MODULE C3

FORM EQP 5111 MODULE C3 USE AND MANAGEMENT OF LANDFILL

This section provides information regarding use and management of the Landfill at the Dow Silicones Corporation (Dow Silicones) Midland Site as required by Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451); under Rules R299.9504, R299.9505, R299.9519, R299.9522 which incorporates 40 CFR 270.21 by reference. This description provides information on the landfill located at the Dow Silicones Facility.

List of Appendices

Appendix C3-1 Appendix C3-2 Appendix C3-3 Appendix C3-4	Landfill Equivalency Program Clay Curtain Wall Construction Quality Assurance Landfill Drainage Materials Information Landfill Drawings
	Drawing Y1-31900, Landfill Site Development Plan Drawing Y1-23606, Leachate Collection System Sewer Profiles Drawing Y1-36160, Chemical Sewer Roadway C Drawing Y1-31749, Chemical Sewer Roadway 2 Drawing Y1-36778, Chemical & Storm Sewer Roadway 3 Drawing Y1-100021134, Hazardous Waste Landfill, 2009 Topography
Appendix C3-5	Run-on and Runoff Capture Systems Capacity Evaluation

C3.A LANDFILL INFORMATION [MAC R 299.9504(8), 299.9505, 299.9619 – 299.9622; 40 CFR 270.21; Part 264, Subpart N]

The landfill is located in the 800 and 1000 Blocks of the facility (see facility layout map in Appendix A1-1 and Module A1, General Description). The landfill was constructed in the late 1940's to early 1950's and is therefore not subject to the requirements of 40 CFR 264.301(c) regarding design criteria for new landfills.

C3.A.1 List of Wastes [40 CFR 270.21(a)]

This landfill has been permitted for disposal of wastes exhibiting the characteristic of toxicity for lead (D008). Renewal of authorization to receive characteristic D008 wastes is not requested since Dow Silicones currently has no plans to dispose of any hazardous wastes in the landfill. If such disposal were to be resumed, the facility would first obtain approval from the Michigan Department of Environment, Great Lakes and Energy (EGLE). No wastes containing free liquids are disposed in the landfill and no lead contaminated (D008) hazardous wastes have been placed in the landfill since 1985.

Non-hazardous solid wastes not regulated as hazardous wastes under RCRA may be disposed in the landfill. Examples include: RCRA-empty containers; containers of non regulated gloves, rags, pieces of metal and glass and other debris; column packing; cleaned process equipment; asbestos; construction debris; solidified silicone sealants, rubber and gums; solidified polysiloxane gels; nonhazardous contaminated dirt; nonhazardous sandblast media and used office furniture.

C3.B Liner System Exemption Requests

C3.B.1 Exemption Based on Existing Portion [40 CFR 270.21(b)(1), 264.301(a)]

This landfill was constructed prior to January 29, 1992 and has had no horizontal expansions since that date. The landfill is therefore exempt from the requirements of 40 CFR 264.301(c) for use of a double synthetic liner and leak detection system.

C3.B.2 Exemption Based on Alternative Design [40 CFR 270.21(b), 264.301(d)]

Appendix C3-1, "Landfill Equivalency Program, provides an "Equivalency Program" developed in cooperation with the State of Michigan in 1982 to establish the safety and efficacy of the liner system in the existing landfill and its functional equivalency to liners meeting the requirements then in effect under the former Act 64, Rule 419(4) and 419(f).

C3.C Liner System [40 CFR 270.21(b)(1), 264.301(a) and (c), MAC R 299.9620]

The landfill has a liner that was designed, constructed, and installed to prevent any migration of hazardous wastes or hazardous waste constituents to surrounding soil, groundwater, or surface waters during the active life and closure period of the landfill. This section describes how the liner is constructed to achieve this.

C3.C.1 Liner System Description [40 CFR 270.21(b)(1), 264.301(a) & (b)]

Underlying the landfill is a natural clay strata with a minimum thickness of 25 feet. See Module B3, Hydrogeologic Report, and Appendix C3-1, "Landfill Equivalency Program", for detailed information on the location, thickness, and permeability of this natural clay layer.

A "ground truth" boring sample (Sample C-6, see Module B3, Hydrogeologic Report), taken through 25 feet of depth at the approximate center of the landfill, showed the following profile of the landfill floor:

Thickness of Unit (ft.)	Type of Soil	Permeability (cm/sec)
15	Clay (CL)	3 x 10 ⁻⁸
1	Sandy clay (SM)	4.1 x 10 ⁻⁵
4	Clayey-silt (ML)	1.5 x 10 ⁻⁷
5	Clay-silt (CL)	1.2 x 10 ⁻⁶

Resistivity studies showed that the clay base is uniform, continuous, and homogeneous. The conclusion of the equivalency report was that the existing clay base provides protection to human health and the environment equivalent to the requirements in effect at the time under the former Act 64, Rule 419(4) and 419(f).

A clay curtain wall surrounding the landfill was constructed in 1980 according to Act 64 standards to prevent horizontal migration of hazardous wastes, hazardous constituents, and landfill leachate. The construction of the curtain wall is shown on the drawing (Y1-31900) included in Appendix C3-4. The clay used for the curtain wall had an average permeability of 1.6×10^8 cm/sec. and was compacted to an average of 94% of its maximum density, based on the modified Proctor test. The walls were installed in one-foot lifts with a minimum lateral thickness of six feet,and were keyed into the natural clay base to prevent contaminant migration through the joints. The construction quality assurance report and field test results are provided in Appendix C3-2.

At final closure of the landfill, a cover of natural clay will be installed and keyed to the curtain wall to complete the encapsulation of the landfill contents. See Module A11, Closure and Postclosure Plans, for details of cover construction and installation.

C3.C(2) Resistance of Liner System to Loads and Wastes [40 CFR 270.21(b)(1), 264.301(a)(1)(i)]

In 1982, as part of the Landfill Equivalency Program, soil boring analysis was performed to determine the extent of contaminant migration through the landfill base after 30 years of unregulated operation. At that time, contamination was found to have penetrated only six inches into the underlying clay liner, indicating excellent resistance by the clay to chemical attack and permeation.

Resistance to hydraulic pressures from groundwater and runoff is provided by the leachate collection system within the landfill and the interceptor sewer on the outside of the curtain wall. Both systems serve to remove water which could otherwise exert pressures on the landfill base and curtain wall and are constructed of materials capable of withstanding the pressures and chemicals encountered in this application (see information in Appendix C3-3).

The collected liquids are drained to the wastewater sewer for treatment at Dow Chemical. Drawings of the landfill leachate collection system, the interceptor sewer system, and the connections to the wastewater sewer system are provided in Appendices C3-5 through C3-8.

C3.C(3) Liner System Coverage [40 CFR 270.21(b)(1), 264.301(a)(1)(iii)]

The natural clay base underlies the entire landfill area, which is also surrounded entirely by the clay curtain wall. No surrounding earth is likely to be in contact with waste or leachate.

C3.D Leachate Collection and Removal System [40 CFR 264.301(a)(2), MAC R 299.9619(4)]

See Appendix C3-4 (Drawing Y1-23606), for information on the design and construction of the leachate collection system. The leachate collection system is inspected weekly and after every major storm to ensure leachate flow is unobstructed, and maintenance is performed as necessary to remove obstructions.

C3.E Control of Run-on and Runoff

Systems for control of run-on and runoff are discussed in Appendix C3-5, "Run-on and Runoff Capture Systems, Capacity Evaluation".

C3.F Landfill Operations

Construction of Lifts

The landfill is currently permitted for a total disposal volume of 453 acre-feet of wastes. The active cells are located in the 1000 Block portion of the facility; see Appendix C3-4 (Drawing Y1-116550). The landfill was developed in phases, with placement of wastes taking place only to the active cells to reduce exposure of wastes, erosion, and accumulation of precipitation. Wastes are added to the active cell in 10-foot deep lifts over a 6-inch layer of sand to provide drainage for leachate. Once a lift is completed, if it will be exposed for longer than three months before construction of the next lift, it is covered with a one foot layer of compacted earth.

Placement of Wastes

Materials to be placed in the landfill are transported to the landfill by Dow Silicones employees or by contractors under the direction of Dow Silicones employees. All materials to be placed in the landfill are required to first be approved by designated facility personnel and to have this approval noted on a waste materials approval tag. All materials placed in the landfill are recorded in the landfill log, which is maintained in the waste tracking computer database, and this information is kept as part of the facility operating record.

Laboratory testing is conducted if a material cannot be adequately characterized as to its acceptability for disposal in the landfill based on information provided by the plant department or operations that generated the waste. The laboratory tests may include chemical analysis, Toxicity Characteristic Leachate Procedure (TCLP), the paint filter test for

free liquids, or other such testing or analysis as necessary to evaluate acceptability of the waste for land disposal.

Daily Cover

As each lift is filled, soil is mixed with the wastes in order to form a physically stable mixture. If the disposed waste is susceptible to wind dispersal it is covered daily with a minimum of six inches of soil or other approved cover material that is nontoxic, non-putrescible, and provides sufficient stability to prevent blowing of landfilled material. Treated, solidified polysiloxane gels will not be used for daily cover unless approved by the State of Michigan. Containerized wastes and other inert materials placed in the landfill are covered so that no more than 1,000 square feet of top surface remains exposed at any time. Materials used for cover may be soils from on-site construction projects and may consist of topsoil, sand, gravel, or similar porous materials to allow precipitation to permeate to the leachate collection system; clay is not used for daily cover.

Inspection

The facility hazardous waste landfill is inspected daily for the following items:

- Active cells: Minimum of 6 inches daily cover maintained.
- Active cells: Maximum of 1,000 square feet of exposed waste at any time
- Sidewalls: No gaps, no material leaking from cells.

The results of these inspections are recorded on inspection log sheets, examples of which are provided in Module A5 (Inspection Schedules) of this application.

C3.G Surveying and Recordkeeping [40 CFR 264.309]

Dow Silicones maintains a record of wastes placed in the landfill and their location with respect to permanently surveyed benchmarks. An annual survey of the landfill is performed for the purpose of determining the amount of available disposal volume remaining. The results of this survey are submitted to EGLE in a written report.

C3.H Special Requirements for Ignitable or Reactive Wastes [40 CFR 264.312]

Ignitable or reactive wastes are not disposed in the landfill.

C3.I Special Requirements for Incompatible Wastes [40 CFR 624.313]

Incompatible wastes are not disposed in the landfill.

C3.J Special Requirements for Bulk and Containerized Liquids [40 CFR 264.314]

Bulk or containerized wastes containing free liquids are not disposed in the landfill. To determine whether a waste contains free liquids, U.S. EPA Method 9095, the "Paint Filter Test", as described in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods" (SW-846) is used.

If a waste containing free liquid, other than a lab pack, is to be disposed in the landfill it is first either decanted or otherwise drained of all free-standing liquid, or all free liquid has been absorbed or solidified using a sorbent or solidifying agent which is not biodegradable. These activities are generally carried out by the production building or other Dow Silicones location that generates the waste. Decanting and the addition of adsorbents or solidification agents may also be carried out at the 800 Block facility, at either the 804 Building truck wash slab or in the 809 container storage building. Since only non-RCRA regulated materials are landfilled, the hazards associated with these operations are minimal and will not cause release of hazardous constituents to the environment.

C3.K Special Requirements for Containers [40 CFR 264.315

Except for lab packs and very small containers such as ampoules, containers to be placed in the landfill are either crushed, shredded, or similarly reduced in volume to the maximum practical extent, or they must be at least 90% full.

C3.L Special Requirements for Lab Packs [40 CFR 264.316]

Small containers with free liquids may be placed in the landfill if they meet all of the following conditions:

- 1. They do not contain hazardous wastes.
- 2. They are overpacked within a metal open-head container not larger than 100 gallon capacity and meeting all applicable requirements of U.S. DOT packaging specifications.
- 3. The inner containers are tightly closed and also meet U.S. DOT requirements for inner packagings for the type of material contained.
- 4. The inner containers are packed in absorbent material which is not biodegradable, which is of sufficient quantity to absorb all free liquids in all the inner containers, and which will not react with the wastes.
- 5. All the wastes in all the inner containers in one overpack are chemically compatible with each other.

Dow Corning Corporation Midland Plant Landfill Equivalency Program 1

GENERAL DESCRIPTION

Midland, Michigan

February 1982

. .

Dow Corning Corporation Midland Plant Landfill Equivalency Program

An Equivalency Program for the Midland Plant Landfill facility has been jointly developed by Dow Corning and the DNR, Resource Recovery Division, Geology Section. The purpose of this program is to establish that the existing facility as designed and constructed under approval of Act 641, P.A. of 1978 provides equivalent protection of the environment and human health as specified in Act 64, P.A. of 1979 in the following rules:

Rule 419 section (4)

(4) "The department may grant an exemption from subrules (1) and
 (2) of this rule if the applicant can demonstrate that equivalent protection of the environment and human health is provided without an early failure detection system."

and Rule 416 section (f)

(f) "Alternative liner designs and installations providing equivalent environmental and human health protection may be approved by the department. The applicant shall prove equivalency.

The Equivalency Program is based on demonstrating that after approximately 30 years of non-regulated landfilling, vertical migration of contamination has not occurred. The program designed to demonstrate this fact has two parts: (1) soil core sampling and analysis, and (2) resistivity analysis. A description of each analysis follows.

Soil Core Sampling and Analysis

To demonstrate that the existing <u>insitu</u> clay base of this facility is redirecting leachate flow horizontally, a core sampling test was developed.

It is hypothesized that the clay stratum under this facility exhibits characteristics that prevent leachate from continuing downward into possible ground water sources. Furthermore, if after 30 years of nonregulated operation, contamination doesn't exist below the clay surface, the upgraded facility will reduce this likelihood substantially. To prove this hypothesis the following items were considered.

- (1) The existing site has been operating for 30 years. The effects of this long term operation will provide a good prediction of leachate behavior on the clay and on its migration.
- (2) Clay contours can be developed from the soil boring and horizontal leachate flow patterns mapped.
- (3) Higher concentrations of contaminants will accumulate along leachate flow patterns.
- (4) The depth of contamination into the clay surface will indicate the ability of this material to change the flow direction of leachate from vertical to horizontal.
- (5) If a pitched sand seam exists under the facility, contamination will be evident at depths far below the clay interface. This geologic formation would have a very low probability as evidenced by the soil boring profiles.

To identify leachate contamination, core samples were taken along the flow pathways at various clay depths. The samples were analyzed for specific contaminates. A remote boring was done and core sample taken to act as a control and can be used for comparisons.

The results of the analysis of the core samples could show three potential contamination patterns which correlate to potential flow pathways. These contamination patterns are:

- If contamination depth at the clay surface is shallow, leachate during the past 30 years has not penetrated the clay formation and is being redirected horizontally along the surface of the clay.
- (2) If contamination depths at the clay surface are great, then leachate during the past 30 years is penetrating the clay formation and is continuing downward. The clay formation does <u>not</u> have the ability to redirect flow.
- (3) If contamination depth is not at the clay surface but rather at a depth far below this interface in a gravel or sand seam, then the clay formation is interrupted by a pitched permeable strata that is channelling leachate downward. This type of geology has a low probability of existing in this area and is not evidenced by existing soil borings.

Resistivity Analysis

To demonstrate that sand or gravel seams do not exist within the clay strata under this facility, electrical resistivity tests were developed.

It is hypothesized that the clay strata under this site is homogeneous and consistant. To determine if this hypothesis is correct without boring numerous holes into the strata or completely destroying the natural condition (both methods unfavorable), a non-destructive test was used.

In selecting this non-destructive test method the following items were considered.

- (1) Electrical resistivities of existing soils can vary with moisture, contamination, temperature, procedure, etc.
- (2) Use of this procedure in the existing landfill area would <u>not</u> provide appropriate data.
- (3) Soil borings or "down the hole" truth must be used in interpreting the field data.
- (4) The analysis of electrical resistivity tests can be completed by matching a field curve against a family of standard curves or by using a computer to generate a curve for given soil parameters.

The non-destructive test selected for this analysis used a Bison instrument and the Wenner configuration. In the test area (1000 Block of the Facility), a grid was established (see sketch) defining resistivity stations. At each station an apparent resistivity curve was generated.

To interprete the field curves a computer program was used to generate an apparent resistivity curve for a model soil profile which can be developed from ground truth (soil borings) or hypothetical constructed. The computer generated apparent resistivity curves are matched to the field curves. When the field curve is duplicated, a soil profile can be identified. This procedure was completed for representative stations and the results are supportive of the belief that the clay stratum is consistent and homogeneous.

Summary of Test Results

The soil core sampling and analysis results show that contamination penetrated the clay stratum to a depth of six (6) inches or less. The soil boring logs, the analysis results and procedures, profile sketches and location plots are included in this report. The resistivity analysis results show that the clay stratum under this facility is continuous and homogeneous. The field data, procedures and a summary of the findings are included in this report.

Conclusions

The Dow Corning Midland Plant Landfill as defined, designed and constructed will provide equivalent protection of the environment and human health as specified in Act 64, P.A. of 1979. The equivalency is based on the following.

- (1) This facility has been in operation for over 30 years and has established an environmentally acceptable performance record.
- (2) The performance of the facility was verified by equivalency tests which demonstrate the capability of this facility to continue to protect the environment for the remainder of its life. The capability to provide environmental protection is based upon tests that used actual field data from this site.
- (3) The facility will continue to operate for the purpose of disposing only Dow Corning Corporation by-products.

Dow Corning Corporation Midland Plant Landfill Equivalency Program

Test # 1 Soil Core Sampling And Analysis

. .

Section 1 - Test Development

Section 2 - Test Procedures

Section 3 - Test Results

Soil Core Sampling And Analysis

Section 1 - Test Development

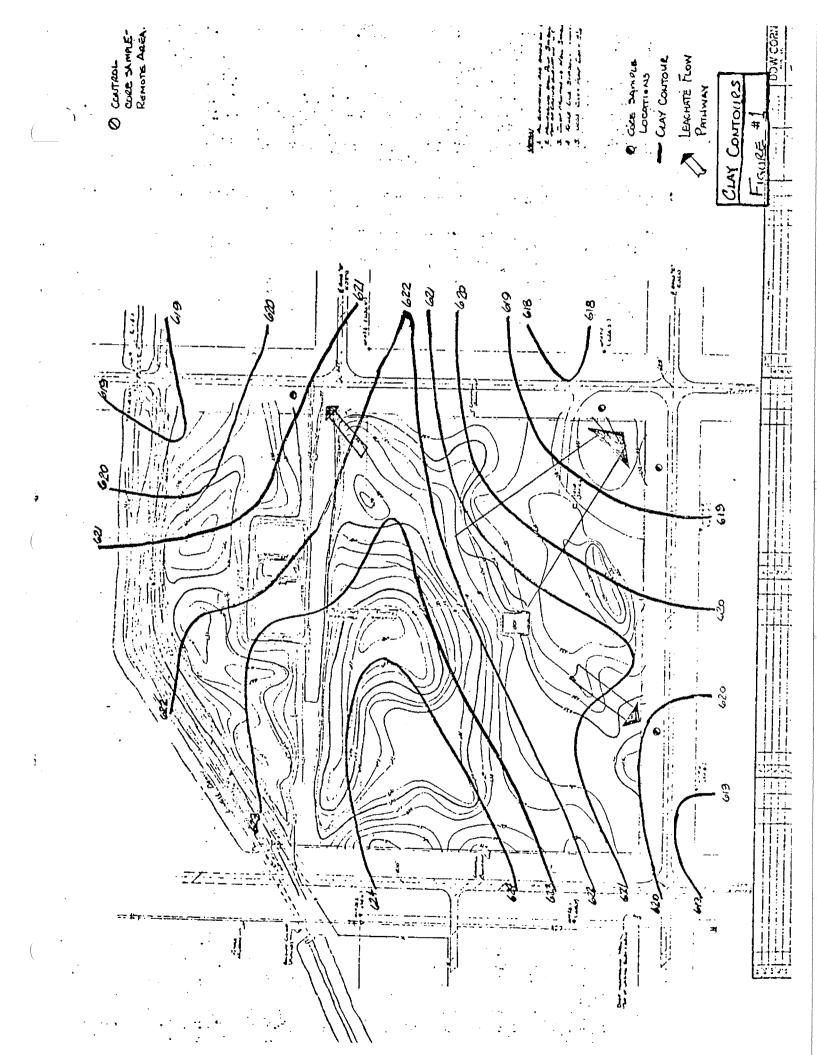
• Test Development Notes

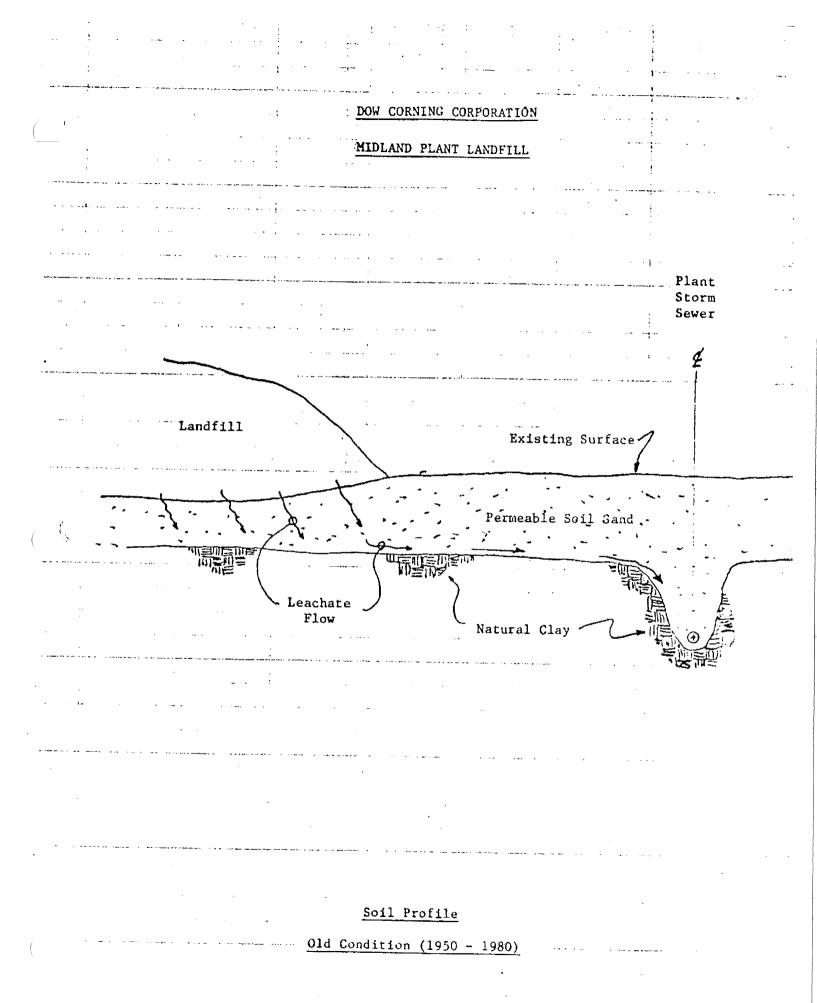
• Clay Contour Sketch

• Soil Profile - Old Condition (1950-1980)

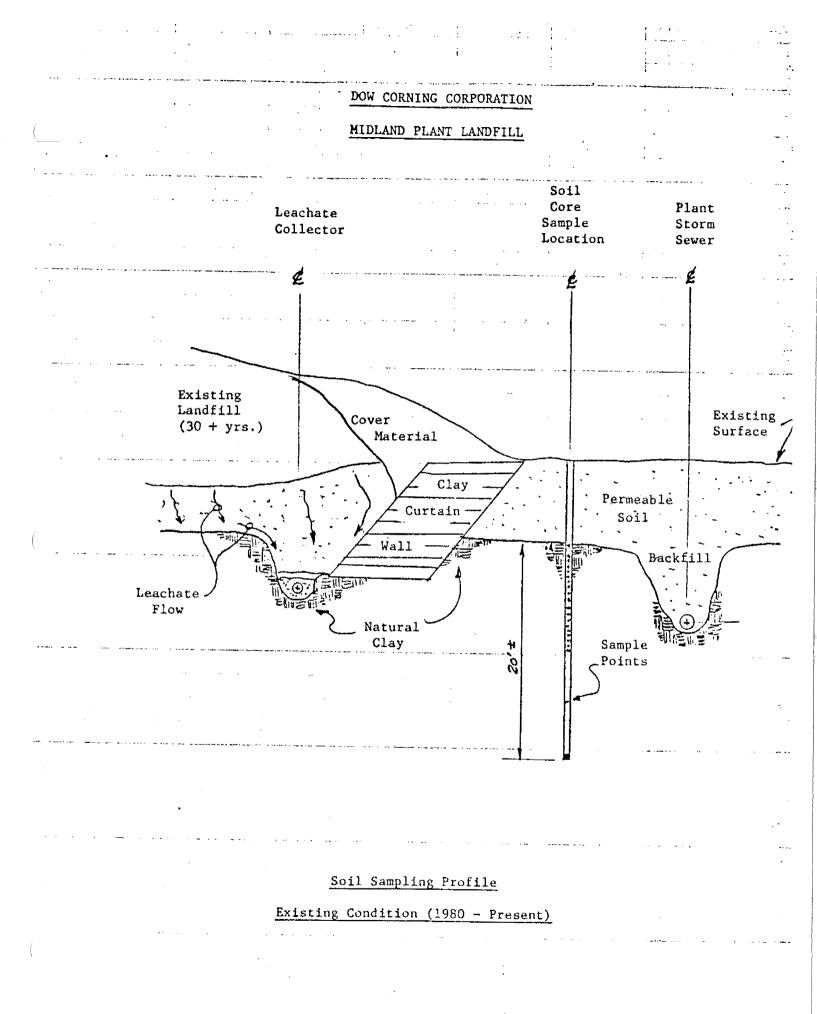
• Soil Profile - Existing Condition (1980-Present)

Soil Core Sampling And Analysis Test Development Notes


- 1. The existing facility has been in operation for over 30 years. The projected life of the facility is for an additional 30 years.
- 2. An assessment of the performance of the facility over the past 30 years can be used to predict the expected performance for the remaining life of the upgraded facility.
- 3. By assessing leachate migration patterns and contamination levels at various depths near the facility, an evaluation of the site with respect to environmental protection can be made.
- 4. To verify that the underlying clay stratum is redirecting leachate flow from a vertical pattern to a horizontal pattern a clay contour map was made (attached). From the contours major flow channels can be identified. Along the major channels or pathways higher concentrations of contaminates will be deposited into the clay.
- 5. By taking core soil samples located along the flow pathways, contamination levels at various depths can be recorded. From this data an actual permeability of the clay soil can be calculated.


 $\frac{K_{(vertical)}}{30 \text{ years}}$

NOTE: (from the test results) $K_y = \frac{0.5ft}{30 \text{ yrs.}} = 1.61 \times 10^{-8} \text{ cm/sec}$

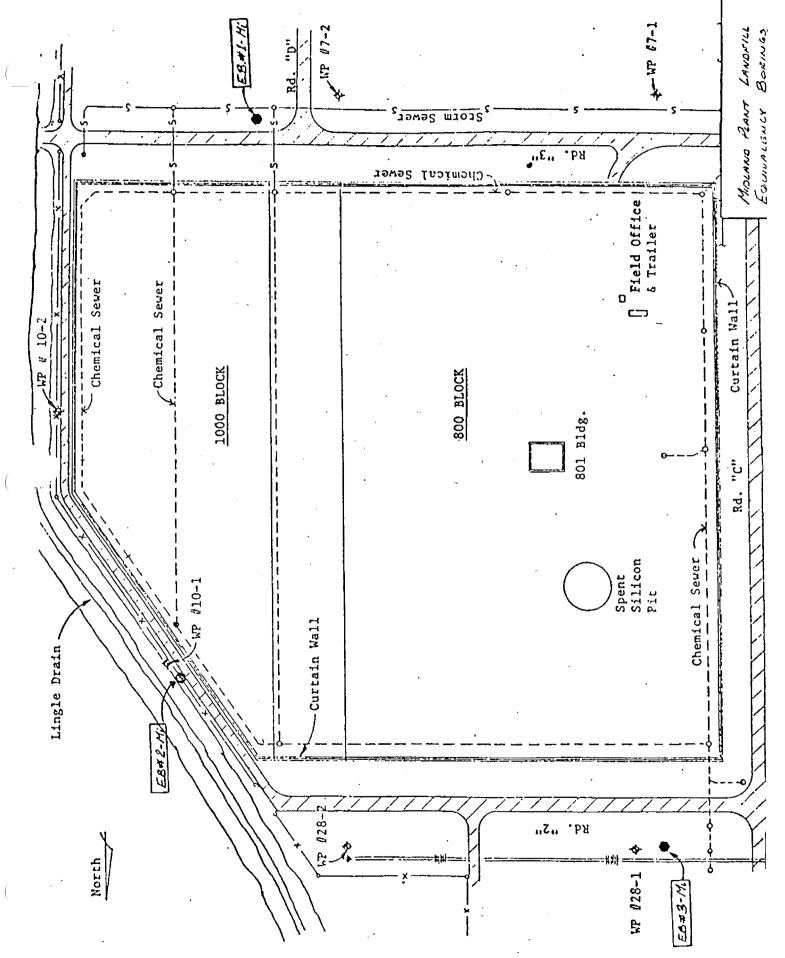

- 6. In addition to defining the clay characteristics exhibited at this site, these tests also show that the permeability of the natural clay is not increased by the leachate from this facility even after a 30 year exposure.
- 7. There are limitations of the soil core sampling test. The soil core samples cannot verify the consistency of the clay stratum under the site. Therefore a second non-destructing test was developed. The test designed to address this issue is a resistivity analysis which is defined later in this report.

· (

.

Soil Core Sampling And Analysis

Section 2 - Test Procedures


• Boring Location Plan

• Boring Logs

• Soil Analysis Methodology

. ((

. (

PRO	JECT	يد اعل الله				SIT	E	-6 7		
			EQUIVALENCY BORING			Sout	h Side c	e (outside of Rd. "3"	2)	
BOR			1 / 01		1	OJECT		SAMPLI		
STAF	RTED	ן רייין	1-4-81 COMPLETED 11-4-81	·		1-127		S. S		SHELBY
DEPTH IN FEET	LEGEND	SAMPLES	DESCRIPTION OF MATERIAL	SAMPLE NO.	STD. PENETRATION ^M N ² Blows PER Foot	UNIT NAT. WT <mark>fr</mark> j	7 PLAS LIMI		WATER CONTENT %	CH TONS/FT 2
			SURFACE ELEVATION	s	22	2	30	20	30 4	0 50
		X	Sand-brown, fine silty (SP) Clay-brown, dense with some sand (CH)	A						
			-gray, firm (CL)	B C D						
20		X X		E						
30			End of Boring at 27½ ft.		a na antara a mandra					
W.A.T W.L. W.L.	ER LEY	EL	OBSERVATIONS					TEBT		

LOG OF BORING NO. 58.#1-M2

.

.

ł

		·····		-, <i>p</i> ,++ <i>L</i>					
PROJECT			SIT	E					
EQUIVALENCY BORING	Near Lingle Drain								
BORING		PRI	103FC	N O_	SAMP	LE TYP	E		
STARTED 11-4-81 COMPLETED 11-4-81			31-12					SHELBY	
			Ľ8. FT 3	UNCONFI	NED COM	PRESSIVE	STRENGTH	TONS/FT 2	
	ă,	110M	- 	1	2 	3	a	5	
		ET R.	NAT. Y	PLAS	тіс Тіс	WATE	R		
	SANPLE	STD. PENETRATION"N" BLOWS PER FOOT	, x ,	LERI		CONTEN		13H1T */0	
SURFACE ELEVATION-	31	510	TIRU	10	X D 20				
Sand-brown, fine silty (SP)								1	
]							
10 Clay-dense gray (CL)	A								
	B								
-sandy gray	C								
	D								
	E			ļ	 				
	F						į		
							ł		
-brownish gray, silty	G								
(СН)									
30			1						
	ł								
	_ н								
End of Boring at 33 ¹ / ₂ ft.									
		1							
40		ł							
	ł								
	1			ł					
WATER LEVEL OBSERVATIONS				6 A M	T E S	τ, ΙΝΙ	Ξ,		
<u> W.l.</u>			-			SERVICES			
<u>[W.L.]</u>			<u> </u>						

LOG OF BORING NO. EB#2-Mai

,

,

,

.

(•

			SIT	E		
PROJECT			1311		th of Rd. "2"	[
EQUIVALENCY BORING	J JJECT	NQ	SAMPLE TYPE			
			81-1		S. S AUGER S	HELBY
STARTED 11-6-81 COMPLETED 11-6-81	- 1	<u> </u>				ONS/ET 2
E SILANES DESCRIPTION OF MATERIAL	SAMPLE NO.	STO, PENETRATION") BLOWS PEN FOOT	UNIT NAT. WT <mark>FT</mark> 3	7 PLAS LINI	T •/ ₆ CONTENT •/ ₆	5 LIQUID LIMIT %
SURFACE ELEVATION	~	~ ~	<u> </u>	10		50
Sand-brown, fine, silty (SP) Clay-dense brown -brownish gray, sandy -gray brown-firm -gray, becoming less dense -silty gray with 1" stones 20 20 20 20 20 20 20 20 20 20	A B C D E F G					
WATER LEVEL OBSERVATIONS W.L. W.L						

LOG OF BORING NO. E.S.# 3-Mai

PAC	DJECT						F					
			EQUIVALENCY BORING		West Side of Rd. "C"							
BORING						OJECT NOL SAMPLE TYPE						
STA	RTED	11	-5-81 COMPLETED 11-5-81 8				1-127 S. S AUGER SHE					
DEPTH IN FEET	Ł E G E M D	SAUPLES	DESCRIPTION OF MATERIAL	L Sample ag.	STO, PENETRATION "N" BLOWS PER FOOT	UNIT NAT. WT <mark>15</mark> .	7 PLAS L1MI		PRESSIVE 2 3 WAT CONTEN	-4 	5 	1010 T 9/8
	ļ		SURFACE ELEVATION	2	5 1	5	10		-		_	- 1
			Sand-brown, fine, silty (SP)						-		
10			Clay-dense brown -brown to light gray -soft brown	A B C D E								
30		X, X	-grayish brown with pebbles -dk. gray with stones & pebbles End of Boring at 30 ft:	F G								
		VEL	OBSERVATIONS				5 A M			3.		

LOG OF BORING NO. - 8. #4. Mi

. (

í

PROJECT			SIT						
EQUIVALENCY BORING		T			.DO & SA				
BORING				N Q.		E TYPE			
STARTED 8-31-81 COMPLETED 8-31-8	1	8	1-12		S.S NED COMP				
UI O SI DESCRIPTION OF MATERIAL	SAMPLE KO.	STD. PENETRATION "N BLOWS PER FOOT	UNII NAT. WT <mark>lb</mark> .	1 PLAS LIMI	2 511C T #/6		R T 9/0	5 LIQU LIMIT	30
SURFACE ELEVATION			} 	10		30	40	50	
Clay-stiff, moist, brown silty-oxidized varie- gated 		14 16 10							
25 End of Boring at 26 ft.	E	12							
WATER LEVEL OBSERVATIONS									
W.L.			\neg		TES		с,		
W. L.									

LOG OF BORING NO. REFERENCE BORING - CONTROL

.

. . . . (

(

SOIL ANALYSIS METHODOLOGY

1

HAZARDOUS WASTE LANDFILL

EQUIVALENCY ISSUE

February, 1982

The soil samples were analyzed for volatile organic priority pollutants by Mead CompuChem, Research Triangle Park, N.C. The analytical procedures uses for the priority pollutants are based on those promulgated by EPA. The analytical methods used by CompuChem have been included with this report.

The soil samples were dispersed in distilled deionized water and placed on a wrist action shaker for 4 hours. The soil dispersions were centrifuged and the clear supernatant was analyzed for chloride and copper. The chloride was determined by CTM* 0018 using silver nitrate as the titrant with a potentiometric end point. The copper was determined by atomic absorption (CTM 0616) with a carbon furnace.

* CTM refers to Dow Corning Corporate Test Method

(

ANALYTICAL METHODS, DEFINITIONS AND EXPLANATIONS

The CompuChem report contains not only the concentrations of the priority pollutant compounds identified but also additional supportive information which is useful in the review of this data. A complete report includes the following (if ordered):

Priority Pollutant Data GC/MS (VOA, B/N/P, Acid) Pesticides (Method 608) Inorganics Other Analytical Data (EP Toxicity, etc.) Conventional Permit Data

The GC/MS priority pollutant data is presented in summary form (concentration of each identified compound) along with the detection limits specified by EPA. In addition, a reconstructed total ion chromatogram (RIC) for each fraction and for the relevant instrument calibration (standards) runs are included.

Also included in the report are the spectra for all organic (except for certain pesticides) priority pollutant compounds identified above EPA specified detection limits, as well as a laboratory chronicle of completion dates.

To assist in the interpretation and utilization of this data, a Glossary of frequently used terms, a Compound Cross-Reference List and a typical Spectral Match Diagram with explanatory notation are also included.

If the Twenty Peak option has been ordered, the report also includes spectral match diagrams for as many as twenty (20) additional non-priority pollutant compounds with peaks greater than half the intensity of the internal standard (d_{10} -anthracene).

If the Quality Control option has been ordered, the report also includes BFB and DFTPP tuning data for the GC/MS instruments, a summary of surrogate spike recovery data and the following:

> Matrix Spike Data Duplicate Data Method Blank Data

Also included with the method blank is an RIC for each fraction plus spectra and spectral match diagrams for any compounds identified with concentrations greater than EPA specified detection limits found in the blank.

If the Chain-of-Custody option has been ordered, this information is included in the section with the sample data.

ANALYTICAL METHODS

The analytical methods used by CompuChem for priority pollutant, RCRA and NPDES permit analyses are based on those promulgated by EPA. These methods have appeared in the Federal Register as noted below.

In summary, gas chromatography/mass spectrometry (GC/MS) is the analytical technique employed for the analysis of organic compounds while atomic absorption spectrophotometry (AAS) is used for the analysis of metals.

On occasion CompuChem also performs analyses for other parameters which are not on the priority pollutant list. In these cases also, EPA methods are used if available, and if not methods are developed and verified along guidelines suggested by EPA.

مد جزر

References for Methods

Volatile Organics Acid Extractables Base/Neutral/Pesticide Extractables Pesticides Inorganics (Method 624) Federal Register 12-3-79 (Method 625)

(Method 625) * * * (Method 608) * * EPA: Analysis of Water & Waste Water (1974, 1979) Federal Register 5-19-80

RCRA

GLOSSARY OF TERMS

ACID FRACTION

Those compounds which solvent extract from the sample when it is pH-adjusted acidic (pH<2).

BFB TUNING

Each GC/MS instrument dedicated to VOA analyses is certified according to protocol prior to each 8-hour shift by injecting BFB (bromofluorobenzene) and comparing relationships between ion abundances for certain key mass numbers. If the prescribed relative ion abundances are not present, the instrument is adjusted until the criteria are met. With the available QC option, these parameters are included in the report for the BFB analysis following the specific sample analyzed.

B/N/P FRACTION

Those compounds which solvent extract from the sample when it is pH-adjusted basic (pH>11). This includes the pesticides (P), bases (B) and since this step is performed first, the neutral (N) compounds.

DFTPP TUNING

Each GC/MS instrument dedicated to Base/Neutral or Acid analyses is certified according to protocol prior to each 8-hour shift by injecting DFTPP (decafluorotriphenylphosphine) and comparing the relationships between ion abundances for certain key mass numbers. If the prescribed relative ion abundances are not present, the instrument is adjusted until the criteria are met. With the available QC option, these parameters are included in the report for the DFTPP analysis following the specific sample analyzed.

INDISTINGUISHABLE ISOMERS

Compounds with essentially the same mass spectrum and which have the same elution time from the gas chromatograph. An example is anthracene and phenanthrene.

INTERNAL STANDARD

CompuChem uses the internal standard method of quantitation. The same amount of d10-anthracene is added to both the calibration standard and the sample. All calculations are referenced to a signal produced by this compound. Then all results are automatically corrected for any change in instrument sensitivity.

MATRIX SPIKES

Actual priority pollutants which are added to a second aliquot of the sample to determine the effect, if any, of the sample matrix on the analytical procedure.

METHOD BLANK

A sample of organic-free laboratory water which undergoes exactly the same extraction procedure at the same time as the actual samples. This monitors for possible contamination from glassware, solvents, or the extraction procedure.

PERCENT RECOVERY (SURROGATES AND MATRIX SPIKES)

The formula for determining percent recovery is:

% Recovery (Spike) =

Conc.	in	Spike	 Conc.	in	Sample	Y	100%
Amount	t of	F Spike					100%

Amount found -----X 100%

Amount added

PURITY VALUE (sometimes abbreviated PUR)

% Recovery (Surrogate) = -

A mathematically devised index which indicates the "goodness of fit" between the spectrum in the sample and a compound in the library. The maximum value is 1000, and values greater than 800 indicate a high probability that the identification is correct. Values from 500 to 800 are only tentative and values less than 500 are not reliable. Also important is the relationship between purity values for the best, second and third matches; ideally the second and third purity scores are much lower than the first.

RIC - RECONSTRUCTED ION CHROMATOGRAM

A plot of the total ion current of the mass spectrometer during the analysis. The plot is analogous to a gas chromatogram where a peak indicates that a compound was detected at that time. The vertical axis is intensity and the horizontal axis is time (both minutes and mass spectral scan marks are labelled).

RPD - RELATIVE PERCENT DIFFERENCE

An average used to compare duplicate analyses:

$$RPD = \frac{2 (C_1 - C_2)}{(C_1 + C_2)} \times 100\%$$

where C1 and C2 are the concentrations found in two separate aliquots of the same sample.

SATURATED ION

If a compound is present at a high enough concentration in the sample, the intensity of the major ions is generally so strong that the detector is overloaded by the signal. This is a result of the instrument having been adjusted for maximum sensitivity in order to reach lower detection limits.

SPECTRAL MATCH DIAGRAM

A display of the mass spectrum of the sample followed by the mass spectra of the three compounds in the library which are most similar to the sample (see Purity Yalue)

SURROGATES

A surrogate compound is chemically similar to one of the priority pollutants except that it is deuterated or fluorinated or in some other manner distinguishable by GC/MS from the other compounds in the sample.

TWENTY (20) PEAK SEARCH

An available option in which up to 20 non-priority peaks larger than half the internal standard peak are identified by searching the NBS spectral library. Only an estimate of concentration can be given which is:

Low	<50 ug/1
Medium	50-200 ug/1
High	>200 ug/1

VOA - VOLATILE ORGANICS ANALYSIS

الارابيجا يبيدون ويتعوان ووعيتكم فالمرار بالالمامين والاعاد فالمتستمية

Those highly volatile compounds detected by introducing the sample directly into the GC/MS through a purge and trap apparatus.

(

Soil Core Sampling And Analysis

Section 3 ~ Test Results
Test Boring E.B. # 1 Mi
Test Boring E.B. # 2 Mi
Test Boring E.B. # 3 Mi

• Test Boring E.B. # 4 Mi

• Control Test Boring

• Test Detection Limits

.

.

(

. .

TEST BORING EB #1 MI

	SAMPLE	. A .	В	C	D	E	G	н
(** SAMPLE DEPTH (Feet)	52	71	9 1	11 1	13]		
<u></u>	VOLATILE ORGANICS	Conc.	Conc.			Conc.	· · · ·	
		(UG/KG	UG/KG	UG/KG	UG/KG	ŬG/KG.		
	ACROLEIN ACRYLONITRILE BENZENE BIS (CHLOROMETHYL) ETHER BROMOFORM CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYLVINYL ETHER CHLOROFORM DICHLOROBROMOMETHANE DICHLOROBROMOMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPYLENE ETHYLBENZENE							
$\left(\right)$	METHYL BROMIDE METHYL CHLORIDE			- " * *0				
22Y. 23Y. 24Y. 25Y. 25Y. 26Y. 27Y. 28Y. 29Y 30Y.	METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHYLENE TOLUENE 1,2-TRANS-DICHLOROETHYLENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROFTYLENE TRICHLOROFLUOROMETHANE YINYL CHLORIDE	44	50	45	49	<u>.44</u>		
	**SAMPLE DEFTH (Feet)	72	9 3	112	131	151	22]	271
	CHLORIDE.(ppm)	36	31	11		З	3	1
·	COPPER (ppb)	<10	<10	410		< 10	<10	210

** Sample depths shown in the above table is the distance measured from grade level to the sample. Sand-clay interface for EB #1 MI was 5½ feet.

:

TEST BORING EB #2 MI

:*

_	SAMPLE	<u>A</u>	В	<u> </u>	<u> </u>	<u> </u>	F	
	** SAMPLE DEPTH (Feet)	91	117	131	15=	17]		• (
<u>,</u>	VOLATILE ORGANICS	Conc. UG/KG			Conc. UG/KG	Conc. UG/KG		
1Y. 2Y. 3Y.	ACROLEIN ACRYLONITRILE BENZENE	89						
	BIS (CHLOROMETHYL) ETHER BROMOFORM CARBON TETRACHLORIDE CHLOROBENZENE	16					•	
10V. 11V. 12V. 13V.	CHLOROETHANE 2-CHLOROETHYLYINYL ETHER CHLOROFORN DICHLOROBROMOMETHANE DICHLORODIFLUOROMETHANE							
15V. 16V. 17V. '9V.	1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPYLENE ETHYLBENZENE							
21V. 22V.	METHYLENE CHLORIDE	120	35	83	19	81		
23V. 24V. 25V. 26V. 27Y. 28Y. 29V	1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHYLENE TOLUENE 1,2-TRANS-DICHLOROETHYLENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE							
	TRICHLOROFLUOROMETHANE	11		12				
	** SAMPLE DEPTH (Feet)	113	132	153	17 1	19 1	21 1	26 1
	CHLURIDE (ppm)	153	65	-	20	8	2	3
	COPPER (ppb)	< 10	<10	-	<10	L 10	<10	<10

** Sample depths shown in the above table is the distance measured from grade level to the sample. Sand-clay interface for EB #2 MI was 91 feet.

ł

TEST BORING EB #3 MI

•

	SAMPLE	A	B	C	D	E	<u> </u>	G
•	** SAMPLE DEPTH (Feet)	5	7	9	11	13		
·	YOLATILE ORGANICS		ł	Conc. UG/KG		Conc. UG/KG		
12V. 13V. 14V. 15V. 16V. 17V. 18" 21V. 22V. 23V.	CHLORODIBROMOMETHANE CHLOROETHANE 2-CHLOROETHYLVINYL ETHER CHLOROFORM DICHLOROBROMOMETHANE DICHLOROBROMOMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPYLENE ETHYLBENZENE METHYL BROMIDE METHYL CHLORIDE METHYL CHLORIDE METHYL CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHYLENE 1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROFLUOROMETHANE TRICHLOROFLUOROMETHANE YINYL CHLORIDE	65	140 24	80	100	84		
-	** SAMPLE DEPTH (Feet)	7	9	11	13	15	22	27
	CHLORIDE (ppm)	204	103	54	40	61	81	-
,	COPPER (ppb)	<10	<10	< 10	210	<10	<10	_

** Sample depths shown in the above table is the distance measured from grade level to the sample. Sand-clay interface for EB #3 MI was 5 feet.

TEST BORING EB #4 MI

-		SAMPLE	A	<u> </u>	<u> </u>	<u> </u>	<u> </u>	म	C
	** SAMPLE DER	PTH (Feet)	8	10	12	14	16		· · · · ·
•	YOLATILE ORGANICS		Conc.	Conc.		Conc.	Conc.		· · · · · · · · · · · · · · · · · · ·
			UG/KG	UG/KG	UG/KG	UG/KG	UG/KG		
17.	ACROLEIN						1 1		1
2V. 3Y.	ACRYLONITRILE BENZENE		44						
4Y. 5V.	BIS (CHLOROMETHYL BROMOFORM) ETHER						·	
6۲.	CARBON TETRACHLOR	IDE							
· 7Y. 8Y.	CHLOROBENZENE CHLORODIBROMOMETH	ANE	16			ļ			
· 9Y.	CHLOROETHANE							·	•
	2-CHLOROETHYLYINY CHLOROFORM	LEINER							•
	DICHLOROBROMOMETHA DICHLORODIFLUOROM								
14V.	1,1-DICHLOROETHAN	Ë '		•					. 1
15Y. 16Y.	1,2-DICHLOROETHANI 1,1-DICHLOROETHYLI								:
177.	1,2-DICHLOROPROPA	NE							-
Joy.	1,3-DICHLOROPROPYI ETHYLBENZENE	LENE							
Z1V.	METHYL BROMIDE METHYL CHLORIDE	·				· ·			
227.	METHYLENE CHLORIDE		120	170	78	120	65		
	1,1,2,2-TETRACHLOR TETRACHLOROETHYLER								.
25Y.	TOLUENE								
	.1,2-TRANS-DICHLORO 1,1,1-TRICHLOROETH								
28Y. 29Y	1,1,2-TRICHLOROETH TRICHLOROETHYLENE	IANE		· ·					
30Y.	TRICHLOROFLUOROMET	THANE]				•		
317.	VINYL CHLORIDE						·		
	** SAMPLE DEPT	H (Feet)	10	12	14	16	18	25.	30
	CHLORIDE. (ppm)		336	-	29	6	3	3	1
	COPPER (ppb)		<10		<10	410	<10	410	

** Sample depths shown in the above table is the distance measured from grade level to the sample. Sand-clay interface for EB #4 MI was 8 feet.

:

•

EXHIBIT II - COMPOUND LIST

SAMPLE IDENTIFIER: 5124-59-10-0 (CONTROL) COMPUCHEM SAMPLE NUMBER: 8321

SAMPLE LOCATION: 5300 BLOCK, NEAR WALDO ROAD

	VOLATILE ORGANICS	CONC	ENTRATIC UG/KG)	DN CONC	entration UG/KG)		DETECTION LIMIT (UG/KG)	SCAN NUMBER
۱۷.			BDL		BDL		100	
27.			BDL		BDL	•	100	
37.	BENZENE		BDL		BDL		100	
47.	BIS (CHLOROMETHYL) ETHER		BDL		BDL		10	•
5Y.	BROMOFORM		BDL		BDL		10	
6Y.	CARBON TETRACHLORIDE		BDL		BDL		10	
78.	CHLOROBENZENE	•	BDL	-	BDL		10	
8V.	CHLORODIBROMOMETHANE		BDL		BDL		10	
9V. 10V.	CHLOROETHANE		BDL		BDL		10	
117.	2-CHLOROETHYLVINYL ETHER		BDL	•	BDL	-	10	
124.	CHLOROFORM DIGULODOBROMO		BDL		BDL		10	
121.	DICHLOROBROMOMETHANE		BDL		BDL		10	
147.	DICHLORODIFLUOROMETHANE		BDL		BDL		īõ	
157.	1,1-DICHLOROETHANE		BDL		BDL		10	
16Y.	1,2-DICHLOROETHANE		BDL		BDL		10	
17Y.	1,1-DICHLOROETHYLENE 1,2-DICHLOROPROPANE		BDL		BDL	· ·	10	
18V.	1,3-DICHLOROPROPYLENE		BDL		BDL		10	
197	ETHYLBENZENE		BDL		BDL		10	
207.	METHYL BROMIDE		BDL		BDL		10	
217.	METHYL CHLORIDE		BDL		BDL		10	
224.	METHYLENE CHLORIDE	~~	BDL		BDL		10 [·]	
231.	1,1,2,2-TETRACHLORDETHANE	65		84			10	103
247.	TETRACHLOROETHYLENE		BDL		BDL		10	*
257.	TOLUENE	10	BDL		BDL		10	
264.	1, 2-TRANS-DICHLOROETHYLENE	10			BDL		10	696
278.	1,1,1-TRICHLOROETHANE		BDL		BDL		10	0.0
281.	1,1,2-TRICHLOROETHANE		BDL		BDL		10	
297	TRICHLOROETHYLENE		BDL		BDL		10	
<u>30V.</u>	TRICHLOROFLUOROMETHANE		BDL BDL		BDL		10	
314.	VINYL CHLORIDE		BDL	10			10	252
			DUL		BDL		10	

ŲG∕KG = ppb

BDL=BELOW DETECTION LIMIT

NOTE:

All sample results including the control indicate the presence of methylene chloride. An investigation of this situation suggests that the detected methylene chloride is from using this material as a <u>cleaning</u> agent by the analytical laboratory (CompuChem). This laboratory has informed Dow Corning that they have experienced crosscontamination problems with methylene chloride on previous occasions and is attempting to correct it. A check of company records revealed that methylene chloride is purched only in pint bottles and is used in plant laboratories. All spent chemicals from laboratories are routinely incinerated thus effectively eliminating this source as the origin of the contamination.

	YOLATILE ORGANICS	DETECTION LIMIT (UG/KG)
2Y. 3Y. 4Y. 5Y. 6Y. 7Y. 8Y. 9Y. 1Y. 12Y. 13Y. 14Y. 15Y. 16Y. 15Y. 16Y. 20Y. 21Y. 23Y. 24Y. 25Y. 26Y. 25Y. 26Y. 25Y. 26Y. 20Y	ACROLEIN ACRYLONITRILE BENZENE BIS (CHLOROMETHYL) ETHER BROMOFORM CARBON TETRACHLORIDE CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROETHANE 2-CHLOROETHYLYINYL ETHER CHLOROFORM DICHLOROBROMOMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPYLENE ETHYL BROMIDE METHYL BROMIDE METHYL CHLORIDE METHYL CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHYLENE 1,2-TRANS-DICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROFLUOROMETHANE	100 100 10 10 10 10 10 10 10 10 10 10 10
31Y.	YINYL CHLORIDE	10

UG/KG = ppb

Dow Corning Corporation Midland Plant Landfill Equivalency Program

Test # 2 Resistivity Analysis

Section 1 - Summary of Test

Section 2 - Apparent Resistivity Curves - Field Data

Section 3 - Field Data Interpretion

. (

Resistivity Analysis

Section 1 - Summary of Tests

• Procedures

• Interpretation of Resistivity Curves

• Results and Discussion

P.O. BOX 1444 MIDLAND, MI 4 (517) 496-3610

February 23, 1982

Dow Corning Corporation Building #205 Midland, MI 48640

Attn: G. Hamblin - Project Engineer

Re: Resistivity Survey-Midland Plant Landfill-1000 Block Addition-Midland Plant-Dow Corning Corporation

Gentlemen:

The resistivity survey for the above referenced facility has been completed. This work was authorized by your office as of December 8, 1981.

This report summarizes the field data and the follow-up analysis of the resistivity curves at representative stations based on two/three layer models and ground truth where that is known with some degree of certainty.

Please call if there are any questions or if we might be of additional service

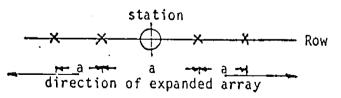
Respectfully Submitted,

William A. Crozier, Ph.D. SAMTEST, Inc.

WAC/ss

Enclosures

Introduction


The resistivity survey for the Dow Corning Landfill, Proposed Expansion, Midland Plant is completed. Apparent resistivity values were measured at three (3) rows of stations as outlined by Mr. James Janiczek, Resource Recovery Division, Michigan Department of Natural Resources in his letter of 11-17-81 and designated rows B, C & D. Stations were set up every sixty feet (60 ft.) by Dow Corning personnel and the survey run about each station along the row line using a Wenner electrode configuration. The field data is summarized on the Table later in this report and reported in graphical form on log-log paper marked according to row and station.

At the time of this survey, (12-14-81 thru' 12-22-81), the site was excavated to near the clay bottom stratum but covered in most locations by from several inches to ten, (10), inches of medium fine sand. Although the proposed first cell had been previously excavated to the planned bottom elevation, it was filled with water and not accessible for this survey. The exterior clay barrier wall had also been constructed and represented the limit of this investigation.

The purpose of this investigation is to demonstrate from a vertical electrical sounding survey that the clay stratum which constitutes the lower barrier of the landfill does not contain any interbedded sand lens within the upper five feet (5 ft.), that would jeopardize the integrity of the landfill site for waste containment.

Field Testing Procedure

Field data for this survey were collected using a Bison Model 2350 Resistivity Meter and the Wenner electrode configuration. Each station along a given row was designated as the center of the electrode array and the first potential electrodes spaced at one and one half feet, (1 1/2 ft.) on either side of the station center. ("a" spacing of three feet) The spacing was increased by three feet for successing readings to a maximum of forty-eight feet, (48 ft.). This is represented graphically below as viewed from above the site:

Electrode length and the soil profile for the upper one to one and one half foot, (1 1/2 ft.), indicates good contact with the upper clay surface at all stations for the survey. Some variation in the surface clay quality was noted during the shallow surface soil profile evaluation and appears in the soil log presented on the appropriate row/station resistivity curve(This resistivity meter system uses heavy duty plug connection to the meter for the electrode wire with wire reel connections at each electrode stake to minimize spurious readings.

Interpretation of Resistivity Curves

The apparent resistivity data appear later in this report in tabular form and are plotted on log-log paper for uniformity and convenience in interpretation. Since concern is directed to the upper five to ten feet (5-10 ft.), of the soil profile as reflected in the electrode spacings, examination of the soil layer model is restricted primarily to the left hand side of the curve where a generalized two layer model appears to apply. The soil properties and layer thickness value are taken from the generalized log-log curves presented by Van Nostrand and Cook 1. Several curves were evaluated using a three layer curve matching technique presented by Wetzel and McMurry 2. These soil parameters are then used in conjunction with a computer program developed by Zohdy 3. to construct apparent resistivity values for different wenner electrode spacings. The generalized approach to the calculation of the apparent resistivity appears on Table #2.

This evaluation is performed for several typical stations along each of the B and C rows.

In conjunction with the above interpretation, the purpose of the survey and known ground truth from nearby perimeter borings, a multilayer model is constructed to try and clarify the sensitivity of the resistivity technique to detect an interbedded sand lens. This model and the results are superimposed on Row/Station C-8 figure #3.

No attempt was made to quantitatively interpret apparent resistivity curves for Row D-stations where a somewhat complex multilayer structure occurs.

Results and Discussions

Rows B and C, with all stations excluding the beginning and end stations for each row, cover the major protion of the proposed landfill barrier layer. Almost all of the resistivity value of resistivity in the upper clay layer p₁ is less then the resistivity, p₂, for the generalized lower layers (p₁<p₂). A typical ratio for this is about p₁:p₂::1:2. This lower genemeasured off site for the site excavated sands, (p=1100Qft.), clay till layer known to underly the site at about twenty-five could represent a combination of an underlying clayey silt layer with the clay till basement

It is recognized that, as the apparent resistivity curve becomes flatter, approaches an asymptote, it is easier to reconstruct the curve from a soil model with variables having a rather wide variation in value. Generally, the solution then

— SAMTEST. INC.- DIVERSIFIED TESTING SERVICES-P.O. BOX 1444-MIDLAND, MICH.+517-496-3610 ---

becomes less unique for deeper strata but still gives valuable information regarding shallow depths.

The multi-layer model was developed around a typical C row station (C-8) in order to generate the type of apparent resistivity curve that could be expected for a sand lens in the upper five feet, (5 ft.) of clay. The results of this model are presented on Figure #3, where a sand layer of one foot, (1 ft.), thickness appears at several locations within the clay layer. Generally, such a layer can be easily detected on this resistivity curve. However, when reduced to a six inch, (6 in.), or a 0.5 ft. layer occuring near the bottom of the clay barrier layer it could easily be undetected and represented by a new two layer model with the sand lens resistivity part of the combined lower layer resistivity.

Apparent resistivity curves observed for the D row stations are generally described as "H" type curves which can generally be described by a three layer model. Here the relative values for the resistivities is $p_1 > p_2 < p_3$. The clay dyke sand topsoil cover and adjacent road bed continually vary along this row. However, any lower lying sand layers, if present, are thin enough to be suppressed by the compacted clay wall resistivity.

Summary

Generally, based on the uniformity of the curves representing row B & C, interior to the proposed landfill addition there are no interbedded sand lenses thick enough to be detected by this method in the upper clay layer. Also, compared with ground truth for the perimeter of the site and the uniformity of the shallow depth portion of the resistivity curves, the clay stratum for the bottom of the site appears to provide adequate barrier under Act 64 requirements.

BIBLIOGRAPHY

- Van Nostrand, R. G., and K. L. Cook, 1966, Interpretation of resistivity data: Professional Paper 499, United States Geological Survey, 310 pages.
- Wetzel, W. W., and McMurry, H. V., 1937, A set of curves to assist in the interpretation of the three-layer resistivity problem: Geophysics, v. 2, p. 329-341. Resistivity. GA 4206
- Zohdy, A. A. R., and Bisdorf, R. J., 1975, Computer programs for the forward calculation and automatic inversion of Wenner sounding curves: available only from U.S. Department of Commerce National Technical Information Services, Springfield, Virginia 22161 as PB-247 265.

. (

(

TABLE #1

.

