/sk=450c	uft: Tail: 323 sl	Class A 1.1	8 cuft/sk=3	82 cuft (3	0% excess	5)		
	spondence and permi	t to									
Name Theodor					E-mail tpagn	ao@mipot	ash.com				
Address 600 17	7th Street, Suite 230	00 Denver, C	CO 80203				Phone	231-577-9	616		
CERTIFICATION	"I state that I am authoriz	zed by said app	licant. This app	plication was	Enclose the rece						
	y supervision and direction st of my knowledge."	n. The facts sta	ated herein are	true, accurate and	Michigan. The pe disposal well; \$5						
	prepared by (print or	type)	Phone		Cashier use						
The	odore Pagano, P.E	P.G.	231 577	7 9616							
28. Signature	~+=>	,	Date								
			E / 4 / 6 -	0.4							
			5/1/20	24							
Permit number	Oil, Gas, and Min		Use Only								
Permit number	Oil, Gas, and Min API number			Owner number							


4 Form EQP 7200-2, Survey Record of Well Location signed and sealed by a surveyor licensed in the state of Michigan which identifies:

- A. A readily visible stake or marker must be set at the well location. If the well will be directionally drilled also identify the bottom hole location.
- B. A flagged route or explanation of how the well location may be reached.
- C. Footages of the surface location (and if directionally drilled, the bottom hole location) from the nearest property and section lines.
- D. Identification of the existing local zoning designation of the surface location of the well.
- E. The surveyor must include an attached plat that shows all of the following information relative to the approximate distances and directions from the stake or marker to special hazards or conditions, including all of the following:
 - i. Surface waters and other environmentally sensitive areas within 1,320 feet of the proposed well.
 - ii. Floodplains associated with surface waters within 1,320 feet of the proposed well.
 - iii. Wetlands, as identified by the provisions of Part 303 of the NREPA, within 1,320 feet of the proposed well.
 - iv. Natural rivers, as identified by the provisions of Part 305 of the NREPA, within 1,320 feet of the proposed well.
 - v. Threatened or endangered species, as identified by the provisions of Part 365 of the NREPA, within 1,320 feet of the proposed well.
 - vi. All buildings, recorded freshwater wells and reasonably identifiable freshwater wells utilized for human consumption, public roads, railroads, pipelines, power lines and other man-made objects that lie within 600 feet of the proposed well location.
 - vii. All public water supply wells identified as type I and II that lie within 2,000 feet of the proposed well location and type IIb and III that lie within 800 feet of the proposed well location, as defined in Act No. 399 of the Public Acts of 1976, as amended, being \$325.1001 et seq. of the Michigan Compiled Laws.

Form EPQ 7200-02, signed and sealed by a State of Michigan Surveyor is included at the end of this section for Well Hodges Et Al 1-36(D). The Survey includes a supplemental plat that identifies the required information presented in Item E, above, including the proposed well location. A location map is also included presenting the well location in an aerial photograph.

Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

Michigan Potash Aerial Photograph

A readily visible stake or marker was set at the surface of the previously drilled Hodges 1-36 well. The Survey Plat shows the roadway nearest to be 120th Avenue, approximately 1,300 ft to the east.

i. Surface Waters and other environmentally sensitive areas within 1,320 feet of the proposed well.

Field verification of this information is included in the Survey (Form EPQ 7200-02). See Item iii and iv for additional information.

ii. Floodplains associated with surface waters within 1,320 feet of the proposed wells.

There are no FEMA associated Floodplains within 1,320 of the proposed wells as per CFR 44 9.4.

iii. Wetlands, as identified by the provisions of Part 303 of the NREPA, within 1,320 feet of the proposed well.

The survey shows wetland proximity and areal extent. No wetland disturbance is anticipated.

iv. Natural rivers, as identified by the provisions of Part 305 of the NREPA, within 1,320 feet of the proposed well.

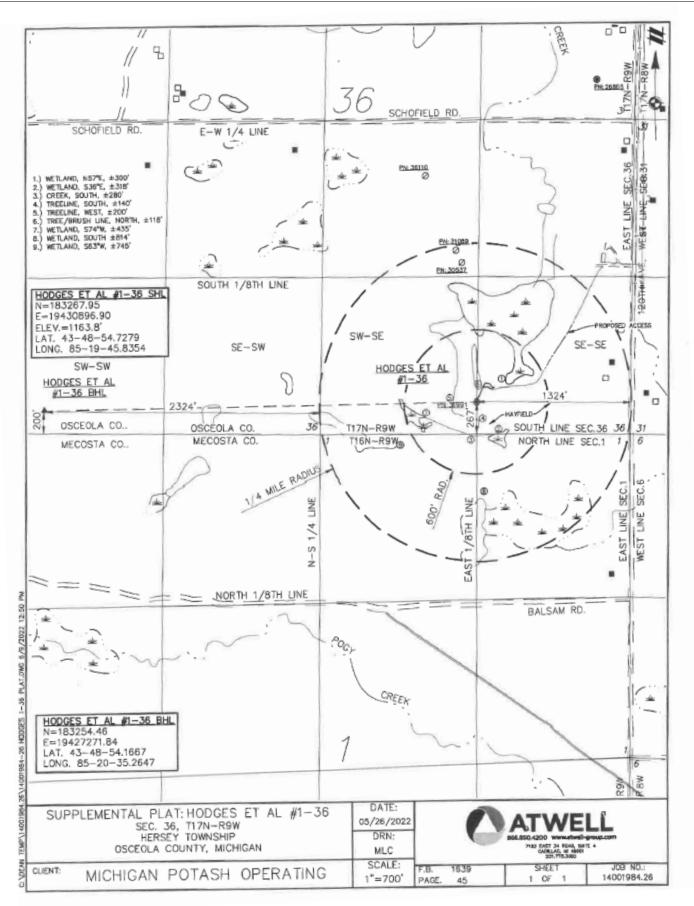
There are no natural rivers as provided by Part 305 of NREPA were identified within the specified radius of 1,320 feet from the proposed well location.

v. Threatened or endangered species, as identified by the provisions of Part 365 of the NREPA, within 1,320 feet of the proposed well.

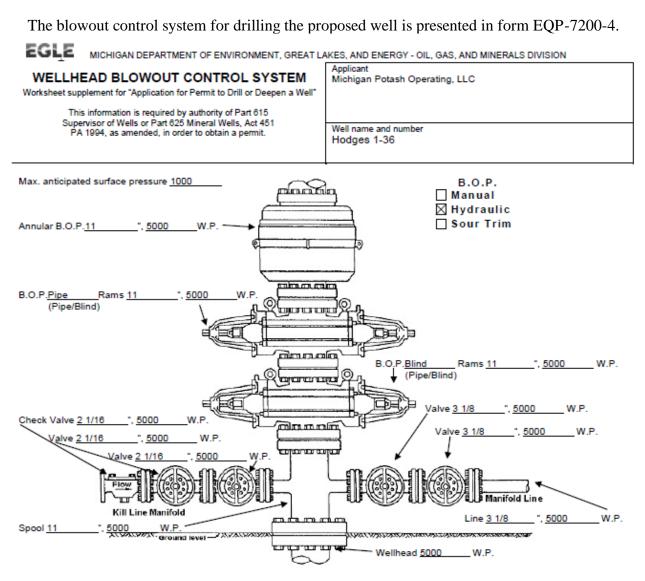
The Michigan Natural Features Inventory (MNFI) was consulted for a database review of known occurrences of State and Federal listed threatened and endangered species that may be present in the immediate project vicinity. In addition, the United States Fish and Wildlife Service's (USFWS) list of threatened and endangered species for Osceola County was reviewed by independent consulting biologists and ecologists. The USFWS indicates the potential for the threatened northern long-eared bat (Myotis septentrionalis), and the eastern massasauga rattlesnake (Sistrurus catenatus) to occur in Osceola County. Neither have been observed during survey on the location of the proposed actions, which is on tilled farm land and an unsuitable habitat or natural environment for either species. A breeding bird survey was conducted at the proposed project location. Forty Six bird species were observed and all were considered to be common to mid-Michigan (Lipar, 2016, 2023), and no endangered or threatened species were identified.

vi. All buildings, recorded freshwater wells, wells and reasonably identifiable fresh water wells utilized for human consumption, public roads, railroads, pipelines, power lines and other man-made objects that lie within 600 feet of the proposed well.

Available information indicates that there is one private well within 1,320 feet of Hodges 1-36(D). There are no public freshwater wells within a 600 foot, 800 foot or 1,320 foot radius of the proposed well. There are two structures within 1,320 ft feet of the proposed well location: a house that is 1,175' from the well location and a barn that is 1,170' from the well location. A private road from 120th Street shall be constructed and serve as access to the proposed well location. The well location survey plot identifies the location of public features within 600 feet of the proposed well location. No railroads are present, as verified by survey. A map showing the general location of groundwater wells is provided on Figure B4.


vii. All public water supply wells identified as Type I and IIa that lie within 2,000 feet of the proposed well location and Type IIb and III that lie within 800 feet of the proposed well location, as defined in Act No. 399 of the Public Acts of 1976, as amended, being part 325.1001 et. Seq., of the Michigan Compiled Laws.

Based on available data, there are no Type I or IIa public water supply wells within 2,000 feet of the proposed Hodges Et Al 1-36(D) well location. There are no Type IIb or III public water supply wells within 800 feet of the proposed Hodges Et Al 1-36(D) well location.


Michigan Potash Operating, LLC

EGLE MICHIGAN DEPARTMENT OF ENVIRONMENT, G					14001484.66
EGLE MICHIGAN DEPARTMENT OF ENVIRONMENT, G	REAT L	AKES, AN Applicar		L, GAS, AND MIN	NERALS DIVISION
SURVEY RECORD OF WELL LOCATION	N	Michig	an Potash O	perating	
This information is required by authority of Part 615 Supervisor of Wells, or Part 625 Mineral Wells, of Act 451		Well nar	ne and number		
PA 1994, as amended, In order to obtain a drilling permit.		Hodge	s Et Al 1-36		
1a. Surface location				Township	County
	т 17N	R 09	W	Hersey	Osceola
1b. If this is a directional well, bottom hole location will be				Township	County
SW 1/4 of SW 1/4 of SW 1/4 of section 36	т 17N	R 09		Hersey	Osceola
Instructions: Outline drilling unit for oll/gas wells (Part 615) or proper the well in two directions from the nearest section, quarter section, and	ty bound nd unit (o	lary for min r property,	neral wells (Part Part 625) lines.	625) and spot we	I location on plat shown. Locate
2. The surface location is					
267ft. from nearest (N/S) Southsection line					
1324ft. from nearest (E/W) Eastsection line and			(1 MILE SOUA	ONE FULL SECTION ARE) N 1
2346ft. from nearest (N/S) Northquarter section line		eeoce	OF MIC		
1300 ft. from nearest (E/W) West quarter section line		POPO ATE			
3. Bottom hole will be (if directional)	0000	51	JACK '	NZ a	
200ft. from nearest (N/S) Southsection line	00000		EERS XR.	* AOK *	312
302ft. from nearest (E/W) Westsection line	00000	N9E0.40	ESSIONA-	PUE	ME
		°°°, ?0	ECONAL	0000	
2379 ft. from nearest (N/S) North quarter section line		°°°°°	2550000000	ECTION 36	
2324 ft. from nearest (E/W) East quarter section line 4. Bottom hole will be (directional or straight)		4			1
<. Bottom note will be (directional or straight)					
NAft. from nearest (N/S) NAdrilling unit line		- 60			, 9 2
NAft. from nearest (E/W) NA drilling unit line		2379	114		2346. Ser
Show access to stake on plat and describe if it is not readily accessible. From the intersection of Schofield Rd and			5		9
120th Ave, go south on 120th Ave ±1200' to field drive					N
on the right, go west ±200' on drive to end of gravel, then sw'ly ±1500' through field to well stake.	302	BHL	2324'		300 1324.
y set and the new orange.	-	.002	6504		3
6. Zoning Residential, effective date		119			1011
Initial date of residential zoning					
ON SEPARATE PLAT OR PLOT PLAN, LOCATE, IDENTIFY AND SHO A. All roads, power lines, buildings, residences, fresh water wells, a	and other	r man-mad	e festures withi	n 600 feet of the	stake.
B. All lakes, streams, wetlands, drainage-ways, floodplains, enviror endangered species within 1320 feet of the stake. C. All type I and IIa public water supply wells within 2000 feet and a					
Name of individual who surveyed site		Compar	W	D.	ate of ourses
. Dean Geers		Atwell			ate of survey -10-2022
ddress 192 E. 34 Road, Suite 4, Cadillac, MI 49601					none
I CERTIFY THE ABOVE INFORMATION IS COMPLETE A	AND ACC	CURATE T	O THE BEST O	F MY KNOWLED	31-775-300 GE AND BELIEF. Date
0.12				6.	.9.22
EQP 7200-2 (rev. 4/2021) ENCLOSE WITH APP	PLICATIO	ON TO DR	ILL OR DEEPE		1

Michigan Potash Operating, LLC

5 Form EQP 7200-4, Wellhead Blowout Control System.

Fill above blanks with applicable information. If not applicable, enter "N.A." or cross-out item shown. Describe test pressures and procedure for conducting pressure test. Identify any exceptions to R324.406 being requested.

All BOPS by drilling contractor will be no less than 5000 psi working pressure. Blowout equipment, including the pipe and blind rams, and annular preventor, will be tested to a pressure commensurate with the expected formation pressure and according to EGLE regulations.

Initial BOP test will be conducted after nipping up to the 9 5/8 inch casing and will be pressure tested to 1500 psi for 20 minutes. Subsequent BOP test to be conducted at 72 hour intervals with rams and annular tested to 1500 psi for 20 minutes. Prior notification will be give to the area supervisor/geologist for witness.

6 Form EQP 7500-3, Environmental Impact Assessment for Mineral Wells and Surface Facilities.

EGLE
MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY - OIL, GAS, AND MINERALS DIVISION ENVIRONMENTAL IMPACT ASSESSMENT FOR MINERAL WELLS AND SURFACE FACILITIES To be submitted with an application for a well permit pursuant to Part 625, 1994 PA 451, as amended or prior to construction of associated surface facilities located more than 300 feet from the proposed well. Check all boxes and fill in all blanks that apply to the proposed well(s) or proposed surface facility.
This ElA is for (check one) ⊠ Well only. Complete Parts A, B, D, E, F, G, H, and I. □ Surface facility only (to be constructed more than 300 feet from the well). Complete Parts A1, A2, C, D, E, F, G, H, & I
Well and surface facility. Complete all Parts. A. PROJECT DESCRIPTION
A. PROJECT DESCRIPTION
Michigan Potash Operating, LLC
2. Well name and number Hodges ET AL 1-36D
3. Well type
Artificial brine production well
 Natural brine production well Test well greater than 250' deep or penetrating below deepest freshwater aquifer
Blanket test well(s) Number of proposed wells Anticipated maximum depth
 Processed brine disposal well Single-source, non-commercial, waste disposal well
Multi-source commercial non-hazardous waste disposal well
Multi-source commercial hazardous waste disposal well
Storage well 4. □ Yes ⊠ No Is this well a replacement for an existing well?
If Yes, list
Existing well name and number
Current owner Existing well type and status
Existing well location
Reason for replacement Disposition of existing well
5. X Yes No Is this well a reentry of an existing well?
If Yes, list
Existing well name and number Hodges ET AL 1-36D
Current owner Existing well type and status P&A
Reason for reentry Dibigos and outdoin a k
6. \Box Yes \boxtimes No Is the well expected to encounter hydrogen sulfide (H ₂ S)?
If Yes, list formations expected to contain H ₂ S and anticipated depths to tops of formations
Dundee – Top @ 3,876'
7. 🛛 Yes 🗌 No Is the well expected to encounter oil or gas?
If Yes, list formations expected to contain oil or gas and anticipated depths to tops of formations Antrim 2,725' (trace gas)
Traverse Lime 3,364' (trace gas)
Reed City Dolomite 3980' (trace gas) per form for Johnson 1-6
8. Xes No Will the well be drilled from an existing drill pad? If Yes, list well name, number, permit number and status of all existing wells on the drill pad (if no wells, write "none")
The Hodeges Et Al 1-36 PN36991 well is plugged and abandoned, drill pad area was restored to original conditions and
has been cultivated as a hay field for several years.
Show proposed well and all existing wells on accompanying scale map identified as applying to Part A1 of the EIA.
EQP 7500-3 (rev. 5/2019) Page 1 of 5

EQP 7500-3 (rev. 5/2019) Page 1 of 5

APD 1000

-	B. DRILLSITE							
1.	Drill site access route dimensions +1500 feet x 200 feet.							
	Provide a detailed description of topography, drainage, soil type(s), direction and percentage of slopes, land cover and							
	present land use for the drill site access route. Show route on accompanying scale map labeled Part B1.							
	Approximately 1500 ft of new access road will need to be constructed to sere the well. Access will run northwesterly							
	from the well pad to an existing field drivee off of 120 th Ave. Rout will run through a hay field with rolling terrain. Slopes							
	range from 0-6%. Drainage is SW'ly. Field is used for agricultural purposes. Soils are Isabella Sandy Loam.							
2.	Drill site dimensions 200 feet x 250 feet.							
	Provide a detailed description of topography, drainage, soil types(s), direction and percentage of slopes, land cover and							
	present land use for the drill site. Show well site on accompanying scale map labeled Part B2 Previous well pad has							
	been restored and is noa hay field. Terrain is gently rolling in all directions. Ground to north rises at 6% for 50', then							
	falls 2% for 100'; east it is flat 100', then falls 3% for 100'; south it falls 5% for 100', then falls 2% for 40 feet to top bank;							
	west it falls 4% for 100', then falls 8% for 50', then 2% for 50'. Land use is agricultural. Soils are isabella Sandy Loam.							
NC	DTE: If any "Yes" box in items B3, B4, B5, B6, B7 or B8 is checked, the corresponding feature(s) must be							
	entified on an accompanying scale map identified as applying to Part B of the EIA.							
3.	☐ Yes ⊠ No Are drain tiles present on the drill site?							
	If Yes, how they will be handled if they are encountered?							
4.	Are any of the following located within 600 feet of the proposed wellhead?							
	☐ Yes ⊠ No Buildings							
	Yes No Domestic fresh water wells							
	Yes XNo Railroads							
	Yes 🛛 No Power lines							
	🗌 Yes 🖾 No Pipelines							
	☐ Yes							
5.	Are any of the following located within 800 feet of the proposed wellhead?							
	Yes \square No <u>Type IIB public water wells</u> (Type II is a non-community water supply with \ge 15 service connections or \ge 25 individuals for not							
less	s than 60 days per year. Type IIB have an average daily water production of less than 20,000 gallons per day)							
	Yes 🛛 No Type III public water wells (Type III is a public water supply which is neither Type I nor type II.)							
6.	Are any of the following located within 1320 feet of the proposed wellhead?							
	Yes 🔲 No Surface waters and other environmentally sensitive areas							
	Yes X No Floodplains associated with surface waters							
	Yes INo Wetlands, as identified by sections 30301 to 30323 of the Act.							
	Yes No Natural rivers, as identified by sections 30501 to 30515 of the Act							
	Yes No Threatened or endangered species as identified by sections 36501 to 36507 of the Act							
7.	Are any of the following located within 2000 feet of the proposed wellhead?							
	Yes \boxed{No} No <u>Type I public water wells</u> (Type I is a community water supply with year-round service, \geq 15 living units or \geq 25 residents.)							
	Yes No Type IIA public water wells (Type II is a non-community water supply with \geq 15 service connections or \geq 25 individuals for not							
	less than 60 days per year. Type IIA have an average daily water production of greater than 20,000 gallons per day)							
8.	Yes No Are Great Lakes shorelines located within 1500 feet of the proposed wellhead?							
9.	Yes INO Will fresh water be used to drill this well?							
	If Yes, will the water be supplied from							
	A "permanent" water well, to be retained after final completion OR used for drinking water (to be drilled and							
	installed pursuant to Part 127 of 1979 PA 368, as amended) OR							
	A "temporary" water well, to be plugged upon final completion and not used for drinking water OR							
1	Another source (identify) Private water source to be determined							
	If No, identify the drilling fluid to be used. Fresh water will be hauled from a pre-registered private water source, possibly							
	water well ID Private water well ID 67000007651, and/or registrations numbers							
EC	QP 7500-3 (rev. 5/2019) Page 2 of 5 (9325-20242-56 and 9326-20242-18), or others to be determined. It will not be							
	from a municipal source.							

Michigan Potash Operating, LLC

10. Drilling fluid pit location and handling and disposal of drill cuttings, muds and fluids
Anticipated depth to groundwater <u>>10'</u> Depth determined by <u>map interpretation</u>
Pit type
On site in-ground pit. Anticipated dimensions: L W D
Show proposed pit location on accompanying scale map labeled Part B10 .
Remote in-ground pit. Anticipated dimensions: L W D
Attach approval of landowner and show remote pit location on accompanying scale map labeled Part B10.
☑ On-site steel tanks with no in-ground pits (complete 10a and 10d below, do not complete 10b and 10c)
a. 🗌 Yes 🛛 No Will the well be drilled into or through bedded salt deposits?
If Yes,
🛛 Yes 🛛 No Will the drill cuttings contain solid salt?
If Yes, describe plans for handling and disposing of drill cuttings.
Any solid salts will be dissolved via a salt washing screen producing brine which will be utilized for drilling and any excess
will be disposed of by a licensed waste hauler upon completion.
win se diopeded et sy a noended wadte nadier aport oempiction.
b. 🗌 Yes 🔲 No Will the drilling fluid pit contents be solidified after drilling?
If Yes, identify the pit solidification contractor and pit solidification method.
c. 🗌 Yes 🔲 No Will the drilling fluid pit contents be removed after drilling?
If Yes, identify the site for disposal of the removed material.
d. 🛛 Yes 🗌 No Will any pit fluid be disposed by a licensed liquid waste hauler?
If Yes, identify the waste hauler.
Waste Management of Michigan, or other licensed liquid waste hauler to be determined
waste management of michigan, of other licensed liquid waste hadier to be determined
If No. departing dispaged plane for pit fluide
If No, describe disposal plans for pit fluids.
C. SURFACE FACILITY
If No, Do not complete the remainder of Part C.
If Yes,
🗌 Yes 🛛 No 🛛 Does a surface facility currently exist?
If Yes, show facility location relative to the wellhead on a scale map labeled Part C1. Do not complete the
remainder of Part C.
If No,

If No, at least 60 days prior to beginning construction, submit an EIA for the Surface Facility (this form), a facility plan, and a Soil Erosion and Sedimentation Control Plan (EQP 7200-18) to the Oil, Gas, and Minerals Division District Supervisor.

2. Yes No Is the proposed surface facility site more than 300 feet from the wellhead?

If Yes, complete Parts C3 through c10 and submit a map showing the location of the surface facility site relative to the wellhead.

If No, do not complete the remainder of Part C.

EQP 7500-3 (rev. 5/2019) Page 3 of 5

3. Dimensions of surface facility access road:feet xfeet.	
Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use	:
4. Dimensions of surface facility site:feet xfeet.	
Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use	:
NOTE: If any "Yes" box in items C5, C6, C7, C8, C9, or C10 is checked, the corresponding feature(s) must be	
identified on an accompanying scale map identified as applying to the appropriate section of Part C of the EIA.	
5. Yes No Are drain tiles present on the proposed surface facility site?	
If Yes, discuss how they will be handled if they are encountered?	
6 Are any of the following leasted within 600 feet of the proposed surface facility site?	
6. Are any of the following located within 600 feet of the proposed surface facility site? ☐ Yes	
☐ Yes ⊠ No Domestic fresh water wells	
\square Yes \square No Public roads	
\square Yes \square No Railroads	
Yes No Pipelines	
🗌 Yes 🛛 No Other man-made features (list individual features)	
7. Are any of the following located within 800 feet of the proposed surface facility site?	
Yes \square No <u>Type IIB public water wells</u> . (Type II is a non-community water supply with \ge 15 service connections or \ge 25 individuals for	.r
not less than 60 days per year. Type IIB have an average daily water production of less than 20,000 gallons per day)	L.
Yes No <u>Type III public water wells</u> . (Type III is a public water supply which is neither Type I nor type II.)	
8. Are any of the following located within 1320 feet of the proposed surface facility site?	
Yes No Surface waters and other environmentally sensitive areas	
Yes No Floodplains associated with surface waters	
Yes No Wetlands, as identified by sections 30301 to 30323 of the Act.	
Yes No Natural rivers, as identified by sections 30501 to 30515 of the Act	
Yes No Threatened or endangered species as identified by sections 36501 to 36507 of the Act	
9. Are any of the following located within 2000 feet of the proposed surface facility site?	
Yes \square No <u>Type I public water wells</u> . (Type I is a community water supply with year-round service, \ge 15 living units or \ge 25 residents.	5
Yes \square No <u>Type IIA public water wells</u> (Type II is a non-community water supply with ≥ 15 service connections or ≥ 25 individuals for	
less than 60 days per year. Type IIA have an average daily water production of greater than 20,000 gallons per day).	
10. Yes No Are Great Lakes shorelines located within 1500 feet of the proposed surface facility site?	

EQP 7500-3 (rev. 5/2019) Page 4 of 5

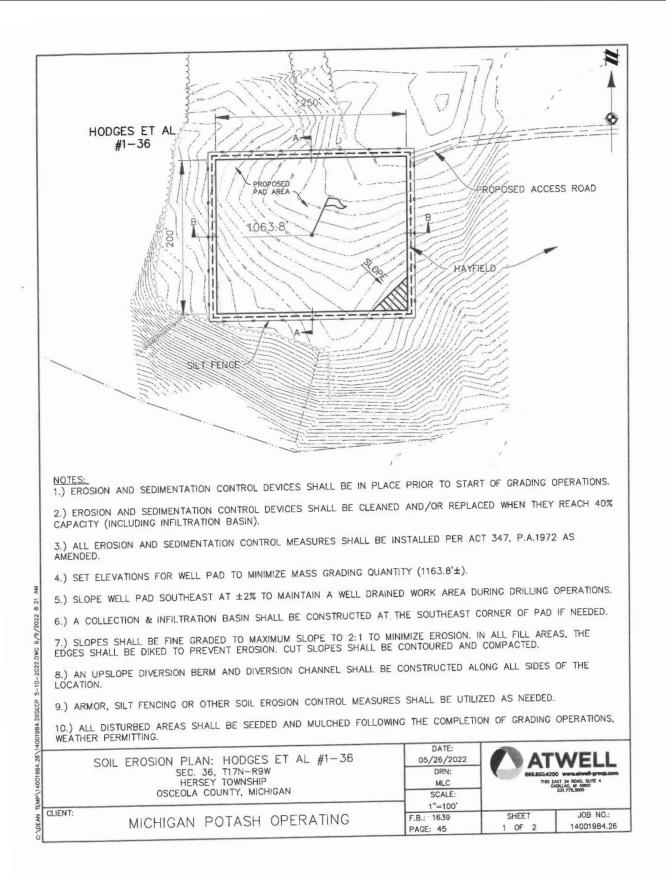
APD 1000

ground pipe path with two daily inspections. Real-time pressure monitoring and flow rate monitoring at pump house and wellhead via digital transducers and flow meters. Flow line material: <u>4-6'' Schedule 80 Crete-line pipe</u> Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route. \[Yes \[No Will the flowline be buried? If Yes Burial depth: feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. \[E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	D.	FLOWLINE				
Flow line rout dimensions feet x Facility, junction with an existing flowline or gathering system, on a scale map labeled Part C2. Anticipated maximum operating pressure (psig): 2000	The second se	flow line?				
Show flow line route from well to the surface facility, junction with an existing flowline or gathering system, on a scale map labeled Part C2. Anticipated maximum operating pressure (psig): 2000 Describe leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above ground pipe path with two daily inspections. Real-time pressure monitoring and flow rate monitoring at pump house and wellhead via digital transducers and flow meters. Flow line material: <u>4-6" Schedule 80 Crete-line pipe</u> Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route. □ Yes Burial depth:feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. FL ADDITIONAL PERMITS Identify additional permits to be sought		and approxiated flow line route are undetermined a	t this time			
map labeled Part C2. Anticipated maximum operating pressure (psig): 2000 Describe leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund leak detection program, including schedules of periodic pressure monitoring and flow rate monitoring at pump house and wellhead via digital transducers and flow meters. Flow line material: <u>4-6" Schedule 80 Crete-line pipe</u> Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route. If Yes Burial depth:feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. E.MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought C.Soll EROSION AND SEDIMENTATION PLAN						
Anticipated maximum operating pressure (psig): 2000 Describe leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund pipe path with two daily inspections. Real-time pressure monitoring and flow rate monitoring at pump house and wellhead via digital transducers and flow meters. Flow line material: <u>4-6" Schedule 80 Crete-line pipe</u> Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route.		anotion with an existing nowine of gathering system	m, on a scale			
Describe leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above gorund leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above ground pice path with two dally inspections. Real-time pressure monitoring and flow rate monitoring at pump house and wellhead via digital transducers and flow meters. Flow line material: <u>4-6" Schedule 80 Crete-line pipe</u> Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route. ☐ Yes No Will the flowline be buried? If Yes Burial depth:feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought)				
ground pipe path with two daily inspections. Real-time pressure monitoring and flow rate monitoring at pump house and wellhead via digital transducers and flow meters. Flow line material: <u>4-6" Schedule 80 Crete-line pipe</u> Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route. [Yes No Will the flowline be buried? If Yes Burial depth: feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. [Log additional measures to protect flowline from vehicular damage. [Log additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding low areas and surface use. [F. ADDITIONAL PERMITS [dentify additional permits to be sought [C. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow [in route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)			patrols.			
Describe the topography, drainage, soil type(s), direction and percentage of slopes, land cover and present land use along the flow line route. □ Yes No Will the flowline be buried? If Yes Burial depth:feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	Above gorund leak detection program, including schedules of periodic pressure testing and periodic flowline patrols. Above ground pipe path with two daily inspections. Real-time pressure monitoring and flow rate monitoring at					
along the flow line route. □ Yes No Will the flowline be buried? If Yes Burial depth:feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. E. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EOP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	Flow line material: <u>4-6" Schedule 80 Crete-line pipe</u>					
If Yes Burial depth:feet Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)		tion and percentage of slopes, land cover and pre-	sent land use			
Describe flowline route marking scheme. If No, describe measures to protect flowline from vehicular damage. E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. E. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
If No, describe measures to protect flowline from vehicular damage. E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	Describe flowline route marking scheme.					
E. MITIGATION OF IMPACTS FROM DRILLING AND/OR PRODUCTION Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	If No, describe measures to protect flowline from	vehicular damage.				
Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
Describe additional measures to be taken to protect environmental and/or land use values Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
Soil erosion and sedimentation control measure will be utilized to control water runoff. The drilling will not curtial the use of the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
the surrounding environment. Minimal long term environmental impact is anticipated. Site was selected to minimize any impact to surrounding low areas and surface use. F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)			urtial the use of			
F. ADDITIONAL PERMITS Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	impact to surrounding low areas and surface use.					
Identify additional permits to be sought G. SOIL EROSION AND SEDIMENTATION PLAN Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)	F. ADDIT	IONAL PERMITS				
Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
Submit a soil erosion and sedimentation plan (form EQP 7200-18) which addresses each well site, surface facility, and flow line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)						
line route identified in this application. (Refer to requirements under Part 91, 1994 PA 451)			facility and flow			
			racinty, and now			
H. ALTERNATE WELL AND SURFACE FACILITY LOCATIONS						
Were alternate surface locations considered for this well or surface facility?						
No, alternate sites did not seem necessary or more desirable		esirable				
Yes, the following locations were considered	Yes, the following locations were considered					
Why were they rejected in favor of the proposed location?	Why were they rejected in favor of the proposed location?	?				
I. CERTIFICATION						
"I state that I am authorized by said applicant to prepare this document. It was prepared under my supervision and direction. The facts stated herein are true, accurate and complete to the best of my knowledge."			ion and			
Theodore Pagano, P.E., P.G. 5/1/2024	Theodore Pagano, P.E., P.G.	A	5/1/2024			
Name and title (printed or typed) Authorized Signature Date	Name and title (printed or typed)	Authorized Signature	Date			

Enclose with Application For Permit To Drill

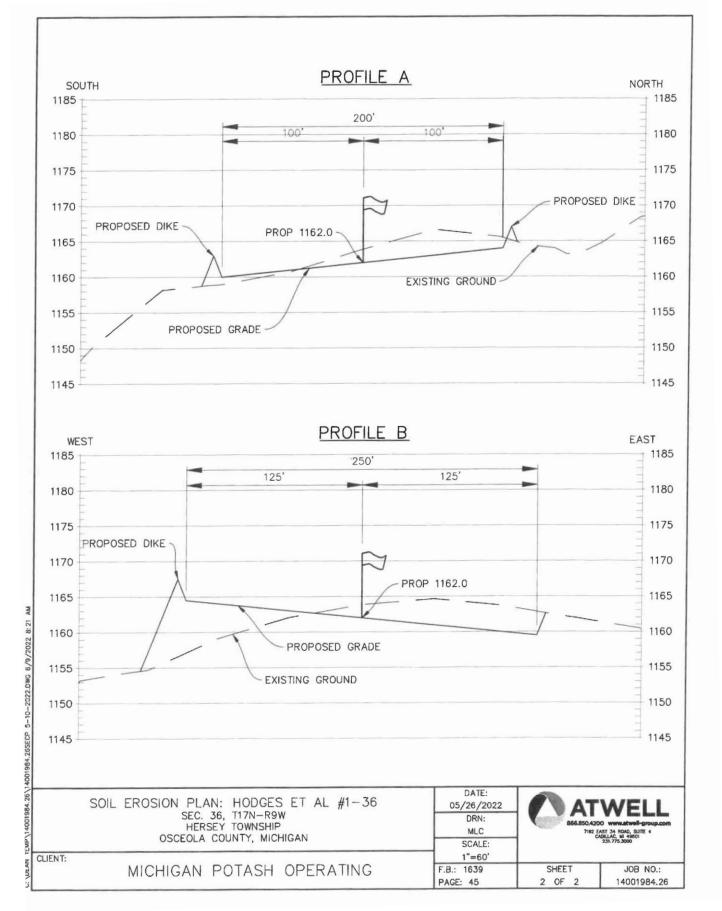
EQP 7500-3 (rev. 5/2019) Page 5 of 5

Michigan Potash Operating, LLC


7 Form EQP 7200-18, Soil Erosion and Sedimentation Control Plan

M ichigan Potash Operating, LL		MICHIGAN	Potash	O PERATING,	LLC
---------------------------------------	--	----------	--------	--------------------	-----

EGLE MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY - OIL, GAS, AND MINERALS DIVISION						
SOIL EROSION & SEDIMENTATION	1. Name and address of applicant					
CONTROL PLAN	Michigan Potash Operating, LLC					
By authority of Part 91, and Part 615 or Part 625 of Act 451 PA 1994, as	600 17th Street, Suite 2300					
amended. Non-submission and/or falsification of this information may	Denver, CO 80203					
result in fines and/or imprisonment. Applicants for multisource commercial hazardous waste disposal wells under Part 625 are required to obtain a						
Part 91 permit from a county or local enforcing agency						
Part 615 Oil/Gas Well Part 625 Mineral Well	Phone: (001) 577 0040					
2. Well or project name:	Phone: (231) 577-9619 Fax: ()					
Hodges Et Al 1-36	3. Well or project location: Section(s) 36 T17N B09W					
4. Name and address of County or local Enforcement Agent (CEA)	Section(s) 36 T17N R09W 5. Township 6. County					
Osceola County Soil Erosion & Sedimentation Control	Hersey Osceola					
22054 Professional Drive	7. Date earth changes expected to start					
Reed City, MI 49677	Within 30 days of permit issuance, weather permitting					
	8. Date of expected completion					
Phone: (231) 832-6117 Fax: (231) 832-7345	Within 90 days of well completion, weather permitting					
9. Name and address of person responsible for earth change:	10. Name and address of person responsible for maintenance:					
Not yet selected	Mr. Theodore Pagano					
	1225 17th Street, Suite 2200					
	Denver, CO 80203					
Phone: () Fax: ()	Phone: (221) 577 0646					
Phone: () Fax: () 11. Send copies of supplemental plat required by Part 615, R 324.201(2)(b) or R 324.504(4), and this form and all attachments, to CEA. For Part 625						
Mineral Wells, send to CEA only as instructed by OGMD staff.	or R 324.504(4), and this form and all attachments, to CEA. For Part 625					
Date sent to CEA 6 - 10-22						
EARTH CHANG	SE ACTIVITIES					
12. Project description: (Project activities may be permitted sequentially.)						
a. Number of well sites 1 , ±1.1 acres	d. Flow line(s) trenched in off well site* 0 feet, 0acres					
b. Number of surface facility sites 0 , 0 acres	e. Flow line(s) plowed in off well site*_0 feet, _0 acres					
c. New access roads ±1500 feet, ±0.7 acres *Contact CEA for fee schedule						
13. Describe sites for which permits are being sought under Part 301 (Inland Lakes & Streams) None						
Describe sites for which permits are being sought under Part 303 (Wetlands) None						
14. Attach detail map at scale of 1"=200' or larger, with contour lines at a minimum of 20' intervals <u>OR</u> percent slope descriptions. 15. Areas requiring control structures						
Will earth changes occur in areas with slopes of 10% or greater, areas where gunoff water is likely, such as guns greater than 500 of readersta along (5%)						
to 10%), harrow valley bottoms, etc.; areas within 500° of a lake or stream; or other areas where sedimentation to a wetland or drainage way may accur?						
Indicate any of the following erosion control structures that will be utilized. Identify location on detail map and attach detail plan.						
Indicate on plan whether erosion control structures are temporary or permanent.						
Diversions Culverts Sediment basins Silt fences Rip-rap Berms Check dams Other						
16. Site restoration						
Topsoil will be segregated from subsoil and stockpiled OR IN topsoil on site						
Recontour and revegetate as soon as weather permits. Seed mix _per land owners request						
Describe other proposed methods of restoration						
17. Application prepared by (name) Signation	Date Date					
I. Dean Geers. Agent. Atwell	-/d 6.9.22					
FOR USE OF COUNTY OR LOCAL ENFORCING AGENT						
INSTRUCTIONS TO COUNTY OR LOCAL ENFORCMENT AGENT: Copies o and this form and all attachments are provided for CEA review and information	f supplemental plat required by Part 615, R324.201(2)(b) or R324.504(4),					
SESC is not necessary; OGMD staff will evaluate and enforce SESC measures (SEE R324 9115 (3) of Part 91 Soil Engine and Solitional Formation						
NREFA, PA 451 0I 1994). Submittal to CEA is not a requirement under Part 61	5 or 625 Part 615 and 625 Permits to Drill and Operate include					
control plan approval for well sites, access roads, flow lines, and surface faciliti and Minerals Division (OGMD) within 30 days of receipt. OGMD will consider a	es. Return this form to the applicable field or district office of the Oil, Gas,					
17. Comments	and recommendations in reviewing the application,					
Conducted on-site inspection Date Inspected	site with representative of applicant Date					
CEA (name)	Date					
EQP 7200-18 (rev. 5/2019) ENCLOSE WITH APPLICATION FOR PERMIT TO DRILL						


Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

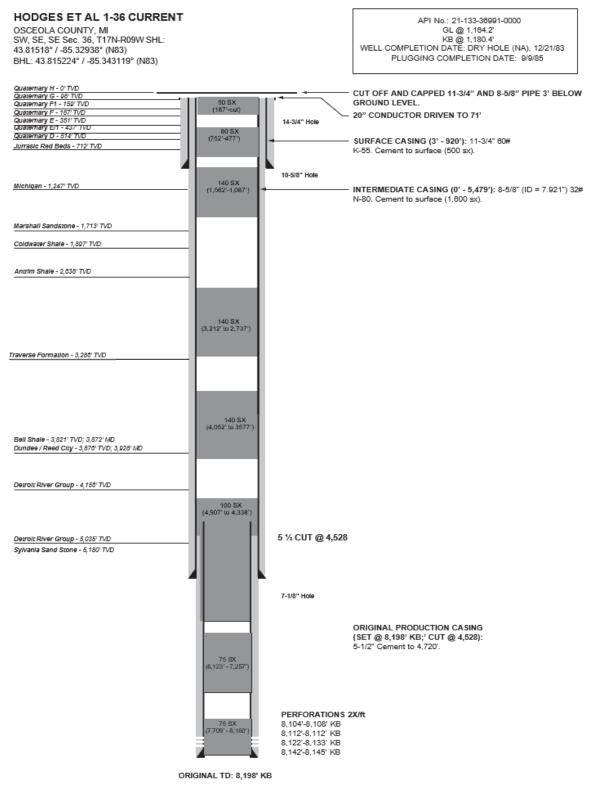
Michigan Potash Operating, LLC

8 Provide a conformance bond.

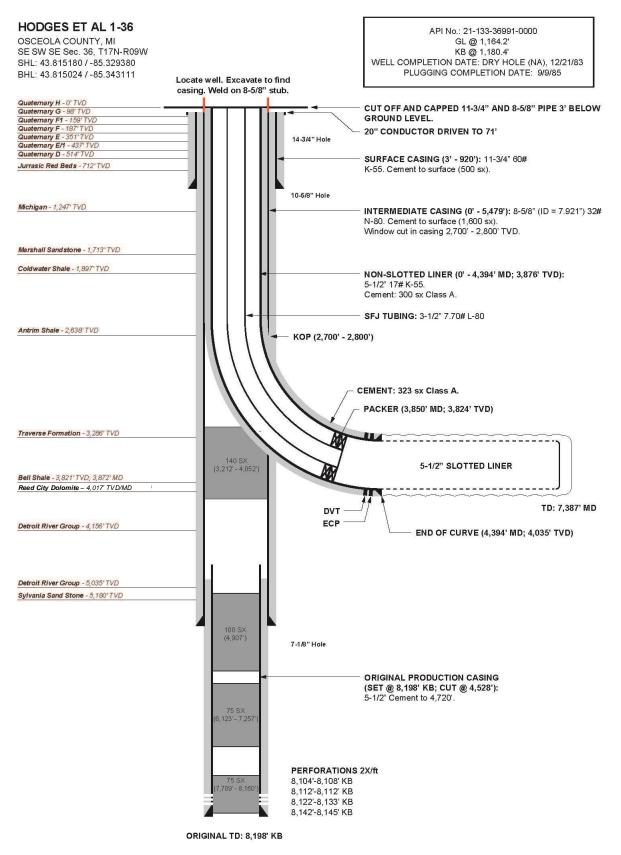
Michigan Potash Operating, LLC has a blanket bond for disposal, storage, or brine production. The bond number is DEPN0114507721.

9 The permit application fee as specified by statute.

Michigan Potash Operating, LLC will pay the \$500 disposal well fee for processed brine.


10 An organization report, form EQP 7200-13, if not on file with the supervisor.

Michigan Potash Operating, LLC has form EQP 7200-13 filed with EGLE.


Michigan Potash Operating, LLC

11 Description of the drilling program, including the drilling fluid and mud program, how the fluids will be handled and ultimate disposition of the drilling fluids. Include a discussion of whether over pressured zones are anticipated and how the mud program will be modified to accommodate such a condition.

Current Wellbore Diagram

The figure below presents the proposed well construction diagram for the Hodges Et Al 1-36(D). **Proposed Wellbore Diagram**

The proposed injection wells will be drilled and cased according to the following detailed construction procedure.

