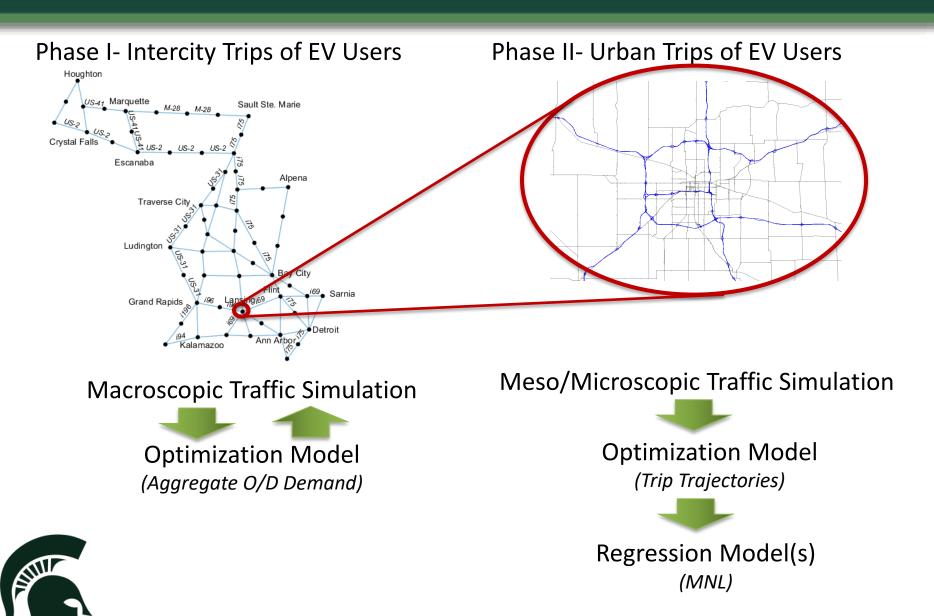


Electric Vehicle Charger Placement Project

Meeting with Lansing Board of Water and Light

01-07-2020

This study is commissioned and funded by the Michigan Department of Environment, Great Lakes, and Energy.