"B" ROW STATIONS - APPARENT RESISTIVITIES (OHM-FT)

Stations

	"A"	ļ					L S	, ,	1 - r -	c F	ې ء ،			D_11	0-13	B_16
Reading	Space	AB/2	B-1	B- 2	р-9	H-4	3 B-4 B-2 B-2	0	2-1	0-9	ν-0	D1-0	11-0			
•	¢		5 21	25.1	63.2	30.9	46.2	46.8	30.9 46.2 46.8 60.9 60.9 56.4 93.6	60.9	56.4	93.6	72.6	110.1	102.0	90.0
- ~	סי ו	4.5		30.7	47.5	.5 38.6	60.0	56.3	56.3 74.4 79.2	79.2	55.6 102.0	102.0	88.8	115.8	115.2	107.4
ו הו	יסי	6.75		38.5	53.6	48.8			84.9	0.06	70.8 115.2	115.2	100.4	122.4	126.9	119.7
4	12	6	36.3	42.1	63.6	57.0	80.0		87.5 95.4 101.2	101.2	85.3 124.8	124.8	118.1	126.0	128.4	132.0
ŝ	15	11.25	24.9	49.4	71.2	62.2		101.7	89.9 101.7 106.4 107.5	107.5	91.2 131.2	131.2	129.4	133.9	139.5	145.6
9	18	13.5	38.2	57.2	75.1	68.4		103.7	94.9 103.7 112.3 110.9 91.3 140.0	110.9	91.3	140.0	135.2	136.6	144.7	150.5
7	21	15.75	47.3	49.3	79.4		102.9	106.5	75.6 102.9 106.5 118.0 106.3 106.4 142.4	106.3	06.4	142.4	138.4	145.7	147.4	154.1
ø	24	18	76.8	49.0	83.3	76.6	108.5	111.4	108.5 111.4 125.3 116.9 112.6 145.9	116.9	112.6		141.6	150.5	152.2	155.8
6	27	20.25	89.1	57.8	88.3	66.2	109.9	114.2	109.9 114.2 127.7 126.9 116.1 148.2	126.9]	116.1	148.2	145.8	140.9	156.6	148.2
10	30	22.5	84.6	54.9	88.2	7.17	9.111	118.2	111.9 118.2 132.9 129.0 120.6 150.6	129.0	120.6	150.6	150.0	156.0	159.6	148.5
II	33	24.75	91.7	53.8	91.1	93.1	115.2	123.8	93.1 115.2 123.8 133.0 136.6 123.1 151.5	136.6]	(23.1	151.5	152.1	156.8	165.0	151.8
12	36	27	93.9	56.5	105.5	97.6	117.4	130.7	97.6 117.4 130.7 134.3 142.2 125.6 151.6	142.2]	125.6	151.6	153.4	160.9	166.3	155.9
13	39	29.25	0.66	58.5	109.6	94.8	117.8	128.7	<u>94.8</u> 117.8 128.7 136.5 147.4 132.2 158.3	[4.7.4]	32.2]	158.3	155.6	165.0	166.1	162.2
14	42	31.5	76.9	54.2	108.8	107.1	120.1	130.2	8 107.1 120.1 130.2 139.0 152.5 135.3 163.0	152.5	135.3 1	163.0	158.3	166.7	168.8	168.0
15	45	33.75	107.1	· 1	110.7	105.3	126.4	131.0	7 105.3 126.4 131.0 142.2 154.8 137.7 164.2	154.8	37.7	164.2	159.8	169.7	173.3	175.5
16	48	36	109.4	69.6	112.3	107.5	130.1	133.4	3 107.5 130.1 133.4 144.9 156.5 139.2 168.0	156.5 1	39.2	168.0	161.8	171.8	173.8	180.0

Underline Apparent Resistivities: Field Noted Change in Instrument Operation (I Variation) "C" ROW STATIONS - APPARENT RESISTIVITIES (OHM-FT)

Stations

•

.

i

Reading	"A" Space	$\overline{AB}/2$	C-1	c-2	C-3	C-4	C-5	(East C-64	(East-West) C-6J C-6	C-7	6-8 2-8	C-9	c-10	C-11	C-12
		•							-	·					
1	ŝ	2.25	1	•	58.8	67.5	98.4	97.8	94.5	96	6° 66	93	105.0	ı	94.8
7	9	4.5	ŀ	ł	54.2	75.6	114.0	110.4	105.0	114.6	112.8	106.2	112.8	114.0	106.8
en	6	6.75	I	١.	69.4	91.8	129.6	122.4	124.2	126.9	125.1	118.8	121.5	128.7	120.6
4	. 12	6	78.0	62.5	80.0	103.2	136.8	140.4	129.6	135.6	134.4	126.0	133.2	141.6	136.8
2	15	11.25	73.5	74.1	91.2	114.9	140.7	143.4	138.3	140.4	137.7	136.2	140.5	148.5	146.1
6	18	13.5	78.1	79.9	9.101	119.3	142.8	149.8	149.2	142.9	147.6	143.5	148.0	157.1	152.1
٢	21	15.75	81.3	83.6	106.5	121.6	142.8	151.6	152.0	147.4	152.0	147.8	155.2	164.0	157.9
8	24	18	87.4	90.7	110.2	124.8	126.0	153.1	151.4	151.7	157.9	154.6	158.6	168.7	162.7
6	27	20.25	97.2	95.0	116.1	128.0	145.0	158.2	151.7	155.0	160.1	159.8	163.9	175.0	171.2
10	30	22.5	98.4	0.62	115.5	132.3	147.9	157.2	156.0	159.9	164.1	162.3	168.3	178.5	174.3
11	33	24.75	101.9	104.6	120.4	135.6	148.2	161.4	155.4	160.7	166.7	166.6	169.6	180.5	181.2
12	36	27	106.6	81.7	120.3	138.6	150.8	162.0	156.2	162.4	167.4	166.3	172.4	182.9	190.4
13	39	29.25	110.4	108.8	125.2	120.1	155.2	166.1	159.1	163.8	171.2	168.4	176.7	186.0	198.9
14	42	31.5	115.9	108.8	124.3	140.7	154.1	169.3	159.6	165.1	173.9	171.4	179.8	187.7	205.4
15	45	33.75	117.9	115.2	125.1	142.6	154.4	153.4	160.2	166.5	175.5	172.4	180.9	189.4	212.4
16	48	36	120.9	117.1	130.1	143.0	155.5	156.5	160.3	168.0	176.2	173.3	181.4	191.0	210.2

(

(

"D" ROW STATIONS - APPARENT RESISTIVITY (OHM-FT)

Stations

•

3 2.25 102.0 201.3 169.8 1 6 4.5 102.0 201.3 169.8 1 9 6.75 107.1 108.9 107.4 1 9 6.75 107.1 108.9 108.0 1 12 9 100.7 103.8 103.1 1 12 19 100.7 103.8 103.1 1 18 13.5 97.0 104.4 113.8 1 21 15.75 102.3 104.4 113.8 1 21 15.75 102.3 112.1 115.9 1 21 15.75 102.3 112.1 113.6 1 24 18 109.4 117.8 117.4 1 27 20.25 116.7 129.9 132.6 1 30 22.5 116.7 129.9 132.6 1 33 24.75 124.1 138.6 142.9 1 36 27 130.7 140.0 150.8 1 42 31.5 134.9 146.6 155.2 1 45 33.75 144.0 156.1 159.8 1 48 36 148.8 162.2 155.2 15	Readino	"A" Snace	<u>AR</u> /2	1-Q	D-2	D-3	D-4	D-5	D-6	D-7	D-8
3 2.25 102.0 201.3 169.8 147.3 165.6 172.8 160.0 103.2 6 4.5 108.0 131.4 107.4 120.0 114.0 120.0 103.2 1 9 6.75 107.1 108.9 108.10 99.9 50.6 100.8 123.3 12 9 100.7 103.8 103.1 77.4 111.3 101.4 105.1 15 11.25 102.4 102.3 108.75 68.25 46.2 111.9 110.4 18 13.5 97.0 104.4 113.8 110.52 123.5 123.1 120.1 21 15.75 102.3 112.1 115.9 116.97 128.5 125.6 126.1 101.4 21 15.75 102.3 112.1 115.9 123.6 147.9 134.2 143.1 120.1 21 105.7 129.6 122.6 124.9 147.9 154.2 <	10001102	22242									
6 4.5 108.0 131.4 107.4 120.0 114.0 120.0 103.2 1 1 2 6.75 107.1 108.9 108.0 99.9 $\underline{50.6}$ 100.8 103.3 1 1 1 106.7 103.8 103.1 77.4 111.3 101.4 105.1 15 1 1 1 10.5 102.3 108.75 68.25 $\underline{46.2}$ 111.9 110.4 18 13.5 97.0 104.4 113.8 110.52 123.5 110.4 105.1 21 15.75 102.3 117.4 115.2 123.5 123.6 134.2 1 24 18 109.4 117.8 117.4 24.72 147.9 153.6 143.1 1 1 27 20.25 116.7 129.6 126.2 147.9 153.6 143.1 1 30 22.5 136.6 154.2 147.9 153.6	1	, ņ	2.25	102.0	201.3	169.8	147.3	165.6	172.8	160.0	111.0
9 6.75 107.1 108.9 108.0 99.9 50.6 100.8 123.3 12 9 100.7 103.8 103.1 77.4 111.3 101.4 105.1 15 11.25 102.4 102.3 108.75 68.25 46.2 111.9 110.4 18 13.5 97.0 104.4 113.8 110.52 123.5 110.4 21 15.75 102.3 112.1 115.9 116.97 128.5 110.4 110.4 21 15.75 102.3 117.4 213.5 128.5 125.6 126.8 1 24 18 109.4 117.8 117.4 213.70 134.2 1 134.2 1 20 22.5 116.7 129.6 123.6 124.2 147.9 143.2 143.1 21 20.25 116.7 124.2 124.2 124.7	2	6	4.5	108.0	131.4	107.4	120.0	114.0	120.0	103.2	109.8
12 9 100.7 103.8 103.1 77.4 111.3 101.4 105.1 15 11.25 102.4 102.3 108.75 68.25 $\underline{46.2}$ 111.9 110.4 105.1 18 13.5 97.0 104.4 113.8 110.52 123.5 118.1 120.1 21 15.75 102.3 112.1 115.9 116.7 123.6 136.8 134.2 1 24 18 109.4 117.8 117.4 $\underline{37.92}$ 137.0 135.8 134.2 1 27 20.25 116.7 129.9 132.6 124.2 147.9 155.6 156.8 1	μ	6	6.75	107.1	108.9	108.0	6.99.9	50.6	100.8	123.3	98.1
15 1125 1024 10875 6825 $\underline{462}$ 1119 1104 18 135 97.0 1044 1138 11052 1235 1181 1201 21 1575 1023 1121 1159 11697 1285 1266 1268 1 24 18 1094 1178 1174 $\underline{3792}$ 1370 1356 1268 1 27 2025 1167 1299 1376 1272 1479 1472 1472 1472 1431 1432 1431 1292 1326 1515 1431 1432 1431 1432 1432 1431 1432 1432 1432 1431 1296 1515 1245 1432 1432 1432 1432 1432 1432 1432 1432 1432 1432 1432 1432 1432 1432 14312 1432 1432	4	12	6	100.7	103.8	103.1	77.4	111.3	101.4	105.1	97.4
18 13.5 97.0 104.4 113.8 110.52 123.5 118.1 120.1 21 15.75 102.3 112.1 115.9 116.97 128.5 125.6 126.8 1 24 18 109.4 117.8 117.4 $\underline{37.92}$ 137.0 135.8 134.2 1 27 20.25 115.3 123.1 129.6 125.01 140.9 142.3 143.1 1 30 22.5 116.7 129.9 132.6 125.4 163.0 148.8 1 33 24.75 124.1 138.6 124.2 147.9 153.6 151.5 1 36 27 130.7 140.0 150.8 $\underline{54.0}$ 164.9 163.0 148.8 1 37.9 29.25 134.0 156.0 156.0 156.0 146.9 162.4 1 36 27 130.7 146.0 156.0 156.2 146.9 162.4	່ທ	15	11.25	102.4	102.3	108.75	68.25	46.2	111.9	110.4	94.05
21 15.75 102.3 112.1 115.9 116.97 128.5 125.6 126.8 24 18 109.4 117.8 117.4 $\underline{37.92}$ 137.0 135.8 134.2 27 20.25 115.3 123.1 129.6 125.01 140.9 142.3 143.1 30 22.5 116.7 129.9 132.6 125.01 140.9 142.3 143.1 33 24.75 124.1 138.6 142.9 136.6 125.4 163.0 148.8 36 27 130.7 140.0 150.8 $\underline{54.0}$ 164.9 163.0 148.8 39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 156.0 155.2 149.9 170.5 170.5 170.5 45 33.75 144.0 155.8 149.9 170.5 170.5 177.4 167.0 48 36 148.8 162.2 162.2 150.0 181.4 172.4 167.0	6	18	13.5	97.0	104.4	113.8	110.52	123.5	118.1	120.1	96.5
24 18 109.4 117.8 117.4 $\underline{37.92}$ 137.0 135.8 134.2 27 20.25 115.3 123.1 129.6 125.01 140.9 142.3 143.1 30 22.5 116.7 129.9 132.6 124.2 147.9 153.6 151.5 33 24.75 124.1 138.6 142.9 136.6 125.4 163.0 148.8 36 27 130.7 140.0 150.8 $\underline{54.0}$ 164.9 163.4 162.4 39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 156.0 135.2 149.9 170.5 170.5 177.0 42 33.75 144.0 155.2 148.0 181.4 172.4 167.0 48 36 148.8 162.2 156.1 159.8 148.0 181.4 172.4 167.0	7	21	15.75	102.3	112.1	115.9	116.97	128.5	125.6	126.8	103.3
27 20.25 115.3 123.1 129.6 125.01 140.9 142.3 143.1 30 22.5 116.7 129.9 132.6 124.2 147.9 153.6 151.5 33 24.75 124.1 138.6 142.9 136.6 125.4 163.0 148.8 36 27 130.7 140.0 150.8 $\underline{54.0}$ 164.9 163.4 162.4 39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 150.0 135.2 149.9 170.5 170.5 170.6 45 33.75 144.0 156.1 159.8 148.0 181.4 172.4 167.0 48 36 148.8 162.2 162.2 162.2 156.1 190.1 179.0 182.4	83	24	18	109.4	117.8	117.4	37.92	137.0	135.8	134.2	124.3
30 22.5 116.7 129.9 132.6 124.2 147.9 153.6 151.5 33 24.75 124.1 138.6 142.9 136.6 125.4 163.0 148.8 36 27 130.7 140.0 150.8 <u>54.0</u> 164.9 163.4 162.4 39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 150.0 135.2 149.9 170.5 170.5 170.5 45 33.75 144.0 156.1 159.8 148.0 181.4 172.4 167.0 48 36 148.8 162.2 162.2 150.1 190.1 179.0 182.4	6	27	20.25	115.3	123.1	129.6	125.01	140.9	142.3	143.1	132.6
33 24.75 124.1 138.6 142.9 136.6 125.4 163.0 148.8 36 27 130.7 140.0 150.8 <u>54.0</u> 164.9 163.4 162.4 39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 150.0 135.2 149.9 170.5 170.5 170.0 45 33.75 144.0 156.1 159.8 148.0 181.4 172.4 167.0 48 36 148.8 162.2 162.2 156.1 170.1 179.0 182.4	10	30	22.5	116.7	129.9	132.6	124.2	147.9	153.6	151.5	141.9
36 27 130.7 140.0 150.8 <u>54.0</u> 164.9 163.4 162.4 39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 150.0 135.2 149.9 170.5 170.5 175.1 45 33.75 144.0 156.1 159.8 148.0 181.4 167.0 48 36 148.8 162.2 162.2 156.1 152.2 156.1 172.4 167.0	11	33	24.75	124.1	138.6	142.9	136.6	125.4	163.0	148.8	155.8
39 29.25 134.9 146.6 155.2 145.0 168.5 162.2 170.0 42 31.5 139.9 150.0 135.2 149.9 170.5 170.5 175.1 45 33.75 144.0 156.1 159.8 148.0 181.4 172.4 167.0 48 36 148.8 162.2 162.2 156 182.4 182.4	12	36	27	130.7	140.0	150.8	54.0	164.9	163.4	162.4	165.6
42 31.5 139.9 150.0 135.2 149.9 170.5 170.5 175.1 45 33.75 144.0 156.1 159.8 148.0 181.4 172.4 167.0 48 36 148.8 162.2 162.2 156 156 190.1 179.0 182.4	13	.39	29.25	134.9	146.6	, 155.2	145.0	168.5	162.2	170.0	175.5
45 33.75 144.0 156.1 159.8 148.0 181.4 172.4 167.0 48 36 148.8 162.2 162.2 156 190.1 179.0 182.4	14	42	31.5	139.9	150.0	135.2	149.9	170.5	170.5	175.1	186.1
48 36 148.8 162.2 162.2 156 190.1 179.0 182.4	15	45	33.75	144.0	156.1	159.8	148.0	181.4	172.4	167.0	193.5
	16	48	36	148.8	162.2	162.2	156	190.1	179.0	182.4	194.4

• •

TABLE 2

Theoretical Wenner Vertical Electric Soundings

By: A.R. Zohdy and David L. Campbell U.S. Geological Survey

This method computes theoretical vertical electrical sounding curves for the Wenner electrode arrays. The earth structure is assumed to be a horizontally layered medium comprised of 6 layers or less. The input data consist of layer resistivities, depths (or thicknesses), and an initial electrode spacing value (a=AB/3 for Wenner). The output is the coordinate values for the theoretical sounding curve computed at the rate of 3 points per logarithmic cycle.

TECHNIQUE: The convolution method is used with Ghosh's filters to compute sounding curves (Ghosh, 1971: Zohdy, 1973; Zohdy, 1974; Zohdy and Bisdorf, 1975). For each electrode spacing, the computations involve two steps. First, the kernel function B(x) is calculated from the layer thicknesses and resistivities at 9 (Schlumberger) or 10 (Wenner) abscissa values (x). These abscissa values which depend on the value of the particular electrode spacing are logarithmically equally spaced at the rate of 3 points per logarithmic cycle ($\Delta x=101/3$). Each electrode spacing used is multiplied by Ghosh's shift factor 1.36 for the Wenner spacings. Second, B(x) is convolved with the appropriate Ghosh filter coefficients to compute the apparent resistivity at the given electrode spacing.

EQUATIONS:

1.	Use Sunde's recursive formula to compute B(x) as follows: a. Initialize for bottom layer (half-space) B _n = 1			
	b. Using the following recursive formula upward for all the layers for $i = n$ to 2, $R_i = B_i P_i$			
	$K_{i} = (p_{i-1} - R_{i}) / (p_{i-1} + R_{i})$ $M_{i} = -2h_{i-1}/f \cdot x (f = shift factor)$ $Q_{i} = K_{i} \exp (M)$ $B_{i-1} = (1-Q_{i})/(1+Q_{i})$		SURFACE	i=0
		h	P1	
				i=1
		h2	P2	i=2
	we get			<u> </u>
2.	$B(x) = B_1 \cdot P_1$			
	Convolve B(x) with Ghosh coefficients, G_j to compute $\overline{P}_w(a) = \mathfrak{E}G_j \cdot B(x_j)$			i=n-l
		h _{n-1}	p _{n-1}	 i=n
			Pn	
	where $\bar{p}_{W}(a)$ = Wenner apparent resistivity at a.			

SAMTEST. INC. - DIVERSIFIED TESTING SERVICES - P.D. BOX 1444 - MIDLAND, MICH.- 517 - 486-3610

REFERENCES:

Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering: Geophysics, v. 44, p. 1287-1305.

Ghosh, D. P., 1971, Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth: Geophysical Prospecting (Netherlands), v. 19, no. 4, p. 769-775.

Zohdy, A. A. R., and Bisdorf, R. J., 1975, Computer programs for the forward calculation and automatic inversion of Wenner sounding curves: available only from U.S. Department of Commerce National Technical Information Services, Springfield, Virginia 22161 as PB-247 265.

Resistivity Analysis

÷

Section 2 - Field Data

• Resistivity Stations Plan

• Apparent Resistivity Plots - Stations

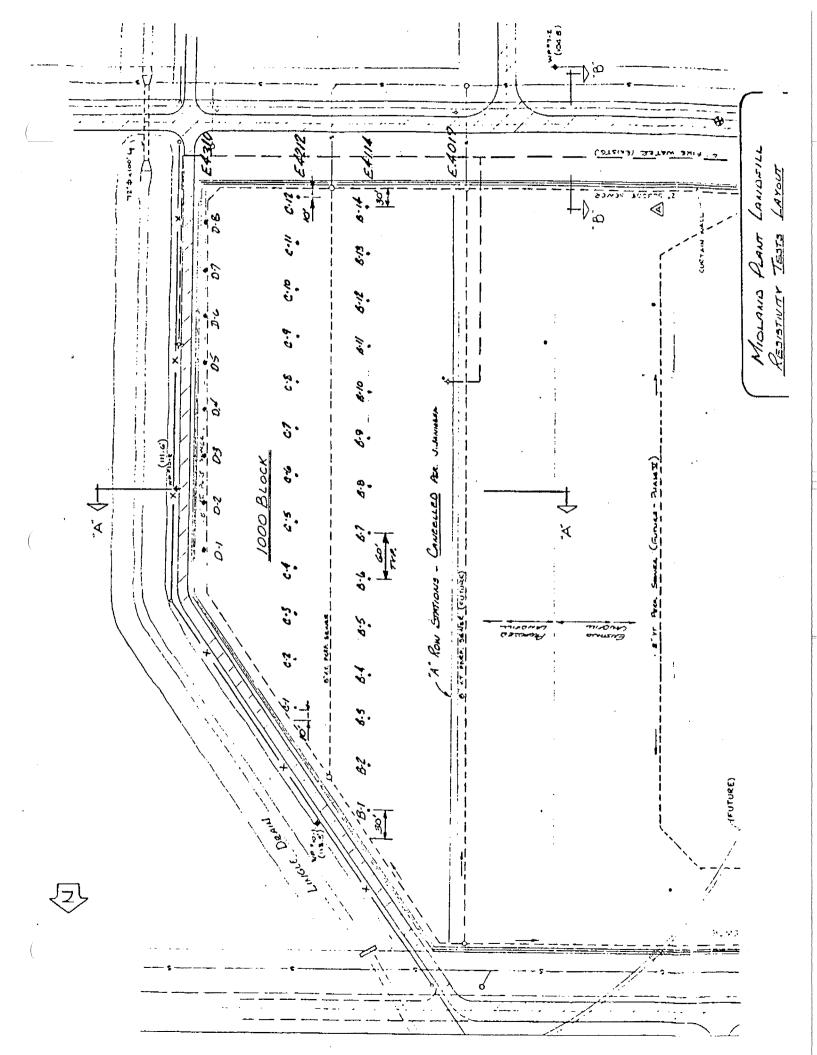
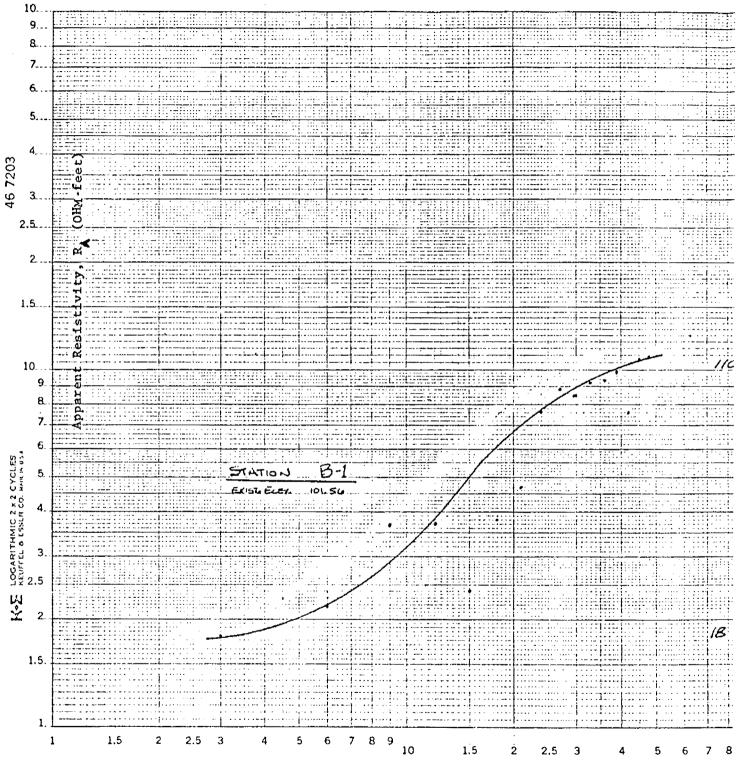
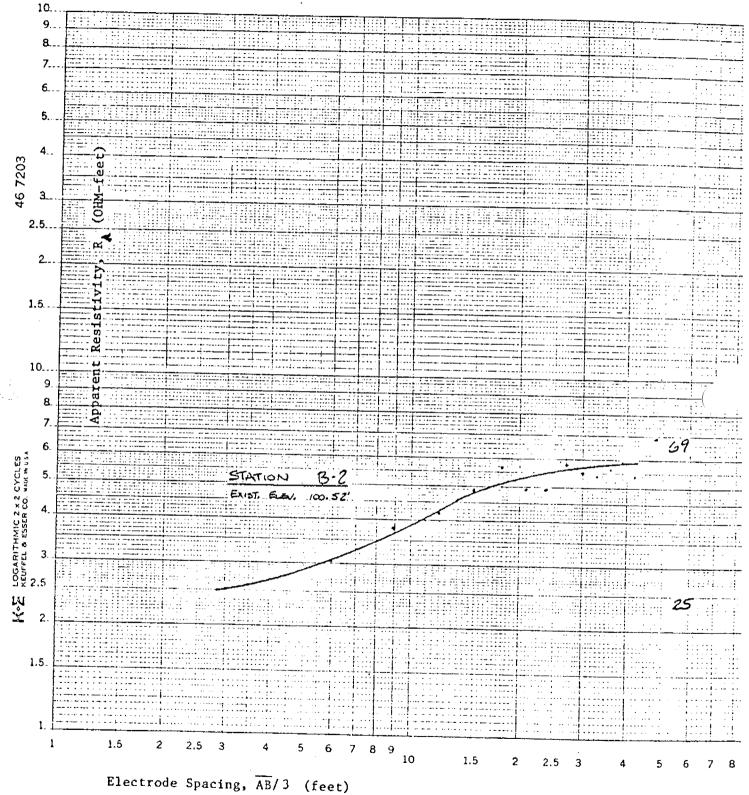
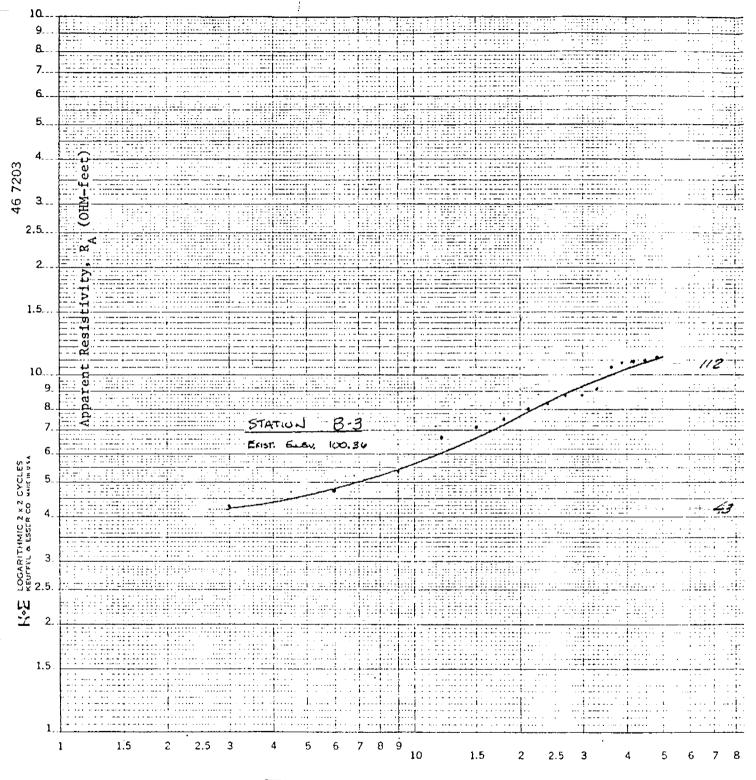

(

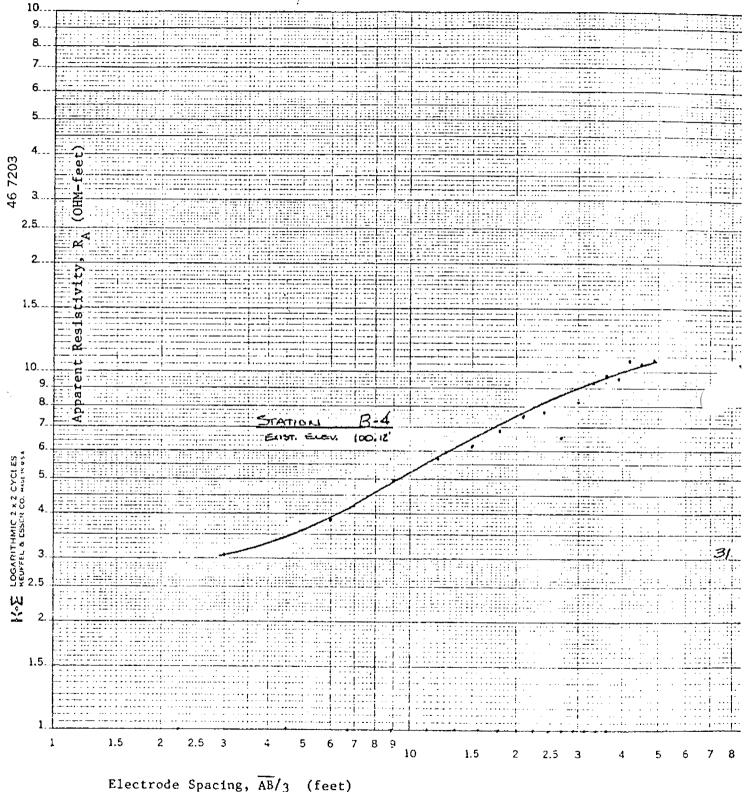
FIGURE #1 Apparent Resistivity Curves Stations B, C & D

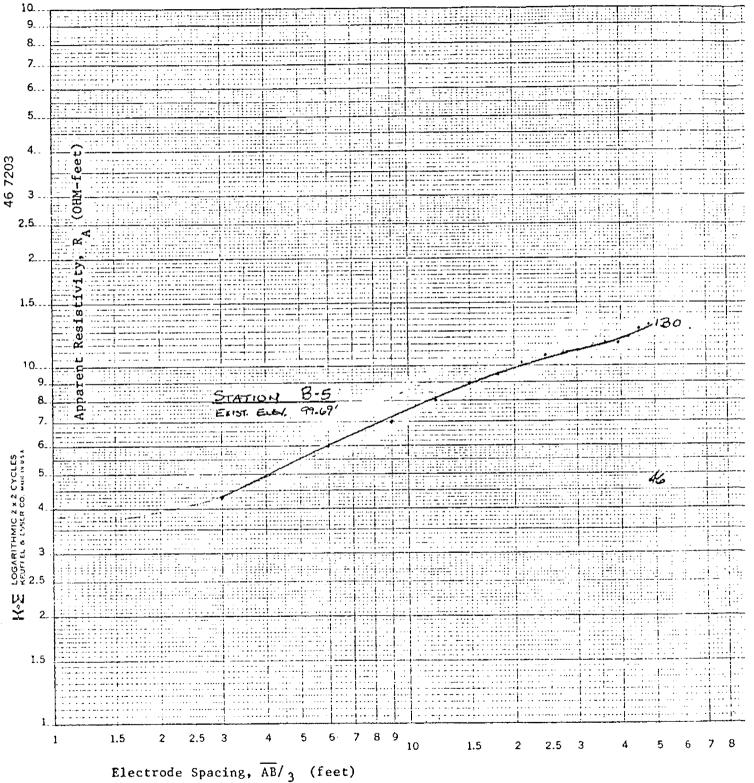

SAMTEST. INC.- DIVERSIFIED TESTING SERVICES-P.O. BOX 1444-MIDLAND, MICN.-517-496-3610

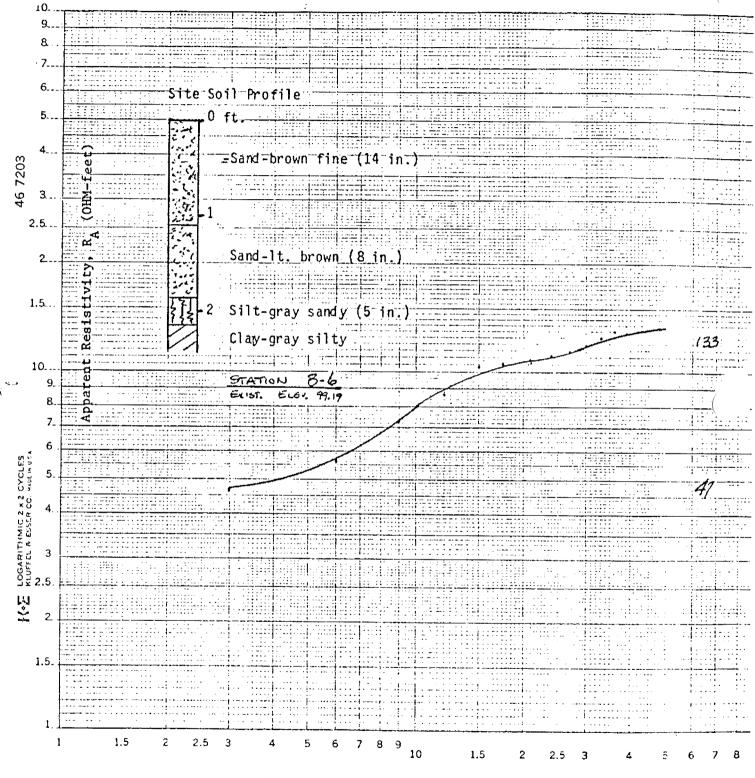
(


. (

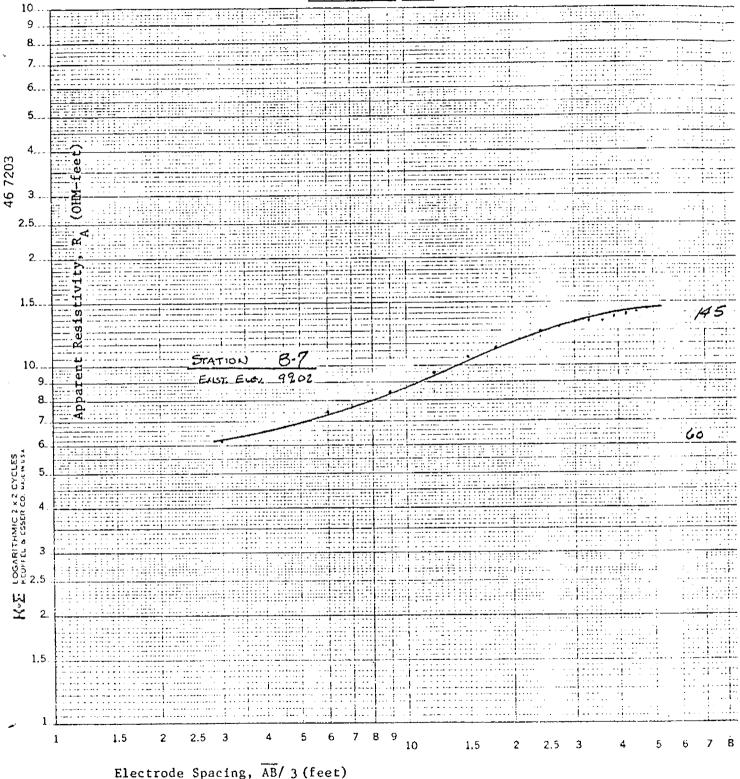

·

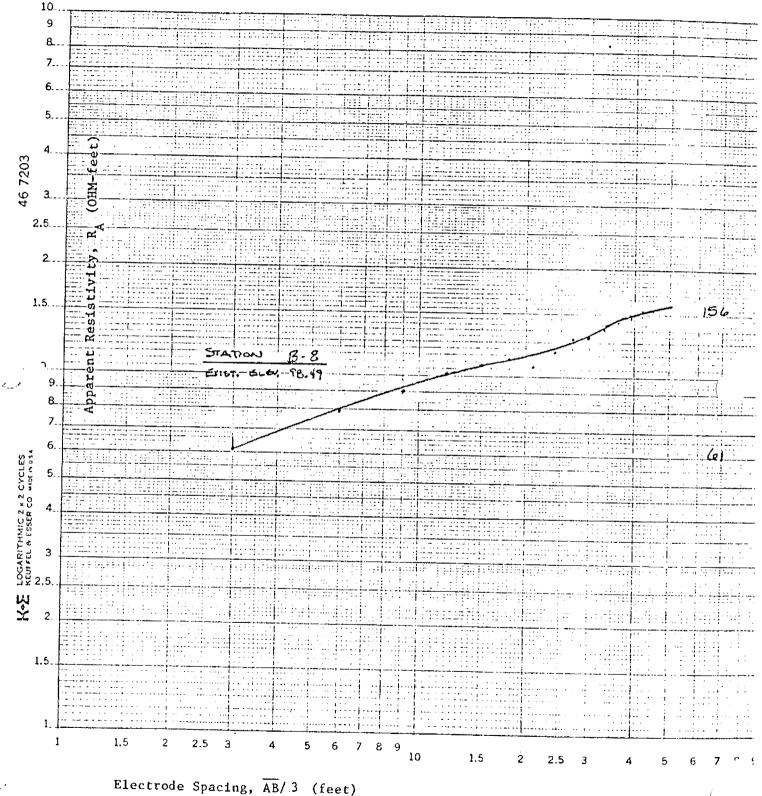

Electrode Spacing, $\overline{AB}/3$ (feet)

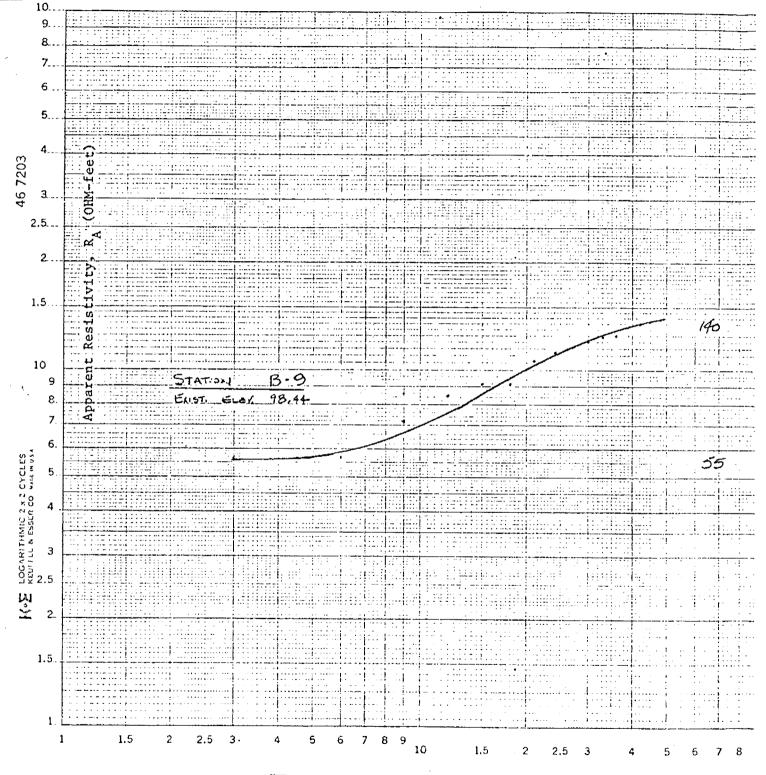



1

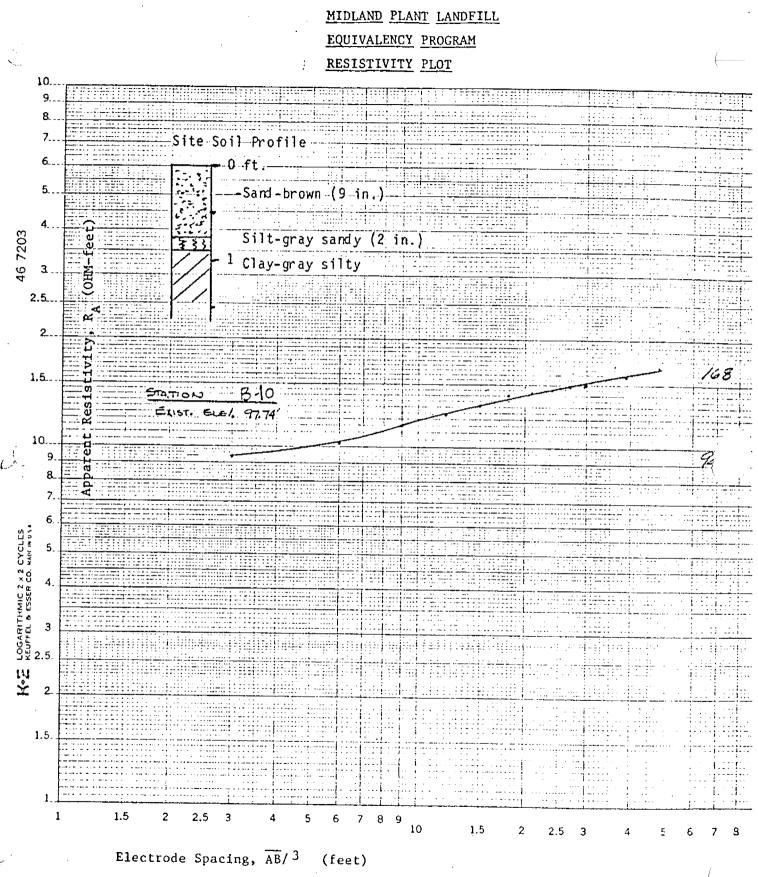
Electrode Spacing, AB/3 (feet)

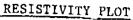


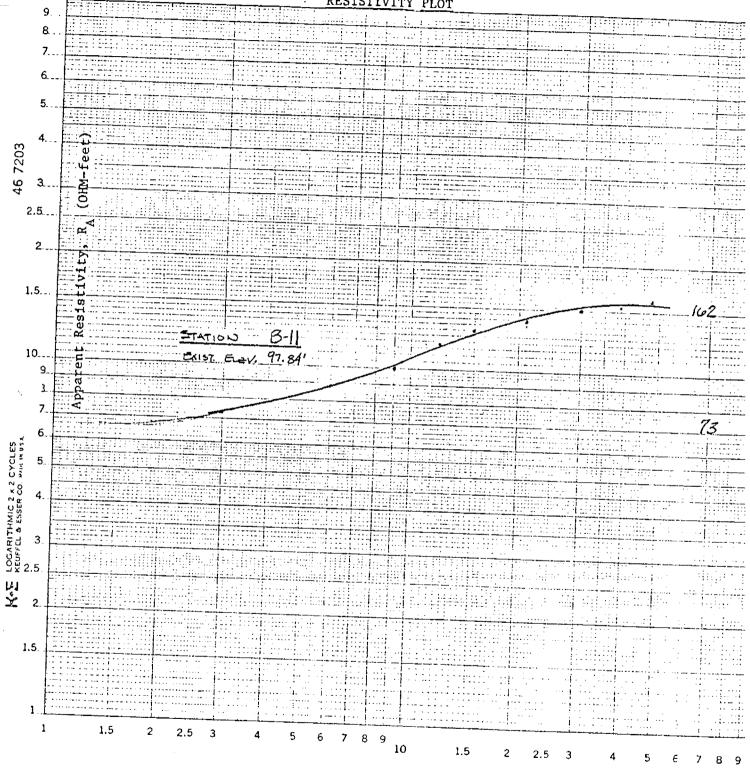

Electrode Spacing, $\overline{AB}/3$ (feet)


-

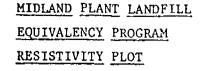
MIDLAND PLANT LANDFILL EQUIVALENCY PROGRAM

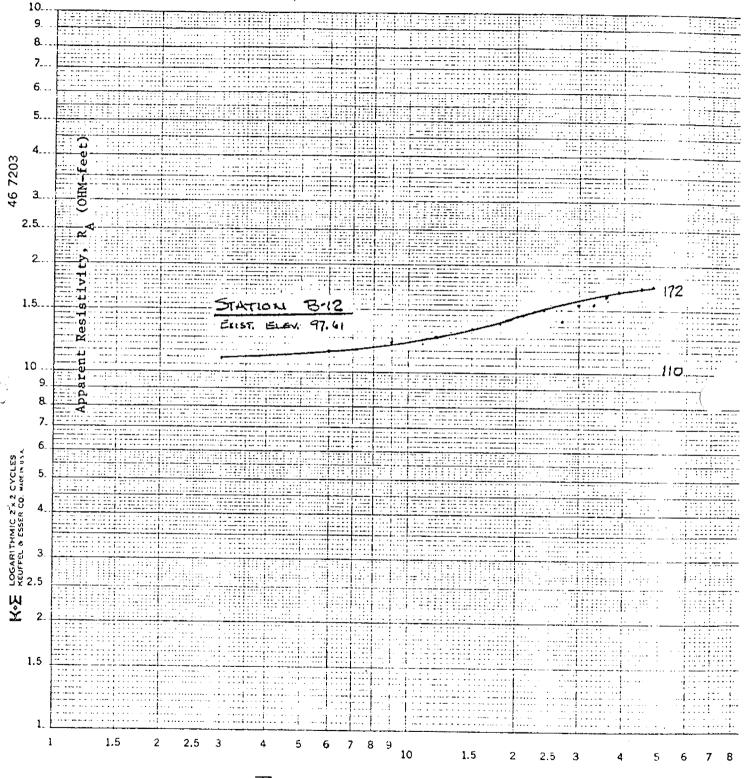

RESISTIVITY PLOT

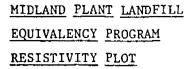


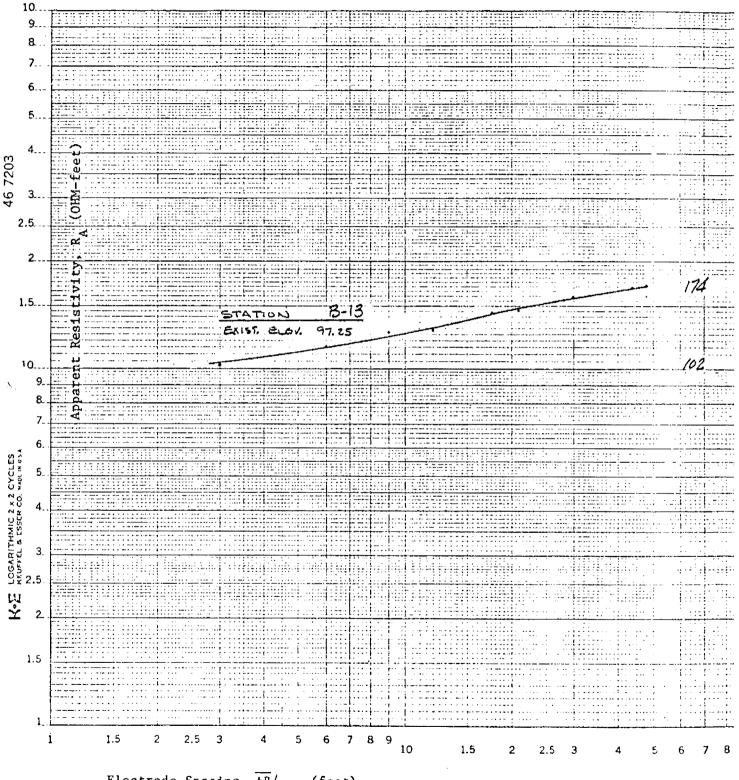

Electrode Spacing, $\overline{AB}/3$ (feet)

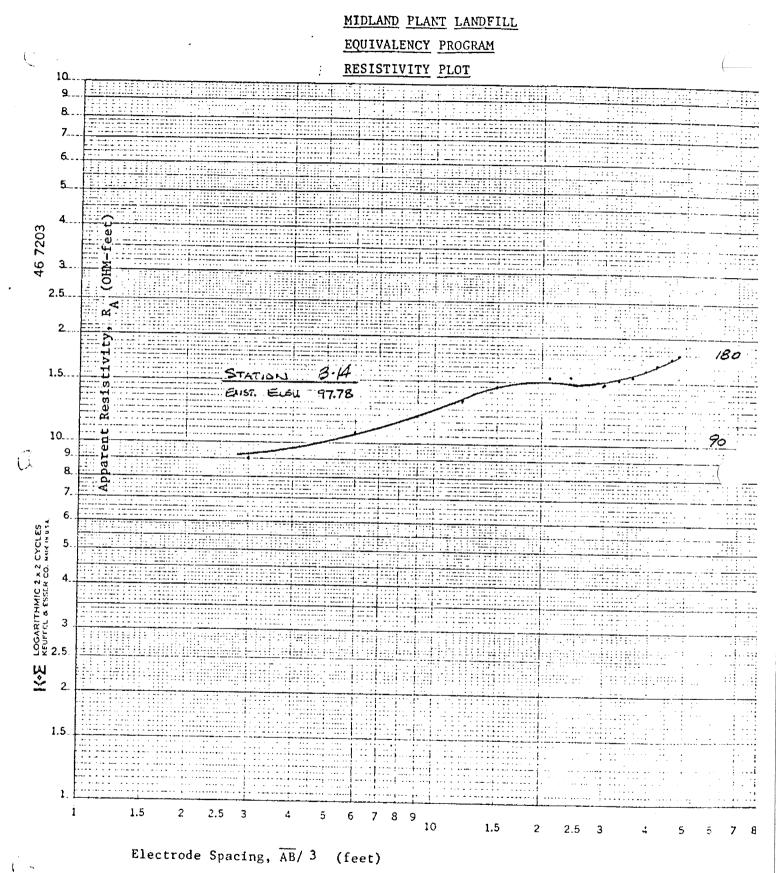
MIDLAND PLANT LANDFILL

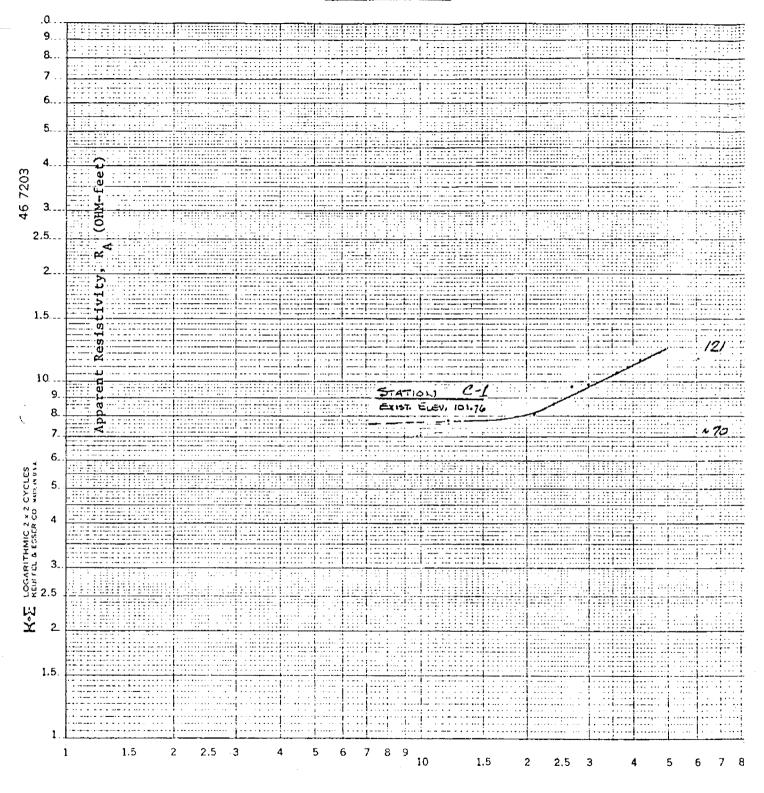

EQUIVALENCY PROGRAM




Electrode Spacing, AB/3 (feet)

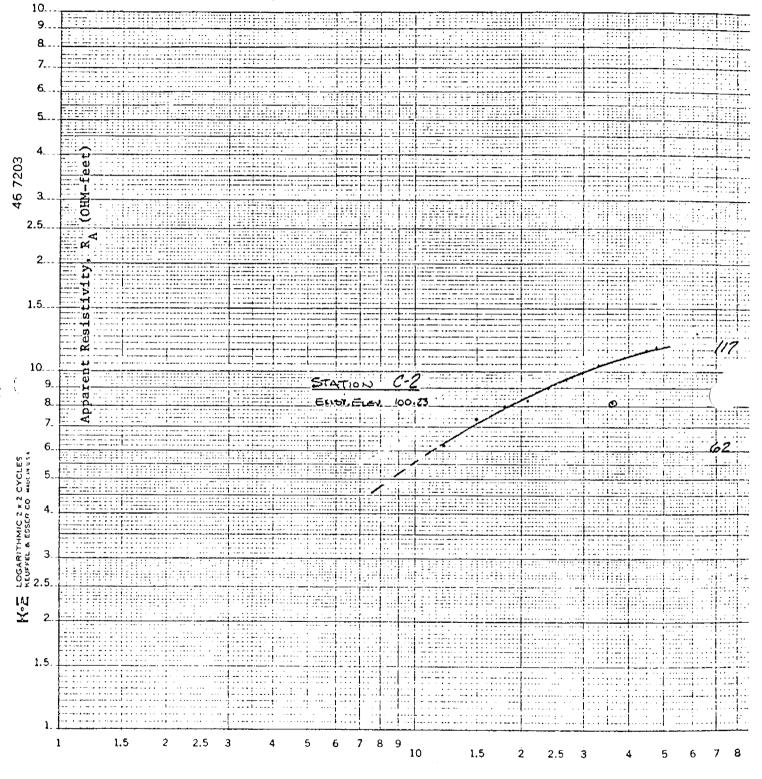

· .0...


Electrode Spacing, $\overline{AB}/3$ (feet)

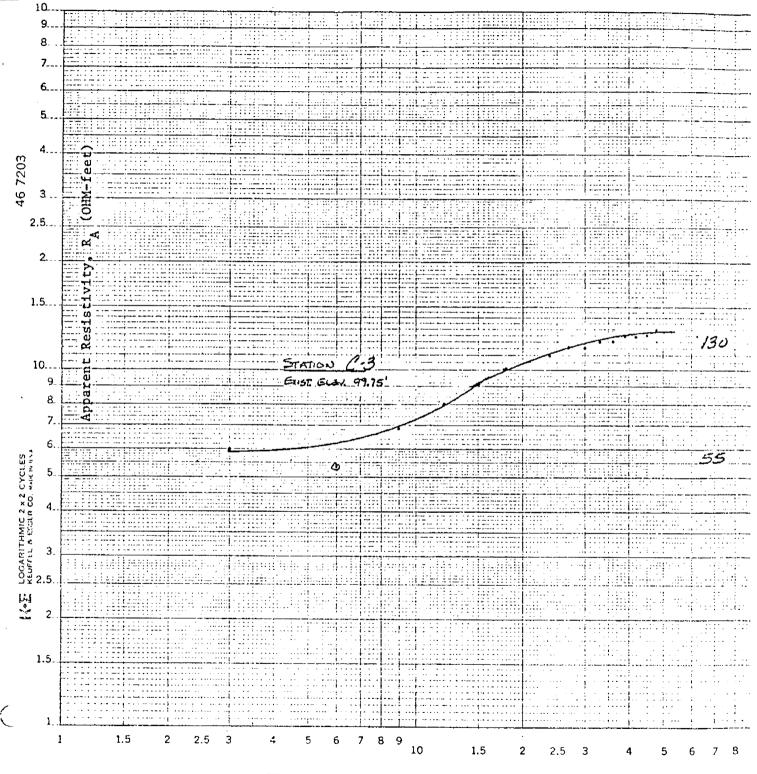


Electrode Spacing, $\overline{AB}/3$ (feet)

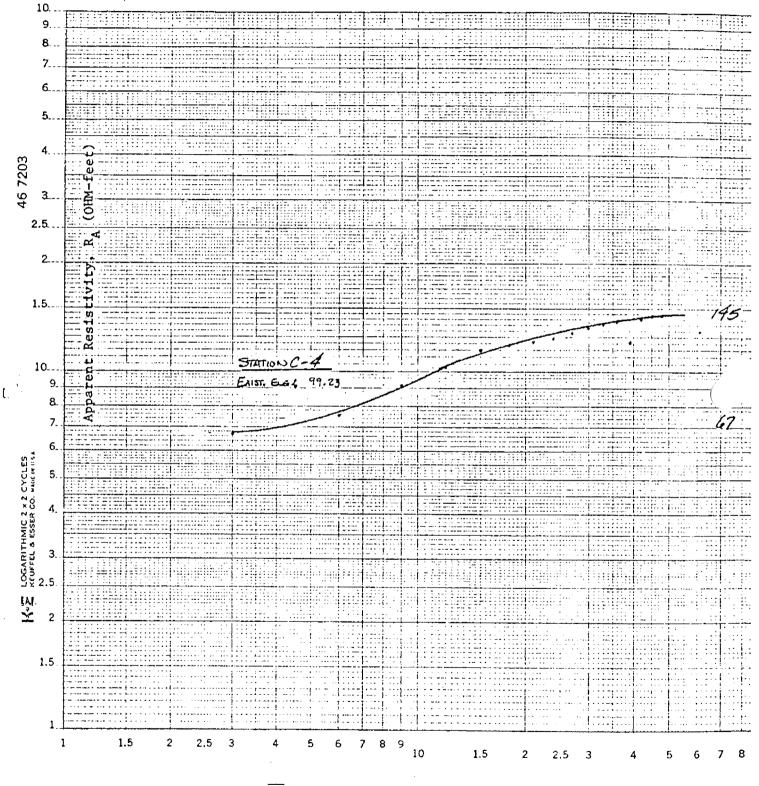
.



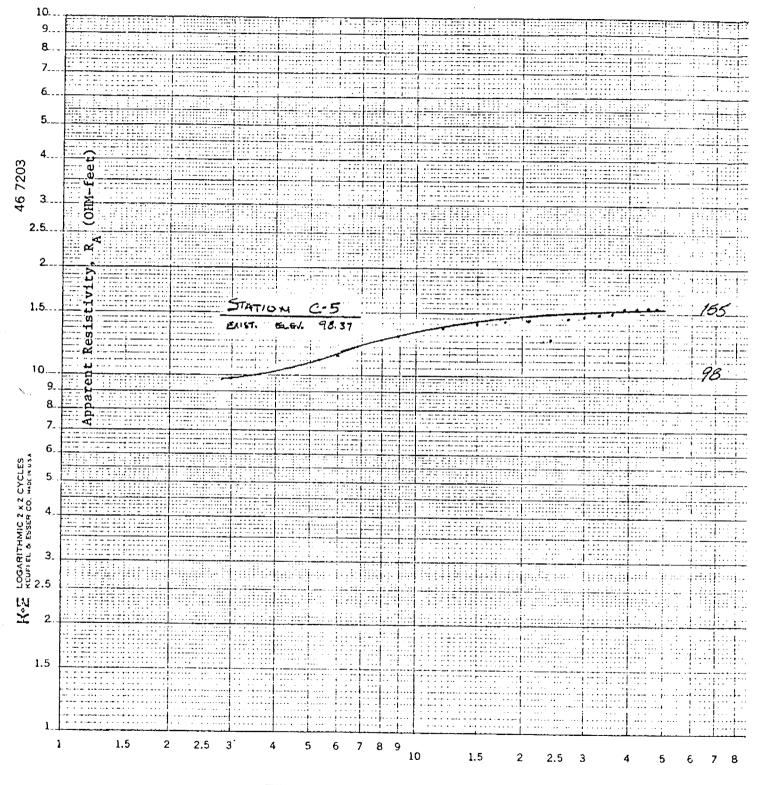
.



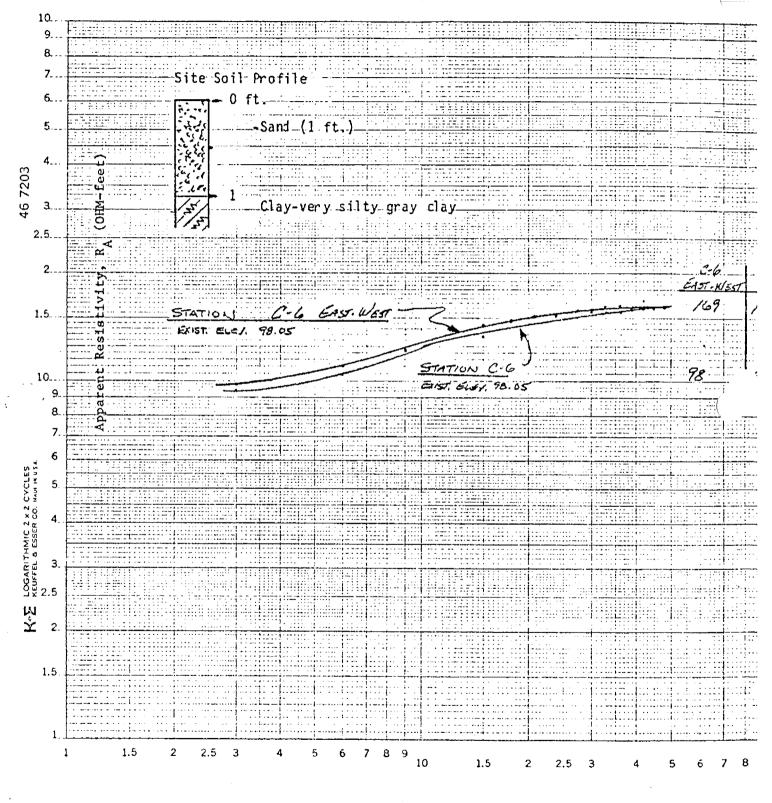
Electrode Spacing, $\overline{AB}/3$ (feet)


S.,

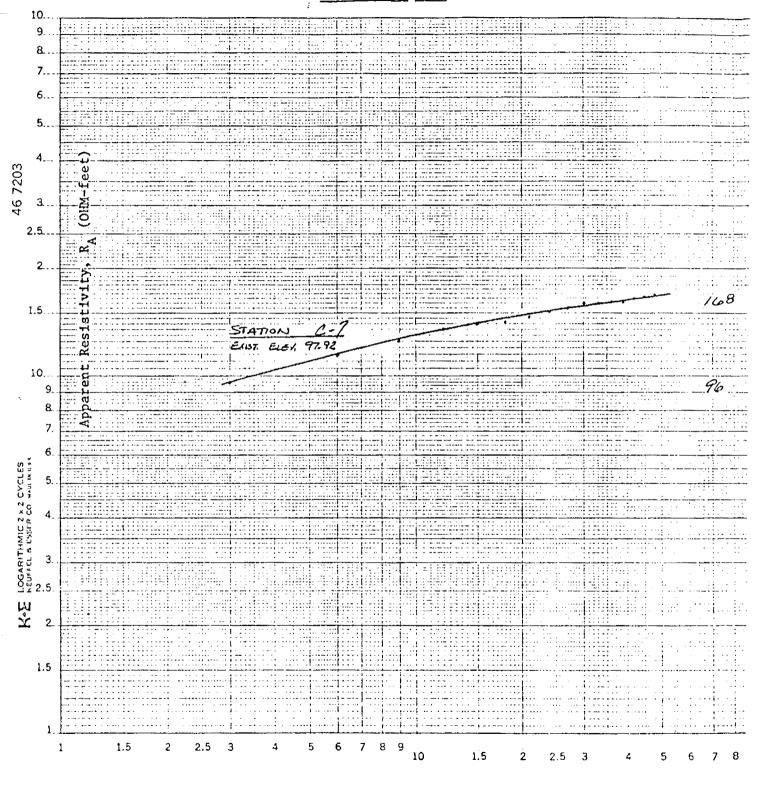
Electrode Spacing, $\overline{AB}/3$ (feet)


Electrode Spacing, $\overline{AB}/3$ (feet)

Electrode Spacing, AB/3 (feet)


ŧ i

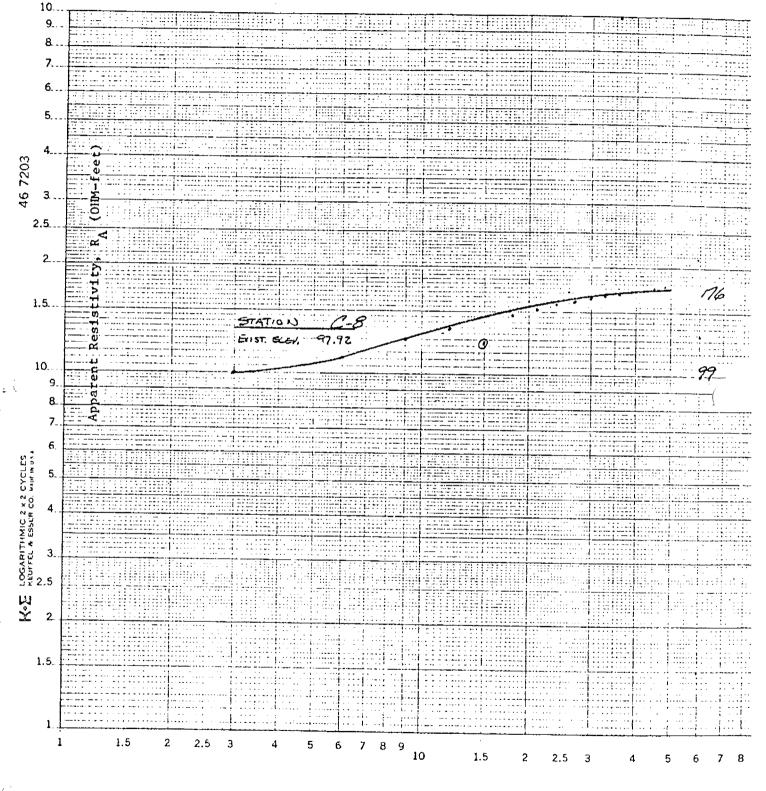
\$25



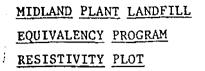
Electrode Spacing, $\overline{AB}/_3$ (feet)

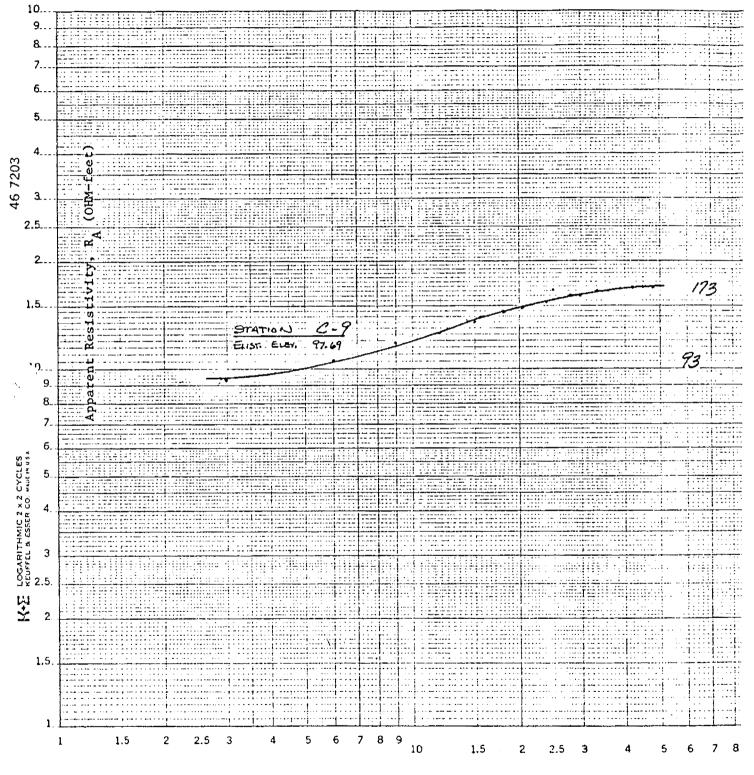
.

Electrode Spacing, $\overline{AB}/3$ (feet)

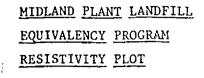

Electrode Spacing, $\overline{AB}/3$ (feet)

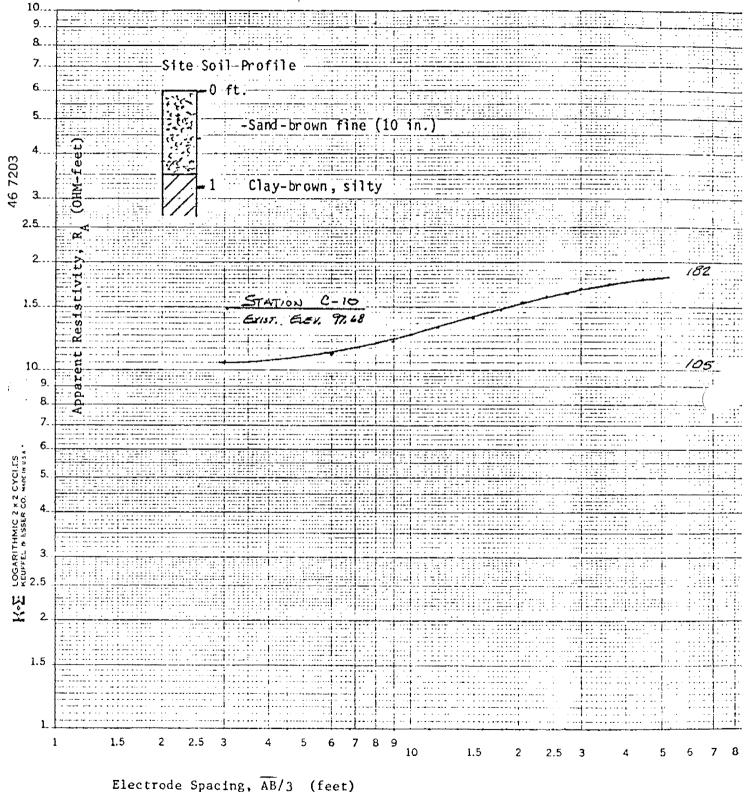
.