Construction Procedure:

- 1. Provide 48 hour notice of move in rig up to all regional, State, and Federal authorities.
- 2. Prepare to re-enter the well. Weld bell nipple to casing.
- 3. MIRU well service.
- 4. Install wellhead and 5K blow out preventer.
- 5. Pick up 7 7/8" bit and bottom hole assembly, begin drilling out plugs.
- 6. Stop at the plug installed at the Traverse.
- 7. Run casing inspection log, CBL.
- 8. Set bridge plug
- 9. Set whipstock to drill out of casing.
- 10. Pick up 7 7/8" mill and BHA; sidetrack well
- 11. Drill out casing and through the curve, landing curve in the Dundee. See direction plans below. No anti-collision necessary.
- 12. Run the slotted liner, external packer, DVT, and non-slotted 5 1/2" liner to surface
- 13. Cement the casing to surface
- 14. Wait on cement, run baseline casing inspection log and CBL.
- 15. Run production tubing and packer assembly.
- 16. Rig down move out Drilling Unit.

Stimulation Procedure:

- 1. MIRU coil tubing unit and acid treatment. Various concentration of HCl will be used based on the lithology of the proposed injection zone. Higher concentrations of HCl will be utilized for dolomite.
- 2. RIH to toe, spot acid pill(s) while pulling to heel.
- 3. Pump 1,000 gallon increments of 15% HCl into the well.
 - a. Pump occasional 50 gallons of soap in the well if hydrocarbon plugging is suspected
 - b. Displace acid pills by pressuring up back side and pumping salt water for displacement.
 - c. Repeat as necessary to treat the horizontal leg.
 - d. Initiate injection tests.

Proposed Injectivity Step Rate Test:

Run Step Rate injection test as follows:

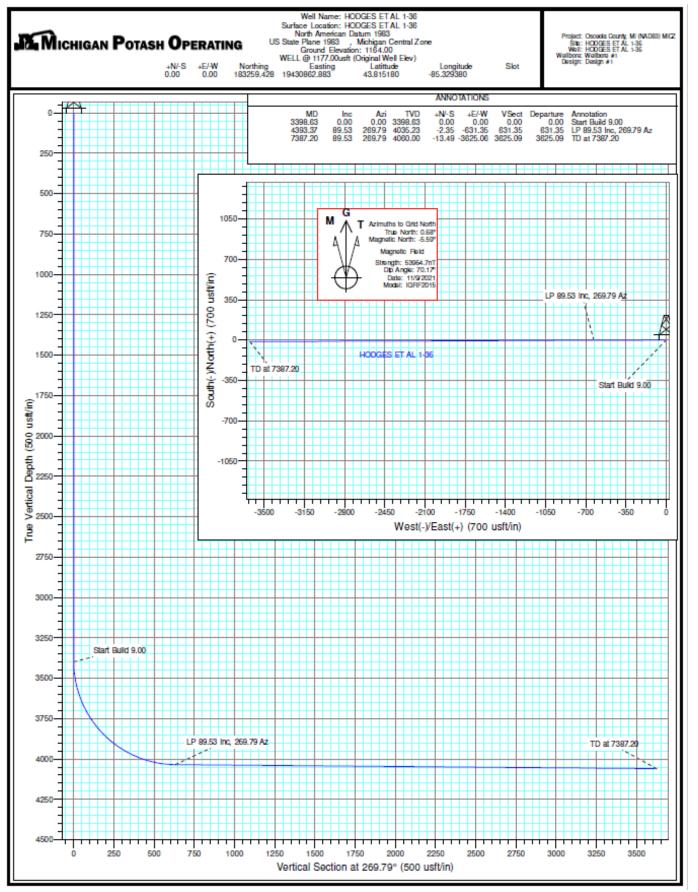
- a. Install a calibrated pressure gauge and recorder on the discharge line of the pump.
- b. Pump water into well at increasing rates and pressure, obtaining stabilized injection pressures. The duration of this test will be variable. Record rates, pressures, and time duration of entire test.
- c. Plot data and determine formation parting pressure.

Conduct pressure fall-off test. After the injection test is completed, shut well in and record the pressure until a stabilized pressure is obtained, or pressure drops below zero gauge pressure. If it is below zero gauge pressure, measure the fluid level. If test results prove unsatisfactory, additional stimulation may be done to improve the effective permeability at the well bore. This may include additional acid treatment.

Proposed Mud Program

All drilling is to be done via a closed loop circulation system. Any solid salts brought to surface will be dissolved via a salt washing screen, which will dissolve residual salt, or salt on the cuttings with freshwater, tuning the salt to

MICHIGAN POTASH OPERATING, LLC


brine. The brine will then be stored on location specifically for another well. All cuttings are to be dried on location and hauled directly to a landfill as necessary.

There are no over pressured zones anticipated.

The drilling fluid will consist of a 9.0 - 9.6 + ppg water based mud system with 40-50 viscosity units and less than 10 fluid loss units. LCM pills will be pumped when required. Barite will be on location if any pressure is encountered. At TD the hole will be circulated clean with 2-3 sweeps.

Michigan Potash Operating, LLC

Proposed Directional Plan:

MICHIGAN POTASH OPERATING

MICHIGAN POTASH OPERATING,

LLC Osceola County, MI (NAD83) MICZ HODGES ET AL 1-36 HODGES ET AL 1-36

Wellbore #1

Plan: Design #1

Standard Planning Report - Geographic

10 November, 2021

APD 1000

MICHIGAN POTASH OPERATING

Planning Report - Geographic

	09.55	209.79	4.000.00	-13.49	-3,625.06	0.00	0.00	0.00		IN A REPORT A
4,393.37 7,387.20	89.53 89.53	269.79 269.79	4,035.23 4,060.00	-2.35 -13.49	-631.35	9.00			269.79	HODGES ET AL
3,398.63	0.00	0.00	3,398.63	0.00	0.00	0.00			0.00	
Measured Depth I (usft) 0.00	nclination (°) 0.00	Azimuth (°) 0.00	Vertical Depth (usft) 0.00	+N/-S (usft) 0.00	+E/-W (usft) 0.00	Dogleg Rate (°/100usft) 0.00	Build Rate (%100usft) 0.00	Turn Rate (°/100usft) 0.00	TFO (°) 0.00	Target
Plan Sections										
1 0	.00 7,	387.20 Design	#1 (Wellbore #1	1)	MWD OWSG MWD	- Standard				
Depth From (usft)	-	h To	(Wellbore)		Tool Name		Remarks			
Plan Survey Tool	Drogram	Date	11/10/2021							
			0.00		0.00		.00	26	59.79	
Vertical Section:		ſ	Depth From (TV (usit)	D)	+N/-S (usft)		E/-W Jaft)	Dir	ection (°)	
Audit Notes: Version:			Phase	c 1	PLAN	Tk	e On Depth:		0.00	
Design	Design	#1								
		IGRF2015		11/9/2021		-6.27		70.17	53,964.6	9033963
Magnetics	Mo	ICREDUIS	Sample		Declina (°)			Angle (*) 70.17	Field Stren (nT)	-
Vellbore	Wellbo	ore #1								
Position Uncertai	nty		.uu usit We	linead Eleva	uon:		G	ound Level:		1,164.00 081
	+E/-W	-	.00 usft Eas	sting: Ilhead Eleva	-	9,430,862.883		ngitude:		-85.329380 1.164.00 usf
Well Position	+N/-S		.00 usft No	rthing:		183,259.429	9 usft La	titude:		43.815180
Well	HODE	ES ET AL 1-36								
From: Position Uncertai		Long 0.0	Eastin Ousft Slot Ra	-	19,430,8	13-3/16 "	Longitude: Grid Conver	gence:		-85.329380 -0.68
Site Position:			Northin	-		259.438 usft	Latitude:			43.815180
Site	HODG	ES ET AL 1-36	i							
Map System: Geo Datum: Map Zone:	North An	nerican Datum n Central Zone			System Da	um.		ean Sea Level		
Project Man Swatam:		a County, MI (Plane 1983	NAD83) MICZ		System Dat	hum-		ean Sea Level		
)esign:	Desig									
Vellbore:	Wellb	ore #1	-							
lite: Vell:		HODGES ET AL 1-36 HODGES ET AL 1-36				North Reference: Grid Survey Calculation Method: Minimum Curvature				
ompany: roject:		MICHIGAN POTASH OPERATING, LLC Osceola County, MI (NAD83) MICZ				TVD Reference: WELL @ 1177.00usft (Original Well Elev) MD Reference: WELL @ 1177.00usft (Original Well Elev)				

11/10/2021 12:38:17PM

COMPASS 5000.15 Build 88

APD 1000

MICHIGAN POTASH OPERATING

Planning Report - Geographic

Database: Company:	EDM 5000.15 Single User Db MICHIGAN POTASH OPERATING, LLC	Local Co-ordinate Reference: TVD Reference:	Well HODGES ET AL 1-36 WELL @ 1177.00usft (Original Well Elev)
Project: Site:	Osceola County, MI (NAD83) MICZ HODGES ET AL 1-36	MD Reference: North Reference:	WELL @ 1177.00usft (Original Well Elev) Grid
Well:	HODGES ET AL 1-36	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Design #1		

Planned Survey

(usft) 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1,000.00 1,200.00 1,300.00 1,400.00 1,500.00		(*) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(usft) 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1,000.00 1,200.00	(usit) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	183,259,429 183,259,429 183,259,429 183,259,429 183,259,429 183,259,429 183,259,429 183,259,429 183,259,429	(ueft) 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883	Latitude 43.815180 43.815180 43.815180 43.815180 43.815180 43.815180 43.815180 43.815180	Longitude -85.3293 -85.3
100.00 200.00 300.00 500.00 600.00 700.00 800.00 900.00 1,000.00 1,200.00 1,200.00 1,200.00 1,200.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	100.00 200.00 300.00 500.00 600.00 700.00 800.00 900.00 1,000.00 1,000.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	183,259.429 183,259.429 183,259.429 183,259.429 183,259.429 183,259.429 183,259.429 183,259.429	19,430,862,883 19,430,862,883 19,430,862,883 19,430,862,883 19,430,862,883 19,430,862,883 19,430,862,883	43.815180 43.815180 43.815180 43.815180 43.815180 43.815180 43.815180 43.815180	-85.3293 -85.3293 -85.3293 -85.3293 -85.3293 -85.3293 -85.3293
200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1,000.00 1,000.00 1,200.00 1,200.00 1,200.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	200.00 300.00 400.00 600.00 700.00 800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	183,259.429 183,259.429 183,259.429 183,259.429 183,259.429 183,259.429 183,259.429	19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883	43.815180 43.815180 43.815180 43.815180 43.815180 43.815180 43.815180	-85.329 -85.329 -85.329 -85.329 -85.329 -85.329
300.00 400.00 500.00 700.00 900.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	300.00 400.00 500.00 700.00 800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	183,259.429 183,259.429 183,259.429 183,259.429 183,259.429 183,259.429	19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883 19,430,862.883	43.815180 43.815180 43.815180 43.815180 43.815180	-85.329 -85.329 -85.329 -85.329
400.00 500.00 600.00 700.00 800.00 900.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	400.00 500.00 700.00 800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	183,259.429 183,259.429 183,259.429 183,259.429	19,430,862.883 19,430,862.883 19,430,862.883	43.815180 43.815180 43.815180 43.815180	-85.329 -85.329 -85.329
500.00 600.00 700.00 900.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	500.00 600.00 700.00 800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	183,259.429 183,259.429 183,259.429	19,430,862.883 19,430,862.883	43.815180 43.815180 43.815180	-85.329 -85.329
600.00 700.00 800.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	600.00 700.00 800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	183,259.429 183,259.429	19,430,862.883	43.815180 43.815180	-85.329
700.00 800.00 900.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	700.00 800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00	0.00	183,259.429		43.815180	
800.00 900.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	800.00 900.00 1,000.00 1,100.00	0.00 0.00 0.00	0.00		19,430,002.003		-02.323
900.00 1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	900.00 1,000.00 1,100.00	0.00		103,239,429	19,430,862,883	43.815180	-85.32
1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	1,000.00 1,100.00	0.00	0.00	183,259,429			-65.32
1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00	0.00	1,100.00		0.00		19,430,862.883	43.815180	-05.32
1,200.00 1,300.00 1,400.00	0.00 0.00 0.00	0.00			0.00	183,259.429 183,259.429	19,430,862.883 19,430,862,883	43.815180 43.815180	-05.32
1,300.00	0.00			0.00	0.00				-05.32
1,400.00	0.00	0.00	-			183,259.429	19,430,862.883	43.815180	
-			1,300.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.329
1,500.00		0.00	1,400.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
4 600 00	0.00	0.00	1,500.00	0.00	0.00	183,259.429	19,430,862.883	43.815180 43.815180	-85.32
1,600.00			1,600.00			183,259.429	19,430,862.883		
1,700.00	0.00	0.00	1,700.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
1,800.00	0.00	0.00	1,800.00	0.00	0.00	183,259.429	19,430,862.883 19,430,862,883	43.815180	-85.32 -85.32
1,900.00	0.00	0.00	1,900.00	0.00	0.00	183,259.429	19,430,062.003	43.815180	
2,000.00	0.00	0.00		0.00		183,259.429		43.815180	-85.32
2,100.00	0.00	0.00	2,100.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,200.00	0.00	0.00	2,200.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,300.00	0.00	0.00	2,300.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,400.00	0.00	0.00	2,400.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,500.00	0.00	0.00	2,500.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,600.00	0.00	0.00	2,600.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,700.00	0.00	0.00	2,700.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,800.00	0.00	0.00	2,800.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
2,900.00	0.00	0.00	2,900.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
3,000.00	0.00	0.00	3,000.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
3,100.00	0.00	0.00	3,100.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
3,200.00	0.00	0.00	3,200.00	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32 -85.32
3,300.00	0.00		3,300.00			183,259.429	19,430,862.883	43.815180	
3,398.63 Start Build	0.00	0.00	3,398.63	0.00	0.00	183,259.429	19,430,862.883	43.815180	-85.32
3,400.00	0.12	269.79	3,400.00	0.00	0.00	183,259,429	19,430,862,882	43.815180	-85.32
3,500.00	9.12	269.79	3,499.57	-0.03	-8.05	183,259,399	19,430,854.830	43.815180	-85.32
3,600.00	18.12	269.79	3,596.66	-0.12	-31.58	183,259,311	19,430,831,302	43.815179	-85.32
3,700.00	27.12	269.79	3,688.87	-0.26	-70.01	183,259,168	19,430,792.875	43.815177	-85.32
3,800.00	36.12	269.79	3,773.93	-0.46	-122.39	183,258,973	19,430,740,497	43.815175	-85.32
3,900.00	45.12	269.79	3,849.76	-0.70	-187.43	183,258,731	19,430,675,456	43.815172	-85.33
4,000.00	54.12	269.79	3,914,47	-0.98	-263.53	183,258,448	19,430,599,356	43.815169	-85.33
4,100.00	63.12	269.79	3,966.49	-1.30	-348.82	183,258,130	19,430,514,068	43.815165	-85.33
4,200.00	72.12	269.79	4.004.52	-1.64	-441.19	183,257,786	19,430,421.694	43.815161	-85.33
4,300.00	81.12	269.79	4.027.63	-2.00	-538.38	183.257.425	19,430,324,508	43.815157	-85.33
4,393.37	89.53	269.79	4,035.23	-2.35	-631.35		19,430,231.534	43.815153	-85.33
	nc, 269.79 Az		4,000.00			100,201.010	10,000,201.000	40.010100	
4,400.00	89.53	269.79	4,035.29	-2.37	-637.98	183,257.054	19,430,224.903	43.815153	-85.33
4,500.00	89.53	269.79	4,036.11	-2.75	-737.98		19,430,124.907	43.815148	-85.33
4,600.00	89.53	269.79	4,036.94	-3.12	-837.97		19,430,024.911	43.815144	-85.33
4,700.00	89.53	269.79	4,037.77	-3.49	-937.97	-	19,429,924,915	43.815140	-85.33
4,800.00	89.53	269.79	4,038.60	-3.86	-1,037.96	-	19,429,824.919	43.815136	-85.33
4,900.00	89.53	269.79	4,039.42	-4.24	-1,137.96		19,429,724.923	43.815131	-85.333

Page 3

COMPASS 5000.15 Build 88

APD 1000

MICHIGAN POTASH OPERATING

Planning Report - Geographic

Database: Company: Project:	EDM 5000.15 Single User Db MICHIGAN POTASH OPERATING, LLC Osceola County, MI (NAD83) MICZ	Local Co-ordinate Reference: TVD Reference: MD Reference:	Well HODGES ET AL 1-36 WELL @ 1177.00usft (Original Well Elev) WELL @ 1177.00usft (Original Well Elev)
Site:	HODGES ET AL 1-36	North Reference:	Grid
Well:	HODGES ET AL 1-36	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

nanneu aurvey									
Measured Depth (usft)	inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
5,000.00	89.53	269.79	4,040.25	-4.61	-1,237.96	183,254.820	19,429,624.927	43.815127	-85.334069
5,100.00	89.53	269.79	4,041.08	-4.98	-1,337.95	183,254.448	19,429,524.932	43.815123	-85.334448
5,200.00	89.53	269.79	4,041.91	-5.35	-1,437.95	183,254.076	19,429,424.936	43.815118	-85.334827
5,300.00	89.53	269.79	4,042.73	-5.73	-1,537.94	183,253.704	19,429,324.940	43.815114	-85.335205
5,400.00	89.53	269.79	4,043.56	-6.10	-1,637.94	183,253.331	19,429,224.944	43.815110	-85.335584
5,500.00	89.53	269.79	4,044.39	-6.47	-1,737.94	183,252.959	19,429,124.948	43.815106	-85.335963
5,600.00	89.53	269.79	4,045.21	-6.84	-1,837.93	183,252.587	19,429,024.952	43.815101	-85.336342
5,700.00	89.53	269.79	4,046.04	-7.21	-1,937.93	183,252.215	19,428,924.956	43.815097	-85.336720
5,800.00	89.53	269.79	4,046.87	-7.59	-2,037.92	183,251.842	19,428,824.960	43.815093	-85.337099
5,900.00	89.53	269.79	4,047.70	-7.96	-2,137.92	183,251.470	19,428,724.965	43.815088	-85.337478
6,000.00	89.53	269.79	4,048.52	-8.33	-2,237.91	183,251.098	19,428,624.969	43.815084	-85.337857
6,100.00	89.53	269.79	4,049.35	-8.70	-2,337.91	183,250.726	19,428,524.973	43.815080	-85.338235
6,200.00	89.53	269.79	4,050.18	-9.08	-2,437.91	183,250.353	19,428,424.977	43.815075	-85.338614
6,300.00	89.53	269.79	4,051.01	-9.45	-2,537.90	183,249.981	19,428,324.981	43.815071	-85.338993
6,400.00	89.53	269.79	4,051.83	-9.82	-2,637.90	183,249.609	19,428,224.985	43.815067	-85.339372
6,500.00	89.53	269.79	4,052.66	-10.19	-2,737.89	183,249.237	19,428,124.989	43.815063	-85.339750
6,600.00	89.53	269.79	4,053.49	-10.56	-2,837.89	183,248.864	19,428,024.993	43.815058	-85.340129
6,700.00	89.53	269.79	4,054.32	-10.94	-2,937.89	183,248.492	19,427,924.998	43.815054	-85.340508
6,800.00	89.53	269.79	4,055.14	-11.31	-3,037.88	183,248.120	19,427,825.002	43.815050	-85.340887
6,900.00	89.53	269.79	4,055.97	-11.68	-3,137.88	183,247.748	19,427,725.006	43.815045	-85.341265
7,000.00	89.53	269.79	4,056.80	-12.05	-3,237.87	183,247.375	19,427,625.010	43.815041	-85.341644
7,100.00	89.53	269.79	4,057.62	-12.43	-3,337.87	183,247.003	19,427,525.014	43.815037	-85.342023
7,200.00	89.53	269.79	4,058.45	-12.80	-3,437.87	183,246.631	19,427,425.018	43.815032	-85.342402
7,300.00	89.53	269.79	4,059.28	-13.17	-3,537.86	183,246.259	19,427,325.022	43.815028	-85.342780
7,387.20	89.53	269.79	4,060.00	-13.49	-3,625.06	183,245.934	19,427,237.821	43.815024	-85.343111
TD at 73	87.20 - BHL H	ODGES ET A	L 1-36						

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usit)	Latitude	Longitude
BHL HODGES ET AL 1- - plan hits target cen - Point	0.00 ter	360.00	4,060.00	-13.49	-3,625.06	183,245.934	19,427,237.821	43.815024	-85.343111

Plan Annotations				
Measured	Vertical	Local Coor	rdinates	Comment
Depth	Depth	+N/-S	≁E/-W	
(usft)	(usit)	(usft)	(usft)	
3,398.6	4,035.23	0.00	0.00	Start Build 9.00
4,393.3		-2.35	-631.35	LP 89.53 Inc, 269.79 Az
7,387.2		-13.49	-3,625.06	TD at 7387.20

Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

12 Description of the cementing program including the type, properties and compressive strength of cement to be used on each casing string. Indicate if DV tools will be used.

Please see 3 Form EQP 7200-1 and proposed well construction diagram.

Surface Casing Cement: Surface casing was previously cemented, 500 sx to surface.

Intermediate Casing Cement: Intermediate casing was previously cemented, 1600 sx to surface.

Long Casing (Non-Slotted Liner) Cement: Lead 300 sx, 1.47 cuft/sk 30% Excess Tail 323 sx, 1.18 cuft/sk 30% Excess

If there are lost circulation problems a LCM might get added.

No DV tool will be used.

Compressive Strength	=	2400 psi at 24 hrs	

To Estimated TOC = Surface

The 4.5" injection string will not be cemented.

13 Description of the proposed wireline logging program.

During drilling, a MWD gamma ray log will be ran.

GR-CDL-CNL-IDL are the open hole logs that will be run.

CBL will be ran to determine top of cement.

14 Description of the testing program, including pressure tests on casing strings, and any planned drill stem tests.

The mechanical integrity of the production string on all the proposed injection wells will be tested according to the requirements of R 299.2391, Part 625. All testing shall also be in compliance with United States EPA 40 CFR 146.8(c)(3-4). Operating tests for mechanical integrity shall be conducted at the required frequency and dictated by permit and according to pro-active best practice.

Notice will be made to the EGLE prior to the date of the schedule MIT. Tests must be witnessed by a representative of EGLE. A written report of the results of the MIT will be made to EGLE within 45 days following completion of the MIT.

No drill stem test will be performed.

(D)

HODGES ET AL 1-36(D)

15 Description of any planned coring program.

There are no cores planned on the subject well.

Michigan Potash Operating, LLC

Additional information required for an application for a permit to drill and operate a disposal well or to convert a previously drilled well to such a well.

HODGES ET AL 1-36(D) 1 Form EQP 7200-14, Injection Well Data

Michigan Potash Operating, LLC

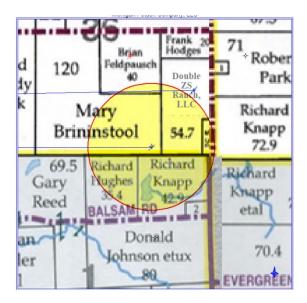
	EAT LAKES, AND ENERGY - OIL, GAS, AND MINERALS DIVISION
INJECTION WELL DATA Supplemental information for drilling or converting to an injection we By authority of Part 615 or Part 625 of Act 451 PA 1994, as amende Non-submission and/or falsification of this information may result in fin and/or imprisonment.	Michigan Potash Operating, LLC
	Well name and number
NSTRUCTIONS: Complete all portions of form which apply to this well Attach supplemental documents as needed.	Hodges ET AL 1-36 (D)
roposed well, and the name and address of the last surface owner(s) . File a separate plat which identifies the depth and location of this pro- dentify the permittee of each producing well within 1,320 feet of this pro- roposed well, and all freshwater, irrigation, and public water supply we be Enclose a copy of the completion reports for all wells and the pluggin ecessary to prevent injected fluids from migrating up or into inadequal . If this is an existing well to be converted to an injection well, enclose if the completion report and geologic description and electric logs for the . Identify and describe all faults, structural features, karst, mines, and ompetency, or induced seismicity. Include a plan for mitigating risks of . Attach a proposed plugging and abandonment plan (EQP 7200-6), a nechanical plugs, and depths where casing will be recovered. . Provide information demonstrating that construction of the well will pu f Drinking Water (USDW).	posed well and all oil, gas, injection, and abandoned well within 1,320 feet. Also oposed well, the surface owner(s) of record of the lands within 1,320 feet of this alls within 1,320 feet of this proposed well. In the surface owner of the lands within 1,320 feet of this alls within 1,320 feet of this proposed well. If this grecords for all plugged wells shown on the plat. Identify what steps will be tely plugged or completed wells. This form with a full permit application package per EQC 7200. Also enclose a copy his well. Iost circulation zones within the area of review that can influence fluid migration, well
. Type of fluids to be injected	Schematic of wellbore construction
Brine Natural Gas (omit #10 & #15) Fresh Water (omit #15) Other	Complete bottom of diagram as needed to conform with proposed construction (e.g. show rat hole below casing, open hole completion, packer loc. etc.)
. Maximum anticipated daily injection rate (bbls/day or MCF/day) 0,115 bbls/day	Underground Source(s) of Drinking Water formation name(s), top & bottom depths USDW(s) <u>Glacial till</u>
0. Specific gravity of injected fluid <u>1.20 w/0.05 safety factor = 1.25</u>	Depth to top 0. Depth to base 712 feet
1a. Maximum anticipated injection pressure 1,025 psi	
1b. Maximum injection pressure 1,025 psi @ 0.8 FPG	Vertical distance (in feet) between top of
how calculations (see R324.807) Mineral Well/Part 625	injection interval and base of deepest USDW
[{0.8-(0.433*(1.2+0.05))}*4017]-14.7 = 1,025 psi	
2. Maximum bottom hole injection pressure <u>3,199 psi</u>	3.305'
Show calculations	Surface casing 11-3/4"'x 920' ·
	Amount of cement 500 sacks
3. Fracture pressure of confining interval <u>3.056 psi</u>	T.O.C. <u>3'</u>
Show calculations (Top of Confining Interval)	
.8 psi/ft * 3821 ft	
4. Fracture pressure of injection interval <u>3,213 psi</u>	Intermediate casing (if applicable) <u>8-5/8" x 5479'</u>
Show calculations (Top of Injection Interval)	Amount of cement 1600 sacks
0.8 psi/ft * 4017 ft = 4535 (offsets demonstrate 4,017*1.17 = 4700	
5. Chemical analysis of representative samples of injected fluid	T.O.C. <u>3'</u>
specific conductance	
Cation (mg/l) Anions (mg/l)	Long string casing <u>5 1/2" "x 4,035 (TVD)</u>
Calcium < 0.2% Chloride Var	Amount of cement 623 sacks
Sodium Var Sulfate < 0.4%	
Magnesium < 0.2% Sulfide < 30 mg/l	Confining Interval(s) Dundee Lime / Bell Shale
otal Iron < 10 mg/l Carbonate < 1 mg/l	Depth to top 3821 feet (TVD)
Barium <u>< 8 mg/l</u> Bicarbonate <u>< 220 mg/l</u>	Depth to base 3876 feet (TVD)
Vhat was the source of this representative sample? <u>Adjacent Well</u>	Injection Interval(s) Reed City
0 is the well is be seen lated in a control of the second of the	
6. Is this well to be completed in a potential, previous, or current oil	Depth to top 4017 feet (TVD)
or gas producing formation? Yes X No	Depth to base <u>4156 feet (TVD)</u>
yes, provide a list of all offset permittees and proof of service of	Tubing <u>3 1/2"</u> x <u>3824 (TVD)</u>
efficient of this configuration to all somethings to the first of the	
otification of this application to all permittees by certified mail.	Packer Depth 3824 (TVD)
otification of this application to all permittees by certified mail.	Bottom TD or PBTD 4035 (TVD) ft

<u>1. Notification information</u>: provide name and address of the permittee of each oil, gas, and injection well and permitted location(s) within 1,320 feet of this proposed well, and the name and address of the last surface owner(s) of record within 1,320 feet of this proposed well.

There are no oil, gas, or injection operators, or permitted locations within 1,320 feet of the proposed well.

The MPC 3D is a permitted location located to the N-NE approximately 1,490 feet.

Surface Owner and Mailing Address within 1320 feet of the Proposed Well


Mary E. Brininstool, P.O. Box 1007 Evert, MI 49631 Double ZS Ranch, 900 Monroe Ave NW Grand Rapids, MI 49503 Brian E. Feldpausch, 11350 W Dexter Trail, Westphalia, MI 48894 Richard Hughes, 4120 N State Rd. Davison, MI 48423 Heirs & Devisees of Richard Knapp C/O Bobbi Ann Knapp, 185 Scotty Drive, Carbondale, IL 62903 Douglas Rueffer and Dawn Rueffer, 23890 120th Ave Hersey, MI 49639 Jason & Tracy Storch, 125 120th Ave Hersey, MI 49639

There are no oil, gas, or injection operators, or permitted locations within 1,320 feet of the proposed well (please see Figure A8, Tables and).

<u>2. File a separate plat:</u> which identifies the depth and location of this proposed well and all oil, gas, injection, and abandoned well within 1,320 feet. Also identify the permittee of each producing well within 1,320 feet of this proposed well, the surface owner(s) of record of the lands within 1,320 feet of this proposed well, and all freshwater, irrigation, and public water supply wells within 1,320 feet of this proposed well.

Please see supplemental plat submitted as a part of 7200-2, Page 19.

There are no producing wells within 1,320 feet. Surface owners are illustrated below as per Osceola and Mecosta County Plat map.

<u>3. Enclose a copy of the completion reports:</u> for all wells and the plugging records for all plugged wells shown on the plat. Identify what steps that will be which identifies the depth and location of this proposed well and all oil, gas, injection, and abandoned well within 1,320 feet.

Please see Appendix 1, for the extended AOR, which includes all wells within 1,320 feet of the proposed wells.

4. If this is an existing well: to be converted to an injection well, enclose this form with a full permit application package per EQC 7200. Also enclose a copy of the completion report and geologic description and electric logs for this well.

Please refence all sections to the supplemental checklist and forms, and Appendix 1. The electric logs available are those within possession of EGLE currently.

5. Identify and describe all faults, structural features, karst, mines, and lost circulation zones: within the area of review that can influence fluid migration, well competency, or induced seismicity. Include a plan for mitigating risks of identifiable features.

Please reference this supplemental report herein; as the AOR is expressly large. There are no faults, structural features, karsts, mines, or lost circulation zones that can influence fluid migration, well competency, or induced seismicity. There are no identifiable features.

<u>6. Attach a proposed plugging and abandonment plan (EQP 7200-6):</u> along with a schematic detailing the depths, volumes, and types of cement and mechanical plugs, and depths where casing will be recovered.

Please see section 14.

7. Provide information demonstrating that construction of the well will prevent the movement of fluid: that causes endangerment to an Underground Source of Drinking Water (USDW).

Please reference sections within this supplemental report in its entirely.

2 A calculation of the area of review in the injection interval over the anticipated life of the well.

The Area of Review is voluntarily assigned as a two-mile radius around the surface wellhead locations of Hodges Et Al 1-36(D), MPC-8D, and Johnson 1-6A well locations. Figure A1 presents the location of these wells within the state. Figure A2(a) presents the cumulative AOR assigned by Michigan Potash, as allowed by regulation.

"Area of review" means either of the following:

- A. For a well disposing of non-hazardous waste, that area the radius of which is the greater of 1/4 mile or the lateral distance in which the pressures in the injection zone are sufficient to increase hydrostatic head in the injection zone above the base of the lowermost underground source of drinking water, but not more than 2 miles.
- B. For a well disposing of hazardous waste that area the radius of which is the greater of 2 miles or the lateral distance in which the pressures in the injection zone are sufficient to increase hydrostatic head in the injection zone above the base of the lowermost underground source of drinking water.

The proposed well is a non-hazardous brine well, and therefore the **area of review ("AOR")** is to be the radius of which is greater of ¹/₄ mile or the lateral distance in which the pressures in the injection zone are sufficient to increase hydrostatic head in the injection zone above the base of the lowermost underground source of drinking water, but not more than 2 miles.

A calculation of the area of influence in the injection interval over the anticipated life of the well:

In conjunction with the University of Missouri Rolla, the National Water Well Association and the Municipal Experimental Research Laboratory, and Robert S. Kerr Environmental Research Laboratory, of the EPA, Warner and Lehr established and contributed a means of knowledge essential to establish and enforce control standards on deep water injection, the method of calculation for which is demonstrated herein. The cone of influence for injection is defined as that area around a well within which increased injection zone pressures caused by injection could be sufficient to drive fluids into an underground source of drinking water provided a hypothetical pathway that penetrates all the confining intervals between the injection zone and the base of the lowermost USDW.

The pathway for this theoretical fluid movement must assume a hypothetical, deep, open, and abandoned well, which has penetrated all the numerous confining zones between the postulated injection zone and the lowermost USDW.

The following calculations are being demonstrated by the applicant for use at the 2mile AOR boundary, and show that in the event of a hypothetical open path to surface, a cone of influence exceeding the calculated critical pressure is unlikely to exist in the postulated operation; meaning, migration to a USDW would not overcome resident hydrostatic pressure, even in the event of a hypothetical open path.

The critical pressure rise is determined via the following;

$$Pc = 0.433 * [SG_i * (D_i - D_{usdw}) + SG_{usdw} * (D_{usdw} - WL)] - Po;$$

where

Pc	= Critical Pressure rise, psi
SG_i	= Specific Gravity of the injectate or resident water, unitless
Di	= Depth injection interval, feet
D_{usdw}	= Depth to the base of the lowermost USDW

Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

SG_{usdw}	= Specific Gravity of the USDW, unitless
WL	= observed water level below ground level, feet
Ро	= original reservoir pressure in the injection horizon, psi

EPA 600/2-77-240, equation 3-9a expresses the pressure rise in injection wells after Warner and Leher, 1977; whereby the rise in pressure in relation as a function of time and distance is given as per the following;

$$dP(t,r) = \frac{162.6Qu}{\overline{Kb}} * \left[\log \frac{\overline{K}t}{\overline{\emptyset}cr^2} - 3.23 \right]$$

where

dP(t,r)	= Change is reservoir pressure as a function of time, days and radius, feet
Q	= Rate of injection, barrels per day
u	= viscosity of injectate, centipoise
\overline{K}	= Average permeability of the injection zone, md
t	= time since injection began, hours
b	= injection zone thickness, feet
с	= injection zone compressibility, 1/psi
Ø	= average injection zone porosity, percent,
r	= radial distance from wellbore, feet

Information summarized and applied in the following calculations have been determined from real core data, real historical operating data, real historical drilling data, and site specific geophysical logs. The values and calculations are utilized to establish an estimated, theoretical output according to the laws of diffusivity and dispersion following 20 years of theoretical uninterrupted, continuous injection at the site specific location.

The range of inputs can be changed as approximations, ultimately being refined with real, observed site specific injectivity tests, fall off, and step rate tests via real time reservoir monitoring as is done on all brine injection wells during the course of operation.

Base of the Lowermost USDW

The base of the USDW at Hodges Et Al 1-36(D) is determined to be 712' based on sample picks during the original drilling..

As Per Michigan Statute, Part 625 R 299.2302(u) defines "Fresh water" as water which is free of contamination in concentrations that may cause disease or harmful physiological effects and which is safe for human consumption.'

R 299.2304(k) defines Underground Source of Drinking Water, which defines total dissolved solids to not exceed 10,000 mg/L TDS, similar to those standards posed by the U.S. EPA at CFR 40 146.3, which also sets TDS at greater than 10,000 total dissolved solids.

It is known that intervals deeper than 200' in the area of review, may contain naturally occurring arsenic and are not suitable for safe drinking as per Part 625 R 299.2302 (See section 6), and the deeper E-1 aquifer in the glacial till tends to be high in TDS, and calcium sulfate. As per Figure D2, the deepest slotted well in the 2 mile AOR is 340' and is utilized for potash/salt solution mining purposes and is not an underground source of drinking water. A conservative regulatory approach sets the USDW at the base of the glacial till at 712; rather than at the deepest probable source of 'Fresh Water' which is safe for human consumption. As a result, Surface casing setting depths have been designed to be set at 900', which 188' below the base of the glacial till.

Site Specific Variables and Critical Pressure Rise

Injection Well Data Form EQP 7200-14 has been adjusted to conform to the pressure rise calculations as per the following, specifically incorporating established injection test data from the Thomas 1-26 and the Woodward 1-26.

Pressure rise calculations are submitted to demonstrate that the proposed injection fluid and volumes would not change the hydrostatic head at the base of the lowermost USDW via a hypothetical path to surface

The values and calculations are utilized to establish an estimated, theoretical output according to the laws of diffusivity and dispersion following 20 years of theoretical uninterrupted, continuous injection. The range of inputs can be changed as approximations, ultimately being refined with real, observed site specific injectivity tests, fall off, and step rate tests via real time reservoir monitoring as is done on all brine injection wells during the course of operation.

Parameter	Value	Comment/Source
SGi	1.23	Site specific resident water from the Ward 1-11 from the Reed City Formation (1.211) and Injectate high side (1.25) average
Di	4017'	Top of Reed City Dolomite from site specific geophysical logs.
Dusdw	712'	Conservative selection of site specific measured depth of USDW as per US EPA CFR 40 146.3, at 10,000 TDS. Base of the Glacial Till by samples.
SGusdw	1.05	fresh water
WL	97.5	Site specific average as observed in the nearest water wells (120, 75, 105, 90)
Ро	1695	0.433 psi/ft
u	0.95	24% NaCl saturated brine at injection horizon site specific temperature of 125 degrees F

Injection Well Data Form EQP 7200-14 and the variables requested therein, conform to the range as specified in the table below:

Michigan Potash Operating, LLC

HODGES ET AL 1-36(D)

b	135	Site specific observed net porosity thickness based on real geophysical well
		logs
с	0.0000052	Dimensionless per psi, dolomite
Ø	15.0%	Site specific determination based on real geophysical well logs. Effective porosity cross plot average as discussed in part 9.D.
<u></u> <i>K</i>	536	Average determination based on permeability determination from step rate data from the Thomas and Woodward (907 md avg) the Park Well Logs (1-12) vs real core observed (~ 350 md average) and measured in DST in the area (Ward 362 md, Pilarski 166 md).

Parameter	Value	A Value/ B Value, Comment/Source
Pc	341	Critical Pressure Rise, Calculated

EPA 600/2-77-240, equation 3-9a expresses the pressure rise in injection wells after Warner and Leher, 1977; whereby the rise in pressure in relation as a function of time and distance is given as per the following;

$$dP(t,r) = \frac{162.6Qu}{\overline{Kb}} * \left[\log \frac{\overline{K}t}{\overline{\emptyset}cr^2} - 3.23 \right]$$

where

dP (t,r)	= Change is reservoir pressure as a function of time, days and radius, feet
Q	= Rate of injection, barrels per day
$\frac{\mathrm{u}}{K}$	= viscosity of injectate, centipoise
K	= Average permeability of the injection zone, md
t	= time since injection began, hours
b	= injection zone thickness, feet
<u>c</u>	= injection zone compressibility, 1/psi
Ø	= average injection zone porosity, percent,
r	= radial distance from wellbore, feet

And therefore, the pressure rise at a 2 mile radial distance away from the well, at the maximum injection rate versus time is expressed below:

MICHIGAN POTASH OPERATING, LLC

HODGES ET AL 1-36(D)

dP at 2mile AOR vs Time at 40,114 BPD Years

Now, considering EPA 600/2-77-240 can be adjusted (in part) for a horizontal well, as to its productivity index as:

$$q_{o} = \frac{7.08 \times 10^{-3} \, kh}{B \mu \left(\ln \frac{2r_{e}}{L_{h}} + \ln(2) + F \right)} \left(p_{i} - p_{wf} \right)$$

where F is

$$F = -\frac{h}{L_h} \sqrt{\frac{k_x}{k_z}} \ln \left\{ 4 \sin \left[\frac{\pi}{2h} \left(2z_w + r_w \right) \sqrt{\frac{k_z}{k_y}} \right] \sin \left(\frac{\pi}{2h} r_w \sqrt{\frac{k_z}{k_y}} \right) \right\}$$

and where

$\frac{\mathrm{L}_{/\mathrm{h}}}{kx}$	= Horizontal well, feet
	= Average permeability of the injection zone x direction, md
\overline{ky}	= Average permeability of the injection zone y direction, md
\overline{kz}	= Average permeability of the injection zone z direction, md
В	= Fluid compressibility, reservoir bbl /standard bbl
rw	= radius of the wellbore, feet
Ø	= average injection zone porosity, percent,

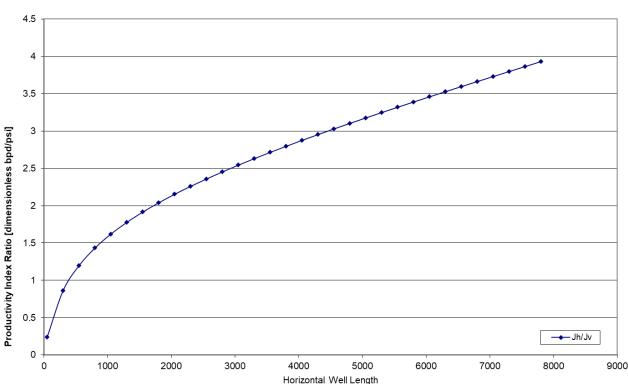
r

= radial distance from wellbore, feet

The productivity index, when -Q equals injection, the change in pressure (pressure rise) can be inferred by the ratio of the Productivity index of the vertical well versus the horizontal well in the same formation with the same features.

The productivity of a vertical well with the observed reservoir characteristics approximates

$$Jv = 58 Q/(detla p)$$

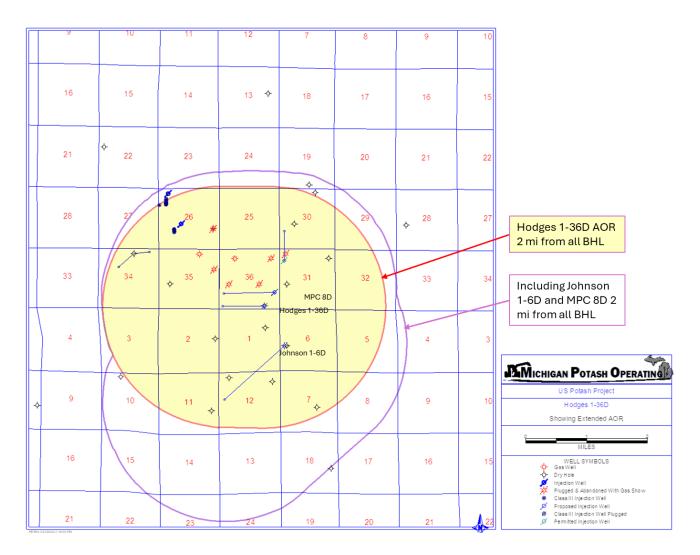

And the productivity index of a horizontal well with the proposed length of the Johnson 1-6A, at 7100, is

$$Jh = 220 Q/(delta p)$$

And therefore the performance of the horizontal well, as it concerns the acceptance of fluid at the same pressure is expressed as

Jv/Jh = 3.7 times more fluid intake

This horizontal advantage is graphically illustrated here, at varying lengths. It would be implied then, that the horizontal well substantially reduces critical pressure rise (in this case, potentially by 3.7 times).