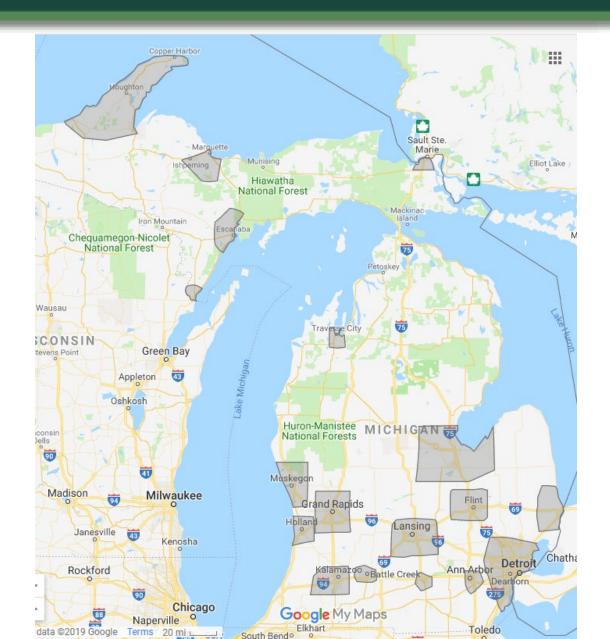


MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Problem Statement

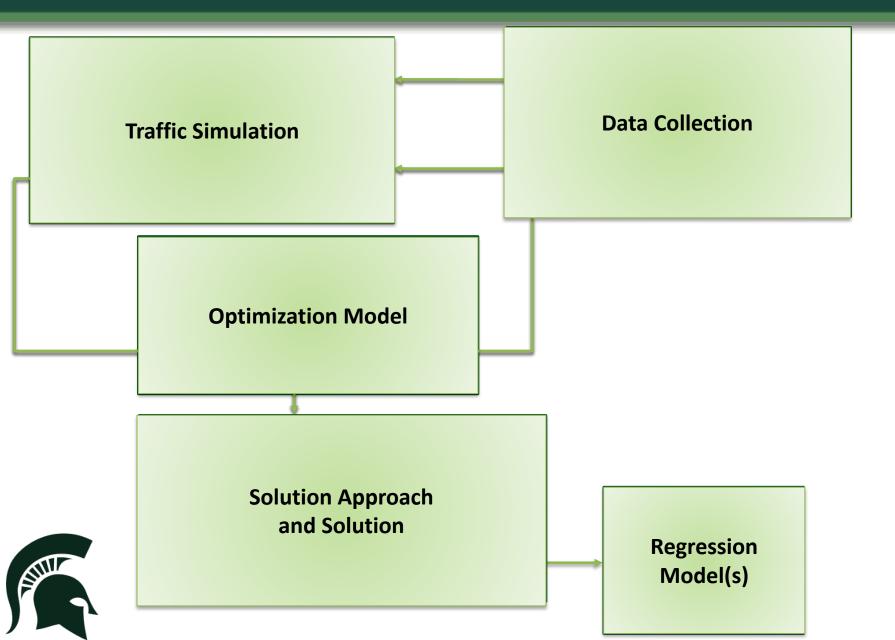
MICHIGAN STATE

Outline


- Selected Cities
- Modeling Framework
- Data Collection
 - Candidate points
- Preliminary Results

Selected Cities

Muskegon Ann Arbor Kalamazoo Flint Saginaw Lansing Grand Rapids Detroit Marquette (UP)



Cities/Parameter	No. of Nodes	No. of Zones	Generated Demand	Generated Demand (without Intra-Zone)	Lane Length (mi)	Miles Traveled
Marquette	62	21	178,741	142,042	336	931,957
Muskegon	387	52	535,443	410,954	916	3,161,057
Ann Arbor	413	36	624,618	503,611	789	3,894,950
Kalamazoo	369	55	712,796	534,587	1128	4,085,052
Flint	694	84	985,411	787,699	1557	6,760,436
Saginaw	783	116	1,054,842	808,925	2726	7,122,931
Lansing	896	91	1,086,242	890,079	2030	7,183,037
Grand Rapids	1031	82	1,726,732	1,353,026	2045	10,447,668
Detroit	5461	301	8,185,778	6,568,349	8776	52,293,864

Modeling Framework-Urban Study

The required inputs to the model include:

Stakeholder Meetings

MICHIGAN STATE

UNIVERSITY

- Road network (Michigan Department of Transportation)
- Traffic Analysis zones (Michigan Department of Transportation)
- Travel demand matrix (Michigan Department of Transportation)
- Electricity Provision Costs (Utilities)
- Land Use (Michigan Department of Transportation and MPOs)
- Average Land Cost (MPOs)
- Car Companies

Charging station and charger costs (Charging Station Companies)

J

Modeling Framework

MICHIGAN STATE

The modeling framework considers:

- Origin-Destination travel demand (input)
- Simulated trip trajectories
- Minimizing charging station investment cost
 - Cost of charger
 - Land cost
 - Electricity provision cost
- Minimizing travelers' detour

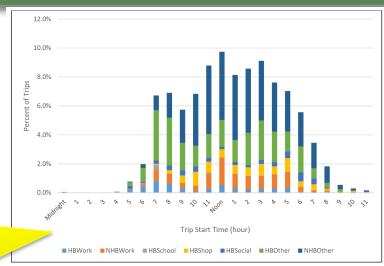
The required inputs to the model include:

- Road network
- Traffic Analysis zones
- Travel demand matrix
- Electricity Provision Costs
- Land Use
- Average Land Cost

This phase focuses on investing in DC fast chargers for urban trips of EV users

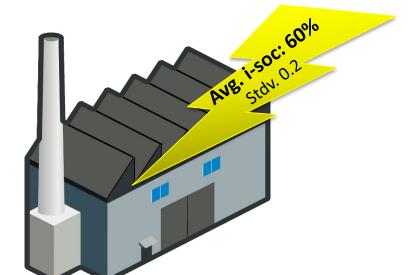
Land use and trip purpose

MICHIGAN STATE UNIVERSITY


Trips start point are classified as:

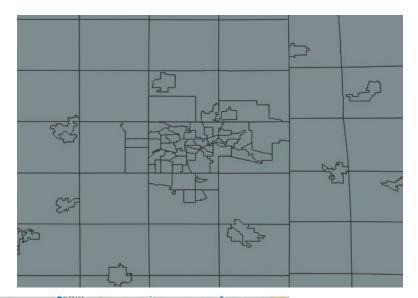
- Single family homes
- Multi-family residential
- Work places

Aus. 1.500.500


Other (i.e. commercial)

Affects initial state of charge (i-SOC) Ave: 1-50c: 80%

Time dependent trip purpose in Michigan


Source: Nancy McGuckin, Jesse Casas, Martha Wilaby, (September 2016), MI Travel Counts III Travel Characteristics Technical Report

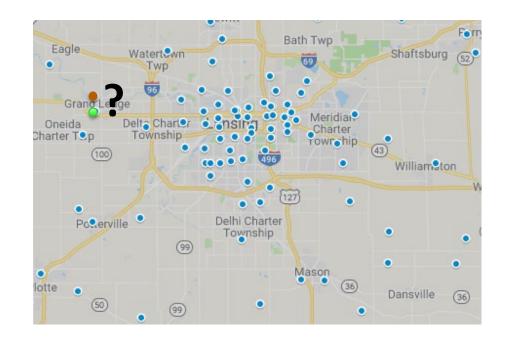
MICHIGAN STATE

Traffic Analysis Zones (TAZ)

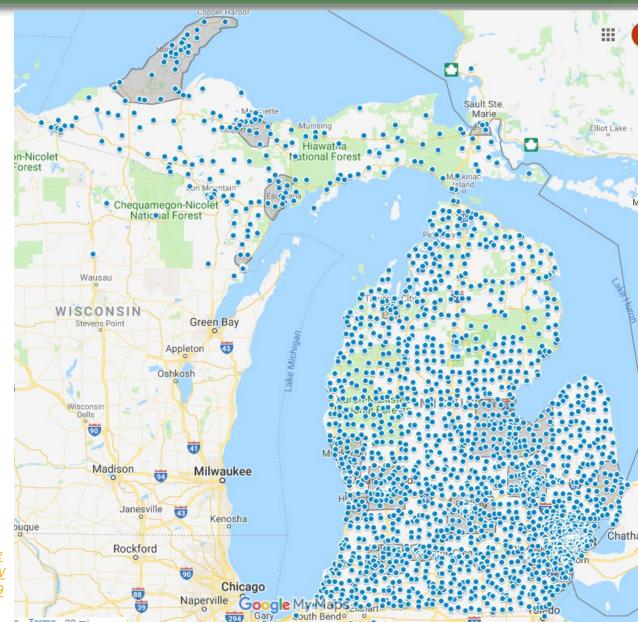
Unit area defined to be used in transportation planning.

Important factors:

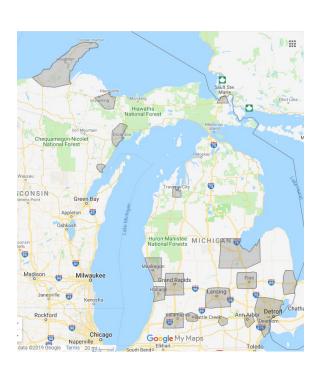
- Size of area
- Density
- Land use
- Geographic features