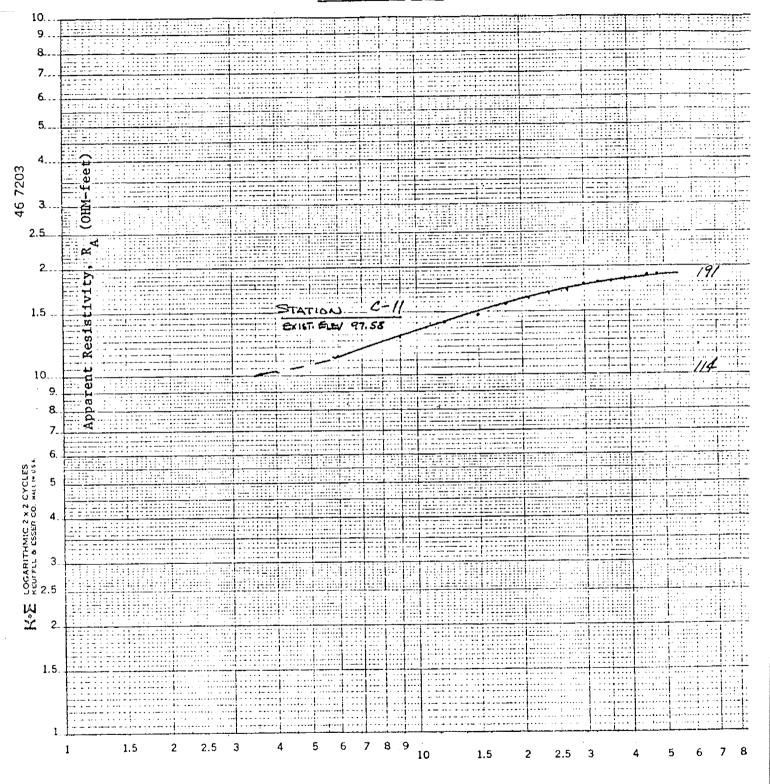

MIDLAND PLANT LANDFILL


EQUIVALENCY PROGRAM

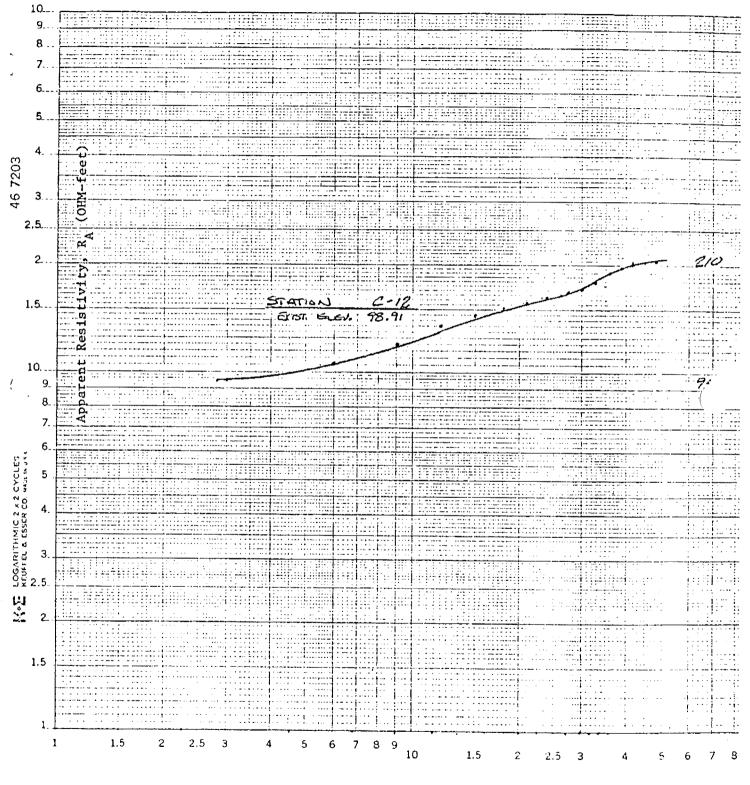
RESISTIVITY PLOT



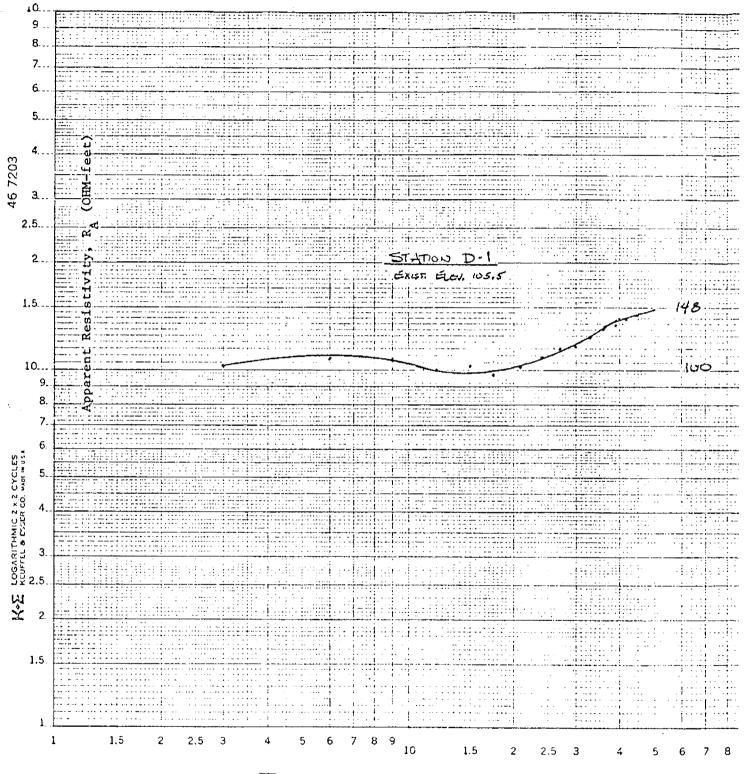

Electrode Spacing, $\overline{AB}/3$ (feet)



Electrode Spacing, AB/3 (feet)



Electrode Spacing, AB/3 (feet)

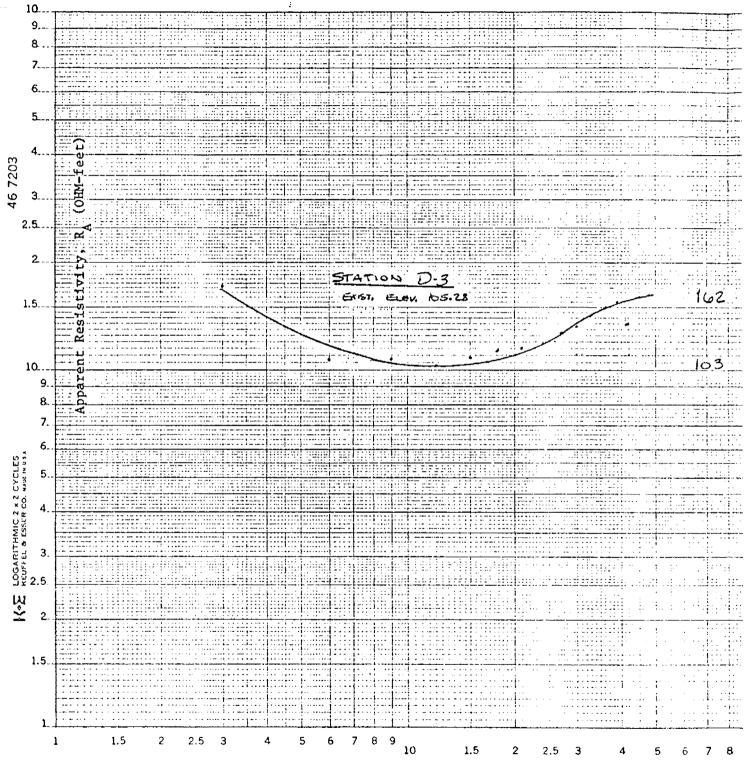

MIDLAND PLANT LANDFILL

EQUIVALENCY PROGRAM

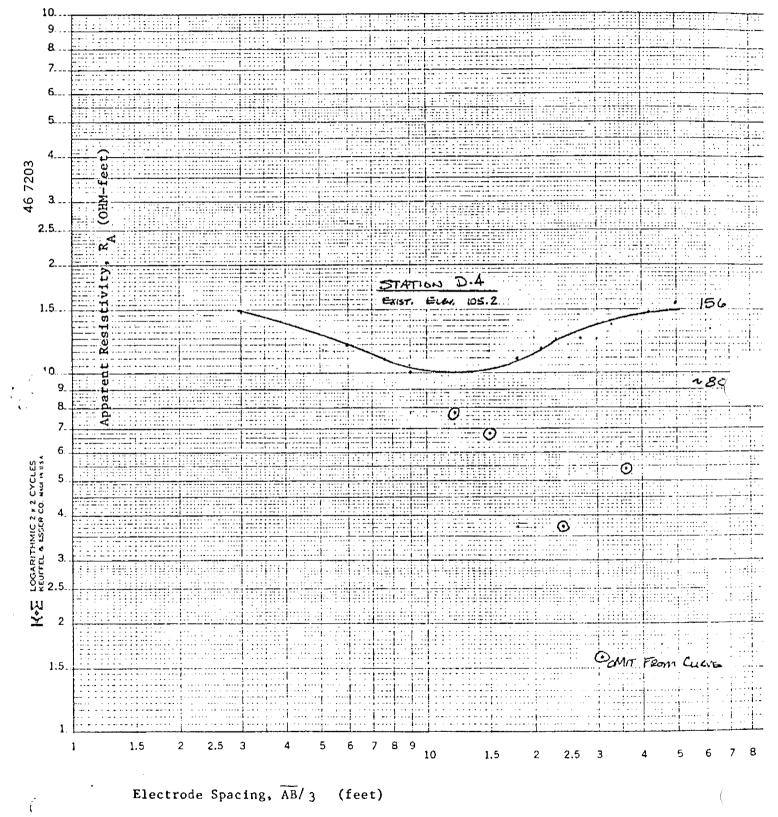
RESISTIVITY PLOT

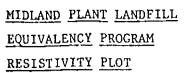


Electrode Spacing, $\overline{AB}/_3$ (feet)

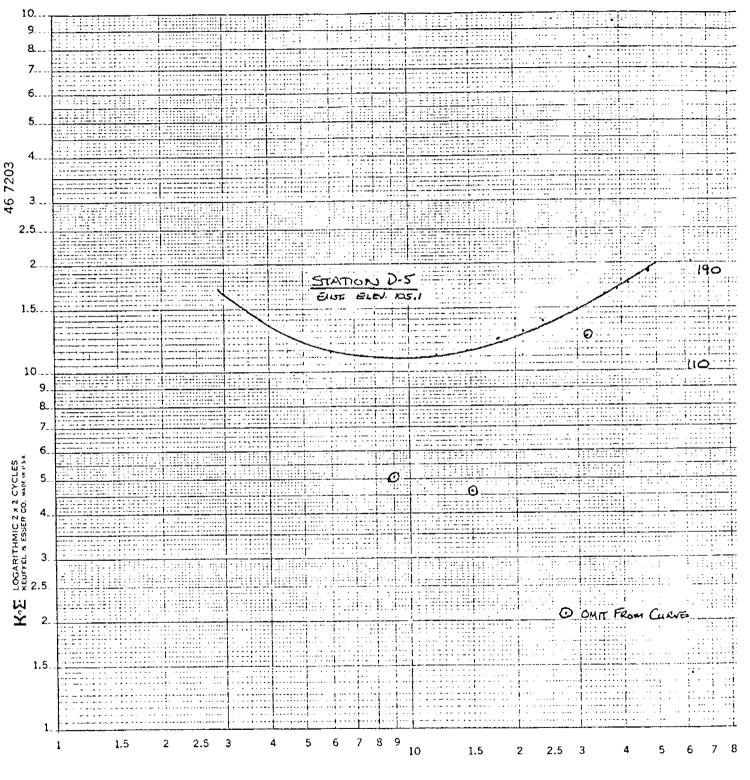

Electrode Spacing, $\overline{AB}/3$ (feet)

Sec. 1

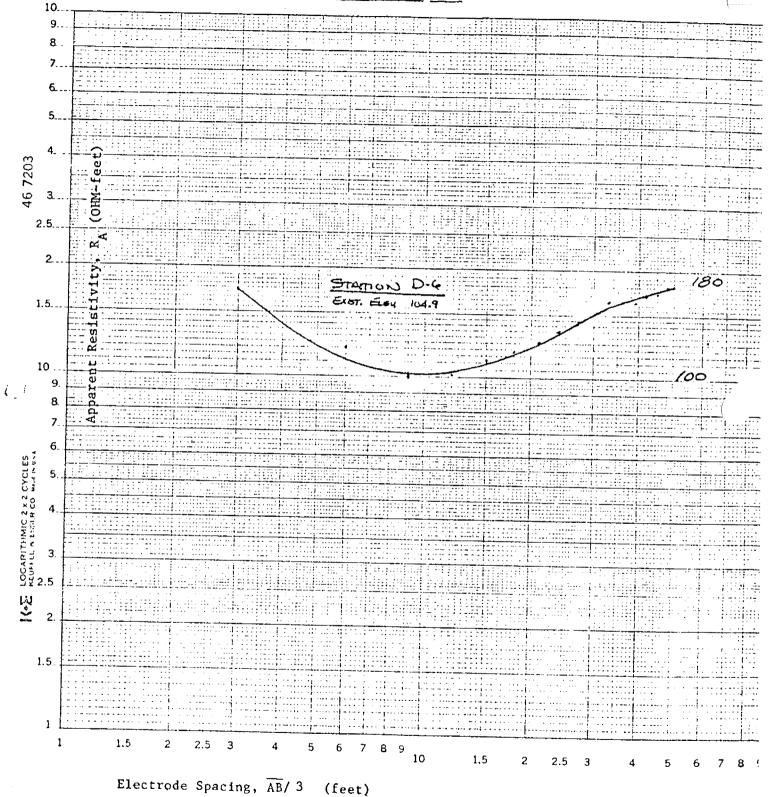


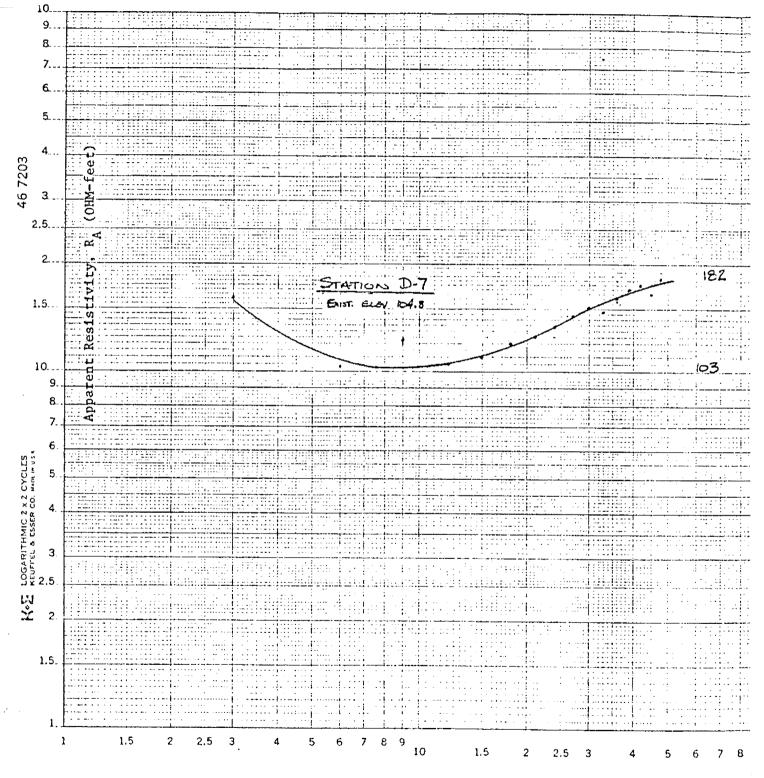

Electrode Spacing, AB/ 3 (feet)

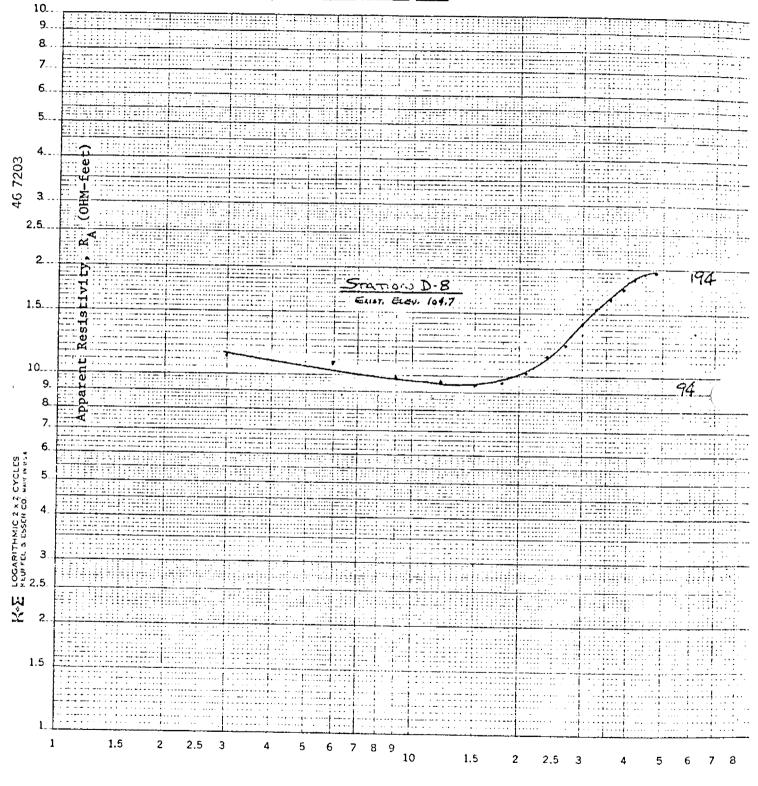
i



Electrode Spacing, $\overline{AB}/3$ (feet)




4


Electrode Spacing, $\overline{AB}/3$ (feet)

ι

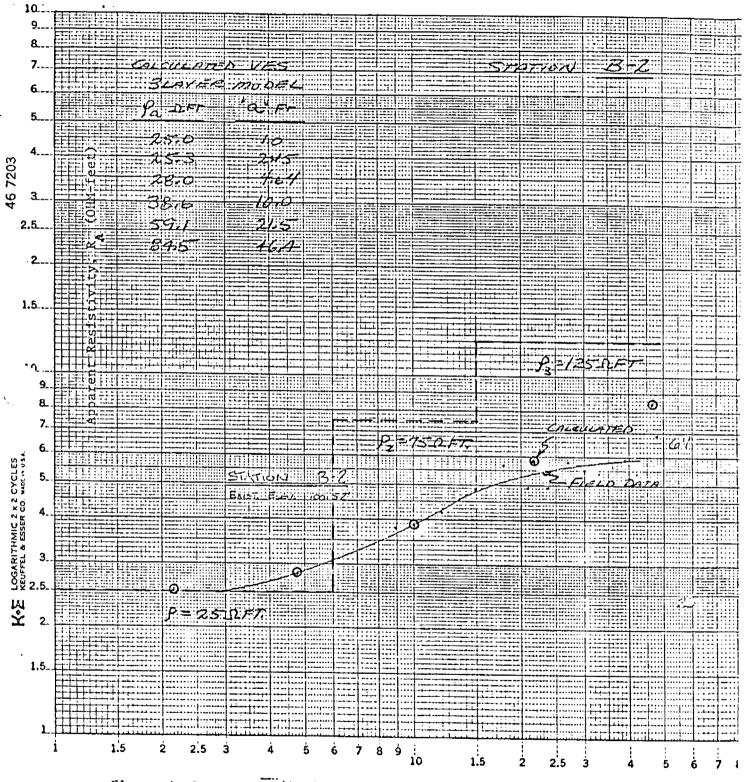
Electrode Spacing, $\overline{AB}/_3$ (feet)

Electrode Spacing, AB/3 (feet)

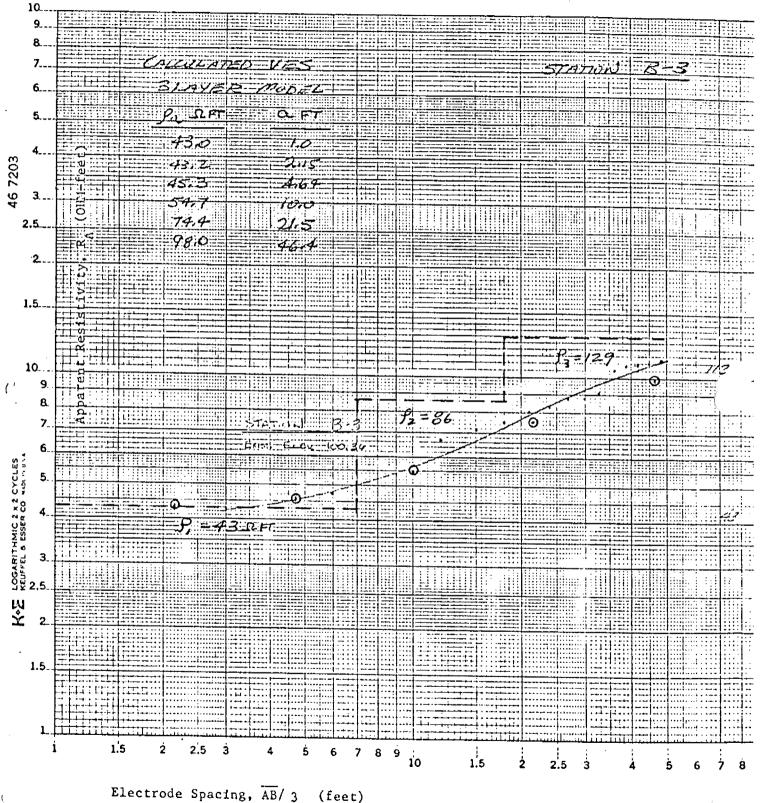
(

Resistivity Analysis

Section 3 - Field Data Interpretation


• Calculated Apparent Resistivity Curves Based On Two And Three Layer Soil Models

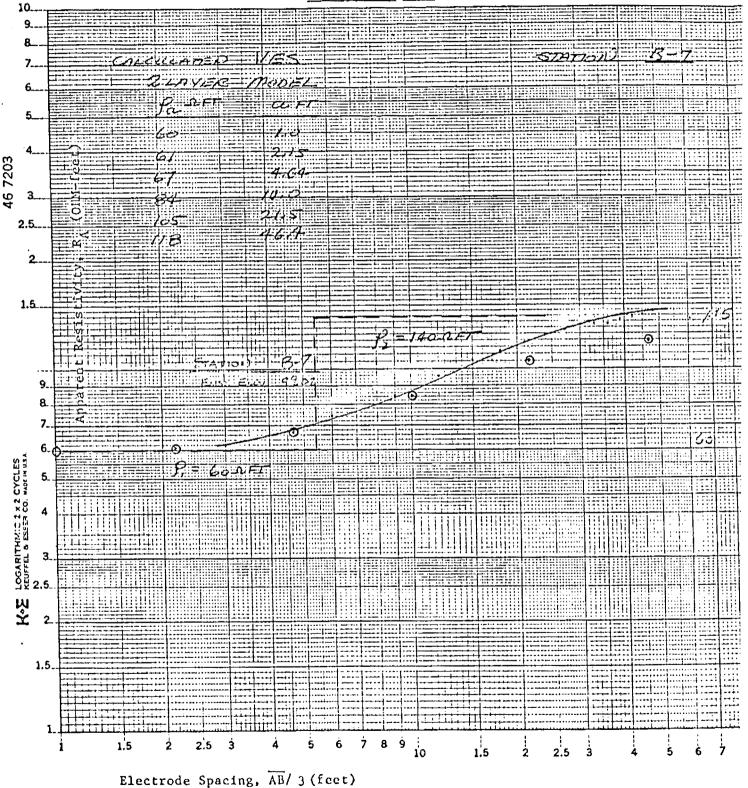
• Calculated Vertical Electrical Sounding Curves For Sand Layers In Upper Clay Stratum


FIGURE #2

Vertical Electric Sounding Curves

Calculated Apparent Resistivity Based on Two and Three Layer Soil Models

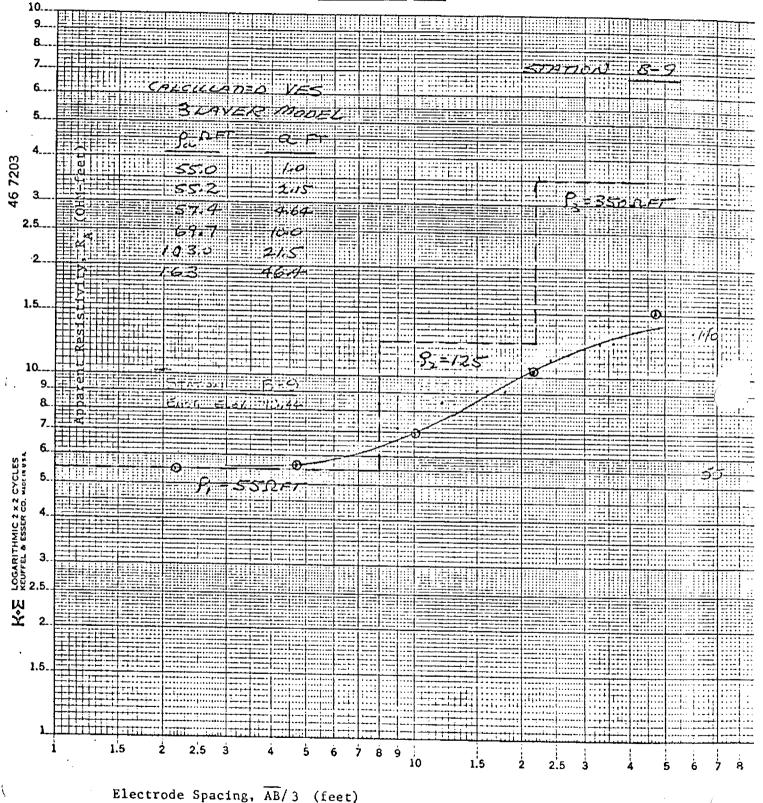
Electrode Spacing, AB/3 (fect)


í.

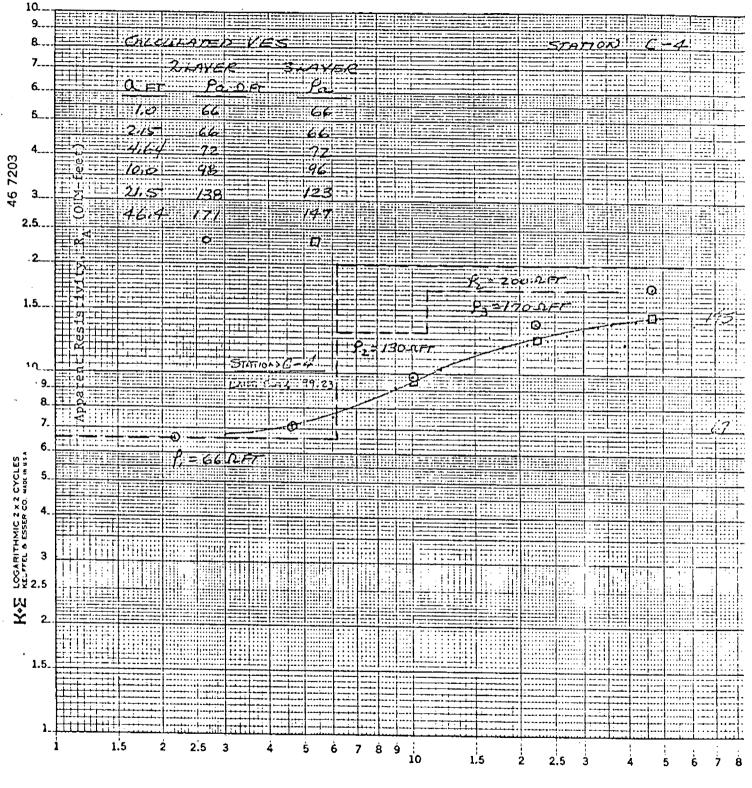
(

MIDLAND PLANT LANDFILL

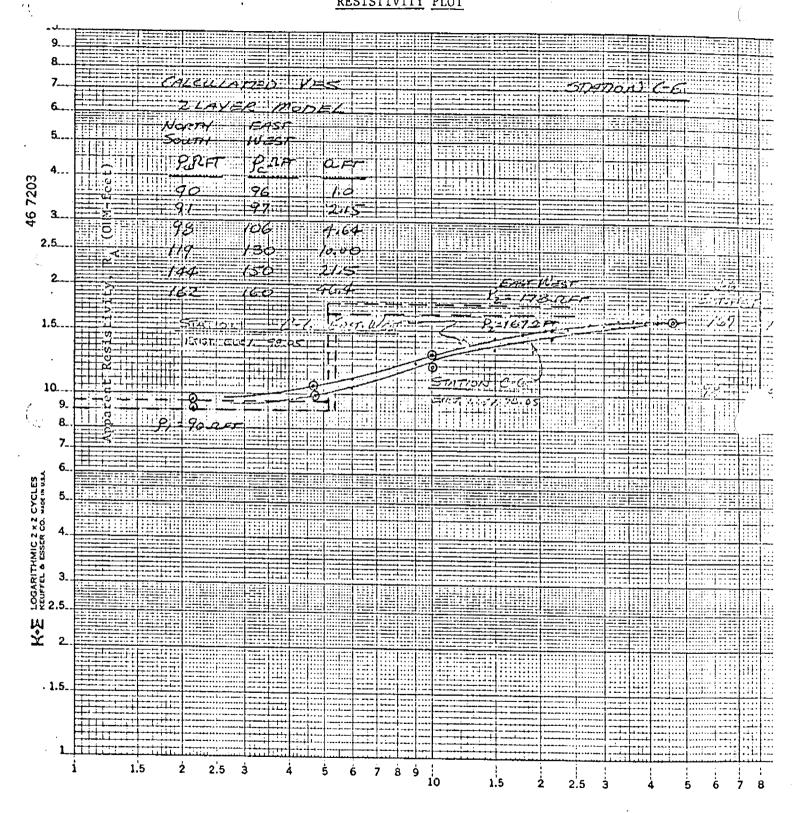
EQUIVALENCY PROGRAM


RESISTIVITY PLOT

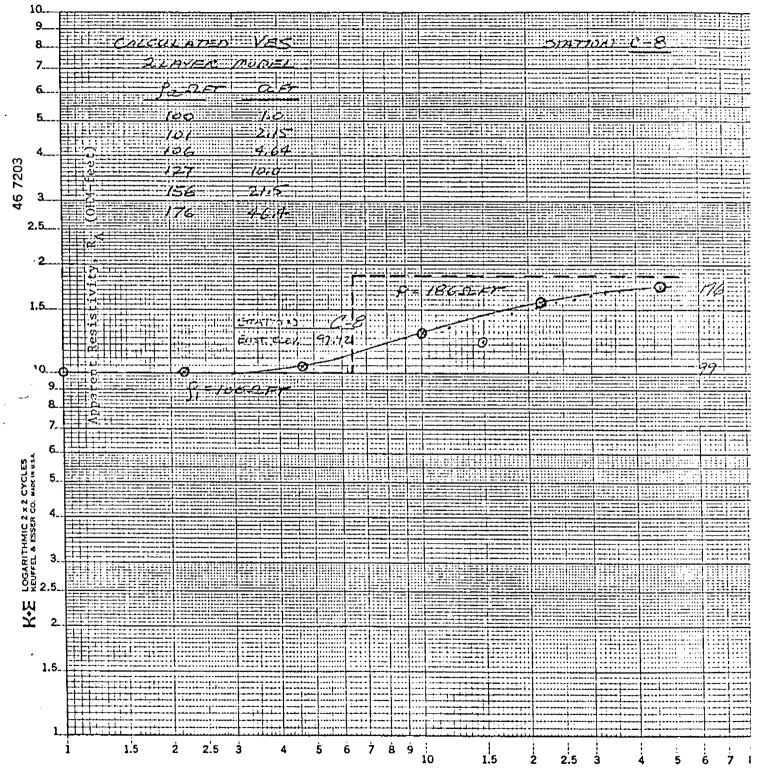
• -


MIDLAND PLANT LANDFILL EQUIVALENCY PROGRAM

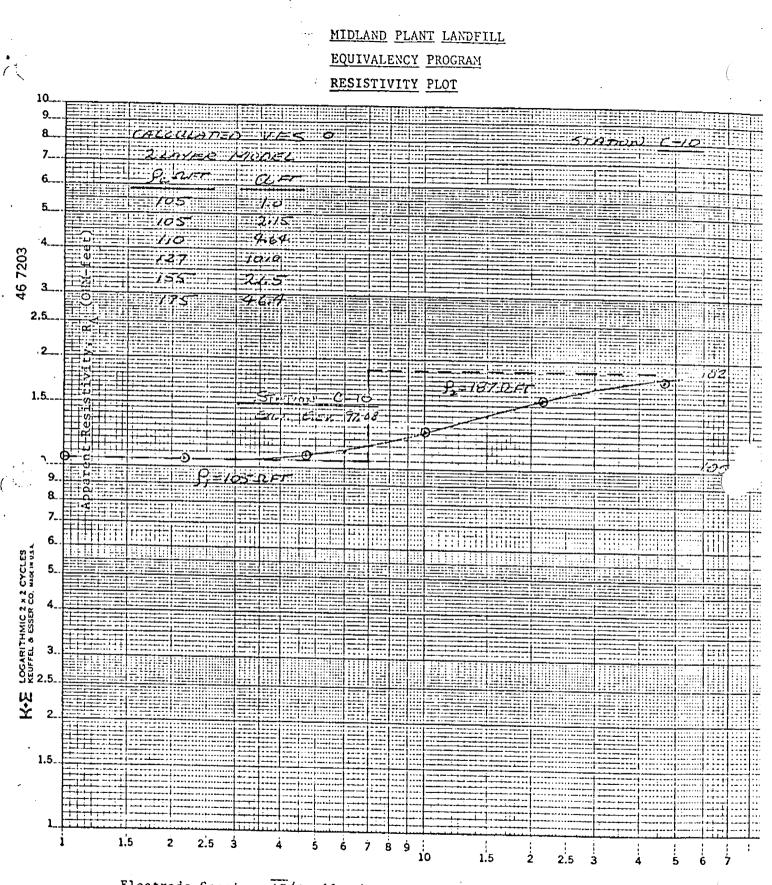
RESISTIVITY PLOT


e obactus

1


Electrode Spacing, AB/3 (feet)

J (----/

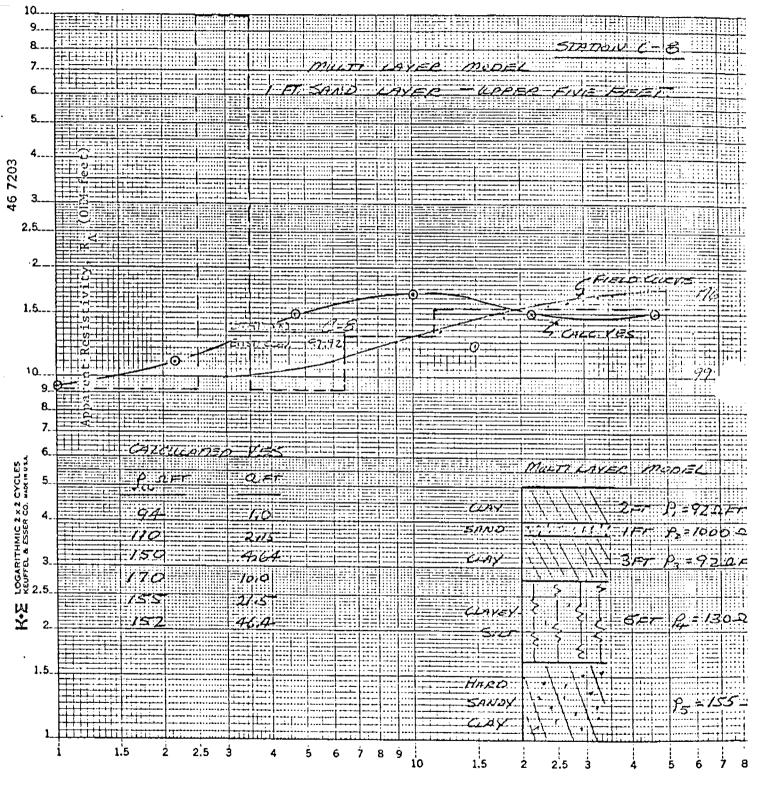


Electrode Spacing, AB/3 (feet)

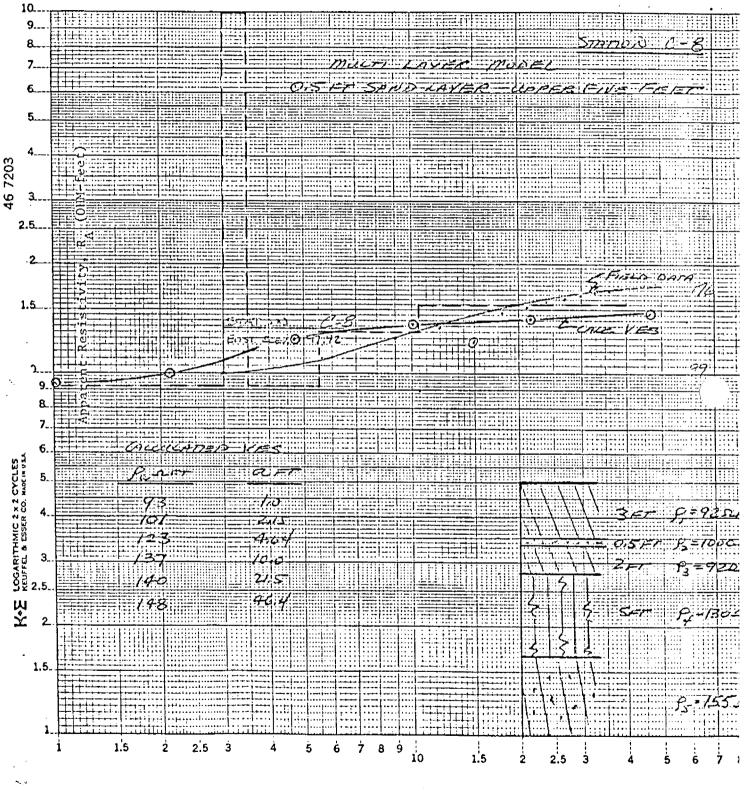
....

Electrode Spacing, AB/ 3 (feet)

Electrode Spacing, AB/3 (feet)


FIGURE #3

Calculated Vertical Electrical Sounding Curves For Sand Layers in Upper Clay Stratum


(

(....

(

Electrode Spacing, $\overline{AB}/3$ (feet)

Electrode Spacing, AB/ 3 (feet)

(

Summary Report Quality Assurance Testing Dow Corning Corporation Midland Plant Landfill (Hazardous Waste Type I Landfill)

1

Report To

Dow Corning Corporation Bldg #205 Midland, MI 48640

By

SAMTEST, Inc. Midland, MI 48640

February 6, 1981

Project #80-352

.

· * ·

SAMTEST Inc.

DIVE IN FOREIR FERTI DU REEN KOTU

P.O. BOX 1444 MIDLAND, MI 48 (517) 496-3610

February 6, 1981

Dow Corning Corporation Bldg #205 Midland, MI 48640

File #80-352

Attn: J. Hamblin, Project Engineer

Re: Quality Assurance Testing - Dow Corning Corporation, Midland Plant Landfill (Hazardous Waste Type I-Landfill)

Gentlemen:

Please find enclosed the complete quality assurance report covering the construction of the perimeter clay barrier wall, the interior wall and bottom of Cell A for the facility. The report summarizes the initial clay quality certificates, existing sub-grade quality, in place compactions, periodic clay fill quality and wall width observations.

Field reports were supplied as on-going construction performance documents but are included in the supplement for reference. These results are summarized in Tables #3, 4, and 5 of this report.

Please call if there are any questions or if we can be of additional service.

Yours truly,

William A. Crozier, Ph.D.

SAMTEST, Inc.

WAC/ss

Introduction

The quality assurance program for the construction phase of the existing Dow Corning, Midland Plant Landfill (Hazardous Waste Type I Landfill) is completed. The plan, which primarily covers the construction of the exterior containment wall, included inspection and quality assurance testing of the various phases of construction. This included testing the borrow pit clay for compliance with specifications, inspection of the existing subgrade, observation of the construction procedures with subsequent verification of compaction and permeability of the as-placed impervious soil.

The test data is summarized in the appendix of the report and the actual daily field reports are included as a supplement along with the location diagram.

The purpose of this quality assurance program is to guarantee that the site as constructed provides sufficient barrier to insure no effect on the surrounding environment from any of the materials in the disposal site.

Testing Program

A. Barrier Wall Subgrade

The exposed subgrade representing the bottom and keyway for the barrier wall was visually inspected for continuous and uniform clay soil with absence of any interbedded sand seams. In addition to the visual inspection program, the in-place subgrade soil density was determined at approximately seventy-five lineal foot intervals along the wall key to confirm the soil quality based on a complete classification. At several locations along each side the sampling depth was extended to about one foot below the keyway invert elevation and undisturbed soil samples returned to the laboratory for permeability tests. A constant head procedure was used in measuring the soil permeability coefficient.

Soil classification tests were performed based on standard procedures as published by American Society for Testing and Materials (A.S.T.M.) and listed at the conclusion of this section on Table #1.

Table #2, lists the specifications that apply to this phase of the project.

B. Barrier Wall

One of our technicians, periodically and at random, visited the site each day during construction of the actual

walls to observe the construction procedure, determine inplace compactions and sample the clay for conformance with initial specifications. In addition, at four random times (ie location and elevation) during the construction of each wall, as placed, compacted samples were taken for determination of the permeability coefficient.

Actual wall construction proceeded with the placing of loose clay lifts approximately six inches thick, subsequently compacted with a vibratory sheepsfoot compactor impressing twenty-nine tons of total force. The compacted width of the wall exceeded slightly the roller width which is seven feet. Sand was charged against the exterior of the wall for protection, support and construction convenience as the wall elevation increased.

C. General Testing Procedures

The general test procedures as outlined in A.S.T.M. are listed below where they apply to the clay classification. The in-place compaction values are compared with the maximum dry density value as generated using the A.S.T.M. D-1557 Method A (T-180 Modified Proctor). Actual compactions were performed using the rubber balloon procedure due to the high reliability of this method. Moistures were all determined by drying at 105°C in a forced air oven to avoid the error introduced by drying on a stove, a common in-field procedure.

Periodically, clay samples were returned to the lab where single T-180 Modified Proctor points were determined near optimum to verify the continued use of the proper maximum density value for compaction. These results appear on Figure #1..

Results and Discussion

The results summarized at the end of this report for compaction, classification and permeability indicate compliance with the project specifications and reasonably uniform construction quality.

Clay Compaction: -

Compaction results, as noted in the previous section, were compared against the Modified Proctor maximum dry density (ASTM D1557). This was verified periodically for any changes in borrow pit material by compacting a single point and plotting it on the curve. Care was taken not to use over optimum material since this part of the curve, for all cohesive materials having the same specific gravity value, will have approximately the same curve. The single point Proctor determinations suggest a some what lower reference value but the initially determined value was retained for all compactions. This guarantees conservative compaction tests.

- SAMTEST. INC. - DIVERSIFIED' TESTING SERVICES - P.O. BOX 1444 - MIDLAND, MICH.-- 517 - 496-3610

As an additional check on the validity of the compaction results the percent saturation was determined for each determination. The saturation, expressed as a percentage, cannot exceed 100% and be correct. These values appear on Table #3. Some slightly higher value reflects the variation in the specific gravity for the clay particles that is used for the calculation.

In-Place Clay Permeability Coefficients:- Table #4

Ŧ

All of the permeability coefficients, corrected to 20°C, are less than the specified lx10-7cm/sec. A correlation exists, in theory, between the void ratio, a measure of the pore voids, and the permeability. However, these determinations were made on field compacted samples, where some channeling and non-uniform sample compaction and/or composition can be expected.

Error Evaluation For Permeability Coefficients :-

The formula used for constant head determination of the permeability coefficient is listed on Table #6. The variables are defined on the same table along with the expected variation in the measured values based on the experimental procedure. For a nominal determination of $3.4x10^{-8}$ cm/sec. the expected variation is $\pm 0.64x10^{-8}$ cm/sec.

More significant to the results is the effect of channeling along the walls of the cell. This can increase the value of the coefficient by one to two powers of ten. In this case the cell is partially disassembled and the sample is remolded against the sides of the cell and the test re-run.

Most experimentally measured variables affect only the coefficient but not the exponent.

Summary

Generally, the results of the tests performed at the site, the field observations and the follow-up tests performed in the laboratory indicate compliance with the initial construction specifications. The compaction tests show most of the tests comply with an arbitrary compaction requirement of ninety to ninety-five percent (90-95%) the average compaction figure is 94% with the standard deviation 4.4%. This is considered above average for a project of this type.

A review of the clay quality results indicate the borrow material used for the project complies with the specification requirements of CL classification as noted in Table #2.

Figure #1 shows the dry density versus moisture relationship for the clay used in the barrier walls. In addition, appearing on the same diagram are the single point

SAMTEST. INC.-DIVERSIFIED TESTING SERVICES-P.O. BOX 1444-MIDLAND, MICH.-517-496-3610

values determined throughout the project supporting the uniformity of the soil and justifying the maximum dry density values used in calculating compaction.

Permeability values exhibit an average value of 1.6×10^{-8} (standard deviation 1.3×10^{-8}) all of which are less than the 1×10^{-7} cm/sec. value required in this specification.

Visual observations and using a comparative and reference mensuration technique indicate the barrier wall to be in excess of the six foot thickness design which is twenty percent greater than that required by Act No. 641. The thickness is actually closer to eight foot (8 ft.).

Based on the tests and to the extent we were involved in the field observations it is our opinion that the proposed landfill site has been constructed to date in compliance with the specifications as outlined in Act No. 641 and that the environment will not be affected by its operation.

TABLE OF CONTENTS

Table #1 - - - Summary of Test Procedures Page 1 Table #2 - - - General Construction Specification . Page 2 Table #3 - - - Summary of Field Test Reports. . . . Page 9 11 11 11 Page 10, 11 11 11 Page 11 Table #4 - - - Summary of Clay Permeabilities . . . Page 12 Table #5 - - - Summary of Clay Classifications . . Page 13 Table #6 - - - Error Calculations for Permeability Coefficient . . Page 14 Figure #1- - - Single T180 Modified Proctor Points . . . Page 3 Figure #2- - - (A) Overall Location Diagram Page 4 (B) North Wall Diagram Page 5 (C) South Wall Diagram Page 6 (D) East Wall Diagram Page 7 (E) West Wall Diagram Page 8

1

TABLE #1

Summary of Test Procedures

Test Procedures: -

1

1. Soil Classification:

ASTM D422-63 Particle-Size Analysis of Soils ASTM D423-66 Liquid Limits of Soils ASTM D424-59 Plastic Limits of Soils

2. Soil in Place Density:

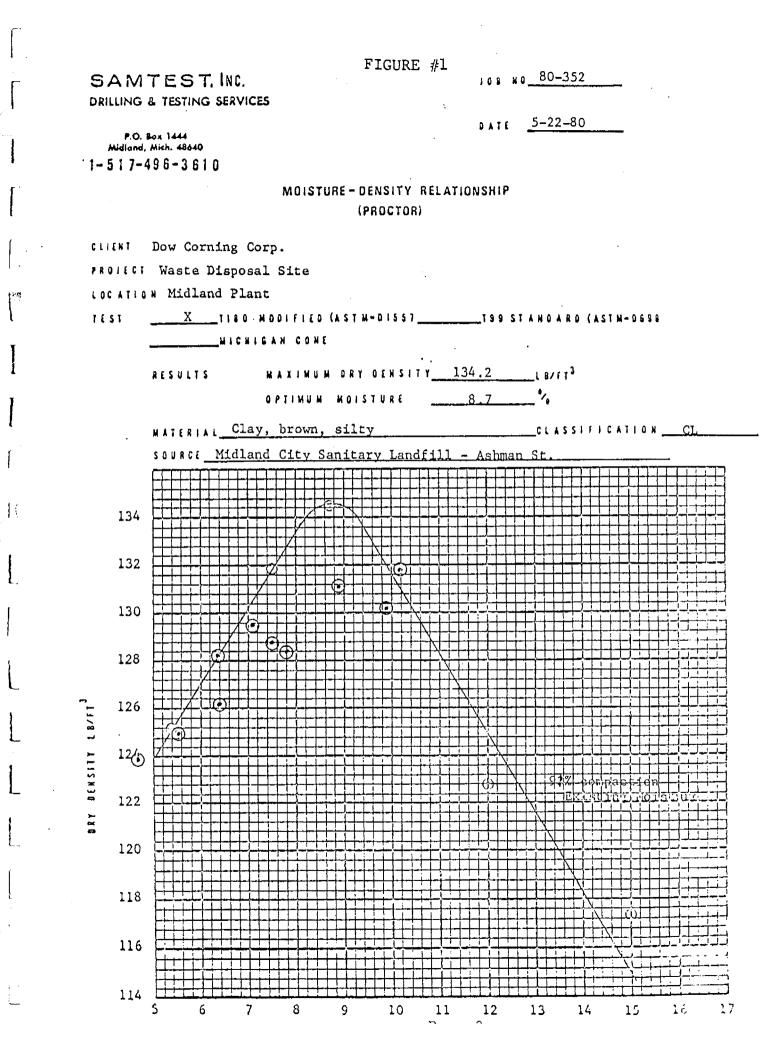
ASTM D2167-66 Density of Soil in Place By The Balloon Method

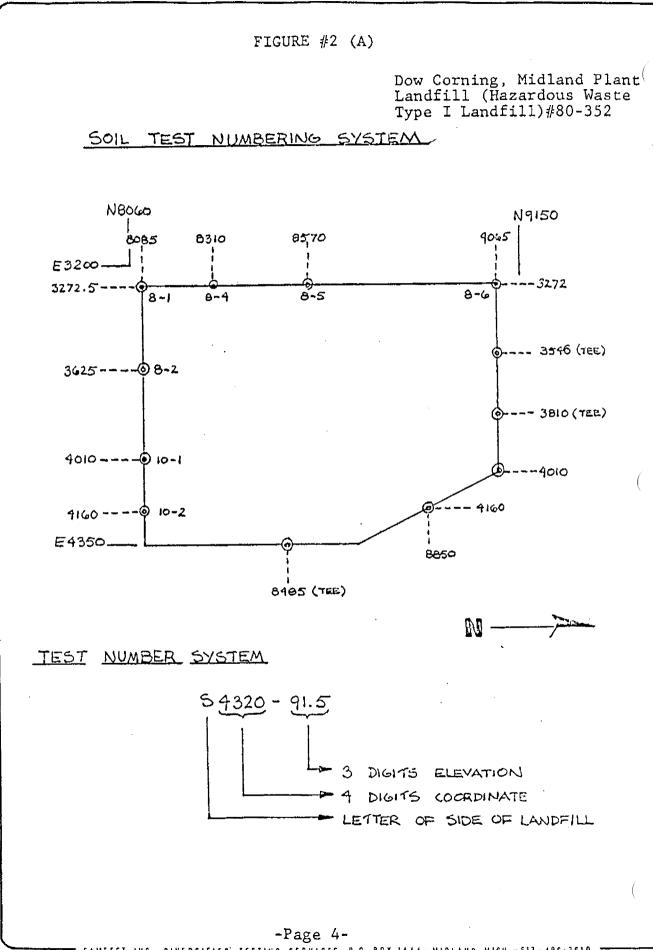
3. Moisture Density Relation for Cohesive Soils-

ASTM D-1557 Method A Moisture-Density Relations of Soil Using 10 lb. Rammer and 28 in. Drop (4 in. mold soil passing #4 sieve)

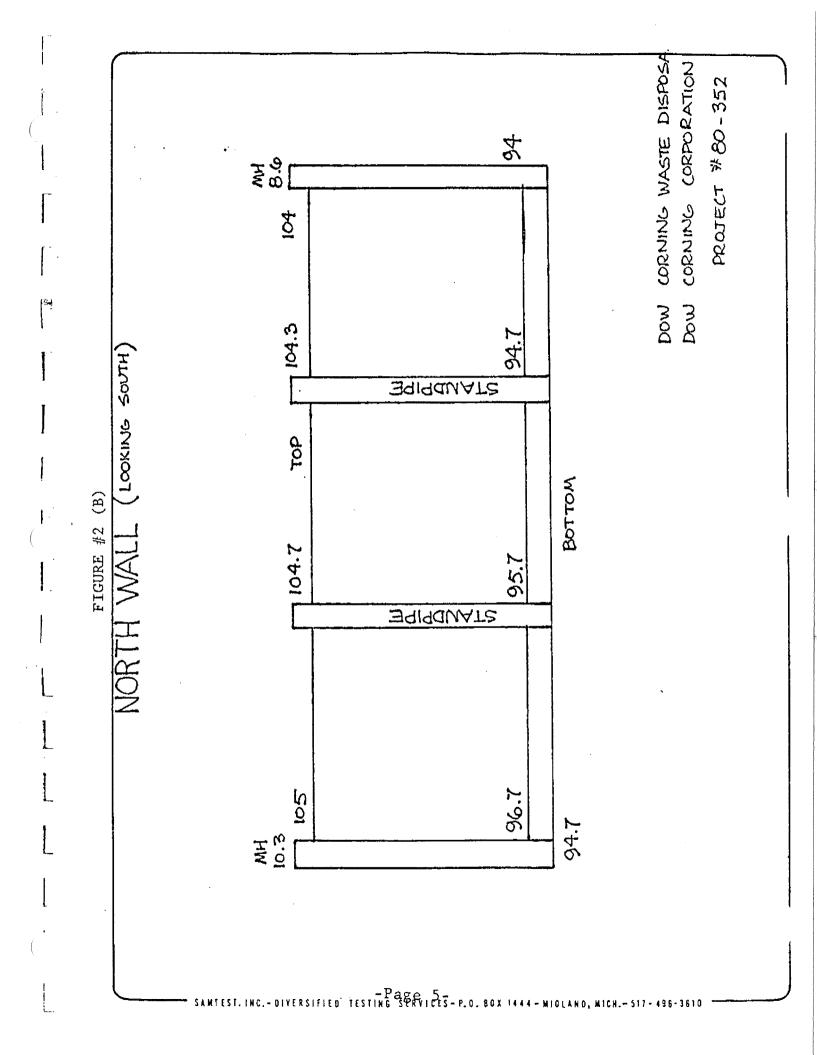
4. Permeability of Fine Grained Soils - Constant Head Procedure.

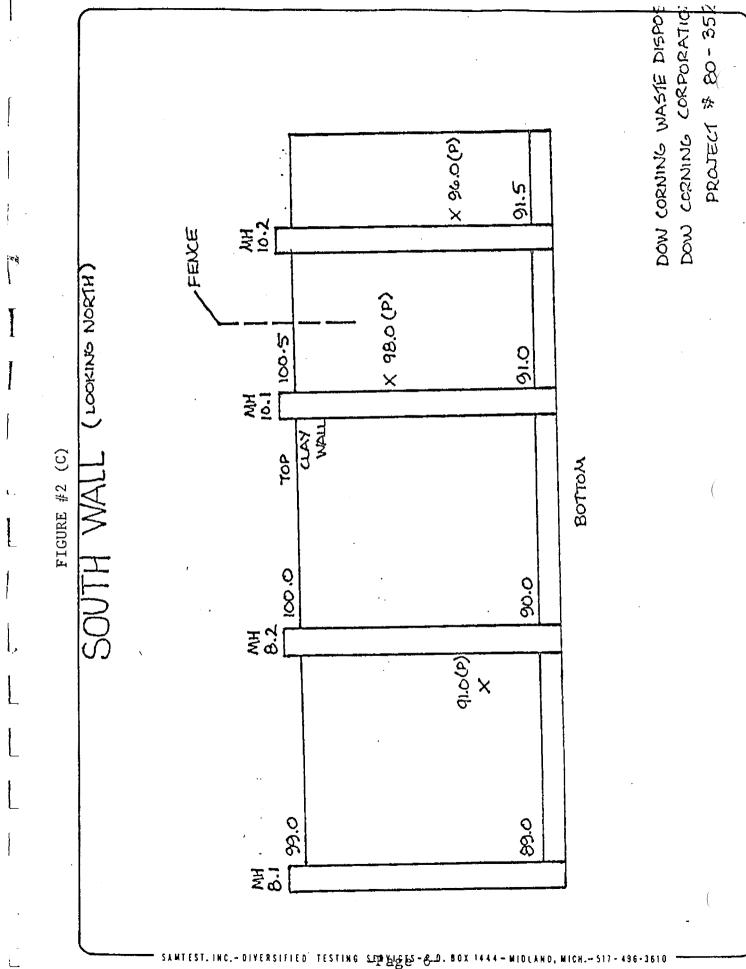
TABLE #2

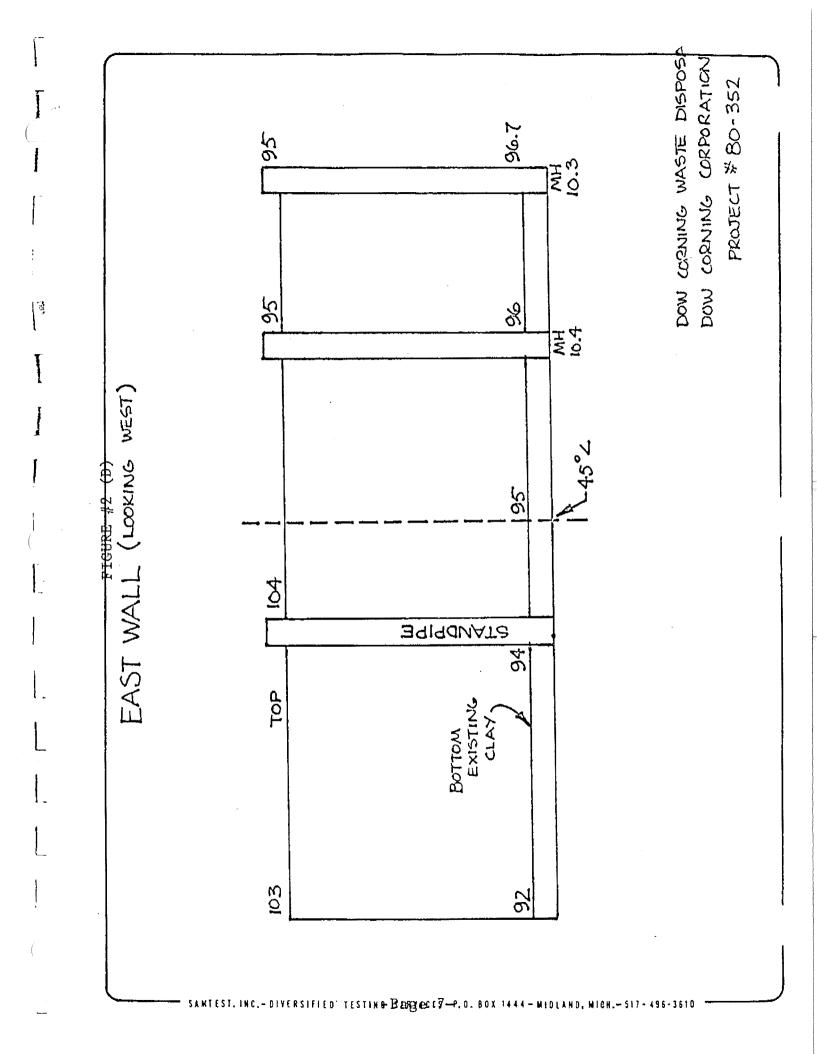

General Construction Specification

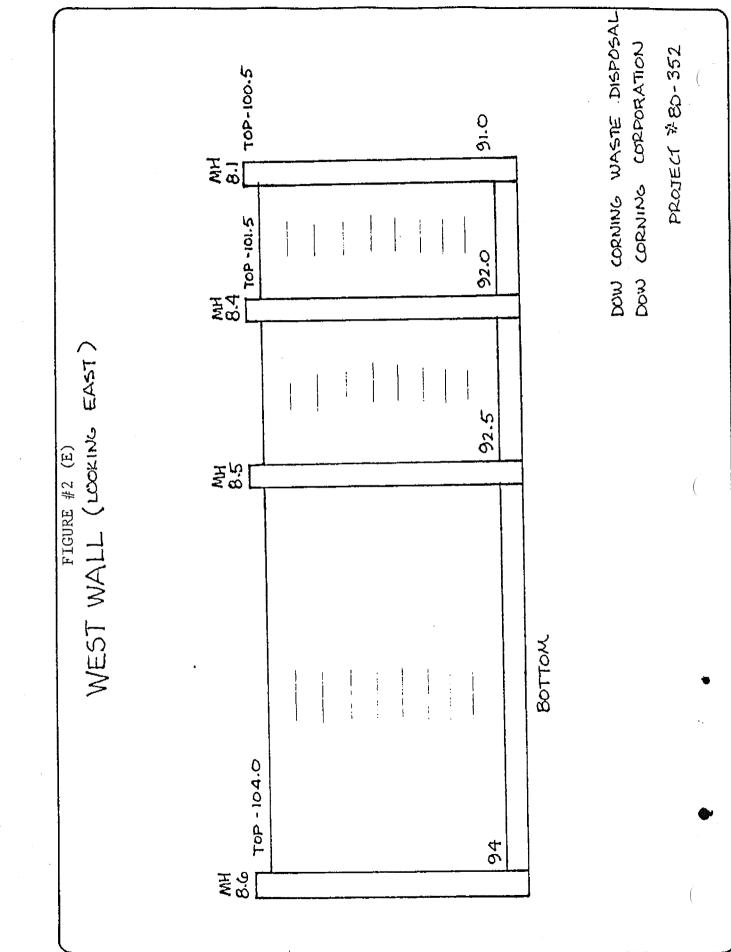

1. Clay Quality - 30% min 0.002mm Clay Liquid Limits 25 min. Plasticity Index 7 min.

2. In place compacted density 90-95%* * compared with maximum dry density as determined using the D 1557 - Method A


3. Permeability Coefficient - as placed lx10-7cm/sec or less


4. Wall Dimensions - 5 ft. thick min.6 ft. thick (as designed)





SAMTEST, INC. - DIVERSIFIED' TESTING SERVICES - P.O. BOX 1444 - MIDLAND, MICH.- 517 - 496-3610

SAMTEST. INC. - DIVERSIFIED TESTING PERVECEB-P.O. BOX 1444 - MIDLAND, MICH. - 517 - 496-3610

I

TABLE # 3

Summary of Field Test Reports

Sample#	<u>Elev. %</u>	Moisture	% Compaction	<u>% Saturation</u>	
N-4010	99*	8.6	99	97	
N-3950*	98'	12.3	95	97	
N-3845	96' Exst.	23.7		-	
N-3300	99'	10.2	96	84	
N-3350*	101'	11.7	94	89	
N-3430	99 '	10.8	95	86	
N-3460	94.3' "	23.6		-	
N-3460	100'	11.0	96	91	
N-3590*	101'	10.6	98	95	
N-3845*	92.5'			-	
N-3875	102'	11.1	96	92	
N-3840	101'	10.3	97	89	
N-3950	98'	10.8	80	_	
N-3843	99'	12.2	86	-	
N-3441	97'	11.9	95	94	
N-3681	97'	12.3	96	100	
N-3950	98' RT	12.3	95		
N-3843	99' RT	10.5	97	90	
S-4220*	99.2'	11.6	96	96	
S-4150*	93' Exst.	25,6		-	
S-4010*	98'	12.6	93	92	
S-4010	99'	9.6	100	94	
S-3625*	90' Exst			-	
S-3625	93'	11.5	93	82	
S-3625*	91'			-	
S-3725	94'	12.8	90	83	
S-3272.5	91'	12.2	97	103	
S-3375	93'	12.8	93	94	
S-3475	93 '	12.6	86	-	
S-3475	93' RT	11.6	96	96	
RT-Represents Retest					
(Exst. indicates existing elevation)					

<u>با</u> د -

TABLE #3 (con't)

<u>Sample#</u>	Elev.	<u>% Moisture</u>	% Compaction	% Saturation
S- 3285*	98'	10.9	96	90
S-4300	91.5' Exst.	15.3		-
S-4025	96'	15.4	88	93
S- 4225	96'	12.2	93	89
S-4200	98'	13.0	95	102
S-4064	98'	12.6	93	92
S- 4070	98'	11.0	99	99
S-3725	92' Exst.	4.1	98	94
S-3590	91'	11.5	97	99
S-3735	97 '	10.7	99	100
S-3785	97 '	11.1	98	100
S-3565	97 '	12.8	83 Top 6 after	of Wall ₆₅ r rain
S-3950	91' Exst.	17.9		
S-3410	98 '	19.8	82 **	II (
S-3300	97.5'	13.0	88	80
E-8284*	102'	11.7	96	97
E-8395*	100'	10.1	96	83
E-8880*	96' Exst.	21.5		-
E-8965*	98'	9.5	98	85
E-8710	97 '	9.2	95	73
E-8610	96'	12.1	96	100
E-8370	96'	13.3	95	100
E-8470*	94' Exst.	27.2		-
E-8628	103'	11.8	91	80
E-4064*	104'	11.0	94	84
E-8895	101'	9.6	93	70
E-8712	101'	9.3	88	56
E-8904	101' RT	11.8	97	100
E-8793	101' RT	12.9	96	103
E-8485	101'	10.6	96	88
E-8380	103'	11.3	92	79

1

ł.

:

TABLE # 3(con't)

<u>Sample</u> #	<u>Elev</u> .	<u>% Moisture</u>	% Compaction	<u>% Saturation</u>	
E-8560	104'	10.4	100	102	
E-8748	105'	10.9	93	80	
E-4350	103'	13.8	85	75	
E-4500	103.5'	12.3	96	101	
E-4350	103'	11.0	93	80	
W-8610*	92.5' Exst.	24.9		-	
W-8390	100'	10.5	96	87	
W-8965*	94' Exst.	22.0		-	
W-8705	97'	11.0	97	95	
W-8225*	92'			-	
W-8990	98'	13.1	94	100	
W-3845*	92'		ł	-	
W-9035*	97'	10.7	95	85	
W-3483*	97'			-	
W-9045*	94'	12.0	91	81	
W-3460*	94.3'	23.6		-	
W-8470	97'	10.7	98	96	
W-8225	97 '	10.1	92	71	
W-8470	94'	14.7	93	100	
W-8345	96'	12.2	95	97	
W-8610	96'	16.3	83	83	
W-8395	95'	11.6 .	95	92	
W-8670	95'	12.1	96	100	
W-8470	94'	12.4	94	94	
W-9045	94'	12.0	_91	81	
		Ave(69 t	cests) 94% (St	. dev.=4.4%)	
BASE CEL	BASE CELL-A				
N.W. Cor	ner* 90'	15.5			

E. Center * 90' 12.9 S. Center * 90' 14.2

* Indicates permeability was done.