Productivity Index Ratio Horizontal Over Vertical Well 1280 Acres

A description of the Area of Review

The <u>Area of Review</u> ("AOR"), by the applicant is expressly differentiated from the area of influence of the subject well.

The AOR, is hereby surrendered, graphically and technically when expressly requested as a two mile radial distance along the lateral trajectory of the propositioned Johnson 1-6D; and concurrently with a two mile radial distance along the lateral trajectory of the *proposed* Hodges 1-36D, and MPC 8D. The Hodges 1-36D, and the MPC 8D are two proposed project wells for similar purpose to the subject well.

Appendix 1.0 includes a visual demonstration of the AOR, including a 2 mile AOR around the lateral length of the Hodgest1-36D. Further, it also includes all wells in an expanded AOR, which includes the MPC 8D, and Johnson 1-6D. The MPC 8D and Johnson 1-6Dare contemporaneous submissions by the applicant to EGLE; as per the following:

- Figure A1 is a locator map, showing the proposed surface well location for the Hodges Et Al 1-36(D), as **M** well as Johnson 1-6D, and the MPC 8D. The well names are shown, as are roads, water bodies, and townships.
- Figure A2(a) is a map illustrating a 2 mile AOR radius around the lateral trajectory of the Hodges 1-36D. Also showing all well types, active and inactive, within the Area of Review. PLSS is also shown (Blue).

Figure A2(b) is a map showing all deep wells that penetrate the confining zone within the AOR, as well as the ¹/₄ mile radius along the lateral trajectory of the Hodges 1-36(D).

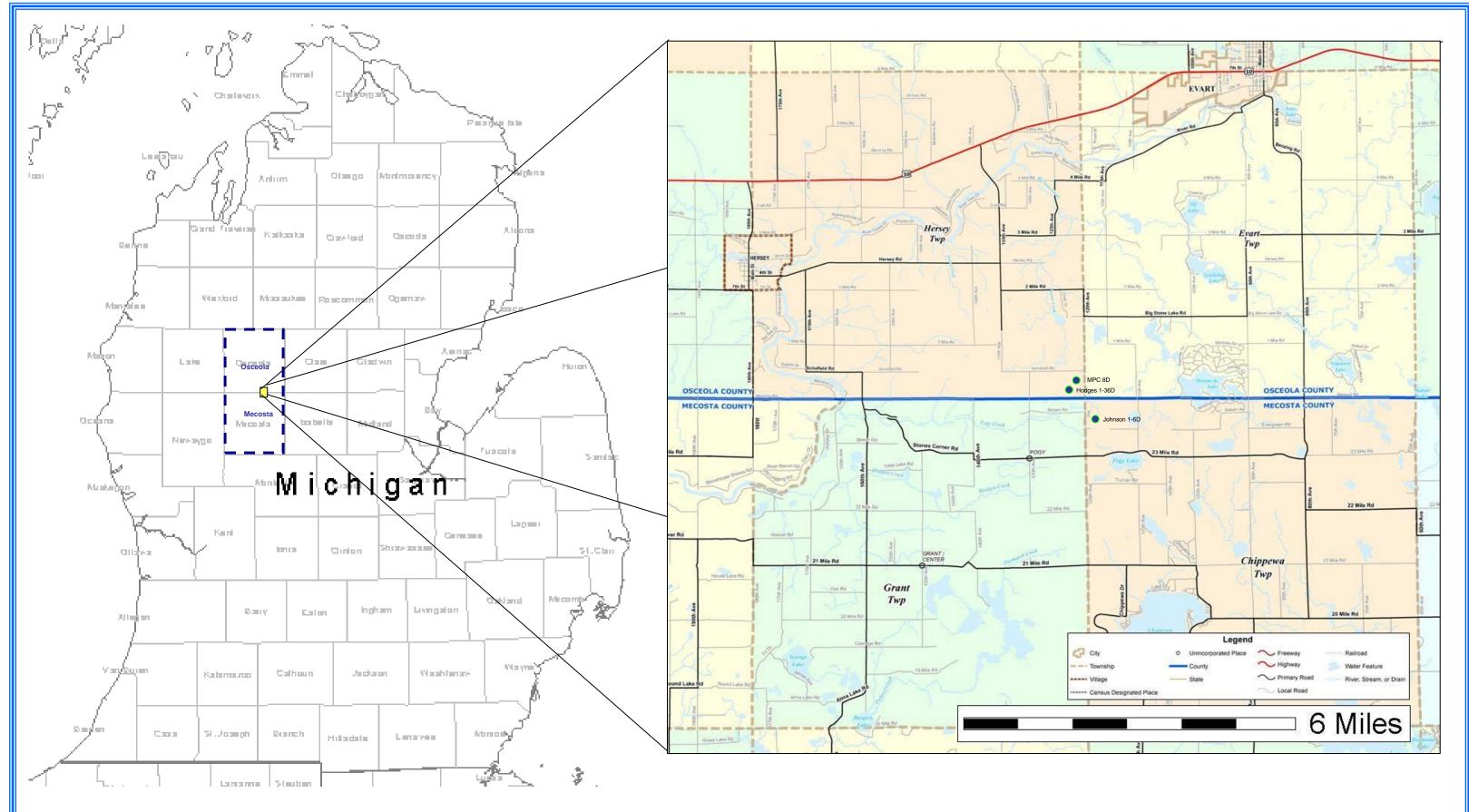


Figure A1. Location Map, showing the proposed surface well locations for the Johnson 1-6D, MPC 8d and Hodges 1-36D wells. The well names are shown, as are roads, water bodies, and townships.

APD 1000

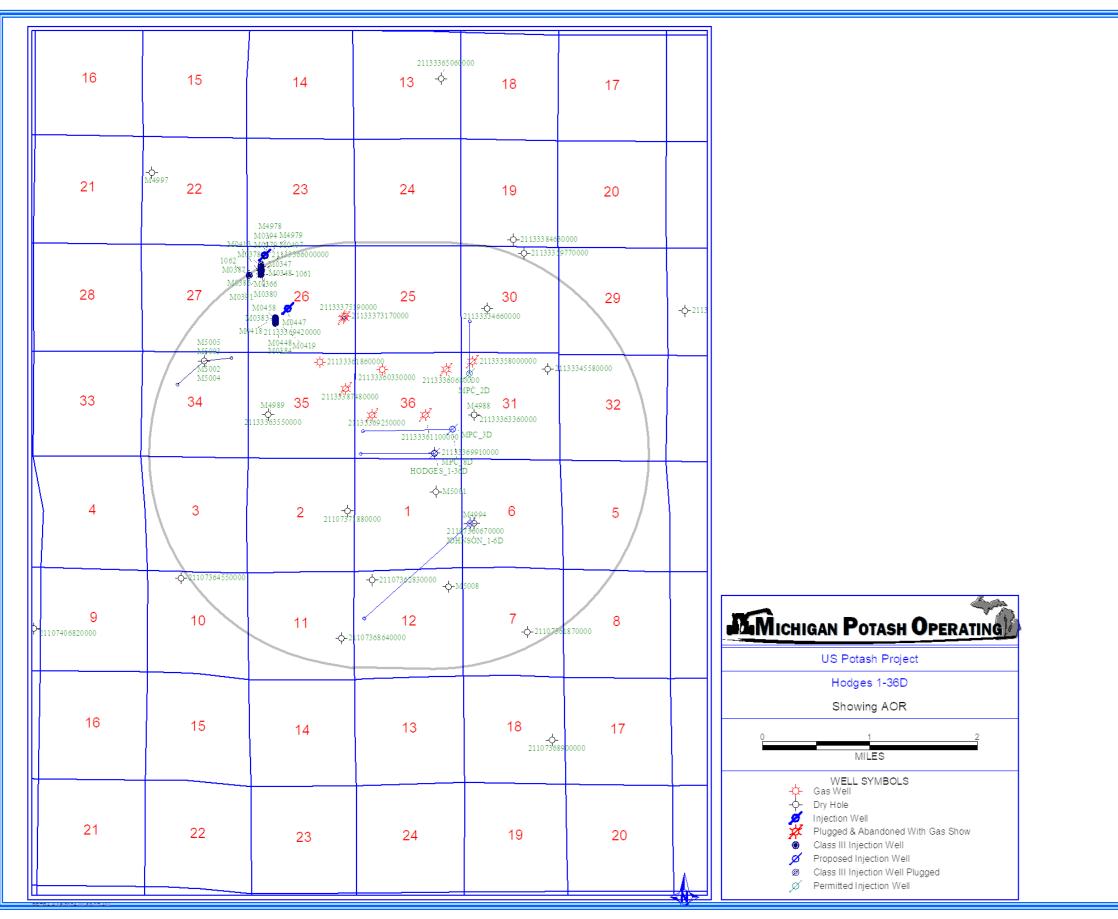


Figure A2a. AOR showing a two mile radius around the bottom hole trajectory of the Hodges 1-36D, the PLSS, and all deep wells that penetrate the confining interval. API or mineral well numbers are shown in green.

APD 1000

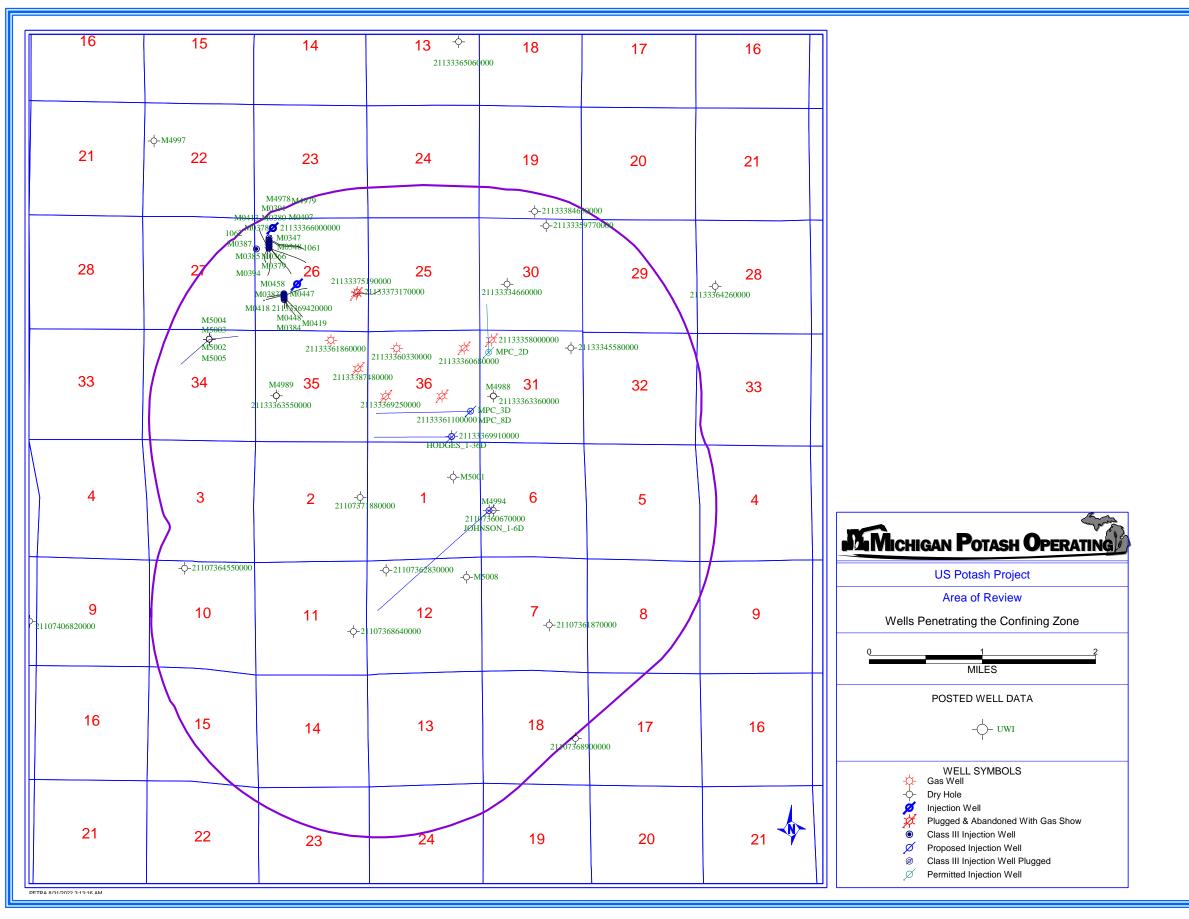


Figure A2b. Cumulative 2 mile AOR radius along the lateral trajectory of the Johnson 1-6D, the Hodges 1-36D, and the MPC 8D and wells Penetrating the Confining Zone in the AOR.

Michigan Potash Operating, LLC

3 A discussion of the affect of injection on the present and potential mineral resources in the area of review.

The postulated injection operation in the AOR, as graphically illustrated in Figure A2(a) and Figure A2(b) will not impact present or potential mineral resources in the area of review, but rather promulgate and enable the development of the potash and salt mineral resources. The proposed action is necessary to administer the production of potash and high grade salt.

The AOR includes three marginally producing, depleted oil and gas wells from the deep Clinton formation at 8100' or greater.

Injection into the Dundee formation does not interfere with any oil and gas interest, postulated mineral development or offset salt production from the Salina salt formations. Provided surface disturbance is limited to a single drilling pad, surface resources are also preserved.

For ease of reference and review, multiple graphical maps have been illustrated over the AOR. All of the maps in this section include the proposed injection well locations and the Public Land Survey System on top of the United States Geological Survey Topographic Quadrangle for the AOR.

Injection into the Reed City Dolomite formation does not interfere with any oil and gas interest, postulated mineral development or offset salt production from the Salina salt formations. Provided surface disturbance is limited to a single drilling pad, surface resources are also preserved.

- Figure A3 shows all producing wells in relation to the proposed injection wells in the AOR. There are three producing wells.
- Figure A4 shows active Class I NON-HAZARDOUS Injection Wells; the Thomas 1-26 (NW4NW4 Section 26) and the Woodward 1-26 (NE4SW4 Section 26), both operated by Cargill, Inc. and recently re-permitted 11/20/2020. Also shown are permitted injection wells the MPC 1D, MPC 2D, which share a similar pad location, and the proposed 8D shares a pad location with the MPC 3D.
- Figure A5 shows established Class III AREA Injection Permit No. MI-133-3G-A0002 & MI-133-3G-0028; Class III Injection Permit No. MI-133-3G-A0002 (Yellow NW-SE Cross Hatch) and established Class III Injection Permit No. MI-133-3G-0028 (Yellow NE-SW Cross Hatch). Active Class III Injection Wells are also shown, which occur only on MI-133-3G-A0002.

As illustrated above, this area has been the subject of extensive prior injection, permitting, operations, and regulatory supervision, since 1980.

The previously defined AOR has been the subject of extensive and comprehensive prior geological and environmental review, and re-review by all interested stake holders and regulatory agencies and predecessor companies to Michigan Potash Operating, LLC, having been the subject of prior permit applications for both EPA regulated Class I and Class III non-hazardous injection and also Part 625 artificial brine wells and Part 625 brine disposal wells. Predecessor owners of interest include (either offset or in the MPO AOR) Kalium Chemicals, Ltd., IMC Kalium, Ltd., PPG Industries, Inc, Mosaic Hersey Potash, LLC, Michigan Potash Operating, and Cargill Incorporated.

The proposed wells are adjacent to an ongoing Part 625 brine injection operation occurring in the Dundee/Reed City; the ongoing operation is being used for brine disposal associated with potash/salt extraction, similar to the brine source included in this application. After 33 years of successful operation, there has not be an indication that the

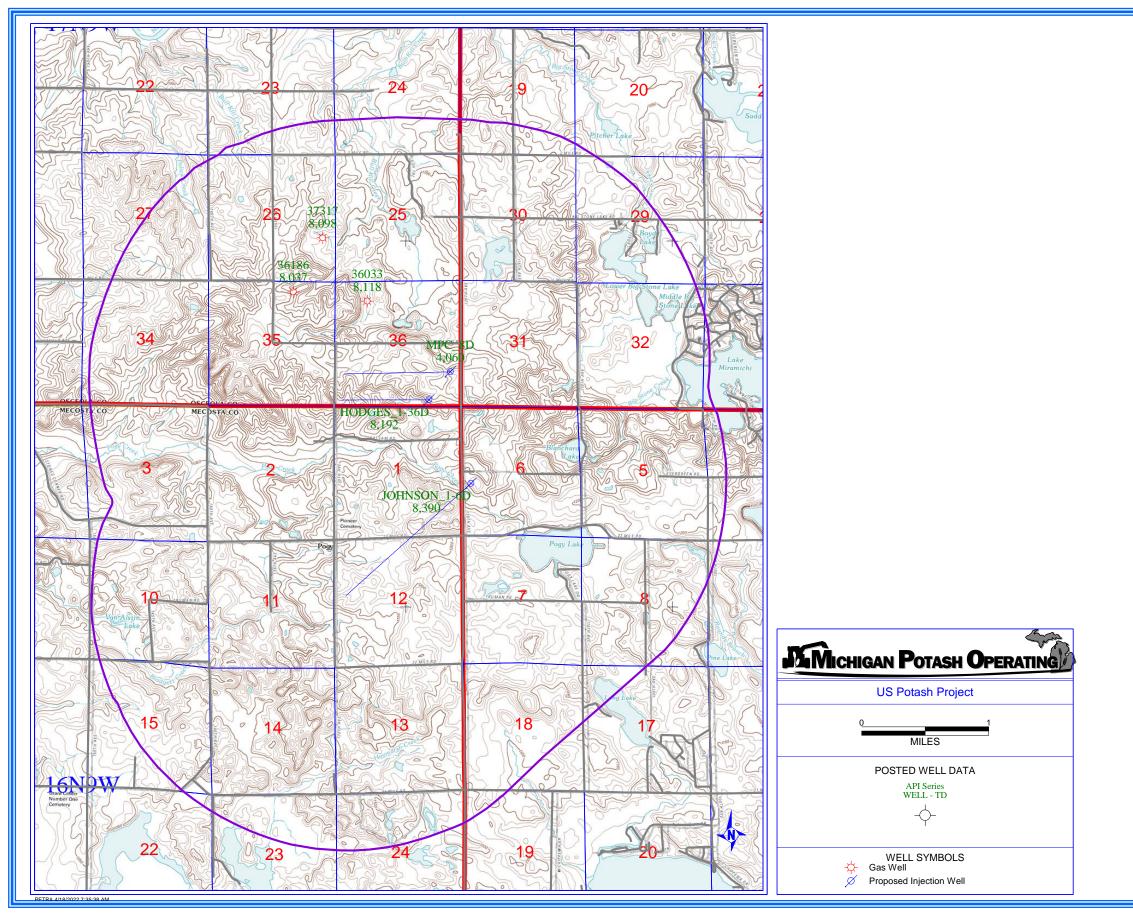


Figure A3. Hydrocarbon Producing Wells and proposed injection wells. Public Land Survey System is included. A blue box measures one section, or one square mile.

APD 1000

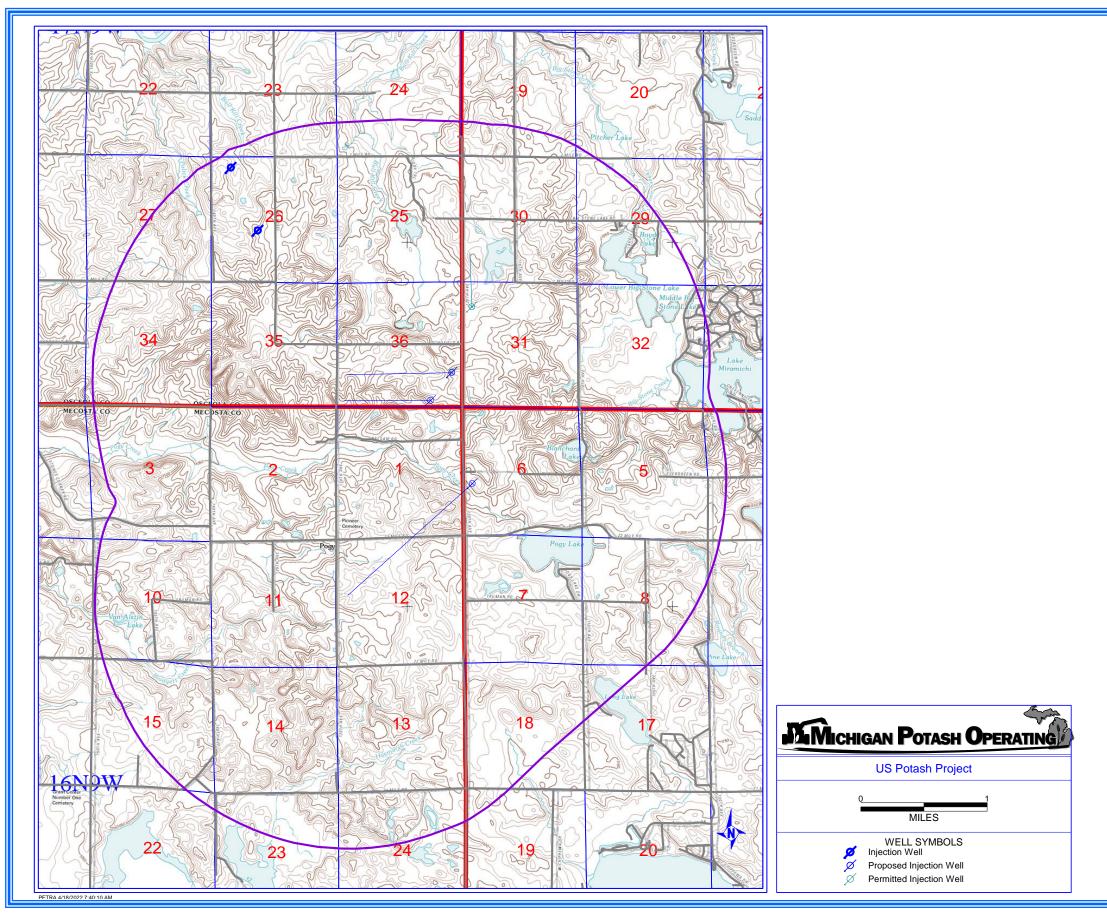


Figure A4. Map showing Existing Class I NON-HAZARDOUS Injection Wells, the Thomas 1-26 (NW4NW4 Section 26) and the Woodward 1-26 (NE4SW4 Section 26). Also shown are permitted injection wells the MPC 1D, MPC 2D, and MPC 3D. The Proposed 8D shares a pad location with the MPC 3D.

APD 1000

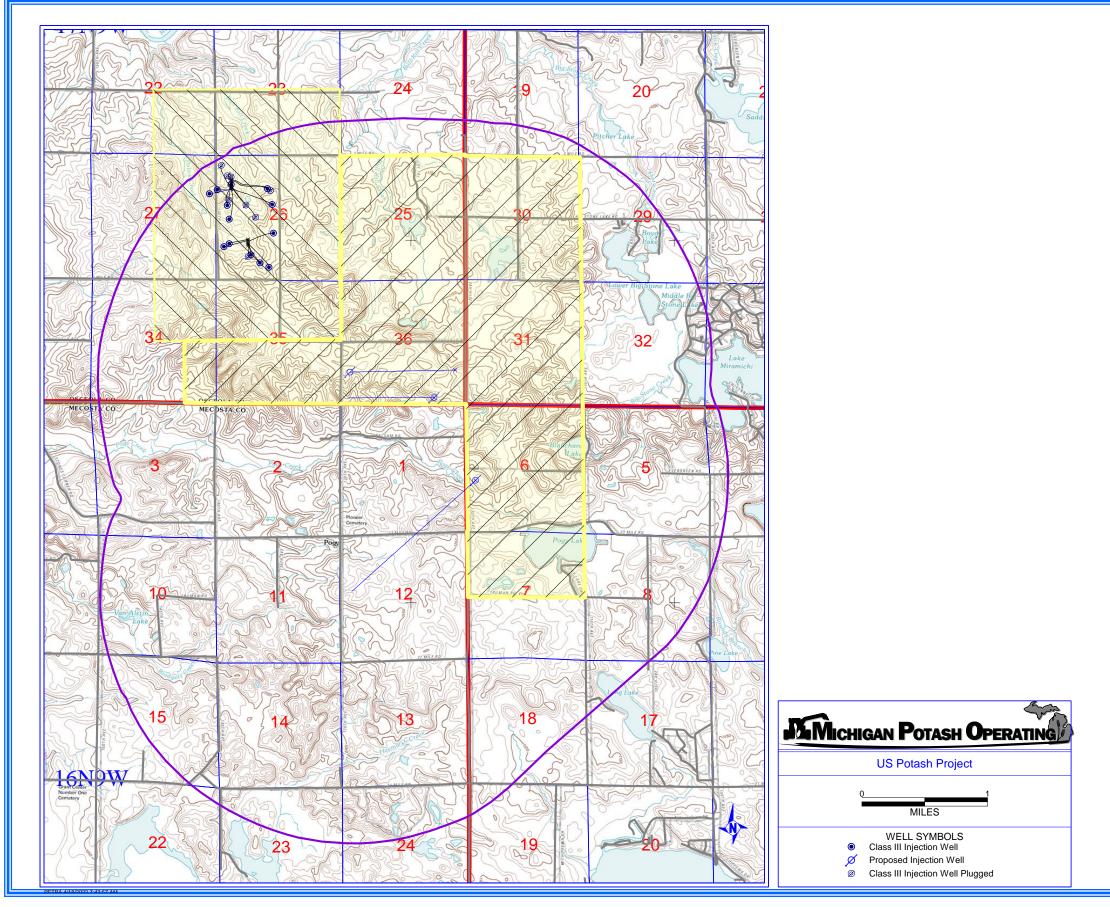


Figure A5. Map showing established Class III Injection Permit No. MI-133-3G-A0002 (Yellow NW-SE Cross Hatch) and established Class III Injection Permit No. MI-133-3G-0028 (Yellow NE-SW Cross Hatch). Active Class III Injection Wells are also shown, which occur only on MI-133-3G-A0002 at the time of the application.

Michigan Potash Operating, LLC

regulatory scheme failed to identify every wellbore or that any wellbore serves as a hypothetical conduit that can increase the hydrostatic head in a USDW.

Michigan Potash Operating, LLC

4 A plat which shows the location and total depth of the proposed well, shows each abandoned, producing, or dry hole within the area of influence, and each operator of a mineral or oil and gas well within the area of influence.

- Figure A6 Cumulative AOR and Map showing all well types, active and inactive, within the Area of Review. Shown in blue highlight are surface water bodies. Roads are also shown (black). PLSS is also shown (Blue). Well API series, and Total Depth are listed in GREEN. Mineral Wells are preceded with an M.
- **Figure A7** is a map presenting a ¹/₄ mile area around the Hodges 1-36(D) well path, expressly showing the ¹/₄ mile minimum area of influence. The map also shows all producing, abondoned and dry holes within the AOR, both deep and shallow boreholes. There are no oil and gas operators within the ¹/₄ mile area of influence for the subject well. The map extends more than one mile beyond the facility property boundary, and illustrates the project injection well(s), well pad(s), and/or project area, and the applicable area of review.
- **Figure A8** is a plat map showing third party survey, with a ¹/₄ mile area around the well path. Also showing a 1 mile radius from the wellhead location. There are no oil and gas operators within the ¹/₄ mile length of the subject well, or within the one mile boundary beyond the facility property boundary. The plat also illustrates the project injection well(s), well pad(s).

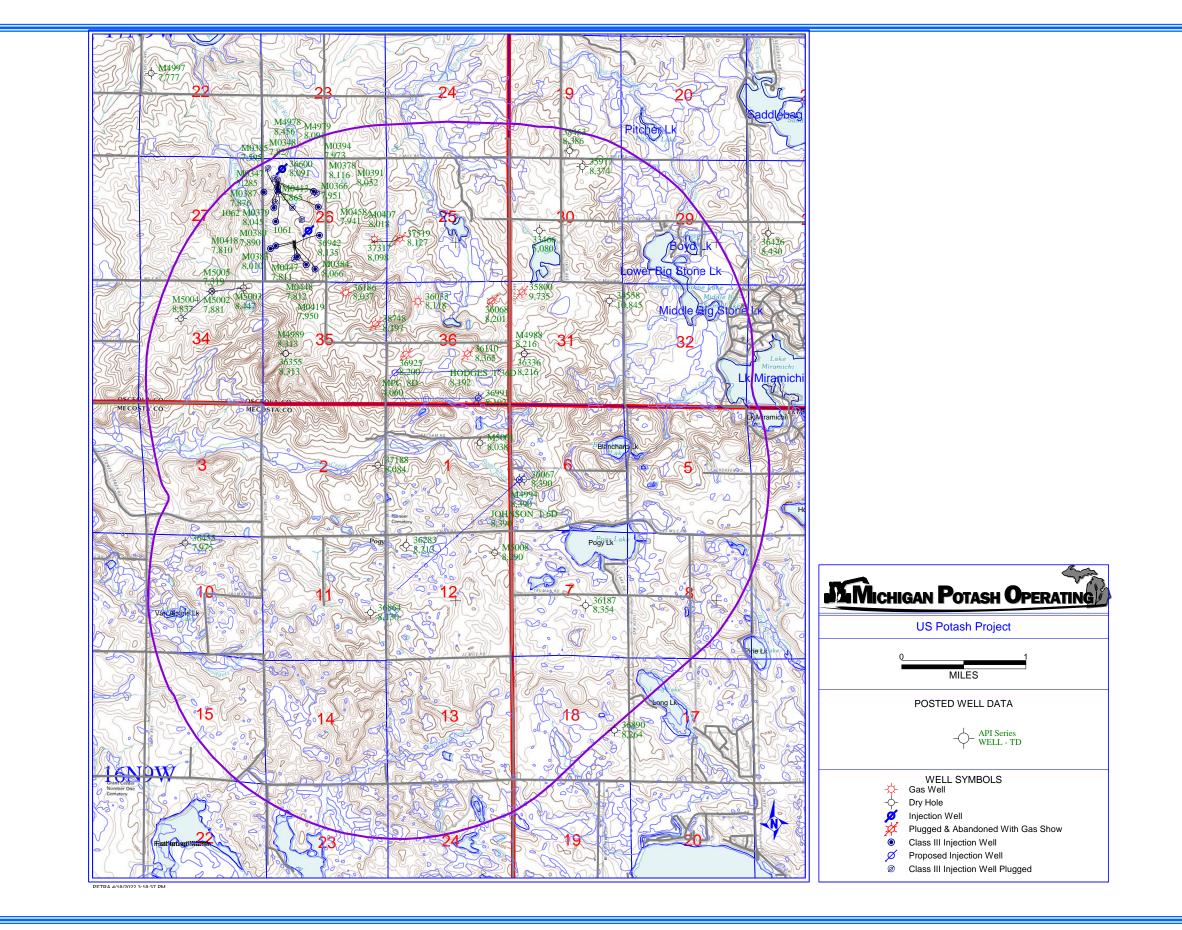


Figure A6. Cumulative AOR and Map showing all well types, active and inactive, within the Area of Review. Shown in blue highlight are surface water bodies. Roads are also shown (black). PLSS is also shown (Blue). Well API series, and Total Depth are listed in GREEN. Mineral Wells are preceded with an M.

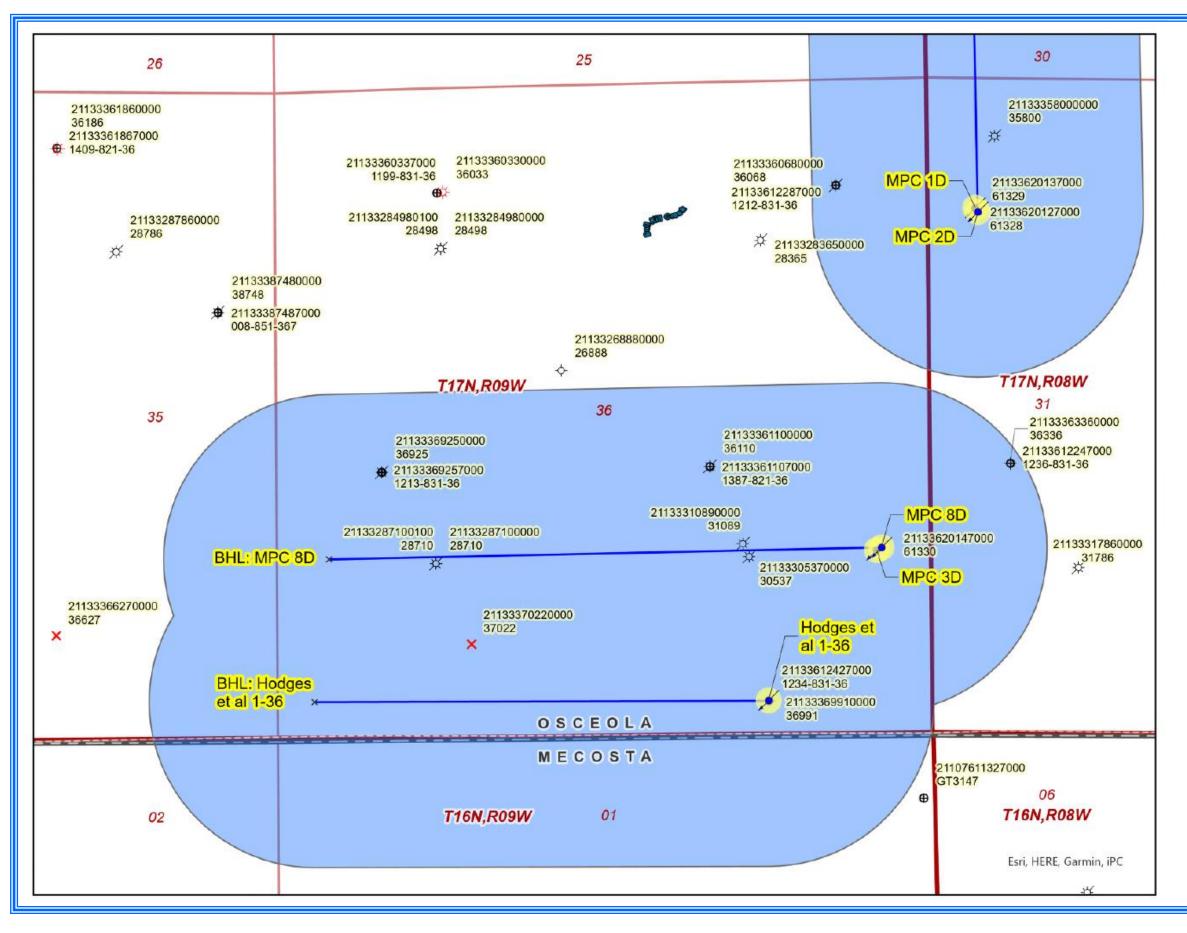


Figure A7. Area of Interest, ¼ mile area around MPC 8d and Hodges et al 1-36.

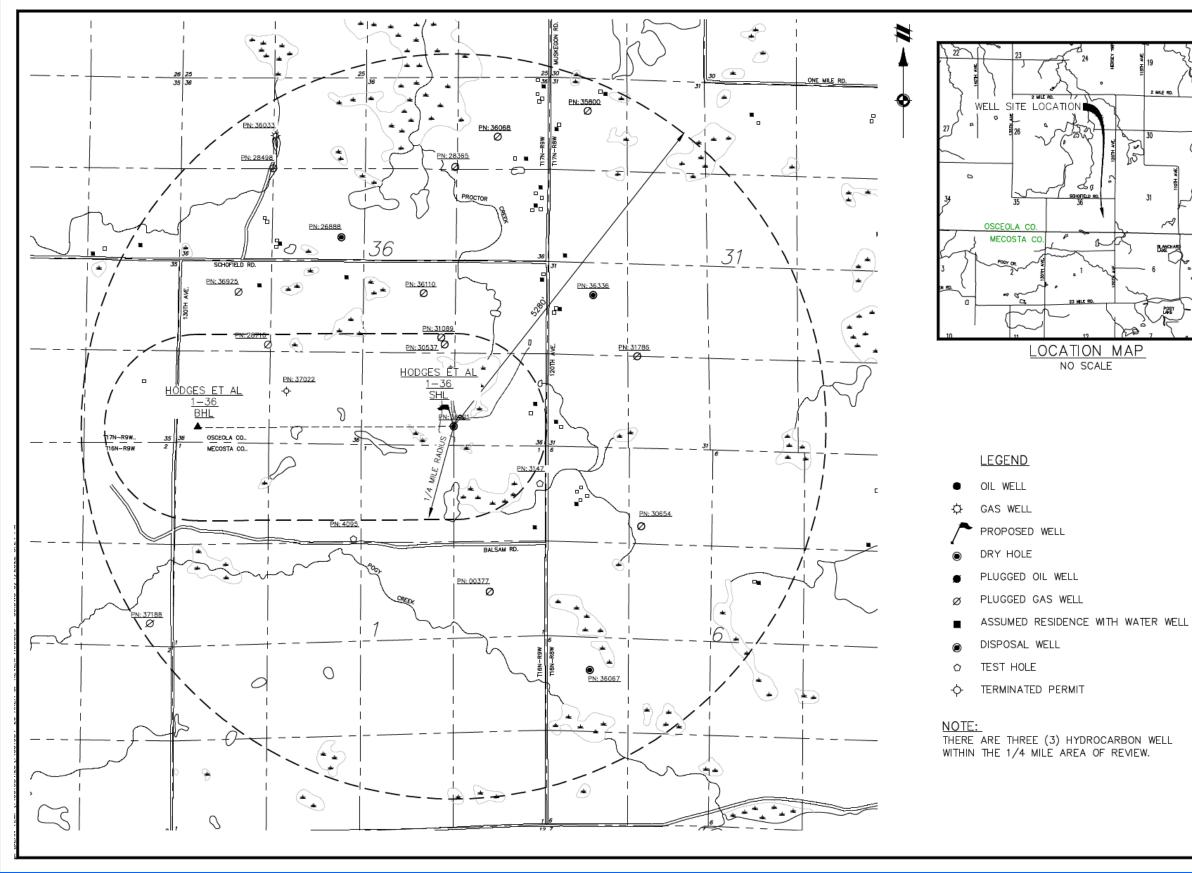


Figure A8. Area of Interest, ¼ mile Around the Hodges 1-36D

S Клоw what's below, Call before you d TE (DCLTeen of Dathe Show y all Average of the show you have a start of the show of the show of the method of the show of the barres with the show of the show o ALLINE TO EXACTLY LOCATE PREDERIE ANY AND ALL UNDERGROUND UTILITIES NOTICE: SISTRUCTION STE SAFETY IS SIZE REPROMINIUTY OF TO THE DESERVISION SHALL CONTROL TO ASSARE AN CONTROL TO ASSARE AN CONTROL OF ANY ANY STRUCTURES, OF ANY ANY STRUCTURES, OF ANY ANY STRUCTURES, OF ANY ANY DESEMBLY. COPYRIGHT (2022 ATMELL LLC REPRODUCTION SHALL BE MAD N HEAT THE PROP WRITTEN CONSERVIT OF ATMELL LLC ATVELL THE DELE NES MICHIGAN POTASH COMPANY MAP OF AREA OF REVIEW HODGES ET AL 1-36 E 05/26/2022 REVISIONS LE 0 600 120 - 1200 FEET MLC CH. JDG P.M. JDG 200K 1639/45 14001984.26 <u>14ю.</u> ест но. 1

For ease of reference, a tabulation of the existing drilled wells in the AOR are provided in the following tables. Records of oil and gas producing wells the state of Michigan are maintained by the EGLE Division of Oil and Gas and Minerals and the Geological Survey Division. Well permits, completions, and plugging records filed with this agency are organized by county, township, range, and section number.

Tabulation of active producing oil and gas wells within the AOR are as follows:

		Permit		Total	Formation at Total						
TRS	API Number	Number	Well Name and Number	Depth	Depth	Drill Date	Well Status	Well Type	WH_Lat	WH_Long	Operator Name
17N-9W-36	21-133-36033-00-00	36033	GREIN ET AL 2-36	8141	CABOT HEAD	Aug-83	ACTIVE	NATURAL GAS WELL	43.82640	-85.33910	Mccool John E
17N-9W-35	21-133-36186-00-00	36186	PAINE 1-35	8309	CINCINNATIAN	Dec-82	ACTIVE	NATURAL GAS WELL	43.82740	-85.35080	Mccool John E
17N-9W-26	21-133-37317-00-00	37317	PAINE 1-26	8095	CABOT HEAD	Feb-84	ACTIVE	NATURAL GAS WELL	43.83360	-85.34620	Mccool John E

Cross Reference with **Figure A3** which shows all producing wells in relation to the proposed injection locations.

THIS PORTION INTENTIONALLY LEFT BLANK CONTINUED ON NEXT PAGE

Tabulation of Part 625 Mineral Brine Disposal Injection Wells within the AOR

Within the AOR, there are two qualifying classes of injection well: Part 625 Non Hazardous Brine Disposal Wells (EPA Class I NON HAZARDOUS) and Part 625 Artificial Brine (EPA Class III Solution Wells). They are listed here separately for ease of reference. Records of injection wells are maintained by the US EPA and the state of Michigan EGLE Division of Oil and Gas and the Geological Survey Division. Well permits, completions, and plugging records filed with this agency are organized by county, township, range, and section number.

Active Part 625 Non Hazardous Brine Disposal Wells (EPA Class I, Non Hazardous Injection Wells) are as follows:

TRS	API Number	<u>Permit</u> <u>Number</u>	Well Name and Number	<u>Total</u> Depth	<u>Formation at Total</u> <u>Depth</u>	Drill Date	Well Status	Well Type	WH_Lat	WH_Long	Operator Name
17N-9W-26	21-133-00349-70-00	349	WOODWARD 1-26	8140	A-1 SALT	Oct-83	ACTIVE	PART 625, CLASS I NON HAZARDOUS	43.83460	-85.35680	Cargill Incorporated
17N-9W-26	21-133-00350-70-00	350	THOMAS 1-26	8091	A-1 SALT	Jan-84	ACTIVE	PART 625, CLASS I NON HAZARDOUS	43.84180	-85.36110	Cargill Incorporated

Cross Reference **Figure A4** shows active Part 625 Non-Hazardous Brine Disposal Wells, and Class I NON-HAZARDOUS Injection Wells; the Thomas 1-26 (NW4NW4 Section 26) and the Woodward 1-26 (NE4SW4 Section 26), both operating by Cargil Incorporated.

THIS PORTION INTENTIONALLY LEFT BLANK CONTINUED ON NEXT PAGE

Tabulation of Part 625 Mineral Production Injection Wells

Within the AOR, there are two qualifying classes of injection well: Class I NON HAZARDOUS and Class III NON HAZARDOUS. This section lists here Class III wells only for ease of reference. Records of injection wells are maintained by the US EPA and the state of Michigan EGLE Division of Oil and Gas and the Geological Survey Division. Well permits, completions, and plugging records filed with this agency are organized by county, township, range, and section number.