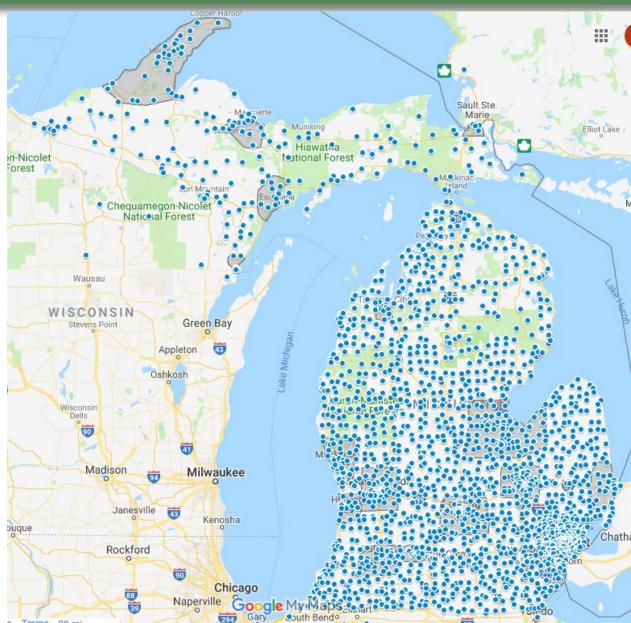


MICHIGAN STATE


Select candidate points

- Electricity Provision Costs
- Average Land Cost

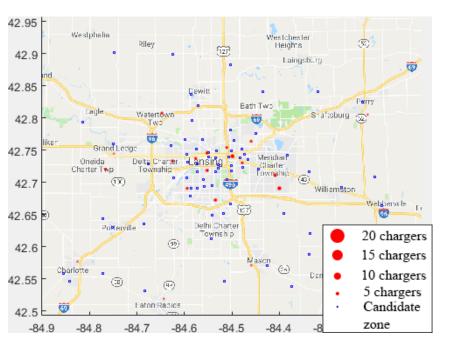


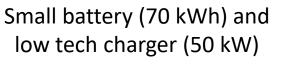


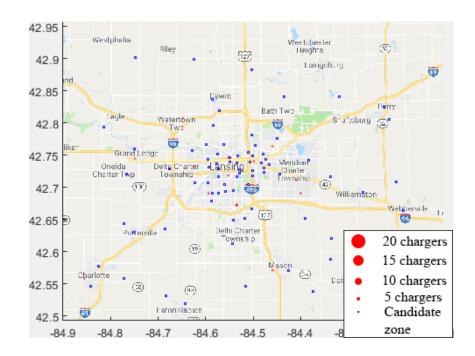
Source: https:// wer?mi

https://www.google.com/maps/d/vie wer?mid=1tOVyNqg6TWeYNq1hyFLW aPq3bMXDDU_3&II=44.61425893829 0696%2C-86.93730349321822&z=7

MICHIGAN STATE


https://www.google.com/maps/d/vie wer?mid=1tOVyNgq6TWeYNq1hyFLW aPq3bMXDDU_3&II=44.61425893829 0696%2C-86.93730349321822&z=7

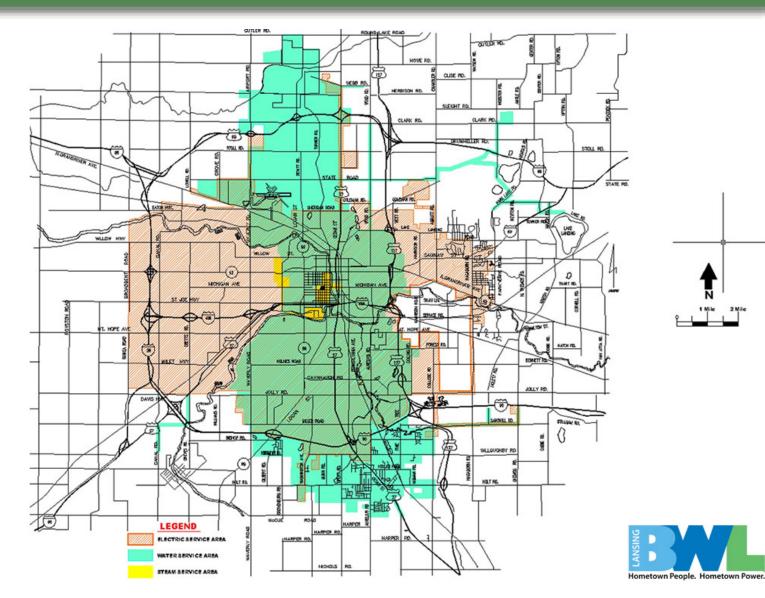

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	92	92	92	92	92
Electric trajectories =	28574	28574	28574	28574	32183
Number of stations =	19	16	16	13	24
Number of spots=	60	65	32	27	105
Average charging and queuing delay (min)	10.27	14.11	3.48	4.78	12.71
Total station cost (m\$) =	2.98	2.54	3.04	2.45	3.80
Total spot cost (m\$) =	2.42	2.55	2.63	2.24	4.14
Total infrastructure cost (m\$) =	5.40	5.09	5.67	4.69	7.94