TABLE # 4

Summary of Clay Permeabilities

Test Location	Elev.	Ratio <u>Void (e)</u>	Perm. k cm/sec	<u>Soil Gs</u>	<u>sp.g.</u>
N-3950	98	0.2805	1.1x10-8	Fill 2.7	54
N-3350	101	0.3617	4.9x10-9	Fill	
N-3590	101	0.3068	7.1x10-9	Fill	
N-3845	92.5	0.5897	1.5x10 ⁻⁸	Existing	
S-4220	99	0.3342	1.2x10-8	Fill	
S~4150	93	0.6540	2.7x10-8	Existing	
S-4010	98	0.3770	1.8x10-8	Fill	
S-3625	90	0.5081	1.0x10-8	Existing	
S-3625	91		5.5x10 ⁻⁸	Fill	
S-4150	96		8.1x10-9	Fill	
S-3285	98	0.3291	2.3x10-8	Fill	
E-8284	102	0.3342	1.4×10^{-8}	Fill	
E-8395	100	0.3342	8.3x10-9	Fill	(
E-8880	96	0.6898	2.9x10-8	Fill	
E-8965	98	0.3068	4.0x10-9	Fill	
E-8470	94	0.6701	1.9×10^{-8}	Existing	
E-4064	104	0.3671	4.3x10 ⁻⁹	Fill	
W-8610	92.5	0.6508	1.5x10-8	Existing	
W-9035	97	0.3564	3.2×10^{-9}	Fill	
W-8225	92		1.1x10 ⁻⁸	Existing	
W-3483	97		1.1x10-8	Fill	
W-8965	94	0,5971	3.4x10 ⁻⁸	Existing	
W-9045	94	0.4074	4.1x10 ⁻⁹	Fill	
W-3845	92		1.5×10 ⁻⁸	Existing	
W-3460			4.4×10^{-8}	Existing	
		Average	$= 1.6 \times 10^{-8}$		
CELL A Ex	isting				
N.W. Corn	er 90	0.4006	2.0x10 ⁻⁸	Existing	
E. Center	90	0.4638	5.1×10^{-9}	11	,
S. Center	90	0.3848	4.4x10 ⁻⁸		(

Dow corning, Midrand Plant-Landfill (Hazardous Waste Type I Landfill) #80-352

TABLE #5

Summary of Clay Classifications

Sample #	<u>Elev.</u>	Classification	<u>LL</u>	PI	<u>% Clay</u>
N-3350	101'	CL-brn.,sandy \overline{w} silt	24.6	10.3	29.8%
N-3590	101'	CL-brn.,silty clay	41.8	17.2	30.7%
N-3845 *	96'	CL-clay,brn.,silty- some sand	43.3	18.1	66.5%
N-3460*	94.3'	CL-clay,brown,silty trace sand	41.0	18.4	68.0%
S-3285	98'	CL-brn., silty clay	26.4	13.3	33.0%
S-3475	93'	CL-brn., silty, sandy-clay	25.8	12.9	30.0%
S-3725	94'	CL- " " "	25.0	10.6	32.0%
S-4150 }	93'	CL-brn.,silty,clay w	24.9	24.0	73.0%
s-4300	91.5'	trace sand CL-ML,clay,sandy,brn-	.19.4	6.7	32.0%
E-8470×	94'	silty CH-clay,brn.,silty trace	43.6	18.9	66.0%
E-8965	98'	sand CL-clay,brown silty	23.7	10.6	30.3%
E-4064	104'	CL-clay,brown silty	24.8	9.0	
W-8225∗	92'	CL-brn.,clay	24.8	11.2	29.6%
W-8610 ~	92.5'	CL-clay,brn.,silty	24.9	11.6	71.0%
W-8965*	941	CL-brn. clay	46.2	20.0	66.4%
W-9035	97 '	CL-clay brown silty	23.6	10.1	30.8%

3

-Page 13 SAMTEST. INC.-DIVERSIFIED TESTING SERVICES-P.O. BOX 1444-MIDLAND, MICH.-517-496-3610

TABLE #6

Error Calculations For Permeability Coefficient

Variable Measurement with Error

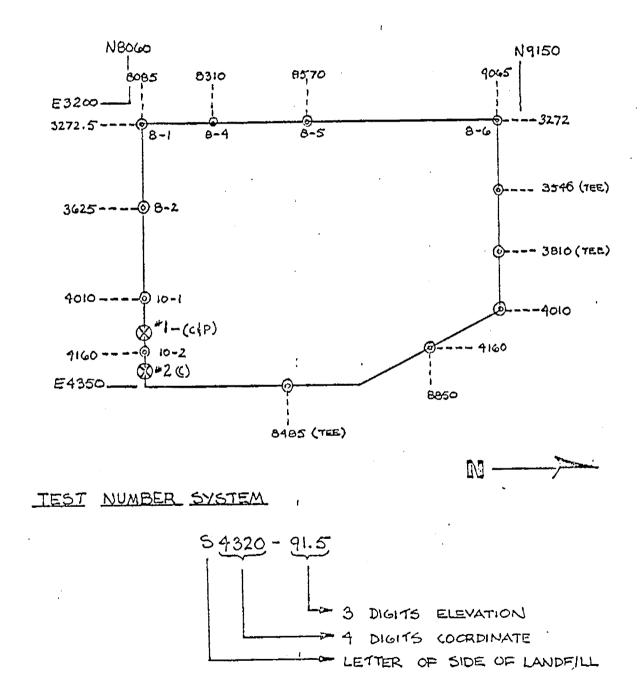
	Variable	Nominal	Variation Minimum	Maximum
L	col. length	6.35 <u>+</u> 1.59mm	6.191	6.509
Q	vol. cm^3	0.21ml <u>+</u> 0.01	0.20	0.22
A	area	$9.580 \text{ cm}^2 \pm 0.437$	9.143	10.017
T	ime of flow (sec)	3600sec <u>+</u> 120sec	e 3480	3720
Т	temp	21°C ± 1.0°C	0.952	1.000
h	head cm water	1134cm	1120cm	1148cm

Permeability Coefficient Calculation:-

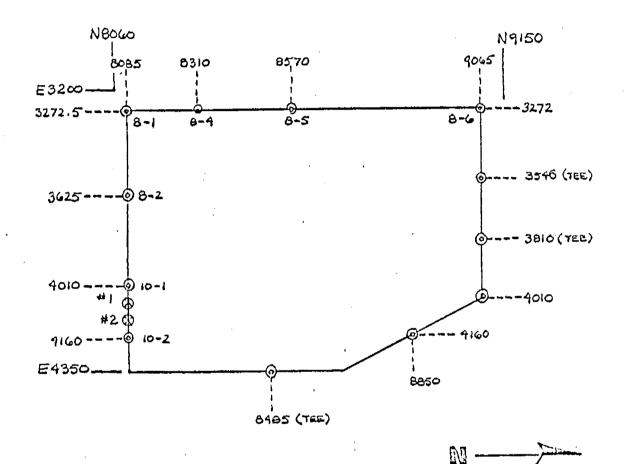
 $k = \frac{QL}{t h A}$

Nominal	Max. Vari. <u>Min</u> .	
3.4x10-8	2.75x10 ⁻⁸	4.02x10 ⁻⁸

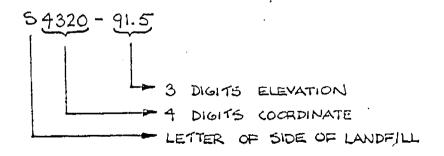
-Page 14-


Dow Corning Corporation Midland Plant Landfill (Hazardous Waste Type I Landfill)

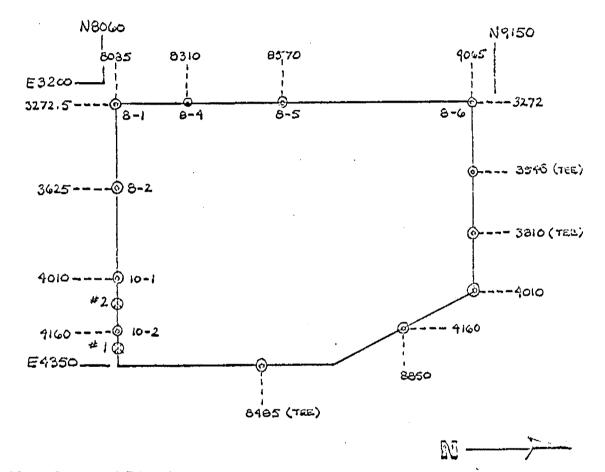
#80-352

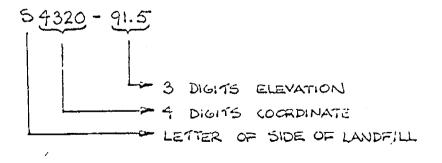

FIELD TEST REPORT FORMS

* SAMTEST. INC. - DIVERSIFIED TESTING SERVICES - P.D. BOX 1444 - MIDLAND, MICH. - 517+ 496-3610

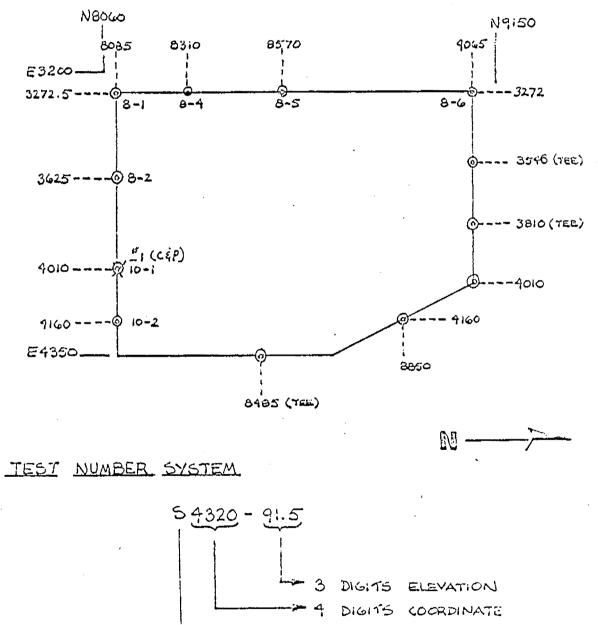

					,	
• •	SAMTEST P.O. Bo Midland, Mic Phone 49	ox 1444 :higan 48640	DATE: 6-9- PROJECT: DO CLIENT: DOW	NLY SUIL 80 w Corning W Corning Cor	в No.: <u>80-35</u> aste Dispos рјов No.	2 al
WEATHER	Clear	TEMP RANGE	<u>о</u> то	AREA WORKED		
TYI FIL TYI	PEOF SAND	METHOD OF COMPACTION CONDITION OF GRADE	VIBRATOS PNEUMAT SHEEPSFC RUBBER XX ROUGH SHOOTH WET ORY	IC TAMP. Dot Tired	STEEL WHEEL	HEEL ric <u>eep</u> sfoo
	35 OF LIFTS IN.		H OF FILL 10		PLACED TO DATE.	
134.	2 _*/ су. гт. ортіним моі	STD AASHO T-99	WETHOD OF			
		LOCATION AND	RESULTS OF TESTS			
1657 NO.		LOCATION		Elevation	PERCENT MOISTURE	COMPACTI
	S-4150 - Ex:	isting Soil		93.0		
<u>#2</u>	S-4300 - Ex:	isting Soil		91.5	15.3	
	Permeability	•				
	S-4150 - 2.7		· · · · · ·			
BRIEF RI	ESUME OF WORK ACCOMP	LISHED THIS DAT Z:				
		SEE ATTACHED	DIAGRAM			
					, Al-	(
		•		SIGNED	ica Ma	zar

	Midla	SAMTEST, P.O. Box Ind, Michi Phone 496-	1444 gan 48640	DATE: <u>6-16-</u> Project: <u>W</u>	30 (AM) jo aste Disposal Corning	S КЕРОГ јов но	2
WEATHER	Cle	ar	TEMP RANGE	° 10	O _ AREA WORKED _	South Wall	
TYI Fil	PEOF	SAND CLAY LOAM SAND CLAY LOAM	METHOD OF COMPACTION	VIBRATOF	Y PLATE C TAMP. OT	STEEL WHEEL VIB. STEEL W VIB. PNEUMA XX Vib. Shew Frozen Loose Hard Rutted	- · HEEL TIC
THICKNES	S OF LIFTS_	<u>24</u> in.	PLANNED DEP	TH OF FILL 10	т	PLACED TO DATE	4
134.2				METHOD OF			<u>Х</u> васьс
DENSITY P	REQUIRED	<u>95</u> •	NO, QF TESTS THIS		NO. OF TESTS TO	0ATE	
TEST NO.				D RESULTS OF TESTS		PERCENT	PERC
EST NO.					Elevation		+
< <u> </u>	<u>s-4025</u>				96.0 96.0	15.4	88
		· · · · · · · · · · · · · · · · · · ·					
BRIEF RE	SUME OF WO	RK ACCOMPLISH	ED THIS DATE:				
······	· · · · · · · · · · · · · · · · · · ·						
			SEE ATTACHED	DIAGRAM			
······							(

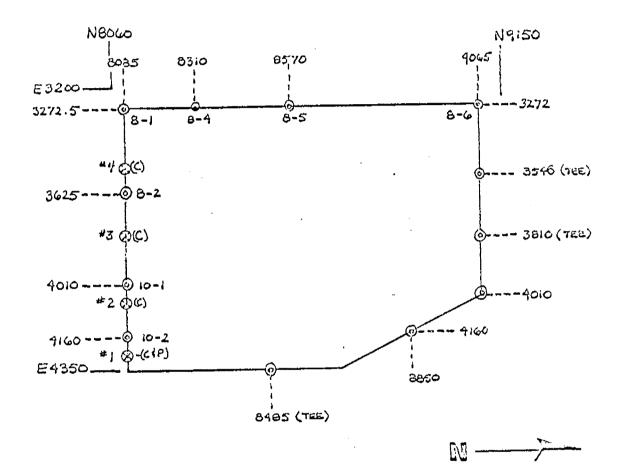




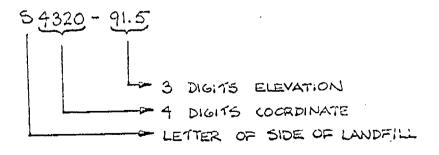
DAILY SURLS REPORT SAMTEST, INC. DATE: <u>6-16-80 (PM)</u> JOB NO : <u>80-352</u> PROJECT: <u>Waste Disposal</u> P.O. Box 1444 Midland, Michigan 48640 CLIENT: _____ Dow Corning Corporation JOB NO .: ___ Phone 496-3610 CONTRACTOR: ____ ото Ó South Wall _ AREA WORKED ___ WCATHER____ Clear . TEMP RANGE STEEL WHEEL VIERATORY PLATE SAND-METHOD OF COMPACTION TYPE OF VIB. STEEL WHEEL FILL PNEUMATIC TAMP. X CLAY VIB. PNEUMATIC SHEEPSFOOT LOAN. XX Vih. Sheepsfoot AUBBER TIRED КХ волен FROZEN CONDITION OF GRADE TYPE OF SAND SUBGRADE _____ ямоотн LOOSE X CLAY HARD WET LOAM. AUTTED DAY PLANNED DEPTH OF FILL 10 FT 6 24 _IN. PLACED TO DATE_ THICKNESS OF LIFTS_ XX BALLOON X NOD. AASHO T 180 METHOD OF TEST SANDCONE MAX. DENSITY OF MATERIAL STD. AASHO T-99 134.2 / CU. FT. OPTIMUM MOISTURE 8.7 NO. OF TESTS TO DATE DENSITY REQUIRED _____95 NO. OF TESTS THIS DATE ____ 2 LOCATION AND RESULTS OF TESTS COMPACTED FILL PERCENT PERCENT COMPACTIO LOCATION TEST NO. Elevation 98.0 95 13.0 S-4200 98.0 12.6 S-4064 2 DRIEF RESUME OF WORK ACCOMPLISHED THIS DATE: , SEE ATTACHED DIAGRAM


SIGNED _

TEST NUMBER SYSTEM

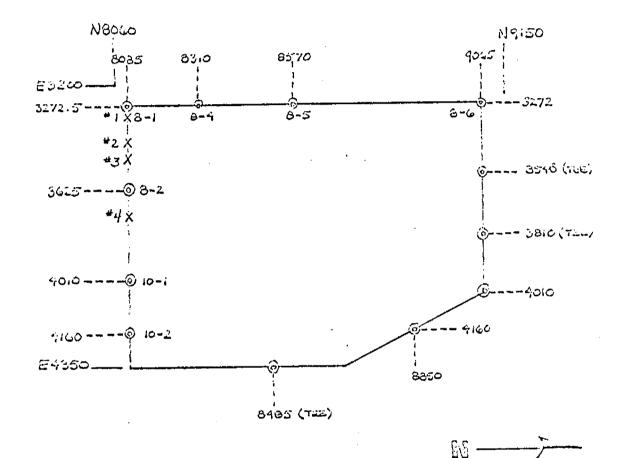


· ·	SAMTEST P.O. Bo Midland, Mic Phone 49	x 1444 higan 48640	DATE: 6-17-80 (AM) JOB NO.: 80-352 PROJECT: Waste Disposal CLIENT: Dow Corning Corporation JOB NO.: CONTRACTOR:				
	Clear	TEMP RANGE 70	о 80	AREA WORKED	South Wall		
	PEOF SAND	METHOD OF COMPACTION	VIBRATOR PNEUMATI SHEEPSFO RUBBER T	С ТАМР. ОТ	STEEL WHEEL VIB. STEEL WHEEL VIB. PNEUMAT VIB. Shee	IEEL NC	
\$UI	DGRADE SAND	CONDITION OF GRADE	XX ROUGH SMOOTH WET - DRY		LOOSE HARD RUTYED	6	
THICKNE	SS OF LIFTS 24 IN.	•	H OF FILL 10 F		PLACED TO DATE.		
134.2	_#/ си. FT. ОРТІМИМ МОІS	3 5TD. AASHO T-99 8.7 TURE	METHOD OF				
DENSITY	REQUIRED	_ % NO. QF TESTS THIS	and the second	NO, OF TESTS TO L			
		LOCATION AND	RESULTS OF TESTS		DEDCENT	PERCEN	
TEST NO.		LOCATION	·	Elevation	PERCENT	COMPACT	
	S-4010			98.0	12.6	93	
~		· · · ·					
. <u></u>			······································				
<u></u>	Permeability:						
	<u>s-4010 - 1.8</u>	x10 ⁻⁰ cm/sec.		· · · · · · · · · · · · · · · · · · ·			
······································	· · · · · · · · · · · · · · · · · · ·					<u> </u>	
	· ·					<u></u>	
BRIEF R	ESUME OF WORK ACCOMPL	ISHED THIS DATE:					
		·					
		See Attached Diag	gram				
<u> </u>							
~~				·			
				· · · · · · · · · · · · · · · · · · ·	·····		
					1	/	
				SIGNED _ UL	leamil	11:20	

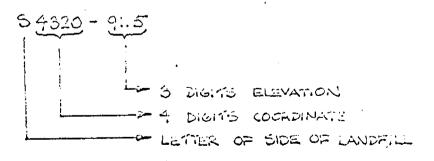


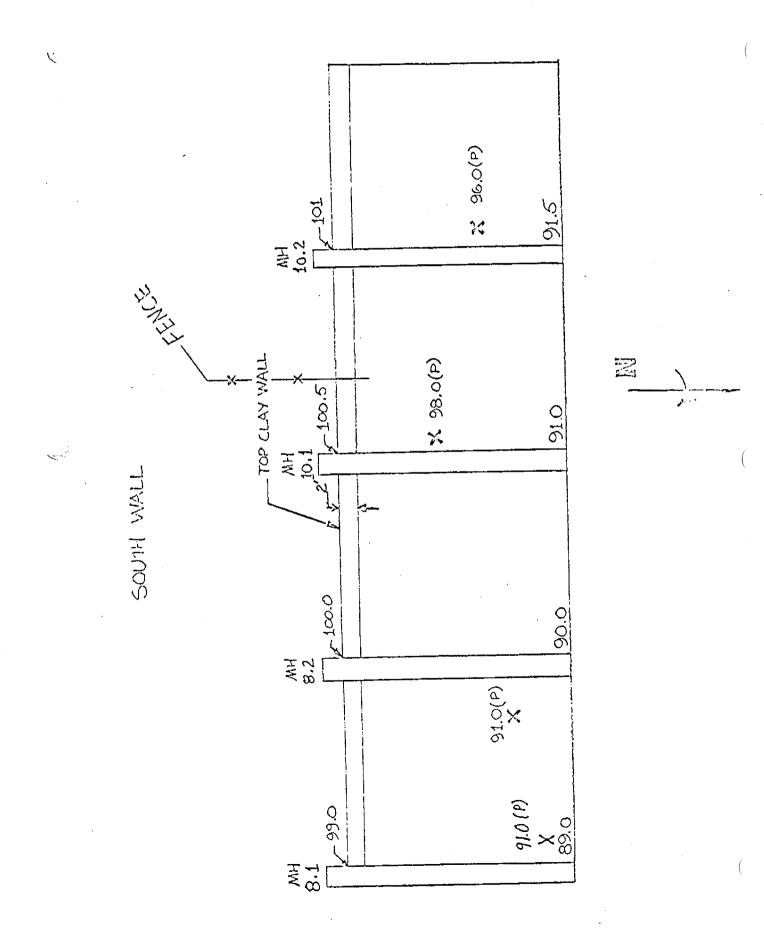
LETTER OF SIDE OF LANDFILL

• • •	SAMTEST P.O. Bo Midland, Mic Phone 49	x 1444 higan 48640	DATE: PROJECT: CLIENT:	30 (PM) Jo Maste Disposal	cation JOB NO.	
	Clear	TEMP RANGE70	о _{то} 80	O AREA WORKED	S. Wall	
TY Fi	PEOF SAND LL CLAY LOAM. PEOF SAND BGRADE CLAY LOAM.	METHOD OF COMPACTION	VIBRATOR PHEUMATI SHEEPSFO RUBBER T XXX ROUGH SMOOTH WET ORY	NY PLATE IC TAMP. Dot "Ired	STEEL WHEEL VIB. STEEL W VIB. PNEUMA VIB. Shee FROZEN LOOSE HARD RUTTED	HEEL ric <u>psf</u> oot
THICKNE	55 OF LIFTS IN.		HOFFILL 10 F		PLACED TO DATE.	
MAX. DEN		_	METHOD OF	TEST SAND	CON 2 2	BALLOON
134.2	ــــا v/ cu. ft. optimum mois	3 STD. AASHO T-99		L]	· · ·	
		_ % NO. QF TESTS THIS	DATE	NO. OF TESTS TO	DATE	
- <u></u>			RESULTS OF TESTS	- · · · · · · · · · · · · · · · · · · ·	······································	
TEST NO.		LOCATION	<u>, 11.11 </u>	Elevation	PERCENT MOISTURE	PERCEN COMPACTI
	s-4220			99.2	11.6	96
2	s-4070	· ·	· · · · · · · · · · · · · · · · · · ·	98.5	11.0	
.3	s-3725			92.0	4.1	98
 _4	s-3590			91.0	11.5	97
· · · · · · · · · · · · · · · · · · ·				,		
·······	· · · · · · · · · · · · · · · · · · ·			•		
<u></u>						
BRIEF RE	SUNE OF WORK ACCOMPLI	SHED THIS DATE:		· · · · · · · · · · · · · · · · · · ·		
	Permeability:		······································			
	S-4220 - 1.2x1	0 ⁻⁸ cm/sec.	_			
		See Attached	Diagram	······································		
	, senter te a senter			******		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u></u>		
				<u> </u>		
<u></u>						
					n al	
				NONED WILL	an U.U	mar

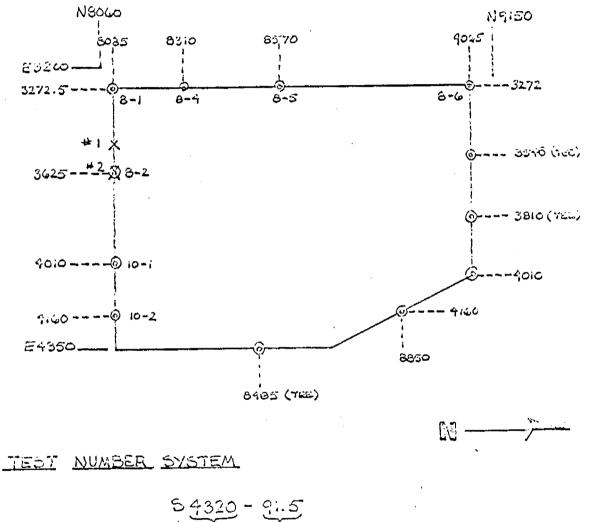


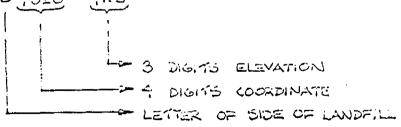
TEST NUMBER SYSTEM.

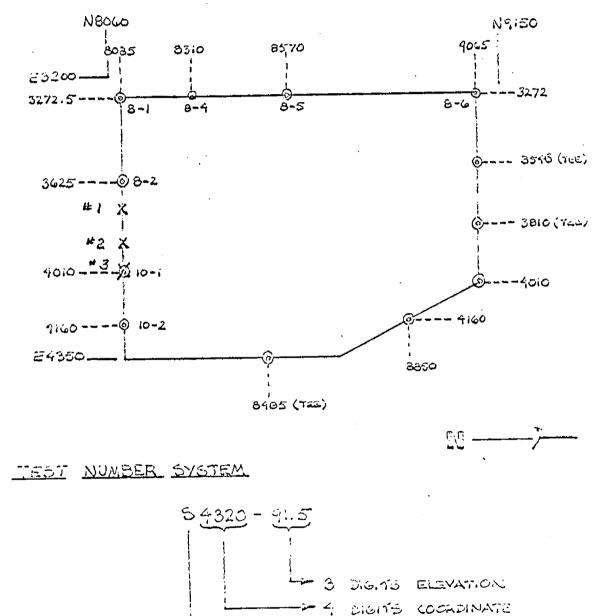



(

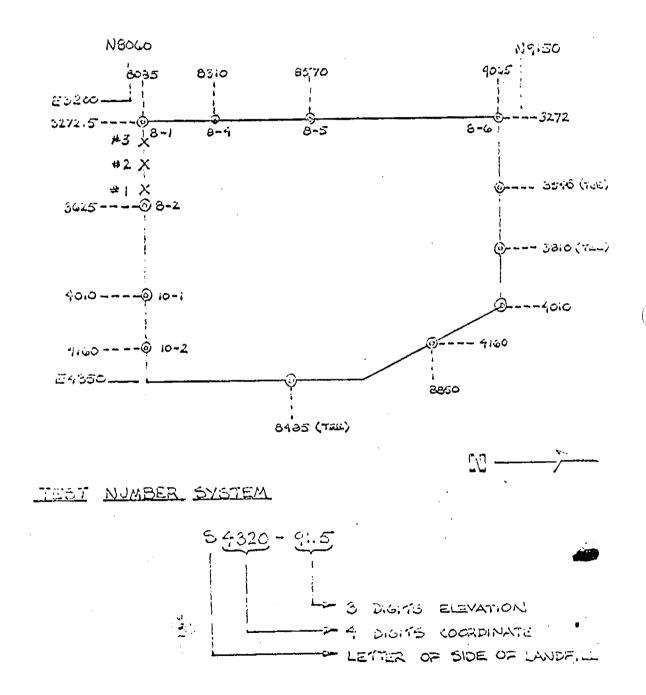
× .	SAMTEST, P.O. Box Midland, Michi Phone 496-	1444 gan 48640	DATE: 6-18-8	Corning Waste	B NO : 80-352 Disposal	2
TY Fil TY	DGRADE	METHOD OF COMPACTION	VIBRATOR PREUNATI SHEEPSFO RUBBER T ROUGH SMOOTH WET ORY	Y PLATE C TAMP. OT TRED	STEEL WHEE VIB. STEEL V VIB. PNEUMA VIB. She FROZEN LOOSE HARO RUTTEO	WHEEL TIC epsfoot
MAX. DEN:	SITY OF HATERIAL		METHOD OF "	TEST SAND	······································	XX 8ALLOON
	· · ·	LOCATION AND	RESULTS OF TESTS			
iest no.		LOCATION		Elevation	PERCENT	PERCENT
, , ,	<u> s-3272.5 - 91.0</u>			91.0	12.2	97
2	s-3375.0 - 93.0			93.0	12.8	. (_
5	s-3475.0 - 93.0		•	93.0	12.6	86
ζ,	S-3725.0 - 94.0			94.0	12.8	90
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
<u>Srief re</u>	SUME OF WORK ACCOMPLISHE	D THIS DATE:				
• . <u></u>		SEE ATTACH	IED DIAGRAM		· · · · · · · · · · · · · · · · · · ·	
	·					(
	······································					<u> </u>

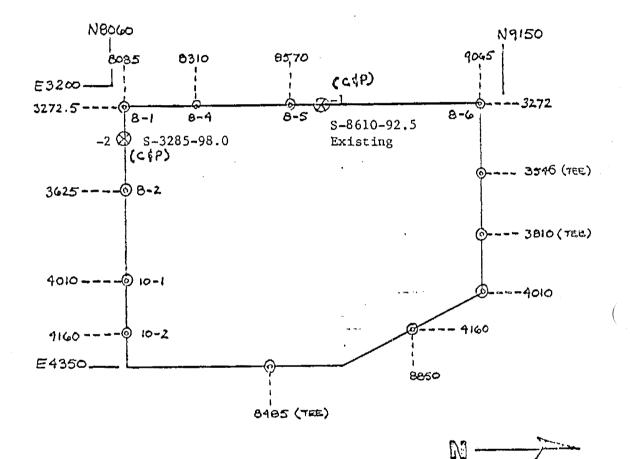


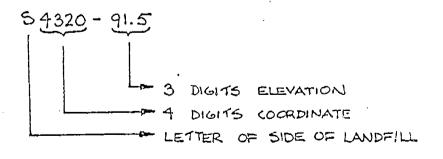


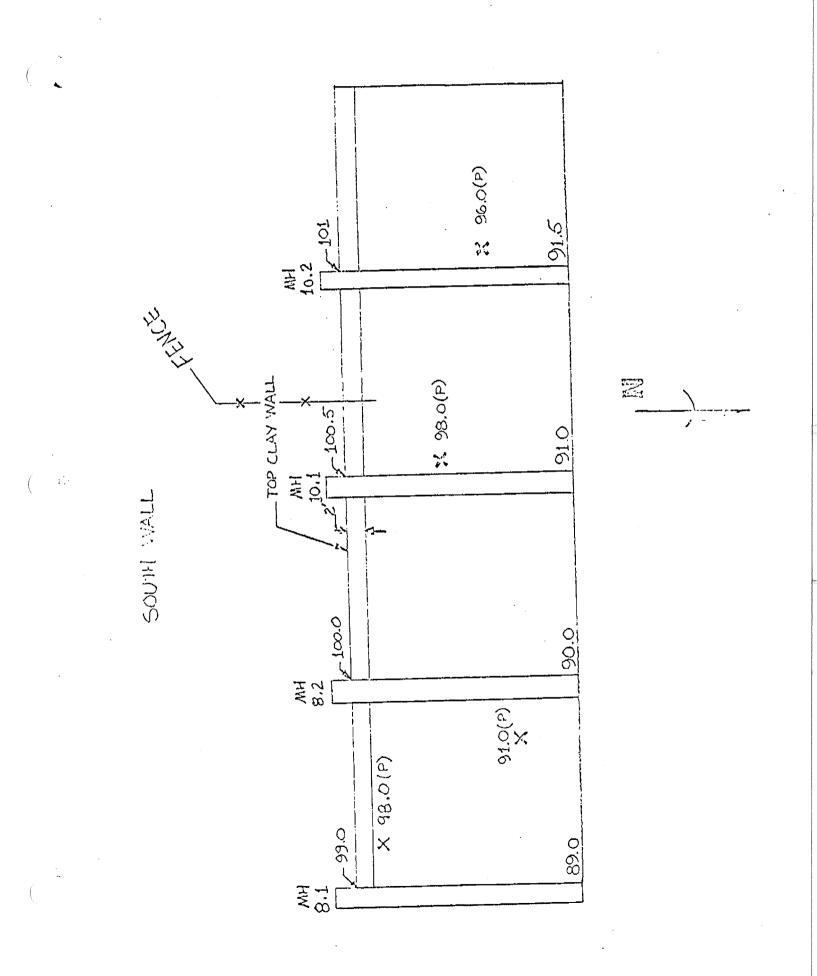


۲.	P.(Midland	4TEST, IN). Box 14 , Michiga 1e 496-36	44 n 48640	DATE: 6-19-80 (AM) JOB NO : 80-352 PROJECT: Dow Corning Waste Disposal CLIENT: Dow Corning Corporation JOB NO.:				
TY Fil TY SU		SAND M CLAY LOAN. SAND CLAY LOAM.	TEMP RANGE 60 ETHOD OF COMPACTION CONDITION OF GRADE	VIBRATOR PNEUMAT SHEEPSFC RUBBER RUBBER ROUGH SMOOTH WET DRY	RY PLATE IC TAMP. DOT TIRED	STEEL WHEEL VIB. STEEL W VIB. PNEUMA FROZEN LOOSE HARD RUTTED	HEEL TIC	
MAX. DEN	ss of lifts <u>2</u> isity of material _*/ cu. ft. optim required <u>95</u>	мор. stр. им мојсти Re	AASHO T 180 AASHO T-99	TH OF FILL 10 F	TEST SANG	PLACED TO DATE	BALLOON	
			LOCATION AN	D RESULTS OF TESTS	<u>}</u>	BERGENT	PERCEN	
0377 NO.			LOCATION		Edevation	PERCENT	COMPACTI	
·	S-3475 9	3.0 (Ret	est of 6-18-80)		93.0	11.6	· · · ·	
2	S-3625 9	3.0			93.0	11.5	<u> </u>	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
							_	
		····		· · · · · · · · · · · · · · · · ·			<u> </u>	
							<u> </u>	
BRIEF RE	SUME OF WORK AC	COMPLISHED T	HIS DAT C:					
- 35,445,			SEE ATTACH	IED DIAGRAM				
					Manan'e '''''''''''''''''''''''''''''''''			
·								
	······				//_/_	: <u>1</u>	n/	
					SIGNED	Uan U	1): 112	

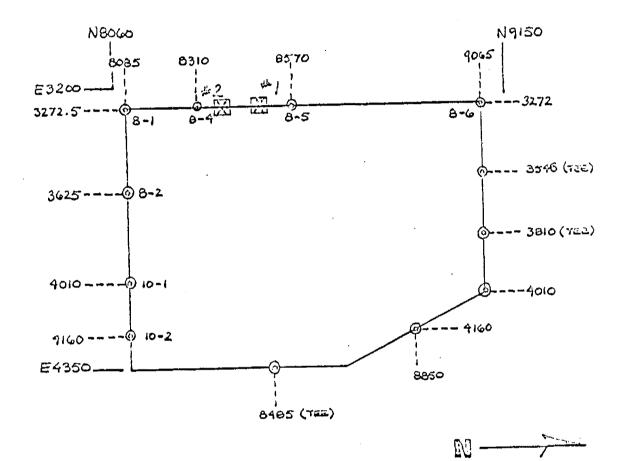


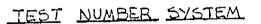

(SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610			DALLY SUILS REPUBT DATE:6-23-80(p.m.) JOB NO :80-352 PROJECT: Dow Corning Waste Disposal CLIENT: Dow Corning Corporation JOB NO .: CONTRACTOR:			
-	WOATHER	Clear	TEMP RANGE 70	° to 80	O AREA WORKED		
	וז דו דו	PEOP SAND LL X CLAY LOAM. PEOP SAND BGRADE X CLAY LOAM.	METHOD OF COMPACTION	VIBRATOR PHEUMATI SHEEPSFC AUBBER T X ROUGH SMOOTH VET ORY	Y PLATE C TAMP. OT	STEEL WHEE VIB. STEEL V VIB. PNEUMA VIB. PNEUMA VIB. Shee FROZEN LOOSE HARD RUTTED	L . Wheel Ntic
	THICKNE	SS OF LIFTS IN.	PLANNED DEPT	H OF FILL 10 F	T	PLACED TO DATE	
·	134.2		NOD. AASHO T 180 STD. AASHO T-99 URE <u>8.7</u> % NO. OF TESTS THIS C	METHOD OF			A BALLOON
-	<u> </u>		LOCATION AND	RESULTS OF TESTS			
-	1457 NO.		LOCATION		Elevation	PERCENT MOISTURE	PERCENI COMPACTIO
-		s-3735 - 97.0	,	······································	97.0	10.7	
(2	s-3785 - 97.0			97.0	11.1	98
-	3	s-4010 - 99.0		· · · · · · · · · · · · · · · · · · ·	99.0	9.6	100
-	<u></u>						
							·
-)	· · · · · · ·		
-	-						
-	BRIEF RE	I	HED THIS DATE:				
			SEE AT	TACHED DIAGRAM			
	••••••••		gg-gg/t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-		——————————————————————————————————————		
(<u> </u>				· · ·	<u> </u>	
	.						/
					IGNED MAL	lecim !!!	10000

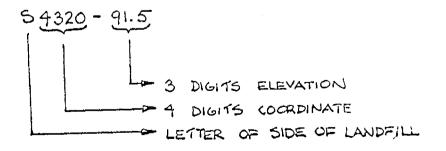

(L	Midl	SAMTEST, P.O. Box and, Mich Phone 496	1444 igan 48640	DATE: 6-24-	30 JC w Corning Was orning Corport	DE NO : <u>80-352</u> te Disposal ation JOB NO.	· · · · · ·
-	WRATHER	Cle	ar	TEMP RANGE 70	<mark>о то 80</mark>	O _ AREA WORKED _	South Wall	
	TY Fil TY	PEOF	SAND CLAY LOAH. SAND SAND CLAY LOAM. LOAM.	CONDITION OF GRADE	VIBRATOR PNEUMATI SHEEPSFO RUBBER T X ROUGH SMOOTH WET DRY	Y PLATE C TAMP. OT	STEEL WHEEL	HEEL FIC 2DSTOOT
•	THICKNE	SS OF LIFTS	<u>24</u> jn.	PLANNED DEPT	HOF FILL 10 F		PLACED TO DATE	
	134.2			STD. AASHO T-99	METHOD OF		DCONE [
_	DENSITY	REQUIRED	95	3 NO. OF TESTS THIS	RESULTS OF TESTS	NO. OF TESTS TO	DATE	
-	·				RESULTS OF TESTS	-	PERCENT	PERCENT
-	iest no.			LOCATION		ELEVATION		COMPACTIC
7	: _:	S-3565	- 97.0			97.0	12.8	5
(2	S-3410	- 98.0			98.0	19.8	32
	3	S-3300	- 97.5		·	97.5	13.0	88
_								
-							·	}
-								
-		·						
-								
•	BRISF RI	L	ORK ACCOMPLIS	HED THIS DATE:				
	<u></u>							
	·····- <u>-</u>			SEE ATTACH	IED DIAGRAM			
						·		
(
					· · · · · · · · · · · · · · · · · · ·			• • • •



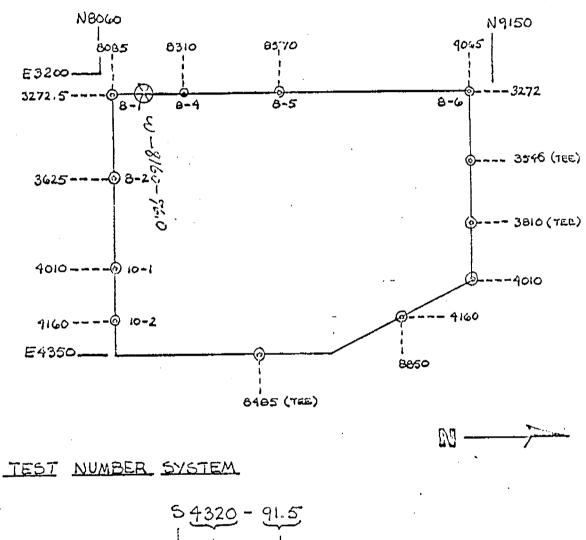
(- 、	SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610	DATE: 6-26-8 PROJECT: DOT	ULV OUULA 30 JOE V Corning Waste Corning Corpor	NO: 80-352 disposal	
WEATH	ER Cloudy TEMP RANGE 70	° TO 80	AREA WORKEDS	outh Wall	
	TYPE OF SAND METHOD OF COMPACTION FILL CLAY LOAM. TYPE OF SAND CONDITION OF GRADE SUBGRADE CLAY LOAM. LOAM.	VIBRATOR PNEUMAT SHEEPSFO RUBBER 1	NY PLATE IC TAMP. Dot	STEEL WHGE VIB. STEEL V VIB. PNEUMA VIB. PNEUMA VIB. Shed FROZEN LOOSE HARD RUTTED	TIC
THICK	IESS OF LIFTS 24 IN. PLANNED DEPT	TH OF FILL 10 P	T I	PLACED TO DATE	<u>8-9</u> FT
134 .	ENSITY OF MATERIAL X MOD. AASHO T 189 STD. AASHO T-99 2_F/CU. FT. OPTIMUM MOISTURE_8.7 Y REQUIRED_95 NO. OF TESTS THIS	METHOD OF		DNE [BALLOON
DENSIT		RESULTS OF TESTS	. NO. OF TESTS TO D	·····	
NO 7 LO	LOCATION		ELEVATION	PERCENT	PERCENT COMPACTIO
(W - 8610 (Existing Grade materia	1)	92.5	24.9	
(S - 3285 (Compacted Fill)	······································	98.0	10.9	96
	Permeabilities:	<u>,</u>			
	W-8610 - 1.5x10 ⁻⁸ cm/sec.				
	S-3285 - 2.3x10-8cm/sec.				
<u>02157</u>	RESUME OF WORK ACCOMPLISHED THIS DATE:		1	1	<u>.i</u>
	SEE ATTACHEI) DIAGRAM			
- <u></u>					
(<u>بر بر المعام المعام (المعام (</u>			
· · · · · · · · · · · · · · · · · · ·			1 1 1		
			SIGNEONULC	in la	Z!!~

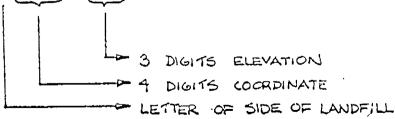


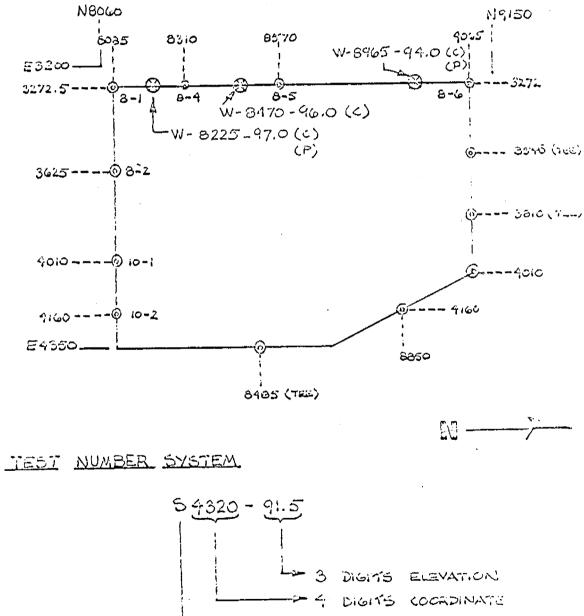

TEST NUMBER SYSTEM



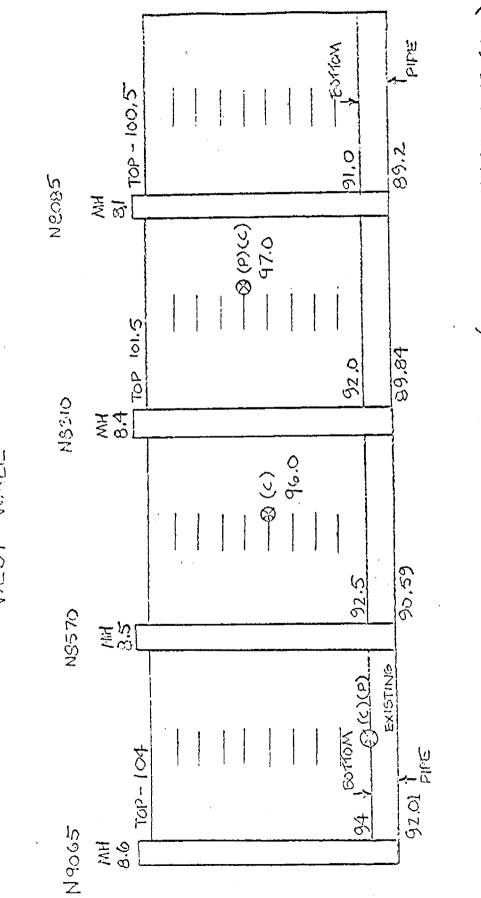
		SAMTEST, P.O. Box and, Michi Phone 496-	1444 gan 48640	DATE: 6-30-8 PROJECT: Dow	Corning Wast Corning Corp	ON BOL JOB NO	2
WEATHER	Clea	ar	TEMP RANGE	T0	O		
די די די	PE OF LL PC OF BGRADZ		METHOD OF COMPACTION	VIBRATOR PNEUNAT SHEEPSFC RUBBER T ROUGH SMOOTH WET ORY	Y PLATE C TAMP. OT	STEEL WHEE VIB. STEEL W VIB. STEEL W VID. PNEUMA VID. She FROZEN LOOSE HARD RUTTED	L . VHEEL . VIC
THICKNE	SS OF LIFTS	<u>24</u> in.	PLANNED DEPT	N OF FILL 10 F	Ϋ.	PLACED TO DATE	<u>2-4</u>
134.2		s s ортімим моіstui	100. AASHO T 180 TO. AASHO T-99 Re <u>8.7</u> NO. QF TESTS THIS (METHOD OF	<u> </u>		X 8ALLOO
·	T WALL			RESULTS OF TESTS	<u></u>		
CLET NO.			LOCATION		Elevation	PERCENT MOISTURE	PERCEI
L <u>ila</u> ,	W-8470	- 94.0			94.0	14.7	93
2	W-8345	- 96.0			96.0	12.2	
						· · · · · · · · · · · · · · · · · · ·	
•				· · · · · · · · · · · · · · · · · · ·			
BRIEF RO	esune of wo	DRX ACCOMPLISHE	D THIS DATE:				
			SEE ATTACHED	DIAGRAM			
					///		(



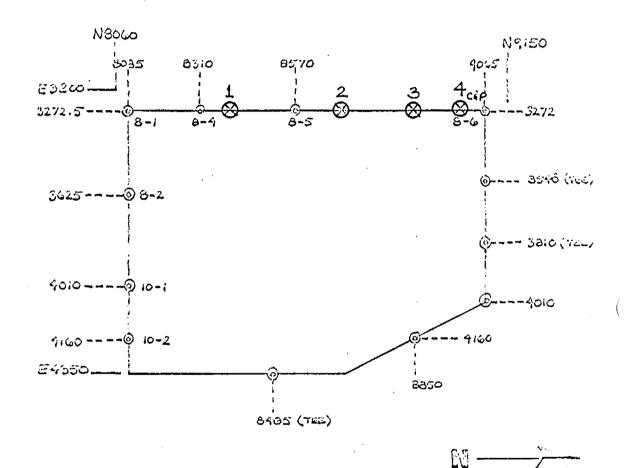


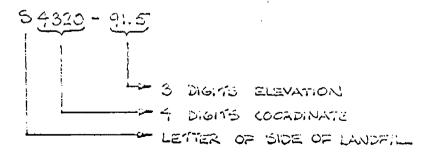

SAMTEST P.O. Bo Midland, Mic Phone 490	k 1444 higan 48640	DATE: 7-1- PROJECT: Do CLIENT: DOW C CONTRACTOR: _	80 JC w Corning Was orning Corpor	B NO : _ 80-35 ste Disposal ation_JOB NO.	2
WEATHER clear	TEMP RANGE 70	<u>о то 80 (</u>	AREA WORKED	West Wall	
TYPE OF SANO- FILL SANO- CLAY LOAM. TYPE OF SANO SUBGRADE SANO LOAM.	METHOD OF COMPACTION	VIBRATOR PREUMATION SHEEPSFO RUBBER T ROUGH SMOOTH WET ORY	Y PLATE C TANP. DT	STEEL WHEEL	HEEL TIC PSTOOT
THICKNESS OF LIFTS 24 IN.	PLANNED DEPT	H OF FILL 10 F		PLACED TO DATE	
MAX. DENSITY OF MATERIAL] MOD. AASHO T 180	METHOD OF 1	EST 🛄 SAND		8ALLOON
134.2 // CU. FT. OPTIMUM MOIS DENSITY REQUIRED 95		DATE	NO. OF TESTS TO	DATE	
		RESULTS OF TESTS	·		
TEST NO.	LOCATION		ELEVATION	PERCENT MOISTURE	PERCENT
- W - 8160			96.0	16.3	83
· · · · · · · · · · · · · · · · · · ·					
			•		
BRIEF RESUME OF WORK ACCOMPLI	<u>SHED THIS DATE:</u>		L		
	(SEE ATTACHED	DIAGRAM)	1		
-			······		
~	· · ·				
		-	I.		(
					1
				lean I.	

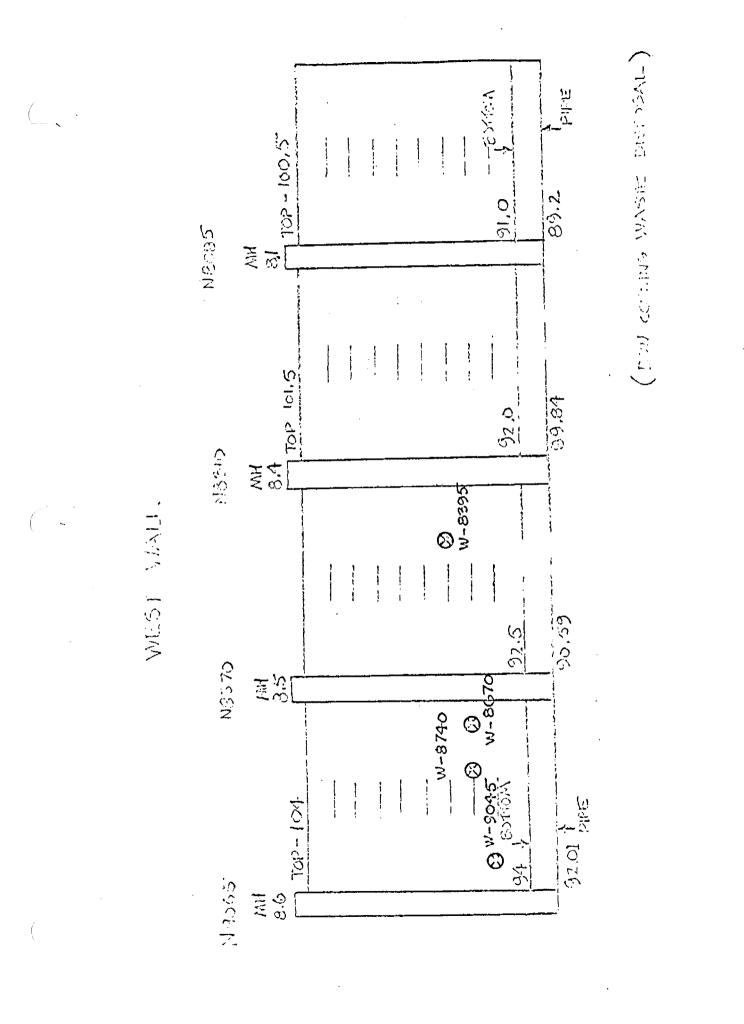
.



×	SAMTEST P.O. Bos Midland, Mic Phone 490	x 1444 higan 48640	DATE: 7-2-80 PROJECT: DOW CLIENT: DOW CO	Corning Waste	в NO.: <u>80-33</u> Disposal tion_ Joв No	52
FIL 	PEOF SAND	TEMP RANGE 70 METHOD OF COMPACTION CONDITION OF GRADE	0 TO 80 VIBRATOR PNEUMATI SHEEPSFO RUBBER T ROUGH SMOOTH WET DRY	Y PLATE C TAMP. Ot	West Wall steel wheel VIB. Steel W VIB. PNEUMA VIB. PNEUMA VIB. Sheel FROZEN LOOSE HARD RUTTED	HEEL TIC
MAX. DEN	SS OF LIFTS <u>24</u> IN. ISITY OF MATERIAL -1/ CU. FT. OPTIMUM MOIST REQUIRED <u>95</u>		METHOD OF "	TEST SANDO	<u> </u>	A BALLOON
		LOCATION AND	RESULTS OF TESTS	· · · · · · · · · · · · · · · · · · ·	······································	
TEST NO.		LOCATION		ELEVATIONS	PERCENT	PERCEN
	W - 8965	(Existi	ng)	94.0	220	
2	<u>w - 8470</u>			97.0	10,7	
3	W - 8225			97.0	10.1	92
	Permeability: W-8965 - 3.4x1	LO ⁻⁸ cm/sec.		7		
<u>Bricf re</u>	ESUME OF WORK ACCOMPLIS	HED THIS DATE:				
		(SEE ATTACHED DIAC	GRAMS)			
		<u></u>		··		(
	· · · · · · · · · · · · · · · · · · ·			signed Will	icm (1.U.	ozcan

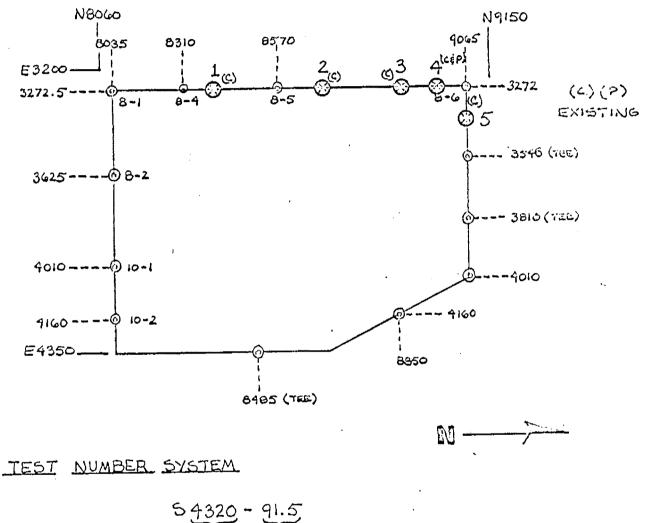

LETTER OF SIDE OF LANDF.L.

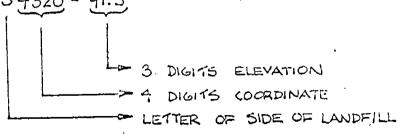

DON COONNO WASTE DISFOSAL


WEST WALL

(SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610	DATE: PROJECT:	NLY SUNL 80 Jo w Corning Wash Corning Corne	B NO : <u>80-35;</u> te Disposal	<u>2</u>
	VEATHER	clear TEMP RANGE 70	<mark>о то <u>80</u></mark>	O _ AREA WORKED	West wall	
	TY Fil	PE OF SAND METHOD OF COMPACTIC	DN DIBRATOR PNEUMATI SHEEPSFO RUBBER T	Y PLATE IC TAMP. IOT	STEEL WHEEL	HEEL Tiç
-			PTH OF FILL 10 F		PLACED TO DATE.	
	134.2	ISITY OF MATERIAL MOD. AASHO T 180 std. AASHO T-99 _#/ CU. FT. OPTIMUM MOISTURE 8.7 REQUIRED 95 NO. OF TESTS TH	METHOD OF		OATE	,,,
-		LOCATION A	NO RESULTS OF TESTS	· · · · · · · · · · · · · · · · · · ·		
-	. 157 NO.	LOCATION		ELEVATION	PERCENT MOISTURE	COMPACTI
-	7 .	W - 8395	• • • •	95.0	11.6	9'
(2	W - 8670		95.0	12.1	95
-	3	W - 8740		94.0	12.4	94
	.4	W - 9045		94.0	12.0	91
_		Permeability:	·			
-		W-9045 - 4.1x10 ⁻⁹ cm/sec.				
-	<u> </u>					<u> </u>
_						
	SRIEF R	ESUME OF WORK ACCOMPLISHED THIS DATE				
-		(SEE ATTACHED DIACRA	м)			
-			. <u></u>	<u></u>		
-	·	· · · · · · · · · · · · · · · · · · ·			•	
l				<u></u>		
				· · · · · · · · · · · · · · · · · · ·		1
	-			SIGNED _ 11 /1 /	li sim -	

TEST NUMBER SYSTEM

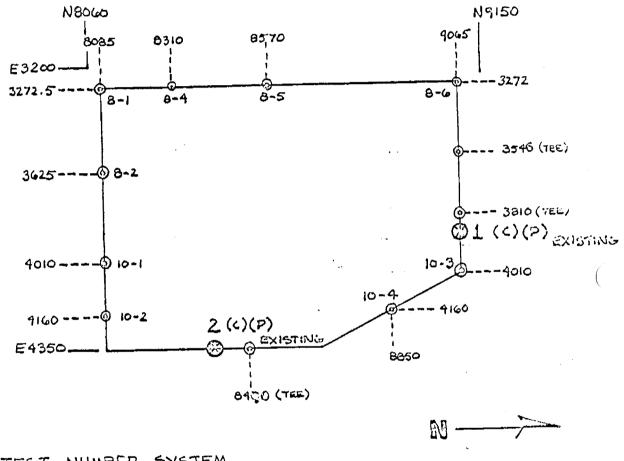




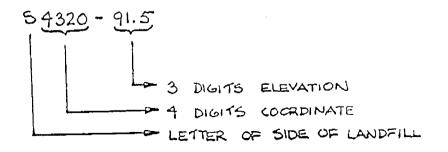
	SAMTEST P.O. Bo Midland, Mic Phone 49	x 1444 higan 48640	DATE: 7-7-8 PROJECT: DO	30Jo w Corning Was Corning Corpo	S REPOI	2
WEATHER	clear	TEMP RANGE 70	<mark>о то <u>80</u></mark>	OAREA WORKED	West wall	······································
רד דו ר	IL SAND- LL SAND- LOAM. UPE OF SAND BGRADE SAND LOAM.	METHOD OF COMPACTION	VIBRATOR PNEUMATI SHEEPSFO RUBBER Y ROUGH SMOOTH WET DRY	Ч РЦАТЕ С тамр. От	STEEL WHEEL VIB. STEEL W VIB. STEEL W VIB. PNEUMA VIB. She FROZEN LOOSE HARO RUTTED	HEEL TIC
THICKNE	SS OF LIFTS 6 IN.		HOF FILL 10 F	Υ.	PLACED TO DATE	_7_10FT
MAX. DEN	ISITY OF MATERIAL	🕅 мор. Алено т 180] std. Алено т-99	METHOD OF	FEST SAND	CONE	BALLOOI
134.2	ען גע אין אין אין אין אין גע געע געע געע געע געע געע געע געע געע			L_1		
		_ 3 NO. OF TESTS THIS O	ATE	NO. OF TESTS TO	0ATE	
		LOCATION AND	RESULTS OF TESTS	- <u>*</u>		
TEST NO.		LOCATION		ELÉVATION	PERCENT	PERCEN COMPACT
	W - 8390		· .	100.0	10,5	96
2	W - 8705			97.0	11.0	(
3	W - 8990			98.0	13.1	94
4	W - 9035	······		97.0	10.7	95
5	<u>N - 3460</u>	(existing)		94.3	23.6	
	Permeability:					
	W-9035 - 3.	2x10 ⁻⁹ cm/sec.				
BRIEF RE	SUME OF WORX ACCOMPLI	SHED THIS DATE:				
		<u> </u>	<u> </u>			
<u> </u>						
			<u></u>	······		
				······		
	·					
. <u></u>	· · · · · · · · · · · · · · · · · · ·					
		- · · · · · · · · · · · · · · · · · · ·			1	

	Ist lill		
	11/1/ Lips	/ liou	~
) & M & U	macum		

SOIL TEST NUMBERING SYSTEM



. . .


(SAMTEST, INC. P.O. Box 1444 Midland, Michigan Phone 496-3610	48640	DATE: PROJECT:O CLIENT: <u>OW_C</u> CONTRACTOR:	30JC w Corning Was orning Corpor	<u>te Disposal</u> ation_ JOB NO	52
דו פון די	PE OF SAND METH	P RANGE 70	0 TO 80 VIBRATOR PREUMAT: SHEEPSFO RUBJER T ROUGH SMOOTH WET ORY	Ч РLАТЕ С ТАМР. ОТ	N. & E. Wall STEEL WHZE VIB. STEEL W VIB. STEEL W VIB. PNEUMA FROZEN COSE HARO RUTTED	L . KH ZEL .TIC
MAX. DEN	SS OF LIFTS <u>existing</u> SITY OF MATERIAL MOD. AAS STD. AAS VCU. FT. OPTIMUM MOISTURE <u>NA</u> REQUIRED <u>NA</u>	HO T-99	METHOD OF T	TEST SANC		BALLOON
		LOCATION AND	RESULTS OF TESTS		- BERGELT	
1257 NO.	LO	CATION		ELEVATION	PERCENT MOISTURE	COL PACTIO
(·	N - 3845 (Existing N	at. Unit Wt	133.9)	96.0	23.7	
2	E - 8470 (Existing N	at. Unit Wt	130.9)	94.0	27.2	!NA!
	Permeability:					
-	E-8470 - 1.9x10 ⁻⁸ cm/	sec.		·		i
2 /						
- <u></u>	· · · · · · · · · · · · · · · · · · ·		· · · ·			
DRICE RI	SUME OF WORM ACCOMPLISHED THIS	 DA7E:		I		
	Based on a sp.g. val		s correspond <u>s</u>	to zero void:	s in the	
	naturally deposited exis					
		(SEE ATTACHED	DIAGRAM)			
- <u></u>						
(· 			•	<u> </u>	
		<u> </u>	. <u> </u>	• ·· • ··	, /	
				SIGNED Mil	land	

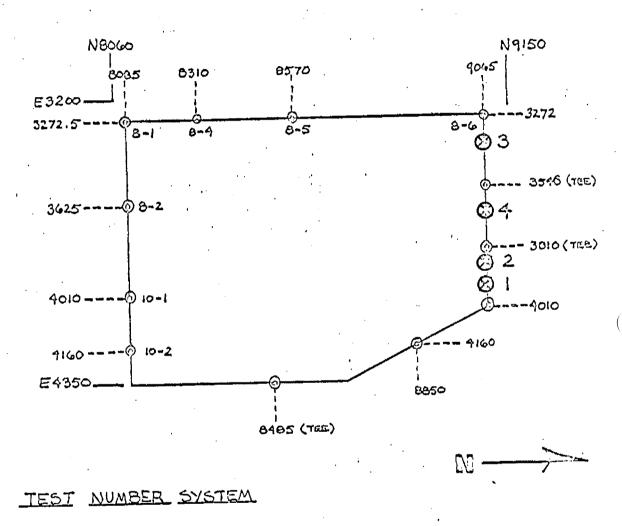
SOIL TEST NUMBERING SYSTEM

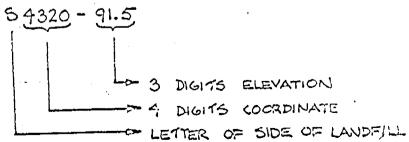
<u>s</u>_*

TEST NUMBER SYSTEM

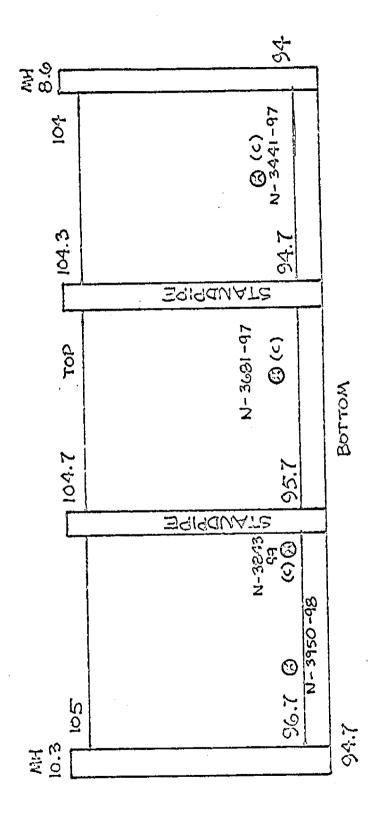


	SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610	DATE: _7-10-{ PROJECT:D CLIENT: _DOW (CONTRACTOR:	·····	a NO : 80- e Disposal tion JOB NO	352
WEATHER	R SUNNY TEMP RANCE 80	0 70 <u>85</u>	AREA WORKED N	orth Wall	
ғи тү	(PE OF SAND METHOD OF COMPACTION LL CLAY DOAM. (PE OF SAND CONDITION OF GRADE DGRADE CLAY LOAM.	PNEUMA Sheepsf Rubber	ТІС ТАМР. 100 т	STEEL WHEE VIB. STEEL V VIB. STEEL V VIB. PHEUMA VID Shee FROZEN LOOSE HARD RUTTED	TIC
THICKNE	SS OF LIFTS 6_IN. PLANNED DEP	TH OF FILL 10	FT	PLACED TO DATE	<u>2-3</u> FT
134.2	ISITY OF MATERIAL MOD. AASHO T 180 STD. AASHO T-99 CU. FT. OPTIMUM MOISTURE 8.7 REQUIRED 95 % NO. OF TESTS THIS	METHOD OF			5 BALLOON
		ID RESULTS OF TESTS	· · · · · · · · · · · · · · · · · · ·	1	
1.57 NO.	LOCATION		ELEVATION	PERCENT MOISTURE	
1	N - 3950	· · · · · · · · · · · · · · · · · · ·	98.0	10,8	, 1
2	N - 3843		99.0	12.2	<u>ს გი</u>
3	N - 3441		97.0	11.9	95
4	N - 3681		97.0	12.3	98
	Permeability:				· · · · · · · · · · · · · · · · · · ·
	N-3950 - 1.1x10 ⁻⁸ cm/sec.	<u> </u>			·
DIJEF RE	SUME OF WORK ACCOMPLISHED THIS DATE:				· · · · · · · · · · · · ·
	(SEE ATTACH	HED DIAGRAMS)	· · · · · · · · · · · · · · · · · · ·		
			~		


Million; Olis :-


(

DOW WEINING WASTE DISPUTAL DOW CORNING CORPORATION PROJECT # 60-352



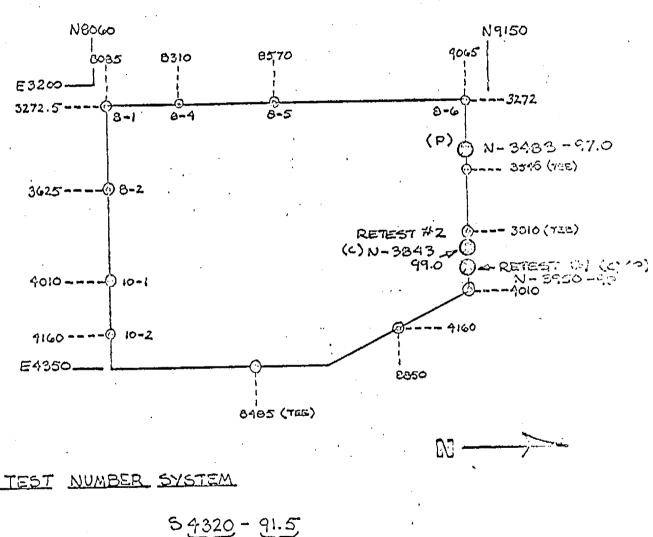
.

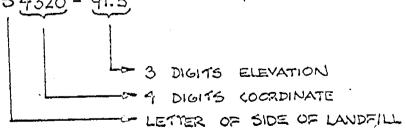
DOW CORNING WASTE DISPOS DOW CORNING CORPORATION PROTECT # 80-352

NORTH WALL (LCOKING SOUTH)

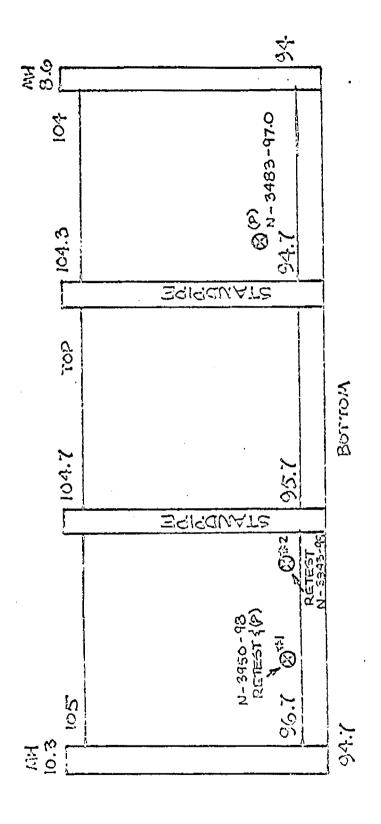
/

VEATHER Summy TEMP RANCE 80 To 90 AREA WORED North Wall YPE 07 SANO METHOD OF COMPACTION VIBRATORY PLATE Distance Distance YPE 07 SANO METHOD OF COMPACTION Presentation of the second	SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610			DATE: 7-11- PROJECT: DO CLIENT: DOW C	الله بالكاني 80 Jc w Corning Was orning Corpor	DE NO : <u>80-35</u> te Disposal ation_JOB NO	52
FILL International interpretation i	WEATHER	sunny	TEMP RANGE 80	<u>о</u> то <u>90</u>	O AREA WORKED	North Wall	
MAX. DENSITY OF MATERIAL NO. AASHO TIBO METHOD OP TEST SANDCONE SO BALLOO 134.2_V CU, FT. OPTIMUM MOISTURE 8.7 NO. OF TESTS TO CATE	FIL	PE OF SAND	CONDITION OF GRADE	PNEUMAT SHEEPSFO RUBBER ROUGH SMOOTH WET ORY	IC TAMP. DOT TRED	VIB. STEEL	WHEEL Atic
¹ 34.2. // CU. FT. OPTINUM MOISTURE <u>8.7.</u>			_			PLACED TO DATE	<u>-2-3_</u> ft
134.2.*/ CU. PT. OPTIHUM HOLITURE_8.7_* DEMSITY REQUIRED 95 NO. OF TESTS THIS DATE NO. OF TESTS TO DATE LOCATION ELEVATION KEST NO. LOCATION N - 3950 (Retest) 2 N - 3843 N - 3843 (Retest) 99.0 10.5 2 N - 3843 Retest 99.0 99.0 10.5 2 N - 3843 Retest 99.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 <tr< td=""><td>MAX. DEN</td><td></td><td></td><td>METHOD OF</td><td>TEST 🔲 SAND</td><td>CONE</td><td>BALLOOP</td></tr<>	MAX. DEN			METHOD OF	TEST 🔲 SAND	CONE	BALLOOP
DCMSITY REQUIRED 95 NO. OF TESTS THIS DATE NO. OF TESTS TO DATE LOCATION AND RESULTS OF TESTS UST NO. LOCATION ELEVATION PERCENT MOISTURE AUGUM 2 N - 3950 (Retest) 98.0 12.3 10^2 2 N - 3843 (Retest) 99.0 10.5 2 3 - - - - - - 2 N - 3843 (Retest) 99.0 10.5 2 -	134,2		-		[]		
LOCATION AND RESULTS OF TESTS LOCATION ELEVATION PERCENT MONTONE Contract Contract Contract N - 3950 (Retest) 98.0 12.3 10^ 2 N - 3843 (Retest) 99.0 10.5 2 N - 3843 (Retest) 99.0 10.5 3 1 1 1 1 1 3 1 1 1 1 1 1 3 1				ATE	NO. OF TESTS TO	DATE	
N - 3950 (Retest) 98.0 12.3 10^2 2 N - 3843 (Retest) 99.0 10.5 2 N - 3843 (Retest) 2 N - 3843 (Retest) 2 2 2 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>······</td>							······
N - 3950 (Retest) 98.0 12.3 100 2 N - 3843 (Retest) 99.0 10.5 2 N - 3843 (Retest) 10.5 3 N - 3843 (Retest) 10.5 3 N - 3843 (Retest) 3 N - 3843 (Retest) 3 N - 3843 <td>EST NO.</td> <td></td> <td>LOCATION</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>ELEVATION</td> <td>PERCENT</td> <td>2URCEN COM2ACTI</td>	EST NO.		LOCATION	· · · · · · · · · · · · · · · · · · ·	ELEVATION	PERCENT	2URCEN COM2ACTI
2 N - 3843 (Retest) 99.0 10.5 2 N - 3843 (Retest) 10.5 2 N - 3843 (Retest) 10.5 2 N - 3843 (Retest) 10.5 2 N - 3843 (Retest) 10.5 2 N - 3843 (Retest) 10.5 2 N - 3843 (Retest) 10.5 <td< td=""><td></td><td>N - 3950 (1</td><td>Patast)</td><td></td><td></td><td></td><td></td></td<>		N - 3950 (1	Patast)				
(SEE ATTACHED DIAGRAM)	2			•			+-(-
(SEE ATTACHED DIAGRAM)		·					
(SEE ATTACHED DIAGRAM)	· · ·						
(SEE ATTACHED DIAGRAM)	- <u></u>						<u> </u>
(SEE ATTACHED DIAGRAM))
(SEE ATTACHED DIAGRAM)				·			
(SEE ATTACHED DIAGRAM)							
	BRIGF RES	SUME OF WORK ACCOMPLI	HED THIS DATE:	·			
Aletter Alterer			(SEE ATTACHED D	IAGRAM)			
Hilles Alleres							
Willing Allering							
SIGNED MARGANI / MARGANI	<u> </u>				1111	to Att	1


DOW CORNING WASTE DISPOSING DOW CORNING CORPORATION PROJECT # 20-35

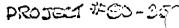

SOIL TEST NUMBERING SYSTEM.

: 1

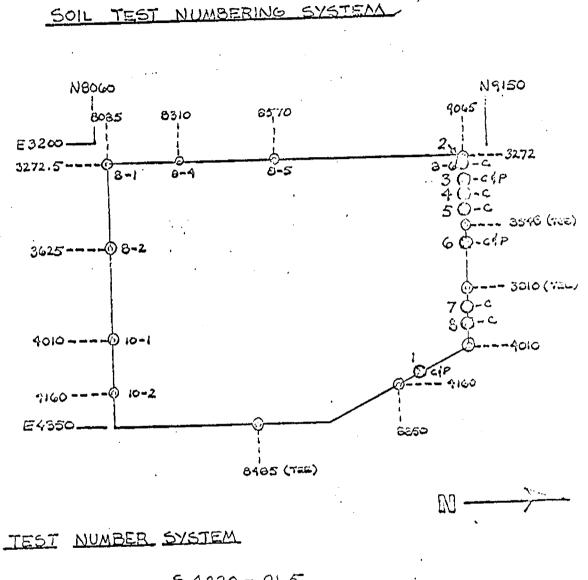

1

Υ.

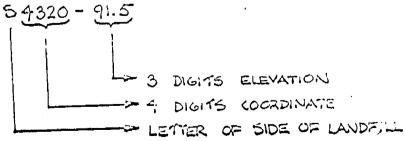
DOW CORNING WASTE DISPOSAT DUN CORNING CORPURATION PROJECT # 20-352

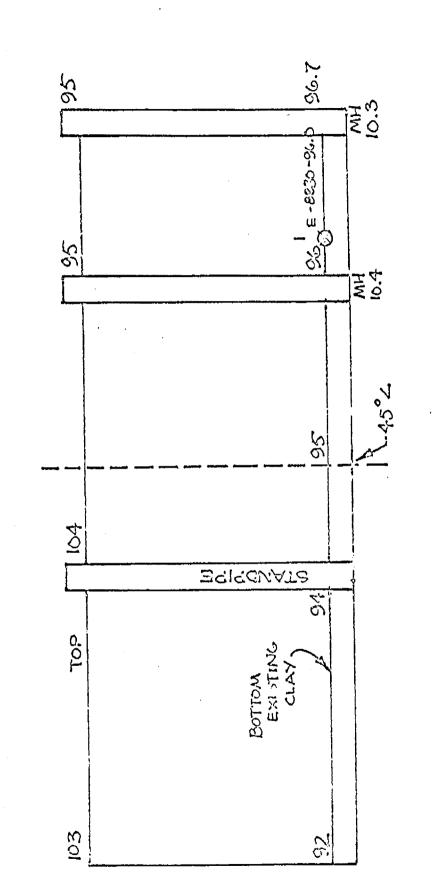


NORTH WMALL (LEGENNE SCURI)


(

•	SAMTEST P.O. Bo Midland, Mic Phone 49	x 1444 higan 48640	DATE: 7-14 PROJECT: DOW	عالات الله الله الله الله الله الله الله	ов юо : <u>80-</u> Disposal	352
		TEMP RANGE 80 METHOD OF COMPACTION	VIBRATOR	NY PLATE IC TAMP. IOT	STEEL WHEE VIB. STEEL V VIB. PNEUMA VIB. PNEUMA VIB. Shee	L . /HEEL TIC
	GRADE SAND GRADE SAND CLAY LOAM.	CONDITION OF GRADE	АОИСН		LOOSE HARD RUTTED	
HAX. DENS	/ CU. FT. OPTIMUM MOIST	MOD. AASHO T 180 STD. AASHO T-99	TH OF FILL FMETHOD OF	TEST SANO		ALLOON
		LOCATION AN	D RESULTS OF TESTS			
EST NO.		LOCATION		ELEVATION	PERCENT	PERCEN
1	E - 8880 *2.9	x10 ⁻⁸ cm/sec. Ex	isting	96.0	21.5	
۷	N - 3300			99.0	10.2	96
3.	<u>N - 3350 *4</u>	9x10-9cm/sec.		101.0	11.7	: 94
4	N - 3430			99.0	10.8	95
5	N - 3460			100.0	11.0	96
6	N - 3590 *7	.1x10 ⁻⁹ cm/sec.		101.0	10.6	98
7	<u>N - 3840</u>			101.0		97
8	<u>N - 3875</u>			102.0		96
URIEF RES	UNE OF WORX ACCOMPLIS	HED THIS DATE: Cesents permeabil	ity			
		(SEE ATTA	CHED DIAGRAM)			
· · ·		<u></u>				
		·····		· · · · · · · · · · · · · · · · · · ·	······································	
	<u> </u>	<u></u>				

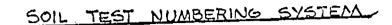

DOW CORNING WASTE DISPOSAL DOW CORNING CORPORATION


.....