Active Class III, Part 625 Injection Wells are as follows:

		Permit		Total	Formation at Total						
TRS	API Number	Number	Well Name and Number	Depth	Depth	Drill Date	Well Status	Well Type	WH_Lat	WH_Long	Operator Name
17N-9W-26	21-133-00449-70-00	449	KALIUM HERSEY 2042	UNK	A-1 SALT	Jun-00	ACTIVE	PART 625, CLASS III	43.83310	-85.35910	Cargill Salt - Hersey
17N-9W-26	21-133-00474-70-00	474	I M C POTASH HERSEY 1061	UNK	A-1 SALT	Jan-02	ACTIVE	PART 625, CLASS III	43.83910	-85.36170	Cargill Salt - Hersey
17N-9W-26	21-133-00384-70-00	384	KALIUM 2061	8066	A-1 SALT	May-85	ACTIVE	PART 625, CLASS III	43.83290	-85.35920	Cargill Salt - Hersey
17N-9W-26	21-133-00391-70-00	391	KALIUM HERSEY 1044	8052	A-1 SALT	Nov-93	ACTIVE	PART 625, CLASS III	43.83950	-85.36190	Cargill Salt - Hersey
17N-9W-26	21-133-00383-70-00	383	KALIUM 2031	8010	A-1 SALT	Mar-85	ACTIVE	PART 625, CLASS III	43.83330	-85.35920	Cargill Salt - Hersey
17N-9W-26	21-133-00366-70-00	366	KALIUM 1041	7951	A-1 EVAPORITE	May-90	ACTIVE	PART 625, CLASS III	43.84020	-85.36190	Cargill Salt - Hersey
17N-9W-26	21-133-00409-70-00	409	KALIUM HERSEY 2062	7950	A-1 SALT	Aug-96	ACTIVE	PART 625, CLASS III	43.83300	-85.35920	Cargill Salt - Hersey
17N-9W-26	21-133-00380-70-00	380	KALIUM 1051	7890	A-1 SALT	May-85	ACTIVE	PART 625, CLASS III	43.83990	-85.36190	Cargill Salt - Hersey
17N-9W-26	21-133-00387-70-00	387	KALIUM HERSEY 1054	7876	A-1 SALT	Aug-93	ACTIVE	PART 625, CLASS III	43.83980	-85.36190	Cargill Salt - Hersey
17N-9W-26	21-133-00403-70-00	403	KALIUM HERSEY 1014	7865	A-1 SALT	Jul-95	ACTIVE	PART 625, CLASS III	43.83920	-85.36180	Cargill Salt - Hersey
17N-9W-26	21-133-00408-70-00	408	KALIUM HERSEY 2032	7810	A-1 SALT	Jul-96	ACTIVE	PART 625, CLASS III	43.83340	-85.35920	Cargill Salt - Hersey
17N-9W-26	21-133-00385-70-00	385	KALIUM HERSEY 1013	7595	A-1 SALT	May-92	ACTIVE	PART 625, CLASS III	43.83960	-85.36190	Cargill Salt - Hersey

Cross Reference **Figure A5** shows all established Class III <u>AREA</u> Injection Permit No. MI-133-3G-A0002 (Yellow Cross Hatch) and Active and Inactive Class III Injection Wells. The AOR has undergone extensive prior regulatory review provided the pre-established injection activity within the AOR.

THIS PORTION INTENTIONALLY LEFT BLANK CONTINUED ON NEXT PAGE

Tabulation of Well Data for all Abandoned Wells, Plugged Wells, and Dry Holes

Records of abandoned wells, plugged wells, and dry holes in the state of Michigan are maintained by the EGLE and the Geological Survey Division. Well permits, completions, and plugging records filed with this agency are maintained by county, township, range, and section number. Locations of wells were searched in the following AOR sections, and publicly available well data are presented in Appendix 1.

The last two wells highlighted in green are new wells submitted by the applicant. The Lutz fall within the AOR of the Thomas 1-26 and Woodward 1-26, and therefore has been reviewed as part of the Thomas and Woodward permit application processes. The Boyd 1-10 is a new submission that may not have fallen in a previously reviewed AOR. The Stein 1-18 is outside the applicant's AOR, but included here due to its proximity.

TRS	API Number	Permit Number	Well Name and Number	Total Depth	Formation at Total Depth	Drill Date	Well Status	Well Type	WH_Lat	WH_Long	Operator Name
17N-9W-26*	21-133-00397-70-00	397	Kalium Hersey 1032	8366	A-1 SALT	Nov-94	INACTIVE	PART 625, CLASS III	43.8393	-85.3618	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00438-70-00	438	Kalium Hersey 2082	8366	A-1 SALT	Jun-07	INACTIVE	PART 625, CLASS III	43.8327	-85.3592	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00347-70-00	347	Kalium 1012	8366	A-1 SALT	Jan-85	INACTIVE	PART 625, CLASS III	43.8405	-85.3619	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-36	21-133-36068-00-00	36068	BABCOCK ET AL 1-36	8200	CABOT HEAD	Sep-83	INACTIVE	NATURAL GAS WELL	43.8265	-85.3272	Marathon Oil Co.
17N-9W-36	21-133-36925-00-00	36925	BALDINO 1-36	8200	CABOT HEAD	Sep-83	INACTIVE	NATURAL GAS WELL	43.8203	-85.341	Marathon Oil Company
17N-9W-36	21-133-36991-00-00	36991	HODGES ET AL 1-36	8198	CLINTON	Oct-83	INACTIVE	DRY HOLE	43.8152	-85.3294	Marathon Oil Co.
17N-9W-36	21-133-26888-00-00	26888	GREIN, DONALD 1	1649	BROWN LIMESTONE	Aug-67	INACTIVE	DRY HOLE	43.8225	-85.3356	Consumers Energy Company
17N-9W-36	21-133-31089-00-00	31089	THOMPSON, DON; HODGES, FRANK; SMITH, RALPH 2- 36	1616	MICHIGAN STRAY	Jul-76	INACTIVE	NATURAL GAS WELL	43.8186	-85.3301	Mutch Harry L
17N-9W-36	21-133-30537-00-00	30537	THOMPSON, DON; HODGES, FRANK; SMITH, RALPH 1- 36	1602	MARSHALL	Nov-75	INACTIVE	NATURAL GAS WELL	43.8183	-85.3299	Mutch Harry L
17N-9W-36	21-133-2871-00-000	28710	THOMPSON & RANDOLPH 1	1586	MICHIGAN STRAY	Dec-71	INACTIVE	NATURAL GAS WELL	43.8182	-85.3394	Mutch Harry L
17N-9W-36	21-133-28710-01-00	28710	THOMPSON & RANDOLPH 1	1586	MICHIGAN STRAY	Dec-71	INACTIVE	NATURAL GAS WELL	43.8182	-85.3394	Mutch Harry L
17N-9W-36	21-133-28498-01-00	28498	GREIN, DONALD 1	1539	MICHIGAN STRAY	Aug-71	INACTIVE	NATURAL GAS WELL	43.8252	-85.3392	Hersey Oil and Gas Co.
17N-9W-36	21-133-28498-00-00	28498	GREIN, DONALD 1	1526	MICHIGAN STRAY	Aug-71	INACTIVE	NATURAL GAS WELL	43.8252	-85.3392	Hersey Oil and Gas Co.
17N-9W-36	21-133-28365-00-00	28365	THOMPSON, EDITH 1	1518	MICHIGAN STRAY	Jun-71	INACTIVE	NATURAL GAS WELL	43.8253	-85.3295	Mutch Harry L
17N-9W-35	21-133-36627-00-00	36627	STATE HERSEY 1-35			Apr-83	INACTIVE	LOCATION	43.8167	-85.3509	Rovsek Aldolph E and Muskegon Development Company
17N-9W-35	21-133-36355-00-00	36355	STATE HERSEY 2-35	8310	CINCINNATIAN	Jan-83	INACTIVE	DRY HOLE	43.8203	-85.3604	Marathon Oil Co.
17N-9W-35	21-133-38748-00-00	38748	GREIN 1-35	8206	CABOT HEAD	Jun-85	INACTIVE	NATURAL GAS WELL	43.8238	-85.346	Marathon Oil
17N-9W-35	21-133-28888-00-00	28888	RANDOLPH & PAINE & THIEL UNIT 1	1655	MICHIGAN STRAY	Jul-72	INACTIVE	DRY HOLE	43.825	-85.3592	Mutch J O

The following is a list of wells found within or near to the AOR.

APD 1000

HODGES ET AL 1-36(D)

17N-9W-35	21-133-28786-00-00	28786	GREIN, DONALD & PAINE, HENRY 1	1638	MICHIGAN STRAY	Mar-72	INACTIVE	NATURAL GAS WELL	43.8251	-85.349	Hersey Oil and Gas Co.
17N-9W-26	21-133-37519-00-00	37519	MILLER 1-25	8425	CABOT HEAD	Aug-84	INACTIVE	NATURAL GAS WELL	43.8334	-85.3463	Marathon Oil Co.
17N-9W-26	21-133-36942-00-00	36942	WOODWARD ET AL 1-26	8135	CABOT HEAD	Oct-83	INACTIVE	DRY HOLE	43.8346	-85.3568	PPG Oil and Gas Company, Inc.
17N-9W-26*	21-133-00378-70-00	378	KALIUM 1042*	8116	A-1 SALT	Feb-85	INACTIVE	PART 625, CLASS III	43.8401	-85.3619	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-366-00-0000	36600	THOMAS 1-26*	8085	CABOT HEAD	Jan-84	INACTIVE	DRY HOLE	43.8418	-85.3611	PPG Oil and Gas Company, Inc.
17N-9W-26*	21-133-00379-70-00	379	KALIUM 1052*	8045	A-1 SALT	Mar-85	INACTIVE	PART 625, CLASS III	43.8398	-85.3619	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00394-70-00	394	KALIUM HERSEY 1031*	7973	A-1 SALT	Oct-94	INACTIVE	PART 625, CLASS III	43.8394	-85.3618	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00448-70-00	448	KALIUM HERSEY 2041*	7941	A-1 SALT	Jun-00	INACTIVE	PART 625, CLASS III	43.8332	-85.3591	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00348-70-00	348	KALIUM 1011*	7827	A-1 EVAPORITE	Nov-84	INACTIVE	PART 625, CLASS III	43.8405	-85.3615	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00437-70-00	437	KALIUM HERSEY 2081*	7811	A-1 SALT	7-Jun	INACTIVE	PART 625, CLASS III	43.8327	-85.3592	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26*	21-133-00381-70-00	381	KALIUM 1031*	4800	A-1 SALT	Feb-92	INACTIVE	PART 625, CLASS III	43.8396	-85.3619	Mosaic USA LLC, DBA Mosaic Potash Hersey, LLC
17N-9W-26	21-133-28635-00-00	28635	PAINE, HENRY 1	1558	MICHIGAN STRAY	Nov-71	INACTIVE	NATURAL GAS WELL	43.8324	-85.3494	Mutch Harry L
17N-9W-25	21-133-30341-00-00	30341	MILLER, DOUGLAS & THIEL, HAULDAH 1-25	1561	BROWN LIMESTONE	Aug-75	INACTIVE	DRY HOLE	43.8319	-85.3392	Mutch Harry L
17N-9W-25	21-133-30384-00-00	30384	JOHNSON, WALT & MILLER, DOUG & THIEL, H 1-25	1529	MICHIGAN STRAY	Aug-75	INACTIVE	DRY HOLE	43.8326	-85.3286	Mutch J O
17N-9W-25	21-133-12066-00-00	12066	JOHNSON-CODY ET AL COMM. 1	1520	MARSHALL	Jan-46	INACTIVE	DRY HOLE	43.8392	-85.3297	Oryx Energy Co. and Carter Oil Co.
17N-8W-32	21-133-27307-00-00	27307	MANEY, NORMAN 1	1660	MARSHALL	Jul-68		DRY HOLE	43.8223	-85.3049	Consumer Power and Michigan Consolidated Gas
17N-8W-31	21-133-34558-00-00	34558	FREUDENBURG 1-31	10858	PRAIRIE DU CHIEN	Jul-81	INACTIVE	DRY HOLE	43.8265	-85.3083	JEM Petroleum Corp.
17N-8W-31	21-133-358-00-0000	35800	GRAY 1-31	9769	PRAIRIE DU CHIEN	Aug-82	INACTIVE	NATURAL GAS WELL	43.8275	-85.3224	Marathon Oil Co.
17N-8W-31	21-133-36336-00-00	36336	PARK 1-31	8216	CLINTON	Feb-84	INACTIVE	DRY HOLE	43.8203	-85.322	Marathon Oil Co.
17N-8W-31	21-133-34558-01-00	34852	FREUDENBURG 1-31A	8183	DUNDEE	Aug-81	INACTIVE	DRY HOLE	43.8265	-85.3083	JEM Petroleum Corp.
17N-8W-31	21-133-31786-00-00	31786	KNAPP, GERALD & PARKS, ROBERT 1-31	1590	MICHIGAN STRAY	Sep-77	INACTIVE	NATURAL GAS WELL	43.818	-85.32	Hersey Oil and Gas Co.
17N-8W-30	21-133-35977-00-00	35977	WARK 1-30	8371	CINCINNATIAN	Sep-82	INACTIVE	DRY HOLE	43.8421	-85.3128	Willmet Inc.
17N-8W-30	21-133-33466-00-00	33466	MANEY, NORMAN 1-30	5080	AMHERSTBURG	Feb-80	INACTIVE	DRY HOLE	43.8347	-85.3196	Dart Oil and Gas Co.
17N-8W-30	21-133-27159-00-00	27159	MADDERN, H 1	4030	DUNDEE	Feb-68	INACTIVE	DRY HOLE	43.8333	-85.3126	Madlou Inc.
17N-8W-19	21-133-38463-00-00	38463	VUKIN UNIT 1-19	8385	CINCINNATIAN	Feb-85	INACTIVE	DRY HOLE	43.844	-85.3148	PPG Oil and Gas Company, Inc. and Amoco Production Co.
17N-8W-19	21-133-38463-70-00	5006	VUKIN UNIT 1-19	8385		Dec-84	INACTIVE	DRY HOLE	43.844	-85.3148	PPG Oil and Gas Company, Inc. and Amoco Production Co.
16N-9W-2*	21-107-37188-00-00	37188	JENSEN 1-2*	8085	CABOT HEAD	Nov-83	INACTIVE	DRY HOLE	43.8073	-85.3455	Marathon Oil Co.

16N-9W-12	21-107-00340-70-00	340	PILARSKI 1-12	8318	CINCINNATIAN	Aug-84	INACTIVE	DRY HOLE	43.7974	-85.3266	PPG Industries, Inc.
16N-9W-12*	21-107-36283-00-00	36283	PARK 1-12*	8215	CINCINNATIAN	Jan-83	INACTIVE	DRY HOLE	43.798	-85.3409	Willmet Inc.
16N-9W-11	21-107-00339-70-00	339	WARD 1-11*	8121	CINCINNATIAN	Aug-84	INACTIVE	DRY HOLE	43.7901	-85.3466	PPG Industries, Inc.
16N-9W-1	21-107-00377-70-00	377	JOHNSON 2-1	8085	A-1 SALT	Apr-84	INACTIVE	DRY HOLE	43.8098	-85.3291	PPG Industries, Inc.
16N-9W-1	21-107-00337-70-00	337	JOHNSON 3-1	8073	A-1 EVAPORITE	May-84	INACTIVE	DRY HOLE	43.8098	-85.329	PPG Industries, Inc.
16N-8W-7	21-107-36187-00-00	36187	STEIN 1-7	8380	CINCINNATIAN	Nov-82	INACTIVE	DRY HOLE	43.7911	-85.312	Willmet Inc.
16N-8W-6	21-107-36067-00-00	36067	JOHNSON ET AL 1-6	8386	CINCINNATIAN	Oct-82	INACTIVE	DRY HOLE	43.8057	-85.322	Marathon Oil Co.
16N-8W-6	21-107-30728-00-00	30728	MCLACHLAN, GEORGE 1-6	1670	MICHIGAN STRAY	May-76	INACTIVE	DRY HOLE	43.8033	-85.3101	Mutch Harry L
16N-8W-6	21-107-30654-00-00	30654	KNAPP, GERALD & JOHNSON, DON 1-6	1610	MICHIGAN STRAY	Dec-75	INACTIVE	NATURAL GAS WELL	43.8109	-85.3198	Mutch Harry L
16N-8W-18*	21-107-3689-00-000	36890	STEIN 1-18 (Outsdie the AOR)	8264	CINCINNATIAN	Aug-83	INACTIVE	DRY HOLE	43.7765	-85.3074	PPG Oil and Gas Company, Inc.
16N-9W-10	21-107-36455-00-00	36455	BOYD 1-10	7975	CINCINNATIAN	May-83	INACTIVE	DRY HOLE	43.7982	-85.37647	Willmet Inc.
17N-9W-34	21-133-61237-70-00	61237	LUTZ 1-34, 34A, 34B, 34C	8837	NIAGARAN	Jun-84	INACTIVE	DRY HOLE	43.8275	-85.37228	PPG Oil and Gas Company, Inc.

Cross reference **Figure A6**, which shows all wells active and inactive within the area of review that penetrate the confining interval. Total depths of the each well is listed next to its well symbol. Also shown on this map are the API Serial number. The serial number is illustrated below:

State	_	County	_	Serial –	Completion
21	-	133	-	##### -	00-00

Mineral wells available to the public record or made known to the applicant are also shown. These wells are preceded with the letter "M" before the listed Serial No. The State of Michigan has adapted a 'pseudo API No,' utilizing the mineral permit number as an API Serial No. As an example; M4999 would have the equivalent Mineral Well API designation of:

State	_	County	_	Serial –	Completion
21	-	133	-	0 4999 -	70 -00

These numbers can be quickly cross referenced with public records, and or the tabular section above.

Michigan Potash Operating, LLC

5 If a well is proposed to be converted to a disposal well, a copy of the completion report, together with the written geologic description log or record and borehole and stratum evaluation logs for the well.

The Original Hodges ET AL 1-36 Completion Report

STATE OF MURICINA ENDORES FEB 1 5 954 FER 1 1 5 954 FER 1 1 5 954 NAME OF AN UNKA READORES LIG OF OLL GAS, DISPOSAL OF STORAGE WELL (ACT 01) DEFENSION FORMATION OF UNKA WING CONTINUES 33991 NAME OF AND UNKA READ READ WING CONTINUES OF UNKA DE STORAGE WEING FERMIT NUMBER STORAGE DELIVE Index 6 ADDRESS OF OWLL LING CONTRACTORES PTC 011 A Gas Co., Inc. on FERMIT H. Pleasant, MI 4853 Index 6 ADDRESS OF OWLL LING CONTRACTORES SUBFACE UCKATION SECTION TOWNSHIP NAME COTACES (Monthismen) SECTION TOWNSHIP NAME FOR TAGE (Monthismen) SECTION TOWNSHIP NAME OFTACES (Monthismen) SECTION TOWNSHIP NAME OTTACES (Monthismen) SECTION SECTION SECTION					STATE OF		UDGES	'FEB 1 (5 1984	PER	MITNU							
NAME ED & ADDRESS OF OWNERING BROWN ON FERMIT INAME & ADDRESS OF OWNELING CONTRACTORES PPG 011 6 Gas Co., I.D.C. T.D., Provins Drilling Company 2258 Enterprise Drive T.D., Provins Drilling Company 213 Batterprise Drive Market ADDRESS OF OWNELING CONTRACTORES Hodges 81-36 Section State Market Section Section 267 FL From South Section 268 DWR FEE OF OWNER Township 270 TAGES Nondowner Fee Organitations 288 DWR FEE OWNER FEE	Nº LO	GOF	OIL					(ACT 61))	L								
PFO 011 4 Gas Co., Inc. T. D. Provins Dr11ling Company 2258 Enterprise Drive T. D. Provins Dr11ling Company 213 Enterprise Drive ME. Pleasant, MI 48858 Hodges J36 Dimensional Succession Network Network Burgadg Location Section Section South Internet Network 262 Fritem South Internet Network 263 Fritem South Internet Network 264 Fritem South Internet Network 265 Fritem South Internet Network 266 Fritem South Internet Network 267 Fritem South Section 267 Fritem South Section 267 Fritem South Section 267 Fritem South Section 270 Fritem South Section 28 W 82 Size Section 29 - 13-3 Dimice Size No. 20 - 16-83 Burt Elevations Artics 20 - 10-81 Cabot Need 20 - 10-83 Burt Elevations	(, LS								, 	DEE	PENING	3 PERM	IIT NU	MBER				
PFC 011 4 Gas Co., Inc. T. D. Provins Drilling Company 2258 Enterprise Drive Y1313 Enterprise Drive Mitters Average Struct NUMBER Struct NU	NAME(S) &	ADDRES	is o	FOWNER	S) SHOWN (N PERMIT		NAME & A	DDRESS	OF DR	ILLING	CONT	RACT	OR(S)		-	-	
2235 Enterprise Drive 2113 Enterprise Drive Mt. Pleasant, Mt 48535 Mt. Pleasant, Mt 48535 Distribution Virage Annetic & Witch Unuble Barcow UN PERMIT Passant, Mt 48535 Distribution SE SW SE 36 Township PANOE Pownship Name 2017.02 File Form Section Section Section Section 202.7 File form Section Section Section Section Section 202.7 File form Section Section Section Section Section Section 202.7 File form Section Sectio								T. D.	Provi	ns D	ri11:	ing C	ompa	iny				
Mt. Pleasant, MI 48858 Mt. Pleasant, MI 48858 Indept Anter Devict NUMBER JOON ON PENNIT DIRECTIONALLY DRILLED Notages #1-36 STETAGE LOCATION DIRECTIONALLY DRILLED SER SK SE 36 17N 9W Hereary 267 7. Instructure Controls FEETON TOWNSHIP PANGE COUNTY NAME 2071AGEE INSTRUCT Instructure Received OUNSHIP FEENORUL COUNTY NAME 2071AGEE INSTRUCT Instructure Received OUNSHIP NAME COUNTY NAME 2071AGEE INSTRUCT Instructure Received OUNSHIP NAME COUNTY NAME 2071AGEE INSTRUCT Instructure Received COUNTY NAME FEERVATIONS 2071AGEE INSTRUCT Instructure Received COUNTY NAME FEERVATIONS 2071AGEE INSTRUCT PRODUCING FORMATIONISI FF. DRILG CABLE TOOLS RT. IIBO.4 IIT7.9.2 4 DRILL COMPLETES PRODUCING FORMATIONISI FF. DRILG CABLE TOOLS RT. IIBO.4 IIT7.9.2 2011 21.4 D.P. PL. DRILG CABLE TOOLS RT. IIBO.4								2113	Enterp	rise	Driv	ve						
Trade white(b) 2 witcl: NUMBER SHOWN ON PERMIT DIRECTOR DIRECTOR </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>Mt. P</td> <td>leasan</td> <td>t, M</td> <td>I 488</td> <td>858</td> <td></td> <td></td> <td></td> <td></td> <td></td>								Mt. P	leasan	t, M	I 488	858						
DURADEL CONTON DARGE TOWNSHIP PARGE TOWNSHIP PARGE TOWNSHIP 2677AGES INstit/South) 36 17N 9W BETSOY OUNSTIT NAME 2677AGES INstit/South) SECTION 1306 FT. from. MEES Line of quarter section OBJORCED 2607AGES INstit/South) SECTION SECTION SECTION COUNTY NAME 2607AGES INstit/South) If and parter section COUNTY NAME COUNTY NAME 2607AGES INstit/South) If and parter section COUNTY NAME COUNTY NAME 9-13-83 Drive BLTE MONGEONFETTOR BLTE MONGEONFETTOR FT. FUNCTION R.F. 1179-2 9 10-16-83 Cabot Read FT. DRIL- ORALT PORTANY TOOLS R.F. 1164.2 20* 12-21-83 Burth Elluff From						PERMIT				-					_	ILLEC	>	
SE SN SE 36 17N 9W The resy count of the resy from the resy count of the resy from the resy count of the resy from the resy count of the rest of the resy count of the rest of the	Hodge	s #1-	36															
Construction Construction <th colspan<="" td=""><td>SURFACE L</td><td>OCATIO</td><td>n N</td><td></td><td>SECTION</td><td></td><td>TOWNSHI</td><td>P</td><td>1</td><td></td><td></td><td>TO</td><td></td><td></td><td>4E</td><td></td><td></td></th>	<td>SURFACE L</td> <td>OCATIO</td> <td>n N</td> <td></td> <td>SECTION</td> <td></td> <td>TOWNSHI</td> <td>P</td> <td>1</td> <td></td> <td></td> <td>TO</td> <td></td> <td></td> <td>4E</td> <td></td> <td></td>	SURFACE L	OCATIO	n N		SECTION		TOWNSHI	P	1			TO			4E		
OBSERVENTION Case of a processed of the section OBSERVENT OBSERVENT <thobservent< th=""> <thobservent< th=""> <th< td=""><td>SE SW</td><td>SE</td><td></td><td></td><td>36</td><td></td><td></td><td></td><td></td><td>9W</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thobservent<></thobservent<>	SE SW	SE			36					9W								
DOUL Fit Mon DOUL Fit Mon DOUL Fit Mon EBBURFACE CRATION ESCTION TOWNSHIP RANCE TOWNSHIP TOWNSHIP EBBURFACE (North/South) ESCTION TOWNSHIP RANCE TOWNSHIP						1007						COL						
EDUCIONAL COUNTY COUNTY COUNTY NAME FOOTAGES (Korth/South) TOTAL DEPTH OF WELL COUNTY NAME OP 9-13-83 Donies 2182 Total DEPTH OF WELL Total DEPTH OF WELL D 010-16-83 FORMATION AT T.O. FT. DRLD NOTARY TOOLS K.B. 1180.4 1179.2 E WELL COMPLETED PRODUCING FORMATION(S) FT. DRLD NOTARY TOOLS R.T. Grid 164.2 CASING, CASING LINERS AND CEMENTING FT. DRLD CABLE TOOLS R.T. Grid 164.2 20 ⁴¹ 7.1 ¹ D.P. To DATE NUMBER INTERVAL PERFORATED OPEN 20 ⁴¹ 7.1 ¹ D.P. IO-16.283 2X/ft 8112-18 X						1306					tion	TO						
Image: State of the second process of the second proces of the second proces of the second process of the sec	SUBSURFAL	CCC LCCC			SECTION		10000	r.	1			1.0						
FL from Line of quarter section D TOTAL DEPTH OF WELL T 6 A ELEVATIONS D PATELLING COMPLETED PORMATION AT TO. T 6 A ELEVATIONS D DITOTAL DEPTH OF WELL T 6 A ELEVATIONS M.F. D DOTALION COMPLETED PRODUCING FORMATION IST. FT. DRLD ADIANT TOOLS N.R.B. M.F. VELL COMPLETED PRODUCING FORMATIONIST FT. DRLD CABLE FOOLS R.T. Get. 12-21-83 Burnt Bluff FT. DRLD CABLE FOOLS R.T. II64.2 Size CEMENT Ft. Pulled DATE NUMMER NOT II64.2 Size Size NOTATION S	FOOTAGES		Nor	th/South)			1	ast/West)				co	INTY	NAME				
0 9-13-83 Diffier 8192 T 5 A ELEVATIONS 0 DRILLING COMPLETED FORMATION AT 7.0. FT. DRLD NOTARY TOOLS K.B. 1179.2 1 10-6-83 Cabor Head From	Ft. from Lin																	
D DRILLING COMPLETED T FORMATION AT T.D. Cabot Head FT. DRLD ADTAIN YOOLS From	DRILLING BEGUN										-							
A DELLING COMPLETED FORMATION AT 1:0. FT. DRLD NOTARY TOOLS R.E. N.F. 1179-2 T UPLL COMPLETED PRODUCING FORMATIONIS) FT. DRLD GABLE TOOLS R.T. Grd. Size WHERE SET CEMENT Ft. Pulled DATE INTERVAL PERFORATED OFFN 20" 71 D.P. DATE INTERVAL PERFORATED OFFN 11 3/4" 920' 500 8x 12-3-83 2X/ft 8104-08 X 20" 71 D.P. INTERVAL PERFORATED OFFN VELS NTERVALPERFORATED VES N 11 3/4" 920' 500 8x 12-3-83 2X/ft 8104-05 X X X 11 3/4" 920' 1600 8x 12-3-83 2X/ft 8104-05 X <td colspan="3"></td> <td colspan="3"></td> <td colspan="4"></td> <td></td> <td></td> <td>ELEVA</td> <td></td> <td>IS.</td> <td></td>													ELEVA		IS.			
T 10-16-83 Cabot Head From	OBULLING COMPLETED			1										1120	2			
E 12-21-83 Burnt Bluff From To 1164.2 CASING, CASING LINERS AND CEMENTING PERFORATIONS PERFORATIONS 20" 71" D.P. Pulled DATE NUMBER INTERVAL PERFORATED VES N 20" 71" D.P. Pulled DATE NUMBER INTERVAL PERFORATED VES N 11 3/4 9201 500.8x 12-3-83 2X/ft 8112-18 X	1											·			1	11/9	.2	
Idente Dram Idente Dram CASING, CASING LINERS AND CEMENTING PERFORATIONS Size WHERE SET CEMENT FI. Pulled DATE INTERVAL PERFORATED OPEN Size WHERE SET CEMENT FI. Pulled DATE INTERVAL PERFORATED OPEN Size WHERE SET CEMENT FI. Pulled DATE INTERVAL PERFORATED OPEN Size WHERE SET COMENT TERVALS ALL OTHER OIL AND GAS SHOWS OBSERVED OR LOGGED DXI SIGNATION OIL OR GAS REPORT TOR SUPERVEXT DECIDE BUTTE BLUFE GAS SIGN OVER PROVIDE OXI OR MATION OIL OR GAS PROVID OR LOGGED DXI STIMULATION BY ACID OR FRACTURING WATER FILL UP IF U3 OR LOST CIRCULATION IL C.) IXI OR TOTION TERT DATA Materials and amount used FORMATION </td <td colspan="3">E WELL COMPLETED</td> <td></td> <td></td> <td></td> <td></td> <td colspan="3"></td> <td>LS</td> <td>R.T</td> <td></td> <td></td> <td></td> <td>1164</td> <td>.2</td>	E WELL COMPLETED										LS	R.T				1164	.2	
STATE WHERE SET CEMENT FL Pulled DATE NUMBER INTERVAL PERFORATED OPEN 20" 71' D.P. 12-3-83 2X/ft 8104-08 X 1 8<5/8"					Bur	nt Bluis		From	To			-1						
Size WHERE SET CEURITY PLAND DATE HONLES INTERVAL PERFORATED VES N 11 3/4" 920' 500 sx 12-3-83 2x/ft 8104-08 X x		CASING	, CA	SING LINE			r				PERF	ORATIO	ONS					
20* 71* D.P. 12-3-83 2x/ft 8104-08 X 8<5/8*		w					Ft. Pulled	DATE			INTE	RVAL	PERFC	ORATE	Ð		-	
8<5/8" 5479 1600 sx 8112-18 X B S122-33 X B S142-45 X CROSS PAY INTERVALS ALL OTHER OIL AND GAS SHOWS OBSERVED OR LOGGED FORMATION OIL OR GAS FROM TO FORMATION OIL OR GAS FROM TO BUTCH BUTCH BLUEF Gas 8109 8134 FORMATION OIL OR GAS FROM TO BUTCH Stimulation BUTCH BLUEF Gas 8109 8134 FORMATION OR OR Stimulation Construction STIMULATION BY ACID OR FRACTURING WATER FILL UP IF UJ OR LOST CIRCULATION (L.C.) (X) XX XX XX XX DATE Interval Treated Materials and amount used FORMATION F.U. L.C. DEPTH AMOUNT 12-4-83 8104-8145 3000 gal. 20% H Cl NONE Interval MADUNT MECHANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brond LDG TYPES LOGGED INTERVALS DEPTH CORHECTN NAT DEOREES <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>10.00</td><td></td><td></td><td>01/</td><td>04 09</td><td></td><td></td><td></td><td></td><td><u>+</u>"</td></td<>			_					10.00			01/	04 09					<u>+</u> "	
STIMULATION BY ACID OR FRACTURING ALL OTHER OIL AND GAS SHOWS OBSERVED OR LOGGED FORMATION OIL OR GAS FROM TO FORMATION OIL OR GAS FROM TO BUTTE BLUEF Gas 8109 8134 FORMATION OIL OR GAS FORMATION FUL COL FORMATION FORMA	the second s		_			and a second sec		12-3-8	3 <u>2X</u>	IC							⊢	
BI42-45 X GROSS PAY INTERVALS ALL OTHER OIL AND GAS SHOWS OBSERVED OR LOGGED FORMATION OIL OR GAS FROM TO BUTTC BLUEF GROSS PAY INTERVALS OLI OR GAS FROM TO BUTTC BLUEF GROSS PAY INTERVALS OLI OR GAS FROM TO BUTTC BLUEF GROSS PAY INTERVALS OLI OR GAS FORMATION OIL OR CAS DEPTH WHEERE OBSERVED OR LOGGED STIMULATION BY ACID OR FRACTURING WATER FILL UP (F U) OR LOST CIRCULATION (L C) (X) DATE INTERVALS MEERANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK MEECHANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (X) LOG TYPES LOG OBED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (X) LOG TYPES LOG OBED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK BICCOND. COLSPAN DEP	8 5/8"	- 24	4/5	;	1600	SX		·····	+								\vdash	
ALL OTHER OIL AND GAS SHOWS OBSERVED OR LOGGED FORMATION OIL OR GAS FORMATION OIL OR GAS DEPTH Similar Display Colspan="2">Similar Display Colspan="2">Display Colspan="2" Display Colspan="2" Display Colspan="2" Display Colspan="2" Display Colspan="2" Display Colspan="2" Display Colspan="2" Display Colspan="2" Display Colspan="2"					1			l	-	-						x		
FORMATION OIL OR GAS FROM TO FORMATION OIL OR GAS DEPTH Burnet Bluff Gas B109 B134 FORMATION OR GAS DEPTH Burnet Bluff Gas B109 Ddot Pit Line Gas FORMATION OR GAS DEPTH Barnet Ddot Pit Line Gas FORMATION OR GAS DEPTH Barnet Ddot Pit Line Gas FORMATION Pit Line Gas FORMATION Oddot Pit Line Gas Formation										D 0 46	SUON	e anet	DVED	001	0005	n		
Burne Bluff Gas 8109 8134 FORMATION OR GAS DEPTH Same Support Oder Pris Mud Ling Gas Ling Title Ling STIMULATION BY ACID OR FRACTURING STIMULATION BY ACID OR FRACTURING WATER FILL UP (F U) OR LOST CIRCULATION (L C) (X) OATE Interval Treated Materials and amount used FORMATION F.U. L.C. DEPTH AMOUNT 12-4-83 SIGNALATION BY ACID OR FRACTURING Materials and amount used Interval Treated Materials and amount used INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Birdwell DEL-ML STIMULATION SURVEY PLUGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Birdwell DEL-ML 3000-8192 1450 5% NO DEPTH PRODUCTION TEST DATA <td colspan<="" td=""><td>EDEMA</td><td></td><td></td><td></td><td></td><td>TO</td><td></td><td>ALLOTHE</td><td></td><td>- GAS</td><td>5000</td><td>1</td><td></td><td></td><td></td><td>D (X)</td><td></td></td>	<td>EDEMA</td> <td></td> <td></td> <td></td> <td></td> <td>TO</td> <td></td> <td>ALLOTHE</td> <td></td> <td>- GAS</td> <td>5000</td> <td>1</td> <td></td> <td></td> <td></td> <td>D (X)</td> <td></td>	EDEMA					TO		ALLOTHE		- GAS	5000	1				D (X)	
Antrim Gas 3126 XX Reed City Cas 4100 XX STIMULATION BY ACID OR FRACTURING WATER FILL UP (F U.) OR LOST CIRCULATION (L.C.) (X) DATE Interval Treated Materials and amount used FORMATION F.U. L.C. DEPTH AMOUNT 12-4-83 8104-8145 3000 gal. 20Z H Cl NONE			Ť				FORM	ATION		0	DEPTH	Samples	Odor	Pits	Aud	Gas Log	Fi	
STIMULATION BY ACID OR FRACTURING WATER FILL UP (F U.) OR LOST CIRCULATION (L.C.) (X) OATE Interval Treated Materials and amount used FORMATION F.U. L.C. DEPTH AMOUNT 12-4-83 8104-8145 3000 gal. 20% H Cl NONE AMOUNT MECHANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (X) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (X) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (X) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION NUN AT DEGREES YES NO DEPTH Schlumbergar XX LDT-CNI,-GR 200-8192 1450 ½° 1450 ½° 1450 ½° 1450 1450 1450 1450 16 1450 16 1450 16 1450 16 1450 16 1450 16 16 16 16 16 16 16 16 16 16 16 16 16 <td< td=""><td></td><td></td><td>Т</td><td></td><td>1</td><td></td><td>Antri</td><td>m</td><td>Gas</td><td></td><td>3126</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Т		1		Antri	m	Gas		3126							
DATE Interval Treated Materials and amount used FORMATION F.U. L.C. DEPTH AMOUNT 12-4-83 8104-8145 3000 gal. 202 H Cl NONE Image: Close of the second and the second a					1		Reed	City	Cas		4100				XX	 	4-	
DATE Interval Treated Materials and amount used FORMATION F.U. L.C. DEPTH AMOUNT 12-4-83 8104-8145 3000 gal. 202 H Cl NONE Image: Close of the second and the second a			1				1			_				L	L	1	L	
DATE Individual frame Individual frame 12-4-83 8104-8145 3000 gal. 20Z H Cl NONE MECHANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (x) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (x) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Birdwell DLL-MLL 3000-8192 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 1450 ½° 160 1600 1600 1450 ½° 1450 ½° 16000 1600 16000		STIMUL	AT	ION BY AC	D OR FRA	CTURING		WATE		JP (F.)	J.) OR	LOST C	RCU	LATIO	N (L.C	:) (X)		
12-4-83 8104-8145 3000 gal. 20Z H CI NONE MECHANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (X) LOG TYPES LOGGED INTERVALS DEPTH CORRECTIN RUN AT DEGREES YES NO Schlumberger XX LDT-CNL-GR 200-8192 1450 ½°	DATE	loler	val 7	Treated	Materia	s and amount	t used	FORM	ATION	F.L	L.C.	DEP	TH	1	AMO	UNT		
MECHANICAL LOGS, LIST EACH TYPE RUN DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (x) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Brand (x) LOG TYPES LOGGED INTERVALS DEPTH CORRECTION DEVIATION SURVEY PLUGGED BACK Birdwell DLL-MLL 3000-8192 1450 ½° 1450 ½° 16900 1° 16900 1° 16900 1° 16900 1° <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>NON</td> <td>E</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					NON	E		1	1						
Brand IXX LOG TYPES LOGGED INTERVALS DEPTH CORRECTN RUN AT DEGREES YES NO DEPTH Schlumberger XX LDT-CNL-GR 200-8192 1450 12° 1450 12° 1450 12° 1450 12° 1450 12° 16° <		010			2000 00					-							-	
Brand IXX LOG TYPES LOGGED INTERVALS DEPTH CORRECTN RUN AT DEGREES YES NO DEPTH Schlumberger XX LDT-CNL-GR 200-8192 1450 12° 1450 12° 1450 12° 1450 12° 1450 12° 16° <											-							
Brand IXX LOG TYPES LOGGED INTERVALS DEPTH CORRECTN RUN AT DEGREES YES NO DEPTH Schlumberger XX LDT-CNL-GR 200-8192 1450 12° 1450 12° 1450 12° 1450 12° 1450 12° 16° <														<u>}</u>				
Brand IXX LOG TYPES LOGGED INTERVALS DEPTH CORRECTN RUN AT DEGREES YES NO DEPTH Schlumberger XX LDT-CNL-GR 200-8192 1450 12° 1450 12° 1450 12° 1450 12° 1450 12° 16° <												l]				
Brand IXX LOG TYPES LOGGED INTERVALS DEPTH CORRECTN RUN AT DEGREES YES NO DEPTH Schlumberger XX LDT-CNL-GR 200-8192 1450 12° 1450 12° 1450 12° 1450 12° 1450 12° 16° <		месна	NIC	AL LOGS	IST EACH	YPE RUN		DEPTH CO	RRECTIO	N D	EVIAT	ION SU	RVEY	PL	UGGE	D BAC	ж	
Brand IAI COUNTYES COUNTYES <thcountyes< th=""> <thcountyes< th=""> <thcountyes< th=""></thcountyes<></thcountyes<></thcountyes<>			-,				TERVAL	5										
Birdwell DLL-MLL 3000-8192 Birdwell DLL-MLL 3000-8192 PRODUCTION TEST DATA OIL - Bbis/day GRAVITY - *API COND. Bbis/day GAS - MCF/day WATER - Bbis/day H2S - Grains/100 cu. H. PRODUCTION TEST DATA OIL - Bbis/day GRAVITY - *API COND. Bbis/day GAS - MCF/day WATER - Bbis/day BH.P. AND DEPTH I AM RESPONSIBLE FOR THIS REPORT. THE INFORMATION IS COMPLETE AND CORRECT. DATE NAME AND TITLE (PBINT) WATER - Bbis/day SIGNATURE NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 722									30.116.0			_		1	+	+		
PRODUCTION TEST DATA OIL - BUIS/day GRAVITY - *API COND. BUIS/day GRAVITY - *API COND. BUIS/day GAS - MCF/day WATER - BUIS/day HAR RESPONSIBLE FOR THIS REPORT. THE INFORMATION IS COMPLETE AND CORRECT. DATE/1/83 NAME AND TITLE (PBINT) MATER - BUIS/day BIS/Day BI			-							_			1°		1	1		
PRODUCTION TEST DATA OIL - BUIS/day GRAVITY - *API COND. BUIS/day GAS - MCF/day WATER - BUIS/dayH25 - Grains/100 cu. H. B.H.P. AND DEPTH I AM RESPONSIBLE FOR THIS REPORT. THE INFORMATION IS COMPLETE AND CORRECT. DAT2/1/83 NAME AND TITLE (PBINT) MITILIAM E. BOOKER, Geologist SIGNATURE UND E Booker NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 722	9		-										1°					
OIL - BUIS/day GRAVITY - *API COND. BUIS/day GAS - MCF/day WATER - BUIS/dayH2S - Grains/100 cu. 4. B.H.P. AND DEPTH I AM RESPONSIBLE FOR THIS REPORT. THE INFORMATION IS COMPLETE AND CORRECT. DATE/1/83 NAME AND TITLE (PRINT) William E. Booker, Geologist SIGNATURE L. B.H.P. AND DEPTH NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 72	K		-								7920		2°					
OIL - BUIS/day GRAVITY - *API COND. BUIS/day GAS - MCF/day WATER - BUIS/dayH2S - Grains/100 cu. 4. B.H.P. AND DEPTH I AM RESPONSIBLE FOR THIS REPORT. THE INFORMATION IS COMPLETE AND CORRECT. DATE/1/83 NAME AND TITLE (PRINT) William E. Booker, Geologist SIGNATURE L. B.H.P. AND DEPTH NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 72			_					Teor		_								
AM RESPONSIBLE FOR THIS REPORT. THE INFORMATION IS COMPLETE AND CORRECT. DA 12/1/83 NAME AND TITLE (PRINT) William E. Booker, Geologist NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 72	-									a francisco de la composición				PP	P AN	DEP	Ŧω	
DATE/1/83 NAME AND TITLE (PRINT) William E. Booker, Geologist SIGNATURE Um & Booker NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 72	OIL - BES/	day GF	٩AV	17 Y * AP	COND.	IDIS/day G/	AS - MCF/8	WATEP	~ BDIS/d	25	- Gra	ms/100	CO. 11.	0.n.	AC AN			
DATE/1/83 NAME AND TITLE (PRINT) William E. Booker, Geologist SIGNATURE Um & Booker NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R. 72			-		1	I	A										_	
NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R - 72			FOF	R THIS REI	PORT. THE	INFORMATI	ON IS COM	PLETE AND	CORRE	CT.						P		
NOTICE REPORT COMPLETE SAMPLE AND FORMATION RECORD AND DRILL STEM TEST INFORMATION ON REVERSE SIDE R - 72	DA12/1/8	3	ľ	NAME 119	am E. B	ooker, G	eologis	t	SIGNAT	URE	lim		E_	B	00	k		
Rev. 3/			MPI	LETE SAMP	LE AND FO	RMATION R	ECORD AN	DORILLS	TEM TEST	TINFO	BMAT	ION ON	REV	ERSES	SIDE			
																Re	, 3/	

2.