Lansing

Large battery (100 kWh) and high tech charger (150 kW)

Thank You

Backup Slides



Service Territories

MICHIGAN STATE

Source: https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwiqzcStw-zmAhUJHs0KHdDpBIMQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.lansing.org%2Flistings%2Fboard-ofwater-%2526-light%2F784%2F&psig=AOvVaw3r55oVSJBoq7XSiejQqCOp&ust=1578315978695070

Optimiza	$t_{i} = \sum_{c \in T} \sum_{d \in T} \left\{ 2_{ij} \neq 3_{(o(j),i)}^{t'_{j}} + T_{(i,d(j))}^{\theta} - T_{(o(j),d(j))}^{t'_{j}} \right\}, \forall j \in J$	(11)
Arrival time window	$t_{j}^{'} + T_{(o(j),i)}^{t_{j}} - H\tau \leq (1 - Q_{ij}^{\tau\theta})M, \qquad \forall \tau \in T, \theta \in T, i \in I, j \in J$ $t_{j}^{'} + T_{(o(j),i)}^{t_{j}} - H(\tau - 1) \geq (Q_{ij}^{\tau\theta} - 1)M, \qquad \forall \tau \in T, \theta \in T, i \in I, j \in J$	(12)
at candidate stations	$t_{j}^{'} + T_{(o(j),i)}^{t_{j}} - \mathrm{H}(\tau - 1) \ge \left(Q_{ij}^{\tau\theta} - 1\right)M, \qquad \forall \tau \in T, \theta \in T, i \in I, j \in J$	(13)
Service rate	$\mu_{i}^{\tau} = \alpha \frac{\nu_{i}^{\tau}}{P y_{i}^{\tau}}, \qquad \forall \tau \in T, i \in I$	(14)
Arrival rate	$\omega_i^{\tau} = \frac{y_i^{\tau}}{\mathrm{H}z_i}, \qquad \forall \ \tau \in T, i \in I$	(15)
ſ	$q_i^{\tau} \ge \left(\omega_i^{\tau} - \frac{1}{\mu_i^{\tau}}\right) \mathbf{H} \mu_i^{\tau} + q_i^{\tau-1}$	(16)
	$q_i^{\tau} \ge 0, \qquad \forall i \in I$	(17)
Queuing dynamics	$q_i^0 = 0, \qquad \forall i \in I$	(18)
at each station	$\left(\omega_i^{\tau} - \frac{1}{\mu_i^{\tau}}\right) H \mu_i^{\tau} + q_i^{\tau-1} \le \chi_i^{\tau} M, \qquad \forall \tau \in T, i \in I$	(19)
T	$\begin{aligned} \eta_i^{\tau} &\geq \left(\omega_i^{\tau} - \frac{1}{\mu_i^{\tau}}\right) \mathbf{H} \mu_i^{\tau} + q_i^{\tau-1} \\ q_i^{\tau} &\geq 0, \qquad \forall \ i \in I \\ q_i^0 &= 0, \qquad \forall \ i \in I \\ \left(\omega_i^{\tau} - \frac{1}{\mu_i^{\tau}}\right) \mathbf{H} \mu_i^{\tau} + q_i^{\tau-1} \leq \chi_i^{\tau} M, \qquad \forall \ \tau \in T, \ i \in I \\ \left(\omega_i^{\tau} - \frac{1}{\mu_i^{\tau}}\right) \mathbf{H} \mu_i^{\tau} + q_i^{\tau-1} \geq (\chi_i^{\tau} - 1) M, \qquad \forall \ \tau \in T, \ i \in I \end{aligned}$	(20)

Optimization Model (3/3)

$$\delta_i^{\tau} = \mathbf{H}\chi_i^{\tau} + \frac{q_i^{\tau-1}}{1 - \omega_i^{\tau}\mu_i^{\tau} + \varepsilon} (1 - \chi_i^{\tau}), \qquad \forall \tau \in T, i \in I$$
(21)