 \mathbf{Y}_{i}

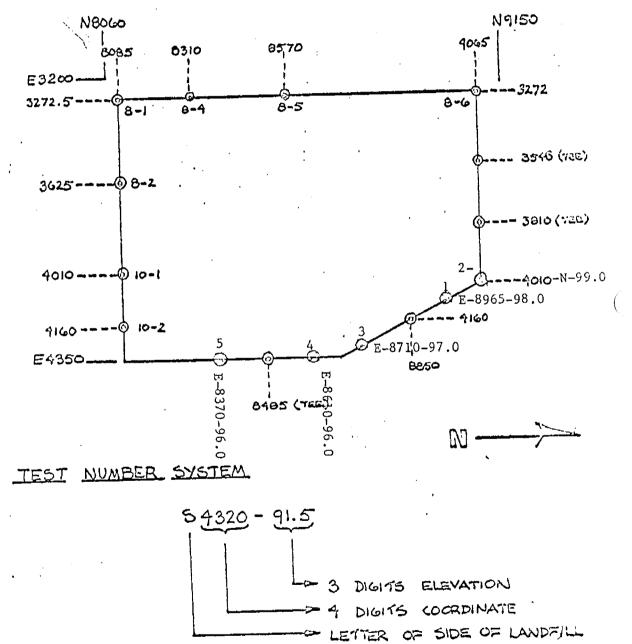
(

EAST WALL (LOOKING WEST)

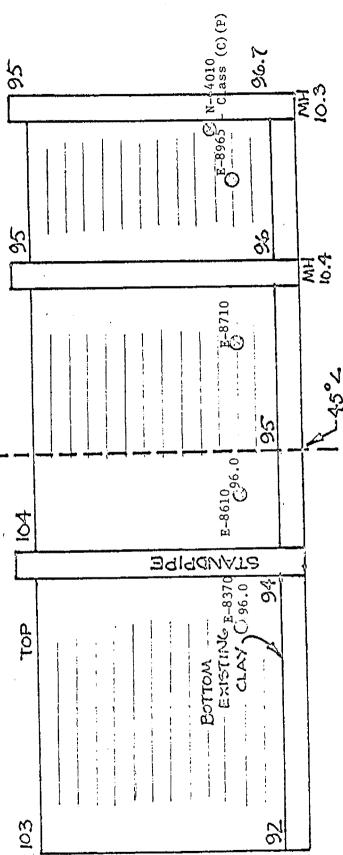

DOW COMING WASTE DISFORDOW CORNING CORNING CORNING PENECT # 80-352

CORNING CORPORATION DOW CORNING WASTE DISPOS P20JECT # C0-352 212 H 81 50 \otimes^2 <u>ŏ</u> ۯ-40 Lvcd 1 104.3 Eq.192UATZ R 94.7 NORTH WALL (LOOKING SOUTH) -0 8 Top BOTTOM 1104.7 95.7 01.05 EGIGONATZ $\sim \otimes$ MH 4010 10.3 ε Ø 36.7 10 20 94.7

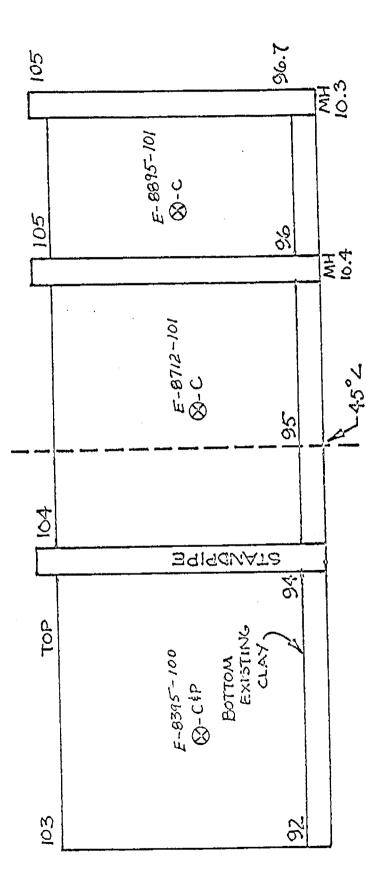
.


·. ·	SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610	DATE: 7-18-8 PROJECT: Dow CLIENT: Dow	ILV SOILS Corning Waste Corning Corp.		
WEATHE	RClearTEMP RANGE70	<mark>о то 80</mark>	O AREA WORKED	East Wall	
דו י. דו	YPE OF SAND METHOD OF COMPACTION SL 22 CLAY LOAN. YPE OF SAND CONDITION OF GRADE BGRADE CLAY LOAM. SAND	VIBRATOR PNEUMAT SHEEPSFO RUBBER 1 M ROUGH SMOOTH WET DRY	іс тамр. Ют	STEEL WHEE VIB. STEEL V VIB. PNEUMA VIB. PNEUMA VIB. She FROZEN LOOSE HARO RUTTED	TIC
	_	H OF FILL 10 P		PLACED TO DATE	
134.2	ISITY OF MATERIAL IN NOD. AASHO T 180 STD. AASHO T-99 V.CU. FT. OPTIMUM MOISTURE 8.7 REQUIRED 95	METHOD OF			
		RESULTS OF TESTS			PERCENT
TEST NO.	LOCATION		Elevation	PERCENT MOISTURE	COMPACTIO
,	E-8965	· · ·	98.0	9.5	9'
(N-4010		99.0	8.6	99
3	E-8710		97.0	9.2	95
4	E-8610		96.0	12.1	96
5	E-8370		96.0	13.3	95
	Permeability:				
<u> </u>	E-8965 - 4.0x10 ⁻⁹ cm/sec.		<u> </u>		
BRIEF RE	ESUME OF WORK ACCOMPLISHED THIS DATE:				
	······································				
	See Diagram				
		<u> </u>	IGNED MULL	inU	17:00

DOW CORNING CORPORATION PROJECT #ED-352


Ţŕ

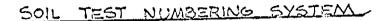
(

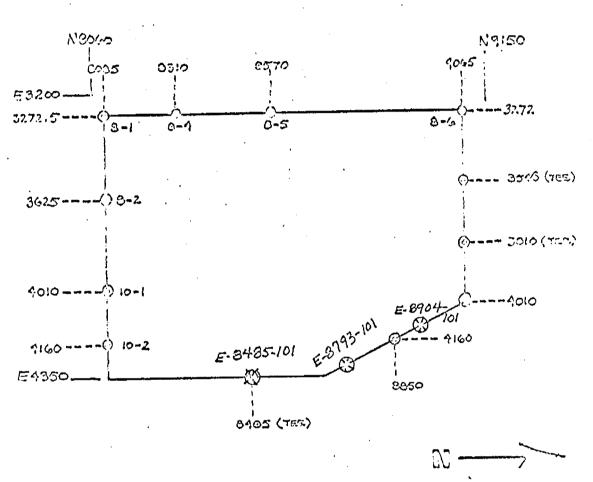

DOW CCINING WE TE DISPO. DOW CORNING CORPORATIC: PROJECT # BO-352

, ____ J

Ċ

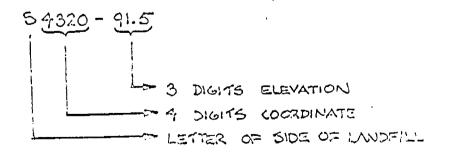
X	SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610	DATE: 7-25- PROJECT: Dow CLIENT: Do CONTRACTOR: _	30 Jo Corning Waste w Corning Cor	р Јов Ю.:	nt
FIL	PE OF SAND METHOD OF COMPACTION	N VIBRATOR PNEUMATI SHEEPSFO RUBBER T	c TAMP. or Vibratory	VIB. STEEL WHEEL	HEEL
HAX. DEN	SITY OF MATERIAL MOD. AASHO T 160	S DATE	rest 🔲 sand		<u>6</u> F
····		ND RESULTS OF TESTS	· · · · · · · · · · · · · · · · · · ·		03005
TEST NO.	LOCATION		ELEVATION	PERCENT	PERCE COMPAC
······	E-8895-101		101.0	9.6	93
2	E-8712-101		101.0	9.3	
3	E-8395-100		100.0	· 10.1	96
	Permeability:				
	8.3x10 ⁻⁹ cm/sec. for E-8395				
<u>orizf ri</u>	ESUME OF WORK ACCOMPLISHED THIS DATE:		<u>]</u>		
	See Attached Diagr				
					(

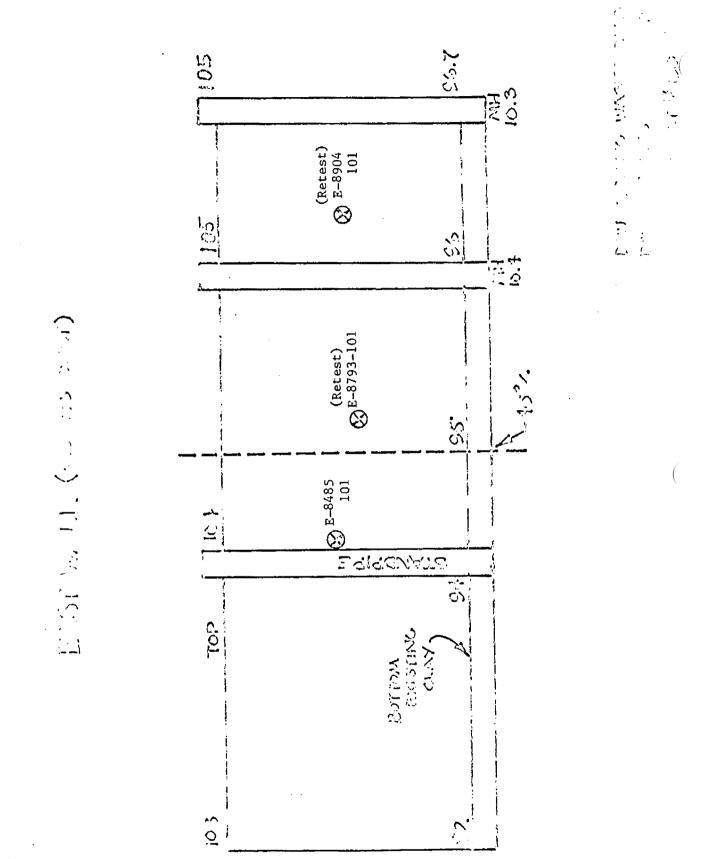

DOW CCINING WASTE DISPOT DOW CORNING CORPORATIC: PROJECT # 80-352



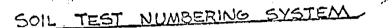
EAST WALL (LODICING WEST)

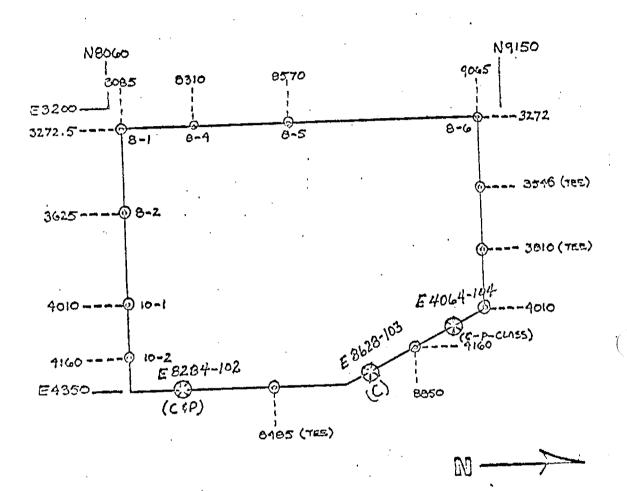
	SAMTEST, P.O. Box Midland, Mich Phone 496	1444 igan 48640	DATE: 7-31- PROJECT: Dow CLIENT: Dow	LY SUNLS 80 JOB Corning Waste Corning Corp.	NO: <u>80-352</u> Disposal	
TYI Fil SUE	PE OF SAND L CLAY LOAM. PE OF SAND SGRADE CLAY LOAM. LOAM. 	TEMP RANGE 70 METHOD OF COMPACTION CONDITION OF GRADE	VIBRATOR PNEUMATI SHEEPSFO RUBBER T RUBBER T ROUGH SMOOTH WET DRY	Y PLATE [C TAMP. [OT [IRED [[[[[[[[[[[[[[[[[[[AST_WALL STEEL WHEEL VIB. STEEL WI VIB. PNEUMAT FROZEN LOOSE HARD RUTTED LACED TO DATE.	468L
MAX. DEN	CU. FT. OPTIMUM MOIST	STD. AASHO T-99 JRE <u>8,7</u> NO. GF TESTS THIS I	METHOD OF 1	rest 🔲 sandco	NE 2	
		LOCATION		ELEVATION	PERCENT	PERCEN
TEST NO.	EAST WALL				11.8	97
2	R 0702 101	etest		101	12.9	
3	E-8485 - 101 R	etest		101	10.6	96
BRIEF RE	SUME OF WORK ACCOMPLIS	HED THIS DATE:				
	SEE AT	TACHED DIAGRAMS				
				<u> </u>		
		<u> </u>			1	


DOW CORNING CORPORATION PROJECT #60-050

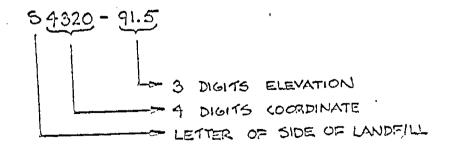


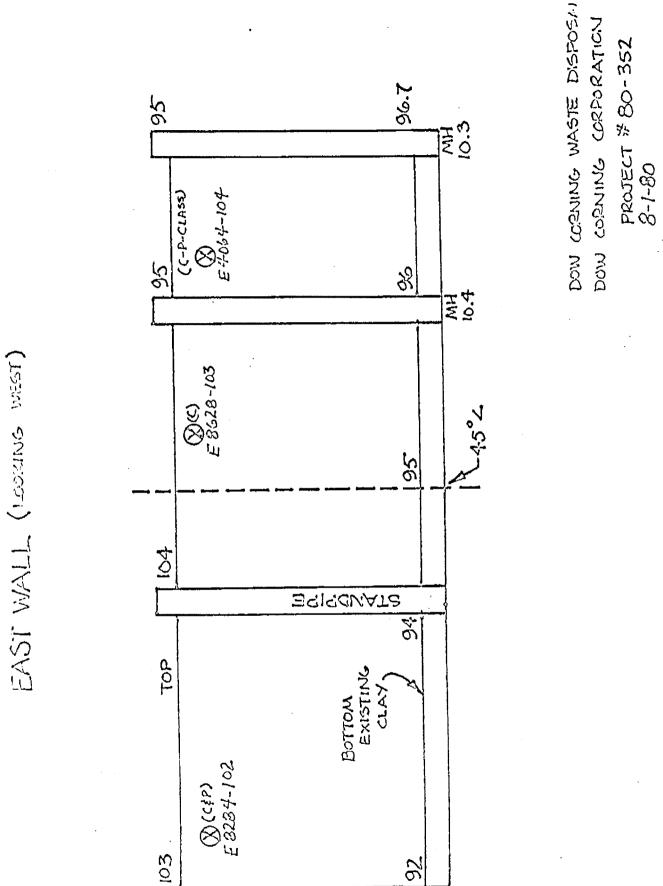
TEST NUMBER SYSTEM.


 \mathbf{Y}



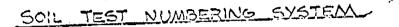
	SAMTEST, P.O. Box Midland, Mich Phone 496	1444 igan 48640 -3610	DATE: 7-31-80 PROJECT: Dou CLIENT: Do CONTRACTOR:	v Corning Wast	в NO.: <u>80-352</u> <u>е Disposal</u> р. јов NO.	<u></u>
FIL TY:	PEOF SAND	TEMP RANGE 75 METHOD OF COMPACTION CONDITION OF GRADE	VIBRATOR PNEUMATI SHEEPSFO RUBDER T ROUGH SMOOTH WET	Y PLATE C TAMP. Ot	East Wall STEEL WHEEL VIO. STEEL W VIO. PNEUMA FROZEN LOOSE HARD RUTTED	- ·
MAX. DEN 134.2	SS OF LIFTS IN. SITY OF MATERIAL SITY OF MATERIAL SITY OF MATERIAL SITY OF MATERIAL SITE SITE SITE SITE SITE SITE SITE SITE		METHOD OF	TEST SANO	PLACED TO DATE	BALLOON
		LOCATION AND	RESULTS OF TESTS	· · · · · · · · · · · · · · · · · · ·		PERCENT
VEST NO.		LOCATION		Elevation	PERCENT MOISTURE	CONPACTIO
i.	E-8284 102			102	11.7	9.5
2	E-8628-103			103	11.8	<u> </u>
3	E-4064-104			104	11.0	94
	Permeabilitie E-8284 - 1.4x E-4064 - 4.3x	10 ⁻⁸ cm/sec.				
DRIEF RI	ESUME OF WORX ACCOMPLIS					
· · · · · · · · · · · · · · · · · · ·		See Attached D	iagrams			
				SIGNED _ ///il	U.r. I	/

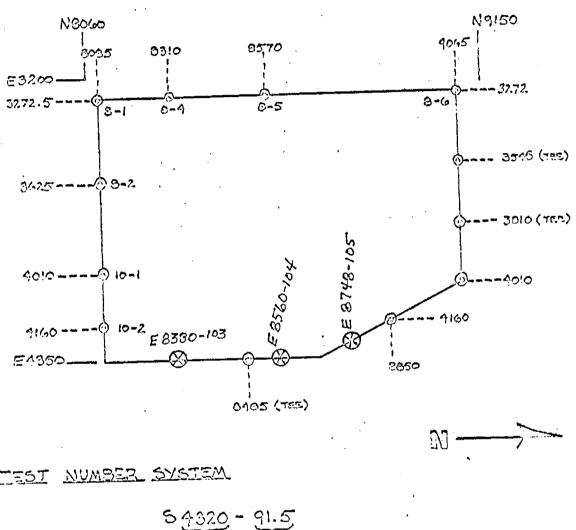

DOW CORNING WASTE DISPOSAL DOW CORNING CORPORATION PROJECT # ED-352

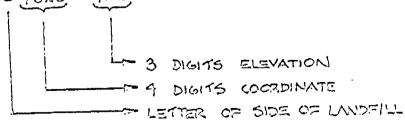


· · ·

TEST NUMBER SYSTEM.





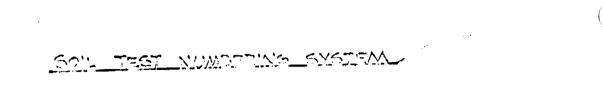

Ċ

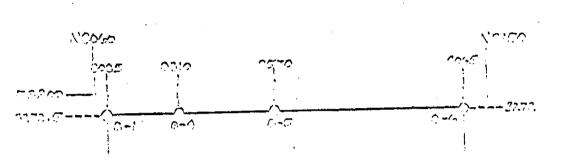
	SAMTEST, P.O. Boy Midland, Mich Phone 496	(1444 nigan 48640	DATE: 8-4-8 PROJECT: DO CLIENT: DOW CO CONTRACTOR:	30 JO bw Corning Wa Drning Corpor	<u>ste Disposa⊥</u> <u>ation</u> _JOB NO.:	2
TYF FIL TYF	2 OF SAND	TEMP RANGE 80 METHOD OF COMPACTION CONDITION OF GRADE	0 TO 85 0 VIBRATORY PNEUMATIC SHEEPSFOC RUBBER TI RUBBER TI ROUGH SMOOTH WET ORY	РЦАТЕ ; тамр. Эт	STEEL WHEEL	165L
MAX. DEN: 134.2	SS OF LIFTS <u>12</u> IN. SITY OF MATERIAL X -*/ cu. ft. optimum mois ¹ Required <u>95</u>] sto. аазно т-99 тиле	METHOD OF T	EST	PLACED TO DATE_ DCONE	
			RESULTS OF TESTS	·	PERCENT	OURCEN
VEST NO.		LOCATION		Elevation	PERCENT MOISTURE	COMPACT
	E-8380-103			103	11.3	92
2	E-8560-104			104	10.4	<u> </u>
3	E-8748-105			105	10.9	93
<u>DRIEF RE</u>	ESUME OF WORK ACCOMPL	ISHED THIS DATE:				
		See Attached I	Diagrams			
				1/10	<u> </u>	(

DOW CORNING WASTE DISPOSAL DOW CORNING CORPORATION PROJECT # ED-35:

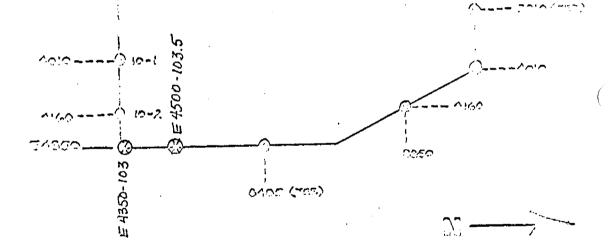
DON CONING MASKE DISPOSAL DON CORNING CERPORINEM 50.7 105 No.0 ١ 1001 ઝ MH 10.4 (C) E 8743-105 2.5% 95 10-1(C) E8520-104 EGICONATE 5 (C) TOP BOTTOM EXISTING CLAY 103

3

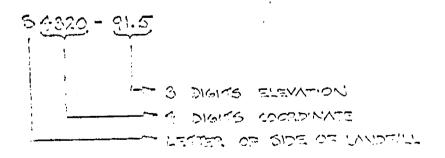

PRIVECT 7 80-352

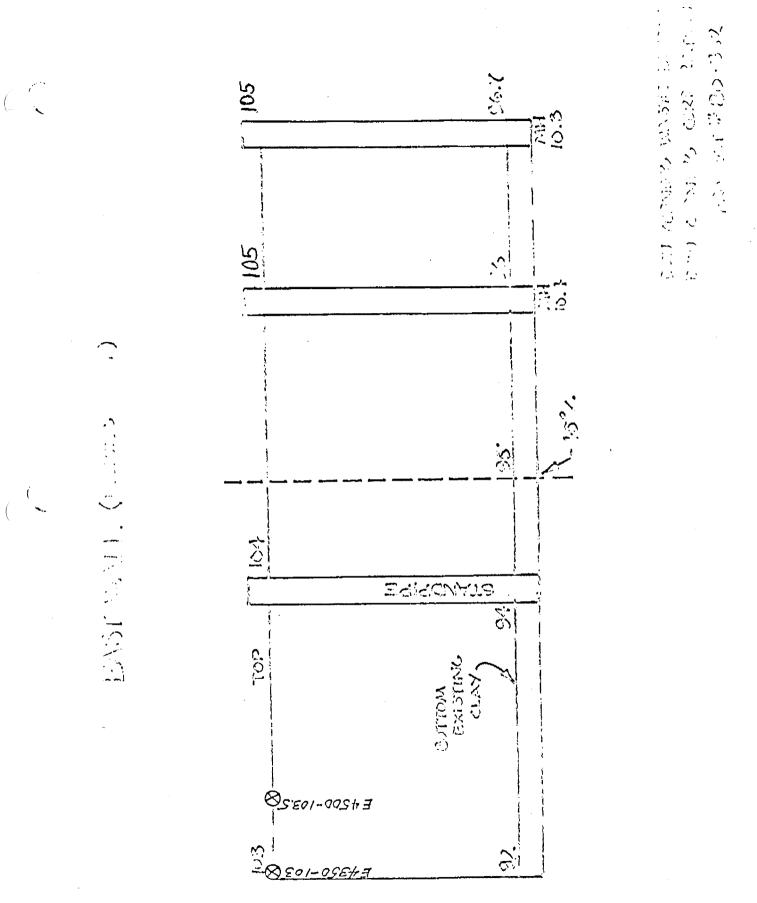

EAST WMLL (MEANS WEED)

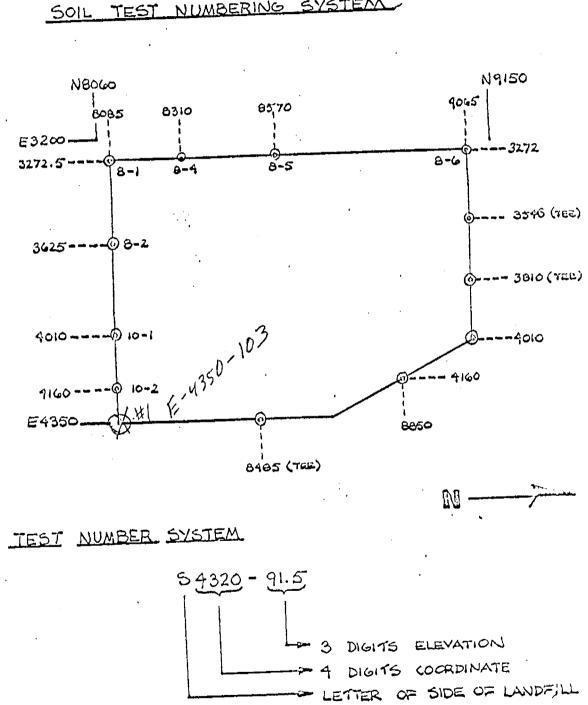
1


<u></u>	P.O. Midland,	EST, INC. Box 1444 Michigan 48640 496-3610	DATE: 8-6- PROJECT: DO CLIENT: DO	80 JOB w Corning Waste w Corning Corp.	Disposal	52
TY Fil Su		DAM. CONDITION OF GRADE LAY DAM.	VIBRATON PNEUMAT SHEEPSFO RUBBER	RY PLATE [IC TAMP. [DOT [TIRED [[East Wall STEEL WHEE VIB. STEEL VIB. PNEUMA FROZEN LOOSE HARD RUTTED	#HEEL ITIC
MAX. DEN	SS OF LIFTS 12 ISITY OF MATERIAL	·	METHOD OF		LACED TO DATE	
DENSITY	REQUIRED	NO. OF TESTS THIS	DATE	NO. OF TESTS TO DA	STE	·····
סא זיזיז.					PERCENT	PLACENT COMPACTIO
	- / 050 100			Elevation -		85
-(E-4350-103 E-4500-103.	5		<u>103'</u> 103.5'	<u>13,8</u> <u>12.3</u>	95
URICE RE	SUINE OF WORX ACCO	APLISHED THIS DATE:				
		· · · · · · · · · · · · · · · · · · ·				
·		See Attached Di	agram			
				<u> </u>		
	· · · · · · · · · · · · · · · · · · ·		5	IGNED UILLO	na lto	1)

DOW CONVICE MIN • DOW CORNING COTOR LINES







TEST NUMBER SYSTEM

	SAMTEST, INC. P.O. Box 1444 Midland, Michigan 48640 Phone 496-3610	DATE: 8-14	A-80 JOB A-80 JOB Aste Disposal Si Corning Corporat	NO: 80-35	2
WEATHER	cloudy & hot TEMP RANGE 80	<mark>о то 85</mark>	AREA WORKED	end of E.	Wall
TY Fil	PE OF SAND METHOD OF COMPACTION CLAY CLAY CLAAH. CONDITION OF GRADE GGRADE CLAY CLAY CLAY CLAAN. CONDITION OF GRADE	VIBRATOR PNEUMATI SHEEPSFO RUBBER T ROUGH SMOOTH WET ORY	Y PLATE	STEEL WHEE VIB. STEEL VIB. PNEUMA FROZEN LOOSE HARD RUTTED	L . WHEEL ATIC
THICKNE	S OF LIFTS 6 IN. PLANNED DEPT	HOF FILL 10 F		ACED TO DAT	
MAX. DEN	SITY OF MATERIAL MOD. AASHO T 180	METHOD OF	EST SANDCO	NE	BALLOO
134.2	STD. AASHO T-99				
	REQUIRED 95 NO. OF TESTS THIS	DATE	NO. OF TESTS TO DA	τε	
		RESULTS OF TESTS	<u></u>	<u></u>	
TEST NO.	LOCATION	<u>,,</u> ,	ELEVATION	PERCENT	PERCE
1	East Corner Wall - 4350		103	11.0	93.(
N				·	1 (
					<u></u>
		·			
				<u> </u>	
				<u> </u>	
<u>BRIEF R</u>	SUME OF WORK ACCOMPLISHED THIS DATE				
	· · · · · · · · · · · · · · · · · · ·				
		······			······································
			<u></u>		(
····-		. <u> </u>			
····				2	/
	•		SIGNED MUL	am	Nore

1.

NUMBERING SYSTEM

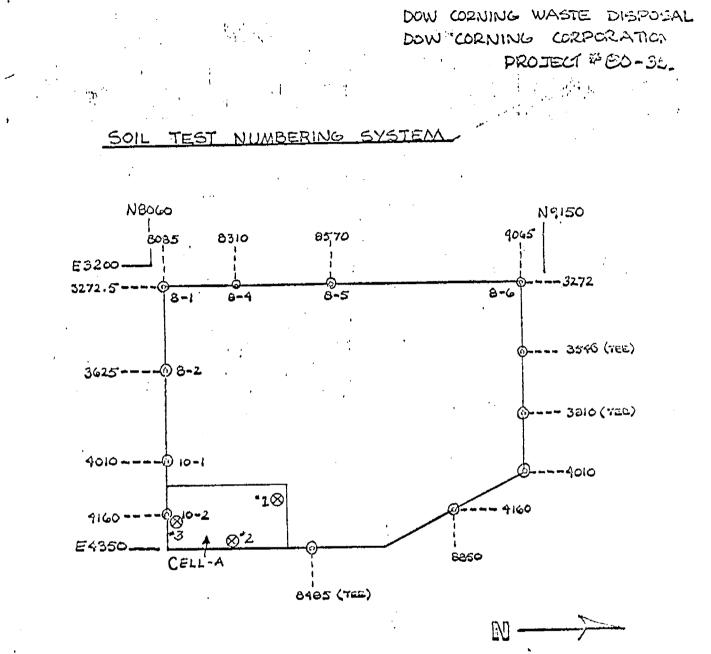
CANTECT 1.1.0

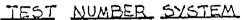
TEST NO. -----....

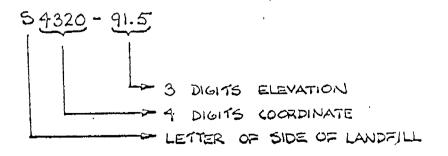
 $\overline{\mathbf{2}}$

з

#1

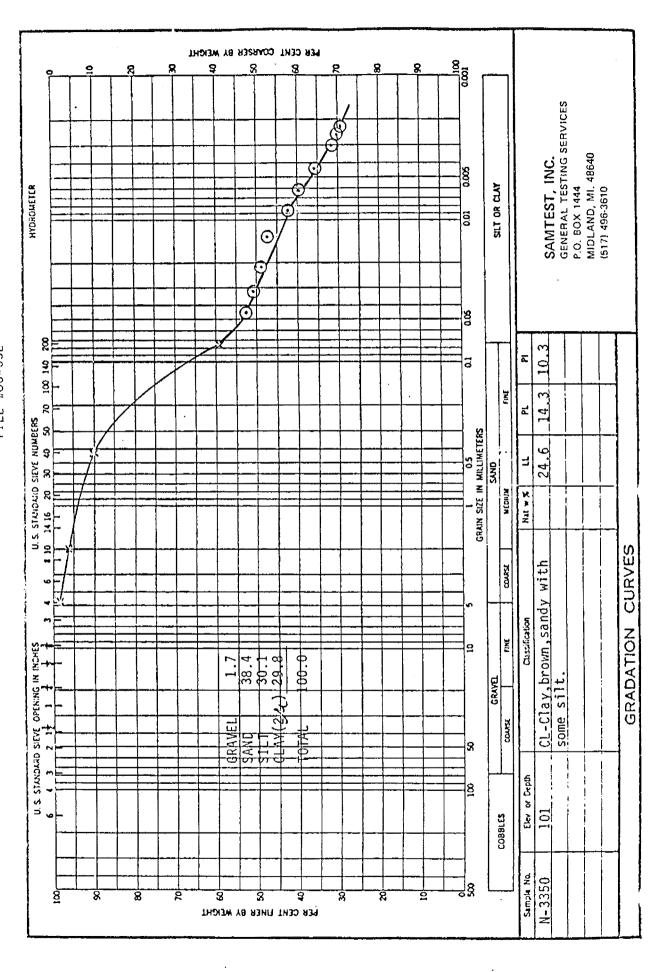

₽2

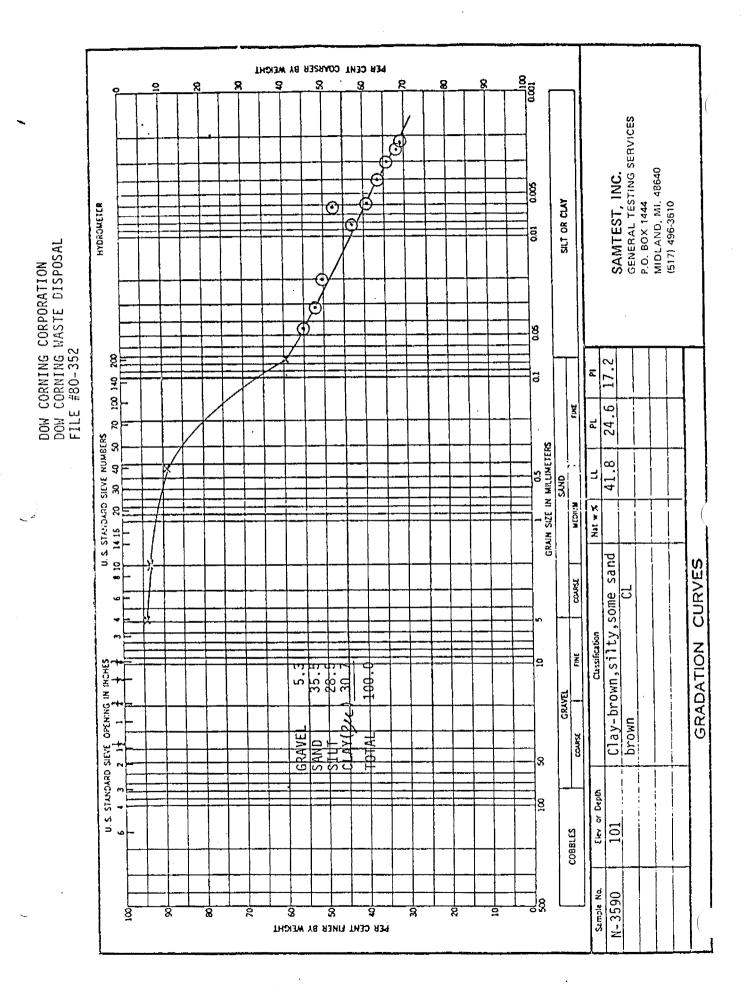

#3

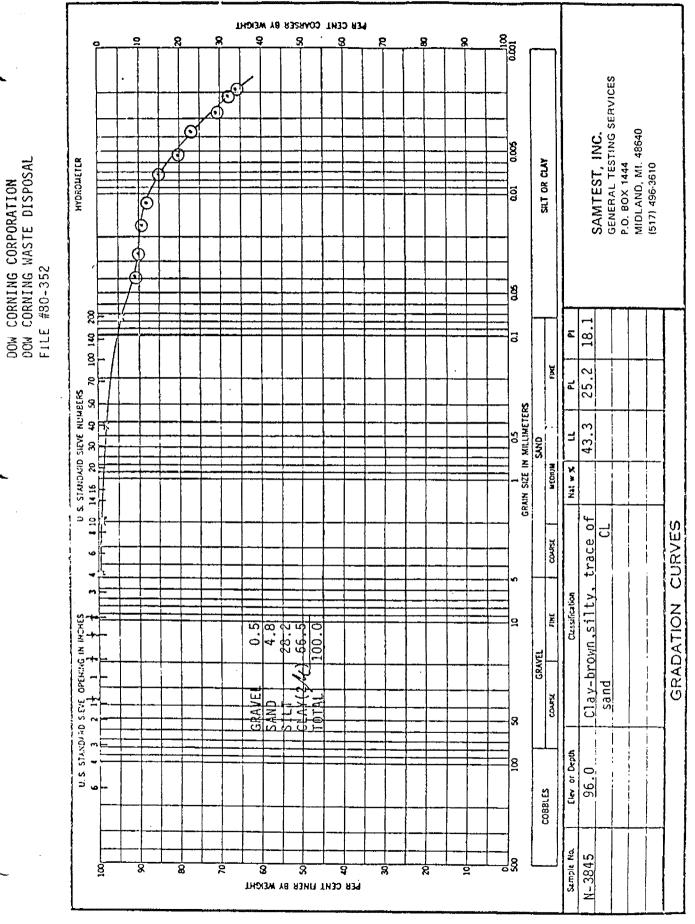

DAILY SUILS REPORT

A	P.O Midland,	EST, INC. . Box 1444 Michigan 48640 e 496-3610	PROJECT:	-80 JO Dow Corning Was w Corning Corp. R:	<u>te Disposal</u>	
WEATHER	Clear	TEMP RANGE	70 ° το 8	0 ° AREA WORKED	Cell A	
TY FIL TY	PE OF	SAND METHOD OF COMP CLAY LOAM. SAND CONDITION OF CLAY -Existing LOAM.	ACTION VIBRA PREU SHEE GRADE ROUG SMOO	NTORY PLATE MATIC TAMP. Psfoot Er Tired H	STEEL WHEE	HEEL.
	نے . 		- [_] DRY		PLACED TO DATE	ſ
MAX. DEN	— • • • • • • • • • • • • • • • •		METHOD	OF TEST	CONE	
			TION AND RESULTS OF TE			
EST NO.		LOCATION		ELEVATION	PERCENT	natu Unit
	Cell A - N.	W. Corner - Existing		90.0'	15.5	141.7
<u>.</u>	Cell A - E.	side Center - Exist	ing	. 11	12.9	(
З	Cell A - S.	Center - Existing	•	11	14.2	141.1
	PERMEABILIT	LES FOR THE ABOVE (3)	TESTS:			
#1 **	<u> </u>					_
#2	5.1x10 ⁻⁹ cm/sec.					
#3	_4,4x10-8	cm/sec				
	**Vertical p	ermeability corrected	l to 20°C for wat	er determined in	segmented 11	ner cel
<u>Brief ré</u>	SUME OF WORK AC	COMPLISHED THIS DATE:	SEE ATTACHED	DIAGRAM		
	NUCLEAR DENS	SITY TESTS * taken ad	ljacent to the abo	ove tests are lis	sted below:	
	· · · · · · · · · · · · · · · · · · ·		% Moisture	Wet Density		
 ,,_	T	est #2	14.3	141.5		
	1	# 3	16.9	142.0		
	Troxl	er 2401 using 8 in tr	cansmission posit	ion		
				• • • •		(

SIGNED William Clorces

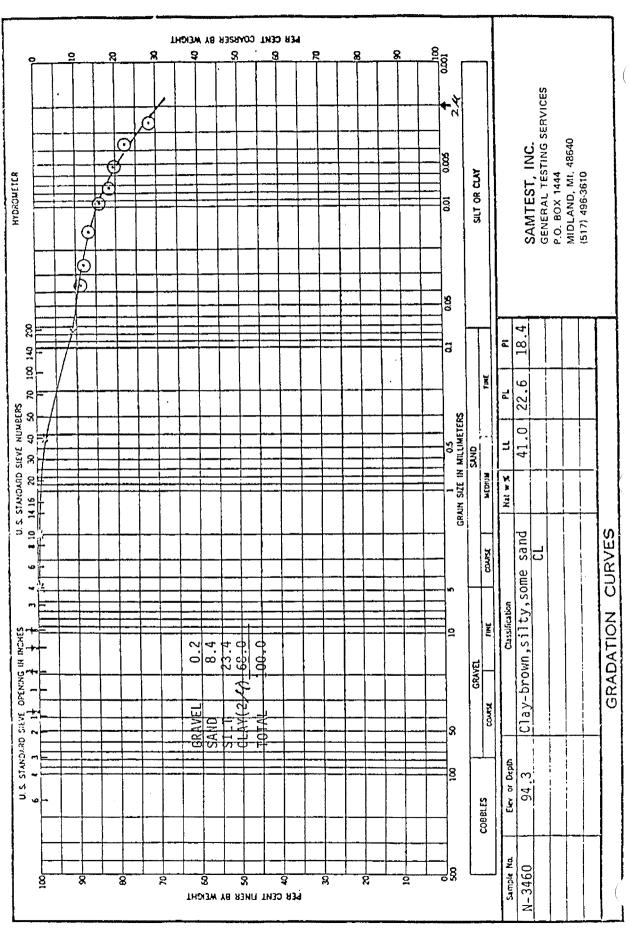





, 1190. NERAL TESTING SERVICES . BOX 1444 DLAND, Mi. 48640 496-3610	FIELD ENGINEER DAILY REPOR
PROJECT: Dow Corning Waste Dispo	osal SiteREPORT NO. 1
LOCATION: Dow Corning - Midland	
	CLIENT'S JOB NO.
WEATHER:C1	learDATE:9-8-80
	ANGE: <u>50°</u> TO: <u>80°</u>
	REMAINING ON JOB:
TYPE OF INSPE	CTION BEING PERFORMED
D SOILS	
🖾 FOUNDATIONS - Bottom of (Cell A
CONTROLLED FILL (COMPACTION	
BRIEF RESUME OF WORK ACCOMPLISHED	of Cell A as excavated by the con-
	poor quality cohesive soils or seams
	n. Three random locations were tested
	, classification and undisturbed sample
	approximately one foot below the present
elevation and indicated uniformly	
	ast and south perimeters allowing for
collection of any leachate generat	
COTTECTION OF any reachage generat	
	William Lace
	William Crozier, Ph.D.

DOW CORNING CORPORATION DOW CORNING WASTE DISPOSAL FILE #80-352

-

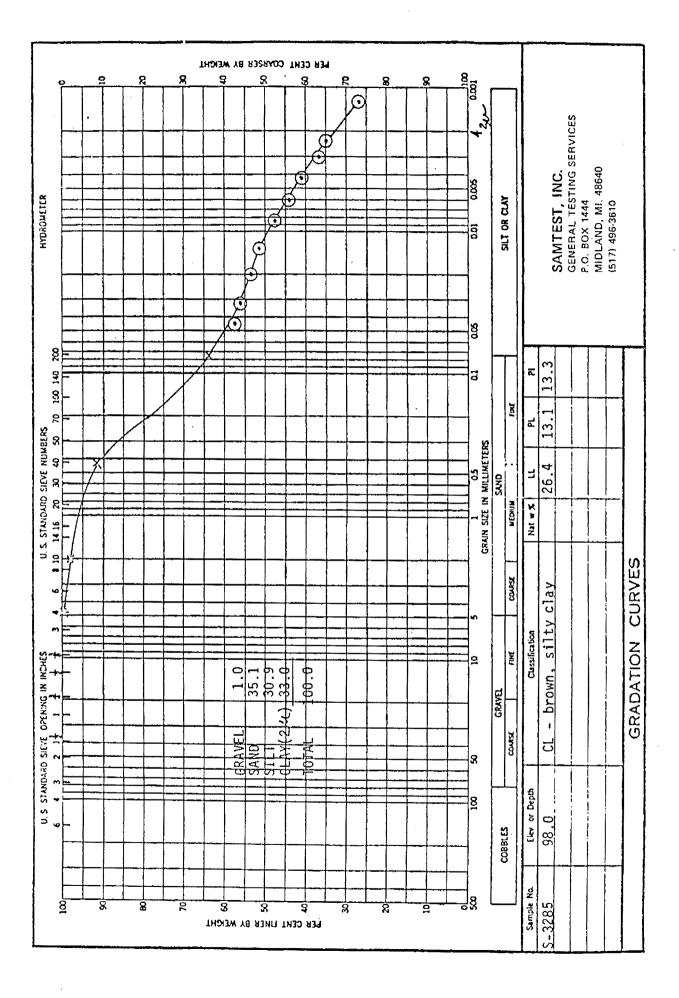


•

DOW CORNING CORPORATION DOW CORNING WASTE DISPOSAL FILE #80-352

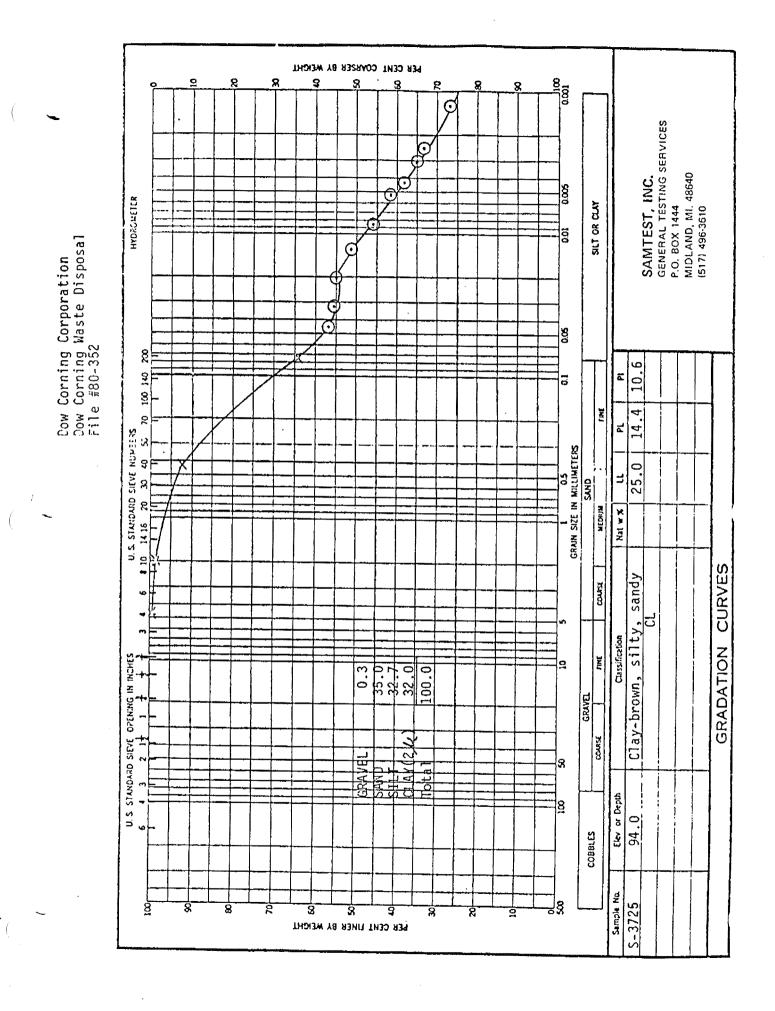
A J

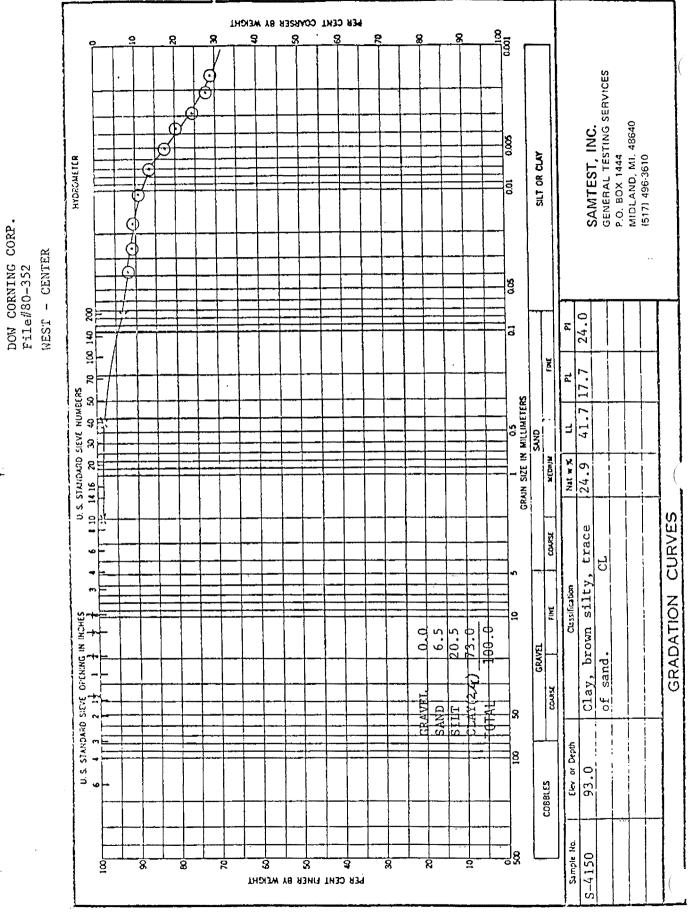
1

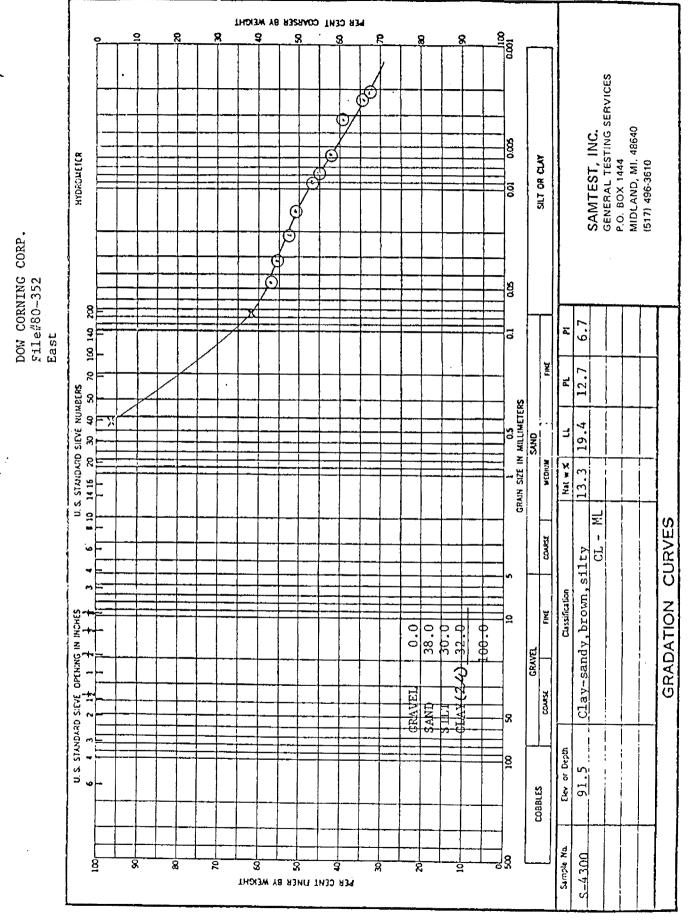

·~ \

DOW CORNING CORP. DOW CORNING WASTE DISPOSAL FILE #80-352

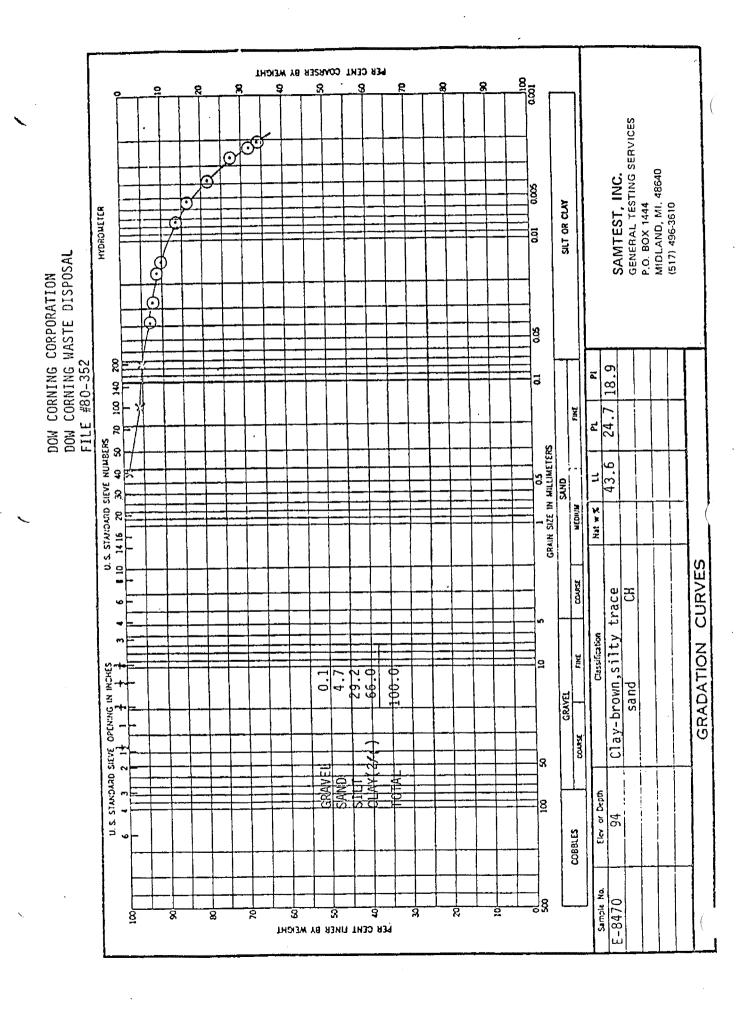
Ę

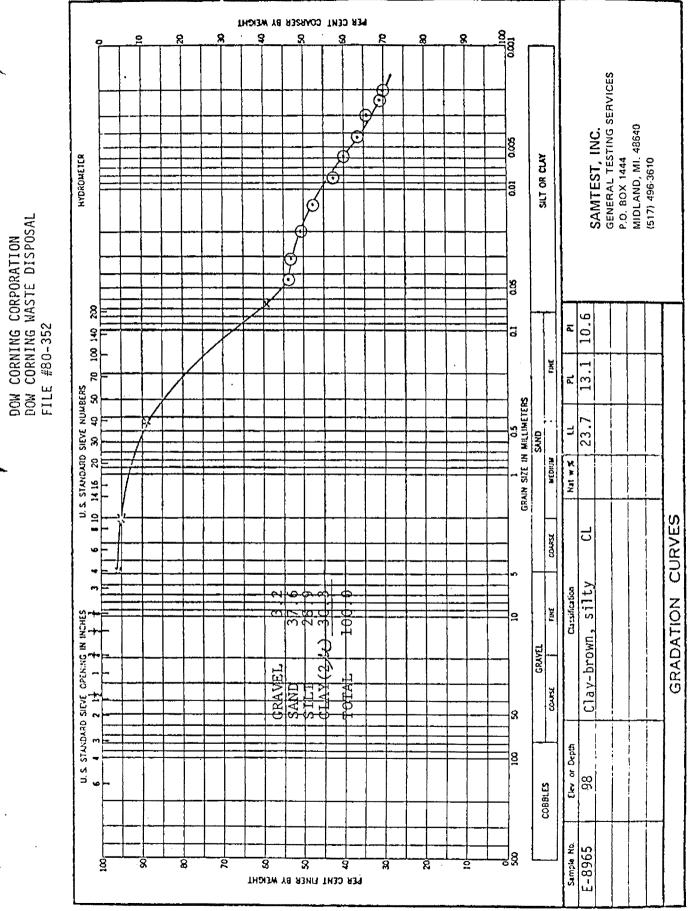

Ĭ,


Ń

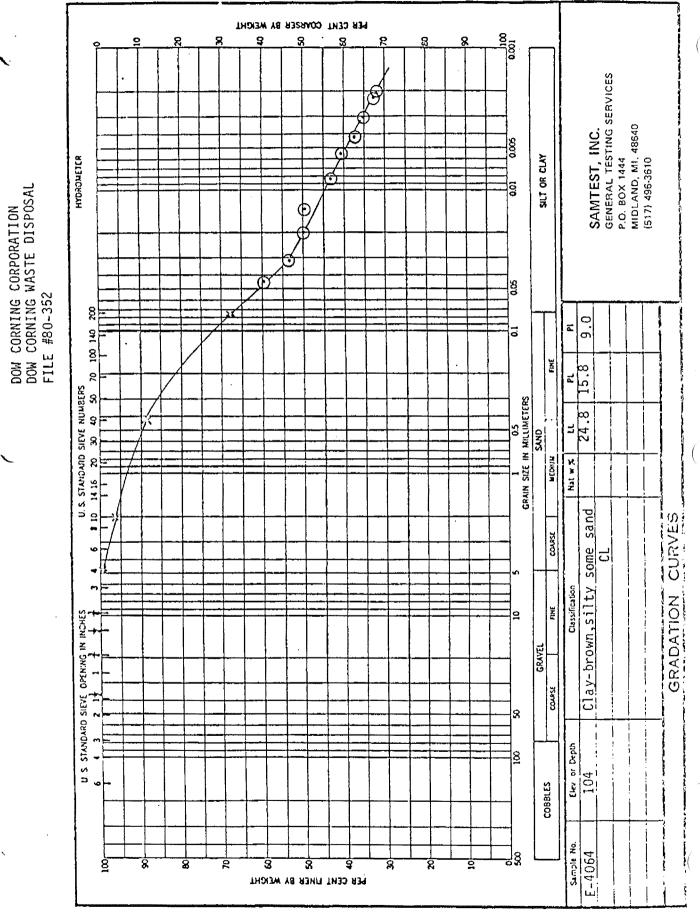


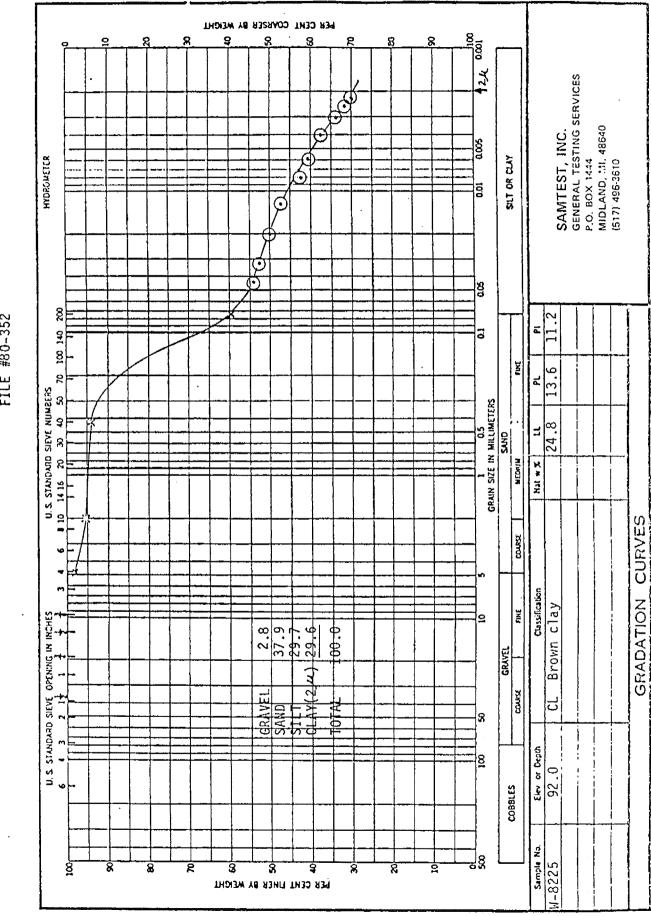
LES CENT CONSEES BY WEIGHT 200 200 200 8 8 8 8 \$ 3 2 o 8 В SAMTEST, INC. GENERAL TESTING SERVICES P.O. BOX 1444 MIDLAND, MI. 48640 (517) 496-3610 \odot Ø 80 Ċ SILT OR CLAY HYDROMETER 6 10.0 Ø Dow Corning Corporation Dow Corning Waste Disposal File#80-352 Â 8 5 윉 12.9 ₹. 5 3 8 12.9 ¥ ٩٢ 2 . I U. S. STUUDAND SILVE NUMBERS R GRAIN SIZE IN MILLIMETERS 25.8 \$ E ŝ SAND ጽ MEDIA Nat w X # 10 14 15 20 F GRADATION CURVES Clay-brown, silty, sandy CONTSE 5 Ęļ. ھ -Classification ž 32.5 30.0 100.0 2 OPENING IN INCHES 2.8 GRAVEL \Rightarrow RANCO U.S. STANDARD SIEVE GRAVEL SAND SITCT CLAY(22 3 m Elev or Depth 8 93.0 COBBLES ø Sample No. S-3475 -<u>7</u>8 넖 8 8 2 9 8 ğ 8 8 8 PER CENT FINER BY WEIGHT


1



, i



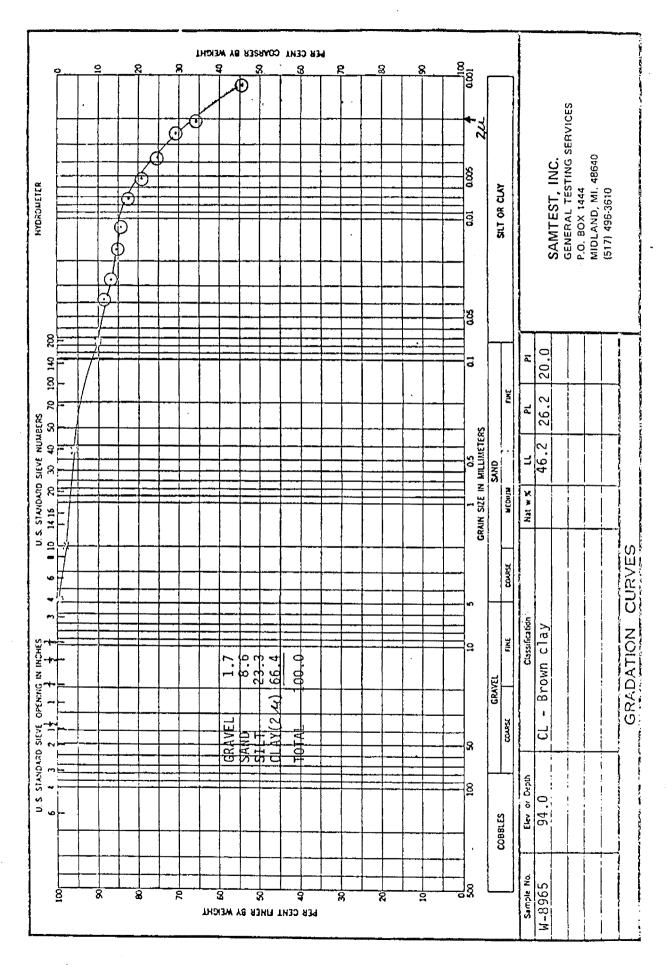

i

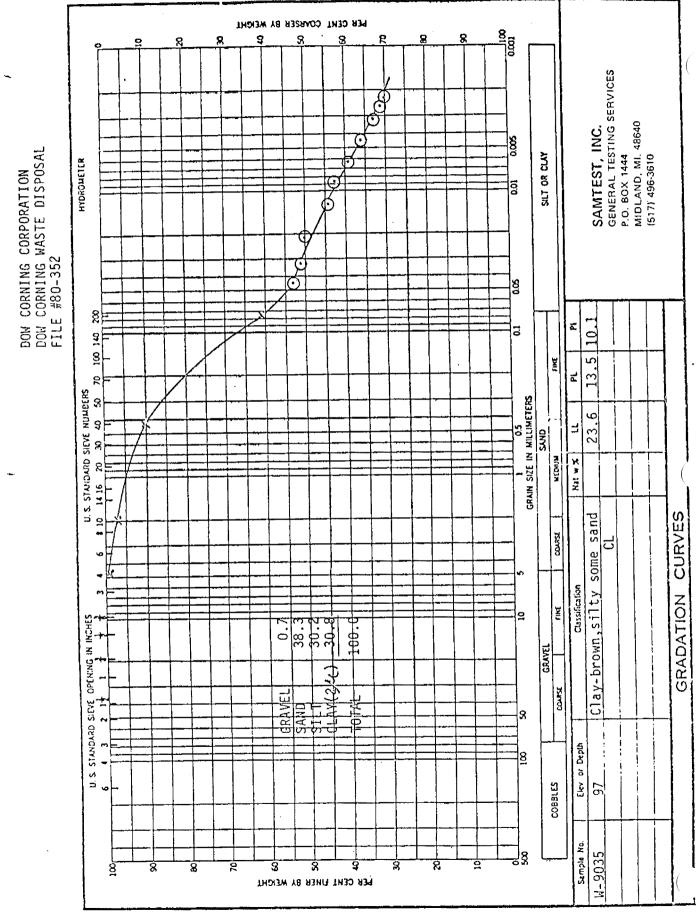
١.

ς.

۲.

DOW CORNING CORP. DOW CORNING WASTE DISPOSAL FILE #80-352

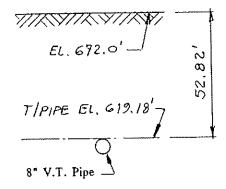

í ~

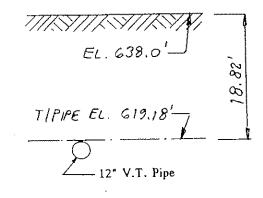

~

.

HER CENT COARSER BY WEIGHT . 8 8 \$ 8 8 8 8 8 2 8 0 SAMTEST, INC. GENERAL TESTING SERVICES P.O. BOX 1444 MIDLAND, MI. 48640 (517) 496-3610 24 S Ò 0.00 Ċ SILT OR CLAY HYDROMETCR Ę 10.0 DOW CCENING CORP. DOW CCENING WASTE DISPOSAL File ≓80-352 Þ Ф ģ 8 11.6 ã, 3 μ 13.3 27 4 . U. S. STANDARD SIEVE NUMBERS 8 I 0.5 GRAIN SIZE IN MILLIMETERS 3 24.9 Ľ ONNS 8 MEDH)M Nat w X 1 10 14 16 20 GRADATION CURVES COURSE Clay, brown silty œ -;⊧ Classification 3HE OPENING IN INCHES ខ្ព 2.9 25.7 71.0 0.400.0 GRAVEL 5441(22(C) 1 COLINY J U. S. STANDARD SIEVE SAND SAND STUT THE 8 ~ Elev or Depth 92.5 mb 8 و COBBLES 8610-W Sample No. ႕ရွ ğ 8 8 2 8 8 8 8 8 ġ PER CENT FINER BY WEIGHT

DOW CORNING CORP. DOW CORNING WASTE DISPOSAL FILE #80-352




23Jul93

Landfill V.T. Sewer Lines Stress Calculation D.C. Midland Plant

Max Landfill Elev. Over Installed Pipe

Max Landfill Elev. Over Installed Pipe

Information From:

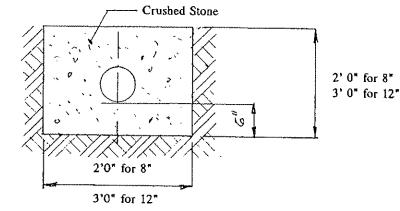
Dwg.	Y1-36615	Rev. B	Closure Plan for Haz. Waste Landfill
•			Final Topography
	Y1-31900	Rev. V	Landfill Development Site Plan
	Y1-23606	Rev. B	Leachate Collection System
			Sewer Profiles

<u>Note:</u> Plant Elevation 0.00' = 526.18' USGS.

ASTM Standard Spec C 700-88

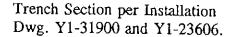
V.T. Clay Pipe, Extra Strength, Standard Strength and Perforated

Specified Minimum 3-point Bearing Strength:


8" Pipe		2200 PLF
12" Pipe	=	2600 PLF

A - 4E - 1

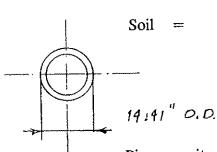
Landfill V.T. Sewer Lines Stress Calculation D.C. Midland Plant


BEDDING CLASS

Reference: Clay Pipe Engineering Manual by NCPI, 1990 Issue

This bedding would exceed requirement of Class "CS" (Crushed Stone)

Load Factor = 2.2


<u>Check Pipe for Overburden:</u> Landfill for <u>100 PCF</u> due to poor compaction & bulk material.

 $\frac{8" \text{ Pipe:}}{(\text{Laterals})} = 52.82' \times 100 \text{ PCF x } 9.89"/12"$ $\frac{4353 \text{ PLF of Pipe}}{9.89' \circ .0.}$ $\frac{9.89' \circ .0.}{100}$ $\frac{9.89' \circ .0.}{100}$ $\frac{9.89' \circ .0.}{100}$ $\frac{9.89' \circ .0.}{100}$ $\frac{9.89' \circ .0.}{100}$

Safety Factor = $\frac{4840}{4353}$ = 1.11 > 1.0

NOTE: This condition, comparatively high load, will exit at the final closure height over one leachate line only, partial segment. At most cases overburden over the installed pipes will be much less than 52.82' as shown here.

Landfill V.T. Sewer Lines Stress Calculation D.C. Midland Plant

12" Pipe

1

18.82' x 100 PCF x 14.41"/12" 2260 PLF of pipe -----

(Main Collection Pipe)

Pipe capacity based on 3 pt. bearing strength and bedding class CS load factor:

2600 PCF x 2.2 = 5720 PCF/Ft

2.53 > 1.0Safety Factor =**....** 5720 2260

This is common condition for 12" sewer main located on the perimeter of the NOTE: landfill.

Leachate field installation of V.T. Pipe has adequate strength. **CONCLUSION:** For chemical resistance see enclosed statement supplied by the V.T. pipe manufacturer. The Logan Clay Products Co. Logan, OH. (14 pages).