Michigan Potash Operating, LLC

Original Geological cutting descriptions

• , , , , , ,	36991	
PPG OIL & GAS O Hodges #1-36 SE SW SE, Secti Hersey Twp., Os	ion 36, T17N R9W	
	SAMPLE DESCRIPTION	
0 - 710	Base of Drift	
710 - 920	Shale, red to gray, gummy, grading to firm, trace sandstone, poorly consolidated, subround, medium grained.	
920 ~ 1417	Shale, black to dark gray, organic, firm.	
	Triple Gyp @ 1417 Sch	
1417 - 1495	Anhydrite, white to transparent with shale, gray to medium gray, blocky.	
	Brown Lime @ 1495 Sch	
1495 - 1612	Dolomite, brown, finely crystalline, 3-5% porosity, slightly sucrosic with shale, medium gray, firm.	
	Stray @ 1612 Sch	
1612 - 1718	Sandstone, red to white, very fine grained, subangular to subround, well cemented, with shale, gray, firm.	
	Marshall @ 1718 Sch	
1718 - 1899	Sandstone, white to transparent, trace pink, fine grained, subangular to subround, well cemented with siliceous cement.	
1899 - 2639	Shale, dark gray to black, firm, platy to blocky, slightly calcareous.	
	Sunbury @ 2639 Sch	
2639 - 2740	Shale, black to gray brown, firm and very organic.	
	Ellsworth @ 2740 Sch	
2740 - 3132	Shale, medium gray, firm, platy to blocky, calcareous.	
	Antrim @ 3132 Sch	
3132 - 3306	Shale, dark gray to black, very organic, blocky.	
	Traverse Formation @ 3306 Sch	
3306 - 3354	Shale, black, firm, trace pyrite with limestone, brown, very finely crystalline.	
	Traverse Lime @ 3354 Sch	
3354 - 3666	Limestone, brown to white to buff, very finely to microcrystalline, trace intercrystalline porosity, no stain or fluorescence.	

HODGES 1-36 (D)

MICHIGAN POTASH OPERATING, LLC

36991

PPG OIL & GAS CO., INC. Hodges #1-36 SE SW SE, Section 36, T17N R9W Hersey Twp., Osceola Co. Page 2. Limestone, dark brown to buff, trace white, micro crystalline, 3666 - 3871 mottled, no stain or fluorescence. Bell Shale @ 3871 Sch 3871 - 3931 Shale, gray to medium gray, blocky, trace pyrite, firm. Dundee @ 3931 Sch Limestone, light brown to buff, very finely crystalline, clean, 3931 - 4000 no stain or fluorescence. Reed City Anhydrite @ 4000 Sch 4000 - 4017 Anhydrite, white, firm. Reed City Dolomite @ 4017 Sch 4017 - 4156 Dolomite, buff to white grading to dark brown at base, finely crystalline, 5% intercrystalline porosity, with bitumen and trace dead oil stain. Detroit River Anhydrite @ 4156 Sch 4156 - 4220Anhydrite, soft, trace dolomite, brown to tan. Detroit River Salt @ 4220 Sch Salty, by drill rate, with anhydrite, light gray and firm, 4220 ~ 4628 dolomite, tan, very finely crystalline, no stain, fluorescence or odor. Sour Zone @ 4628 Sch Limestone, brown to medium brown, very finely crystalline, 4628 - 4752 anhydrite, white, firm. Massive Anhydrite @ 4752 Sch Anhydrite, white to light gray, firm with dolomite, light to medium 4752 - 4996 brown, very finely crystalline, tight and compact. Base Anhydrite @ 4996 Sch 4996 - 5058 Dolomite, brown to gray brown, micro crystalline, trace cryptocrystalline, 3% intercrystalline porosity. Black Lime @ 5058 Sch Dolomite, slightly limy, dark to medium brown, trace black, very 5058 - 5178 finely crystalline, tight, compact.

HODGES 1-36 (D)

٠...

MICHIGAN POTASH OPERATING, LLC 3699.1

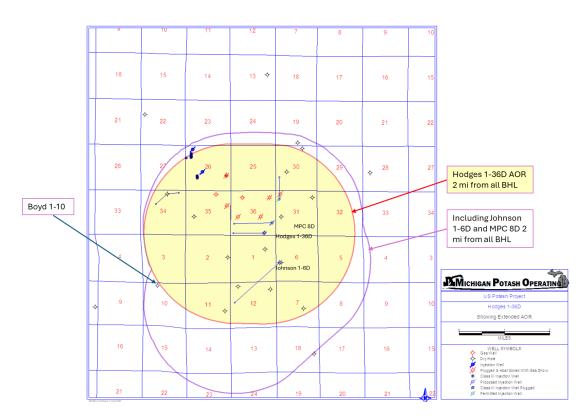
PPG OIL & GAS CO., INC. Hodges ∦1-36 SE SW SE, Section 36, T17N R9W Hersey Twp., Osceola Co. Page 3. Sylvania @ 5178 Sch 5178 - 5292 Sandstone, transparent to white, very fine grained, sub round, calcareous cement. Bois Blanc @ 5292 Sch 5292 ~ 5446 Dolomite, creme to tan to brown, finely crystalline, 408% intercrystalline porosity, clean, with abundant tripolitic chert. Bass_Island @ 5446 Sch 5446 - 5744 Dolomite, medium to dark brown, micro crystalline, compact. Salina G @ 5744 Sch 5744 - 5754 Dolomite, dark brown, very finely crystalline, dense, stylolytic. F Unit @ 5754 Sch 5754 ~ 5800 Dolomite, dark brown, finely crystalline, dense, trace intercrystalline porosity, slightly limy. F Salt @ 5800 Sch 5800 - 6366 Salt, massive, with shale, gray, soft to gummy and dolomite, dark brown, cryptocrystalline, dense. E Unit @ 6366 Sch Shale, red to gray, soft with siltstone, gray with dolic cement. 6366 - 6498 D Salt @ 6498 Sch 6498 - 6536 Salt, white with shale, gray. C Shale @ 6536 Sch 6536 - 6629 Shale, gray soft to gummy. B Salt @ 6629 Sch 6629 - 7010 Salt, massive with shale gray and soft at top. A2 Carbonate @ 7010 Sch 7010 - 7148 Limestone, gray, dark gray to brown to dark brown, argillaceous, very finely crystalline, no stain or fluorescence, compact, tight.

Michigan Potash Operating, LLC

· . • • . • •	36991
Hodges #1-3 SE SW SE, S	GAS CO., INC. Gection 36, T17N R9W , Osceola Co.
Page 4.	
	A2 Evaporite @ 7148 Sch
7148 - 7520	Salt, massive.
	Al Carbonate @ 7520 Sch
7520 - 7584	Limestone, brown to black, very finely crystalline, compact, tight, argillaceous.
	Al Evaporite @ 7584 Sch
7584 - 7916	Salt, massive.
	Niagaran 7916 Sch
7916 - 7935	Limestone, dark brown to gray brown, trace black, slightly mottled, micro crystalline-very finely crystalline, no stain or fluorescence.
7935 - 7975	Limestone, dark gray to gray, trace black, micro crystalline, tight and compact, with increasing red.
7975 - 8036	Limestone, light gray to white to red, micro crystalline to crypto crystalline, tight and compact, clean.
	Clinton @ 8036 Sch
8036 - 8066	Limestone, dark red, trace gray, finely to micro crystalline, compact, tight, bleeding red iron stain, very shaly.
8066 - 8104	Limestone, gray white to gray, trace buff, crypto to micro crystalline, tight, compact.
	Burnt Bluff @ 8104 Sch
8104 - 8135	Limestone, dolic, dark to medium brown, very finely crystalline, 305% intercrystalline porosity, no stain or fluorescence, slight sucrosic texture.
8135 - 8166	Limestone, dark to medium brown, very finely crystalline, moderately argillaceous.
	Cabot Head @ 8166 Sch
8166 - 8198	Shale, blue gray to medium gray, firm, very calcareous, platy.

i ante

Michigan Potash Operating, LLC


6 Plugging records of all abandoned wells and casing, sealing, and completion records of all other wells and artificial penetrations within the area of review of the proposed well location and a map identifying all such artificial penetrations. An applicant shall also submit a plan reflecting the steps or modifications believed necessary to prevent proposed injected waste products from migrating up, into, or through inadequately plugged, sealed, or completed wells.

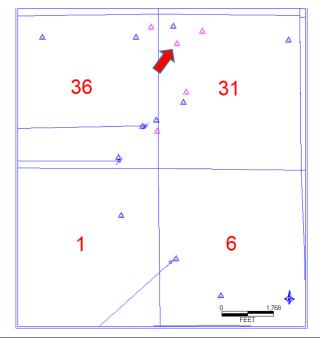
There are no perceived modifications necessary to prevent proposed brine injection from migration.

Appendix 1.0 has been attached to the application, and has is titled <u>APPENDIX 1.0; CEMENT, PLUGGING, AND</u> <u>WELL HISTORIES OF ALL WELLS IN THE AOR THAT PENETRATE THE INJECTION OR CONFINING</u> <u>HORIZONS.</u> Appendix 1.0 includes a visual demonstration of the AOR, including a 2 mile AOR around the lateral length of the Hodges 1-36D. Further, it also includes all wells in an expanded AOR, which includes the MPC 8D, and Johnson 1-6.

All wells within the Johnson 1-6D AOR, MPC 8D AOR, and Hodges 1-36D AOR have been reviewed by EGLE for either the MPC 1D, MPC 2D, MPC 3D, and Cargil Thomas 1-26 and Cargil Woodward 1-26; except the

Boyd 1-10; API 21-107-36455-00-0; illustrated below. However, the Boyd 1-10 is out of the Hodges 1-36D Area of Review.

Michigan Potash Operating, LLC


7 A map showing the vertical and areal extent of surface waters and subsurface aquifers containing water with less than 10,000-ppm total dissolved solids. A summary of the present and potential future use of the waters must accompany the map.

Surface water features and their areal extent are expressly highlighted on Figure A6.

- Figure B1 shows the vertical and area extent of subsurface aquifers, within the AOR, Identifying the base of the lowermost aquifer above which groundwater contains less than 10,000-ppm total dissolved solids. The formations are shown in proportion to the depth associated with the proposed injection horizon, on a 1:1 ratio, with no vertical exaggeration. This presentation was done intentionally to illustrate the amount of interlayered and non-permeable intervals between any potential injection zone and the lowermost USDW.
- **Figure B2** is a map showing the static water level as encountered in every water well within the AOR, presented as depth in feet below ground level. These contours are generated principally from reported and measured static water levels as extensively gathered and made available by the Michigan State ground water mapping project and Michigan Department of Environment Great Lakes and Energy, Water Division. Potentiometric surface values are used to determine the general flow direction of water through the AOR, implying a general southwestern depth increase (flow direction) with in AOR.
- Figure B3 is a surface soil map collected from soil surveys from over 308 hydrological test holes and approximately 60 piezometers cataloging over 33,833 feet of groundwater and soil data compiled by W.A. Menley over the AOR. Contours present the elevation of the water table within the Upper Unit F are shown on top of the soil catalogue. This water table maps also demonstrate the direction of flow of water through the AOR.

An Underground Source of Drinking Water is defined by the EPA as 10,000 ppm TDS or less; however, a 2018 hydrological investigation identified unsafe levels of naturally occurring arsenic below +/- 200' in an area north of the proposed Hodges 1-36(D) injection well. Although below 10,000 ppm, this source is prohibited from human consumption, or a source of underground drinking water and can only be used for industrial or agricultural purpose.

							LH99842			
		Official L	aboratory R	eport						
Report To: PEARSON 6100 W BL LAKE CITY		0								
System Name/Owner: MICHIGAN POTESH WSSNPool ID: Collection Address: 120TH AVE_HERSEY Source: Other Collected By: JORDAN SMITH Site Code: Other Township/Well#Secton: VART/FILI_MORE #1/31 Collector: Other County: Oscode Date Collectod DF15/2018 14.41 Sample Fixint: WELL HEAD Date Reserved: 0917/2018 11.01 Water System: Other Purpose: Other										
					•••					
TES	TING INFOR				REGULA	TORY INFORM	IATION			
TES Analyte Name	TING INFOR	MATION Result (mg/L)	Date Tested	RL (mg/L)			CAS #			
Analyte Name Arsenic	TING INFOR	Result (mg/L) 0.012		RL	REGULA MCL/AL	TORY INFORM				
Analyte Name Arsenic Barium	TING INFOR	Result (mg/L) 0.012 0.05	Tested 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01	REGULA MCL/AL (mg/L) 0.010 2	Method EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3			
Analyte Name Arsenic Barium Cadmium	TINGINEOR	Result (mg/L) 0.012 0.05 Not detected	Tested 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.0003	REGULA MCL/AL (mg/L) 0.010 2 0.005	Method EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9			
Analyte Name Arsenic Jarium Cadmium Chromium	TING INFOR	Result (mg/L) 0.012 0.05 Not detected Not detected	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.0003 0.01	REGULA MCL/AL (mg/L) 0.010 2 0.005 0.1	Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3			
Analyte Name Arsenic Barium Dadmium Chromium Copper		Result (mg/L) 0.012 0.05 Not detected Not detected Not detected	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.0003 0.01 0.05	REGULA MCL/AL (mg/L) 0.010 2 0.005	Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9 7440-43-9 7440-47-3 7440-50-8			
Analyte Name Arsenic Barium 2admium Chromium Copper ron		Result (mg/L) 0.05 Not detected Not detected Not detected 0.33	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.003 0.01 0.05 0.02	REGULA MCL/AL (mg/L) 0.010 2 0.005 0.1 1.3	TORY INFORM Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9 7440-43-9 7440-47-3 7440-50-8 7439-89-6			
Anatyte Name Arsenic Barium Cadmium Chromium Copper ron Lead		Result (mg/L) 0.05 Not detected Not detected 0.33 Not detected	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.0003 0.01 0.05 0.02 0.02 0.001	REGULA MCL/AL (mg/L) 0.010 2 0.005 0.1	TORY INFORM Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-47-3 7440-50-8 7439-89-6 7439-89-6 7439-92-1			
Analyte Name Arsenic Barium Cadmium Chromium Copper ron e.ead Manganese		Result (mg/L) 0.012 0.05 Not detected Not detected 0.33 Not detected 0.33	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.003 0.01 0.05 0.02. 0.001 0.01	REGULA MCL/AL (mg/L) 0.010 2 0.005 0.1 1.3 0.015	TORY INFORM Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-47-3 7440-50-8 7439-89-6 7439-89-6 7439-82-1 7439-86-5			
Analyte Name Vrsenic Barium Cadmium Thromium Dopper con .ead Aanganese Aercury	TINGINFOR	Result (mg/L) 0.012 0.05 Not detected Not detected 0.33 Not detected 0.04 Not detected	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.003 0.01 0.05 0.02 0.001 0.01 0.0001	REGULA MCL/AL (mg/L) 0.010 2 0.005 0.1 1.3 0.015 0.002	TORY INFORM Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-50-8 7439-98-6 7439-92-1 7439-96-5 7439-96-5 7439-97-6			
Analyte Name Arsenic Barium 2admium Chromium Copper ron		Result (mg/L) 0.012 0.05 Not detected Not detected 0.33 Not detected 0.33	Tested 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018 08/24/2018	RL (mg/L) 0.002 0.01 0.003 0.01 0.05 0.02. 0.001 0.01	REGULA MCL/AL (mg/L) 0.010 2 0.005 0.1 1.3 0.015	TORY INFORM Method EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	CAS # 7440-38-2 7440-39-3 7440-43-9 7440-47-3 7440-47-3 7440-50-8 7439-89-6 7439-89-6 7439-82-1 7439-86-5			

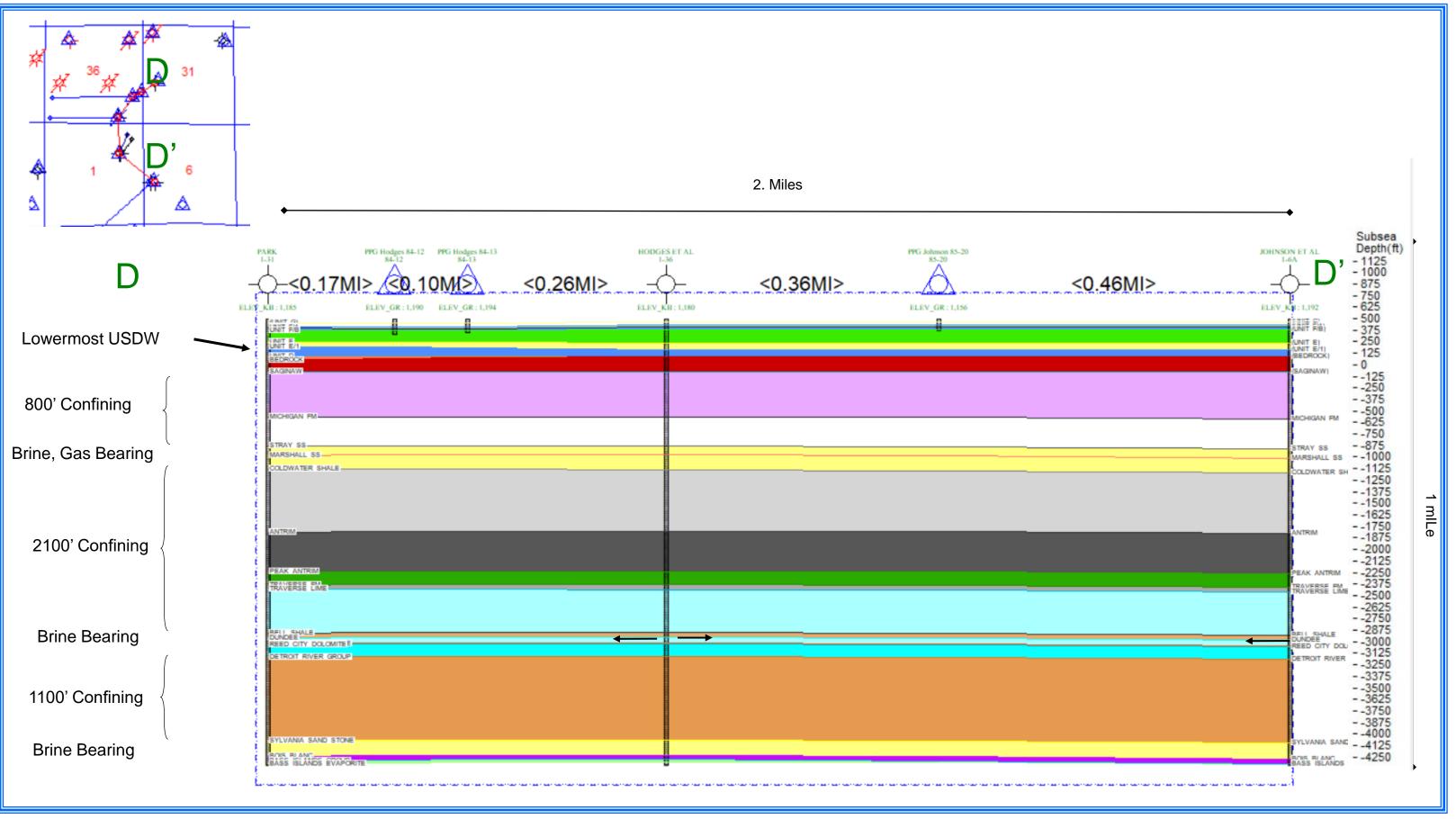


Figure B1 Lowermost USDW in relation to the proposed injection zone in the proximity of the proposed wellbores. The larger cross section is intentionally shown on a 1:1 ratio, with no vertical exaggeration to illustrate the amount of interlayered and non-permeable intervals between any potential injection zone and any potential USDW.

APD 1000

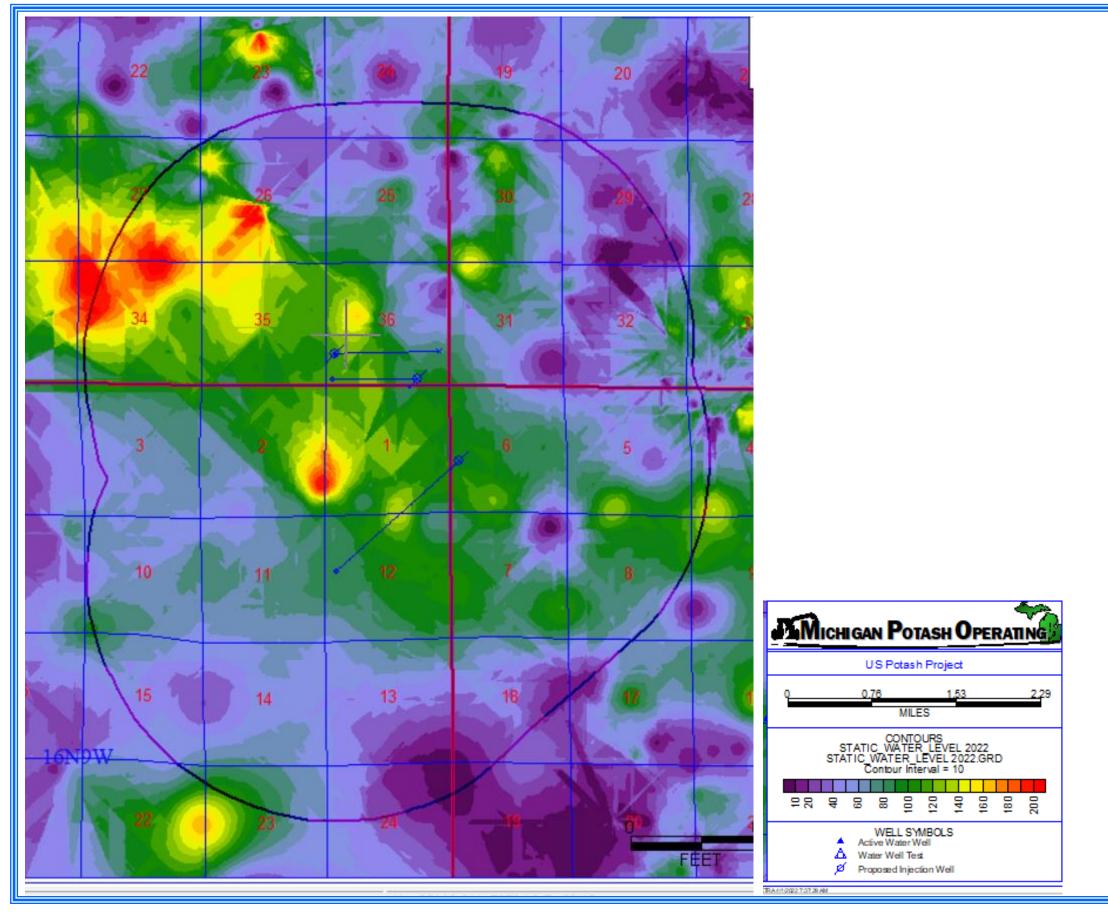
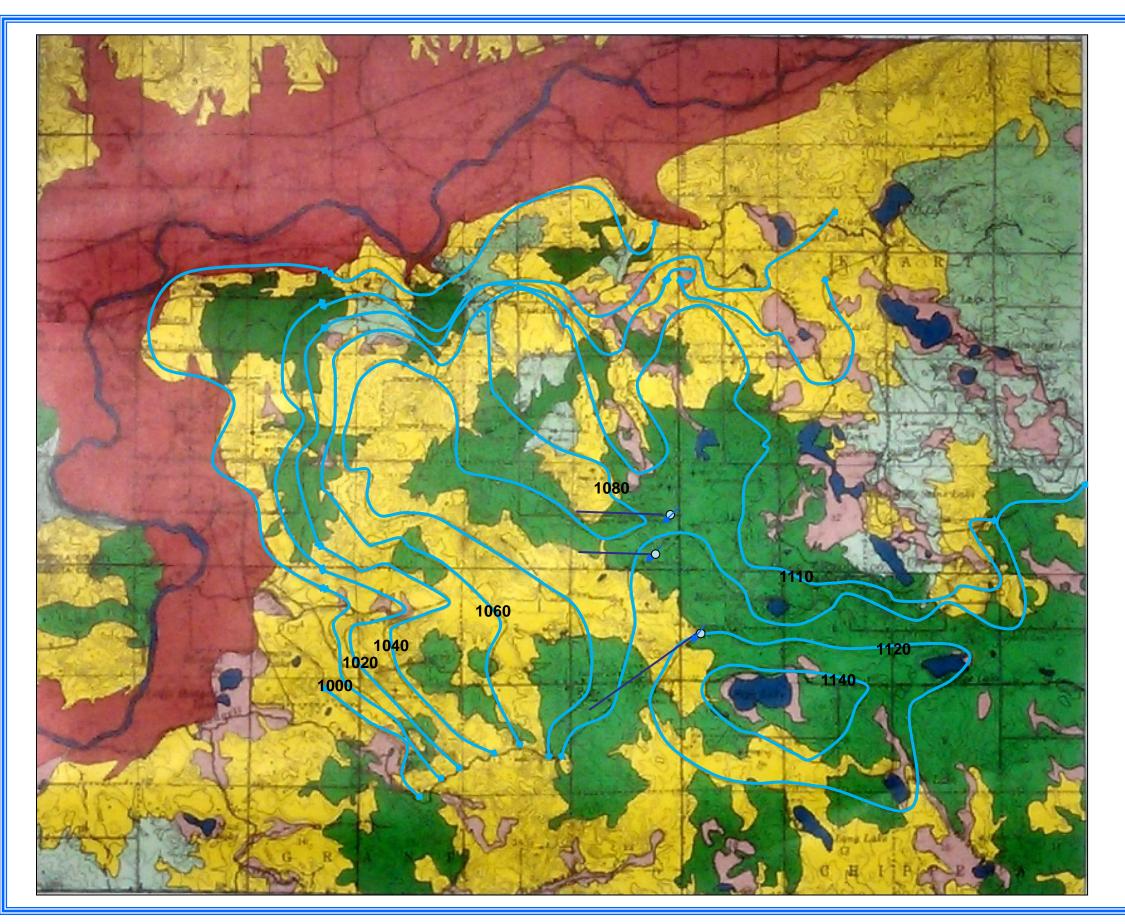



Figure B2. Static water level, Measured Depth.

MICHIGAN POTASH OPERATING, LLC

APD 1000

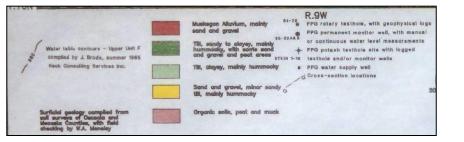
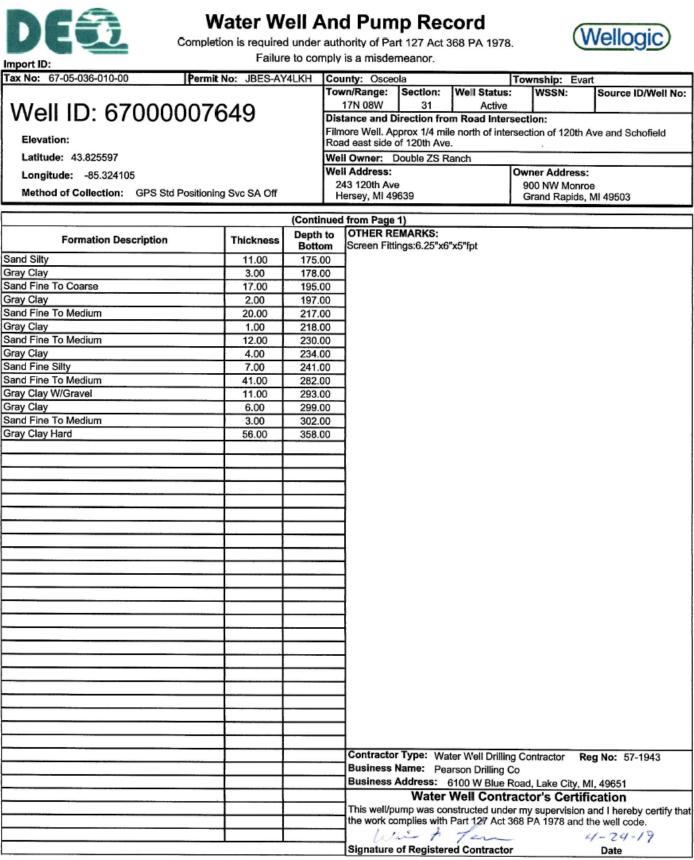


Figure B3. Surficial geological soil map, Area of Revie. Map compiled from soil surveys from over 308 hydrological test holes and approximately 60 piezometers cataloging over 33,833 feet of groundwater and soil data compiled by W.A. Menley over the AOR. Contours showing the observed water table of the Upper Unit F are shown on top of the soil catalogue. Each of the proposed wells are shown.



The well log showing the screened depth at 240-280 in the F Unit with arsenic is shown below.

Mater Well A Completion is required under Failure to com	author	rity of Par	t 127 Act 3			Welk	ogic
Tax No: 67-05-036-010-00 Permit No: JBES-AY4LKH	Coun	ity: Osceo	la		Township:	Evart	
	Town	/Range:	Section:	Well Status:	WSSN	: Source	e ID/Well No:
	17	7N 08W	31	Active			
Well ID: 67000007649	Dista	nce and D	irection from	m Road Inter	section:	•	
					rsection of 12	20th Ave and \$	Schofield
Elevation:			of 120th Ave	-			
Latitude: 43.826035	Well (Owner: D	ouble ZS R	anch			
Longitude: -85.322044		Address:			Owner Add		
Method of Collection: GPS Std Positioning Svc SA Off		120th Ave			900 NW M		
method of collection. OF 3 Std Positioning SVC SX On	Hers	sey, MI 496	39		Grand Rap	oids, MI 49503	
Drilling Method: Rotary	F	Pump Inst	alled: No				
Well Depth: 282.00 ft. Well Use: Irrigation		<u> </u>	ank Installe	ed: No			
Well Type: New Date Completed: 8/10/2018	F	Pressure F	Relief Valve	Installed:	No		
Casing Type: PVC plastic Height: 1.00 ft. above grade							
Casing Joint: Spline joint/CertaLok							
Casing Fitting: None							
Diameter: 6.90 in. to 100.00 ft. depth SDR: 21.00 6.90 in. to 240.00 ft. depth SDR: 17.00 Borehole: 10.62 in. to 283.00 ft. depth							
Static Water Level: 117.00 ft. Below Grade			Ferretier	Description		Thickness	Depth to
Well Yield Test: Yield Test Method: Test pum	np _		Formation	Description		Thickness	Bottom
Pumping level 206.50 ft. after 2.00 hrs. at 298 GPM	E	Brown Clay	1			10.00	10.00
	- F	Sand				3.00	13.00
		Brown Clay				4.00	17.00
Screen Installed: Yes Filter Packed: Yes			To Medium			22.00	39.00
Screen Diameter: 5.00 in. Blank: 0.00 ft. Above		Gray Clay				57.00	96.00
Screen Material Type: Stainless steel-wire wrapped		Sand & Gra				9.00	105.00
Slot Length Set Between 20.00 42.00 ft. 240.00 ft. and 282.00 ft.		Gray Clay	soπ To Medium			10.00	115.00
20.00 42.00 ft. 240.00 ft. and 282.00 ft.	F		I O Medium				
		Gray Clay	To Medium			19.00 9.00	140.00
Fittings: Other		Gray Clay	l o Medium			2.00	151.00
Fittings. Other		Sand Fine				9.00	160.00
Well Grouted: Yes Grouting Method: Grout pipe outside casi		Gray Clay				4.00	164.00
Grouting Material Bags Additives Depth Bentonite slurry 24.00 None 0.00 ft. to 230.00 Wellhead Completion: Pitless adapter		Geology R	emarks:	(Continued	I On Page 2		
Nearest Source of Possible Contamination:		_	-	ator Name:	John Pears	son	
Type Distance Direction	E	Employme	nt: Employ	ee			
				(Continue	d on page	e 2)	
General Remarks:							
General Remarks: Other Remarks: Screen Fittings:6.25"x6"x5"fpt							

APD 1000

EQP-2017 (4/2010)

Contractor 8/20/2018 12:07 PM

Discussion of Regional Hydrogeology

The area of the proposed facilities are mantled by glacial drift, the result of multiple periods of glaciations in central Michigan.

The surficial geology in the area is made up of water laid moraine and outwash deposits. The area within the AOR occupies an interlobate position between the Michigan Lobe to the west and the Saginaw and Erie Lobes to the east and south during the final glaciation of Michigan. Glaciofluvial and glaciolacustrine sediments were deposited into the interlobate area and the Muskegon Valley formed the major outlet channel for glacial melt water. Because the major ice flow axes were governed by the major topographic elements of the Great Lakes Region, it is probable that similar ice lobes occupied similar positions during earlier glaciations as well. Thus, the stratigraphic sequence encountered in the surface in the plant area may be expected to have sediments which were deposited in similar interlobate depositional environments during each episode of continental glaciation of North America.

Materials representative of sedimentation in several different depositional environments have been identified within the AOR. These include: 1) till - sediment deposited directly from a glacier by lodgment or melt out and without subsequent re-sedimentation by melt water; 2) stagnant ice deposits - sediment deposited in an ice marginal environment where the ice is relatively immobile; 3) glaciolacustrine deposits - sediment deposited in ice marginal glacial 'lakes under relatively low energy conditions; and 4) glaciofluvial deposits - sediment deposited in an ice marginal environment under relatively high energy conditions.

Discussion of Local (AOR) Hydrogeology

Bedrock is identified as Jurassic age 'red-beds,' the top of which occurs at approximately 650' below ground level, below the glacial till.

According to the Geologic Atlas of Michigan compiled by the Department of Geology, Western Michigan University in 1981, Red Beds of Jurassic age should be encountered at the bedrock surface. All of the test holes which penetrated the bedrock surface have encountered red sandstone and siltstone inter-bedded with gypsum.

The "red bed" sequence made up of red sandstone and siltstone inter-bedded with anhydrite of Jurassic age, forms the uppermost bedrock formation encountered in the AOR. The greatest depth at which potable water can be obtained is considered to be the top of the bedrock surface (i.e., base of the glacial till).

The base of local groundwater exploration, that is, the greatest depth at which potable groundwater can be obtained, has been determined to be the bedrock surface. Historically, all of the water-bearing zones tested in the AOR that are at or below the bedrock surface yield saline water, with greater than > 35,000 mg/L concentration, (Hydrogeology of Part of Osceola and Mecosta Counties, Michigan, W.A. Menley 3/1985).

Between 1983 and 1989, over 308 hydrological test holes and approximately 60 piezometers cataloging over 33,833 feet of groundwater and soil data was amalgamated for the purposes of adequately understanding and protecting groundwater within the Michigan Potash Operating AOR. The area has been extensively studied from 1983 to 1989 for the sole purpose of hydrological investigation. These

Michigan Potash Operating, LLC

test holes and all the associated data has been comprehensively reviewed by the applicant and the data incorporated herein.

- **Figure B4** is a map showing hydro-geological investigation wells (some, not all) drilled for the sole purpose of understanding, in order to protect, the groundwater and USDW within the AOR. These well locations have been used, in addition to water wells, to test and map the hydrological units and associated static ground water level.
- **Figure B5** is a stratigraphic column describing the glacial till and sources of USDWs and the source of USDWs as extensively mapped and defined by W.A. Menley between 1983 and 1989. Glacial Deposits are highly variable, especially closer to ground level. Depths approximate those encountered throughout the AOR. A detailed description of each hydrological and potential USDW follows Figure B5.

Stratigraphic Column of the Hydrological Units

Stratigraphic Column and Nomenclature of the Hydrological Units in the AOR, as Defined by W.A. Menley

K			Valley train outwash	Sand and gravel coarsening upward, fine to v-coarse sand, pebbles and cobbles, locally cemented, typical of a high energy glacio-fluvial environment.	~ 0'-60' Below GL
J			Glaciolacustrine	Clay and silty clay, laminated to bedded, some interbeds of silt, massive silty sandy clay with pebbles common, typical of a low energy glacio-fluvial environment	~ 0'-60' Below GL
Н			Stagnant ice/outwash	Silty sandy clay, some pebbles, in part stratified, typical of a stagnant ice depositional environment	~ 0'-60' Below GL
G			Till	Sandy clay till, sparse coarse fraction, typical of a sub glacial depositional environment	~ 0'-60' Below GL
G		G/1	Glaciolacustrine	Clay and silty clay, laminated to bedded, some interbeds of silt, massive silty sandy clay with pebbles common.	~ 0'-60' Below GL
		F/1/d	Outwash	Medium to coarse sand minor gravel, interbeds of silty clay	~ 60'-220' Below GL
F	F/1	F/1/c	Glaciolacustrine	Clay and silty clay, laminated to bedded, some interbeds of silt, massive silty sandy clay with pebbles common.	
		F/1/b	Outwash	Medium to coarse sand minor gravel, interbeds of silty clay	
	-				

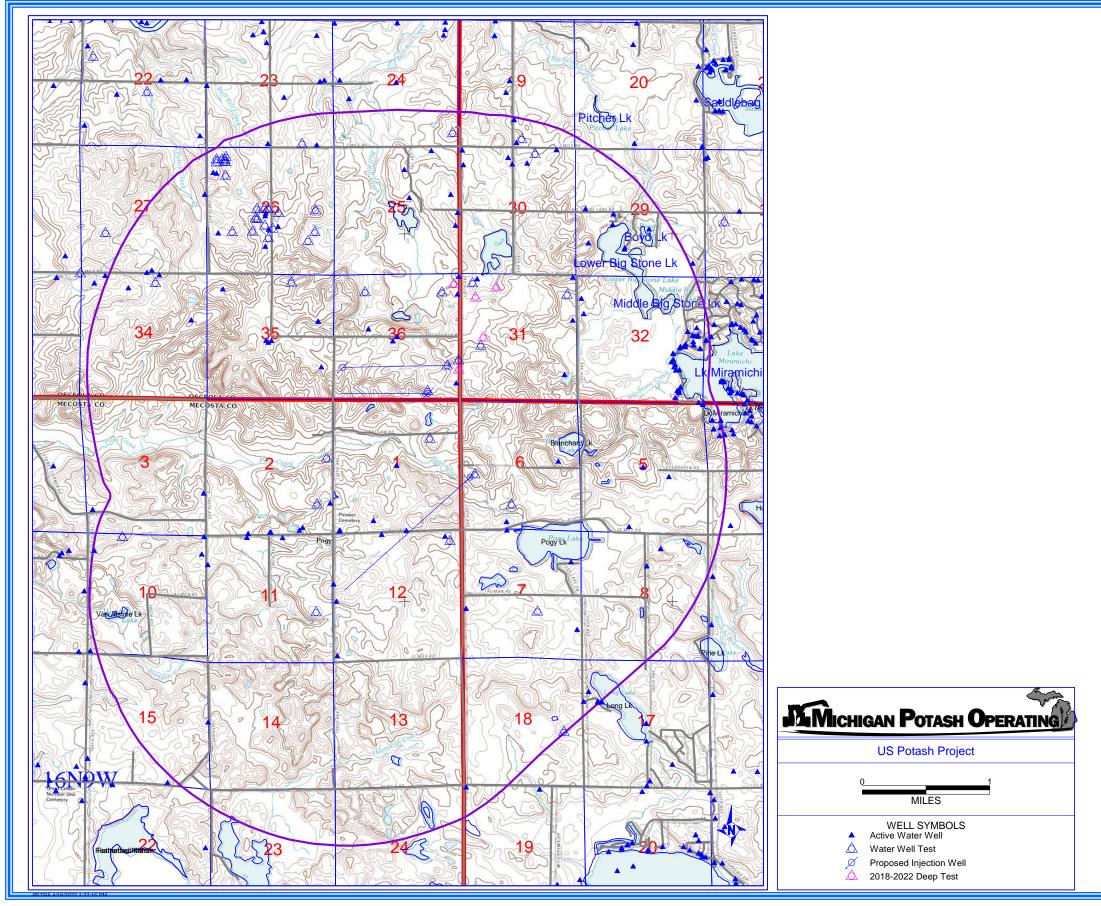


Figure B4. Hydro-geological investigation wells, water wells, and recent 2018-2022 hydrological investigation wells in and around AOR. Hydrological investigation wells (some, not all) drilled for the sole purpose of understanding groundwater occurrence to protect groundwater and lowermost USDW within the AOR.

ES	1-30	6 (D)		Michigan Potash Operating, LLC
		F/1/a	Glaciolacustrine	Clay and silty clay, laminated to bedded, some interbeds of silt, massive silty sandy clay with pebbles common.	
	Lower F (F/B)		Outwash	Medium to coarse sand, minor silty clay interbeds, minor fine gravel interbeds, K= 650/gpd/sq.ft. Principle USDW when away from surface charge.	~ -80'-220' Below GL Natural Arsenic detected in AOR
_	Upper E		Stagnant ice	Silty sandy clay, some pebbles, in part stratified	~ 220'-300' Below GL
E	E/1		Outwash	Medium to coarse sand minor gravel, interbeds of silty clay, K = 600 gpd/sq.ft, LOWEST USDW.	~ 300'-400' Below GL
D			Till	Sandy clay till, sparse coarse fraction	~ 400-620' Below GL
			BEDROCK	Jurassic Red Beds, >35,000 TDS "BRINE" from here to Center of the Earth	~ 580'-620' Below GL

Figure B5 Stratigraphic description of USDW in the AOR.

When in the immediate proximity to surface charge, such as the Muskegon River or a Lake, it is typical to find static water levels at less than 20'-30' Below GL in Units K, J, H, and/or G. Unit F/1 serves as a plastic clay barrier and confining layer to Unit F. Above sub Unit F/1, perched water tables or unconfined aquifers may be found.

A detailed description of each glacial till deposition feature from shallowest to deepest, is as follows:

<u>Unit K:</u>

Unit K represents the sand and gravel deposits that form the upper part of the alluvial fill along the course of the Muskegon Valley. This unit is well exposed in the Hersey Sand and Gravel pit east of Hersey, located across the Muskegon River. The texture of this unit becomes coarser upward, with coarse clean gravel beds deposited in channels cut into the dominantly sand size overbank deposits. Excellent exposures of these channel sands and overbank deposits can be seen in the high walls of the quarry.

In the gravel pit, the sand and gravel deposits that are being quarried east of 170th Avenue and south of the washing facility are part of older glacio-fluvial deposits that make up Unit F. The sand and gravel deposits west of 170th Avenue and north of the washing plant are part of the alluvial fill along the Muskegon River (Unit K) laid down as part of the outwash deposits during the final de-glaciation of this part of Michigan.

<u>Unit J:</u>

During the final de-glaciation of the study area the Muskegon Valley functioned as a major melt water outlet stream. A melt water valley was incised through the previously deposited Units G and H into Unit F, eroding and removing Sub-Unit F/1 along the course of the Muskegon Valley down to an elevation of about 875 ft. Unit J is made up of fine textured silt and silty clay beds that were deposited in the channel bottom as the channel was infilled with fine grained alluvial deposits.