Waiting time

$$\overline{W}_{i}^{\tau} = \frac{\delta_{i}^{\tau}}{\mathrm{H}} \left(\frac{q_{i}^{\tau} + q_{i}^{\tau-1}}{2}\right), \qquad \forall \tau \in T, i \in I$$
(22)

Refueling time

$$R_{ij}^{\theta} = \alpha \frac{E_{ij}^{\theta}}{P}, \qquad \forall i \in I, j \in J$$
(23)

Total delay

Departure time window at candidate stations based on delay t'_{j}

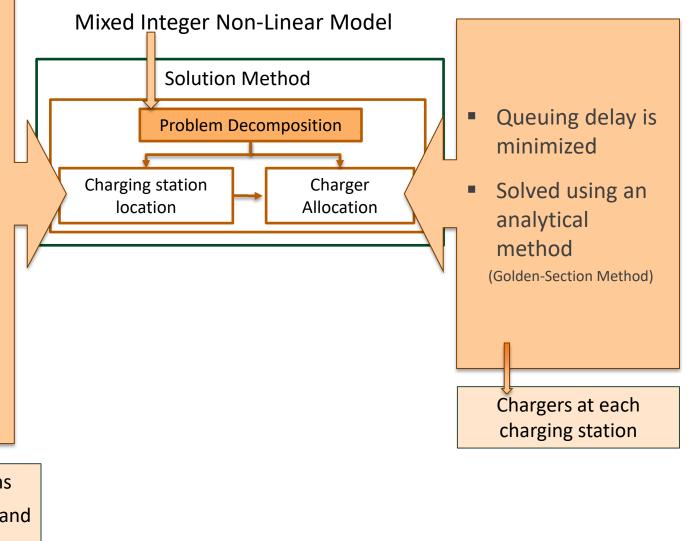
$$\pi_{i}^{\tau} = y_{i}^{\tau} \overline{W}_{i}^{\tau} + \sum_{\theta \in T} \sum_{j \in J} Q_{ij}^{\tau\theta} R_{ij}^{\theta}, \qquad \forall \tau \in T, i \in I$$

$$(24)$$

$$\mathbf{w} \quad t_{j}^{'} + T_{(o(j),i)}^{t_{j}} + R_{ij}^{\theta} + \overline{W}_{i}^{\tau} - \mathbf{H}\theta \leq \left(1 - Q_{ij}^{\tau\theta}\right)M, \qquad \forall \tau \in T, \theta \in T, i \in I, j \in J$$

$$(25)$$

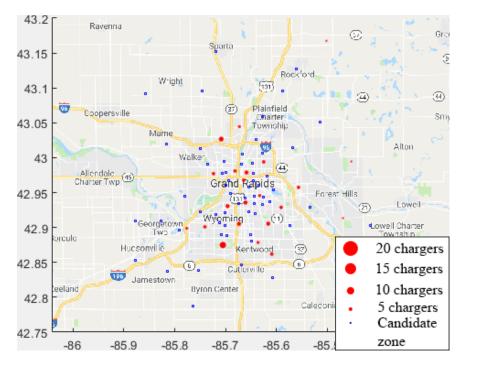
$$t_{j}^{'} + T_{(o(j),i)}^{t_{j}} + R_{ij}^{\theta} + \overline{W}_{i}^{\tau} - H(\theta - 1) \ge (Q_{ij}^{\tau\theta} - 1)M, \qquad \forall \tau \in T, \theta \in T, i \in I, j$$


$$\in J$$

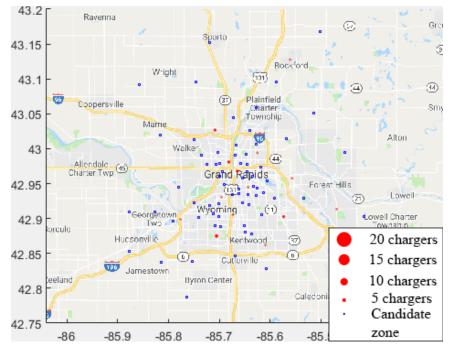
$$(26)$$

- Linear programming
- Minimizes the cost of refueling and detours' experienced
- Minimizes the cost of building charging stations
- Solved using commercial solver
- Solved using a metaheuristic algorithm for larger cities