(

The Logan Clay Products CompanyP. O. Box 698APPENLogan, OH 43138

APPENDIX A-4E

RO.

WATS 800/848-2141 City 614/385-2184 FAX 614/385-9336

Chemical Resistance

The world's oldest industrial product, Vitrified Clay Pipe, becomes more important with the passage of time. As chemical technology reaches into far greater areas of use, the resulting highly corrosive industrial sewage requires piping systems made of materials with superior chemical resistance. Virtually impervious to every chemical except hydrofluoric acid, natural clay pipe is the choice for today.

Logan Clay Pipe is helping to meet the needs in such applications as those at Love Canal and the Franklin County, Ohio Landfill.

Here's why using Natural Vitrified Clay Pipe makes more sense than ever:

- Clay pipe can pass rigid specifications requirements.
- Is chemically inert, unaffected by sewer gases and acids.
- Rigid, will not flatten out or sag.
- Rust-proof.
- Unaffected by harsh household cleaning compounds and solvents.
- Withstands the extra stresses of heavy backfill loads.
- Will not soften or swell under any condition.
- Is durable, will not roughen, erode or wear out.
- Is unaffected by gases and acids generated by ground garbage.
- Made impervious through vitrification.

Attached are test results using various chemicals on our pipe, "O" Ring joint and gaskets. We will be happy to provide you with samples on which to conduct your own tests and to contact the manufacturer of our "O" Ring jointing materials for their test results.

The Logan Clay Products Company

Product Chemical Resistance

Visual Observation Key

Sample

1. No visible difference from control

2. Slight discoloration

3. Moderate discoloration

4. Severe discoloration

5. Hardening

6. Softening

7. Deteriorating

Solution

A. No discoloration

B. Slight discoloration

C. Moderate discoloration

D. Severe discoloration

A-4E- 5

N. Could not tell ---solutions were initially dark

Six Months' exposure. Solutions reconditioned weekly.

The Logan Clay Products Company

Table I Chemical Resistance Data Shale Body - 8" Pipe

	Root	m Temp. 7	3°F.	1	$20^\circ \pm 4^\circ F$.			$150^\circ \pm 4^\circ F$	
	Absorbed	Recond.		Absorbed	Recond.		Absorbed	Recond.	
	Weight	Weight	Vis.	Weight	Weight	Vis.	Weight	Weight	Vis.
Solution	Change	Change	Obs.	Change	Change	Obs.	Change	Change	Obs.
Acetic Acid 5%	+6.10	-0.22	A-1	+5.92	-0.19	A-1	+6.32	-0.14	A-1
Acetone	+5.32	-0.01	A-1						
Aluminum Sulfate 5%	+5.51	+0.11	A-1	+6.00	+0.16	B-1	+6.29	+0.49	A-1
Ammonium Chloride 5%	+6.23	+0.17	A-1	+5.63	+0.22	B-1	+6.75	+0.36	B-1
Ammonium Hydroxide 5%	+4.99	-0.02	A-1	*]		<u> </u>
Ammonium Hydroxide 10%	+5.70	-0.01	A-1	-					
Aniline	+5.85	+0.37	A-1						
Antifreeze, Zerex	+5.89	+2.25	A-1	-					
Benzene	+5.78	-0,01	A-1	-					
Borax 3%	+6.08	+0.16	A-1	+5.54	+0.17	A-1	+6.52	+0.43	A-1
Carbon Tetrachloride	+9.44	-0.01	A-1	1			1		1.
Carburetor Cleaner	+6.04	-0.01	A-1			· ·			
Citric Acid 10%	+5.88	+0.19	A-1	+5.78	+0.14	B-1	+6.74	+0.23	B-1
Chromic Acid 40%	+7.52	+2.79	N-1	+7.68	+2.85	N-1	+8.00	+2.68	A-1
hlorox	+6.34	+0.76	A-1						
Copper Sulfate 3%	+6.16	+0.28	A-1	+6.10	+0.28	A-1	+6.33	+0.37	A-1
Cottonseed Oil	+5.31	+5.04	A-1	+5.98	+5.63	A-1	+6.08	+5.55	A-1
Tide Soap 0.25%	+5.67	-0.00	A-1	+6.29	+0.10	A-1	+6.73	+0.28	A-1
Calgonite 0.25%	+5.56	+0.00	A-1	+6.22	+0.09	A-1	+6.29	+0.21	A-1
Joy 0.25%	+6.22	-0.05	A-1	+6.17	+0.06	A-1	+6.72	+0.23	A-1
Distilled Water		-0.03	A-1	+6.20	+0.04	A-1	+6.30	+0.17	A-1
	+6.14 +7.33	+0.70	A-1 A-1	+0.20	-11.57	C-6	+10.65	-13.26	C-6
Drano-Dry 25%	+6.44	-0.13	A-1		-0.05	A-1·	+6.55	-0.25	B-2
Drano-Liquid 50%		+0.13	A-1		+0.31	B-1	+6.89	+0.45	B-1
Enzymes Ethyl Acetate	+6.12 +5.89	-0.01	A-1		+0.01			70.10	
Ferric Chloride 1%	+5.59	-0.04	A-1		-0,30	A-1	+6.44	-0.28	A-1
Formaldahyde 35-40%	+5.99	+0.02	A-1		1	1			
Gasoline	+5.33	+0.02	A-1			1			
Heptane	+4.34	+0.01	A-1						
Hydrochloric Acid 10%	+5.39	-0.47	A-1	+5.90	-1.05	B-1		<u> </u>	
Hydrogen Peroxide 3%	+4.88	-0.02	A-1						
Kerosene	+5.11	+0.44	A-1	+4.96	+0.59	B-1			
Lactic Acid 30%	+5.55	+0.87	A-1	+6.82	+0.82	B-1	+6.74	+0.87	<u>B-</u>
ime 10%	+5,29	+0.16	A-1	+6.61	+0.53	A-2	+7.18	+0.53	
Aethyl Alcohol	+5.01	-0.02	A-1						

Table I - Chemical Resistance Data Shale Body - 8" Pipe

	Roon	m Temp. 7	'3°F.	1	$20^{\circ} \pm 4^{\circ}F.$		$150^\circ \pm 4^\circ F$.			
	Absorbed	Recond.	[Absorbed	Recond.	·······	Absorbed	Recond.	· · · · ·	
	Weight	Weight	Vis.	Weight	Weight	Vis.	Weight	Weight	Vis	
Solution	Change	Change	Obs.	Change	Change	Obs.	Change	Change	Obs.	
Mineral Oil	+4.85	+4.00	A-1	+5.39	+4.67	A-1	+5.61	+4,83	A-1	
Nitric Acid 1%	+5.66	-0.43	A-1	+6.17	-0.40	A-1	+6.55	-0.36	A-1	
Nitric Acid 10%	+6.12	-0.51	A-1	+6.33	-0.65	A-1	+6.12	-1.19	A-1	
Nitric Acid 20%	+6.30	-0.50	A-1	+5.65	-0.67	A-1	+5.59	-1.39	A-1	
20-20W Oil, Texaco	+5.82	+5.33	A-1	+5.64	+5.16	A-1	+5.80	+5.51	A-1	
			£				1		1	
Oleic Acid	+5.81	+5.14	A-1	+5.80	+5.45	B-1	+6.00	+5.53	B-1	
Saniflush	+7.20	+1.48	A-1	+7.77	+1.41	A-1	+7.86	+1.85	B-1	
Ivory Soap 1%	+5.80	+0.18	A-1	+6.25	+0.26	A-1	+6.36	+0.42	A-1	
Sodium Carbonate 20%	+6.49	+2.15	A-1	+7.44	+2.90	A-1	+6.95	+3.64	A-1	
Sodium Chloride 10%	+6.20	+0.55	A-1	+6.14	+0.57	A-1	+6.94	+0.80	A-1	
	······································	· · · · · · · · · · · · · · · · · · ·	1		ليوريد بالموادي والمستحد والمحادة الم		.4		1	
Sodium Chloride 30%	+6.66	+2.63	A-1	+6.86	+2.80	A-1	+7.18	+3.10	A-1	
Sodium Hypochlorite,										
4-6% Chlorine	+6.29	+0.75	A-1			······	-			
Sodium Hydroxide 1% Ph			1	1			1		1	
buffered with NaHCO3	+6.30	+0.18	A-1	+5.95	+0.00	A-1	+6.14	-0.17	B-1	
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	1					
Sodium Hydroxide 10%	+3.50	-5.52	A-1	-0.11	-11.60	B-1	-2.96	-16.75	B-1	
lium Nitrate 10%	+6.46	+0.56	A-1	+6.31	+0.60	A-1	+7.02	+0.83	A-1	
Jun Sulfate 10%	+5.97	+0.51	A-1	+6.35	+0.53	A-1	+7.14	+0.88	A	
Sodium Sulfite 10%	+6.37	+0.65	A-1	+7.05	+0.70	A-1	+7.47	+1.03	A.	
Sulfur Acid 3%	+5.99	+2.36	A-1	+5.99	+2.16	B-1	+6.30	+1.20	A-1	
			·							
Sulfuric Acid 20%	+6.58	+1.16	A-1	+6.16	+1.11	B-1	+5.34	+0.26	A-1	
Sulfuric Acid 30%	+6.80	-0.04	A-1	+6.31	-0.24	A-1	+6.30	-0.47	1	
Toluene	+5.60	-1.01	A-1	+5.71	+0.02	A-1	1	1	1	
Trisodium Phosphate 5%	+6.39	+0.12	A-1	+6.35	+0.19	A-1	+6.05	+0.35	A-1	
Turpentine	+5.37	+1.04	A-1	+6.02	+0.73	B-1		1	1	

The Logan Clay Products Company

Table II Chemical Resistance Data Flexible Polyester

	Rooi	m Temp. 7	3°F.	1	20° ± 4°F.]	150° ± 4°F	.]
	Absorbed			Absorbed	Recond.		Absorbed	Recond.	
	Weight	Weight	Vis,	Weight	Weight	Vis.	Weight	Weight	Vis.
Solution	Change	Change	Obs.	Change	Change	Obs.	Change	Change	Obs.
Acetic Acid 5%	+4.15	-1.47	A-6	+0.50	-5.15	B-6-2	-7.31	-12.06	C-4
Acetone	+23.08	-11.48	B-6-3	*		-	+	+	
Aluminum Sulfate 5%, pH7	+1.32	-1.34	A-2	-4.17	-4.17	B-6-3	-6.69	+8.95	A-35
Ammonium Chloride 5%, pH 6.1	+0.64	-1.27	C-6-3	-1.85	-4.33	B-6-4	-6.17	-10.21	C-4
Ammonium Hydroxide 5%	-1.64	-17.54	D-2			*	-		
	1	2							
Ammonium Hydroxide 10%	-5.18	-20.53	D-3-5	-	÷	~	-	-	- 1
Aniline	Disnt.	Disnt.	D-7	-	-	-	•	+	- 1
Antifreeze, Zerex	+1.56	-0.79	A-1	-	-	-	-	+	-
Benzene	+59.35	-10.04	7	-	-	-	-	*	- 1
Borax 3%	+4.45	-3.35	B-2-6	+3.75	-8.75	B-2-6	+8.49	-17.08	C-2
1.1.2.1.1.1.2.1.1.1.2.1.1.1.2.1.1.1.1.1			1	I					<u>ل</u>
Carbon Tetrachloride	+63.58	-0.06	B-2-6	-	-	-	-	-	- 1
Carburetor Cleaner	+55.05	-8.89	A-6	-	-	+	+	-	-
Citric Acid 10%	+1.55	-1.25	A-2	+0.72	-4.68	B-2-6	-5.06	-12.45	C-35
Chromic Acid 40%	-1,19	-19.57	N-3	+8.20	-16.18	N-3-7	-6.84	-24.42	N-4
lorox	+4.28	-1.89	A-2	-	-	-			
			.1		<u>,</u>			<u> </u>	.
opper Sulfate 3%, Ph 3.6	+2.67	-1.16	A-1	-1.95	-4.83	B-6-4	-7.65	-11.37	B-4
Cottonseed Oil	+0.26	-0.21	A-1	-0.86	1.03	A-1	-4.05	-4.38	A-1
Tide Soap 0.25%	+3.94	-2.13	A-2	+2.56	-5.08	B-3-6	-2.91	-10.35	B-36
Calgonite 0.25%	+4.15	-2.10	A-2	+0.01	-5.35	B-3-6	-5.98	-9.96	C-4
Joy 0.25%	+3.61	-1.50	A-2	-0.61	-4.78	-	-3.55	-9.75	C-46
		4	· A . · · · · · · · · · · · · · · · · · · ·					1	
Distilled Water	+3.38	-1.47	A-2	+0.41	-5.09	B-2-6	-6.12	-11.55	C-46
Drano-Dry 25%	+2.51	-15.95	N-2-5	+5.39	-10.41	N-3	Disnt.	Disnt.	N-7
Drano-Liquid 50%	Disnt.	Disnt.	C-7	Disnt.	Disnt.	C-7	Disnt.	Disnt.	C-7
Enzymes	+0.85	-1.72	N-4	-1.84	-4.83	N-3	-6.58	NA	N-26
Ethyl Acetate	+32.23	-11.22	A-7	-		1 .	-	-	-
		A	*						
Ferric Chloride 1%, pH 1.9	+3.96	-1.28	C-3	+4.18	-3.86	C-36	+1.09	-2.06	D-36
Formaldahyde 35-40%	+2.69	-1.05	A-2		-	-	-	-	-
Gasoline	+3.03	+0.88	A-1	-	1.	1	-	-	-
Heptane	+0.08	-0.26	A-1	•		-	-	-	
Hydrochloric Acid 10%	+0.65	-1.03	B-2	+1.76	-6.66	B-26	-	-	-
<u> </u>			-						
Hydrogen Peroxide 3%	+3.02	-2.03	A-2	-	-	T -	-	-	- 1
Kerosene	+0.35	-0.33	A-1	+0.95	+0.30	A-1	1 .	-	-
Lactic Acid 30%, pH 1.3	+3.14	-0.94	С	-3.18	-5.12	C-2-6	-13.31	-14.58	C-3-F
	1	1	-	1		1	1		ister
.ne 10%, pH 11.8	+7.26	-3.92	A-3	+6.16	-7.98	A-5	+1.00	-1.40	B-5-
			1	1	1	blistere			1
Methyl Alcohol	+0.71	-9.93	B-1	-			-	+	-
		1					1		

Table II - Chemical Resistance Data Flexible Polyester

	Rooi	m Temp, 7	3°F.	1	$20^{\circ} \pm 4^{\circ}\mathrm{F}$		1	150° ± 4°F	
	Absorbed	Recond.		Absorbed	Recond.		Absorbed	Recond.	
	Weight	Weight	Vis.	Weight	Weight	Vis.	Weight	Weight	V
Solution	Change	Change	Obs.	Change	Change	Obs.	Change	Change	Obs.]
Mineral Oil	+0.68	-0.33	A-1	-0.37	-0.72	A-1	-1.05	-2.86	A-2
Nitric Acid 1%	+4.22	-1.40	A-3	+5.05	-5.80	B-3-6	-11.59	-7.97	B-3
Nitric Acid 10%	-4.49	-1.98	B-3	+23.01	-15.16	B-4	Disnt.	Disnt.	N-7
Nitrie Acid 20%	+4.40	-4.69	B-4	•	*	B-4-5-7	Disnt.	Disnt.	N-7
			*(Couldn't ge	t sample	out of bo	ttle.		
20-20W Oil, Texaco	+1.40	+1.02	A-2	-0.60	-0.83	A-5	-2.69	-3.57	A-45
Oleic Acid	+0.10	-0.10	A-1	-0.34	-0.63	C-6	-	-	-
Saniflush	+0.19	-1.47	B-3	-0.37	-2.80	B-36	-6.91	-1.58	B-4
Ivory Soap 1%	+6.39	-2.70	A-2	+1.95	-3.81	B-36	+3.40	-6.61	B-36
Sodium Carbonate 20%, pH 10.9	-0.17	-3.83	B-2	-8.98	-18.43	B-4	-5.80	-0.65	C-5
Sodium Chloride 10%	+0.51	-1.04	A-2	-1.87	-3.48	B-3-6	-6.81	-9.14	B-4
Sodium Chloride 30%	+0.56	-0,51	A-2	-0.94	-2.18	B-3	-5.75	-7.10	B-7
Sodium Hypochlorite,									
4-6% Chlorine	+0.14	-3.37	B-2	•	•	* -	-	-	-
Sodium Hydroxide 1%, pH 9.8,			1						Ι
buffered with NaHCO3	+3.81	-3.79	B-1	-1.09	-15.21	B-26	+5.96	-25.09	B-36
F					1	7 ~ -	r		
dium Hydroxide 10%	-3.60	-21.45	C-2-6	1	-31.50	C-3	Disnt.	Disnt.	C-7
Jium Nitrate 10%	+1.00	-1.36	B-2	-1.83	-4.43	B-6	-6.07	-10.43	P
Sodium Sulfate 10%, pH 7.7	+0.61	-1.26	A-2	-2.32	-3.95	B-26	-7.73	-9.01	1
Sodium Sulfite 10%, pH 9.5	+1.65	-2.47	B-2	-0.99	-6.47	B-26	-7.79	-12.32	C~3
Sulfur Acid 3%, pH 0.8	+2.31	-0.62	A-2	+2.89	-5.09	B-36	+27.91	-13.37	B-4
Sulfuric Acid 20%	+1.21	-0.70	A-3	+2.37	-3.95	B-36	+14.80	-7.28	C-3
Sulfuric Acid 30%	+0.63	-1.25	A-3-6		-3.36	B-36	+22.21	-4.71	B-35
Toluene	+42.40	-8.18	B-6	Disnt.	Disnt.	B-7		1 .	<u>† </u>
Trisodium Phosphate 5%, pH 11.6		-15.10	C-2	+7.04	-22.27	C-26	-7.43	-27.85	C-2-0
Turpentine	+1.70	+0.77	A-2	+10.33	+8.27	B-26	-	-	

The Logan Clay Products Company

.

.

Table III Chemical Resistance Data Rubber - Polyisoprene

	Rooi	m Temp. 7	3°F.	1	$20^\circ \pm 4^\circ F.$			$150^\circ \pm 4^\circ F$	
	Absorbed			Absorbed	Recond.		Absorbed	Recond.	
	Weight	Weight	Vis.	Weight	Weight	Vis.	Weight	Weight	Vis.
Solution	Change	Change	Obs.	Change	Change	Obs.	Change	Change	Obs.
Acetic Acid 5%	+15.68	+1.43	A-3	+90.04	+17.82	A-6	+116.40	+25.38	A-6
Acetone	-8.77	-20.17	C-1	-	-	~	-	+	-
Aluminum Sulfate 5%, pH7	+2.35	-0.32	A-2-6	+2.39	-1.39	A-2	+2.24	-1.35	A-2
Ammonium Chloride 5%, pH 6.1	+1.45	-0.12	A-2	+1.91	-1.33	A-1	+2.19	-1.27	B-1
Ammonium Hydroxide 5%	+5.22	+0.22	A-6	-		-	+	*	*
Ammonium Hydroxide 10%	+4.85	+0.17	A-1	-	-	-		-	-
Aniline	-7.52	-20.18	D-1	-	-	-		•	-
Antifreeze, Zerex	+1.00	+0.57	A-1	-	+	<u>ب</u>		-	-
Benzene	+135.77	-28.35	B-6	-	~	-	*	. 1	-
Borax 3%	+1.94	-0.33	A-1	+4.51	-1.83	A-3	+7.51	-2.66	A-4
Carbon Tetrachloride	+276.72	-28.42	B-6	-	-	-	-	•	-
Carburetor Cleaner	+26.27	-27.70	A-6	-	-	-	1 -	*	-
Citric Acid 10%	+2.01	-0.22	B-1	+3.33	-1.33	A-1	+4.24	-1.15	A-1
Chromic Acid 40%	-52.76	-62.95	A-7	-80.01	-88.17	N-7	Disnt.	Disnt.	N-7
xorc	+5.96	+0.68	B-5	+	-	-	1	-	<u> </u>
pper Sulfate 3%, Ph 3.6	+2.00	-0.12	A-1	+6.01	-1.10	A-3	+7.06	-1.23	A-3
Cottonseed Oil	+35.61	+35.42	A-6	+35.64	+33.19	A-6	+37.79	+37.61	A-6
Tide Soap 0.25%	+2,10	-0.70	A-1	+6.78	-1.32	B-2	+12.21	-1.53	B-3
Calgonite 0.25%	+2.31	-0.77	A-1	+7.21	-1.79	B-1	+9.68	-1.54	B-2
Joy 0.25%	+2.59	-0.57	A-1	+8.86	+0.16	B-2	+11.59	-0.17	B-3
Distilled Water	+2.19	-0.10	A-1	+6.84	-0.02	N-2	+8.89	-0.74	B-3
Drano-Dry 25%	+2.25	-0.51	A-1	+9.00	+5.55	B-5-2		+2.64	C-5-
Drano-Liquid 50%	+142.07	-23.07	C-6	+173.58		C-6	+68.53	-21.30	C-6-
Enzymes	+2.72	+0.01	A-1	+8.42	+2.87	A-5-3	+8.91	-2.16	A-4-
Ethyl Acetate	+7.15	-27.62	C-6	+	-	-	-		<u> </u>
Ferric Chloride 1%, pH 1.9	+5.54	-0.65	A-2	+14.83	-1.51	A-5	+18.88	-1.65	C-5
Formaldahyde 35-40%	+2.26	-0.46	A-1			- T	-		-
Gasoline	+98.19	-28.91	A-6	· · ·	-		-	-	- T-
Heptane	+20.22	-29.41	B-6		-	- 1	-	-	-
Hydrochloric Acid 10%	+2.04	+0.03	A-1	+21.62	+2.16	C-1	-	-	<u> </u>
Hydrogen Peroxide 3%	+10.94	+0.04	A-2	1 _	1.	1	1 .	-	- T
Kerosene	+57.19	-28.05	A-6	+65.37	-30.09	B-6			1
Lactic Acid 30%, pH 1.3	+4.82	+1.27	B-1	+37.60	+8.68	A-6	+55.66	-12,40	B-6
7 ' ne 10%, pH 11.8	+2.19	-0.39	A-1	+9.07	+0.00	A-3	+8.88	-2.51	A-'
hyl Alcohol	+3.21	-5.63	B-1	······				-2.01	 .

Table III - Chemical Resistance Data Rubber - Polyisoprene

	Roor	m Temp. 7	3°F.	1	20° ± 4°F.		1	150° ± 4°F	
	Absorbed	Recond.	<u> </u>	Absorbed	Recond.		Absorbed	Recond.	7
	Weight	Weight	Vis.	Weight	Weight	Vis.	Weight	Weight	v
Solution	Change	Change	Obs.	Change	Change	Obs.	Change	Change	0
Mineral Oil	+13.68	+12.68	A-6	+23.97	+18.84	A-6	+21.81	+18.92	A
Nitric Acid 1%	+23.70	+0.72	A-1	+99.01	+1.37	A-5	+99.13	-1.91	A.
Nitric Acid 10%	+11.61	+1.80	A-5	Disnt.	Disnt.	C-7	Disnt.	Disnt.	\mathbf{t}
Nitric Acid 20%	+5.79	+1.18	A-5	Disnt.	Disnt.	C-7	Disnt.	Disnt	$\overline{\mathbf{c}}$
20-20W Oil, Texaco	+14.10	+13.45	A-6	+23.86	+21.50	A-1	+20.87	+20.04	A
Oleic Acid	+56.12	+55.41	B-6	+38.30	+36.04	D-6	+38.03	+35.63	ſ
Saniflush	+1.77	+0.09	B-1	+3.37	+0.47	B-2	+2.41	-0.89	$\frac{1}{2}$
Ivory Soap 1%	+2.64	+0.16	A-1	+16.25	+4.17	<u> </u>	+22.10	-1.88	tà
Sodium Carbonate 20%, pH 10.9	-0.20	-1.19	B-1	-11.74	-3.07	B-1	-1.55	-3.02	$\mathbf{\dot{c}}$
Sodium Chloride 10%	+1.12	+0.02	A-1	+0.64	-0.87	B-3	+0.92	-1.04	7
Sodium Chloride 30%	+0.90	-0.03	A-1	+0.53	-0.40	B-3	+0.66	-1.99	7
Sodium Hypochlorite,				. 0.00	-010	D-0	+0.00	-1.55	<u> </u>
4-6% Chlorine	+3.19	-0.09	B-5	<u> </u>				+	╉──
Sodium Hydroxide 1%, pH 9.8,									┢─
buffered with NaHCO3	+1.64	-0.55	B-1	+2.11	-2.93	C-2	+1.75	-3.09	
Sodium Hydroxide 10%	+2.95	-0.29	B-1	+1.42	-1.31	B-2	+3.15	-1.25	T
dium Nitrate 10%	+1.29	-0.13	A-1	+3.24	+0.17	B-3	+4.04	-1.12	
dium Sulfate 10%, pH 7.7	+1.38	-0.17	A-1	+4.35	+0.07	B-3	+5.95	-1.52	ł,
Sodium Sulfite 10%, pH 9.5	+1.32	-0.29	B-1	+0.86	-2.57	<u>C-2</u>	-0.90	-3.09	Ħ
Sulfur Acid 3%, pH 0.8	+3.28	-0.38	A-1	+5.73	-1.13	B-1	+8.81	-0.85	7
Sulfuric Acid 20%	+3.51	+0.39	A-1	+15.29	+3.38	B-1	+13.95	+2.91	Ī
Sulfuric Acid 30%	+2.54	+0.72	B-1	+17.55	+7.00	B-1 B-1	+18.51	+7.31	
Toluene	+141.81	-28.61	C-6	+152.35	-30.97	A-6	1 10.01	+1.01	┼┷
Trisodium Phosphate 5%, pH 11.6		-1.00	B-1	+2.33	-1.59	A-1	+3.11	-1.45	
		Disnt.	D-7	Disnt.	Disnt.	D-7	+ '0.11	- 4.30	┼╴

The Logan Clay Products Co.

P.O. BOX 698 LOGAN, OHIO 43138-0698 (614) 385-2184 FAX (614) 385-9336 WATS (800) 848 2441

CHEMICAL RESISTANCE LOGAN CLAY PIPE AND "O" RING JOINTS

Procedure for Testing of Joint

- 1. 12 4" pipe spigots were cut off pipe 8-10 inches from the spigot.
- 2. Step 1 was repeated for the socket ends of each pipe.
- 3. Caps were epoxied onto the cut ends of the socket sections and allowed to cure 24 hours.
- 4. The spigot sections were then slipped into the socket sections to make complete joints.
- 5. With the pipe setting, open end up, 1N Sulfuric Acid was poured into the pipe until it was 3/4 full.
- 6. The pipe end was then covered with poly ethylene (held on by a rubberband) and allowed to sit for 7 days at $72\pm3^{\circ}F$.
- 7. Steps 5 and 6 were repeated using the following chemicals:

1N Hydrochloric Acid

5% V/V Acetic Acid 7.5 N Armonium Hydroxide

5% W/W Sodium Hydroxide

- 5% W/W Sodium Chloride
- 50% V/V Bleach

5% V/V Alkl-Aryl Sulfonate

Carbon Tetrachloride

- Toluene
- Kerosene

Mineral Spirits

- 8. The pipe joints were then drained of the chemicals and filled with water.
- 9. A hand tighten stopper with a water inlet was placed in the open end of the first pipe and tightened.
- 10. A clamp was placed on the pipe, such that they could not slip apart.
- 11. One end of a hose was then elevated ten feet above the pipe joint with the other end attached to a tee.
- 12. The tee was attached to the threaded stopper and a water supply line attached to the last opening of the tee.
- 13. Water was allowed to run into the elevated hose until it ran out the end, then shut down to a trickle.
- 14. The joint was watched for leaks for 5 minutes. If none occurred, the joint passed; if a leak occurred before the five minutes were up, the joint failed. Below are the results:

Chemical	Temp, ±3 ⁰ F	Results
IN Sulfuric Acid	72°F	Pass
1N Hydrochloric Acid	**	Pass
5% V/V Acetic Acid	11	Pass

Continued next page ...

first TO GUARANTEE

LOGAN VITRIFIED PIPE WITH "O" RING COMPRESSION JOINT SYSTEMS - FLUE LINERS - WALL COPING

Chemical	Temp. ±3 ⁰ F	Results
7.5 N. Ammonium Hydroxide	72 ⁰ F	Pass
5% W/W Sodium Hydroxide	11	Pass
5% W/W Sodium Chloride	11	Pass
50% V/V Bleach	11	Pass
5% V/V Alkyl-Aryl Sulfonate	11	Pass
Carbon Tetrachloride	11	Pass
Toluene	ft	Pass
Kerosene	tr	Pass
Mineral Spirits		

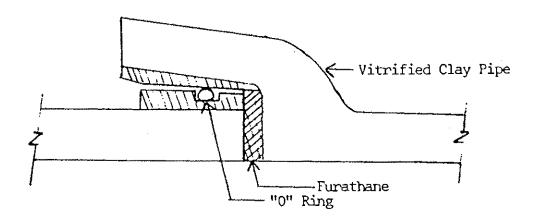
The joints with Toluene showed some deterioration, but passed the water test.

If you require information on chemicals not listed above, we will be happy to contact the manufacturer of the materials used in our "0" Ring jointing system for results of tests using those chemicals, or provide you with samples on which to conduct your own tests.

Chemical Resistance - Clay Pipe

Clay pipe is virtually impervious to every chemical except hydrofluoric acid. Samples for testing will be furnished upon request.

The Logan Clay Products Co.


PC BOX 698 LOGAN OHIO 43138-0698 (614) 385-2484 FAN (614) 385 9336 WATS (800) 848-24

FURATHANE/"O" RING JOINT FOR INDUSTRIAL CHEMICAL-RESISTANT JOINTS FOR VITRIFIED CLAY PIPE AND FITTINGS

Description

FURATHANE is a thermosetting furan resin based corrosion-resistant mortar containing a 100% carbon filler. Set and cured, FURATHANE exhibits the chemical and thermal resistance of furan mortar with the high bond strength of epoxy mortar.

Vitrified clay bell and spigot pipe lines carrying corrosive spent acids and solvents may require the use of FURATHANE/"O" RING combination joint. A fillet and bead of FURATHANE Mortar at the pipe junction provides the necessary resistance against attack from non-oxidizing acids, chlorinated organic solvents, and detergents to a maximum operating temperature of 140° F. (60° C.). (See diagram below.)

Bedding Pipe

THE BEDDING OF PIPE IN TRENCHES MUST BE IN ACCORDANCE WITH ASIM C-12. The recommended guidelines for installation of pipe incorporated in this specification must be implicitly followed. The use of FURATHANE between each pipe results in a rigid line that must be uniformly supported by the pipe bedding.

first to GUARANTEE LOGAN VITRIFIED PIPE WITH "O" RING COMPRESSION JOINT SYSTEMS - FLUE LINERS - WALL COPING

Installing the Joint

The following procedure is recommended for installing the FURATHANE/"O" RING combination joint. The temperature at time of construction must be 60° F. – 90° F. (16° C. – 32° C.). All vitrified clay pipe must meet ASTM C-700 specifications, and joints must meet ASTM C-425.

If the temperature is above 90° F. (32° C.), cover trench area with temporary shelters such as tarps, black plastic sheeting, etc., in order to protect against direct rays of the sun. If the temperature is below 60° F. (16° C.), the temporary shelter can be used to confine heat provided by portable hot air blowers. Alternatively, the pipe can be used as a warm air duct for conveying heated air provided by portable hot air blowers. Care should be taken to insure that the pipe temperature does not become excessive during installation. Ideal temperature is 75° F. $\pm 5^{\circ}$ F. (24° C. -3° C.).

1) Before pipe laying is started, remove all water that may have entered the trench. The trench must be kept dry during installation and curing period of the mortars.

2) Whenever possible, start pipe laying at the lowest point and install the pipe so that the spigot ends point in the direction of the flow.

3) Inspect the bell and spigot joint surfaces to be sure they are clean.

4) Mix FURATHANE in accordance with instructions given on the bottom of this data sheet and continued on page 3.

5) Apply "O" Ring to spigot end of joint, but do not lubricate until you butter a complete and continuous circle of FURATHANE Mortar onto the spigot end of the pipe and onto the shoulder of the bell prior to positioning the spigot end into the bell. Lubricate "O" Ring and bell surface and push joints together.

6) The pipe is shoved home, forcing the FURATHANE Mortar evenly around the shoulder of the bell in order to form a uniform and continuous bead of mortar at the bell and spigot intersect. The interior planes of the pipe sections should be flush within dimensional limits of the specification against which the pipe was supplied. In all cases, it is essential that the FURATHANE set hard and be continuous in the interior of the pipe.

Preparation of FURATHANE Mortar

<u>Mixing Ratio</u> - 1 part resin to 1.75 parts powder by weight. (Do not exceed 1 part resin to 2 parts powder.)

Preparation - FURATHANE Mortar is prepared by combining FURATHANE Powder with FURATHANE Resin to form a workable mix.

1) Place 2 pounds of previously measured FURATHANE Resin in a suitable shallow mixing pan.

Preparation of FURATHANE Mortar (Cont'd)

2) Add most of 3.5 pounds of previously measured FURATHANE Powder and mix thoroughly to form a smooth mortar. Add remainder of powder and mix until mortar is free from lumps and entrapped air.

3) If mortar is too stiff for proper buttering, increase amount of resin slightly.

4) Spread in thin layer in mixing pay (not more than 3/4" thick) to slow the setting time, and mortar is ready to use.

5) Do not mix more mortar than can be used in 15 minutes. Mortar that has started to set cannot be tempered with resin. Clean the mixing pan thoroughly between batches.

6) At temperatures above 90° F., both powder and resin should be cooled to extend working life, and small batches should be mixed so the mortar is used up quickly.

7) At temperatures below 60° F., store resin and powder in a warm area removing materials only as required.

IMPORTANT

FURATHANE is thermosetting mortar. The temperature at time of installation will affect the final set of the mortars. At a minimum of 75° F., the mortars are sufficiently set to allow testing and backfilling after 24 hours. If FURATHANE is used below 60° F. (16° C.), Furan Catalyst LT is required to hasten the initial set. Additional heat will be required to hasten final set if the job is to proceed without disturbing pipe alignment of partially cured joint.

Package Sizes

FURATHANE	Powder	FURATHANE	

100 lb. bag 50 lb. pail

Storage Life

When stored in original unopened containers in a cool, dry place, FURATHANE Resin and Powder has a shelf life in excess of one year. All materials must be kept at 60 - 90° F. (16 - 32° C.) for several hours prior to use.

Cleaning Equipment

Water and detergent or methyl ethyl ketone can be used to remove FURATHANE before it has started to chemically harden. FURATHANE is difficult to remove from any surface after it has set.

CAUTIONS

FURATHANE Powder

Contains carbon and/or silica and acid. Eye irritant. May cause skin irritation and allergic respiratory responses. May be harmful if swallowed.

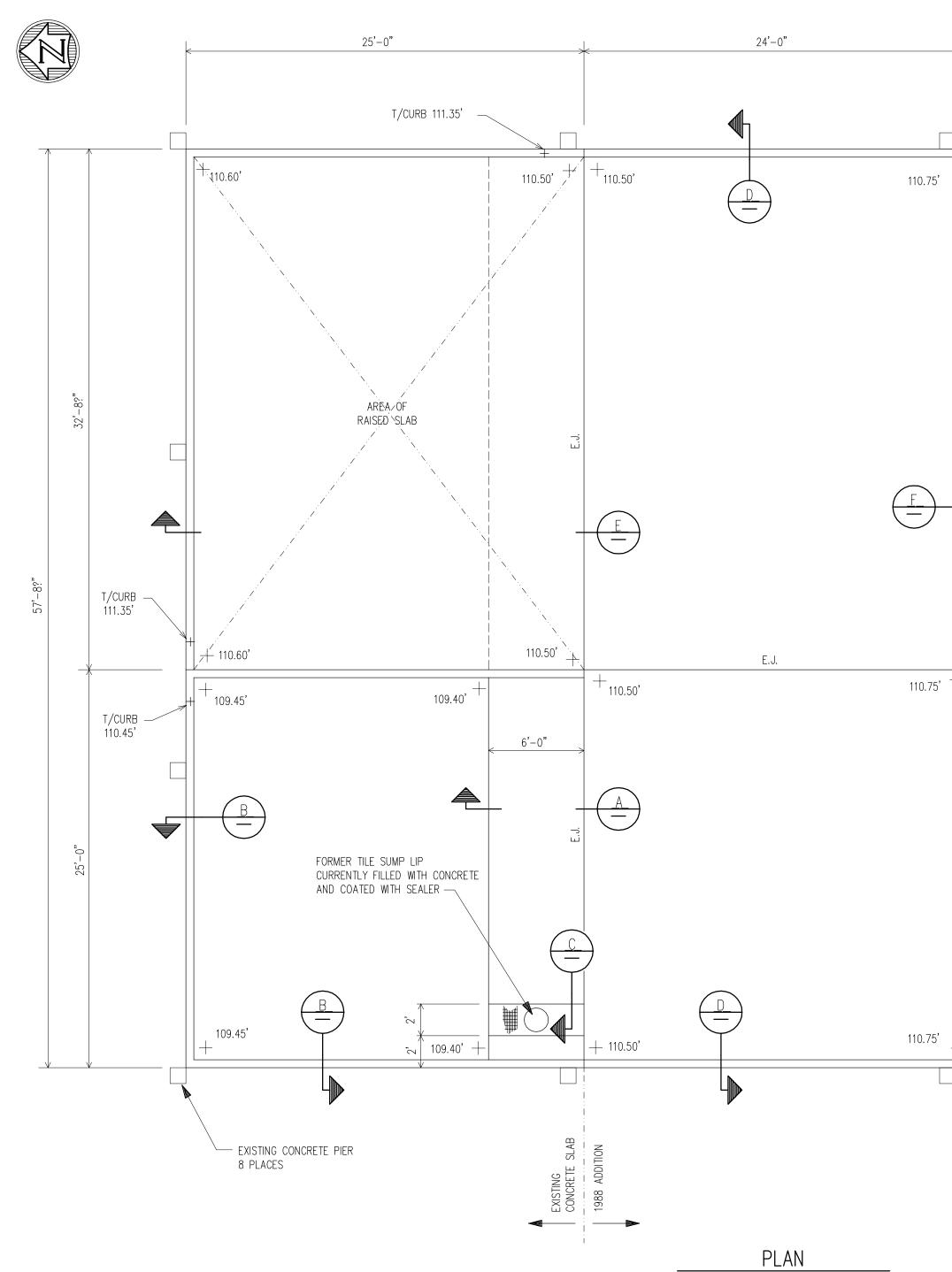
Avoid breathing dust. Wear a respirator suitable for acid vapor and dust. Provide adequate ventilation. Wear rubber gloves and eye goggles. Brush from clothing immediately after contact. Do not take internally,

Keep container closed when not in use. Handle carefully to keep dusting at a minimum. In case of spillage, sweep up and discard.

FURATHANE Liquid Resin

Combustible. May cause skin and eye irritation. Harmful if swallowed. Contamination with strong acids causes violent reaction with heat.

Keep away from heat, sparks or open flame. Use only with adequate ventilation. Avoid breathing vapors. Wear a respirator suitable for organic solvent vapors. Avoid contact with skin, eyes, or clothing. Wear rubber gloves and goggles. Do not take internally.


Keep containers closed tight and upright to prevent leakage. Keep containers closed when not in use. In case of spillage, absorb and dispose of in accordance with local applicable regulations.

8/23/82

Appendix 14-5 Landfill Drawings

99-14-Landfill Information.doc Rev. 0, 3/31/99 (

Ĺ

В

А

7

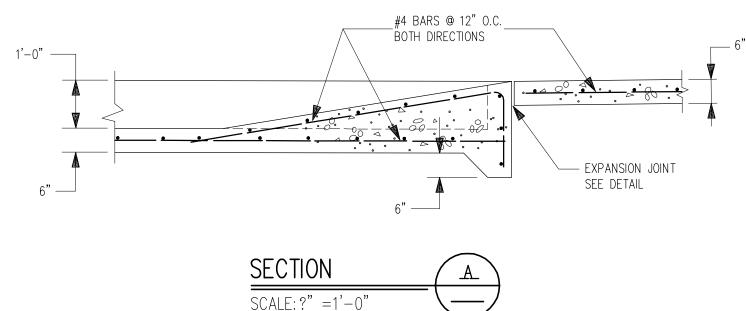
6

5

4

3

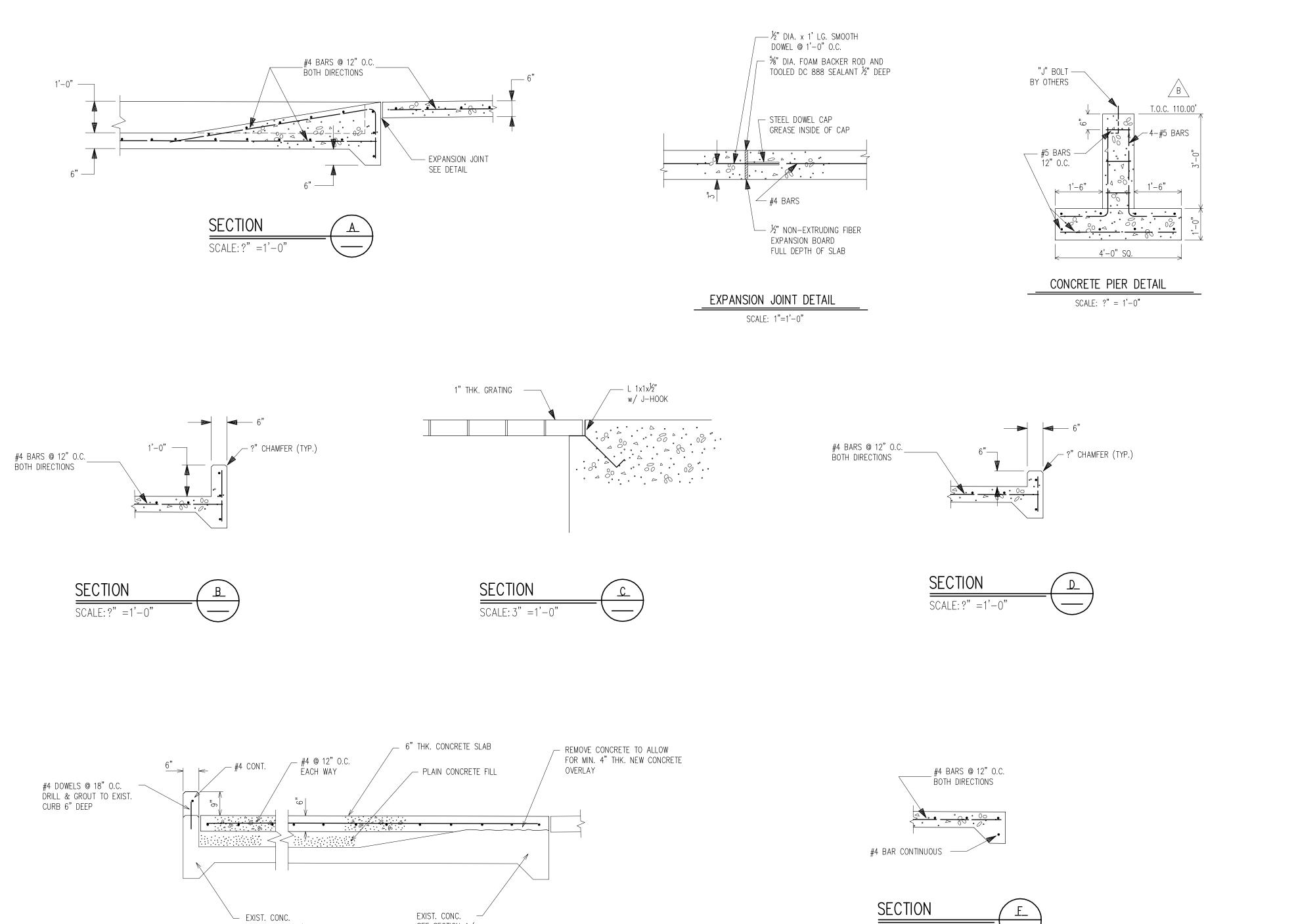
2

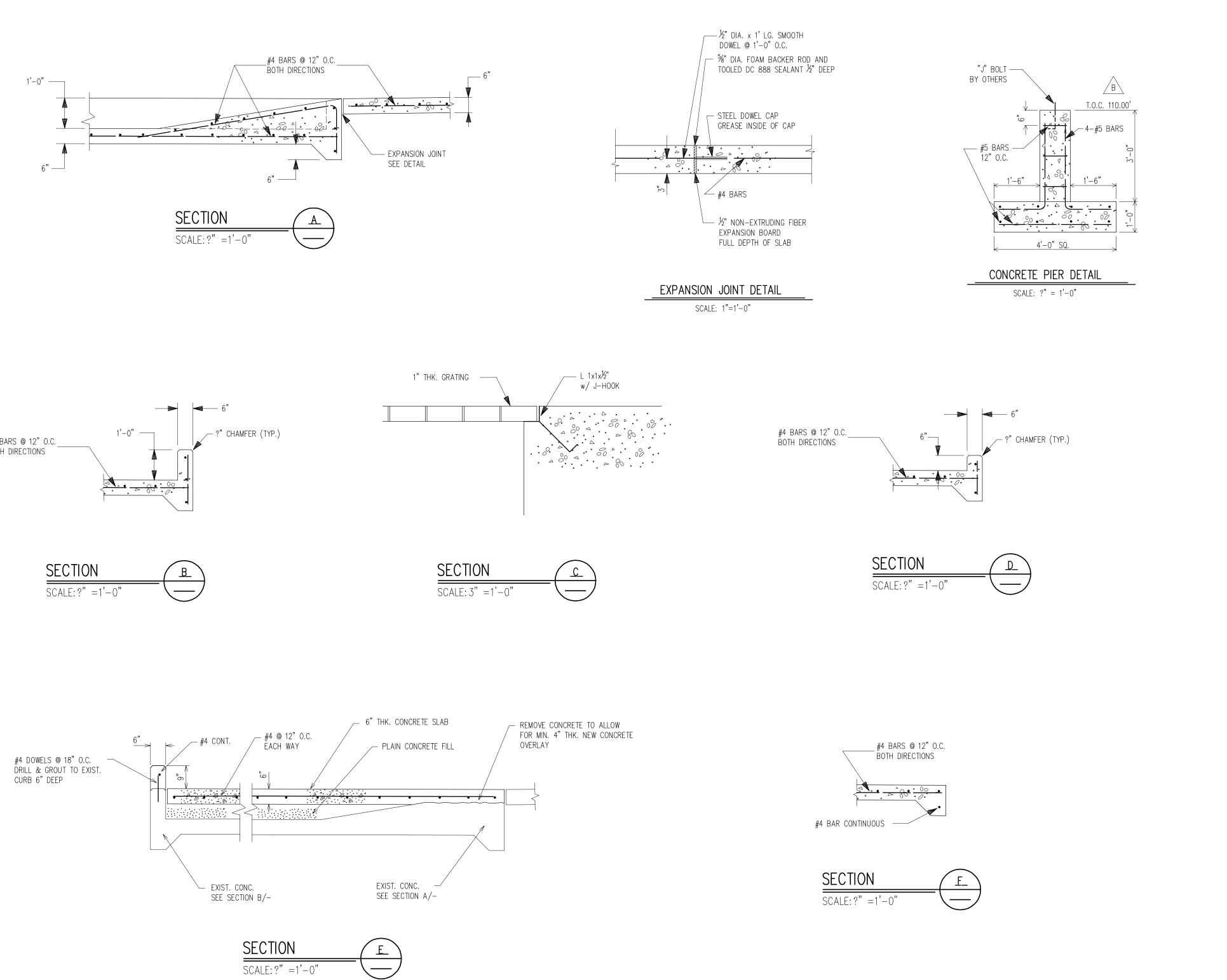

1

С

D

SCALE: ?" = 1'-0"


							CAE
V	К	MARK LOC. REVISIONS	BY DATE APP DESIGNED	DATE			
W		A GEN ADDED 50' EXTENSION TO SOUTH OF SLAB	RJF 04-05-89 PJM LSA 06-23-89 PJM	04-22-88	DOW CORN	ING CORPC	JRA HOI
X	М	B L-7 CHANGED T.O.C. TO 110.00', WAS 111.50'	LSA 06-23-89 PJM				
Y	N	C GEN REMOVED PLANNED 1989 ADDITION, RAISED SLAB IN N.E. QUADRANT		DATE	MIDLAND PLANT		BLDG. 801
Z	P	D GEN REVISED SUMP DESCRIPTION	NLW 02-02-10 MG R.J. Fortier	04-22-88		SLAB	
AA		E	CHECKED	DATE			
AB	R	F	M.W. Thomas	04-25-88	PLAN	AND DETAILS	
AC	S	G		04 20 00			
AD		Н	APPROVED	DATE	SCALE	DRAWING NUMBER	
AE		J	M.L. Marchione	04-25-88	AS NOTED	X1-38058	L C


G

F

Е

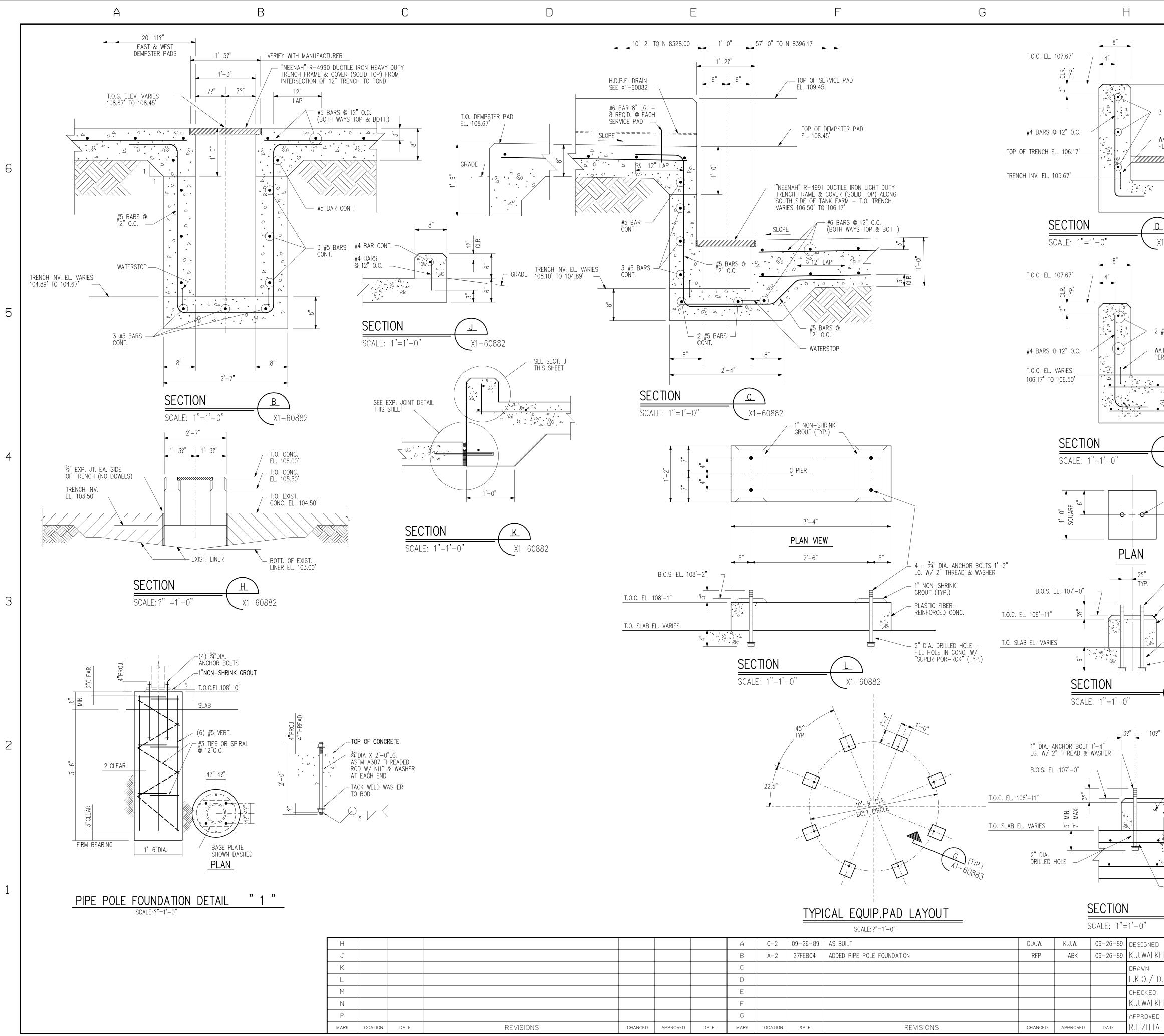
Н

J

Κ

L

2


7

5

4

З

LAST GENERAL UPDATE: 04JAN2010 f 1

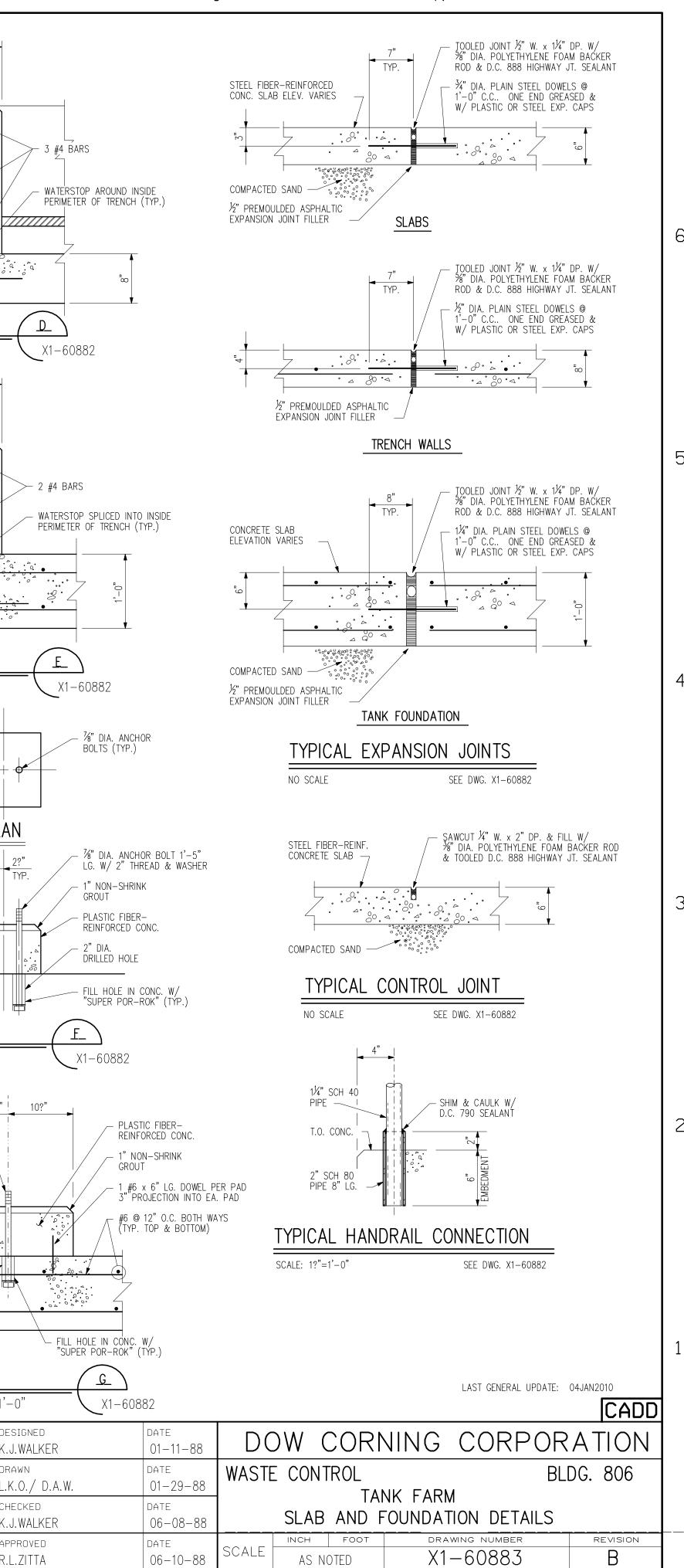
Α

В

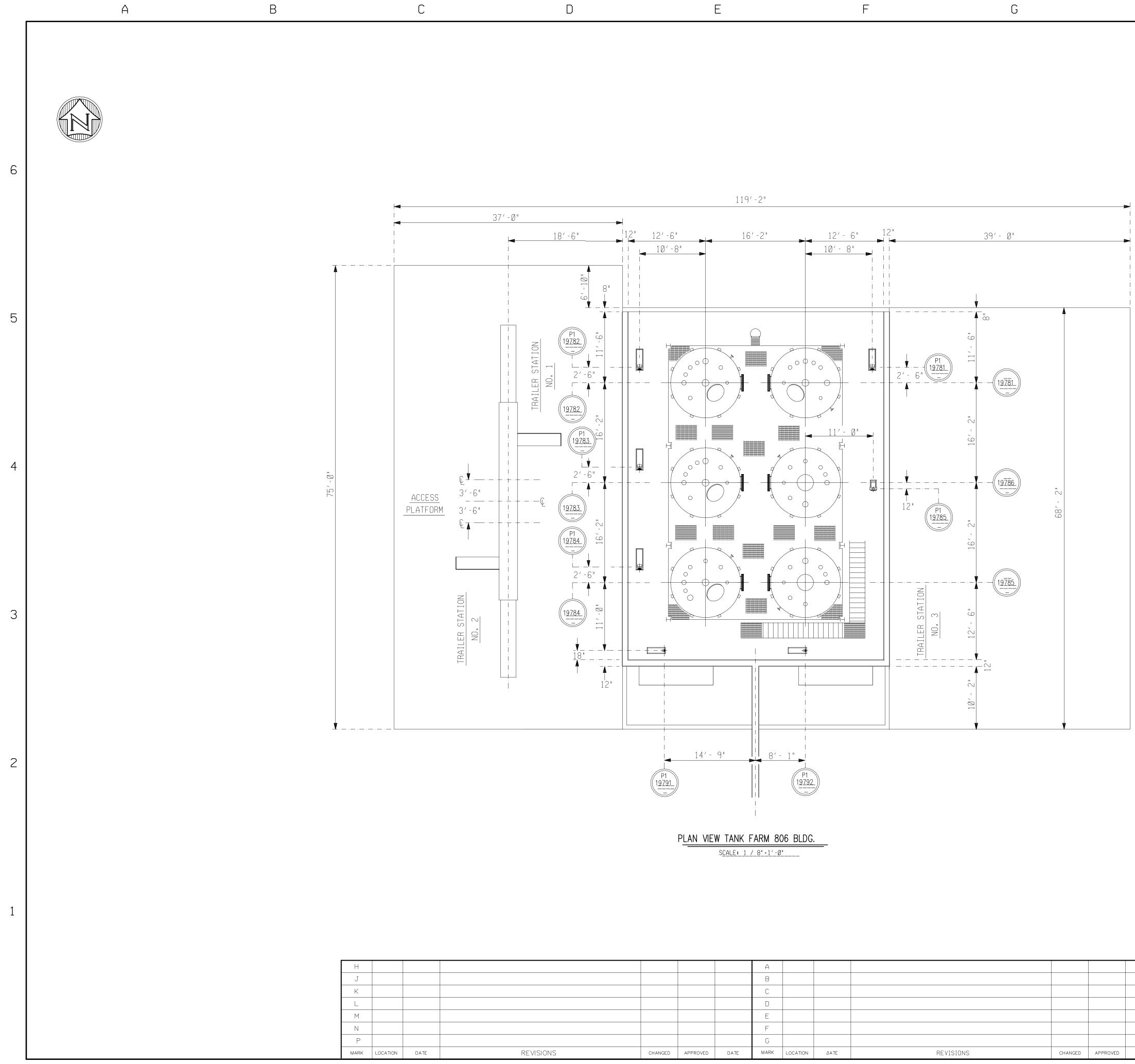
D

С

$F_{1-60883}$
TYPICAL EQUIP.PAD LAYOUT
SCALE: ?"=1'-0"


Η

					1 0
	C	D.A.W.	K.J.W.	09-26-89	DESIGNED
		RFP	ABK	09-26-89	K.J.WALK
					DRAWN
					L.K.O./ [
					CHECKED
					K.J.WALK
					APPROVED
D	6 C	CHANGED	APPROVED	DATE	R.L.ZITTA


F

Ε

G

Κ

С

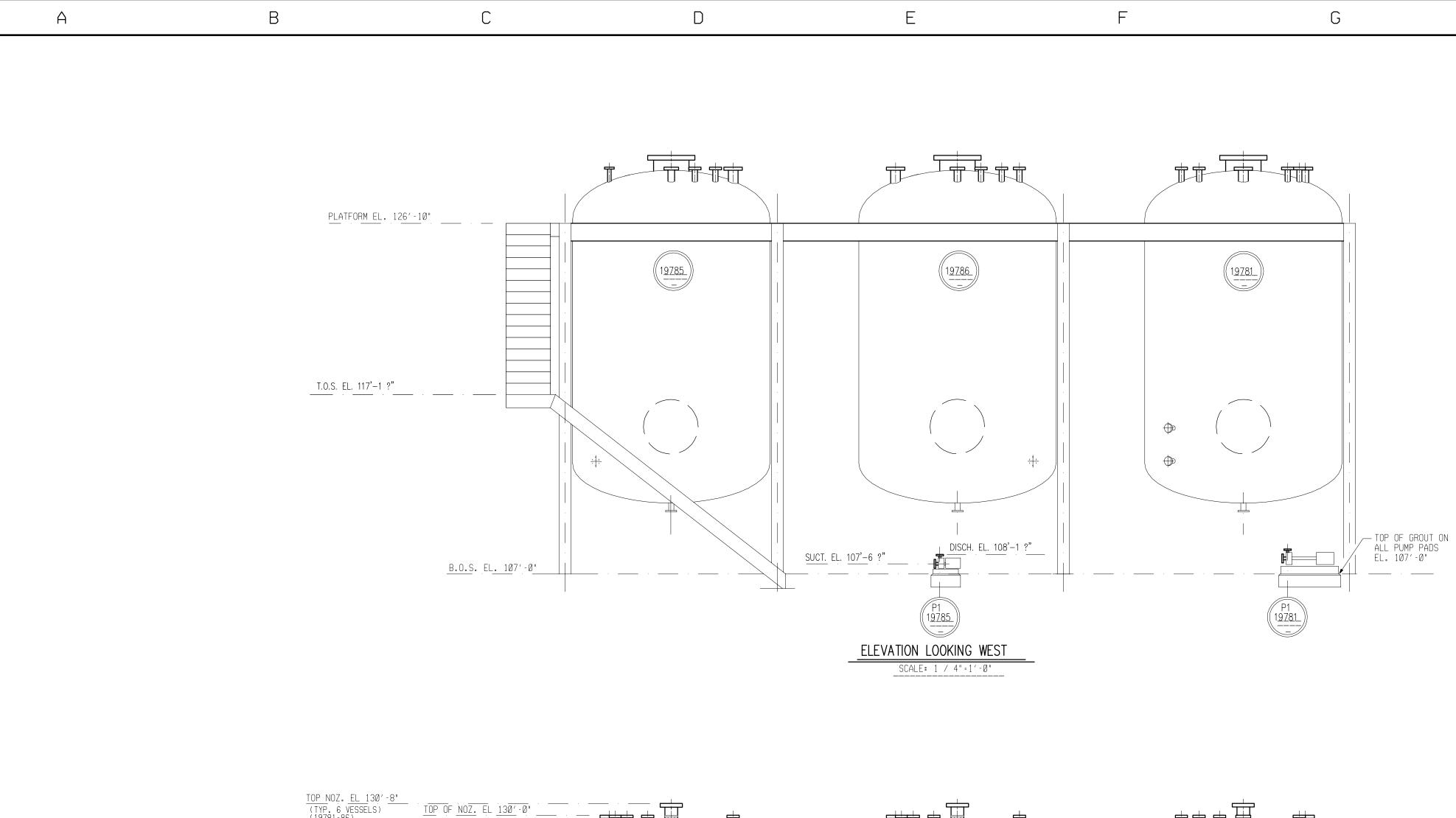
DESIGNE J. DRAWN DEBOLT CHECKED __S_K. approv __S.K CHANGED APPROVED DATE D Ε F G Н

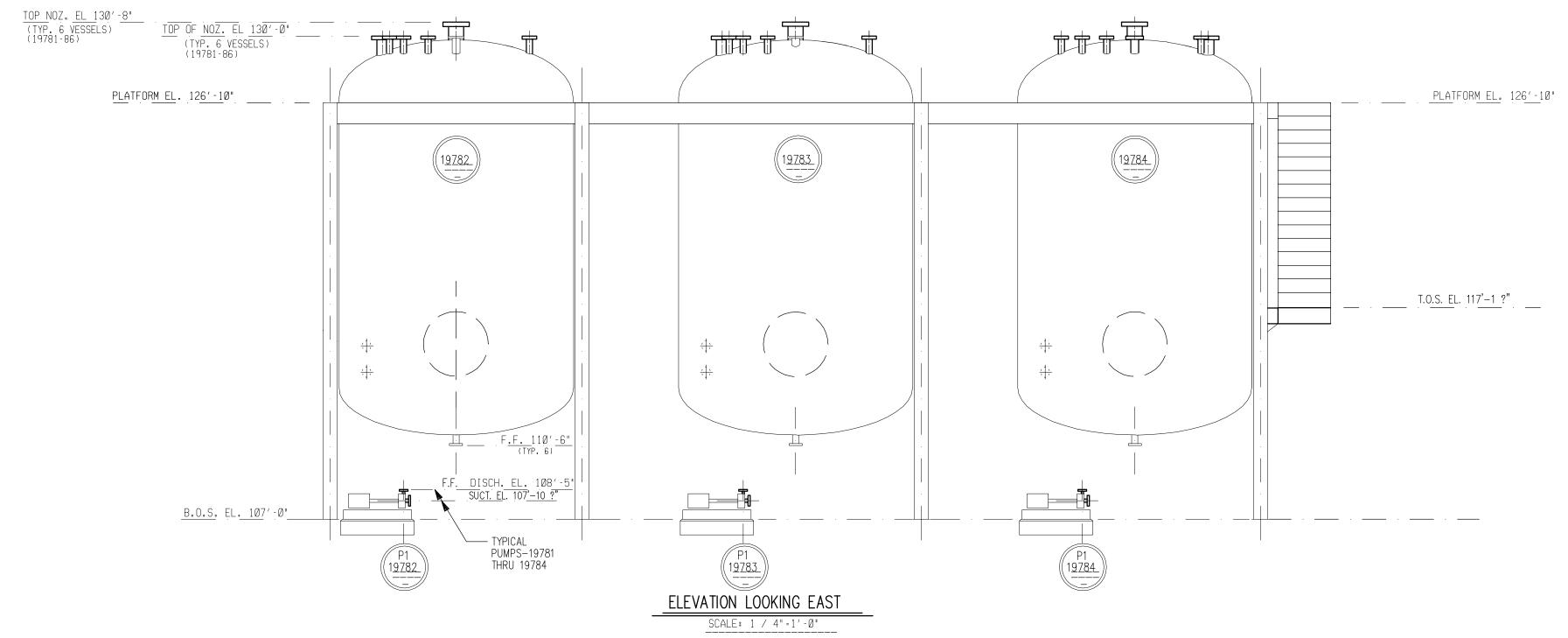
Н

						LAST GENERAL	UPDATE:	Ø4 JAN2Ø1Ø
								CADD
med MOQUIN	date Ø4-13-88	DOV	N	CORNI	NG	CORPO	DRA	TION
N	DATE	MIDLAND	PLT				BLDG	806
DLT DESIGN	Ø5-15-88				TANK	FARM		
<ed< td=""><td>DATE</td><td></td><td></td><td>EQUIPN</td><td></td><td>CATION PLAN</td><td></td><td></td></ed<>	DATE			EQUIPN		CATION PLAN		
KSAHA	Ø5 <u>-</u> 15 <u>-</u> 88							
JVED	DATE		INC	H FOOT	C	RAWING NUMBER		REVISION
KSAHA	<u>Ø5-15-88</u>	SCALE	1	/ 8" = 1 ′ - Ø"		W1-71228		0
	,	J				K		

J

Κ


6


5

4

2

1

														EAST GENERAL OF DA	E. 010/11/2010
н				A D-1	8-8-88	CHANGED SUCT.& DISCH.ELEV.ON PUMPS P1-19781 1	THRU P1-19784	J.MOQUIN SKS	8-8-88	DESIGNED	DATE				
J				В						J. MOQUIN	Ø4-13-88		V CORINI	NG CORPOR	AHON
К				С						DRAWN	DATE	MIDLAND	PLT.	BLD	G 806
L				D						DEBOLT DESIGN	Ø5-Ø3-88			TANK FARM	
M				E						CHECKED	DATE			- EAST & WEST ELEVATION	
N				F						S.KSAHA	<u>Ø5-15-88</u>				
P				G						APPROVED	DATE		INCH FOOT	DRAWING NUMBER	REVISION
MARK LOCATION DATE	REVISIONS	CHANGED APF	PROVED DATE	MARK LOCATION	DATE	REVISIONS		CHANGED APPROVED	DATE		<u>Ø5-15-88</u>	SCALE	1 / 4 " = 1 ′ - Ø "	W1-71229	A
ſ	Π		F			F	G			Н		T		K	
\bigcirc	D					I	0			11	()			

A

6

5

4

2

2

1

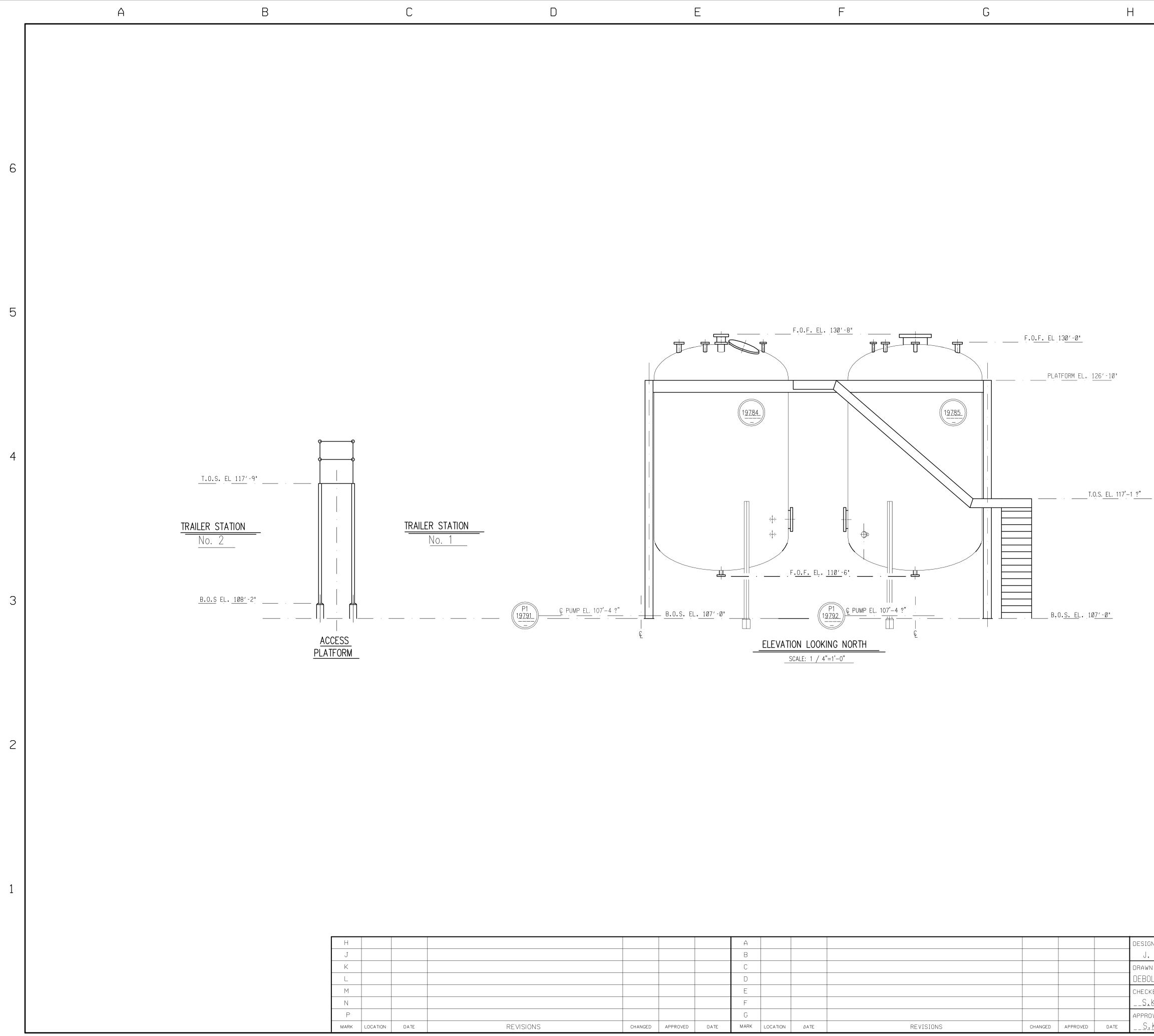
T.O.S. EL. 117'-1 ?"