Michigan Potash Operating, LLC

Unit H:

Unit H is made up of inter-bedded sand, gravel and till which mantles the hummocky moraine upland in the eastern part of the study area. This unit represents the stagnant ice depositional environment of the final episode of de-glaciation of the study area. Most of the material in Unit H was deposited by melt water on top of stagnant ice. As the ice eventually melted out these materials were re-deposited by slumping and subject to re-sorting by runoff to form the highly variable and complex deposits which form the present land surface in the upland area east and south of the Muskegon River Valley.

Unit G:

Unit G is a silty clay till which is present beneath parts of the hummocky moraine upland east of the Muskegon River deposited during the final glaciation of the study area.

<u>Unit F:</u>

Unit F is a primary aquifer in the AOR. It is a thick sequence of inter-bedded sand and gravel which was encountered in all of the test holes drilled in the study area. Thin interbeds of clay, silty clay and till were encountered within this unit in all test holes. One such interbed has been separately identified as Sub-Unit F/1. The sand and gravel beds are made up mainly of subrounded clasts of igneous, metamorphic and sedimentary rocks. This unit is considered to represent deposition in a high energy glacial outwash environment.

The Muskegon Valley has been incised into Unit F exposing the sand and gravel deposits which have been quarried at the Hersey Sand and Gravel operations east of Hersey. The sand and gravel deposits east of 170th Avenue and south of Hersey Road are part of Unit F.

The hydraulic conductivity of this unit is considered to be about the same as Sub-Unit E/1, that is, $k = 600 \text{ gpd/ft}^2$.

The specific yield is considered to be about 0.20. The specific yield is defined as the volume of water released from storage in the aquifer per unit surface area per unit decline of the water table (Freeze and Cherry, 1979, p.61).

The sand beds which overlie Sub-Unit F/1 become finer upward and more silt interbeds are present. A "perched water table" is typically present in the sand overlying Sub-Unit F/1. Similarly, unsaturated sand and gravel beds are typically present beneath Sub-Unit F/1. The presence of unsaturated sands can be detected from the resistivity log. Resistivity values > 100 ohm ft are considered to be indicative of unsaturated sand and gravel. This interpretation has been verified by comparison of the geophysical logs with the water level in nearby wells and auger holes in which direct observation of the position of the water table can be made.

Sub-Unit F/1:

Sub-Unit F/1 is an extensive layer of plastic silty clay to clayey till that is present throughout the study area except where it has been removed by subsequent erosion along the course of the Muskegon Valley or where its continuity has been disrupted in collapse structures.

The Sub-Unit F/1 is a continuous glacio-lacustrine deposit present within Unit F throughout most of the AOR. It serves as a barrier and confining interval to aquifers below.

The Sub-Unit F/1 is a saturated, plastic, silty clay. The upper part of the clay is indistinctly laminated and mottled pink and gray, grading downward to a drab light gray color. In some test holes, floating sand grains are present in the silty clay, at other locations the texture approaches that of a silty clay till. Sub-Unit F/1 ranges in thickness from about 8 - 15 ft beneath the plant site.

Michigan Potash Operating, LLC

In Section 36, Township 17N, Range 9W, Sub-Unit F/1 thickens to about 70 ft. It is made up of 2 to 3 distinct clay beds separated by sandy till.

In Section 26, Township 17N, Range 9W Sub-Unit F/1 is about 40 ft thick. It is made up of an upper and lower silty clay bed separated by a sandy till layer.

Unit E:

This unit is a complex mixture of inter-bedded sand, gravel, and till, characterized by highly variable resistivity and gamma ray log signatures. It is considered to represent deposition in the marginal region of a stagnant continental glacier.

Sub-Unit E/1:

Sub-Unit E/1 is a principle aquifer in the AOR. This unit is present at the base of Unit E throughout the AOR. It is made up of sand and gravel which is considered to have been deposited in a high energy outwash environment. Sub-Unit E/1 is the lowermost useable aquifer present above the base of groundwater exploration, noting that the base of the lowermost USDW is defined as the base of Unit D/top of the underlying Jurassic Red Beds.

Due to the number of accessible sources of ground water above the Sub-Unit E/1 at shallower depths, Sub-Unit E/1 is not used as a common source of household water. Prior to 1984, no well was completed in this interval. In 1984, the PPG Bass 84-06 was completed as an observation well in Sub-Unit E/1. This well provided the first information about the aquifer coefficients of Sub-Unit E/1 as well as the hydraulic head and water quality because there were no existing water wells completed in this aquifer in the AOR.

In November of 1984 a short duration pumping test was run to estimate the transmissivity of Sub-Unit E/1. The test was conducted at a rate of 27 US gpm for 2 hrs, followed by a 40 minute recovery test, with a determinate Transmissivity_a = $T_a = 36,000$ gpd/ft, and k = T/m = 36,000/60 = 600 gpd/ft².

Several of the deeper wells, drawing from the Quaternary Unit E/1 are of industrial purpose, owned and operated by Cargil, Inc. 80.00% of all water wells in the area are 200' or shallower, indicating that while groundwater exhibiting TDS less than 10,000 ppm is present in Sub-Unit E/1, it is not typically used for groundwater consumption. Due to the number of accessible sources of ground water above the Sub-Unit E/1, at shallower depths, it is not used as a common source of household water. Industrial use is preferentially taken to deeper horizons, so as to access water that is not being drawn by household use.

Sub-Unit E/1 water quality in PPG Bass 84-06 was determined on a water sample collected January 16, 1985. Water quality results are present in the table to the left of this text. The water is a calcium-sulphate/bicarbonate water having a concentration of about 730 mg/L and a specific conductance of 1,025 micro ohms/cm @ 25° C. The total hardness of the water is about 463 mg/L as CaCO₃. Similar to the F Unit in the AOR, The E/1 also has arsenic in its source in offset analysis at the existing Cargil facility. Other average elements in the F, are also shown in the table. In summary, the E/1 unit, which is principally utilized for industrial purposes, is a calcium sulfate (CaSO4) base water as described by W.A. Menley. CaSO₄ is the principle natural composition of gypsum and anhydrite.

<u>Unit D</u>

Unit D is glacial till which was encountered overlying the bedrock surface or Unit A throughout the study area. It is a reddish brown to pinkish gray, calcareous sandy till which has very uniform geophysical log characteristics. Unit D represents sedimentation in a glacial depositional environment, either as lodgment till or as till deposited by basal melting of a stagnant ice sheet.

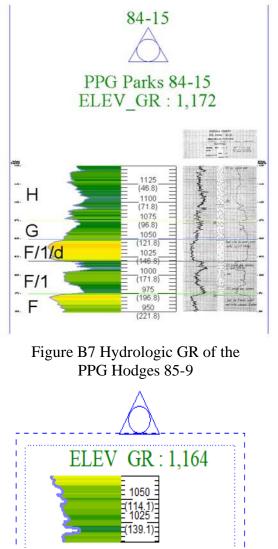
Michigan Potash Operating, LLC

		E/1	F
Calcium	mg/I	122.4	76
Magnesium	mg/L	38	39
Sodium	mg/L	40.2	11
Potassium	mg/L	2.1	1.86
Bicarbonate	mg/L	205	230
Carbonate	mg/L	0	10
Sulphate	mg/L	258	29.6
Chloride	mg/l	15.8	17.5
Iron	mg/L.	1.1	1.22
Manganese	mg/1	.03	0.04
Nitrate as N	mg/L		6.3
Total Phosphorous as P, mg/L			0.023
РН			7
Specific Conductivity, uahos/cm@25C		1025	552
Concentration	mg/l	730	404
Total Hardness, mgiL as CaCO3	mg/l	463	335
Sum of cations, epm			6.97
Sum of Anions,epm			5.04

The area is highly rural and future possible use is limited to residential use, agricultural use, or Part 625 use within the immediate area of influence.

No wells are completed within Unit D in the AOR. The deepest screen completion depth within the AOR is no greater than 340' below ground level (Sub-Unite E/1); another 200' of Unit D glacial till occurs below and it is assumed that potential sources of water with less than 10,000 TDS may occur until the Jurassic Red Beds. However, it is more likely that the lower most glacial till Unit D, is a clayey, silty, confining layer with minimal to no vertical permeability. Below Unit D, observed TDS is greater than 35,000 in the Jurassic Red Beds. This is likely due to the increasing concentration of anhydrite and gypsum deposition as depths are increased.

MICHIGAN POTASH OPERATING, LLC


Figure B6 is a type curve of the natural gamma ray radioactivity of the hydrological unit in the AOR. This is from the PPG Parks 84-15, located in the NW/4SW/4 Section 31, Evart Township. This is in the immediate proximity to the proposed injection wells. The depth scale shows both measured depth and depth subsea.

The F/1 Unit which is described as a clay and silty clay, laminated to bedded, some interbeds of silt, massive silty sandy clay with pebbles common, serves as a hydrological barrier between confined and unconfined subsurface water systems.

The F/1 Unit confines the lower F Unit aquifer. It also serves as a vertical transmissibility barrier.

- **Figure B7** is PPG Hodges 85-9, at just to the northeast of the proposed pad location. The F/1 and F Unit were not penetrated at 145' below GL.
- **Figure B8** is a hydrological cross section from the above referenced PPG Parks 84-15 hydrological well to the PPG Babcock 85-13 hydrological well located in the NE/4NE/4 Section 36. The cross section moves from South to Northerly. There are control wells in this cross section that penetrate the entire quaternary aquifer system and encounter the Jurassic Bedrock. Also in the cross section is a proposed injection location to give point of reference to the quaternary hydrological units that will be intersected by the proposed injection well.
- **Figure B9** is a hydrological cross section extending across the entire AOR, spanning an approximate 3.5 mile length from South to North, crossing the reference wells utilized in Figure B10.

Figure B6 Hydrologic Unit Type Curve at PPG Parks 84-15 Well

- **Figure B10** is a hydrological cross section extending across the entire AOR, spanning an approximate 5.5 mile length from West to East, crossing the reference wells utilized in Figure D5. Also in the cross section is a proposed injection location to give point of reference to the quaternary hydrological units that will be intersected by the proposed injection well.
- **Figure B11** is a hydrological cross section generated by W.A. Menley, spanning and approximate 4.0 mile length from Northwest to Southeast across the AOR.

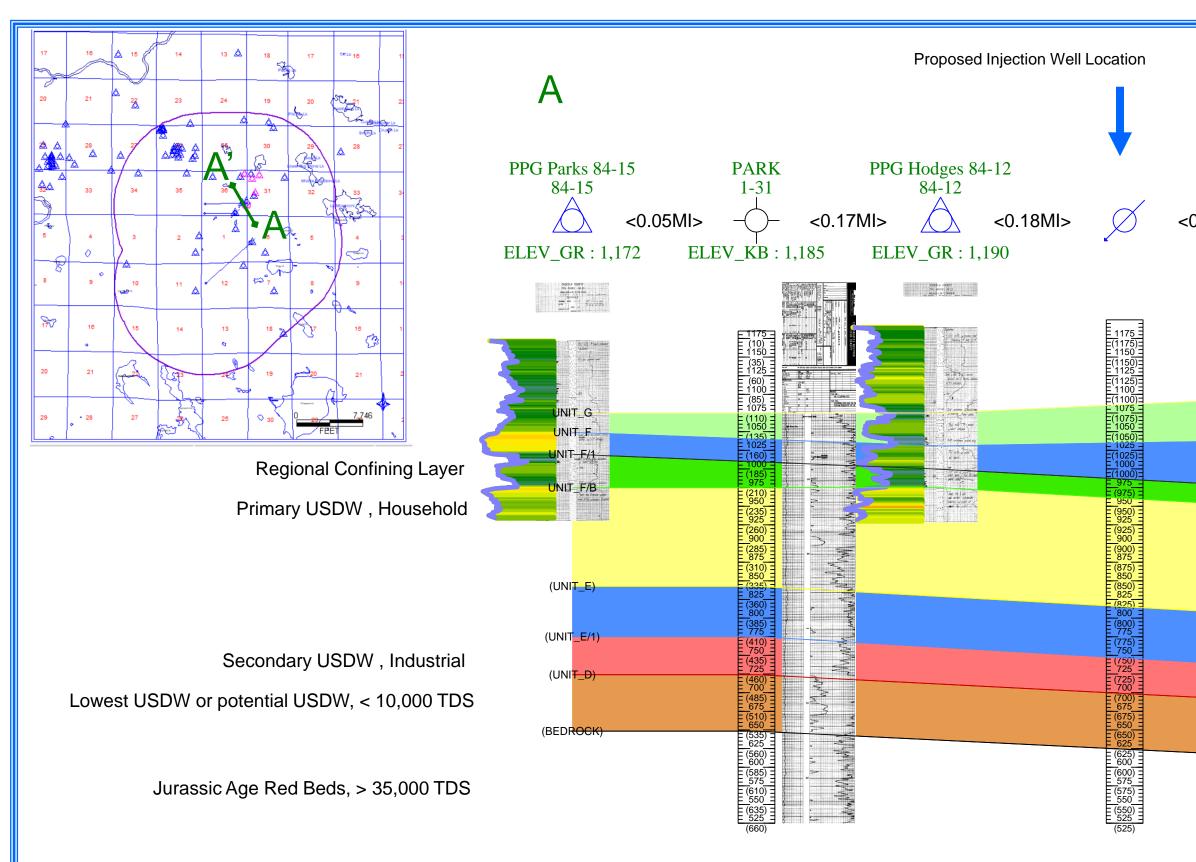
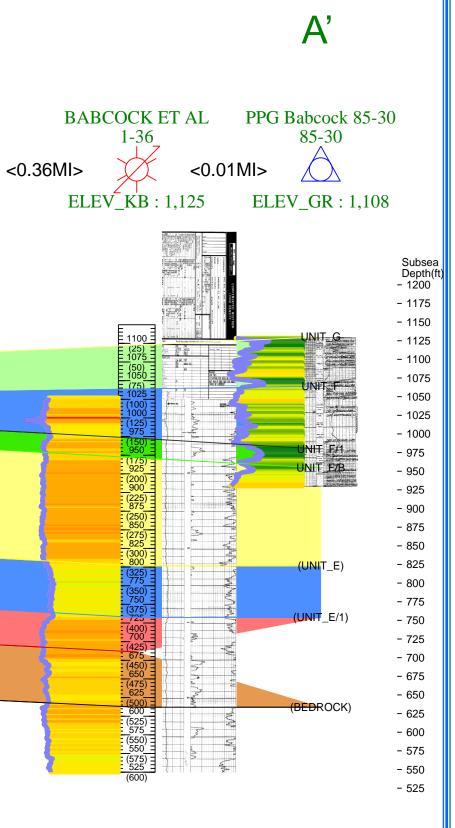
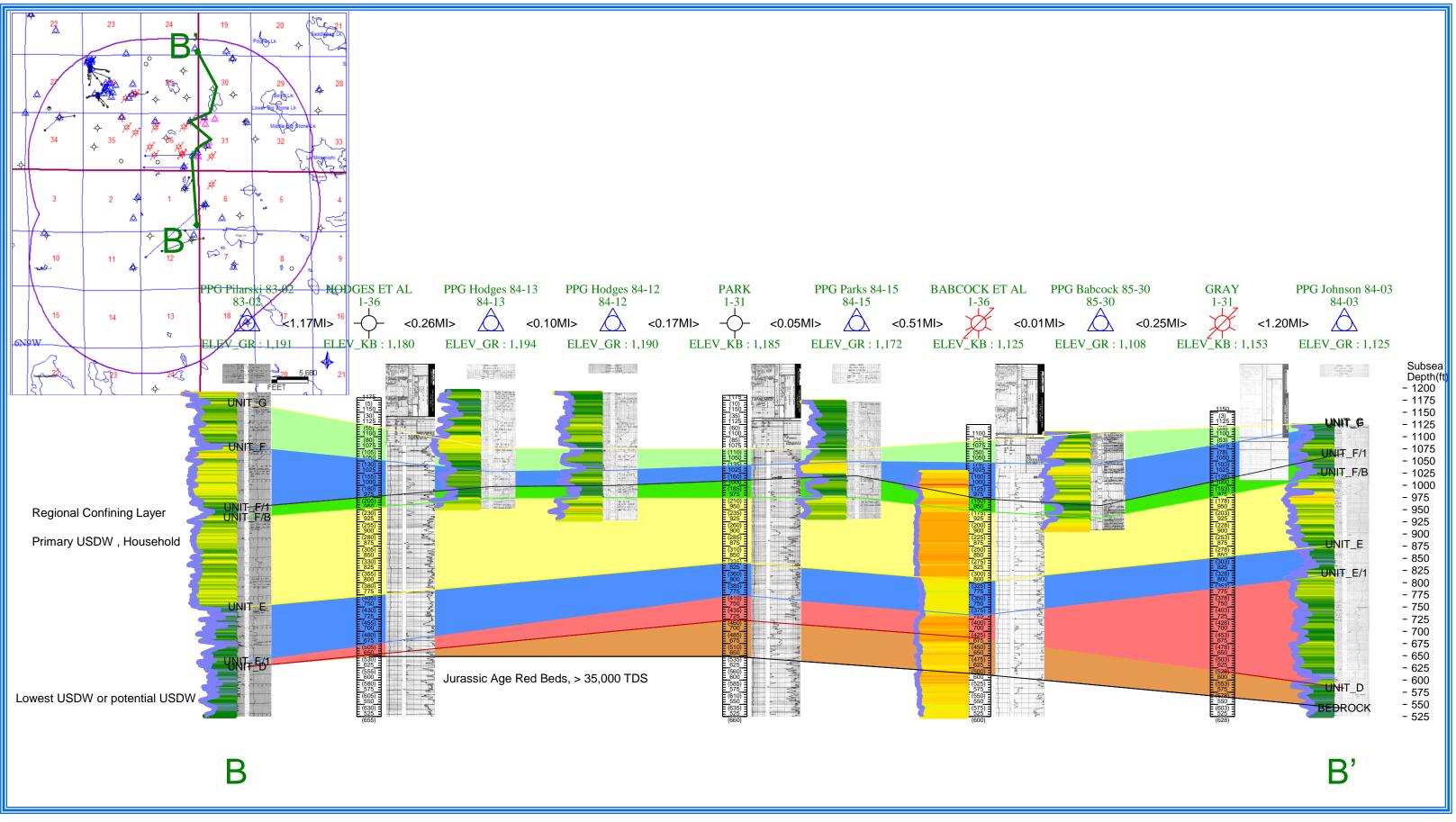
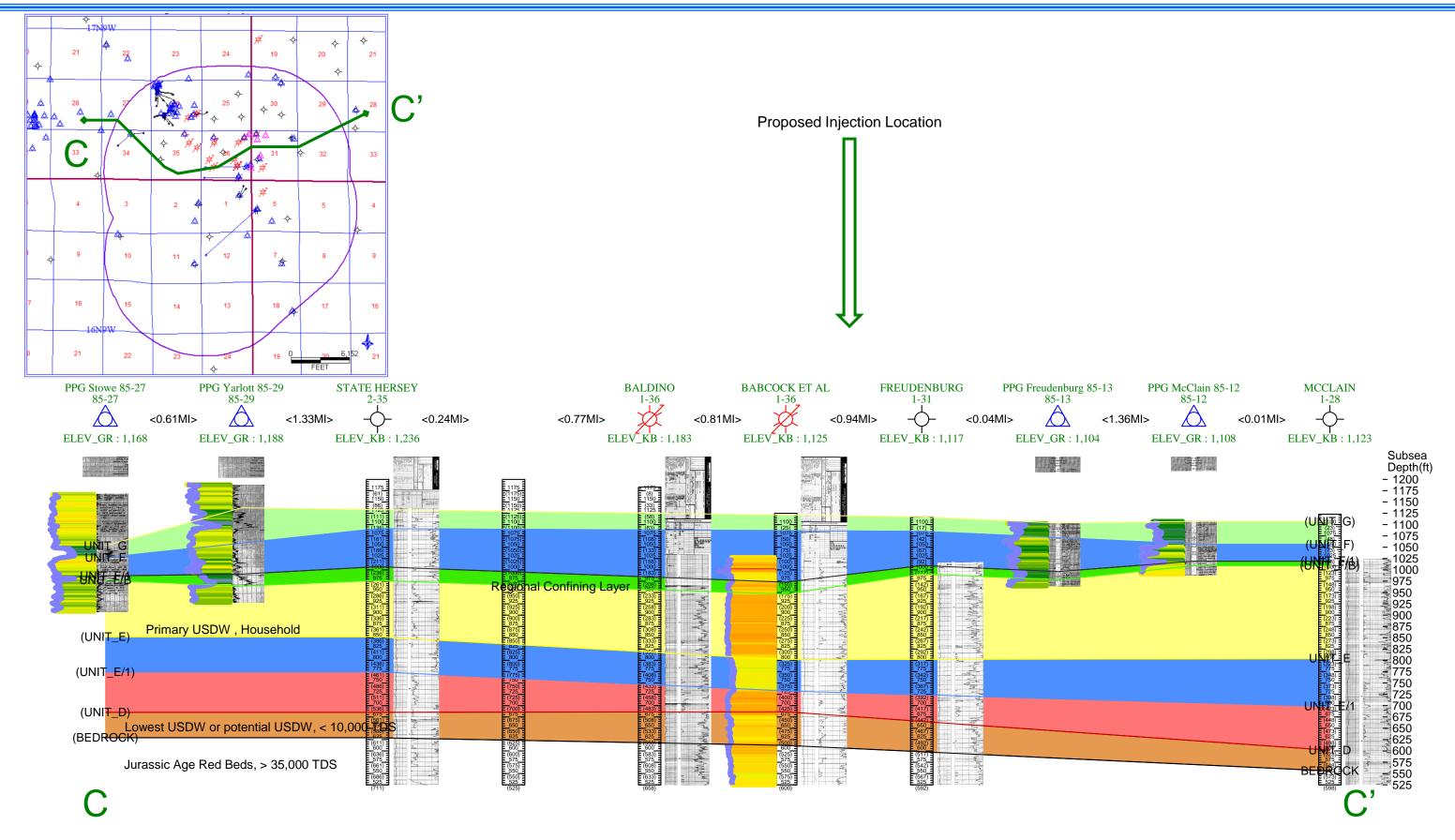
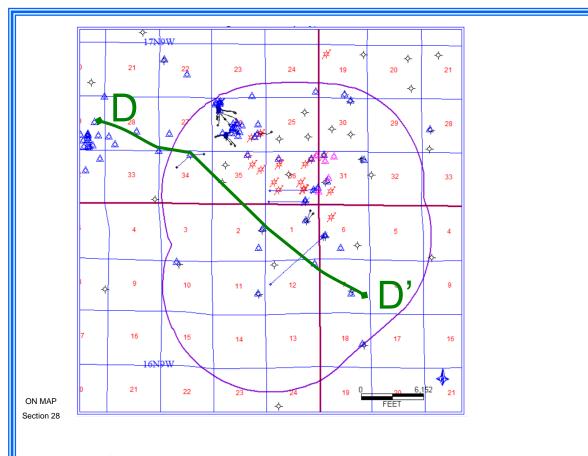



Figure B8. Cross section of Glacial Till across in the immediate vicinity of the proposed injection wells. The cross Section A-A' and the path that it follows from South to Northerly, can be seen in the samll reference map in the upper left corner. This cross section included hydro-geological wells, mineral wells and gas wells.


Figure B9 Hydrologic cross section extending across the entire AOR. Cross section spans an approximate 3.5 mile length from South to North, crossing the reference wells utilized in Figure D5. The cross section path can be referenced by the small map in the upper left hand corner.

West-East Hydrologic cross section extending across the entire AOR. Cross section spans an approximate 5.5 mile length from West to East, crossing the reference wells utilized in Figure D5. The cross Figure B10. section path can be referenced by the small map in the upper left hand corner.

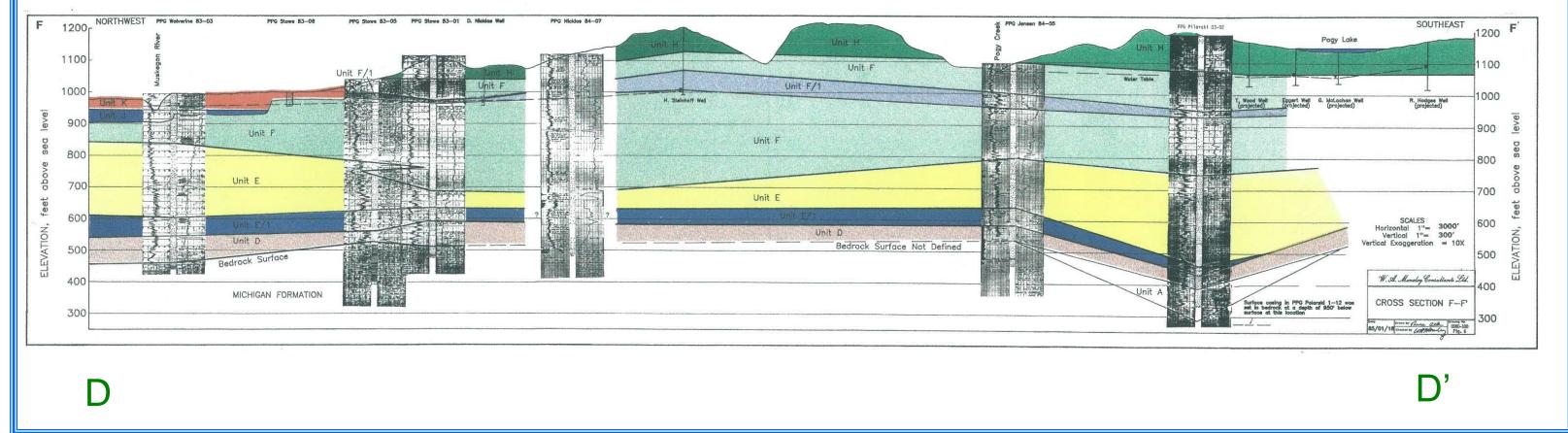


Figure B11. Hydrological cross section generated by W.A. Menley, spanning and approximate 4.0 mile length from Northwest to Southeast across the AOR.

Michigan Potash Operating, LLC

The extensive geological understanding and well control of the hydrological units within the area give extra assurance that all USDW or potential USDW or any freshwater sources of water of any kind, whatsoever, are thoroughly and adequately protected and monitored.

Lowermost USDW

As described above, while the lowest underground source of drinking water in the AOR is the Sub Unit E/1 at 340 feet, the base of the lowermost USDW is considered the base of clay/till in unit D above saline Jurassic age Red Beds.

Within the entire AOR, the base of the glacial drift typically occurs at approximately 614 feet below ground surface, although the base is at 712 feet below ground surface at Hodges 1-36D. The base of the glacial till is considered to be the base of the lowermost USDW – an area defined by the USEPA as an aquifer containing less than 10,000 parts per million of total dissolved solids (TDS). Below the glacial till and in the Jurassic Red Beds, TDS is typically in excess of 35,000.

Quaternary Aquifers

All USDWs described above occur in Quaternary glacial deposits. Quaternary deposits come in direct contact with Jurassic age, bedrock in the AOR, as previously described.

The cross sections and the data compiled by PPG has been incorporated into all regional studies performed over the AOR.

Restated, three main quaternary aquifers exist in the AOR:

- Along Muskegon River shallow wells (<50 feet) completed in valley fill deposits within the river valley not really extensive but can sustain high pumping volumes.
- Unit H shallow wells (<100 feet) completed in moraine deposits not really extensive but adequate for most domestic and agricultural potable water sources.
- Unit F wells completed from 150 to 250 ft in a really extensive prolific producing outwash deposits.

Unit E/1 - 300 to 614 ft water wells are completed principally for industrial use.

Bedrock Aquifers

There are NO Bedrock aquifers in the AOR supplying any water, whether fresh or saline, for any purpose. Within the AOR, which is deep and basin centered, no bedrock aquifers contain water that exhibits a TDS less than 35,000 mg/L (Hydrogeology of Part of Osceola and Mecosta Counties, Michigan, W.A. Menley 3/1985).

For clarification purposes, an aquifer is defined as a system that has the ability to transmit water with porosity and potential permeability. All of the below listed zones within the AOR may have that ability, but are deep, confined, and saturated with extremely highly TDS and chloride content water, and/or oil and natural gas and are not suitable for any use, industrial or otherwise.

Michigan Potash Operating, LLC

Restated, the below systems do not constitute any source of potable or usable source of water for industrial or any other purpose. They are deep, confined, and highly saline. In fact, most of the below mentioned zones are either Oil and Gas bearing reservoirs, or have been used as disposal horizons throughout Michigan and in Osceola or Mecosta County.

Pennsylvanian Aquifer System

Chemical analysis data indicate TDS and chloride content in Palma Sandstone and other Pennsylvanian age systems contain of 234,000 mg/1 and 141,000 mg/1, respectively in Mecosta County.

This system includes the sandstones of the Saginaw and Grand River Formations. It overlies the Mississippian sandstones of the Marshall and Michigan Formations and is overlain by the "Red Beds" of Jurassic time. No areas of subsidence or catastrophic collapse due to solution mining are known to occur in Pennsylvanian rocks.

Mississippian Aquifer System

Chemical analysis data indicates the average TDS and chloride content in the Marshall Sandstone are 254,880 mg/1 and 150,136 mg/l, respectively, in Mecosta County and 267,000 mg/1 and 142,000 mg/l, respectively, in Osceola County.

This system includes the sandstones of the Marshall Sandstone and the Michigan Formation which includes the Bayport Limestone. It overlies the Mississippian Coldwater Shales and is overlain by the Pennsylvanian sandstone and shales. The Mississippian Berea Sandstone is an aquifer in the area of subcrop beneath the glacial drift in southeast Michigan. No areas of subsidence or catastrophic collapse due to solution mining are known to occur in Mississippian rocks.

Devonian Aquifer System

Chemical analysis data indicates an average TDS and chloride content in the Dundee are 305,000 mg/1 and 162,000 mg/1, respectively, in Mecosta County and 270,000 mg/1 and 147,000 mg/1, respectively in Osceola County.

The Devonian Aquifer System includes the sandstones of the Sylvania Sandstone and the carbonate rocks of the Detroit River, Dundee Limestone and Traverse Groups. It overlies evaporate and carbonate rocks of Silurian age and is overlain by shale of Mississippian or Devonian age. No areas of subsidence or catastrophic collapse due to solution mining are known to occur in Devonian rocks.

Silurian Aquifer System

This system includes the carbonate and evaporate rocks of the Niagara Series, the Burnt Bluff and Manistique Groups and the Engadine Dolomite, the Cayugan Series, Salina and Bass Island Groups. It overlies the Silurian shades and carbonates of the Cataract Group and is overlain by Devonian carbonate rocks of the Garden Island Formation and Detroit River Group. Silurian formations are important hydrocarbon producing formations in Michigan. No areas of subsidence or catastrophic collapse due to solution mining are documented for Silurian rocks, though the Salina Group evaporate are the most important source formations for artificial brine production in Michigan.

Michigan Potash Operating, LLC

Source of Information for the Geologic Data and Formation TDS

Chung, P.K., <u>Mississippian Coldwater Formation of the Michigan Basin</u>, Unpublished PhD Dissertation, Michigan State University, 1973.

Dali, A.H., <u>Depositional Environment of the Upper Silurian of the Michigan Basin</u>, Unpublished M.S. Thesis, Michigan State University, 1975.

Feasibility Report (and Addendum), Subsurface Brine Disposal for U.S. Potash Solution Mining Test Facility, PPG Industries, Fenix & Scisson, 1984

Hydrogeology of Parts of Osceola and Mecosta Counties Michigan, Menley, W.A., 1984

Hydrological Supplement, Menley, W.A., May 1986

Hydrogeologic Evaluation of the Woodward Site - Kalium Chemicals Potash Plant, Menlyy, W.A., 1988.

Fisher, James H., <u>Traverse Limestone Structure</u>, Plate 4, Dow Chemical Company, Department of Energy, Report No. FE 2346-80, 1980.

Hydrogeologic Atlas of Michigan, Western Michigan University, Department of Geology, 1981.

<u>Hydrogeologic for Underground Injection Control in Michigan</u>, Part 1, Western Michigan University, Department of Geology, 1981

Kelley, R.W., <u>Bedrock of Michigan</u>, Michigan Geological Survey Division, Geologic Map GM1, 1968.

Martin, H.M., <u>Geological Map of Michigan</u>, Michigan Geological Survey Division, Publication 39, Map No. 1695, 1957.

Vugrinovich, R., <u>Patterns of Regional Subsurface Fluid Movement in the Michigan Basin</u>, Michigan Department of Natural Resources, Geological Survey Division, 1986.

Studies of the Precambrian Michigan Basin, Michigan Basin Geological Society, 1969

Hydrological Atlas of Michigan, Western Michigan University, Department of Geology, 1981

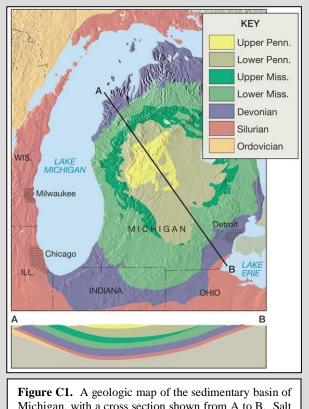
Oil and gas wells: _IHS Well Data http://ww2.deq.state.mi.us/GeoWebFace/ Mineral Wells: Michigan Mineral Well Database http://ww2.deq.state.mi.us/GeoWebFace/ http://gwmap.rsgis.msu.edu//. http://www.zipcodemapping.com/ez/4993 9.html http://www.deq.state.mi.us/part201ss http://www.deq.state.mi.us/wdspi http://www.epa.Rov/superftind/sites/npl/rai.htm http://www.epa.gov/reRion5/waterluic/cUsites.htm http://ww2.deq.state.mi.us/mir/

Michigan Potash Operating, LLC

http://www.dnr.state.mi.us/spatialdatalibrary/pdf_maps/mineral_lease_information/osceola lease information.pdf <u>http://www.dnr.state.mi.us/spatialdataiibrary/pdf_maps/mineral_lease_information/mecosta lease</u> information.pdf http://www.deq.state.mi.us/well-logs/

Comprehensive Freedom of Information Act Request for prior applications and reviews: Michigan Department of Environment, Great Lakes and Energy, EPA Region V, UIC Division Core and database reviews from the Michigan Geological Repository for Research and Education

Michigan Potash Operating, LLC


8 Geologic maps and stratigraphic cross sections of the local and regional geology.

Regional Geologic Setting

The Michigan Basin is a sedimentary basin centered in the Lower Peninsula of the US State of Michigan. The feature is represented by a circular pattern of geologic sedimentary strata with a nearly uniform structural dip toward the center of the peninsula (Figure C1). The extent of evaporative deposits and other shallow water deposits suggest concurrent subsidence during basin filling. High evaporation rates during the Silurian and Devonian geologic periods resulted in massive and pure bedded halite (NaCl), and the possibility of potassium chloride (KCl) in select locations due to mineral rich sea water.

Massive bedded halite occurs in beds of the Silurian Salina Formation, and the Devonian Detroit River Group. Dow Chemical began mining Michigan's salt rich brines in 1897, creating a commercial source of potassium, calcium, and magnesium salts, bromine, and iodine. Dow Chemical remains headquartered in Midland, Michigan. Morton International, Martian Marietta Materials, and The Detroit Salt Company are other salt and mineral producers with an economic interest in salt and salt related deposits in Michigan.

The Michigan Basin is the dominant structural feature of the Michigan southern peninsula. It is a nearly circular and symmetrical structural and sedimentary basin. A maximum aggregate thickness of about 14,000 feet of Cambrian

Michigan, with a cross section shown from A to B. Salt occurs in Devonian Age (Blue). Salt and Potash occur in the Silurian Age (Red).

through Jurassic sedimentary strata was deposited in the basin. The basin first developed as a structural feature in late Silurian time during which approximately the middle one-third of the total sedimentary rock formation was deposited.

- Figure C1 is a generalized map of the Michigan Basin.
- **Figure C2** is the Michigan stratigraphic column illustrating the lithology of the sediments which fill the Michigan Basin and occur in the AOR.

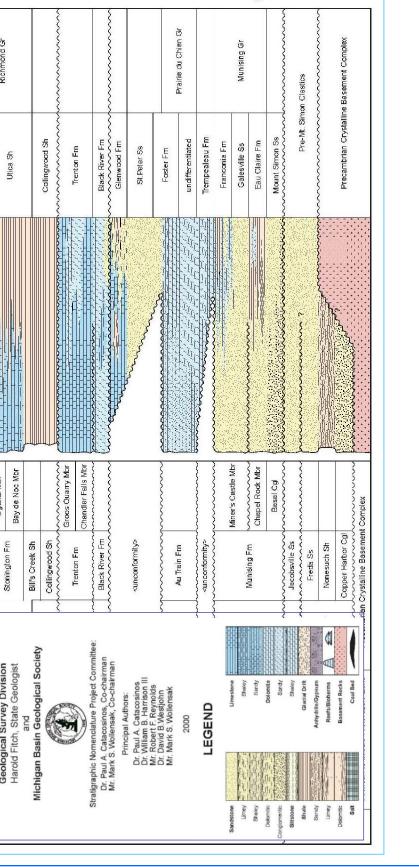

The southern Osceola/northern Mecosta County area is covered by several hundred feet of Pleistocene glacial drift. The glacial deposits rest on Jurassic "Red Beds" sediments of Pennsylvanian shale and sandstone. The Paleozoic rock section, from Pennsylvanian to the Precambrian crystalline basement complex, likely exceeds 10,000 feet in thickness within the AOR, and includes shale, limestone, dolomite, sandstone, anhydrite, and salt units. The Precambrian basement beneath the Paleozoic deposits is not known to have been penetrated in the AOR but may occur over 11,000 feet below the surface based on regional information.