Location of charging stations Time-dependent EV demand at each station

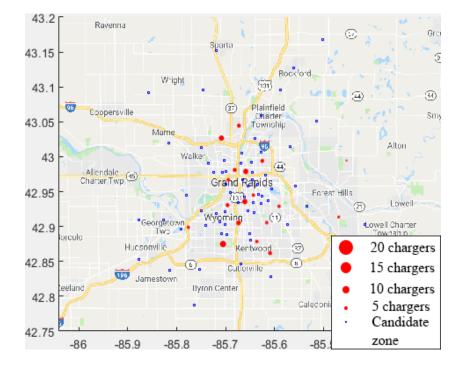


Scenario	Small battery and low tech charger	Large battery and low tech charger	Small battery and high tech charger	Large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	82	82	82	82	82
Electric trajectories =	42383	42383	42383	42383	48803
Number of stations =	22	18	16	14	32
Number of spots=	90	90	34	34	139
Average charging and queuing delay (min)	10.09	14.22	3.51	4.87	11.55
Total station cost (m\$) =	3.61	2.96	3.13	2.74	5.26
Total spot cost (m\$) =	3.20	3.19	2.65	2.65	4.93
Total infrastructure cost (m\$) =	6.81	6.15	5.79	5.40	10.19



Grand Rapids

Small battery (70 kWh) and low tech charger (50 kW)

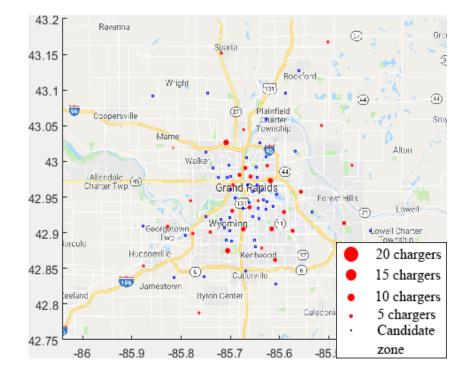


Large battery (100 kWh) and high tech charger (150 kW)

Grand Rapids

Large battery (100 kWh) and low tech charger (50 kW)

Sparta 43.15 Rockford M 43.1 34 96 Plainfield (T) Coopersville Charter Sm 43.05 Township Mame Alton. 43 Walke (H) Allendale. (45) Charter Twp Grand Rapids 42.95 Forest Hills 27) Lowell omina Georgetown Lowell Charter 42.9 Two ownship orculo Hucsonville T 20 chargers Kentwood 42.85 6 0 15 chargers Cutierville 196 Jamestown 10 chargers eeland Byron Center 42.8 5 chargers Caledoni Candidate 42.75 zone -86 -85.9 -85.8 -85.7 -85.6 -85


43.2

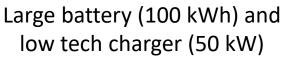
Ravenna

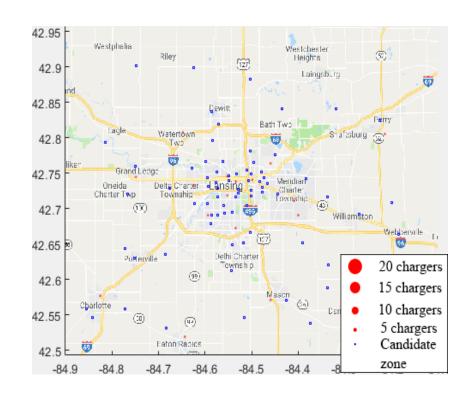
Small battery (70 kWh) and high tech charger (150 kW)