LAST GENERAL UPDATE: 04JAN2010

5

4

J


2

1

6

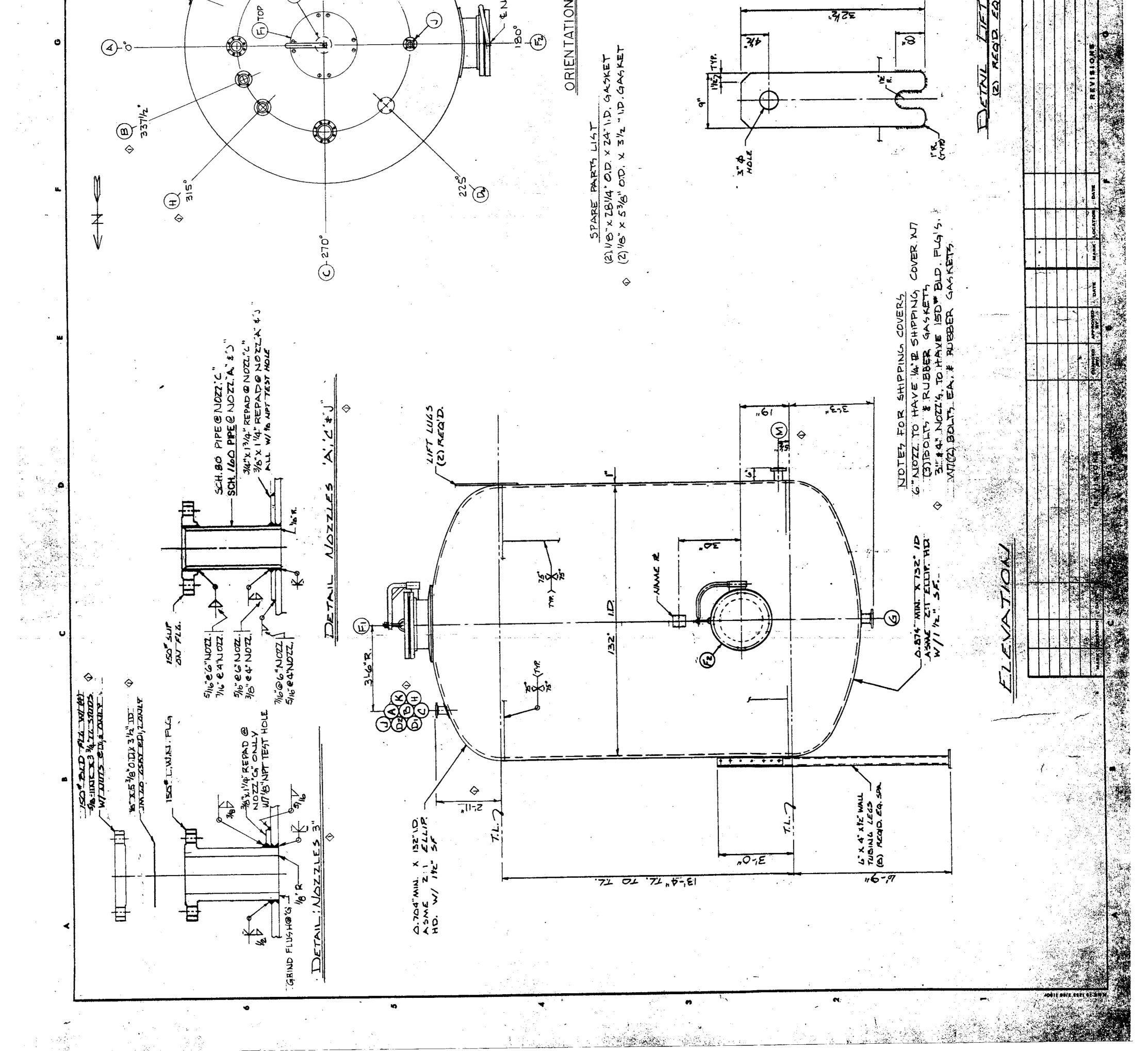
J

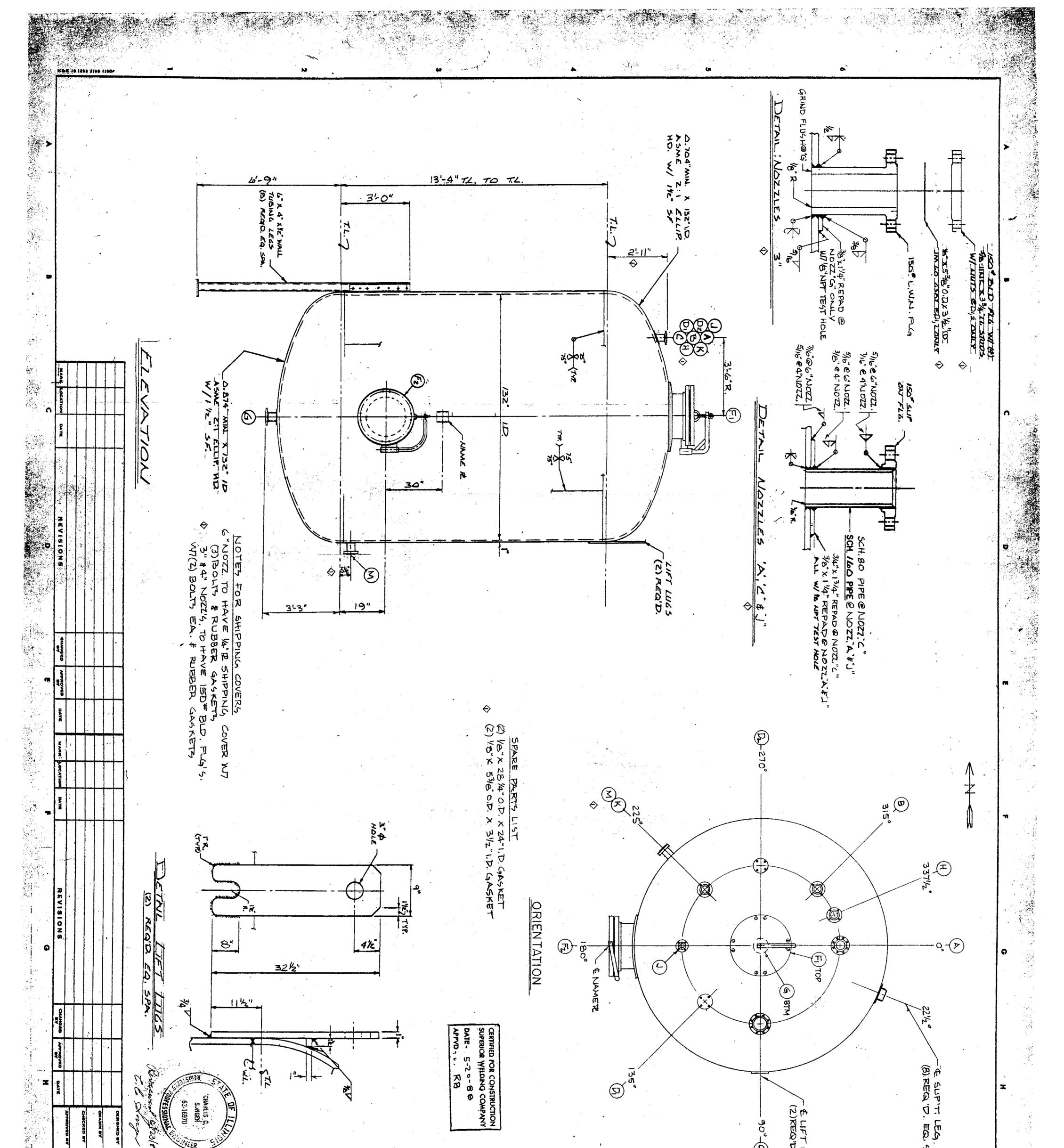
Κ

С

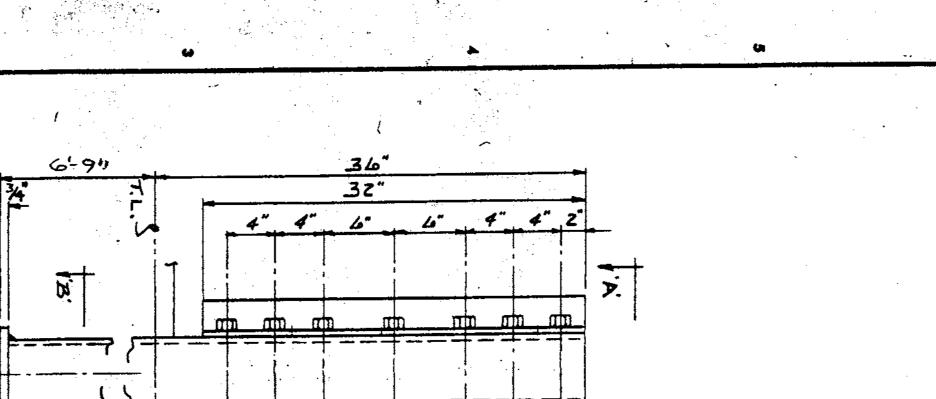
														CADD
			A B						designed J. MOQUIN	DATE Ø3-29-88	DOV	V CORNI	NG CORPOR	ATION
			C D						drawn DEBOLT DESIGN	date Ø5-15-88	MIDLANE) PLT		DG 806
			E F						checked S.KSAHA	date Ø5-15-88	TANK FARM EQUIPMENT – SOUTH ELEVATION			
VS CHANGED	APPROVED	DATE	G MARK LOCATION	ΔΑΤΕ	RFV	ISIONS		CHANGED APPROVED	APPROVED	date Ø5-15-88	SCALE	INCH FOOT	drawing number W1-7123Ø	
D		E		F		101010	G		 	·	J	1 / 1 1 0	K	

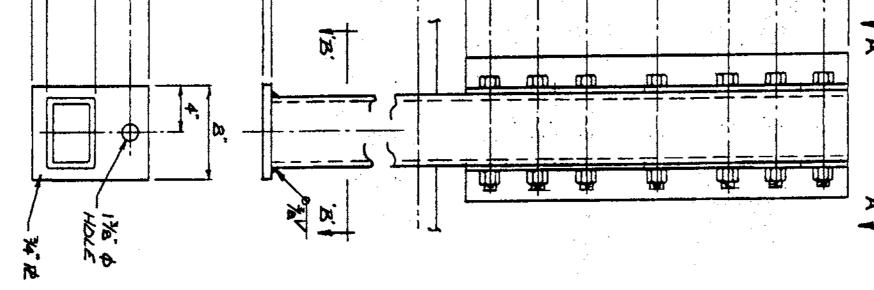
LAST GENERAL UPDATE: Ø4JAN2Ø1Ø

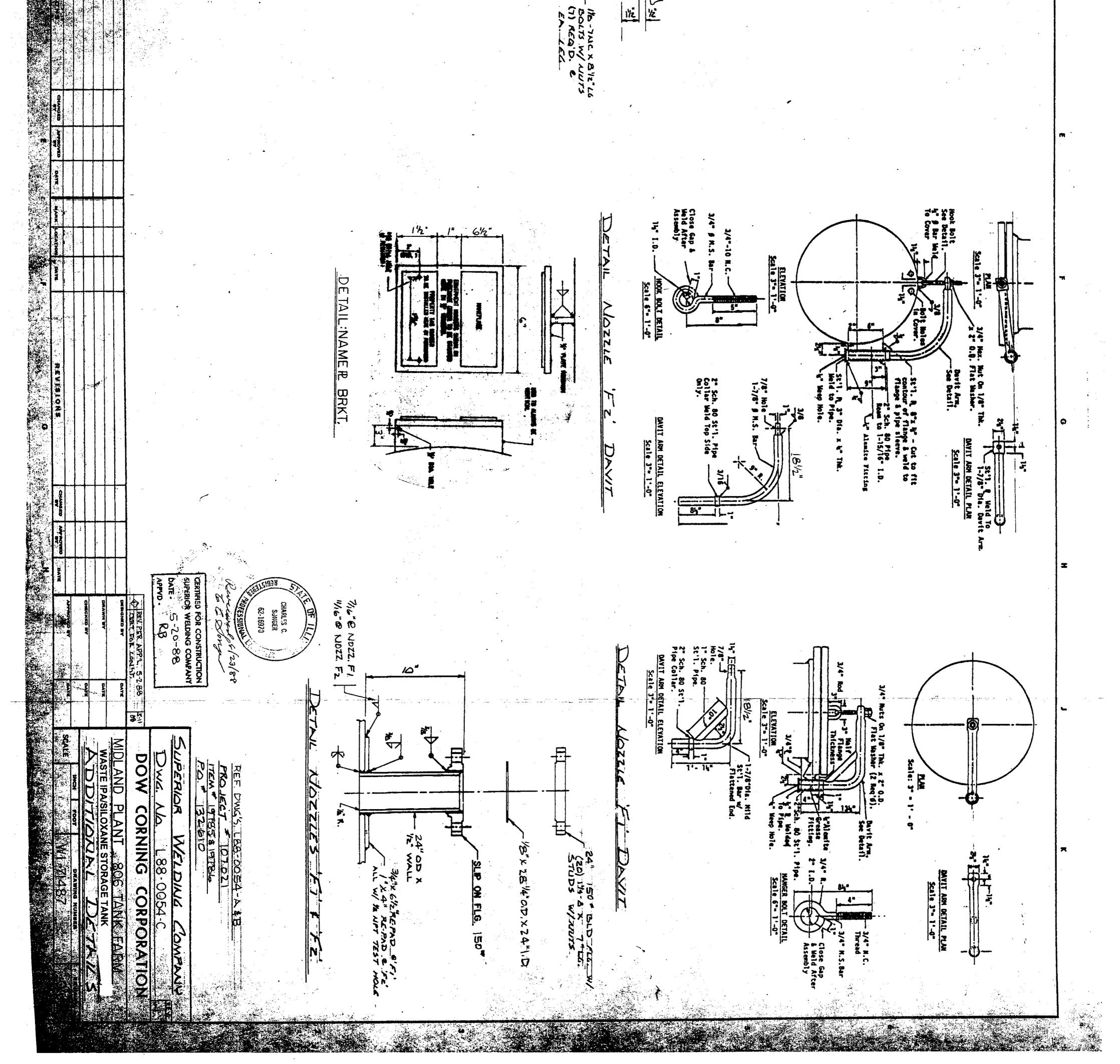

2

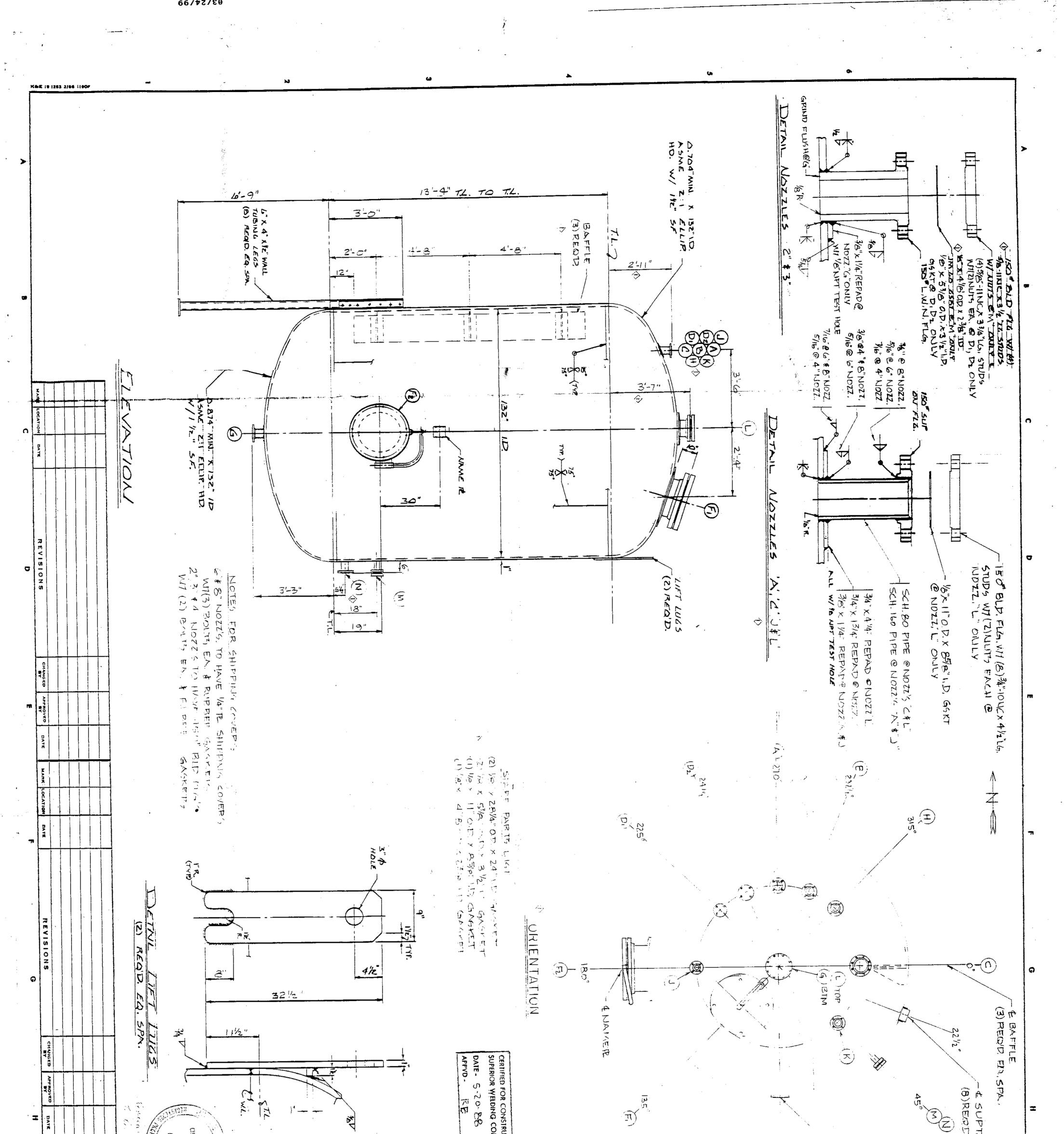

4

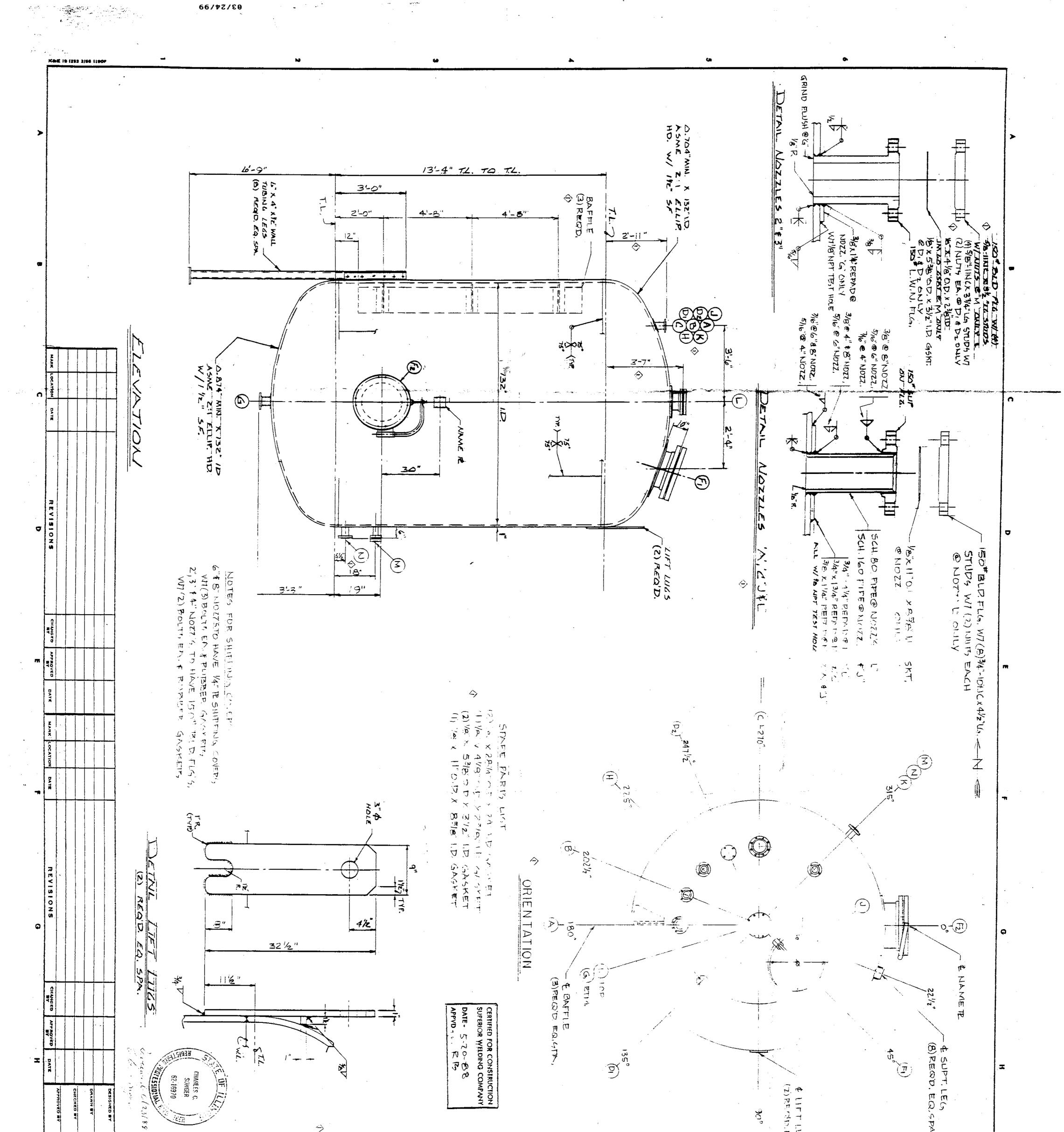
5

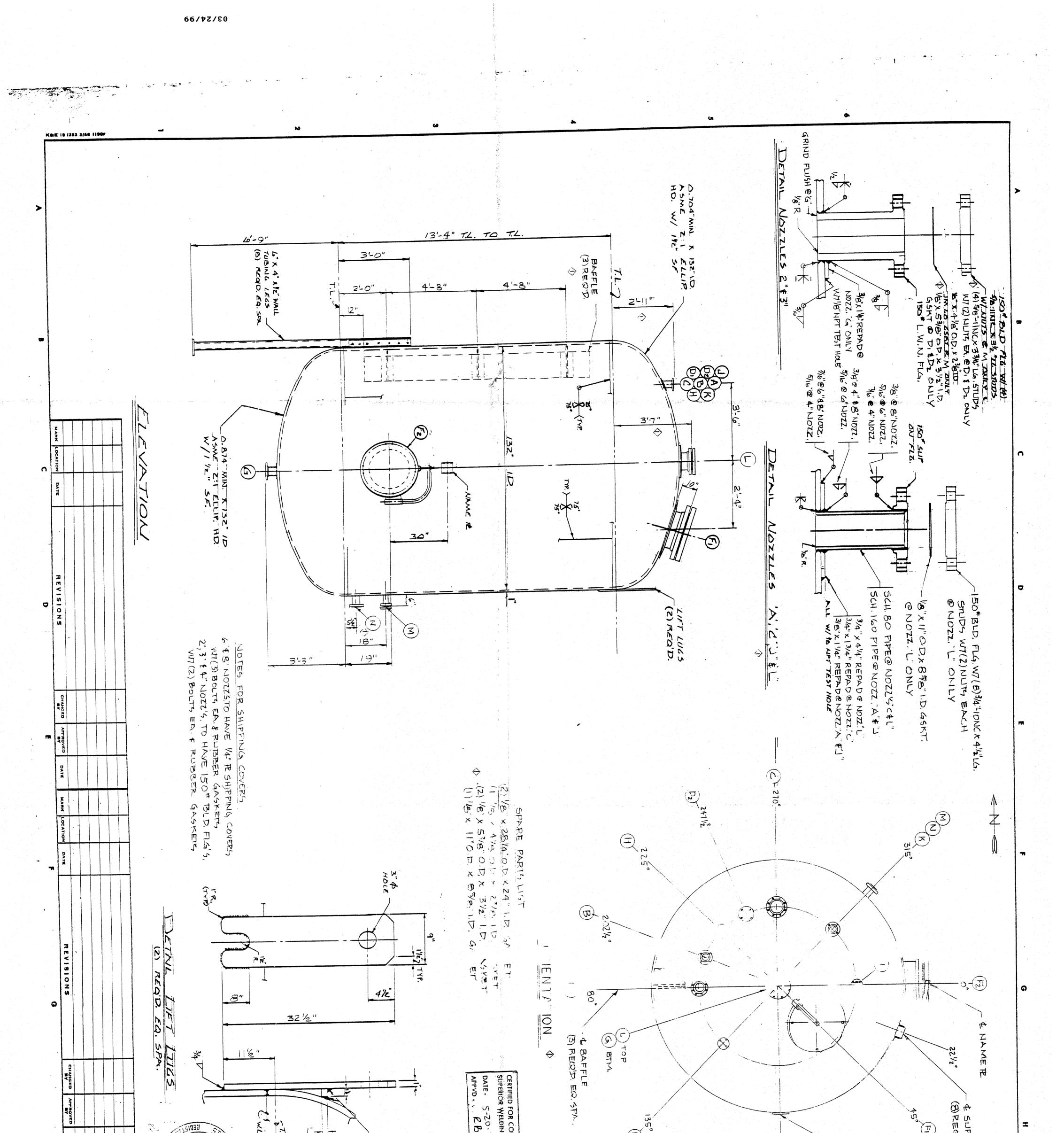

6

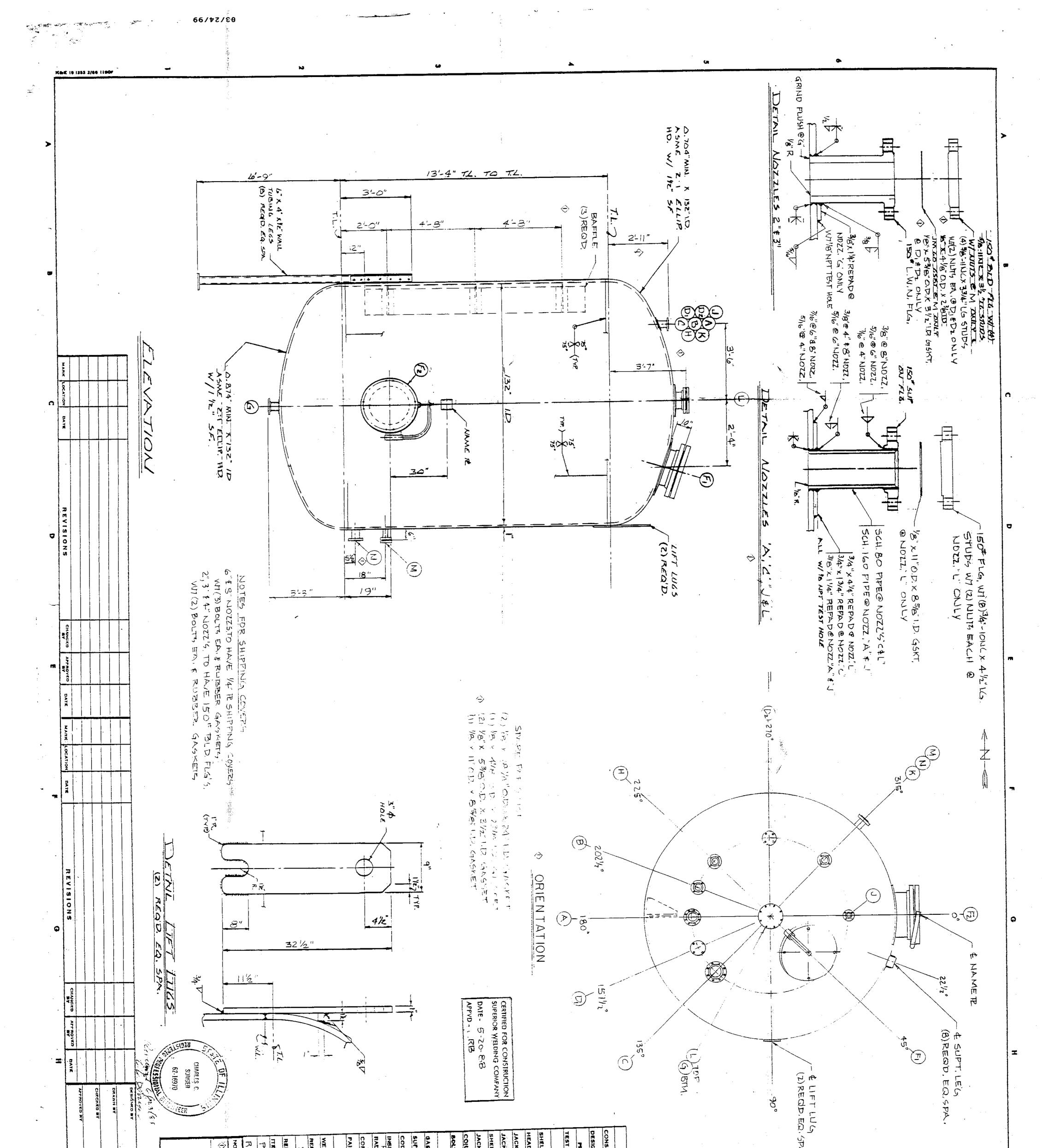

	MK MC FITTING SCHEDULE MK MC DESCRIPTION REMARKS A I 4"-/50" MDZZ. SO IMLET B I 3"/50" MDZZ. SO IMLET C I 6"/50" MDZZ. SO IMLET Di I 3"/50" MDZZ. LWIN. REMARKS C I 6"/50" MDZZ. LWIN. REMARKS Di I 3"/50" MDZZ. LWIN. SPARE - WJ BLIN.D Di I 3"/50" MDZZ. LWIN. SPARE - WJ BLIN.D Di I 3"/50" MDZZ LWIN. LEVEL SMITCH Di I 3"/50" MDZZ LWIN. LEVEL SMITCH Di I 3"/50" MDZZ LWIN. LEVEL SMITCH M I 3"/50" MDZZ LWIN. LEVEL SMITCH M I 3"/50" MDZZ LWIN. LEVEL SMITCH	WELD NOTES CS-TO CS MG-ID R-7D WIRE CS-TO CS MIG E 70/B STICK SAI-70 L-50 WIRE SLOP SAI-70 L-50 WIRE STICK SAI-70 L-50 WIRE SUMMER Mail <slip flu<="" on="" td=""> STD5 BOLT MOLES ANSI SLIP ON FLU STD5 BOLT MOLES ION: SECT WILL T 190 L MOTIONE MILL JON FLU MOTIONE MILL JON FLU MOTIONE MILL JON FLU</slip>	MATERIAL N-5/16-70 N-5/16-70 N-5/16-70 N-5/16-70 ILMMARE SA-105 MARE ILMMARE MARE ILMMARE SA-105 MARE ILMMARE SA-105 MARE ILM-105 MARE ILM-105	107 AGO'D. 14 VOLUME : 10000 GAL. 14 VOLUME : 10000 GAL. 15 VOLUME : 10000 GAL. 16 VOLUME : 10000 GAL. 10 2149 REV. 1, SK.NO. M.BOO 19675 & MBD 10 2180 S.MBD 10 2149 REV. 1, SK.NO. M.BOO 19675 & MBD 10 2180 S.MBD 10 2149 REV. 1, SK.NO. M.BOO 19675 & MBD 10 2180 S.MBD 10 218 S.MBD 10	Image: Solution in the soluti
3	221/2° (B) REQ 'D' EQ, SPA. 221/2° (B) REQ 'D' EQ, SPA. (2) REQ 'D' EQ, SPA.	Design C	APPVD		


	A A ANER ELLER	>			AS S S
		JACKET JACKET JACKET JACKET GOOLS: BOLTING BACKET SUPPOR SUPPOR SUPPOR	CONSTRU DESIGN PRES TEST-H HEADS:	ALC SALAN SA	
	TER NG	OLTING: SA-	NUCTION: COE CONDITIONS CONDITIONS		
ŝ µ I≤	- 3454 - 3454 - 1070 - 1070 - 1070 - 1070 - 1070 - 1070	NECKS		I I I I I I I I I I I I I I I I I I I	
MIDL A WAST		N S S S S S S S S S S S S S S S S S S S	NOZZLE F ANSI SLI TO STRAD VES VES VES NORIZ O		
		A-106-D A-106-D RE-PADS:- RE-PADS:- SHIPPWE SHIPPWE CUSTOM	SSEL	VE 150	-150"
PLANT SILOXANE S W F	SUPE SUPE			NOZZ NOZZ NOZZ NOZZ	
		-194-2H AUT -SA-SIG-70 L ASKTS.:RUDDE ASKTS.:RUDDE			TION X
			10 c		A SPA
TANK	DING C 9.1.111100 0054-B				
VK FARM		-105 -105 S: SA S: SA		WT BLIND INST. SWITCH SWITCH SWITCH	S S
	APANY NPANY	SIL.	150* OLT HOLES ESSEL 1'a	AX TO	

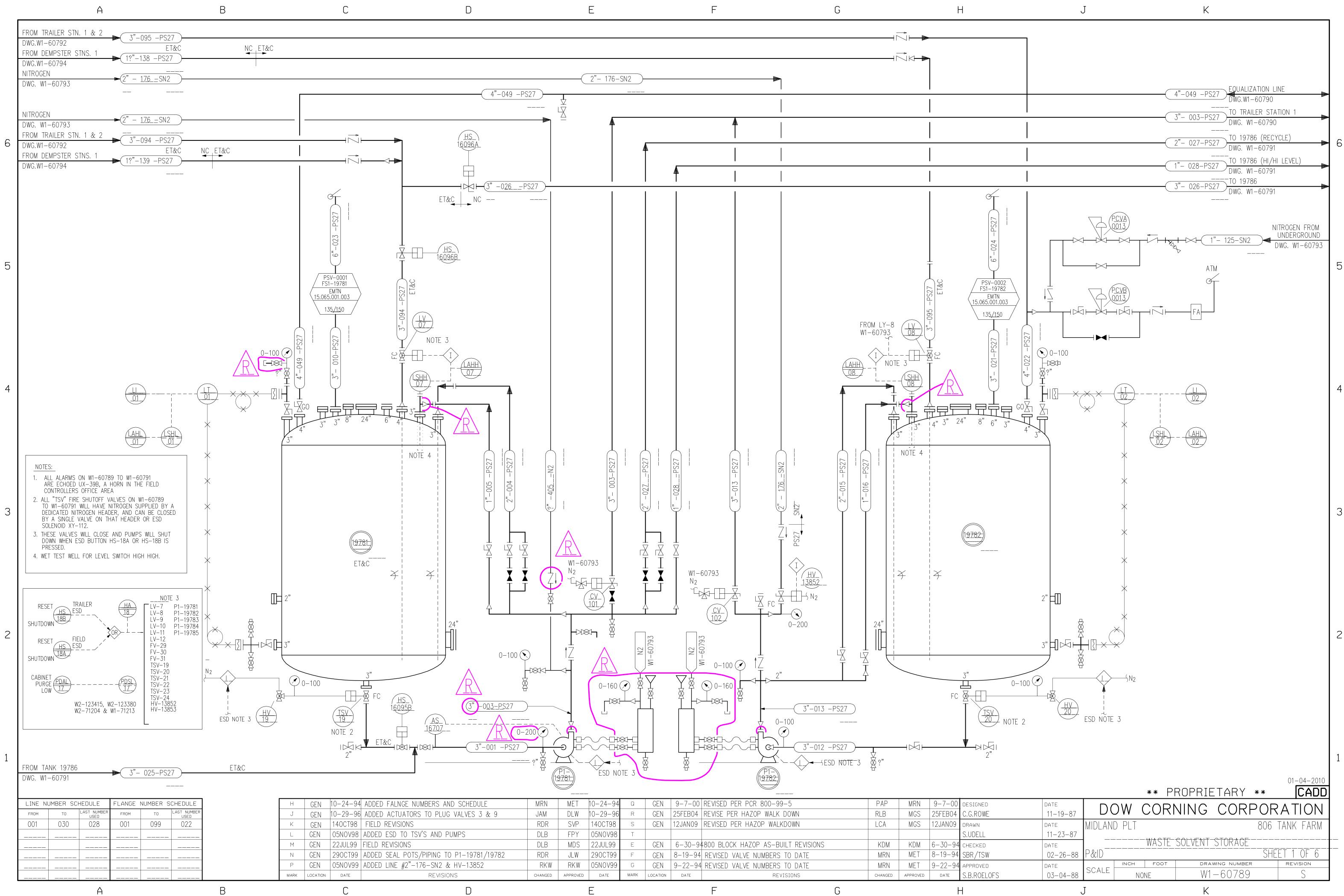


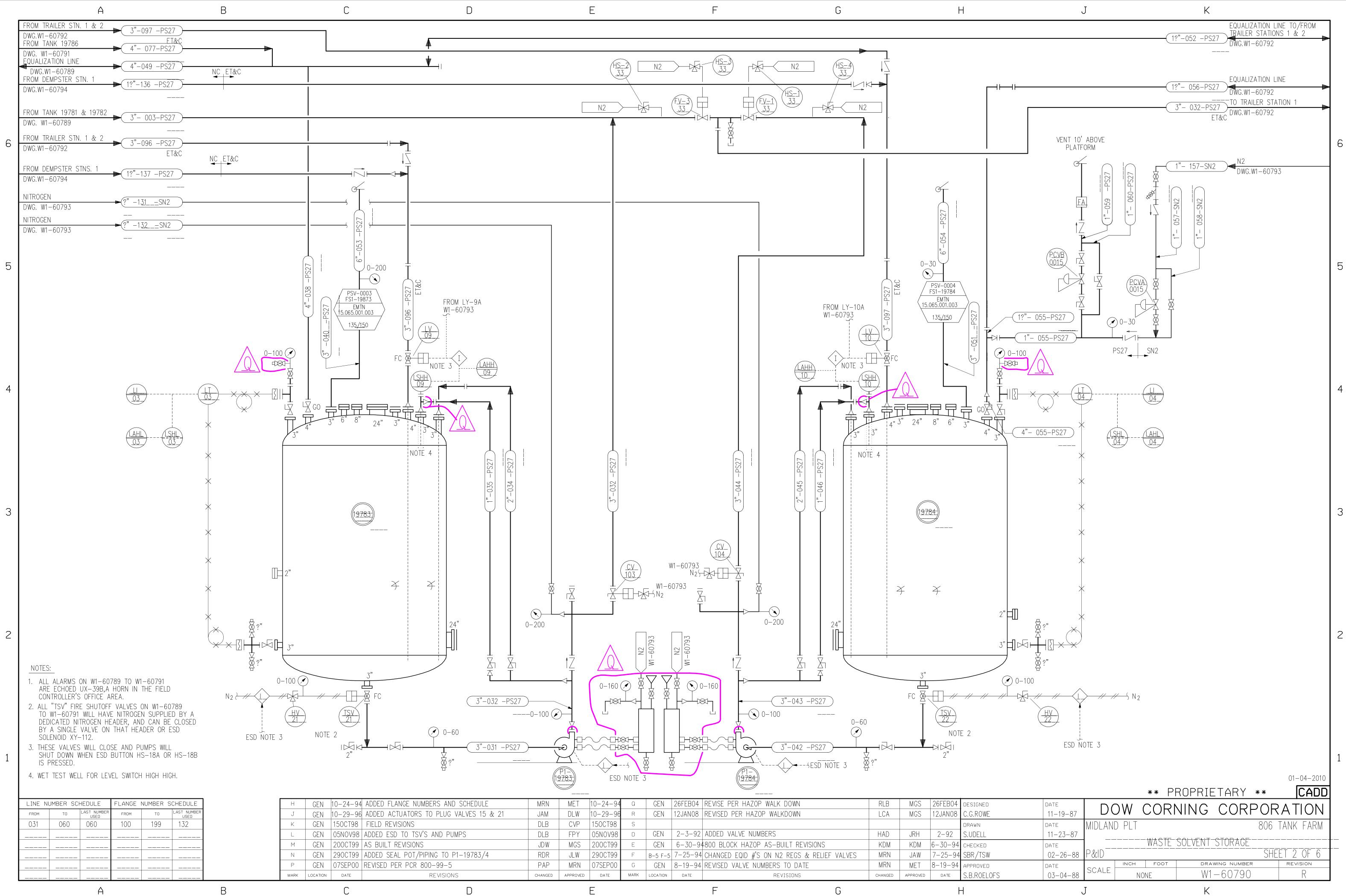

W


D



66/77/20




LA CHAIRLES C. SUNGER B2-16970 B2-16970 BRAWN BY DRAWN BY CHECKED BY	2 / 5 88		LIFT LUG	JPT, LEG, GOD. EQ, SPA,
REF DWG LBB- NO REV. FER APPL BATT CERT. FOR LONGIN DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE DATE	NCE ONDER: 19783	$\begin{array}{c} \Rightarrow & \Box \\ \Rightarrow & \Pi \\$		
ALE INCH TO	NUT OCC ONNI	STRADDLE 1'SO" NO STRADDLE 1'SO" NO STRADDLE 1'SO" NO SME SECT. VIII SME SECT. VIII SME 245 P MA		FITTIN BEBCRIPTIO 4"-150" MOZZ. 3"-150" MOZZ.
SUPERIOR WELDING COMPANY DECATUR, ILLINOIS DECATUR, ILLINOIS DECAT	2 H AU 2 H AU 2 H AU 2 - 70 L 2 - 10 DE 5 - 10 TA 0 - 10 TA		NOTES	SCHEDULE SO MULET SO MELIEF
NO. REOLD ING. REOLD. (1) DR WELDING COMPANY DECATUR, ILLINOIS O5-88-0055-03 R 0055-C B 0055-	IFT LUGS: SA-516-70 IFT LUGS: SA-516-70 MUTURE CASUALTY CO NOT REQ'D. NOT REQ'D. SHTS. MBOD-VDOI SHT. 1 & Z THRU 4	AGITATOR WIBLIND SPARE WI BLIND LEVEL SWITCH LEVEL SWITCH IONS 1984 EDIT. 12-31-84 AP JACKET, COLL OR TUBE	BAX ZZBZ	REMARKS

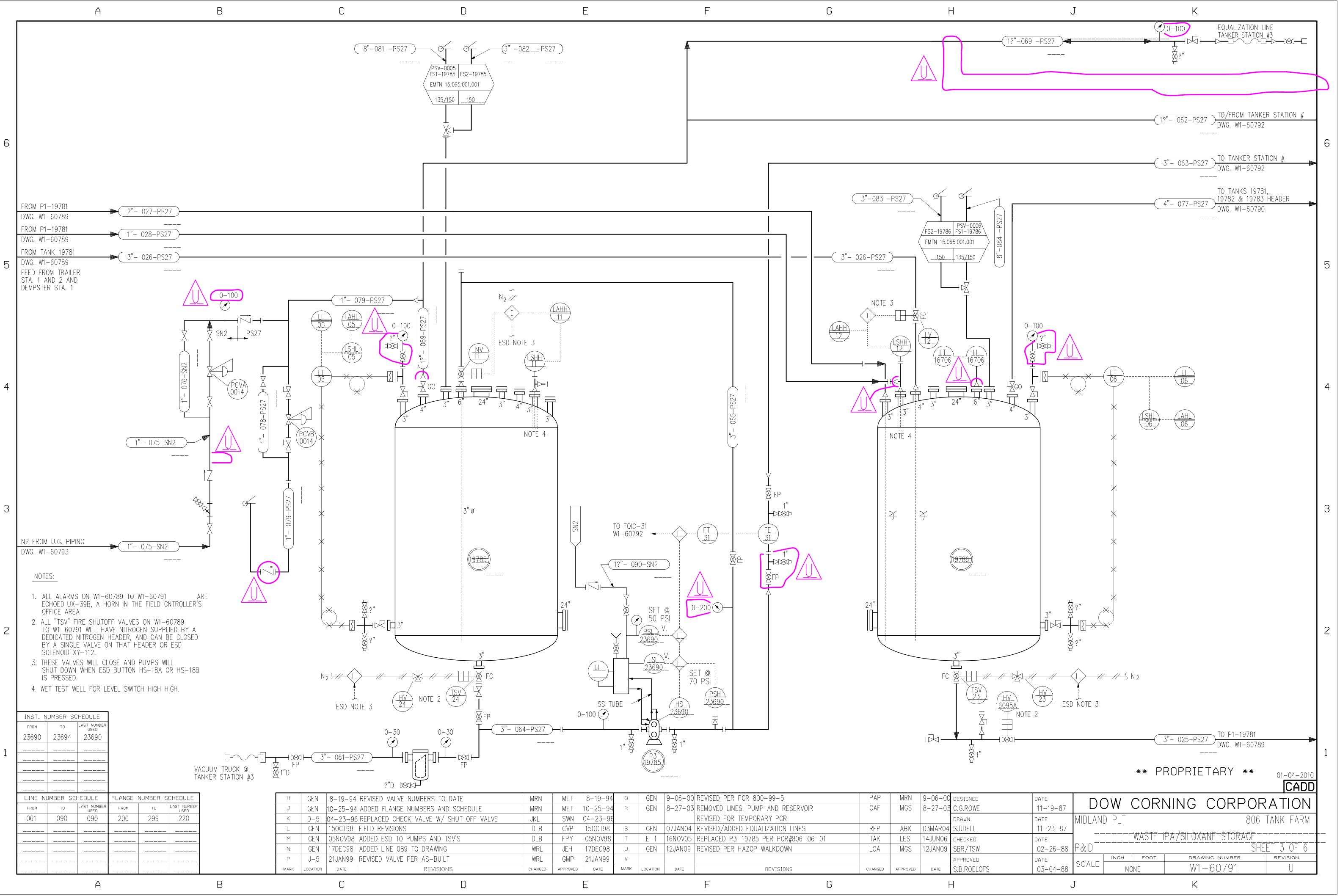
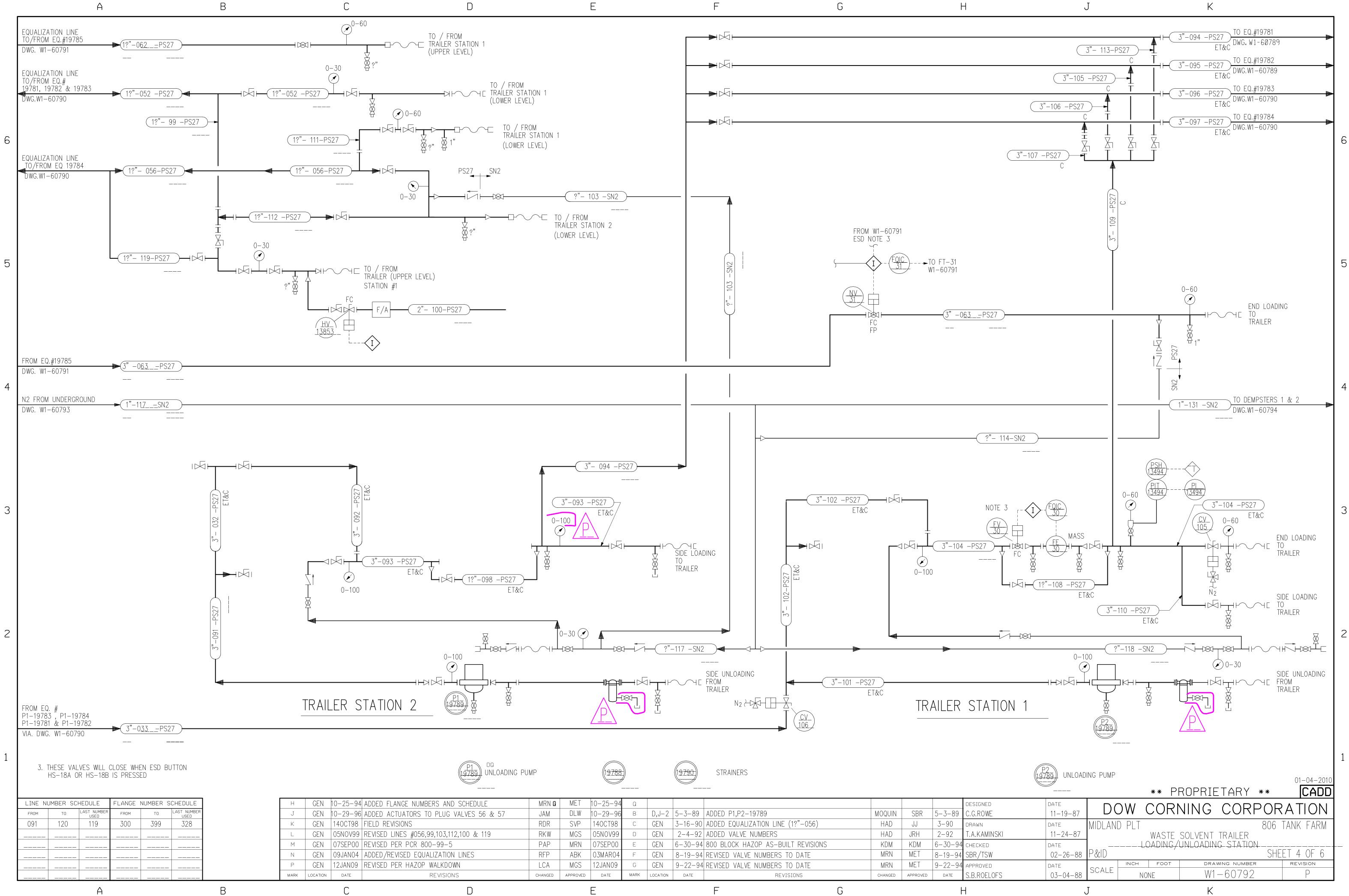
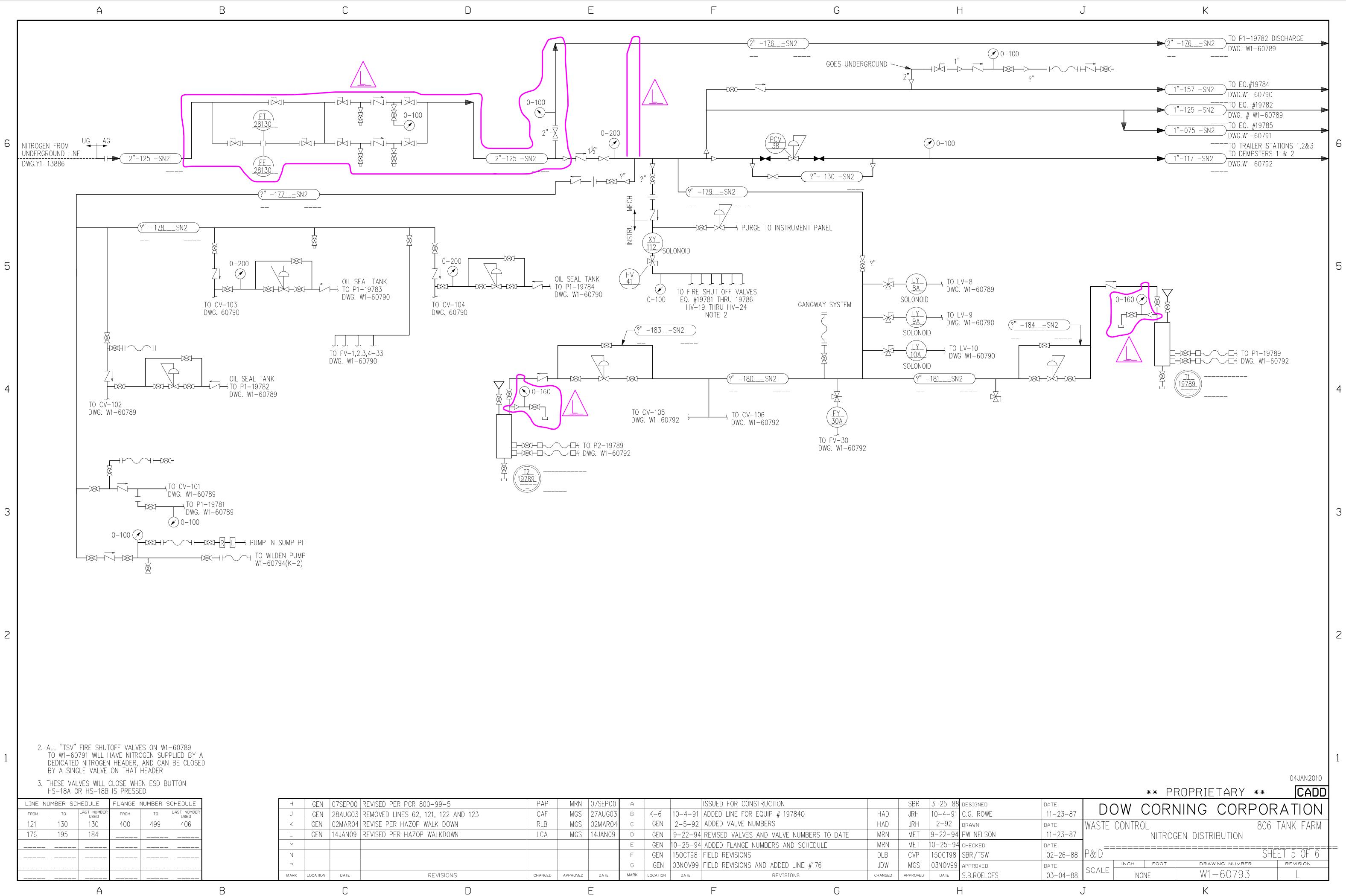
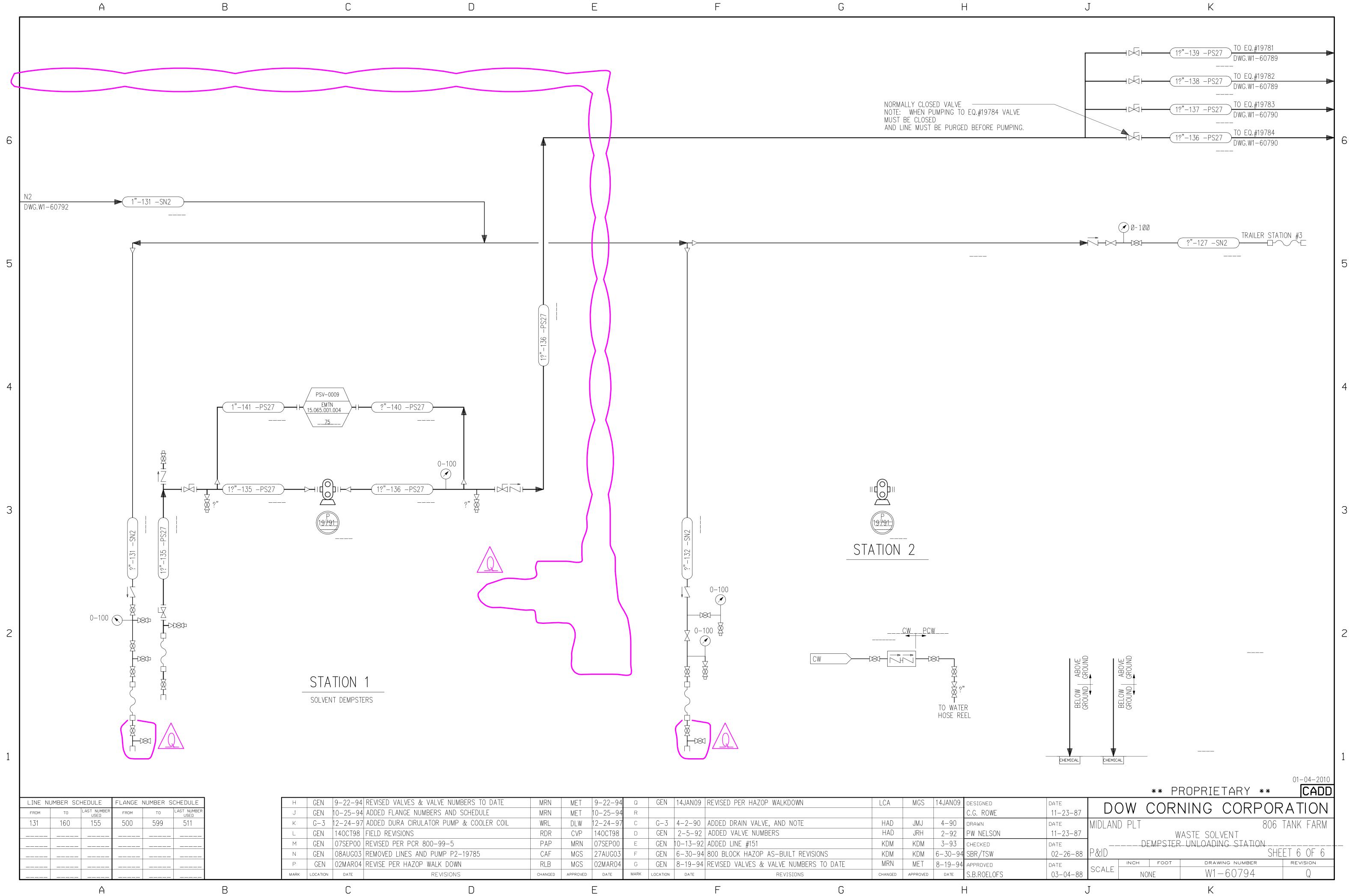


	Image: Scale JOB NO. 05-88-0055-04 Image: Scale DOW CORNING CORPORATION Image: Scale MIDLAND PLANT Image: Scale Image: Scale Image: Scale Image: Scale <t< th=""><th>WEIGHT: EMPTY = 36276 LB3 FULL OF H.O. = 137034 LB3 VOL = 121156AL REFERENCE DWG. & SPECE: DOW COMMING DATA SHTS.MB00-V0015HT 1E7 SPET. 2143 PE / 1 55.140. M B00-19781 THRU 4 NEFERENCE ORDER: 132.010 MEFERENCE ORDER: 132.010 NO REF DWG LB3 005 3 - E NO REVISIONS O REVISIONS O REVISIONS O REVISIONS O REVISIONS O REVISIONS DIFF. DWG LB3 005 3 - E SUPERIOR WELDING COMPANY O REVISIONS DIFF. PARCUSALIT SUPERIOR WELDING COMPANY DECATUR, ILLINOIS DECATUR, ILLINOIS</th><th>ACKET HEADS SHELL NOTTLES NECKS SA-104-D ACKET NOTTLES NECKS SA-104-D ACKET NOTTLES NECKS SA-194-D COLS COLS COLS SALTINE SA-193-BT W/ SA-194-ZH ALUTS SHIPFING: CS SALTINE SA-193-BT W/ SALTAS SALTS ALUSE SALTINE SA-193-BT W/ SALTAS ALUSEA SUFFORTS SA-36 SALTINE SA-193-BT W/ SALTAS ALUSEA SALTINE SA-193-BT W/ SALTAS ALUSEA SALTINE SA-193-BT W/ SALTAS ALUSEA SALTAS ALUSE SA-5/L-70 SALTAS ALUSE SA-36 SALTAS ALUSE SALTAS ALUSE SALTAS ALUSE ALUSE SALTAS ALUSE</th><th>WILLSTISCTNUCL LWIN, CEVEL NOZZLE FLANGE DIMENSIONS TO CONFORM ANSI SLIP ON FLA STDS. IO STRADDLE I' PARALLEL TO PRINCIP/ TO STRADDLE I' PARALLEL TO PRINCIP/ VESSEL SPECIFICATIONS VESSEL SPECIFICATIONS CONDITIONS: SA - 5/16-70 SHELL:</th><th>CS-TO CS MOTO R-TO WIXE MIG E TOID STICK SAI-TO L-SO WIRE BLO FLUX MI 2" ISO" NOZZ, S.O. AGITATOR WI BLIND MI 2" ISO" NOZZ, LWIN SPARE WI BLIND</th><th>MK Mo nob DESCRIPTION REMARKS A 1 4"-150" ALOZZ SO IALET A 1 4"-150" ALOZZ SO IALET C 1 4"-150" ALOZZ LIMIN RECIRC C 1 4"-150" ALOZZ LIMIN RECIRC C 1 3".150" ALOZZ LIMIN RECIRC C 1 3".150" ALOZZ LIMIN RECIRC DZ 1 3".150" ALOZZ NAMWAY H 1 3".150" ALOZZ NAMWAY DZ 1 3".150" ALOZZ LIMIN DZ 1 3".150" ALOZZ NMIN LEVEL SMITCH DLIND K 1 3".150" ALOZZ NIN LEVEL SPARE VH BLIND K 1 3".150" ALOZZ NJN LEVEL INITCH LEVEL NITCH MEID A.1 SPARE VH BLIND</th></t<>	WEIGHT: EMPTY = 36276 LB3 FULL OF H.O. = 137034 LB3 VOL = 121156AL REFERENCE DWG. & SPECE: DOW COMMING DATA SHTS.MB00-V0015HT 1E7 SPET. 2143 PE / 1 55.140. M B00-19781 THRU 4 NEFERENCE ORDER: 132.010 MEFERENCE ORDER: 132.010 NO REF DWG LB3 005 3 - E NO REVISIONS O REVISIONS O REVISIONS O REVISIONS O REVISIONS O REVISIONS DIFF. DWG LB3 005 3 - E SUPERIOR WELDING COMPANY O REVISIONS DIFF. PARCUSALIT SUPERIOR WELDING COMPANY DECATUR, ILLINOIS DECATUR, ILLINOIS	ACKET HEADS SHELL NOTTLES NECKS SA-104-D ACKET NOTTLES NECKS SA-104-D ACKET NOTTLES NECKS SA-194-D COLS COLS COLS SALTINE SA-193-BT W/ SA-194-ZH ALUTS SHIPFING: CS SALTINE SA-193-BT W/ SALTAS SALTS ALUSE SALTINE SA-193-BT W/ SALTAS ALUSEA SUFFORTS SA-36 SALTINE SA-193-BT W/ SALTAS ALUSEA SALTINE SA-193-BT W/ SALTAS ALUSEA SALTINE SA-193-BT W/ SALTAS ALUSEA SALTAS ALUSE SA-5/L-70 SALTAS ALUSE SA-36 SALTAS ALUSE SALTAS ALUSE SALTAS ALUSE ALUSE SALTAS ALUSE	WILLSTISCTNUCL LWIN, CEVEL NOZZLE FLANGE DIMENSIONS TO CONFORM ANSI SLIP ON FLA STDS. IO STRADDLE I' PARALLEL TO PRINCIP/ TO STRADDLE I' PARALLEL TO PRINCIP/ VESSEL SPECIFICATIONS VESSEL SPECIFICATIONS CONDITIONS: SA - 5/16-70 SHELL:	CS-TO CS MOTO R-TO WIXE MIG E TOID STICK SAI-TO L-SO WIRE BLO FLUX MI 2" ISO" NOZZ, S.O. AGITATOR WI BLIND MI 2" ISO" NOZZ, LWIN SPARE WI BLIND	MK Mo nob DESCRIPTION REMARKS A 1 4"-150" ALOZZ SO IALET A 1 4"-150" ALOZZ SO IALET C 1 4"-150" ALOZZ LIMIN RECIRC C 1 4"-150" ALOZZ LIMIN RECIRC C 1 3".150" ALOZZ LIMIN RECIRC C 1 3".150" ALOZZ LIMIN RECIRC DZ 1 3".150" ALOZZ NAMWAY H 1 3".150" ALOZZ NAMWAY DZ 1 3".150" ALOZZ LIMIN DZ 1 3".150" ALOZZ NMIN LEVEL SMITCH DLIND K 1 3".150" ALOZZ NIN LEVEL SPARE VH BLIND K 1 3".150" ALOZZ NJN LEVEL INITCH LEVEL NITCH MEID A.1 SPARE VH BLIND
--	--	---	---	---	---	---

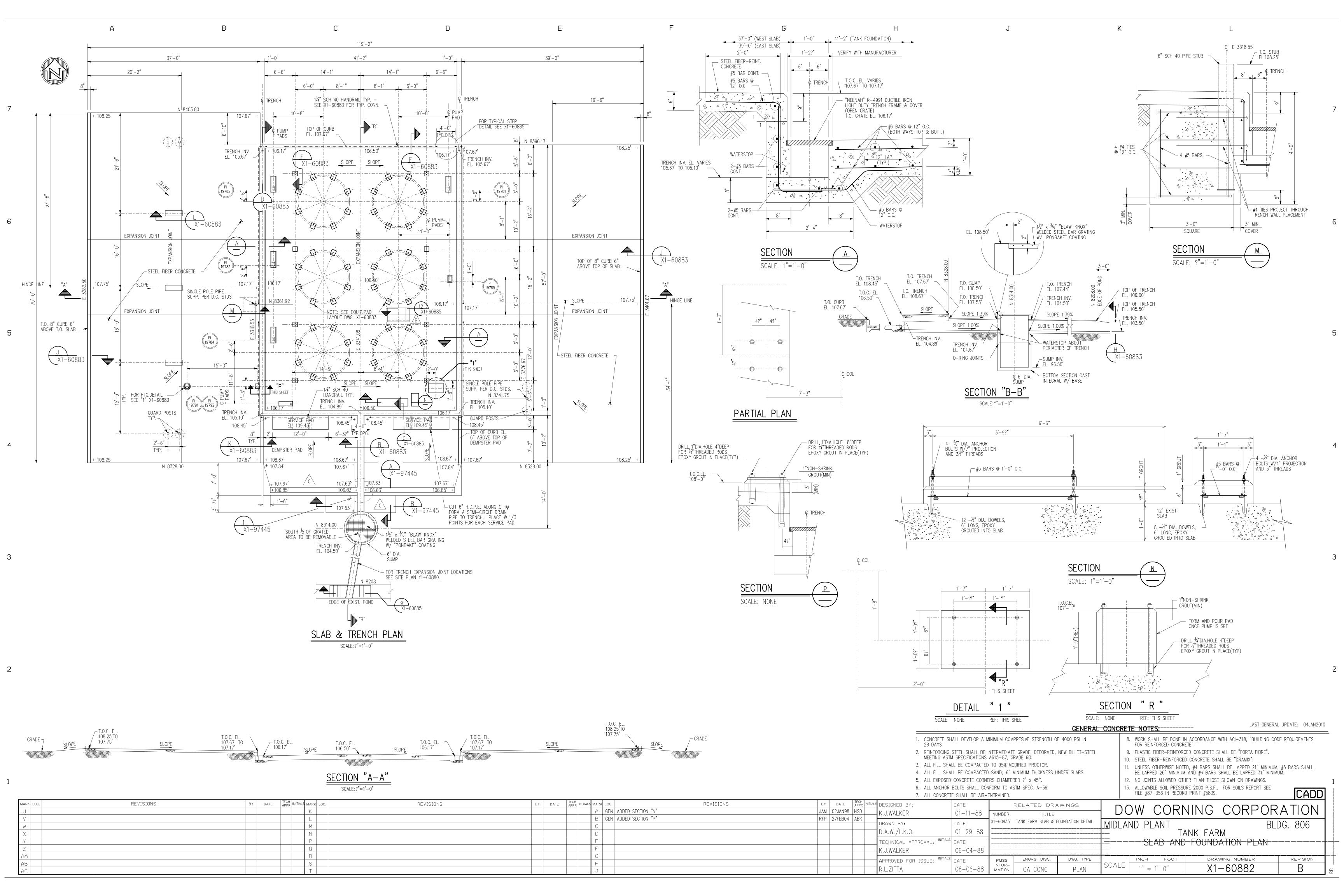


Η





Π			F				F G			L	4
	CHANGED	APPROVED	DATE	MARK	LOCATION	DATE	REVISIONS	CHANGED	APPROVED	DATE	S.B.ROEI
	LCA	MGS	12JAN09	G	GEN	9-22-94	REVISED VALVE NUMBERS TO DATE	MRN	MET	9-22-94	APPROVE
NES	RFP	ABK	03MAR04	F	GEN	8-19-94	REVISED VALVE NUMBERS TO DATE	MRN	MET	8-19-94	SBR/TS
	PAP	MRN	07SEP00	E	GEN	6-30-94	800 BLOCK HAZOP AS-BUILT REVISIONS	KDM	KDM	6-30-94	CHECKED
0 & 119	RKW	MGS	05N0V99	D	GEN	2-4-92	ADDED VALVE NUMBERS	HAD	JRH	2-92	T.A.KAM
	RDR	SVP	140CT98	С	GEN	3-16-90	ADDED EQUALIZATION LINE (1?"-056)	HAD	JJ	3-90	DRAWN
VES 56 & 57	JAM	DLW	10-29-96	В	D,J-2	5-3-89	ADDED P1,P2-19789	MOQUIN	SBR	5-3-89	C.G.ROW
HEDULE	MRN B	MET	10-25-94	Q							DESIGNE



	PAP	MRN	07SEP00	A			ISSUED FOR CONSTRUCTION		SBR	3-25-88	DESIGNED
123	CAF	MGS	27AUG03	В	K-6	10-4-91	ADDED LINE FOR EQUIP # 197840	HAD	JRH	10-4-91	C.G. RO
	RLB	MGS	02MAR04	С	GEN	2-5-92	ADDED VALVE NUMBERS	HAD	JRH	2-92	DRAWN
	LCA	MGS	14JAN09	D	GEN	9-22-94	REVISED VALVES AND VALVE NUMBERS TO DATE	MRN	MET	9-22-94	PW NELS
				Е	GEN	10-25-94	ADDED FLANGE NUMBERS AND SCHEDULE	MRN	MET	10-25-94	CHECKED
				F	GEN	150CT98	FIELD REVISIONS	DLB	CVP	150CT98	SBR/TS
				G	GEN	03NOV99	FIELD REVISIONS AND ADDED LINE #176	JDW	MGS	03N0V99	APPROVE
	CHANGED	APPROVED	DATE	MARK	LOCATION	DATE	REVISIONS	CHANGED	APPROVED	DATE	S.B.ROEL

Α

rs to date	MRN	MET	9-22-94	Q	GEN	14JAN09	REVISED PER HAZOP WALKDOWN	LCA	MGS	14JAN09	DESIGNE
HEDULE	MRN	MET	10-25-94	R							C.G. ROV
COOLER COIL	WRL	DLW	12-24-97	С	G-3	4-2-90	ADDED DRAIN VALVE, AND NOTE	HAD	JMJ	4-90	DRAWN
	RDR	CVP	140CT98	D	GEN	2-5-92	ADDED VALVE NUMBERS	HAD	JRH	2-92	PW NELS
	PAP	MRN	07SEP00	E	GEN	10-13-92	ADDED LINE #151	KDM	KDM	3-93	CHECKED
785	CAF	MGS	27AUG03	F	GEN	6-30-94	800 BLOCK HAZOP AS-BUILT REVISIONS	KDM	KDM	6-30-94	SBR/TSV
	RLB	MGS	02MAR04	G	GEN	8-19-94	REVISED VALVES & VALVE NUMBERS TO DATE	MRN	MET	8-19-94	APPROVE
	CHANGED	APPROVED	DATE	MARK	LOCATION	DATE	REVISIONS	CHANGED	APPROVED	DATE	S.B.ROEL
			F				F G				
			L				1 0			1	I

04Mar93

Run-on and Run-off Capture Systems Capacity Evaluation

Calculations

A. <u>Run-on Evaluation</u>

Requirements per R 299.9604 - Facility Design and Operation Standards, Rule 604 requires a run-on control system capable of preventing flow onto the active portions of the facility during peak discharge from at least a 24 hour - 25 year storm.