Figure C3 is a detailed reproduction of the northwest-southeast regional cross-section as presented by Fenix and Scisson, 1984, which transects the AOR. The section utilizes the deepest well in the area

GEOLOGIC TIME PERIOD EPOCH AMEF	TIME NORTH AMERICAN			MEMBER	DOMINANT LITHOLOGY		SUBSURFACE NOMENCLATURE FORMATION GROUP
AND EFOCA	Wisconsinan	LOOND	Glacial Drift		たいでないないでない。ないないないないないない。	0:0	COMPLEM Barial Drift Barial Drift
lurascin Middla	Wisconsinan Amananaan Duferdian	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Glacial Lrift Amana Sem Iania Em	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Lair and the second		
5	Conemandh	m	Grand River Em	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Contraction of the second second second	1	Crend Phore Em
and the second	······		Saginaw Fm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3	Saginaw Fm
Edity	FOILSVILLE		 Darma Sc				-7-7-7 Darma Sc
			Paymont I s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	trunition of the second s	~	Angengeration Baunnt I s
Late	Meramecian		Michigan Em				Michican Em
	Oradian		And a second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	minim	~~~~	
SCIE	IIBIRBOO		Marshall 65				Marsnall 35
Early	Kinderhookian		Coldwater Sh			C	Coldwater Sh
			Sunbury Sh	(u		S	Sunbury Sh
			sworth Sh Berea Ss	asteri		Ellsworth	Sh Berea Ss etem
		<u>,</u>	(western) Bedford Sh	201 C		(western)	Bedford Sh
				l Inner Mhr	-2-5-	Upper Mbr	5
Late						1 and a set	
			Antrim Sh	Lachine Mbr		Lacrine Mult	Antrim Sh
				Paxton Mbr		Paxton Mbr	_
				Norwood Mbr		Norwood Mbi	br
	Senecan		Sriiaw Rav I s		┝┿┯┯┯ ┝╋┯┯	Sour	aw Bev Ls
			~~~~	Dartridua Doint Mbr	A A A A A A A A A A A A A A A A A A A	· · · · · · · · · · · · · · · · · · ·	· ·····
			<u>_</u>				
			iniinel Day	Potter Farm MDr			
				Norway Point Mbr			
				Four Mile Dam Mbr			
		( H	Alpena LS	Newton Creek Mbr		Ver	arca I c
511	Erian	Traverse Gr		KII CON MIN		IIde	
sinov			Long Lake Ls	Killians Mbr			
				Genshaw Mbr			
			Ferron Point Fm				
Middle			Dadmart Olismi Le				
			Rockpart Quarry LS				
			Bell Sh			<b>a</b> .	Bell Sh
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Romers City I s	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
						Dun	Dundee Ls
			Dundee Ls				
			Anderdon Ls	21			
			l mor Em		24202712712124225020202020202020202020	2	Lucas Fm
		Detroit River Gr	LULAS IIII				
			Amherstburg Fm			Amhe	Amherstburg Fm
	UISIERIAR		Sylvania Ss	Sia			Sylvania Ss
		m	Data Data Fer	Sector Sector		ş	Dais Bland Em
Ļ				SC E			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	Garden Island Fm	ckin S		Ş	Garden Island Fm
			Rasin River Dol	вM		oeM	
		Bass Islands Gr	Pirt-in-Bay Dol				undifferentiated
						2	TOTAL OF A
			St. Ignace Dol				
						Sali	Salina G Unit
						0-11-0	r tica
						Salina F Unit	F Unit
					Contraction and the second sec	Salina E Unit	E Unit
						Salina	Salina D Unit
Late	Cayugan					5	
		Salina Gr	Pte aux Chenes		11111	Salina	Salina C Unit
			Fm			Salina B Unit	B Unit
						Calina A. 3	Lo Carb
						Califia	
						Salina A	Salina A-2 Evap
						Ruf	Ruff Fm
						Salina	A-1 Fuan
inulië							
					Contraction Contra	ö	ain Fm
			Bush Bay Fm				
					and the state of the	ß	Guelph Dol
		Engadine Gr	Rapson Creek Fm				
			Rockview Fm			pol	Locknort Dol
			Contell Fm				50.55
		Manistique Gr					in a fifther a state of the second
albhim	Niagaran		Schoolcraft Fm				
				Fiborn Ls Mbr			
			Hendricks Fm				
		Durant Directo				undiffe	undifferentiated
			Byron Fm				
Į	Z		Lime Island Fm				
	]		Cabot Head Sh			Cabot H	Cabot Head Sh
			Manitoutin Dol			Manitor	lin Dol
FOR N	MCHG			horison	All the standard and a standard and a standard and a standard and a standard a standard a standard a standard a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~
	)		Big Hill Fm			Queenston Sh	on Sh
nan Dept. o.	Michigan Dept. of Environmental Quality	I Quality	3				
gail version	Civicino Civicio	מו שמוויא	1221	Ogontz Mbr			
Geologica	Survey DIVISIO	uc	Stonington Fm			0 en HI	f
The second secon	include attraction		Comparison of the Party of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		> >>>>>	-

Figure C2. Stratigraphic Nomenclature for Michigan. Figure is the Michigan stratigraphic column illustrating the lithology of the sediments which fill the Michigan Basin and occur in the AOR.





# MICHIGAN POTASH OPERATING, LLC

#### APD 1000

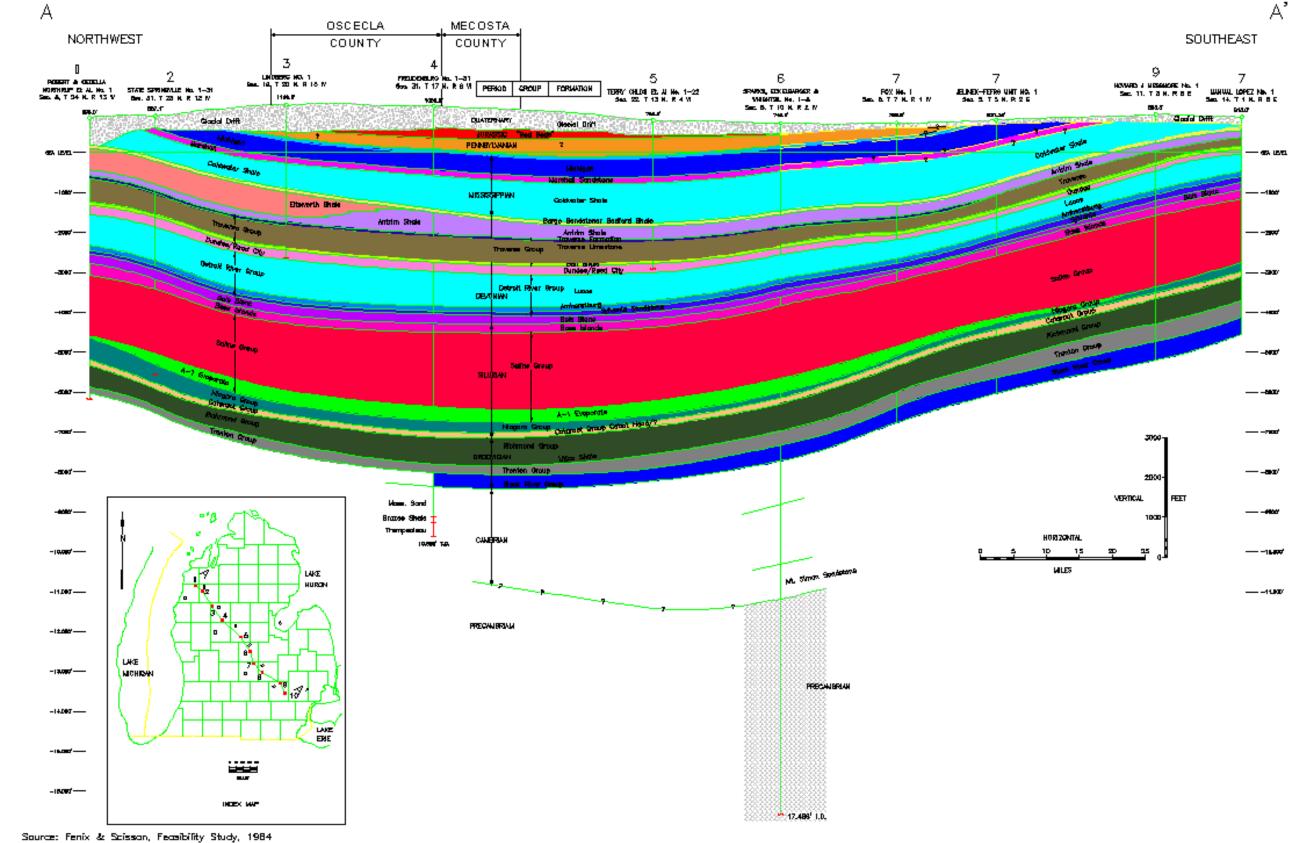



Figure C3. Regional Geologic Cross Section, State of Michigan. A detailed northwest-southeast regional cross-section through the state of Michigan, drawn through the AOR, utilizing the deepest well in the AOR (Fruedenburg 1-31 - 10,858 feet, Section 31, Evart Township, Osceola County, Michigan), which is in the same area as the MPC8D, Hodges 1-36, and Johnson 1-6 proposed injection well locations.



APD 1000



### Michigan Potash Operating, LLC

(Freudenberg 1-31 - 10,858 feet), as well as the deepest reported well in the Michigan Basin (Sparks, Eckelberger, and Wrightsil 1-8 - 17,466 feet). This figure has a vertical exaggeration approximating 50 to 1.

**Figure C4** is a detailed portion of Figure C3 showing the proposed injection horizon in relation to the local stratigraphic column.

#### Local Geologic Setting

- **Figure C5** is a local cross section through the AOR constructed using geophysical well logs that show porosity, bulk density, natural gamma ray, caliper log responses. The cross section shows the geological units of interest and their immediate confining layers from West to East, also presenting the thickness and lateral continuity of the confining zones (s) through the area of review. The confining zone(s) is the Bell Shale. Above the Bell Shale is the Traverse limestone, that may locally exhibit low porosity limestone and thus also serve as a confining zone. Above the Traverse Limestone is the Antrim Shale, which would also serve as a confining zone. The AOR is in an a structurally undisturbed area, with regional dip less than 1 degree to the northeast. There are no observable faults in the AOR.
- **Figure C6** is a cross sectional trace of the path from East to West, constructed using geophysical well logs that show porosity, bulk density, natural gamma ray, caliper log responses. The cross section shows the geological units of interest and their immediate confining layers from East to West, and is consistent with the well trace that the MPC 8D and Hodges 1-36(D) will follow in the Reed City Dolomite/Dundee. This cross section presents the continuity of both the proposed injection and confining zones within the AOR.
- **Figure C7** is a cross sectional trace of the path of the MPC 8D and Hodges 1-36(D), from East to West, constructed using geophysical well logs that show porosity, bulk density, natural gamma ray, caliper responses. The cross section shows the geological units of interest and their immediate confining layers from East to West along the MPC 8D and Hodges 1-36(D) well traces within the Reed City Dolomite/Dundee. This cross section presents the continuity of both the proposed injection and confining zones within the AOR.
- **Figure C8** is a structure map of the Dundee/Reed City Dolomite. The flat, undisturbed, geological character of the AOR is presented in Figures C5 through C8. Structural dip is minor, i.e. less than 50 ft/mile, and there are no known faults in the AOR.




Figure C4. Detailed cross section area near AOR. The figure is a zoomed in portion of Figure C3, showing the proposed injection horizon in relation to its stratigraphic column.



5	
Et. Al No. 1—22 SF I 3 N. R 4 W	
54	
8.5' Den	
one	
?	
	ſ



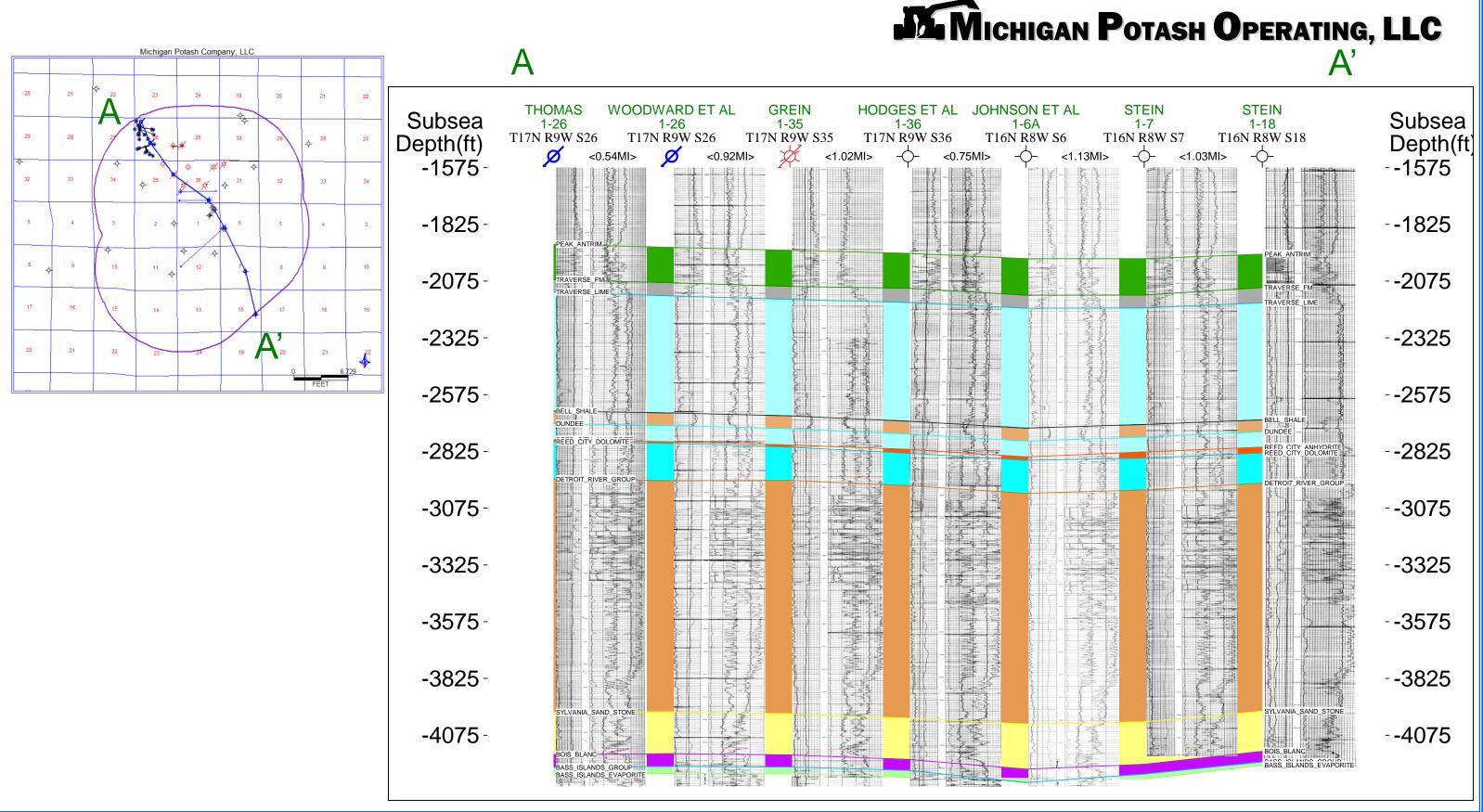



Figure C5. Cross section through the AOR, showing the geological units of interest and their immediate confining layers from North West (A) to South East (A').

#### APD 1000

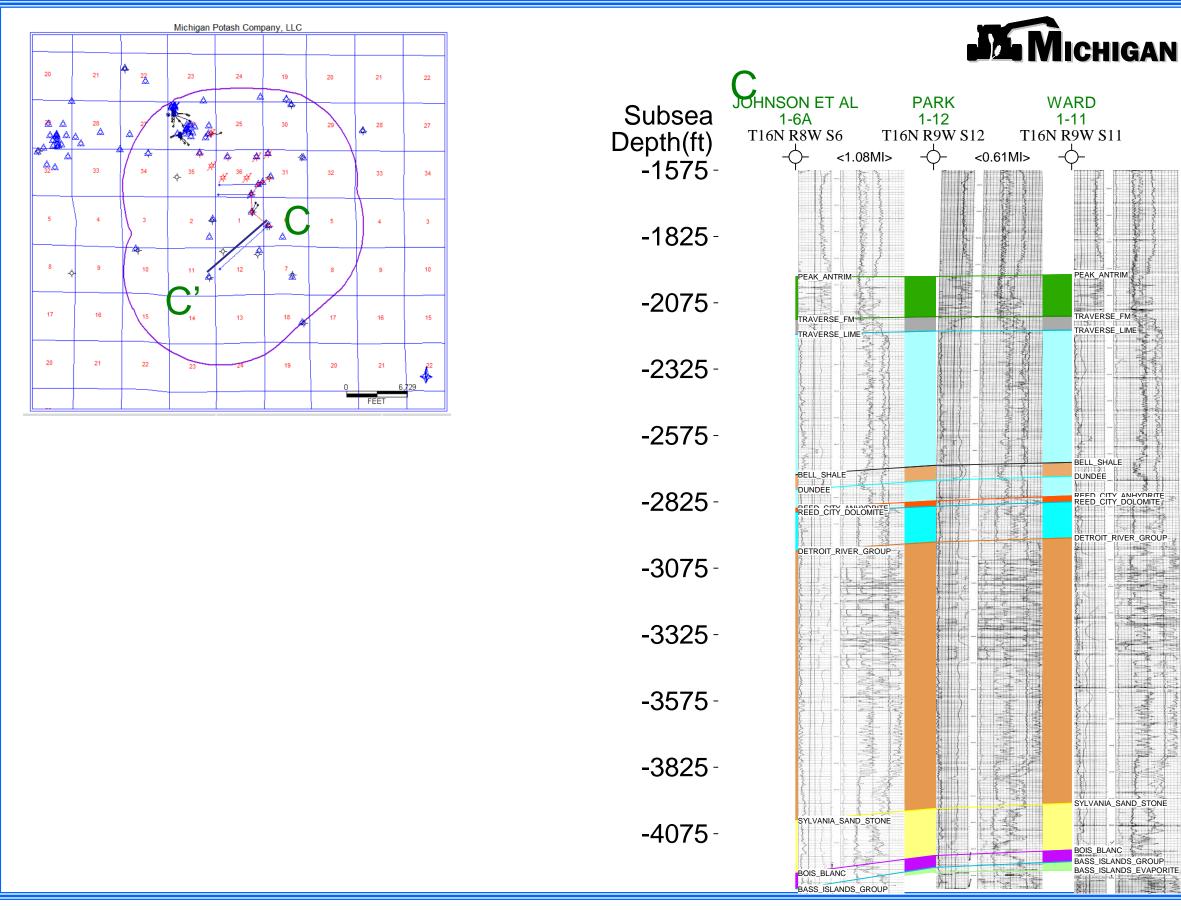
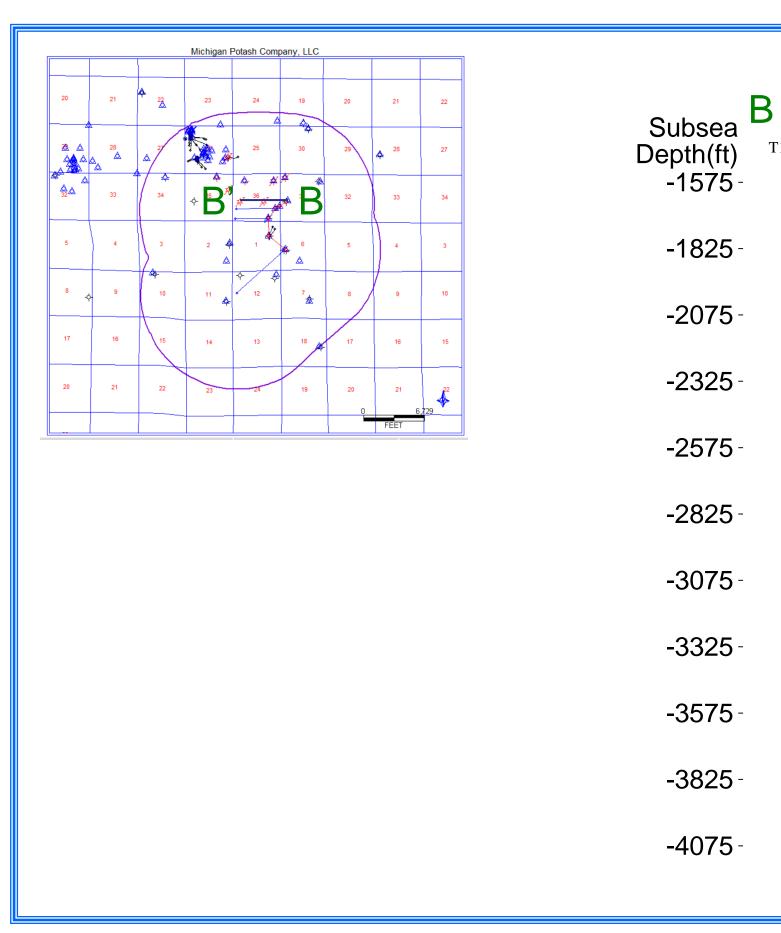




Figure C6. Cross section tracing the well path of the Johnson 1-6 from NE (C) to SW (C').

# MICHIGAN POTASH OPERATING, LLC

- C' Subsea Depth(ft) --1575
  - - 1825
  - **-**2075
  - **-**2325
  - **-**2575
  - **-2825**
  - - 3075
  - -3325
  - - 3575
  - **-**3825
  - -4075



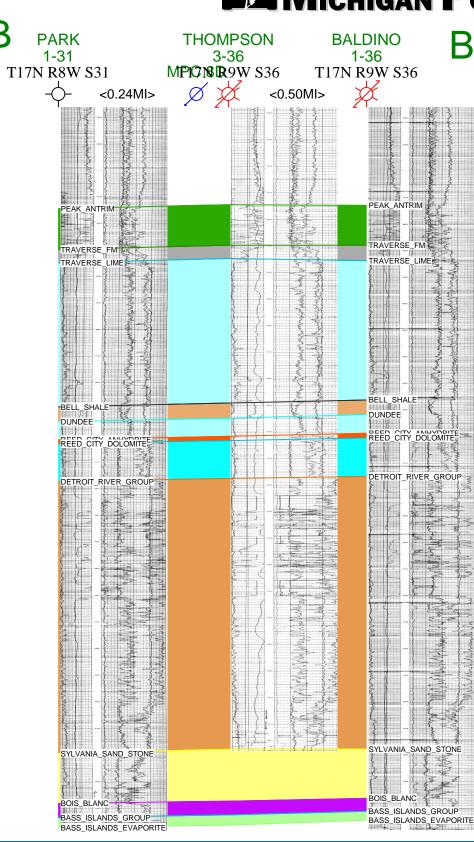



Figure C7. Cross section tracing the MPC 8D and Hodges from East (B) to West (B')..

# MICHIGAN POTASH OPERATING, LLC

Subsea Depth(ft --1575

- - 2075

-**-**2325

- - 2825

- **-**4075

B'

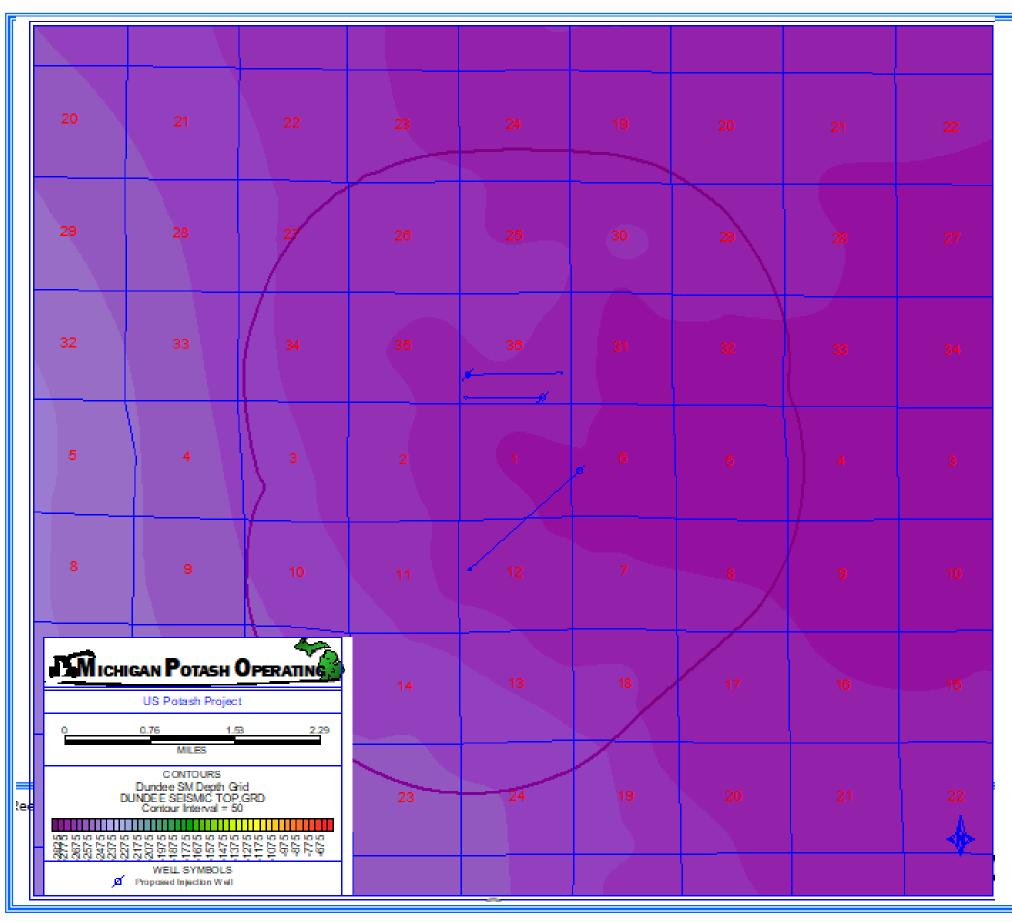



Figure C8. Structural Elevation of the Dundee Formation.



# MICHIGAN POTASH OPERATING, LLC

APD 1000

### Michigan Potash Operating, LLC

9 Chemical, physical and bacteriological characterizations of the waste stream before and after treatment and/or filtration. Include a characterization of the compatibility of the injectate with the injection zone and the fluid in the injection zone along with a characterization of the potential for multiple waste streams to react in the well bore or in the injection zone.

## Chemical, physical and bacteriological characterizations of the waste stream before and after treatment and/or filtration:

The water stream to be injected into the proposed Class I Non Hazardous injection wells are non-hazardous brines (salt water) generated by the simple processing of food grade salt utilized on dinner tables across the world, sodium chloride (NaCl), i.e. table salt or "salt", and potassium chloride (KCl) "potash", which is a natural, food safe fertilizer, applied to staple crops for food generation and consumption, KCl may also be added to table salts, or baking sodas as a low sodium based substitute for salt for human consumption.

Salt and potash brine is sent to a natural gas fired evaporator, which concentrates the salt and potash water. Concentration of the water crystallizes the salt from solution and increases the concentration of the potash in the water. The water is then sent to potash crystallization processes, where temperature contrasts crystallize the potash from the water. The remaining water is recycled back for injection, or in the case of excess water that has been enriched in magnesium or calcium, is sent to Class I wells.

The facility is a food grade facility, and therefore, no hazardous, or non-naturally occurring materials are introduced into the system. There may be traces of sodium hydroxide in injectate used to strip naturally occurring  $H_2S$  from the brine that comes from the salt and potash bearing formation (Salina A1). Pump packing seal water (<10gpm) and a bleed system (<10gpm) both containing some sodium bisulfite may be added to the injection stream.

Concentrations of these predominant compounds vary during the course of operations. At times, the disposal fluid will be very dilute with respect to KC1 and NaC1; at other times the disposal fluid will contain higher concentrations of KC1 and NaC1. The following is a typical representation on the physical properties and chemical characteristics of the waste brine.

#### Chemical Characteristics:

Weight Percent
variable
variable
variable
<0.4
<0.2
<0.2
< 0.02

#### Physical Characteristics:

Specific Gravity	1.0 - 1.2 (1.25 with safety factor)
pH	5.5 - 8.0
Temperature	Ambient to 130 degrees F

### Michigan Potash Operating, LLC

#### **Biological Characteristics:**

The injection water from food grade salt and potash is mostly free of biological matter. However, groundwater used in the food grade salt and potash process will likely contain trace, naturally occurring biological matter, and the BODs will need occasional sampling and control. It is possible that the salinity of the disposal fluid would cause an overall decline in biological matter content.

#### Solid Waste:

The Part 625 Brine Disposal Wells include a means to handle solid waste generated from the KCl and food grade salt (NaCl) manufacturing process by dissolving excess, unmarketable, and off specification product (either KCl or NaCl) for subsequent transport, handling, and disposal by subsurface disposal and injection. The Part 625 Artificial Brine Wells are able to receive solid NaCl dissolved as a solute, and serve as a means of solid waste disposal and handling associated with the KCl and NaCl manufacturing process.

#### Radiological Characteristics:

The disposal fluid will contain trace amounts of the naturally occurring stable Cl37 isotope and radiogenic K40 isotope associated with potassium chloride and sodium chloride. These are naturally occurring trace radionuclides and are not harmful to people, animals, or plant life in anticipated concentrations. Potash is intentionally placed on crops to increase health and growth. Sodium chloride is intentionally placed in food sources.

Fluid disposed of in the wells resulting from the solution processing of food grade salt and potash is comprised predominantly of only naturally occurring sodium chloride (NaC1) and naturally occurring potassium chloride (KC1).

#### As it concerns filtration:

Filtration is proposed via sand media filtration before injection into the postulated horizon to remove any potential suspended solids. Suspended solids are not a material concern provided before injection, much of the brine has been pretreated via a full clarification process, removing virtually all suspended solids.

#### As it concerns compatibility:

The brine produced by the manufacturing of food grade salt and potash have fewer dissolved constituents than the existing fluid in the injection horizons. There are fewer constituents in the injection fluid, and include only constituents that already exist in similar or greater concentrations in the resident injection horizons. Historical laboratory experiments have been conducted to evaluate the compatibility of the fluids; these experiments demonstrated no incompatibility. This is corroborated by long standing injection in analogous operations offset to the proposed injection wells. Provided the injectate is a clean, controlled fluid, and the injected chemical composition contains only those constituents that already exists in the injection horizon as resident, naturally occurring ions, no injectate formation/formation fluid incompatibilities are expected. Also, since the injectate is composed of a single, not multiple, waste streams, there is not potential for multiple stream interactions or reaction (See Section EGLE checklist 9 for detailed chemical and physical characteristics of the injection horizon's resident brine).

#### Michigan Potash Operating, LLC

#### 10 Information to characterize the proposed injection zone, including:

- A. The geological name of the stratum or strata making up the injection zone and the top and bottom depths of the injection zone.
- B. An isopach map showing thickness and areal extent of the injection zone.
- C. Lithology, grain mineralogy and matrix cementing of the injection zone.
- D. Effective porosity of the injection zone including the method of determination.
- E. Vertical and horizontal permeability of the injection zone and the method used to determine permeability. Horizontal and vertical variations in permeability expected within the area of influence.
- F. The occurrence and extent of natural fractures and/or solution features within the area of influence.
- G. Chemical and physical characteristics of the fluids contained in the injection zone and fluid saturations.
- H. The anticipated bottom hole temperature and pressure of the injection zone and whether these quantities have been affected by past fluid injection or withdrawal.
- I. Formation fracture pressure, the method used to determine fracture pressure and the expected direction of fracture propagation.
- J. The vertical distance between the top of the injection zone from the base of the lowest freshwater strata.
- K. Other information the applicant believes will characterize the injection zone.

## <u>10.A</u> The geological name of the stratum or strata making up the injection zone and the top and bottom depths of the injection zone.

Michigan Potash Operating proposes to inject into the Reed City Dolomite, which is a sub member of the Dundee, below the Reed City Anhydrite, and the Dundee Limestone. The Dundee Limestone is at approximately 3,876' (TVD) below surface. The Reed City Dolomite an interval below an established anhydrite marker in this region, that lies within the "Dundee Limestone Group". While the Reed City Dolomite is the principal porosity target, the proposed injection zone includes the Reed City Dolomite, Reed City Anhydrite, and Dundee Limestone, similar to the injection zone permitted in the Thomas and Woodward injection wells.

Both the Reed City Dolomite and Dundee Limestone intervals have been the subject of extensive study in Michigan as injection horizons, and have been injected into extensively. Michigan is a historical oil and gas province and rich brine producing province. As a result, there is well established data for injection and rock and fluid interaction with over +/- 2,070 established Dundee Limestone Group injection wells.

## Michigan Potash Operating, LLC

• **Figure C9** is an excerpt from Figure C2 with particular focus on the injection and confining zones closest to the proposed horizons (below). The Reed City Dolomite occurs in the Dundee LS Formation group. The Reed City Dolomite occurs below an anhydrite layer within the Dundee LS. The confining interval is the Bell Shale.

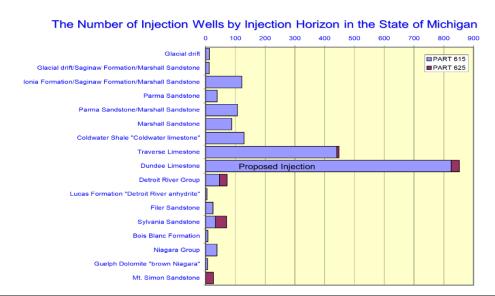

DOMINANT LITHOLOGY		SUBSURFACE NOMENCLATURE			Target Injection Horizons
		FORMATION	GROUP	1	
		Bell Sh		Confining	Reed City
		Dundee Ls		Injection	Dolomite. See Figure B6 for Detail
		Lucas Fm		Confining	
		Amherstburg Fm	Detroit River Gr		
	cia	Sylvania Ss			
	Mackinac Breccia	Bois Blanc Fm Garden Island Fm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
and a second	Mac	undifferentiated	Bass Islands Gr		
		Salina G Unit			

Figure C9 Portion of Michigan Stratigraphic Column Bell Shale – Salina

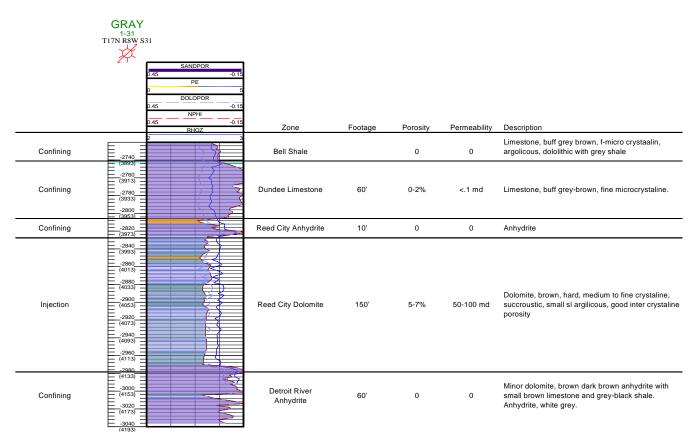
Michigan is a historical oil and gas province and rich brine producing province. As a result, there is well established data for injection and rock and fluid interaction, with over 2,000 established injection wells.

• **Figure C10** is a graphical illustration of the stratigraphic horizons currently being utilized in the State of Michigan for fluid injection (below). This graph shows both Part 615 Oil and Gas Wells and Part 625 Mineral Wells. This graph can be easily cross referenced with Figure C9 and Figure C2.

Figure C10 Graphical Depiction of Formations Used for Class I and Class II Injection



Application for Permit to Drill Part 625 Mineral Well, Brine Injection


In the State of Michigan most injection occurs in the Dundee Limestone or shallower due to the ease of access of shallow injection horizons and excellent confining intervals at shallow depths.

#### **10.B** An isopach map showing thickness and areal extent of the injection zone.

• **Figure C11** is an isopach map of the Reed City Dolomite group of the Dundee Formation, showing the area extent of the proposed injection zone.

#### **10.C** Lithology, grain mineralogy and matrix cementing of the injection zone.

- **Figure C12** shows the following, noting that a portion of this figure is included below for ease of review:
  - (1) A regional map of Michigan, showing the structure of the Dundee Formation in the entire state, with a reference to the AOR; and
  - (2) A geophysical type curve of the injection and confining horizon from the Bell Shale to the Detroit River Anhydrite in the Grey 1-31, located in the NW/4NW/4 Section 31, which is in the AOR; and
  - (3) The porosity of both the injection and confining intervals as determined from well log analysis and core observations; also shown below for ease of refence; and



(4) Derived permeability as calculated from area drill stem testing in the AOR

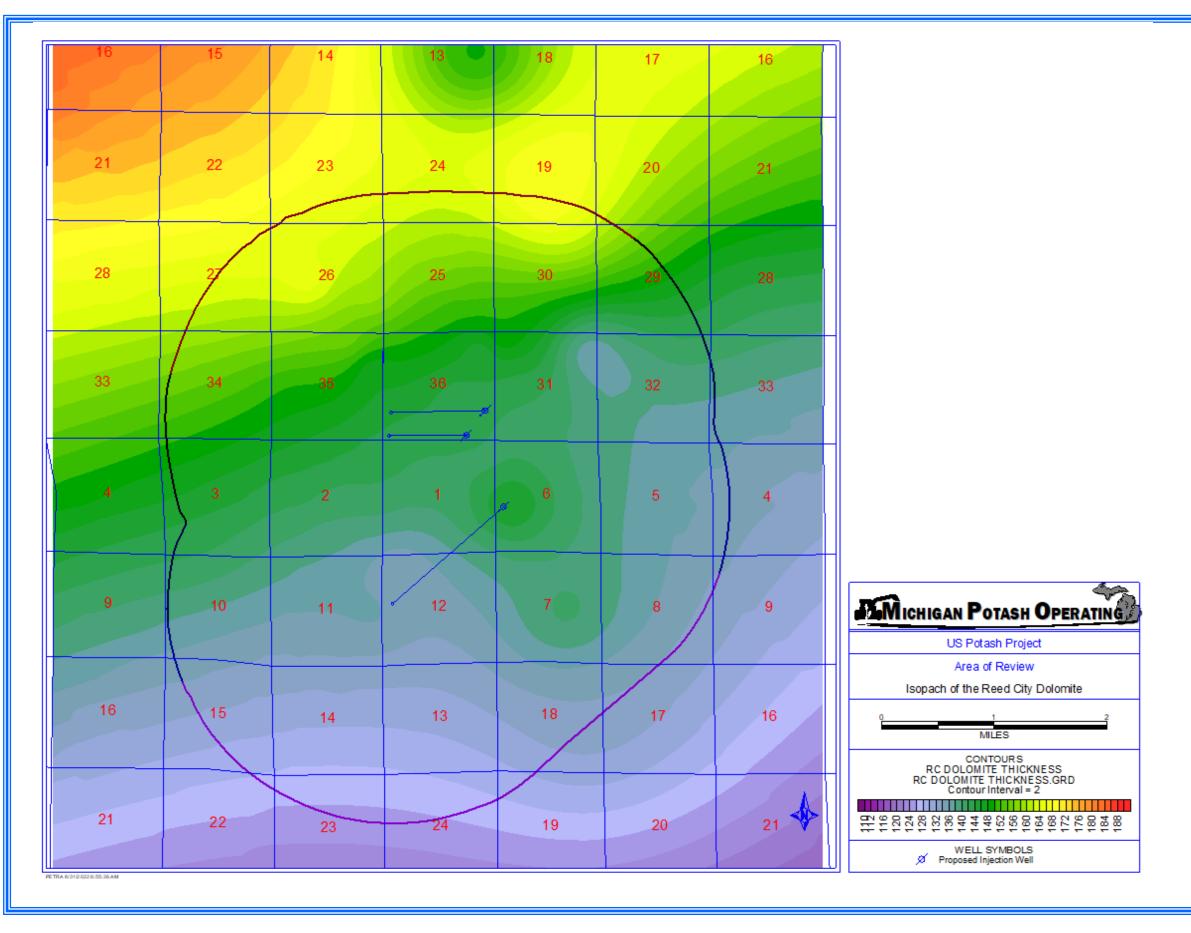



Figure C11. Isopach map of the Reed City Dolomite, Dundee Formation



# MICHIGAN POTASH OPERATING, LLC

APD 1000

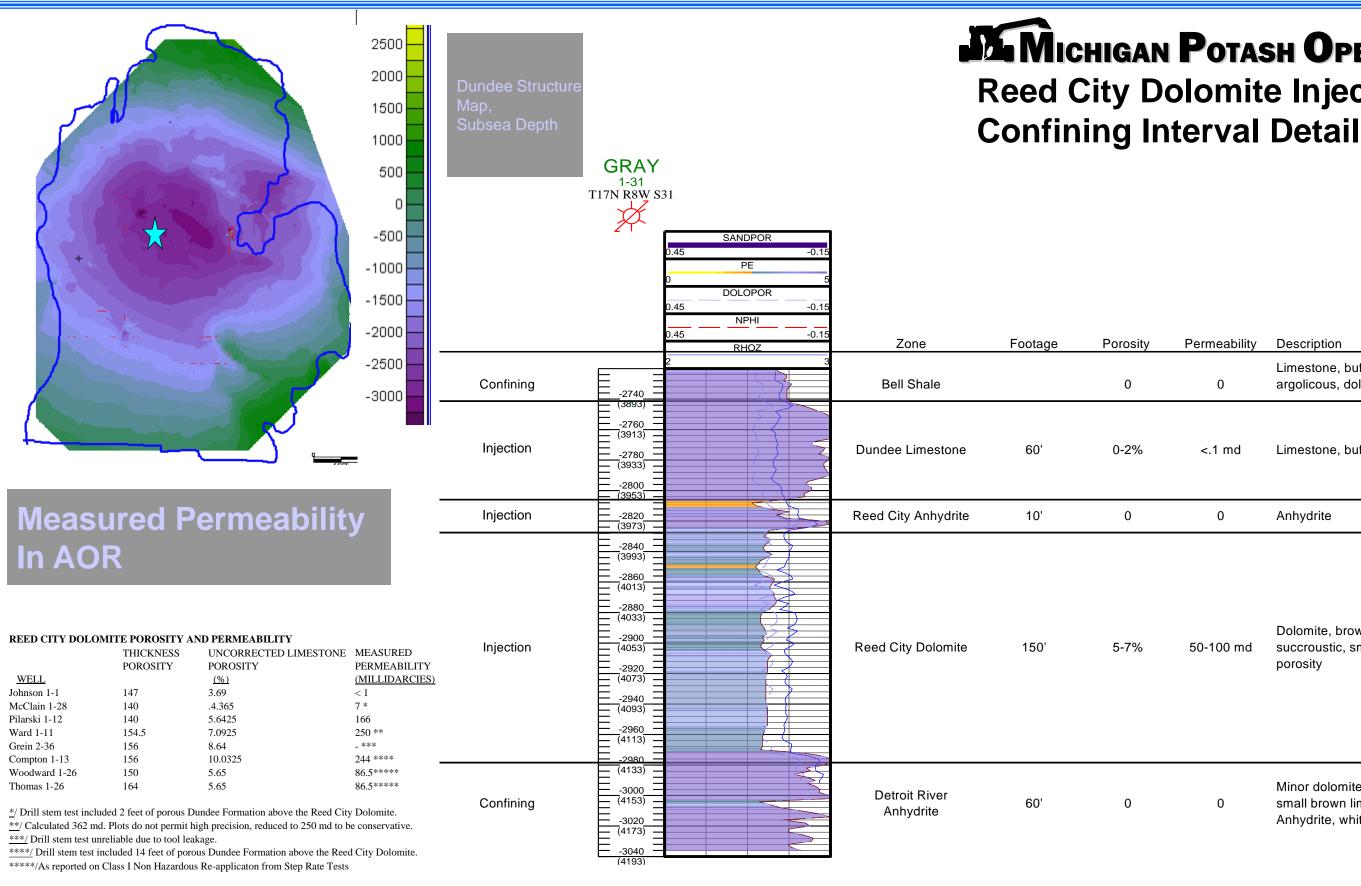
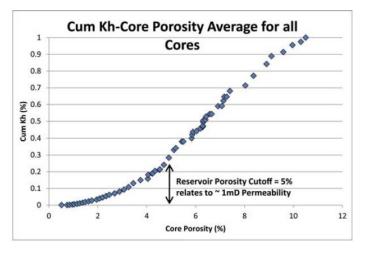



Figure C12. Reed City Dolomite Injection Interval and Bell Shale Confining Interval Details. Figure shows (1) a geophysical type curve of the injection and confining horizons in the Reed located in the NW/4NW/4 Section 31 (2) the calculated porosity (3) the real observed and determined permeability from extensive drill stem analysis and step fall-off tests as performed and reported immediately in the AOR (4) a structure map of the top of the Dundee Limestone in the entire state, as it relates to the AOR (5) real lithologic descriptions as observed by the wellsite geologist when drilling through the Fruendenberg 1-31, located in the NE/4NE/4 Section 31.

# MICHIGAN POTASH OPERATING, LLC **Reed City Dolomite Injection and**

Permeability	Description
0	Limestone, buff grey brown, f-micro crystaalin, argolicous, dololithic with grey shale
<.1 md	Limestone, buff grey-brown, fine microcrystaline.
0	Anhydrite
50-100 md	Dolomite, brown, hard, medium to fine crystaline, succroustic, small sI argilicous, good inter crystaline porosity
0	Minor dolomite, brown dark brown anhydrite with small brown limestone and grey-black shale. Anhydrite, white grey.
norizons in the	e Reed City Doloimite from the Grey 1-31,

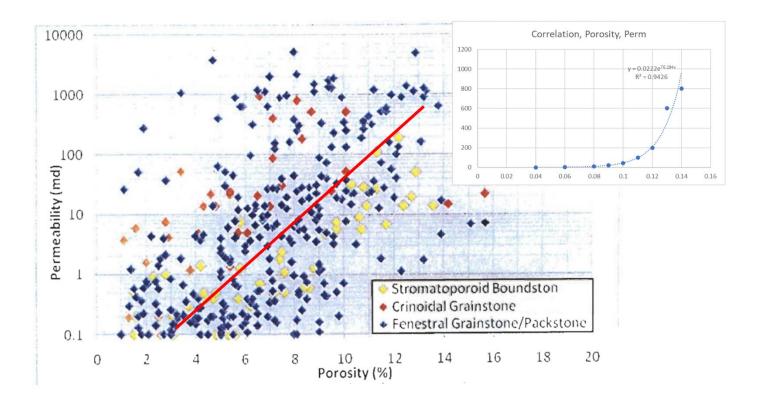

### Michigan Potash Operating, LLC

(5) Real lithologic descriptions as observed by the wellsite geologist when drilling through the Freudenberg 1-31, located in the NE/4NE/4 Section 31, which is in the AOR, and re-referenced here, provided its appearance in Figure C3 and Figure C4.

The Reed City Anhydrite, the micro-crystalline limestone of the Dundee Formation, and the Bell Shale, all above the proposed injection zone have virtually no porosity or permeability and serve as additional confining layers. Above the Belle Shale are multiple, tight, dense limestones, shales, and anhydrites, including the Antrim Shale, Ellsworth Shale, Sunbury Shale, and the Coldwater Shale for another approximate 3,000 before any USDW is encountered.

#### **10.D** Effective porosity of the injection zone including the method of determination.

Effective porosity has been identified by both direct and indirect methods. The Dundee formation (Reed City and Roger City Groups Included) has been extensively analyzed by direct porosity-permeability measurements throughout the Michigan Basin. While a direct correlation between the more limestone based Dundee and the more dolomitized Character of the Reed City Group may differ slightly, the effective porosity relationships provide reasonable rule of thumb for the site-specific Reed City Member at the proposed project location. The chart to the right is an excerpt from McClosky and Grammar (2018) that shows the cumulative Permeability-Porosity relationship from 26 cored wells through the Dundee formation in Gladwin County. The effective cutoff porosity was determined to be approximately 5.0%.




Cumulative permeability-feet percent (Cum Kh) versus core porosity average for all 26 wells with whole-core analysis reports. Average core porosity 0%–12% is located on x axis, and cumulative permeability-feet (decimal percent) 0–1 is on y axis. The inflection point occurs at 5% porosity and was used as a reservoir cutoff. This reservoir cutoff value may define economically producible hydrocarbons from noneconomical hydrocarbons.

### MICHIGAN POTASH OPERATING, LLC

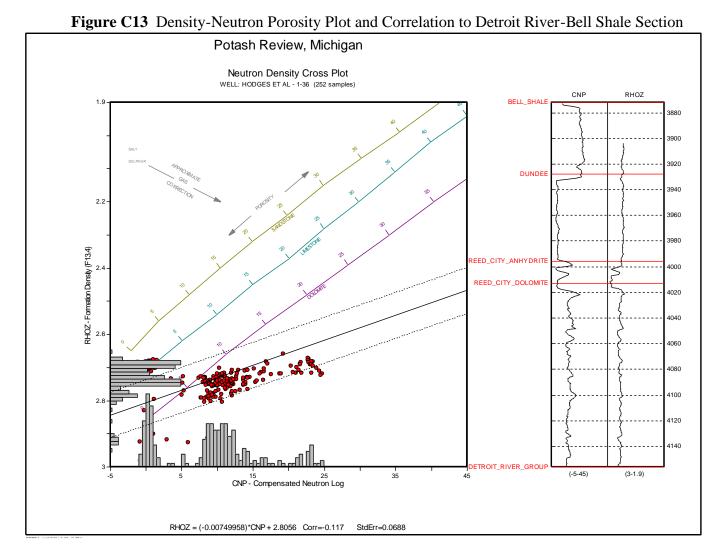

This conclusion is comparable to that of Abduslam (2012) where a similar analysis was performed on extensive direct measure Dundee cores throughout numerous locations in the Michigan Basin. His correlation is shown below, and MPO has put a porosity-permeability relationship to the numerous analysis and has determine that the proper cut off also approximates 5.0% porosity, where permeability drops below 1 md.

Figure C11. Density-Neutron Porosity Plot and Correlation to Detroit River – Bell Shale Section



A site specific porosity crossplot of the Netron Density and Bulk Density over the Hodges 1-36 (Figure C15), which is the target heel location and kickoff of the subject directional plan. The logs demonstrate fully dolotimized Dundee in the Reed City Member, and high effective porosity. This would be indicative and corroborative of the high measured permeability in the Woodward and Thomas (>900 md).

APD 1000



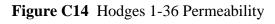
The porosity permeability relationships demonstrate an increase in effective porosity and potential cutoffs of effective porosity. Net injection thicknesses have been determined provided the Reed City appears mostly ineffective below 5% porosity. These direct measurements of core have been utilized and applied to the indirect geophysical well log data. The effective porosity then, above the cutoffs, most likely approximates the true porosity, which has been calculated from the density log, as follows:

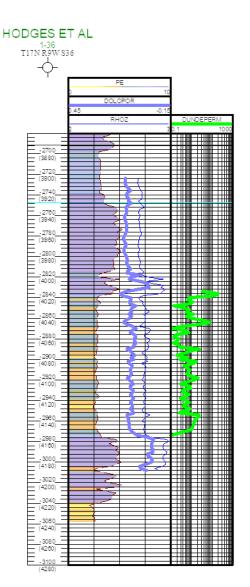
#### DPHI = (RHOMA - RHOB)/(RHOMA - RHOF).

A density of 2.87 is used in the calculation of true porosity from the bulk density log.

Effective porosity is net readily associated with the permeability increases; whereby the Porosity, Permeability relationship has been used as follows;

#### PERM=0.00222*EXP(76.294*DOLO TRUE POROSITY)


## <u>10.E</u> Vertical and horizontal permeability of the injection zone and the method used to determine permeability. Horizontal and vertical variations in permeability expected within the area of influence.


Permeability has been identified by direct method via Klinkenberg permeability analysis on core throughout the Michigan Basin. These analyses have then been applied to the porosity permeability relationship of Abduslam (2012) as shown above via the following observed relationship expressed as follows:

The direct porosity permeability relationship in the Dundee/Reed City Member is expressed as follows: Permeability =  $0.00222* e^{(76.294*porosity)}$ , (provided a 5% porosity cutoff).

## Michigan Potash Operating, LLC

Vertical permeability tends to be 1/10 of Horizontal permeability in most sedimentological applications. The direct core measurements of porosity permeability relationships applied to the calculated true porosity are shown below along the trace of the Hodges 1-36. The permeability correlations are verified by resistivity log separation and Caliper log indications of filter cake. Porosity and Permeability increase in an eastward fashion from the heel to the two of the proposed lateral, hence the directional and horizontal design.





## <u>10.F</u> The occurrence and extent of natural fractures and/or solution features within the area of <u>influence.</u>

The Reed City Dolomite is a dolomitized limestone, which maybe considered a solution feature although secondary dolomitization associated with fluid movement is a replacement feature that may not lead to classic solution features. There are no known natural fractures or other solutions features that control injectivity performance, that the applicant is aware of. Further, there are no known faults within the area. There is no seismic activity in the area. Michigan is one of the lowest areas of seismic activity in the United States. When activity does occur, it tends to occur in the southern area of the state, or roughly 200 miles southward from the

### Michigan Potash Operating, LLC

AOR. In the last six years, Michigan has recorded only one 4.0 magnitude or greater earthquake. The epicenter was 2.5 miles below ground, in Galesburg, Michigan.

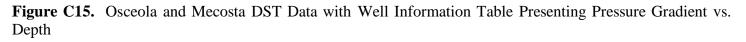
## **10.G** Chemical and physical characteristics of the fluids contained in the injection zone and fluid saturations.

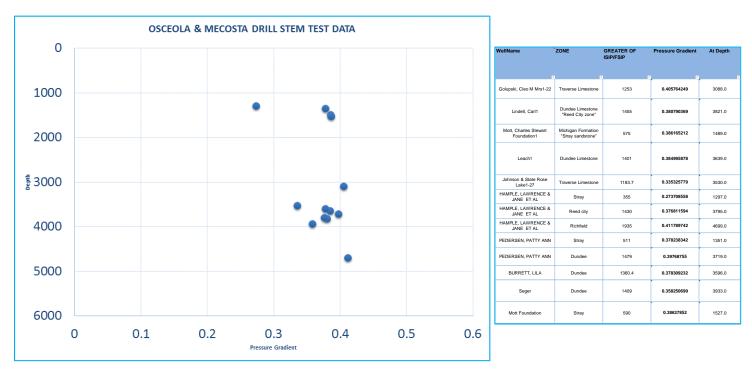
The physical and chemical characteristics of the formation fluids have been gathered from the Ward 1-11 in the AOR is summarized as follows:

Property pH Color Specific gravity Specific conductance Viscosity	Result 5.5 light brown 1,2118 94,000 microohms/crn @ 25°C 18 centipoise @ 23°C
<u>Constituent</u>	Concentration
Dissolved CO2 Dissolved Oxygen Sulfide as H2S Calcium Magnesium Potassium Sodium Barium Boron Cadmium Iron Manganese Silica Strontium Bicarbonate Carbonate Carbonate Bromide Chloride Fluoride Iodide Nitrate Sulfate Oil content Suspended solids	132 mg/1 0.1 mg/1 <30 mg/1 3,9% 0.59% 1.6% 5.9% 8 mg/1 57.5 mg/1 0.2 mg/1 <10 mg/1 2.7 mg/I 2.4 mg/1 0.14% 220 mg/I <1 mg/1 0.16% 19% 0.4 mg/1 28 mg/1 <0.1 mg/1 210 mg/1 74 mg/1 0.6%
Total dissolved solids	27%

The Reed City Dolomite porosity is saturated with a very briny formation fluid having over 320,000 mg/ liter total dissolved solids. Fluid saturations would be 100% of porosity.




Michigan Potash Operating, LLC


**10.H** The anticipated bottom hole temperature and pressure of the injection zone and whether these quantities have been affected by past fluid injection or withdrawal.

Historically observed bottom hole fluid pressure is 1600-1700 psi, fluid temperature is 80 degrees F, physical and chemical characteristics of the formation fluids have been gathered (see Ward 1-11 data below).

DSTs gathered in the AOR are graphically summarized in **Figure C15** have indicated a fluid pressure in the range of 1,600-1,700 psi in the Reed City Dolomite. This equates to an under-pressured gradient of 0.41 psi/foot depth. Average horizontal permeability to fluid ranges from 10 to over 250 millidarcies in the more favorable areas of Injection. Drill stem tests have yielded up to 3,300 feet of formation fluid, with most of the flow occurring in the first 15 minutes in wells having very good porosity and permeability.

The following chart (Figure C13) presents actual well data pressure gradients experienced via drill stem testing in Osceola and Mecosta County Michigan between 0 and 6000' KB as compiled from AASG Geothermal Data. Pressure gradients are determined via the greater of initial shut-in pressure or final shut in pressure divided by the top point of the test depth. Tabular data is also provided.





## For injection pressure calculations, a conservative, normal pressure gradient of 0.433 psi/ft is adequate and has been reported on Form 7200-14.

A DST in the Grey 1-31 in the Richfield Detroit River Group from 4,700 to 5,030 opened with no blow a recovered only 480' of drilling fluid, corroborating a weakly, under pressured gradient just below the propositioned injection horizons. It is not anticipated that the Dundee has been affected by past fluid injection. There has been no historical withdrawal from the Dundee.