Grand Rapids

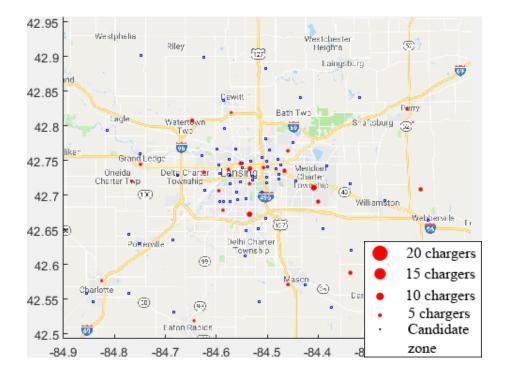
MICHIGAN STATE




Small battery (70 kWh) and low tech charger (50 kW)- External demand


Lansing

MICHIGAN STATE NIVER SITY U



Small battery (70 kWh) and high tech charger (150 kW) Lansing

MICHIGAN STATE

Small battery (70 kWh) and low tech charger (50 kW)- External demand

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	50	50	50
Number of zones =	116	116	116	116	116
Electric trajectories =	26076	26076	26076	26076	29191
Number of stations =	35	25	26	19	45
Number of spots=	84	75	52	40	126
Average charging and queuing delay (min)	10.58	14.40	3.64	4.86	13.39
Total station cost (m\$) =	3.37	2.40	3.32	2.43	4.33
Total spot cost (m\$) =	3.00	2.68	4.07	3.13	4.51
Total infrastructure cost (m\$) =	6.37	5.09	7.39	5.56	8.83

Flint

MICHIGAN STATE

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	84	84	84	84	84
Electric trajectories =	22133	22133	22133	22133	27590
Number of stations =	16	13	13	11	22
Number of spots=	48	45	27	23	88
Average charging and queuing delay (min)	10.25	14.18	3.47	4.76	12.71
Total station cost (m\$) =	2.35	1.91	2.32	1.97	3.23
Total spot cost (m\$) =	1.73	1.62	2.12	1.81	3.17
Total infrastructure cost (m\$) =	4.08	3.53	4.44	3.77	6.40

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	55	55	55	55	55
Electric trajectories =	16460	16460	16460	16460	19276
Number of stations =	16	11	10	9	21
Number of spots=	42	37	20	18	69
Average charging and queuing delay (min)	9.96	14.10	3.41	4.75	12.58
Total station cost (m\$) =	1.74	1.20	1.41	1.27	2.29
Total spot cost (m\$) =	1.50	1.32	1.56	1.41	2.46
Total infrastructure cost (m\$) =	3.24	2.52	2.97	2.67	4.75

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	36	36	36	36	36
Electric trajectories =	11530	11530	11530	11530	18162
Number of stations =	5	5	4	4	9
Number of spots=	20	23	9	9	54
Average charging and queuing delay (min)	10.03	14.44	3.41	5.02	11.87
Total station cost (m\$) =	1.35	1.35	1.20	1.22	2.43
Total spot cost (m\$) =	0.80	0.92	0.74	0.72	2.16
Total infrastructure cost (m\$) =	2.15	2.28	1.94	1.94	4.58

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	52	52	52	52	52
Electric trajectories =	12729	12729	12729	12729	14852
Number of stations =	11	9	9	7	15
Number of spots=	29	30	18	14	44
Average charging and queuing delay (min)	10.32	14.45	3.48	4.84	12.14
Total station cost (m\$) =	1.22	1.00	1.29	1.00	1.67
Total spot cost (m\$) =	1.04	1.07	1.41	1.10	1.57
Total infrastructure cost (m\$) =	2.26	2.07	2.69	2.10	3.24

Scenario	Small battery and low tech charger	Large battery and low tech charger	small battery and high tech charger	large battery and high tech charger	Small battery and low tech charger- External demand
Battery size (kWh) =	70	100	70	100	70
Charging station (kW)	50	50	150	150	50
Number of zones =	21	21	21	21	21
Electric trajectories =	4753	4753	4753	4753	5116
Number of stations =	5	5	5	4	6
Number of spots=	12	12	10	8	16
Average charging and queuing delay (min)	10.70	13.98	3.57	4.69	12.28
Total station cost (m\$) =	0.70	0.70	0.86	0.68	0.84
Total spot cost (m\$) =	0.43	0.43	0.78	0.63	0.57
Total infrastructure cost (m\$) =	1.12	1.12	1.64	1.31	1.41

J

