NEVI Plan Charger Placement Project

MICHIGAN STATE UNIVERSITY

June 13, 2022

- Approach
- Input data
- Existing DCFC infrastructure
- NEVI DCFC infrastructure
- Charger placement results (Barebone, current and NEVI)
- Cost breakdown

Future steps

Approach

MICHIGAN STATE

Step 1- (Basic Feasibility Map)

- Map the current location of DCFC
- Find the optimum location of >150kW chargers to ensure feasibility of intercity trips
- Overlay the current DCFC locations and optimum location of >150kW DCFC to capture the upgrades required

Step 2- (NEVI Plan)

- Locate the DCFC based on NEVI plan requirements
- Map the current location of DCFC
- Find the optimum location of 4-150kW chargers or more to ensure feasibility of intercity trips
- Overlay the current DCFC locations and optimum location of 4-150kW DCFC to capture the upgrades required

Optimization Model (Aggregate O/D Demand)

Step 3- (Future Upgrades)

Possibility of future upgrades to >350 kW chargers

Data Inputs

MICHIGAN STATE

- Current location of DCFC (EGLE and AFDC)
- Road network (Michigan Department of Transportation)
- Traffic Analysis zones (Michigan Department of Transportation)
- Travel demand matrix (Michigan Department of Transportation)
- Electricity Provision Costs (Utilities)

Extended road network of Michigan

- 83821 links
- 62996 nodes
- Charging station and charger costs (Charging Station Companies)
- Vehicle specifications (Car Companies)

EGLE funded DCFC >150 kw

ASSULT

AFDC DCFC >150 kw EGLE funded and AFDC DCFC >150 kw

Michigan Alternative Fuel Corridors

Current fast charging stations (>150 kW chargers)

Total Number of Stations = 15 Total Number of Chargers = 55

MICHIGAN STATE

UNIVERSITY

Current >150 kW+ NEVI charging stations

At least four Combined Charging System (CCS) ports

- Station power capability should be no less than 600 kW
- At least 150 kW per port

MICHIGAN STATE

UNIVERSITY

ltem	Current/ Pending	New	Total
Number of Stations	15	14	29
Number of Chargers	55	133	188
Station Investment Cost (million \$)	2.93	2.67	5.59
Land Investment Cost (million \$)	0.10	0.25	0.36
Charger Investment Cost (million \$)	4.19	10.14	14.34
Total Cost (\$ million)	7.23	13.06	20.29

Scenario 1-6% Market Share and 100% i-SOC

ltem	Current/ Pending	NEVI	New	Total
Number of Stations	15	28	4	47
Number of Chargers	55	127	88	270
Station Investment Cost (million \$)	2.97	5.29	0.65	8.91
Land Investment Cost (million \$)	0.10	0.24	0.17	0.51
Charger Investment Cost (million \$)	4.19	9.68	6.71	20.59
Total Cost (\$ million)	7.27	15.21	7.53	30.01

Scenario 2-25% Market Share and 100% i-SOC

ltem	Current/ Pending	NEVI	New	Total
Number of Stations	15	28	4	47
Number of Chargers	55	127	475	657
Station Investment Cost (million \$)	2.97	5.29	0.65	8.91
Land Investment Cost (million \$)	0.10	0.24	0.92	1.26
Charger Investment Cost (million \$)	4.19	9.68	36.22	50.10
Total Cost (\$ million)	7.27	15.21	37.79	60.27

Scenario 3-25% Market Share and 60% i-SOC

ltem	Current/ Pending	NEVI	New	Total
Number of Stations	15	28	8	51
Number of Chargers	55	127	640	822
Station Investment Cost (million \$)	2.97	5.29	1.30	9.56
Land Investment Cost (million \$)	0.10	0.24	1.22	1.56
Charger Investment Cost (million \$)	4.19	9.68	48.80	62.68
Total Cost (\$ million)	7.27	15.21	51.32	73.80

Spatiotemporal Analysis

MICHIGAN STATE

Total Number of Counters = 122 # Counters Matched to Existing Links = 69

Total monthly demand of the Michigan network for different months AVG = 2.88 millions

Demand of LP vs UP

MICHIGAN STATE UNIVERSITY

Sept

Oct

Nov

Dec

0

Jan

Feb

Mar

Apr

May

June

Month

July

Aug

Barebone, Current and NEVI

MICHIGAN STATE

Previous OD Factors

New OD Factors

Previous OD Factors

Scenario 2

Market Share: 25% Battery: 70 kWh Month: February Initial SOC = 100%

Total Number of Stations = 47 Total Number of Chargers = 657 Station Investment Cost (million \$) = 8.91 Land Investment Cost (million \$) = 1.26 Charger Investment Cost (million \$) = 50.1 Total Cost (million \$) = 60.27 Total Refueling Time (h) = 3400.36 Total Queuing Time (h) = 1084.57 Average Delay (min) = 16.48 Total Energy Demand (MWh) = 408

New OD Factors

Scenario 2 Market Share: 25% Battery: 70 kWh Month: February Initial SOC = 100%Total Number of Stations = 50 Total Number of Chargers = 688 Station Investment Cost (million \$) = 9.35 Land Investment Cost (million \$) = 1.31 Charger Investment Cost (million \$) = 52.46 Total Cost (million \$) = 63.12 Total Refueling Time (h) = 4085.63Total Queuing Time (h) = 191.00Average Delay (min) = 14.19Total Energy Demand (MWh) = 491

Future Steps

MICHIGAN STATE

✓ Update the Michigan intercity demand file

- Modify the modeling framework to consider current/pending charging infrastructure
- ✓ Analyze the Barebone Network considering current/pending DCFC infrastructure
- ✓ Consider the NEVI infrastructure assumption
- ✓ Update the network file
- ✓ Considering 25% market share
- ✓ Potential future upgrades to 350 kW

✓ Consider the spatial-temporal changes in demand

Thank You

Dr. Mehrnaz Ghamami Email: <u>ghamamim@msu.edu</u> Phone: 517-355-1288 Dr. Ali Zockaie Email: <u>zockaiea@msu.edu</u> Phone: 517-355-8422

Research Assistants Mohammadreza Kavianipour Ami Alireza Darzian Ham

Amirali Soltanpour Hamid Mozafari