Measured bottom hole temperature is catalogued by numerous drilling logs in the area, and is 115 degrees F.

Historical pressure injection fall off tests performed between 2005 and 2016 on behalf of, or by the U.S. EPA and on the Thomas 1-26 and Woodward 1-26 has been compiled and surrendered to the regulatory authorities, and is shown below. These tests are specific to the Reed City Dolomite member of the Dundee Group.

Comparison of Prior Tests and Evaluations									
	Cargill Thomas 1-26 and Woodward 1-26								
Date of Test	Well Name	Analyst	Inj. Rate, gpm	P _{final} , psi	P*, psi	k, md	S	Bound Dist, ft	
3/19/2005	Thomas 1-26	Subsurface	337.1		2275.6	1315	-1.74	892?	
3/19/2005	Thomas 1-26	USEPA, Steve Roy	337.1	2227		1232.3	-2	525	
3/21/2006	Thomas 1-26	Subsurface	324.2		2294.4	1521	-1.5	918	
3/21/2006	Thomas 1-26	USEPA, Gerrish	324.2	2205	2284	1394	-1.1	88	
3/24/2007	Thomas 1-26	Subsurface	288.54		2250.6	1403	-2.09	920	
3/24/2007	Thomas 1-26	USEPA, Patterson	288.54	2173		1567.6	4	386	
8/12/2008	Thomas 1-26	Subsurface	128		2177.1	1510	-1.72	351-456?	
8/12/2008	Thomas 1-26	USEPA, Simmons	128	2115		674.5	-2.6	248	
8/3/2010	Thomas 1-26	Petrotek	n/a		2177.8	1291.9	-3.5	n/a	
7/31/2012	Thomas 1-26	Brock Engineering	422		1974	383	-6.9	n/a	
7/31/2012	Thomas 1-26	USEPA, Bill Bates	421.7	2165	2220	3954	-3		
7/24/2014	Thomas 1-26	Brock Engineering	255		2008	295	-6.7	n/a	
7/24/2014	Thomas 1-26	USEPA, Steve Roy	255	2077.9	n/a	n/a	n/a	n/a	
3/19/2005	Woodward 1-26	Subsurface	122		2126.8	410	16.4	774?	
3/19/2005	Woodward 1-26	USEPA, Steve Roy	122	2250	2314.1	355.4	13.5	420	
3/21/2006	Woodward 1-26	Subsurface	205		2316.4	516.7	2.27	692	
3/21/2006	Woodward 1-26	USEPA, Patterson	205	2257		497.8	2	351	
8/22/2007	Woodward 1-26	Subsurface	140		2191.4	491.6	4.14	n/a	
8/22/2007	Woodward 1-26	USEPA, Gerrish	140	2144		n/a	n/a	n/a	
8/5/2009	Woodward 1-26	Petrotek	105		2138.5	337	7.94	n/a	
8/5/2009	Woodward 1-26	USEPA, J. Wawczak	105	2142	2176	290.8	4.9	n/a	
8/3/2011	Woodward 1-26	Brock Engineering	124		2176	163	-8.7	n/a	
8/3/2011	Woodward 1-26	USEPA, Greenhagen	124	2224.1	2254	428.4	5.3		
7/31/2013	Woodward 1-26	Brock Engineering	96.45		2136	118	-8.5	n/a	
7/21/2015	Woodward 1-26	Brock Engineering	128.99		2105.2	691	-14.3	n/a	

Historical pressure injection tests performed between 2005 and 2016 on behalf of, or by the U.S. EPA and on the Thomas 1-26 and Woodward 1-26 has been compiled and surrendered to the regulatory authorities, and is shown below. These tests are specific to the Reed City Dolomite member of the Dundee Group.

Average Measured Bottom Hole Reservoir Pressure  $(P^*) = 2,189$  psi.

Depth to the Injection Interval in these two wells is 3,980. This is an observed pressure gradient of 0.55 psi/foot.

Average Measured Permeability (k) was measured as (k) 907 md. Pressure rise between 2005 and 2016 was not observed.

## **10.1** Formation fracture pressure, the method used to determine fracture pressure and the expected direction of fracture propagation.

Historical injection tests were conducted in injection wells Woodward 1-26 and Thomas 1-26, both of which are in the AOR; tests were performed by pumping treated water into the Reed City Dolomite at rates of 28 bbls (1,176 gallons) per minute at a surface pressure of 2,960 psi. After deduction of calculated friction losses of 38 psi within

### Michigan Potash Operating, LLC

the well, the pressure at the top of the Reed City Dolomite, while injecting treated fresh water, was 4,647 psi. No parting or fracturing of the formation was noted, indicating the fracture pressure must be greater than 4,647 psi, with a top perf at 3985'. For ease of reference, the offset data has been incorporated below:

#### Woodward 1-26:

#### H.2 Average and Maximum Injection Pressures

The maximum injection pressure has been set by permit at 2,576 psig for the Woodward 1-26 well.

Injection fluid may be water (specific gravity of 1.0) or a partially saturated sodium chloride/potassium chloride brine solution with a specific gravity as high as 1.2.

Previous documents submitted to the USEPA (1995 Re-Permit Application (Attachment H-2 and Appendix A); 1984 Permit Application) indicated a maximum injection pressure for water of 2,928 psi and for brine of 2,589 psi. This information was based upon previously conducted fracture testing at the top perforation of the injection zone (4,647 psi). A pressure gradient of 1.18 psi per foot was calculated.

Upon review of the previous ten years of operation records, the average injection pressure remains between 600 to 900 psi as stated in the previous 1995 Permit Re-Application.

#### The Thomas 1-26:

#### H.2 Average and Maximum Injection Pressures

The maximum injection pressure has been set by permit at 2,533 psig for the Thomas 1-26 well.

Injection fluid may be water (specific gravity of 1.0) or a partially saturated sodium chloride/potassium chloride brine solution with a specific gravity as high as 1.2.

Previous documents submitted to the USEPA (1995 Re-Permit Application (Attachment II-2 and Appendix A); 1984 Fenix & Scisson Permit Application) indicated a maximum injection pressure for water of 2,928 psi and for brine of 2,589 psi. This information was based upon previously conducted fracture testing at the top perforation of the Reed City Dolomite injection interval (4,647 psi). A pressure gradient of 1.18 psi per foot was calculated.

Upon review of the previous ten years of operation records, the average injection pressure remains between 600 to 900 psi as stated in the previous 1995 Permit Re-Application.

Utilizing this data, an estimate fracture pressure for the proposed well can be determined as follows:

Surface Pressure = 2,960

Treated freshwater gradient = 0.433 psi/ft, where SG = 1.0Top perf at 3985 ft

Surface Pressure + 0.433 psi/ft x depth - 14.7 = BHP

4,647 +0.433 psi/ft x 3985 - 14.7 = 4,685 psi

Fracture Gradient = 4,685psi/3985ft = 1.18 psi/ft

The current fracture gradient utilized on the permitted Thomas and Woodward is 1.17 psi/ft.

#### Final Fracture Pressure Gradient Values

In 1992 and 1993, the Region 5 Underground Injection Control Program public noticed draft and final values for fracture pressure gradients for specific oil fields in Michigan. These values were published in the *Federal Register* in three groups. The column headed "FRN" indicates in which *Federal Register* Notice the final fracture pressure gradient (FPG) value for each field was published. (Internetaccessible copies of the *Federal Register* do not go back this far, so these notices are not viewable over the Internet at this time.)

County	Field	Formation	Township/Range/Section	FPG (psi/ft)	FRN
Вау	Kawkawlin	Dundee	T15N, R4E, S27, 28, 33, 34 and T14N, R4E, S3	1.23	3
Calhoun	Pennfield 35	Niagaran Reef	T1S, R7W, S35	0.60	1
	Cranberry Lake	Richfield	T20N, R6W, S1, 2, 11, 12	1.10	1
Clare	Hamilton	Richfield	T19N, R3W, S5-8 and T19N, R4W, S1, 2 and T20N, R4W, S35,36	1.06	2
Crawford/Kalkaska	Beaver Creek	Richfield	T25N, R5W, S12, 13, 24 and T25N, R4W, S7, 8, 16-21, 28, 29	1.07	1
	Beaverton	Dundee	T17N, R2W, S19	1.11	3
	Bentley-Dundee	Dundee	T17N, R2E, S18, 19, 20	1.15	1
	Billings:				
Gladwin	Billings 2 Unit	5 8 1	T17N, R1E, S2, 3, 10, 11	1993	
	Billings-Bentley Unit	Dundee	T17N, R1E, S12, 13 and T17N, R2E, S18	1.12	1
	Grout	Richfield	T18N, R2W, S10, 11, 14, 15	1.05	3
	Aurelius 35	Niagaran	T2N, R2W, S26, 35, 36	0.65	1
	Ingham 13	Reef Salina-		0.76	1
	ingnam 15	Niagaran	T2N, R1E, S13	0.76	1
Ingham	Onondaga 10	Salina- Niagaran	T1N, R2W, S2-4, 10, 11, 14	0.61	1
	Onondaga 21A	A-1 Carbonate (Salina)	T1N, R2W, S15-17, 21, 22	0.81	3
Isabella	North Wise	Dundee	T16N, R3W, S17	1.12	3
Kalkaska	Kalkaska "21"	Salina- Niagaran	T27N, R8W, S22	0.92	1
Lapeer	Richfield	Richfield	T10N, R10E, S21-23, 26-28, 33- 35	1.09	3
Manistee	Manistee	Niagaran	T22N, R17W, S36	0.82	2
Manistee	Bear Lake	Niagaran	T23N, R15W, S12	0.58	3
Missaukee	Enterprise	Richfield	T23N, R4W, S18 and T23N, R5W, S10-14	1.10	2
	East Norwich	Richfield Richfield	T24N, R5W, S1-3, 9-16, 21, 22 T22N, R6W, S30, 31 and T22N,	1.14	2
		Richheid	R7W, S25, 36	1.10	3
	Rose City:				
	Rose City Unit		T23, 24N, R2E, S3, 19-21, 27- 30, 32-35		
	Rose City Central Unit	Richfield	T24N, R1E, 2E, S25	1.07	1
	Rose City West Unit		T24N, R1E, S21		
Ogemaw	West Branch:				
	West Branch Unit (excluding West Branch 28: see below)	Dundee	T21N, R2E, S2 and T22N, R2E, S21, 26, 27, 33-36 and all of S28 except the S/2 of the NW/4	1.15	2
	Country Club Unit		T22N, R1E, S13, 24 and T22N, R2E, S18-21, 29		
	West Branch 28	Dundee	T22N, R2E, S28, S/2 of NW/4	1.25	3
	Chester:				
	Chester 18 Unit	A1 Carbonate	T30N, R2W, S7, 8, 17, 18, 19, 20	0.99	1
Otsego	Chester 21 Unit	& Niagaran	T30N, R2W, S21, 22	0.78	1
otsege	Hayes:				1
	Hayes 15 Unit	Salina-	T29N, R4W, S15		
	Hayes 21A Unit	Niagaran	T29N, R4W, S21, 28	0.67	1
	Headquarters:				
	Headquarters		T21N, R3W, S19, 29, 30		
Roscommon	Unit Headquarters-	Richfield	T21N, R3W, S29, 30, 32, 33	1.22	1
	Sour Unit St. Helen	Richfield		1.16	2
St. Clair	St. Helen Columbus 3	Niagaran	T24N, R1W, S16, 19-21, 27-30 T5N, R15E, S3, 10 and T6N,	0.79	1
ar cian	Columbus 3	nayaran	R15E, S34	5.13	1



**Form EQP 7400-14,** has been filed with a default 0.8 psi/ft fracture gradient as directed by regulatory direction from the U.S. EPA despite substantial offset data available. Upon completion of the wells, step rate injection testing will be performed to obtain site specific data that will match the offsets and expected operating parameters listed in this section are anticipated; with 1.17 psi/ft FRACTURE GRADIENT. The expected direction of fracture propagation would be in the direction perpendicular to maximum stress. In the Michigan Basin, maximum stress is North-Northeast to South-southwest, approximating 45 degrees. The direction of minimum stress then would be at 135 degrees, if any fracture propagation at all were to occur. It is highly unlikely.

## **<u>10.J</u>** The vertical distance between the top of the injection zone from the base of the lowest freshwater strata.

At the Hodges 1-36(D) location, the estimated base of glacial till is 712 feet, with the top of the injection zone (i.e., base of the Bell Shale) estimated to occur at 3,876'.

The distance between the top of the injection zone and the base of the lowest freshwater strata is 3,109'.

Please reference **Figure B1** for a graphical illustration and cross section through the area presenting the vertical distance between the injection zone and base of the lowermost USDW.

### Michigan Potash Operating, LLC

#### 11 Information to characterize the proposed confining zone, including

- A. The geological name of the stratum or strata making up the confining zone and the top and bottom depths of the confining zone.
- B. An isopach map showing thickness and areal extent of the confining zone
- C. Lithology, grain mineralogy and matrix cementing of the confining zone.
- D. Effective porosity of the confining zone including the method of determination.
- E. Vertical and horizontal permeability of the confining zone and the method used to determine permeability. Horizontal and vertical variations in permeability expected within the area of influence.
- F. The occurrence and extent of natural fractures and/or solution features within the area of influence.
- G. Chemical and physical characteristics of the fluids contained in the confining zone and fluid saturations.
- H. Formation fracture pressure, the method used to determine fracture pressure and the expected direction of fracture propagation.
- I. The vertical distance between the top of the confining zone from the base of the lowest freshwater strata.
- J. Other information the applicant believes will characterize the confining zone.

## **<u>11.A The geological name of the stratum or strata making up the confining zone</u> and the top and bottom depths of the confining zone.**

The Bell Shale serves as the confining zone above the Dundee/Reed City injection zone, although the Dundee Limestone immediately below the Bell Shale may exhibit 50-60' of zero porosity above the Reed City Anhydrite, which also exhibits very low porosity. The Reed City Anhydrite occurs above the target injection interval within the Reed City Group.

The Bell Shale top is 3,821' TVD and the Base is 3,872' TVD at Hodges 1-36(D).

#### **<u>11.B An isopach map showing thickness and areal extent of the confining zone</u></u>**

**Figure C16** is an isopach map of the Bell Shale showing the areal extent.

#### **<u>11.C Lithology, grain mineralogy and matrix cementing of the confining zone</u></u>**

The Belle shale is described in the subject well as a non-calcareous interval of grey and blue shale.

#### **<u>11.D Effective porosity of the confining zone including the method of determination</u></u>**

The confining zone is composed of a thick shale, with no permeability or effective porosity. This has been verified via well logs.

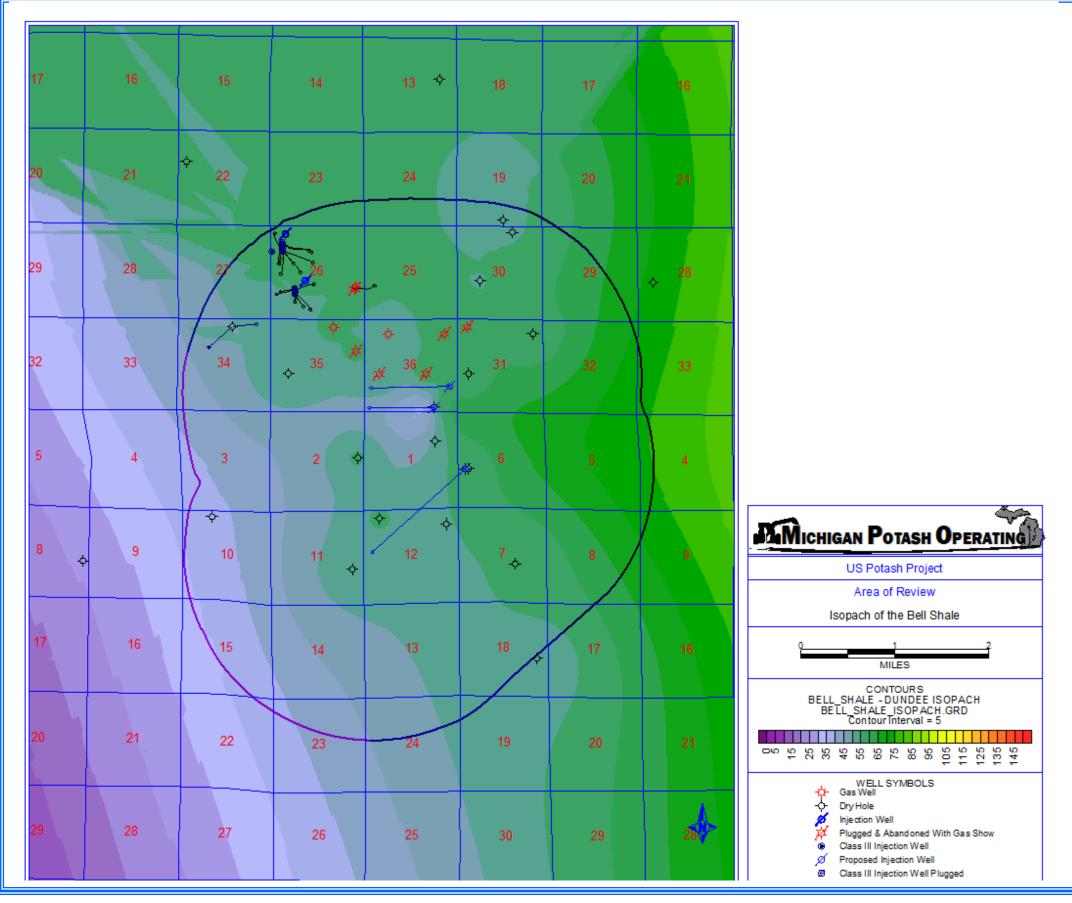



Figure C16. Isopach map of the Bell Shale



# MICHIGAN POTASH OPERATING, LLC

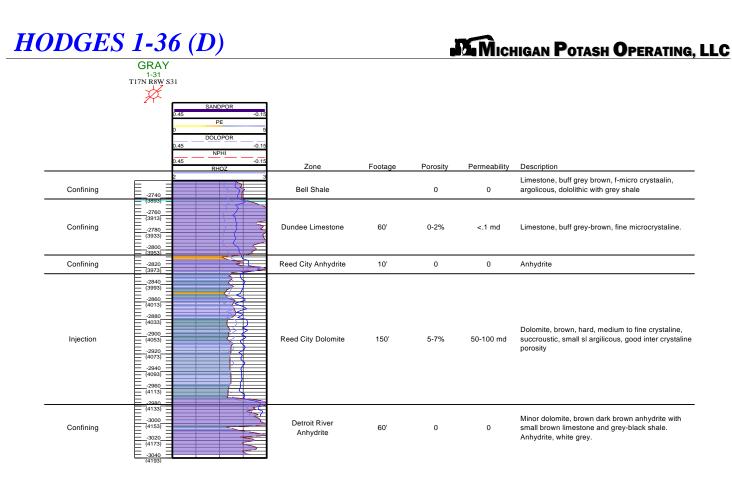
APD 1000

#### **<u>11.E Vertical and horizontal permeability of the confining zone and the method used to determine.</u></u> Horizontal and vertical variations in permeability expected within the area of influence.**

Provided the Bell Shale is a shale, there is little to no effective permeability or porosity, with no anticipated lateral or vertical variation expected within the AOR or area of influence.

#### **<u>11.F</u>** The occurrence and extent of natural fractures and/or solution features within the area of influence.

There are no known natural fractures or solution features within the confining zone, as observed either via indirect or direct methods.


#### **<u>11.G Chemical and physical characteristics of the fluids contained in the confining zone and fluid</u> <u>saturations.</u>**

Any porosity encountered above the injection horizons is sporadic, thin, and immediately interlayered with confining anhydrites, dolomites, cherts, or limestones, which will render data collection near impossible, impractical, or dangerous. Provided the confining zone is a shale, fluids will not flow and they cannot be recovered.

## <u>11.H Formation fracture pressure, the method used to determine fracture pressure and the expected direction of fracture propagation.</u>

The high differential rock properties, (young modulus, Poisson's ratio and fracture toughness) associated with the Bell Shale, but also the dense limestone just below it in the Upper Dundee Lime, which actually serves as the principle confining interval, and just above it in the lower Traverse lime; there should be reasonable assurance that the confining interval will not be inadvertently fractured, provided the substantially greater permeable character of the Reed City Dolomite member of the Dundee. In the event fracture were to occur, theoretically, it would occur under the same conditions and directions as those described for the injection horizon.

At the direction of regulatory, a very conservative fracture gradient of 0.8 psi/foot has been applied to the Bell Shale. It should be well noted and understood that the confining interval actually the Dundee Lime, in the Dundee Group; which is above the Reed City Anhydrite, which also serves as a confining interval. Measured fracture gradients of the injection interval (Reed City Dolomite) are substantially above the recommended 0.80 psi/foot gradient suggested by regulatory default (at measured 1.17 in the AOR).



## **<u>11.1 The vertical distance between the top of the confining zone from the base of the lowest fresh water</u> strata.**

The top of the Bell Shale is at 3821' TVD at Hodges 1-36(D), and the base of the lowermost fresh water source is 712' TVD The vertical distance between the top of the confining zone from the base of the lowest fresh water strata is 3,109'.

Please see Figure B1 for a cross section showing the top of the confining zone and base of the lowermost USDW.

### Michigan Potash Operating, LLC

12 Information demonstrating injection of liquids into the proposed zone will not exceed the fracture pressure gradient and information showing injection into the proposed geological strata will not initiate fractures through the confining zone. Information showing the anticipated dispersion, diffusion and/or displacement of injected fluids and behavior of transient pressure gradients in the injection zone during and following injection.

Please see Section EGLE BRINE DISPOSAL WELL CHECKLIST ITEM 2, where pressure data based on the laws of transient pressure and fluid dispersion given real observed subsurface rock parameters were provided.

Pressure transient and injectivity testing will be performed and step rate data will be obtained; testing will be witnessed by the US EPA and/or EGLE.

There is also legacy data available within the AOR for Non-Hazardous Class I wells currently injecting into the Reed City Dolomite, which is summarized below for the Woodford 1-26 well, with the expectation that measurements at Hodges 1-36(D) and at the MPC 8D may be similar.

Parameter	Woodward 1-26 2005	<u>2006</u>
Permeability (k)	410 md	516.7 md
Perm-thick product (kb)	61,090 md-ft	76,988 md-ft
Skin factor (s)	16.4	2.27
Pressure change due to skin (Δp _{skin} )	158.9 psi	29.22 psi
Flow efficiency (E)	0.36	0.80

A radial flow model with the Woodward 1-26 well positioned between parallel no-flow boundaries was utilized to evaluate the pressure transient data. Results of the pressure transient testing indicated the Woodward 1-26 well is positioned between parallel no-flow boundaries.

Please also see Section EGLE BRINE DISPOSAL WELL CHECKLIST ITEM 9.1 which utilizes actual injection step rate testing that was initiated in the offset Class I Disposal wells, the Thomas 1-26 and the Woodward 1-26, where actual data was used to demonstrate that the injection rates did not, and still do not, initiate fractures under current regulatory observation.

The proximity of multiple wells (i.e., MPC 8D, Hodges 1-36(D) and Johnson 1-6) enables the possibility of observation and interference testing, wherein while one well is undergoing a step rate injection test, or injection volume, the offset well will be utilized as an observation well, allowing additional information as it concerns the proposed injection horizons and injectivity. This can be done for all injection horizons provided proper planning once injection is established. The procedures for estimating reservoir reaction to injected fluid are made by determination of the porosity, permeability, thickness, extent, and pressure of the reservoir. Formation samples and cores, geophysical logs, and drill stem tests, and observation of pressures between two points enables an analysis of reservoir extent by comparing and deducing this data.

#### Michigan Potash Operating, LLC

#### 13 Proposed operating data including all of the following data

- 3. The anticipated daily injection rates and pressures.
- B. The types of fluids to be injected.
- C. A plan for conducting mechanical integrity tests.

#### **13.A** The anticipated daily injection rates and pressures.

At any given time, disposal may occur to a single well or to all applicant wells simultaneously, thereby reducing or changing the injected rate and volume per well. Maximum total project rates are not expected to exceed the following rates. It is more likely than not, <u>that injection pressures</u>, or injection volumes will be the limiting threshold. The horizontal character of the proposed wellbore designs should enable high injection rates due to high reservoir surface area exposure.

Maximum, instantaneous injection rates have been incorporated into Form EQP 7200-14 as though all volumes would be sent to a singular well. Step rate injection data must suggest this singular wellbore is able to accommodate such volume.

Anticipated Injection rates:

Average Rate	Maximum Rate	Average Volume	Maximum Volume
Bpm	bpd	Bpd	bpd
9.5	27.85	13,680	40,104

All proposed injection zones are under-pressured in the area, with an anticipated pore pressure gradient of 0.41 psi/ft or less. Open hole logs suggest good injectivity across the proposed injection horizon.

Step rate and fracture data will be gathered for the target injection horizons in the subject wells.

**Reed City Dolomite** injection in the Woodward 1-26 and Thomas 1-26 wells over the previous ten years of operation demonstrates an average injection pressure into the Reed City Dolomite of 900 psi. This is reported regularly and summarized in re-application permits by the owner and operator of MI-133-1I-0002 and MI-133-1I-0001. These wells are injecting into the same Reed City Dolomite horizon as is proposed by Michigan Potash Operating. It is logical and expected that similar rates and pressures will be observed at the MPC 8D, Hodges 1-36(D) and Johnson 1-6 wells. As indicated in EGLE BRINE DISPOSAL WELL CHECKLIST ITEM 9.I, MI-133-1I-0002 (Thomas 1-26) and MI-133-1I-0001 (Woodward 1-26) have undergone fracture testing in the AOR in the Reed City Dolomite. Injection tests were made by pumping treated water in the Reed City Dolomite at rates up to 1,176 gallons per minute at a surface pressure of 2,960 psi. After deduction of calculated friction loses of 38 psi within the well, the pressure at the top of the Reed City Dolomite, while injected treating fresh water was 4,647 psi. No parting or fracturing of the formation was noted, indicated the fracture pressure must be greater than 4,647 psi. A pressure gradient of 1.18 psi per foot was calculated. No further attempts were made to fracture the injection zone.

This is typical of the Dundee, which has fracture gradients in typically in excess of 1.10 (EPA Michigan Field Fracture Gradients by County).

The permitted maximum injection pressure for the Thomas 1-26 well and Woodward 1-26 well is 2,393 psi and 2,453 psig respectively. Both are in the immediate vicinity of the applicant wells, into the same horizon, and up structure.

### Michigan Potash Operating, LLC

If wells are demonstrated to be capable, MPO proposes operating the disposal wells at higher pressure to obtain greater, more efficient disposal capacity than the 900 psi currently used at the offset operation. Based on available data, the following operating pressures are expected.

Average	Maximum
Pressure	Pressure
psi	psi
1,700	2,580

Injection fluid may be water (specific gravity of 1.05) or a partially saturated sodium chloride/potassium chloride brine solution with a specific gravity of up to 1.20, with a safety factor of 0.05 applied to operating conditions.

 $[\{1.17 \text{ psi/ft} - (0.433 \text{ psi/ft x specific gravity})\} \text{ x depth }] - 14.7 \text{ psi} =$ 

[{1.17 psi/ft - (0.433 psi/ft x 1.25)} x 4065ft] - 14.7 psi =

2541 psi.

**Form EQP 7400-14,** has been filed with a default 0.8 psi/ft fracture gradient as directed by regulatory direction from the U.S. EPA despite substantial offset data available. Upon completion of the wells, step rate injection testing will be performed to obtain site specific data that will match the offsets and expected operating parameters listed in this section are anticipated; with 1.17 psi/ft FRACTURE GRADIENT.

#### 13.B The types of fluids to be injected

The waste stream injected into the proposed Class I Non-Hazardous injection wells are non-hazardous brines (salt water) generated by the simple processing of food grade table salt (i.e. sodium chloride, NaCl) utilized on dinner tables across the world, and potassium chloride (KCl) "potash", which is a natural, food safe fertilizer, applied to staple crops for food generation and consumption.

Salt and potash brine is sent to a natural gas fired evaporator, which concentrates the salt and potash water. Concentration of the water crystallizes the salt from solution, and increases the concentration of the potash in the water. The water is then sent to potash crystallization processes, where temperature contrasts crystallize the potash from the water. The remaining water is recycled back for injection, or in the case of excess water, is sent to Class I wells.

The facility is a food grade facility, and therefore, no hazardous, or non-naturally occurring materials are introduced into the system.

There may be traces of sodium hydroxide, used to strip naturally occurring  $H_2S$  from the brine that comes from the salt and potash bearing formation (Salina A1). Pump packing seal water (<10gpm), and a bleed system (<10gpm) containing some sodium bisulfite may be added to the injection stream.

Class III wells under Area Permit MI-133-3G-0028, is the source of non-commercial, non-hazardous feed brine to the facility, and at times, to the proposed disposal wells. The field name has been dubbed the US Potash Project, Evart, MI.

#### Michigan Potash Operating, LLC

Please also see Section EGLE BRINE DISPOSAL CHECKLIST ITEM 8.

#### 13.C A Plan for Mechanical Integrity Tests

All required logs will be run before any perforations are added to the casing and before fluid injection commences.

The mechanical integrity of all the proposed injection wells will be tested according to the requirements of 40 CPR 146.8 to demonstrate that (1) there are no significant leaks in the casing, tubing, or packer and (2) there is no significant fluid movement into a USDW through vertical channels adjacent to the injection wellbores. As required by permit, mechanical integrity tests shall be conducted at the required frequency, and before any injection commences. The frequency of testing will be specified by permit and regulations, with timing of these test dedicated according to proactive best practice.

Required tests include:

1) an approved pressure test in accordance with 40 CFR 146.8(b)(1) [annually];

2) an approved radioactive tracer survey [every five years]; and

3) an approved temperature, noise, oxygen activation or other approved log [every five years];

or 1,2, & 3 above as otherwise directed by permit.

Gauges used in performance of the MIT will be calibrated to an accuracy of not less than 0.5 percent of full scale prior to field use. A copy of the calibration certificate will be submitted to USEPA each time the gauge is calibrated.

Notice will be made to the EGLE at least thirty days prior to the date of the schedule MIT. Tests must be witnessed by a representative of the USEPA and/or EGLE. A MIT report presenting test results will be provided to the EGLE within 45 days following completion of the MIT.

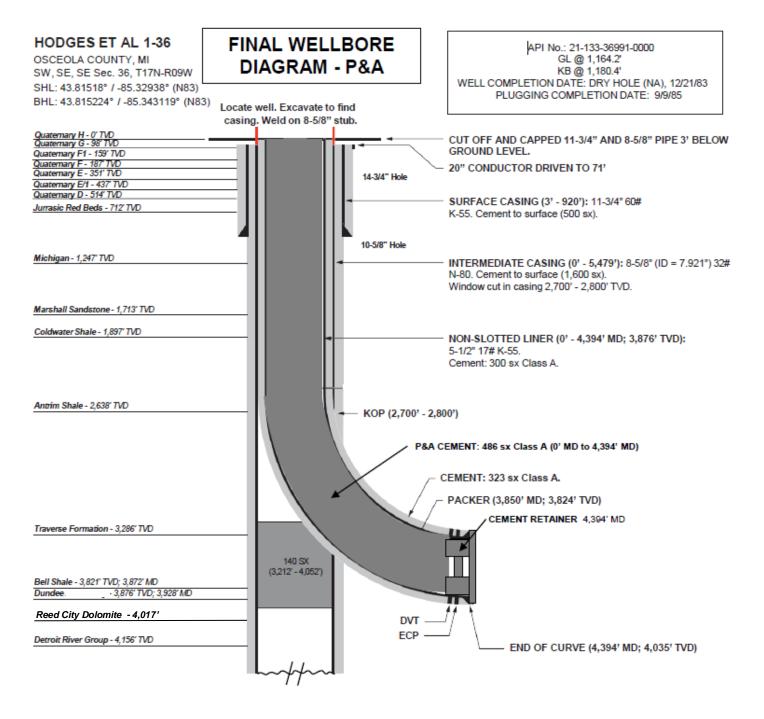
Brine is transmitted through the wells in tubing suspended from the wellhead and extending to a point near the top of the receiving formation. At or near the bottom of the tubing, the annulus between the tubing and the cemented casing is sealed with a packer; thus, the entire annulus from the wellhead to the packer is sealed off from the injected brine. The annulus is filled with an inhibited brine to a point slightly below the freeze line where the remainder of space is filled with oil. The annulus pressure is maintained to hold 20 psi at all times at surface and is monitored with a continuously recording pressure gauge.

If internal mechanical integrity was compromised, the annulus fluid pressure would change and immediately detected by the proposed monitoring program. If the injection tubing or packer developed a leak, a change in the annulus pressure would also develop and would be immediately detected by the continuously recording pressure gauge. In either case, investigative and remedial action would be promptly taken to replace or repair the part damaged following immediate notification and contingent operating procedures, as required by permit.

The multiple well application allows for an excess of disposal capacity and optionally to allow for system upsets, emergency shut-in, and contingent disposal capacity.

If failure were to occur in one well, that well would be shut-in immediately, and the entire disposal flow would be directed to the other well(s). If necessary, flow rates would be reduced as needed to remain below permitted injection pressure limits.

### Michigan Potash Operating, LLC


15 For a proposed disposal well to dispose of waste products into a zone that would likely constitute a producing oil or gas pool or natural brine pool, a list of all offset operators and certification that the person making application for a well has notified all offset operators of the person's intention by certified mail. If within 21 days after the mailing date an offset operator files a substantive objection with the supervisor, then the application shall not be granted without a hearing pursuant to part 12 of these rules. A hearing may also be scheduled by the supervisor to determine the need or desirability of granting permission for the proposed well.

The proposed injection horizons are not in a producing oil or gas pool or a natural brine pool.

#### Michigan Potash Operating, LLC

14 A proposed plugging and abandonment plan

#### Proposed Plugged Wellbore Diagram.



#### Michigan Potash Operating, LLC

16 Identify the source or sources of proposed injected fluids. Identify if injected fluids will be considered hazardous or non-hazardous as defined by Part 111, Hazardous Waste Management, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA)

Please see EGLE Brine Disposal well Checklist Item 8.

The waste stream injected into the proposed Class I Non-Hazardous injection wells are non-hazardous brines (salt water) generated by the simple processing of food grade table salt (sodium chloride, NaCl) utilized on dinner tables across the world, and potassium chloride (KCl) "potash", which is a natural, food safe fertilizer, applied to staple crops for food generation and consumption.

Salt and potash brine is sent to a natural gas fired evaporator, which concentrates the salt and potash water. Concentration of the water, crystallizes the salt from solution, and increases the concentration of the potash in the water. The water is then sent to potash crystallization processes, where temperature contrasts crystallize the potash from the water. The remaining water is recycled back for injection, or in the case of excess water, is sent to Class I wells.

The facility is a food grade facility. No hazardous materials as defined by Part 111 of Act 451 are anticipated.

### Michigan Potash Operating, LLC

#### 17 Whether the well is to be a multisource commercial hazardous waste disposal well.

The well is expressly NOT a multisource commercial well and is expressly not a hazardous waste disposal well.