Current landfill operation is elevated substantially above surrounding areas thus preventing any run-on from adjacent areas outside landfill perimeter clay wall. Therefore there is no run-on case to deal with.

B. Run-off Evaluation

Requirements per R 299.9604 - Facility Design and Operating Standards, Rule 604 requires a run-off management system to collect and control at least the water volume resulting form active portions of the facility from a 24-hour, 100 year storm.

Calculations:

Currently no section of landfill received final cover system. Therefore, total landfill area, 24.34 acres, is drained to chemical sewer and all run-off storm water is treated in chemical sewer treatment plant.

Dwg. Y1-93774 Rev. A, 1992 topography, shows all active catch basins within landfill area.

24 hours, 100 year storm rainfall for Midland Area:

4.56 in.

Average one hour rain intensity within this storm.

 $I = \frac{4.56^{n}}{24} = 0.19^{n}/hr$

Determination of run-off volume:

 $\mathbf{Q} = \mathbf{A} \mathbf{x} \mathbf{R} \mathbf{x} \mathbf{I}$

Where:

Q = Run-off Volume

A = Run-off Area

R = Rainfall Intensity

I = Run-off Coefficient

Description of rainfall run-off system:

All run-off from the entire landfill area is collected by total of 24 catch basins tied to chemical sewer as follows:

- Landfill Perimeter Interim Closure Banks
 5 Catch Basins
 Grassy area, 25% slope banks, ditches.
 I = 0.4
 A = 5.83 acres
- 2. <u>1000 Block Active Landfill Area</u> Diked from Interim Closure Banks
 5 Catch Basins
 Clay and permeable soil cover, flat area.
 I = 0.3
 A = 4.71 acres
- 3. <u>800 Block Area</u> Partially Active Landfill Area in East Section, Interim Closure Surface Area is West Section of this block.

14 Catch Basins Surface varies from daily cover soil to asphalt and concrete pavement. I = 0.55A = 13.81 acres

Calculation for Area 1: $Q_1 = A \times R \times I = (5.83 \times 43560)$ sq. ft. x 0.4 x 0.19 ft/hr = 12

= 1608 cu. ft./hr.

= 12.030 gal./hr. = 201 GPM

Minimum catch basin laterals: 8" line, 1 % slope.

Capacity of each of 5 Catch Basins:

560 GPM

Capacity of Catch Basins (5 @ 560 GPM) greatly exceeds rain run-off volume.

Calculation for Area 2: $Q_2 = A \times R \times I = (4.71 \times 43560) \text{ sq. ft. } \times 0.3 \times 0.19 \text{ ft/hr} = 12$

> = 975 cu.ft./hr = 7290 gal/hr = 121 GPM

Minimum catch basin laterals: 8" line, 1% slope Capacity of each of 5 catch basins:

560 GPM

Capacity of Catch Basins (5 @ 560 GPM) greatly exceeds rain run-off volume.

Calculation for Area 3: $Q_3 = A \times R \times I = (13.81 \times 43560) \text{ sq/ ft. } \times 0.55 \times 0.19 \text{ ft/hr} = 12$

> = 5239 cu.ft./hr= 39185 gal/hr = <u>653 GPM</u>

Minimum catch basin laterals: 8" line, 1% slope Capacity of each of 14 catch basins:

560 GPM

Capacity of Catch Basins (14 @ 560 GPM) greatly exceeds rain run-off volume.

All area run-off is combined to landfill perimeter V.T. chem sewer lines. Check lines capacity for total run-off:

12" V.T., Min. slope = 0.287% along roadway C Capacity: 870 GPM (West Main)

8" V.T. Min. slope = 0.356% along roadway 2 Capacity 335 GPM (North Branch)

12" V.T., Min. slope = 0.217% along roadway 3 Capacity 760 GPM (South Branch)

Total Landfill Outfall Capacity for Chemical Sewer is as follows:

12" HDPE line from M.H. # 28-4, West, S = 0.5%Capacity 1150 GPM

12" HDPE line from M.H. # 8-14, West, S = 0.15%Capacity 640 GPM 12" HDPE line from M.H. # 8-14, South, S = 0.323%Capacity 950 GPM

Total Sewer Capacity: 1150 + 640 + 950 = 2740 GPM

Total landfill run-off from 24 hr, 100 yr storm, per hour: $Q = Q_1 + Q_2 + Q_3 = 201 + 121 + 653 = 975 \text{ GPM}$

CHEMICAL SEWER CAPACITY: 2740 GPM > 975 GPM

Therefore, landfill drainage system is fully capable to handle requirements of continuous run-off water flow from 24 hr - 100 yr storm.

c:\wpfiles\crr\PCAPPA4D

Page 1 Of 5

		Project No. <u>60134827</u>	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/23/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/23/11</u>
Renewal Application		Approved By DFP	Date <u>5/23/11</u>

FINAL COVER INFILTRATION EVALUATION

Objective

Calculate the quantity of surface water infiltrating into the drainage layer component of the final cover using the USEPA Hydrologic Evaluation of Landfill Performance Version 3.07 ("HELP") computer modeling program. This analysis was performed to provide base data for the evaluation of the final cover drainage layer.

Design Criteria and Assumptions

HELP Model Version 3.07 Input:

- 1. Temperature, precipitation, and solar radiation data can be default data, user input or synthetically generated by the HELP Model. Synthetically generated temperature, and solar radiation data for East Lansing, Michigan and synthetically generated precipitation data for Detroit, Michigan were used to simulate site weather conditions.
- 2. Geomembrane liner pinhole density and size were assumed to account for possible manufacturing defects during geomembrane production. The HELP Model User's Guide for Version 3.07 states that the pinhole density for a typical geomembrane is 0.5 to 1 pinhole per acre. The pinhole density at the upper end of the recommended range, or one hole per acre was assumed. The diameter of the hole was assumed to be 1 mm, therefore the area of the hole was 0.008 cm².
- 3. The placement quality for the geomembrane liner was assumed to be "good." According to the HELP Model User's Guide for Version 3.07, a "good" placement quality "assumes good field installation with well-prepared, smooth soil surface and geomembrane wrinkle control to insure good contact between geomembrane and adjacent soil that limits drainage rate."
- 4. The installation defects for the geomembrane liner were assumed to be four holes per acre. The area of the hole is 1 cm².
- 5. Various final cover slopes and drainage lengths will be present on the final cover. To provide conservative results and simplify the analysis, the maximum and minimum slopes are considered. To be conservative the maximum slope length for each slope is used in the analysis. The final cover slopes and flow paths used in the HELP model are as follows:
 - a. 4% Minimum Slope top area: 305 ft.
 - b. 25% Maximum Slope sideslopes: 196 ft.
- 6. Two cover scenarios were analyzed for the 4% top slope and two for the 25% sideslopes. The cover scenarios are described in Tables 1 through 4.
- 7. The initial moisture content of the soil layers were calculated by the HELP Model to be nearly steady state (i.e., the HELP Model automatically generates the initial moisture content for each layer based on weather inputs and layer data).

Page 2 Of 5

		Project No. 60134827	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/23/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/23/11</u>
Renewal Application		Approved By DFP	Date <u>5/23/11</u>

- 8. An assumed 1-acre unit design area was used for modeling purposes to compute unit quantities.
- 9. As presented in Table 5 of this appendix, soil layers were modeled using HELP Model default soil characteristics (porosity, field capacity, wilting point and saturated hydraulic conductivity).
- 10. When present, the compacted clay component of the final cover was assumed to have a maximum hydraulic conductivity of 1×10^{-7} cm/sec.
- 11. Final Cover Condition Inputs:
 - a. Fair grass conditions
 - b. Evaporative zone depth = 20 inches (recommended by the HELP Model for fair grass conditions for East Lansing, Michigan)
 - c. Maximum leaf area index = 2.0 (recommended by the HELP Model for fair grass conditions)
 - d. Fraction of area allowing run-off = 100 percent
 - e. Run-off curve number = calculated by HELP model based on soil types and slope information input.
 - f. Length of model run = 30 years (chosen to allow for more representative average values).
- 12. The HELP model does not allow the modeling of two "barrier" layers adjacent to one another. To overcome this software limitation, the GCL is modeled as a vertical percolation layer.
- 13. The use of geotextiles does not affect infiltration in the HELP model and therefore geotextiles are not included in the analysis.
- 14. To be conservative for this analysis, a geocomposite with a 250 mil geonet is assumed. Per the geocomposite capacity analysis, a geocomposite with a 300 mil geonet is recommended. An effective hydraulic conductivity of 0.0293 m/s will be used for the assumed geocomposite drainage layer as calculated in the Geocomposite Capacity Analysis provided in Attachment 1.
- 15. The 4 percent top slope area drainage layer discharges to the diversion berms.

		Page <u>3</u> Of _	5
		Project No. 60134827	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/23/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/23/11</u>
Renewal Application		Approved By DFP	Date <u>5/23/11</u>

HELP MODEL GENERAL LAYOUT

Table 1: 4% Top Slope, Cover A - HELP Model Layout

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\downarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\rightarrow	18 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	0.25 inches	2.93 cm/sec	geonet/#46
(4)geomembrane liner	\rightarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5) GCL	\rightarrow	0.25 inches	3.0 x 10 ⁻⁹ cm/sec	GCL/#17
(6)barrier soil liner	\rightarrow	12 inches	1.0 x 10 ⁻⁷ cm/sec	barrier layer/#16

Table 2: 4% Top Slope, Cover B - HELP Model Layout

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\downarrow	6 inches	1.2x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\downarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	12 inches	5.8 x 10 ⁻³ cm/sec	sand/#2
(4)geomembrane liner	\rightarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5)barrier soil liner	\downarrow	36 inches	1.0 x 10 ⁻⁵ cm/sec	barrier layer/#16

Table 3: 25% Side Slope, Cover A - HELP Model Layout

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\downarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\downarrow	18 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	0.25 inches	2.93 cm/sec	geonet/#46
(4)geomembrane liner	\downarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5)barrier soil liner	\rightarrow	36 inches	1.0 x 10 ⁻⁷ cm/sec	barrier layer/#16

Table 4:	25% Top	Slope, 0	Cover B	- HELP	Model Layout
----------	---------	----------	---------	--------	--------------

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\rightarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\rightarrow	18 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	0.25 inches	2.93 cm/sec	geonet/#46
(4)geomembrane liner	\rightarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5) GCL	\rightarrow	0.25 inches	3.0 x 10 ⁻⁹ cm/sec	GCL/#17
(6)barrier soil liner	\rightarrow	12 inches	1.0 x 10 ⁻⁷ cm/sec	barrier layer/#16

Of

Page 4

5

			Project No. 60134827	
Client	DOW Corning Corp.	Subject _ Final Cover	Prepared By TCR	Date <u>5/23/11</u>
Project	Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/23/11</u>
<u>Renewal</u>	Application		Approved By DFP	Date <u>5/23/11</u>

Table 5: Soil Texture Properties

Soil	Soil Classification		
Texture No.	USDA	USCS	Comments, Properties, and Uses
2	S		HELP Model default parameter to model drainage sand. The effective saturated hydraulic conductivity = 5.8×10^{-3} cm/sec.
10	SCL	SC	Assumed HELP model default soil to model the topsoil and vegetative support soil.
16	C Clay	CH Clay	HELP Model default parameter for a barrier soil. This soil was modeled for the compacted clay layer. This soil type was used based on an effective saturated hydraulic conductivity = 1×10^{-7} cm/sec.
17			HELP Model default parameter for a bentonite mat, used to model the GCL. The effective saturated hydraulic conductivity = $3x10^{-9}$ cm/sec
36			HELP Model default parameters for the LLDPE geomembrane, used to model the 60-mil VLDPE geomembrane in the final cover. Effective saturated hydraulic conductivity of the geomembrane is $4x10^{-13}$ cm/sec.
46			Based on the HELP Model default parameter for a drainage net, used to model the geocomposite drainage layer. The effective saturated hydraulic conductivity of the default parameter has been modified to 2.93 cm/sec.

NOTE: All soil properties are defaults of HELP Model, Version 3.07.

Calculations

HELP Model output files are provided in Attachments 2 and 3 for the 4% Top Slope and Attachments 4 and 5 for the 25% Side Slope. Summaries of HELP Model results for peak daily values are provided in Table 6. Peak daily values are presented in the HELP Model output file in both inches per day and cubic feet per day. These results are equivalent but presented in different units.

The drainage collected from the drainage layer is also the geocomposite surface water impingement rate. The HELP model presents the drainage collected in inches per day, a sample conversion to meters per second is provided below.

Sample Conversion: 1 inch/day x 1 day/86,400 sec x 1 inch/0.0254 meters = 4.56×10^{-4} m/s

		Project No. <u>60134827</u>	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/23/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/23/11</u>
Renewal Application		Approved By DFP	Date <u>5/23/11</u>

Page

5

Of

5

Table 6: Peak Daily Values

	4 Top Slope		25% Side Slope	
	Cover A	Cover B	Cover A	Cover B
Drainage collected from drainage layer - Impingement Rate (inches/day)	0.54474	0.04996	0.71355	0.71355
Drainage collected from drainage layer - Impingement Rate (meters/second)	0.000248	2.28E-05	0.000325	0.000325
Head in drainage layer (inches)	18.108	20.098	0.036	0.036

Conclusions

As shown in Table 6, the surface water infiltration rate (impingement rate) to the drainage layer and the liquid head in the drainage layer varies based on the cover option and slope. These values were used for the stability analysis and design of the final cover drainage system.

References

Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., and Peyton, R.L., 1994. "The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3," EPA/600/9-94/xxx, U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, Ohio

L:\work\60134827\ENG\WASTE\HELP Model-Cover\Final 5-23-11\Cover Infl Eval Rev4.docx

Attachment 1

Geocomposite Capacity Analysis

Of

2

Page 1

		Project No. <u>60134827</u>	
Client DOW Corning Corp.	Subject Geocomposite	Prepared By TCR	Date <u>5/20/11</u>
Project Midland Plant Landfill	Capacity Analysis	Reviewed By NKW	Date <u>5/20/11</u>
Renewal Application		Approved By DFP	Date <u>5/20/11</u>

GEOCOMPOSITE CAPACITY ANALYSIS

Objective

Estimate the long-term hydraulic conductivity of the geocomposite drainage layer component of the final cover for use in the HELP model analysis.

Design Criteria and Assumptions

- 1. To be conservative for the HELP model analysis, assume a geocomposite drainage layer that consists of a double-sided geocomposite with a 250 mil geonet component. For the purposes of this calculation assume a GSE FabriNet HF product is utilized. The actual recommended geocomposite is GSE FabriNet TRx which provides a higher transmissivity and is manufactured with creep and intrusion resistant construction. It is manufactured by heat-bonding two layers of non-woven geotextile to a central geonet core.
- 2. Manufacturer's data for the FabriNet HF and Fabrinet TRx product is included in Attachment 1. At the time of construction, the transmissivity of the actual geocomposite to be used should be reviewed to ensure the geocomposite to be used performs equivalent to the Fabrinet TRx specifications.

Calculations

Based on Koerner (Reference 1), a series of long-term partial safety factors were introduced as shown below:

1.	Geonet Intrusion	F.S. in	=	 1.5 (chosen due to possible variability in loads and particle size distribution of cover soils)
2.	Geonet Creep	F.S. _{cr}	=	1.2 (chosen based on strength of geotextile heat fusion to geonet)
3.	Chemical Clogging	F.S. cc	=	1.0 (chosen based on low chemical content of rain water)
4.	Biological Clogging	F.S. _{bc}	=	 1.5 (chosen due to the possibility of root intrusion, mold, fungus or other organisms)

The list of partial safety factors are provided in Attachment 2. The long-term drainage layer transmissivity is calculated as:

$$T_{It} = T / (FS_{gin} FS_{cr} FS_{cc} FS_{bc})$$

 $T_{lt} = (5.0 \times 10^{-4}) / (1.5 \times 1.2 \times 1.0 \times 1.5) = 1.85 \times 10^{-4} \text{ m}^2/\text{s}$

k = T/t

Where:	k	=	T/t, hydraulic conductivity, cm/sec
	Т	=	Transmissivity, m ² /sec (assume 6oz/yd ² geocomposite)
	t	=	thickness of geocomposite, ft

Page _2 Of _2

		Project No. 60134827	
Client DOW Corning C	orp. Subject Geocomposit	e Prepared By <u>TCR</u>	Date <u>5/20/11</u>
Project Midland Plant La	andfill Capacity Analysis	Reviewed By NKW	Date <u>5/20/11</u>
Renewal Application		Approved By _DFP	Date <u>5/20/11</u>

Conclusions

The long-term hydraulic conductivity of geocomposite (0.0293 m/s) is used in the HELP model analysis.

References

- 1. Koerner, R.M., "Designing with Geosynthetics", 4th Edition, Prentice-Hall, 1999.
- 2. Hydraulic Evaluation of Landfill Performance (HELP) Model, Version 3.07, USAE Waterways Experiment System, November 1997.

L:\work\60134827\ENG\WASTE\HELP Model-Cover\Final 5-23-11\Geocomp Capacity Rev2.docx

ATTACHMENT 1

GSE GEOCOMPOSITE PRODUCT LITERATURE

GSE FabriNet HF Geocomposite

GSE FabriNet HF geocomposite consists of a 250 mil thick GSE HyperNet HF geonet heat-laminated on one or both sides with a GSE nonwoven needlepunched geotextile. The geotextile is available in mass per unit area range of 6 oz/yd^2 (200 g/m²) to 16 oz/yd^2 (540 g/m²). The geocomposite is designed and formulated to perform drainage function under a range of anticipated site loads, gradients and boundary conditions.

Product Specifications

TESTED PROPERTY	TEST METHOD	FREQUENCY	MINIM	UM AVERAGI	VALUE(!)
Geocomposite			6 oz/yd²	8 oz/yd²	10 oz/yd²
Transmissivity ⁽²⁾ , gal/min/ft (m ² /sec)	ASTM D 4716	1/540,000 ft ²	T		
Double-Sided Composite			2.41 (5 x 10 ⁻⁴)	2.41 (5 x 10 ⁻⁴)	1.45 (3 x 10 ⁻⁴)
Single-Sided Composite			7.24 (1.5 x 10 ⁻³)	7.24 (1.5 x 10 ⁻³)	4.83 (1 x 10 ⁻³)
Ply Adhesion, Ib/in (g/cm)	ASTM D 7005	1/50,000 ft ²	1.0 (178)	1.0 (178)	1.0 (178)
Geonet Core ⁽³⁾ - GSE HyperNet HF					
Transmissivity ⁽²⁾ , gal/min/ft (m ² /sec)	ASTM D 4716		14.49 (3 x 10 ⁻³)	14.49 (3 x 10 ⁻³)	14.49 (3 x 10 ⁻³)
Density, g/cm ³	ASTM D 1505	1/50,000 ft ²	0.94	0.94	0.94
Tensile Strength (MD), lb/in (N/mm)	ASTM D 5035/7179	1/50,000 ft ²	55 (9.6)	55 (9.6)	55 (9.6)
Carbon Black Content, %	ASTM D 1603*/4218	1/50,000 ft ²	2.0	2.0	2.0
Geotextile ^(3,4)					
Mass per Unit Area, oz/yd²(g/m²)	ASTM D 5261	1/90,000 ft ²	6 (200)	8 (270)	10 (335)
Grab Tensile, lb (N)	ASTM D 4632	1/90,000 ft ²	160 (710)	220 (975)	260 (1,155)
Puncture Strength, lb (N)	ASTM D 4833	1/90,000 ft ²	90 (395)	120 (525)	165 (725)
AOS, US sieve (mm)	ASTM D 4751	1/540,000 ft ²	70 (0.212)	80 (0.180)	100 (0.150)
Permittivity, (sec ⁻²)	ASTM D 4491	1/540,000 ft ²	1.5	1.3	1.0
Flow Rate, gpm/ft ² (lpm/m ²)	ASTM D 4491	1/540,000 ft ²	110 (4,480)	95 (3,865)	75 (3,050)
UV Resistance, % retained	ASTM D 4355 (after 500 hours)	once per formulation	70	70	70
	NOMINAL I	ROLL DIMENSIONS			
Geonet Core Thickness, mil (mm)	ASTM D 5199	1/50,000 ft ²	250 (6.3)	250 (6.3)	250 (6.3)
Roll Width ⁽⁵⁾ , ft (m)		· · · · · · · · · · · · · · · · · · ·	15 (4.5)	15 (4.5)	15 (4.5)
Roll Length ⁽⁵⁾ , ft (m)	Double-Sided Comp	osite	230 (70.1)	210 (64.0)	210 (64.0)
	Single-Sided Compo	osite	260 (79.2)	260 (79.2)	250 (76.2)
Roll Area, ft² (m²)	Double-Sided Comp	osite	3,450 (321)	3,150 (293)	3,150 (293)
	Single-Sided Compo	site	3,900 (362)	3,900 (362)	3,750 (348)

NOTES:

• ⁽¹⁾AOSin mm is a maximum value.

• 12 Gradient of 0.1, normal load of 10,000 psf, water at 70°F between steel plates for 15 minutes. Contact CSE for performance transmissivity value for use in design.

• ⁽³⁾Component properties prior to lamination.

• [#]Refer to geotextile product data sheet for additional specifications.

• ⁽⁵⁾Roll widths and lengths have a tolerance of ±1%.

*Modified.

NORTH AMERICA 800.435.2008 281.443.8564 · EUROPE & AFRICA 49.40.767420 · ASIA PACIFIC 66.2.937.0091 · SOUTH AMERICA 56.2.595.4200 · MIDDLE EAST 20.23.828.8888

This information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this information. Specifications subject to change without notice.

gseworld.com

GSE and other trademarks in this document are registered trademarks of GSE Lining Technology, LLC in the United States and certain foreign countries.

DS10FNTRX R05/11/10

GSE FabriNet TRx Geocomposite

GSE FabriNet TRx high flow geocomposite is produced with a unique one step process that coexrudes creep resistant columns to an intrusion resistant roof. The resulting triaxial geonet is then laminated to a nonwoven geotextile filtration media. This product achieves high in-situ transmissivity from optimally oriented flow channels that maintain porosity because of the intrusion and creep resistant nature of the triaxial structure. The geocomposite provides continuous performance over a broad range of conditions. It is also well suited for use in surface water collection and removal systems, gas venting, and landfill liner system drainage applications.

Product Specifications

TESTED PROPERTY	TEST METHOD	FREQUENCY	MININ	IUM AVERAG	E VALUE
Geocomposite			4 oz/yd²	6 oz/yd²	8 oz/yd²
Transmissivity ⁽¹⁾ , gal/min/ft (m²/sec) Double-Sided Composite Single-Sided Composite	ASTM D 4716	1/540,000 ft ²	12.1 (2.5 x10 ⁻³) 15.7 (3.2 x 10 ⁻³)	12.1 (2.5 x10 ⁻³) 15.7 (3.2 x 10 ⁻³)	10.1 (2.2 x 10 ⁻³) 13.8 (2.9 x 10 ⁻³)
Ply Adhesion, Ib/in (g/cm)	ASTM D 7005	1/50,000 ft ²	1.0 (178)	1.0 (178)	1.0 (178)
Geonet Core - GSE HyperNet TRx			8. 19 2		
Transmissivity ⁽²⁾ , gal/min/ft (m²/sec)	ASTM D 4716		43.5 (9.0x 10 ⁻³)	43.5 (9.0x 10 ⁻³)	43.5 (9.0x 10 ⁻³)
Density, g/cm ³	ASTM D 1505	1/50,000 ft ²	>0.94	>0.94	>0.94
Tensile Strength ⁽³⁾ , lb/in (N/mm)	ASTM D 5035/7179	1/50,000 ft ²	75 (13.3)	75 (13.3)	75 (13.3)
Carbon Black Content, %	ASTM D 1603*/4218	1/50,000 ft ²	>2.0	>2.0	>2.0
Geotextile (prior to lamination) ⁽⁴⁾					
Mass per Unit Area, oz/yd²(g/m²)	ASTM D 5261	1/90,000 ft ²	4	6	8
Grab Tensile, lb (N)	ASTM D 4632	1/90,000 ft ²	120 (530)	160 (710)	220 (975)
Puncture Strength, lb (N)	ASTM D 4833	1/90,000 ft ²	60 (265)	90 (395)	120 (525)
AOS, US sieve (mm)	ASTM D 4751	1/540,000 ft ²	70 (0.212)	70 (0.212)	80 (0.180)
Permittivity, (sec ⁻¹)	ASTM D 4491	1/540,000 ft ²	1.8	1.5	1.3
Flow Rate, gpm/ft ² (lpm/m ²)	ASTM D 4491	1/540,000 ft ²	135 (5,495)	110 (4,480)	95 (3,865)
UV Resistance, % retained	ASTM D 4355 (after 500 hours)	once per formulation	70	70	70
	NOMINAL	ROLL DIMENSIONS			
Geonet Core Thickness, mil (mm)	ASTM D 5199	1/50,000 ft ²	300 (7.6)	300 (7.6)	300 (7.6)
Roll Width ⁽⁵⁾ , ft (m)			15 (4.5)	15 (4.5)	15 (4.5)
Roll Length ⁽⁵⁾ , ft (m)	Double-Sided Com	posite	160 (48.8)	160 (48.8)	150 (45.7)
	Single-Sided Compo	osite	180 (54.9)	170 (51.8)	170 (51.8)
Roll Area, ft ² (m ²)	Double-Sided Com	oosite	2,400 (223)	2,400 (223)	2,250 (209)
	Single-Sided Compo	osite	2,700 (251)	2,550 (237)	2,550 (237)

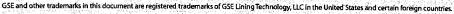
NOTES:

"This is an index transmissivity value measured at stress = 1,000 psf; gradient = 0.1; time = 15 minutes; boundary conditions = plate/geocomposite/plate.
 Contact GSE for performance transmissivity value for use in design.

^{Car}This is an index transmissivity value measured at stress = 1,000 psf; gradient = 0.1; time = 15 minutes; boundary conditions = plate/geonet/plate. Contact GSE for performance transmissivity value for use in design.

• ⁽³⁾Tested in machine direction (MD).

gseworld.com


• (4)All properties are minimum average values except AOS (mm) which is a maximum value and UV resistance which is a typical value.

• ⁽⁵⁾Roll widths and lengths have a tolerance of ±1%.

*Modified.

NORTH AMERICA 800.435.2008 281.443.8564 · EUROPE & AFRICA 49.40.767420 · ASIA PACIFIC 66.2.937.0091 · SOUTH AMERICA 56.2.595.4200 · MIDDLE EAST 20.23.828.8888

This information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this information. Specifications subject to change without notice.

ATTACHMENT 2

PARTIAL SAFETY FACTORS

- q_{allow} = allowable flow rate to be used in Eq. (4.3) for final design purposes,
- RF_{IN} = reduction factor for elastic deformation, or intrusion, of the adjacent geosynthetics into the geonet's core space,
- RF_{CR} = reduction factor for creep deformation of the geonet and/or adjacent geosynthetics into the geonet's core space,
- RF_{CC} = reduction factor for chemical clogging and/or precipitation of chemicals in the geonet's core space,
- RF_{BC} = reduction factor for biological clogging in the geonet's core space, and
- $\Pi RF =$ product of all reduction factors for the site-specific conditions.

Some guidelines for the various reduction factors to be used in different situations are given in Table 4.2. Please note that some of these values are based on relatively sparse information. Other reduction factors, such as installation damage, temperature effects, and liquid turbidity, could also be included. If needed, they can be included on a site-specific basis. On the other hand, if the actual laboratory test procedure has included the particular item, it would appear in the above formulation as a value of unity. Examples 4.2 and 4.3 illustrate the use of geonets and serve to point out that high reduction factors are warranted in critical situations.

Example 4.2

What is the allowable geonet flow rate to be used in the design of a capillary break beneath a roadway to prevent frost heave? Assume that laboratory testing was done at the proper design load and hydraulic gradient and that this testing yielded a short-term between-rigid-plates value of 2.5×10^{-4} m²/s.

Solution: Since better information is not known, average values from Table 4.2 are used in Eq. (4.5).

Application Area	RF _{IN}	RF _{CR} *	RF _{CC}	RF _{BC}
Sport fields	1.0 to 1.2	1.0 to 1.5	1.0 to 1.2	1.1 to 1.3
Capillary breaks	1.1 to 1.3	1.0 to 1.2	1.1 to 1.5	1.1 to 1.3
Roof and plaza decks	1.2 to 1.4	1.0 to 1.2	1.0 to 1.2	1.1 to 1.3
Retaining walls, seeping rock, and soil slopes	1.3 to 1.5	1.2 to 1.4	1.1 to 1.5	1.0 to 1.5
Drainage blankets	1.3 to 1.5	1.2 to 1.4	1.0 to 1.2	1.0 to 1.2
Surface water drains for landfill covers	1.3 to 1.5	1.1 to 1.4	1.0 to 1.2	1.2 to 1.5
Secondary leachate collection (landfills)	1.5 to 2.0	1.4 to 2.0	1.5 to 2.0	1.5 to 2.0
Primary leachate collection (landfills)	1.5 to 2.0	1.4 to 2.0	1.5 to 2.0	1.5 to 2.0

 TABLE 4.2
 RECOMMENDED PRELIMINARY REDUCTION FACTOR VALUES FOR EQ. (4.5)

 FOR DETERMINING ALLOWABLE FLOW RATE OR TRANSMISSIVITY OF GEONETS

*These values are sensitive to the density of the resin used in the geonet's manufacture. The higher the density, the lower the reduction factor. Creep of the covering geotextile(s) is a product-specific issue.

Attachment 2

HELP Model Output: 4% Slope, Cover A

* * * * * * * * * * *	***************************************	* * * * * * * * * * *
* * * * * * * * * * *	***************************************	* * * * * * * * * * *
* *		**
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
********	***************************************	* * * * * * * * * * *
********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *

PRECIPITATION DATA FILE:	c:\temp\MID4.D4
TEMPERATURE DATA FILE:	C:\temp\MID7.D7
SOLAR RADIATION DATA FILE:	c:\temp\MID13.D13
EVAPOTRANSPIRATION DATA:	c:\temp\MID11.D11
SOIL AND DESIGN DATA FILE:	c:\temp\MID4-A.D10
OUTPUT DATA FILE:	c:\temp\MID4-A.OUT

TIME: 10:28 DATE: 3/28/2011

TITLE: Midland Plant Landfill, Cover Evaluation, 4% Slope Cover A

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS = 6.00 INCHES POROSITY 0.3980 VOL/VOL = FIELD CAPACITY = 0.2440 VOL/VOL WILTING POINT 0.1360 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3541 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

		NOTIDEI(10
THICKNESS	=	18.00 INCHES
POROSITY	=	0.3980 VOL/VOL
FIELD CAPACITY	=	0.2440 VOL/VOL
WILTING POINT	=	0.1360 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2862 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.119999997000E-03 CM/SEC

layer 3

TYPE 2 – LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 46

MAIDNIAD IDA.		NOMDER 40	
THICKNESS	=	0.25 IN	CHES
POROSITY	=	0.8500 VO	L/VOL
FIELD CAPACITY	=	0.0100 VO	L/VOL
WILTING POINT	=	0.0050 VO	L/VOL
INITIAL SOIL WATER CONTENT	=	0.0100 VO	L/VOL
EFFECTIVE SAT. HYD. COND.	=	2.9300000700	0 CM/SEC
SLOPE	=	4.00 PE	RCENT
DRAINAGE LENGTH	=	305.0 FE	ET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

	01.0	Itoribert oo
THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	=	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 – GOOD

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 17

THICKNESS	=	0.25	INCHES
POROSITY	=	0.7500	VOL/VOL
FIELD CAPACITY	=	0.7470	VOL/VOL

WILTING POINT	=	0.4000 VOL/VOL
INITIAL SOIL WATER CONTE	NT =	0.7470 VOL/VOL
EFFECTIVE SAT. HYD. COND	- =	0.30000003000E-08 CM/SEC

LAYER 6

TYPE 3 - BARRIER SOIL LINER

MATERIAL T	EXTURE	NUMBER 1	L6
THICKNESS	=	12.00	INCHES
POROSITY	=	0.427	70 VOL/VOL
FIELD CAPACITY	=	0.418	30 VOL/VOL
WILTING POINT	=	0.367	70 VOL/VOL
INITIAL SOIL WATER CONTE	NT =	0.427	70 VOL/VOL
EFFECTIVE SAT. HYD. COND	- =	0.100000	001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 4.% AND A SLOPE LENGTH OF 305. FEET.

SCS RUNOFF CURVE NUMBER	=	85.90	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	6.300	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.960	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.720	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	12.589	INCHES
TOTAL INITIAL WATER	=	12.589	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM E. LANSING MICHIGAN

STATION LATITUDE	=	42.60	DEGREES
MAXIMUM LEAF AREA INDEX	=	2.00	
START OF GROWING SEASON (JULIAN DATE)	=	123	
END OF GROWING SEASON (JULIAN DATE)	=	283	
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	10.10	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	77.00	00

AVERAGE	2ND	QUARTER	RELATIVE	HUMIDITY	=	69.00 %
AVERAGE	3RD	QUARTER	RELATIVE	HUMIDITY	=	75.00 %
AVERAGE	4TH	QUARTER	RELATIVE	HUMIDITY	=	80.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR DETROIT MICHIGAN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.86	1.69	2.54	3.15	2.77	3.43
3.10	3.21	2.25	2.12	2.33	2.52

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
21.60	23.30	33.00	46.30	57.20	66.80
70.80	69.20	61.70	50.70	38.50	27.00

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN AND STATION LATITUDE = 42.60 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

PRECIPITATION	JAN/JUL 	FEB/AUG 	MAR/SEP 	APR/OCT	MAY/NOV 	JUN/DEC
TOTALS	1.81	1.77	2.38	3.33	2.97	3.36
	2.93	2.98	2.31	1.66	2.36	2.63
STD. DEVIATIONS	0.65	0.79	1.07	1.30	1.13	1.41
	1.26	1.64	1.37	1.06	1.00	1.05
RUNOFF						
TOTALS	0.493	1.233	2.680	1.238	0.053	0.065
	0.048	0.146	0.018	0.010	0.052	0.235

STD. DEVIATIONS	0.464 0.112	1.106 0.276	1.947 0.057	1.633 0.040	0.116 0.107	0.132 0.362
EVAPOTRANSPIRATION						
TOTALS	0.396 3.021	0.338 2.529	0.394 1.877	2.356 1.086	3.283 0.719	4.043 0.386
STD. DEVIATIONS	0.068 1.160	0.076 1.007	0.178 0.893	0.988 0.396	1.064 0.146	1.093 0.088
LATERAL DRAINAGE COLLI	ECTED FROM I	LAYER 3				
TOTALS	0.0476 0.0330	0.0000 0.0827	0.2675 0.0109	1.6790 0.1257	0.3984 0.4974	0.0218 0.5982
STD. DEVIATIONS	0.1584 0.1554	0.0000 0.2638	0.6119 0.0469	0.6851 0.2865	0.5308 0.7876	0.0673 0.6431
PERCOLATION/LEAKAGE TI	HROUGH LAYEI	R 4				
TOTALS	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PERCOLATION/LEAKAGE TI	HROUGH LAYEI	R 6				
TOTALS	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
AVERAGES	OF MONTHLY	AVERAGED	DAILY HEA	ADS (INCHI	ES)	
DAILY AVERAGE HEAD ON						
AVERAGES		0.0000 0.0027		0.3264 0.0037		
STD. DEVIATIONS	0.0023 0.0023			0.2261 0.0107		
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 6				

AVERAGES	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000		0.0000	0.0000	0.0000

	INC	-		CU. FEET	PERCENT
PRECIPITATION	30.46			110581.9	100.00
RUNOFF	6.271	(2.0388)	22762.30	20.584
EVAPOTRANSPIRATION	20.428	(2.5412)	74155.02	67.059
LATERAL DRAINAGE COLLECTED FROM LAYER 3	3.76229	(1.66036)	13657.115	12.35023
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00001	(0.00000)	0.041	0.0000
VERAGE HEAD ON TOP OF LAYER 4	0.039 (0.015)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.00001	(0.00000)	0.041	0.0000
AVERAGE HEAD ON TOP OF LAYER 6	0.000 (0.000)		
CHANGE IN WATER STORAGE	0.002	(1.4875)	7.42	0.007
*******************************				*****	* * * * * * * * * *
	* * * * * * * * * * *	* * *	*********** 1 THROU	************* ************************	* * * * * * * * * * * * * * * * * * * *
****	* * * * * * * * * * *	* * *	*********** 1 THROU	********	* * * * * * * * * * * * * * * * * * * *
*****	* * * * * * * * * * *	* * *	************ 1 THROU 	************* ************************	* * * * * * * * * * * * * * * * * * * *
**************************************	* * * * * * * * * * *	* * *	************ 1 THROU 	**************************************	* * * * * * * * * * * * * * * * * * * *
PEAK DAILY VAL	********** UES FOR YEZ	* * *	**************************************	**************************************	********** ********** FT.) .601
PEAK DAILY VAL	********** UES FOR YEA 	*** ARS 	**************************************	**************************************	********** ********** FT.) .601 .8066
PEAK DAILY VAL PEAK DAILY VAL PRECIPITATION RUNOFF DRAINAGE COLLECTED FROM	********** UES FOR YEA LAYER 3 UGH LAYER	*** ARS 	**************************************	**************************************	********** ********** FT.) .601 .8066 .41992
PEAK DAILY VAL PEAK DAILY VAL PRECIPITATION RUNOFF DRAINAGE COLLECTED FROM PERCOLATION/LEAKAGE THRO	********** UES FOR YEA 	*** ARS 	**************************************	**************************************	********** ********** FT.) .601 .8066 .41992
PEAK DAILY VAL PEAK DAILY VAL PRECIPITATION RUNOFF DRAINAGE COLLECTED FROM PERCOLATION/LEAKAGE THRO AVERAGE HEAD ON TOP OF L	********** UES FOR YEA 	* * * * ARS 4	**************************************	**************************************	********** ********** FT.) .601 .8066 .41992
PEAK DAILY VAL PEAK DAILY VAL PRECIPITATION RUNOFF DRAINAGE COLLECTED FROM PERCOLATION/LEAKAGE THRO AVERAGE HEAD ON TOP OF L MAXIMUM HEAD ON TOP OF L LOCATION OF MAXIMUM HEAD	********** UES FOR YEA 	4 4	**************************************	**************************************	********** ********** FT.) .601 .8066 .41992
PEAK DAILY VAL PRECIPITATION RUNOFF DRAINAGE COLLECTED FROM PERCOLATION/LEAKAGE THRO AVERAGE HEAD ON TOP OF L MAXIMUM HEAD ON TOP OF L LOCATION OF MAXIMUM HEAD (DISTANCE FROM DRA	********** UES FOR YEA 	4 4	**************************************	**************************************	*********** ********** FT.) .601 .8066 .41992 .03991

MAXIMUM VEG.	SOIL WATER	(VOL/VOL)	0.3635
MINIMUM VEG.	SOIL WATER	(VOL/VOL)	0.1360

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

LAYER	(INCHES)	(VOL/VOL)	
1	2.0459	0.3410	
2	4.9265	0.2737	
3	0.0025	0.0100	
4	0.0000	0.0000	
5	0.1867	0.7470	
6	5.1240	0.4270	
SNOW WATER	0.364		

FINAL WATER STORAGE AT END OF YEAR 30

Attachment 3

HELP Model Output: 4% Slope, Cover B

* * * * * * * * * * * * *	*****	* * * * * * * * * *
*******	*****	*******
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
* *	USAE WATERWAYS EXPERIMENT STATION	**
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		**
******	* * * * * * * * * * * * * * * * * * * *	*******
*******	* * * * * * * * * * * * * * * * * * * *	*******

PRECIPITATION DATA FILE:	c:\temp\MID4.D4
TEMPERATURE DATA FILE:	C:\temp\MID7.D7
SOLAR RADIATION DATA FILE:	c:\temp\MID13.D13
EVAPOTRANSPIRATION DATA:	c:\temp\MID11.D11
SOIL AND DESIGN DATA FILE:	c:\temp\MID4-B2.D10
OUTPUT DATA FILE:	c:\temp\MID4-B2.OUT

TIME: 10:32 DATE: 5/ 5/2011

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 6.00 INCHES = POROSITY = 0.3980 VOL/VOL FIELD CAPACITY 0.2440 VOL/VOL = WILTING POINT 0.1360 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3574 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

layer 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

THICKNESS	=	6.00 INCHES
POROSITY	=	0.3980 VOL/VOL
FIELD CAPACITY	=	0.2440 VOL/VOL
WILTING POINT	=	0.1360 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2646 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.119999997000E-03 CM/SEC

layer 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 2

URE	NUMBER Z
=	12.00 INCHES
=	0.4370 VOL/VOL
=	0.0620 VOL/VOL
=	0.0240 VOL/VOL
=	0.2860 VOL/VOL
=	0.579999993000E-02 CM/SEC
=	4.00 PERCENT
=	305.0 FEET
	= = = = =

LAYER 4 _____

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	=	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 – GOOD

LAYER 5

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 16 = 36.00 INCHES

THICKNESS

POROSITY	=	0.4270 VOL/VOL
FIELD CAPACITY	=	0.4180 VOL/VOL
WILTING POINT	=	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 4.% AND A SLOPE LENGTH OF 305. FEET.

SCS RUNOFF CURVE NUMBER	=	85.90	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	5.627	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.272	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	1.824	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	22.537	INCHES
TOTAL INITIAL WATER	=	22.537	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM E. LANSING MICHIGAN

STATION LATITUDE	=	42.60	DEGREES
MAXIMUM LEAF AREA INDEX	=	2.00	
START OF GROWING SEASON (JULIAN	DATE) =	123	
END OF GROWING SEASON (JULIAN DA	ATE) =	283	
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	10.10	MPH
AVERAGE 1ST QUARTER RELATIVE HUN	MIDITY =	77.00	010
AVERAGE 2ND QUARTER RELATIVE HUN	MIDITY =	69.00	010
AVERAGE 3RD QUARTER RELATIVE HUN	= YTIDIN	75.00	010
AVERAGE 4TH QUARTER RELATIVE HUN	= YTIDIN	80.00	olo

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR DETROIT MICHIGAN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
01111,000	1 1 2 7 1 1 0 0		111 1() 001		0011, 200

1.86	1.69	2.54	3.15	2.77	3.43
3.10	3.21	2.25	2.12	2.33	2.52

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
21.60	23.30	33.00	46.30	57.20	66.80
70.80	69.20	61.70	50.70	38.50	27.00

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN AND STATION LATITUDE = 42.60 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.81	1.77	2.38	3.33	2.97	3.36
	2.93	2.98	2.31	1.66	2.36	2.63
STD. DEVIATIONS	0.65 1.26	0.79 1.64	1.07 1.37	1.30 1.06	1.13 1.00	
RUNOFF						
TOTALS	0.481	1.214	2.636	1.204	0.055	0.064
	0.047	0.141	0.017	0.008	0.048	0.229
STD. DEVIATIONS	0.455	1.096	1.941	1.600	0.123	0.130
	0.111	0.268	0.054	0.035	0.104	0.355
EVAPOTRANSPIRATION						
TOTALS	0.396	0.338	0.396	2.336	3.306	3.794
	2.994	2.512	1.909	1.160	0.716	0.386
STD. DEVIATIONS	0.068	0.076	0.180	0.973	1.027	1.096
	1.163	0.974	0.834	0.341	0.158	0.088

LATERAL DRAINAGE COLLE						
TOTALS	0.2582 0.3753	0.1641 0.2922	0.1552 0.2215	0.5549 0.1978	0.768 0.251	
STD. DEVIATIONS	0.1510 0.0779	0.0912 0.0870	0.0972 0.0776	0.3253 0.0818	0.229 0.265	
PERCOLATION/LEAKAGE TH	ROUGH LAYE	r 5				
TOTALS	0.0002 0.0002	0.0001 0.0002	0.0001 0.0001	0.0003 0.0001	0.000	
STD. DEVIATIONS	0.0001 0.0000	0.0001 0.0000	0.0001 0.0000	0.0002 0.0000	0.000	
AVERAGES (DF MONTHLY	AVERAGE	D DAILY HEA	ADS (INCHI	 ES)	
DAILY AVERAGE HEAD ON 2	IOP OF LAY	ER 4				
AVERAGES	1.9344	 1.3536 2.1895	1.1632 1.7149	4.3076 1.4823	5.760 1.943	
	2.8123	2.1095	±•/±15	1.1020	2.0 10	
STD. DEVIATIONS	1.1315 0.5834	0.7560 0.6518	0.7286 0.6006	2.5328 0.6126	1.719 2.055	6 1.9482
STD. DEVIATIONS ************************************	1.1315 0.5834 *********	0.7560 0.6518 *******	0.7286 0.6006 *********	2.5328 0.6126 *****	1.719 2.055	6 1.9482 ********** *********
******	1.1315 0.5834 *********	0.7560 0.6518 *******	0.7286 0.6006 ********** *********** ONS) FOR YI	2.5328 0.6126 *****	1.719 2.055 ****** ****** THROUG	6 1.9482 ********** *********
**************************************	1.1315 0.5834 ********** ********** LS & (STD.	0.7560 0.6518 ******** DEVIATI INCHE	0.7286 0.6006 ********** *********** ONS) FOR YI	2.5328 0.6126 ********* EARS 1 CU. FE	1.719 2.055 ****** ****** THROUG ET	6 1.9482 ********** ********** H 30 PERCENT
**************************************	1.1315 0.5834 ********* LS & (STD. 30	0.7560 0.6518 ******** DEVIATI 	0.7286 0.6006 *********** *********** ONS) FOR YI 	2.5328 0.6126 ********* EARS 1 CU. FEI	1.719 2.055 ****** ****** THROUGE ET 1.9	6 1.9482 ********** H 30 PERCENT
**************************************	1.1315 0.5834 ********** LS & (STD. 	0.7560 0.6518 ******** DEVIATI INCHE .46 (.143 (0.7286 0.6006 *********** ************ ONS) FOR YI S 3.646)	2.5328 0.6126 ********* EARS 1 CU. FEI 11058	1.719 2.055 ****** ****** THROUG ET 1.9 9.80	6 1.9482 ************************************
**************************************	1.1315 0.5834 ********** LS & (STD. 	0.7560 0.6518 ******** DEVIATI INCHE .46 (.143 (.243 (0.7286 0.6006 *******************************	2.5328 0.6126 ********* EARS 1 CU. FEI 11058 22299 7348	1.719 2.055 ****** ****** THROUG ET 1.9 9.80 1.12	6 1.9482 ************************************
**************************************	1.1315 0.5834 ********** LS & (STD. 	0.7560 0.6518 ******** DEVIATI INCHE .46 (.143 (.243 (.11102 (0.7286 0.6006 *******************************	2.5328 0.6126 ********* EARS 1 CU. FEI 11058 22299 7348 14923	1.719 2.055 ****** ****** THROUG ET 1.9 9.80 1.12 3.017	6 1.9482 ************************************
**************************************	1.1315 0.5834 ********** LS & (STD. 	0.7560 0.6518 ******** DEVIATI INCHE .46 (.143 (.243 (.11102 (.00247 (0.7286 0.6006 *******************************	2.5328 0.6126 ********* EARS 1 CU. FEI 11058 22299 7348 14923	1.719 2.055 ****** ****** THROUG ET 1.9 9.80 1.12 3.017	6 1.9482 ************************************

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION		10599.601
RUNOFF	2.603	9448.5596
DRAINAGE COLLECTED FROM LAYER 3	0.04996	181.36053
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000030	0.10943
AVERAGE HEAD ON TOP OF LAYER 4	12.941	
MAXIMUM HEAD ON TOP OF LAYER 4	20.098	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	67.8 FEET	
SNOW WATER	9.18	33313.7344
MAXIMUM VEG. SOIL WATER (VOL/VOL) MINIMUM VEG. SOIL WATER (VOL/VOL) *** Maximum heads are computed using Reference: Maximum Saturated De by Bruce M. McEnroe, ASCE Journal of Envi Vol. 119, No. 2, Mar ************************************	0. g McEnroe's equa epth over Landfi University of 3 ronmental Engin cch 1993, pp. 26	ll Liner Kansas eering 2-270. ******
	(VOL/VOL)	
1 2.0400	0.3400	
2 1.5288	0.2548	
3 2.1486	0.1790	
4 0.0000	0.0000	
5 15.3720	0.4270	

SNOW WATER

0.364

Attachment 4

HELP Model Output: 25% Slope, Cover A

* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
*******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *

PRECIPITATION DATA FILE:	c:\temp\MID4.D4
TEMPERATURE DATA FILE:	C:\temp\MID7.D7
SOLAR RADIATION DATA FILE:	c:\temp\MID13.D13
EVAPOTRANSPIRATION DATA:	c:\temp\MID11.D11
SOIL AND DESIGN DATA FILE:	c:\temp\MID25-A.D10
OUTPUT DATA FILE:	c:\temp\MID25-A.OUT

TIME: 10:28 DATE: 3/28/2011

TITLE: Midland Plant Landfill, Cover Evaluation, 25% Slope Cover A

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS = 6.00 INCHES POROSITY 0.3980 VOL/VOL = FIELD CAPACITY = 0.2440 VOL/VOL WILTING POINT 0.1360 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3697 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

	тотс	
THICKNESS	=	18.00 INCHES
POROSITY	=	0.3980 VOL/VOL
FIELD CAPACITY	=	0.2440 VOL/VOL
WILTING POINT	=	0.1360 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2853 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.119999997000E-03 CM/SEC

layer 3

TYPE 2 – LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 46

MAIDNIAD IDAI		NOPIDEIX 40		
THICKNESS	=	0.25	INCHES	
POROSITY	=	0.8500	VOL/VOL	
FIELD CAPACITY	=	0.0100	VOL/VOL	
WILTING POINT	=	0.0050	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	2.93000007	000	CM/SEC
SLOPE	=	25.00	PERCENT	
DRAINAGE LENGTH	=	196.0	FEET	

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

=	0.06 INCHES
=	0.0000 VOL/VOL
=	0.399999993000E-12 CM/SEC
=	1.00 HOLES/ACRE
=	4.00 HOLES/ACRE
=	3 - GOOD
	= = = =

LAYER 5

	TYPE 3 –	BARRIER	SOIL LINER	
	MATERIAL	TEXTURE	NUMBER 16	
THICKNESS		=	36.00	INCHES
POROSITY		=	0.4270	VOL/VOL
FIELD CAPACIT	Y	=	0.4180	VOL/VOL

WILTING POINT	=	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 196. FEET.

SCS RUNOFF CURVE NUMBER	=	86.90	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	6.378	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.960	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.720	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	22.728	INCHES
TOTAL INITIAL WATER	=	22.728	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM E. LANSING MICHIGAN

STATION LAT	ITUDE			=	42.60	DEGREES
MAXIMUM LEAP	F AREA IN	IDEX		=	2.00	
START OF GRO	OWING SEA	ASON (JUL]	IAN DATE)	=	123	
END OF GROWI	ING SEASC	ON (JULIAN	N DATE)	=	283	
EVAPORATIVE	ZONE DEE	PTH		=	20.0	INCHES
AVERAGE ANNU	JAL WIND	SPEED		=	10.10	MPH
AVERAGE 1ST	QUARTER	RELATIVE	HUMIDITY	=	77.00	olo
AVERAGE 2ND	QUARTER	RELATIVE	HUMIDITY	=	69.00	olo
AVERAGE 3RD	QUARTER	RELATIVE	HUMIDITY	=	75.00	00
AVERAGE 4TH	QUARTER	RELATIVE	HUMIDITY	=	80.00	00

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR DETROIT MICHIGAN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.86	1.69	2.54	3.15	2.77	3.43
3.10	3.21	2.25	2.12	2.33	2.52

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
21.60	23.30	33.00	46.30	57.20	66.80
70.80	69.20	61.70	50.70	38.50	27.00

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN AND STATION LATITUDE = 42.60 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS		1.77 2.98	2.38 2.31		2.97 2.36	
STD. DEVIATIONS		0.79 1.64		1.30 1.06		
RUNOFF						
TOTALS	0.504 0.066		2.700 0.027	1.267 0.018		
STD. DEVIATIONS	0.475 0.133			1.623 0.070	0.144 0.125	
EVAPOTRANSPIRATION						
TOTALS	0.396 3.044	0.338 2.523	0.396 1.839	2.352 1.081		
STD. DEVIATIONS	0.068 1.148		0.179 0.879		1.050 0.146	
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 3				
TOTALS	0.0600 0.0276	0.0000 0.0520			0.4532 0.4722	

STD. DEVIATIONS	0.2281	0.0000	0.5159	0.6401	0.5171	0.0725
	0.1405	0.1887	0.0513	0.2451	0.7825	0.6043
PERCOLATION/LEAKAGE TH	ROUGH LAYEN	R 5				
TOTALS	0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000 0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 4

AVERAGES	0.0001	0.0000	0.0004	0.0026	0.0007	0.0000
	0.0000	0.0001	0.0000	0.0002	0.0008	0.0009
STD. DEVIATIONS	0.0004	0.0000	0.0008	0.0011	0.0008	0.0001
	0.0002	0.0003	0.0001	0.0004	0.0013	0.0010
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * *

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

·						
	INCHES			CU. FEET	PERCENT	
PRECIPITATION	30.46	(3.646)	110581.9	100.00	
RUNOFF	6.501	(2.0217)	23600.08	21.342	
EVAPOTRANSPIRATION	20.438	(2.4926)	74190.03	67.091	
LATERAL DRAINAGE COLLECTED FROM LAYER 3	3.51813	(1.65169)	12770.815	11.54874	
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00000	(0.00000)	0.006	0.00001	
AVERAGE HEAD ON TOP OF LAYER 4	0.000 (0.000)			
CHANGE IN WATER STORAGE	0.006	(1.4163)	20.96	0.019	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	***	* * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * *	

PEAK DAILY VALUES	FOR YEARS	S 1 THROUGH 3	80
		(INCHES)	(CU. FT.)
PRECIPITATION		2.92	10599.601
RUNOFF		2.611	9479.0566
DRAINAGE COLLECTED FROM LAYE	lr 3	0.71355	2590.19995
PERCOLATION/LEAKAGE THROUGH	layer 5	0.000000	0.00050
AVERAGE HEAD ON TOP OF LAYER	R 4	0.036	
MAXIMUM HEAD ON TOP OF LAYER	R 4	0.009	
LOCATION OF MAXIMUM HEAD IN (DISTANCE FROM DRAIN)	-	168.7 FEET	
SNOW WATER		9.18	33313.7344
MAXIMUM VEG. SOIL WATER (VOL	/VOL)	0.3	3652
MINIMUM VEG. SOIL WATER (VOL	/VOL)	0.1	.360
*** Maximum heads are comp	outed usir	ng McEnroe's equat	ions. ***
ASCE Journ	1. McEnroe al of Env	Depth over Landfil e, University of R vironmental Engine arch 1993, pp. 262	Kansas eering
* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
FINAL WATER STC)RAGE AT E	IND OF YEAR 30	
LAYER (INCHES)	(VOL/VOL)	
	2.0434	0.3406	
2	5.1189	0.2844	
3	0.0025	0.0100	
4	0.0000	0.0000	
5	15.3720	0.4270	

0.364 SNOW WATER

Attachment 5

HELP Model Output: 25% Slope, Cover B

* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
*******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *

PRECIPITATION DATA FILE:	c:\temp\MID4.D4
TEMPERATURE DATA FILE:	C:\temp\MID7.D7
SOLAR RADIATION DATA FILE:	c:\temp\MID13.D13
EVAPOTRANSPIRATION DATA:	c:\temp\MID11.D11
SOIL AND DESIGN DATA FILE:	c:\temp\MID25-B.D10
OUTPUT DATA FILE:	c:\temp\MID25-B.OUT

TIME: 10:29 DATE: 3/28/2011

TITLE: Midland Plant Landfill, Cover Evaluation, 25% Slope Cover B

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS = 6.00 INCHES POROSITY 0.3980 VOL/VOL = FIELD CAPACITY = 0.2440 VOL/VOL WILTING POINT 0.1360 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3697 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

		NOTIDEI(10
THICKNESS	=	18.00 INCHES
POROSITY	=	0.3980 VOL/VOL
FIELD CAPACITY	=	0.2440 VOL/VOL
WILTING POINT	=	0.1360 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2853 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.119999997000E-03 CM/SEC

layer 3

TYPE 2 – LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 46

MAIDNIAD IDAI		
THICKNESS	=	0.25 INCHES
POROSITY	=	0.8500 VOL/VOL
FIELD CAPACITY	=	0.0100 VOL/VOL
WILTING POINT	=	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	2.93000007000 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	196.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 36

THICKNESS	=	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	=	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 – GOOD

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 17

THICKNESS	=	0.25	INCHES
POROSITY	=	0.7500	VOL/VOL
FIELD CAPACITY	=	0.7470	VOL/VOL

WILTING POINT	=	0.4000 VOL/VOL
INITIAL SOIL WATER CONTE	NT =	0.7470 VOL/VOL
EFFECTIVE SAT. HYD. COND	- =	0.30000003000E-08 CM/SEC

LAYER 6

TYPE 3 - BARRIER SOIL LINER

MATERIAL TE	XTURE	NUMBER 1	.6
THICKNESS	=	12.00	INCHES
POROSITY	=	0.427	70 VOL/VOL
FIELD CAPACITY	=	0.418	30 VOL/VOL
WILTING POINT	=	0.367	70 VOL/VOL
INITIAL SOIL WATER CONTEN	T =	0.427	70 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.100000	01000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 196. FEET.

SCS RUNOFF CURVE NUMBER	=	86.90	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	6.378	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	7.960	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.720	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	12.667	INCHES
TOTAL INITIAL WATER	=	12.667	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM E. LANSING MICHIGAN

STATION LATITUDE	=	42.60	DEGREES
MAXIMUM LEAF AREA INDEX	=	2.00	
START OF GROWING SEASON (JULIAN DATE)	=	123	
END OF GROWING SEASON (JULIAN DATE)	=	283	
EVAPORATIVE ZONE DEPTH	=	20.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	10.10	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	77.00	olo

AVERAGE	2ND	QUARTER	RELATIVE	HUMIDITY	=	69.00 %
AVERAGE	3RD	QUARTER	RELATIVE	HUMIDITY	=	75.00 %
AVERAGE	4TH	QUARTER	RELATIVE	HUMIDITY	=	80.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR DETROIT MICHIGAN

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.86	1.69	2.54	3.15	2.77	3.43
3.10	3.21	2.25	2.12	2.33	2.52

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
21.60	23.30	33.00	46.30	57.20	66.80
70.80	69.20	61.70	50.70	38.50	27.00

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR E. LANSING MICHIGAN AND STATION LATITUDE = 42.60 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

PRECIPITATION	JAN/JUL 	FEB/AUG 	MAR/SEP	APR/OCT	MAY/NOV 	JUN/DEC
TOTALS	1.81	1.77	2.38	3.33	2.97	3.36
	2.93	2.98	2.31	1.66	2.36	2.63
STD. DEVIATIONS	0.65	0.79	1.07	1.30	1.13	1.41
	1.26	1.64	1.37	1.06	1.00	1.05
RUNOFF						
TOTALS	0.504	1.249	2.700	1.267	0.073	0.087
	0.066	0.192	0.027	0.018	0.071	0.248

STD. DEVIATIONS	0.475 0.133	1.114 0.342	1.957 0.076	1.623 0.070	0.144 0.125	0.161 0.372
EVAPOTRANSPIRATION						
TOTALS	0.396 3.044	0.338 2.523	0.396 1.839	2.352 1.081	3.272 0.710	4.104 0.383
STD. DEVIATIONS	0.068 1.148	0.076 1.002	0.179 0.879	0.986 0.392	1.050 0.146	1.033 0.085
LATERAL DRAINAGE COLLE	CTED FROM I	LAYER 3				
TOTALS	0.0600 0.0276	0.0000 0.0520	0.2190 0.0115	1.5324 0.1064	0.4532 0.4722	0.0250 0.5588
STD. DEVIATIONS	0.2281 0.1405	0.0000 0.1887	0.5159 0.0513	0.6401 0.2451	0.5171 0.7825	0.0725 0.6043
PERCOLATION/LEAKAGE TH	ROUGH LAYER	R 4				
TOTALS	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PERCOLATION/LEAKAGE TH	ROUGH LAYE	R 6				
TOTALS	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
AVERAGES	OF MONTHLY	AVERAGED	DAILY HEA	ADS (INCH	 ES)	
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
AVERAGES		0.0000 0.0001		0.0026 0.0002	0.0007 0.0008	
STD. DEVIATIONS	0.0004 0.0002				0.0008 0.0013	
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 6				

AVERAGES	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INCH	-		CU. FEET	PERCENT
PRECIPITATION	30.46		3.646)	110581.9	100.00
RUNOFF	6.501	(2.0217)	23600.08	21.342
EVAPOTRANSPIRATION	20.438	(2.4926)	74190.03	67.091
LATERAL DRAINAGE COLLECTED FROM LAYER 3	3.51813	(1.65169)	12770.820	11.54874
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.00000	(0.00000)	0.004	0.0000
AVERAGE HEAD ON TOP OF LAYER 4	0.000 (0.000)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.00000	(0.00000)	0.004	0.0000
AVERAGE HEAD ON TOP OF LAYER 6	0.000 (0.000)		
CHANGE IN WATER STORAGE	0.006	(1.4163)	20.96	0.019

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	2.92	10599.601
RUNOFF	2.611	9479.0566
DRAINAGE COLLECTED FROM LAYER 3	0.71355	2590.20044
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000000	0.00009
AVERAGE HEAD ON TOP OF LAYER 4	0.036	
MAXIMUM HEAD ON TOP OF LAYER 4	0.009	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	169.9 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000000	0.00009
AVERAGE HEAD ON TOP OF LAYER 6	0.000	

MAXIMUM	VEG.	SOIL	WATER	(VOL/VOL)	0.3652
MINIMUM	VEG.	SOIL	WATER	(VOL/VOL)	0.1360

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

LAYER	(INCHES)	(VOL/VOL)
1	2.0434	0.3406
2	5.1189	0.2844
3	0.0025	0.0100
4	0.0000	0.0000
5	0.1867	0.7470
6	5.1240	0.4270
SNOW WATER	0.364	

FINAL WATER STORAGE AT END OF YEAR 30

CLIENT: Dow Corning PROJECT: Midland Facility SUBJECT: Final Cover Slope Stability Analysis

OBJECTIVE

Evaluate the slope stability of the geosynthetic final cover system under static conditions.

REFERENCES

- 1. Koerner, R. M. and Soong, T.-Y., "Analysis of Design Veneer Cover Soils," Proc. 6th Intl. Conf. on Geosynthetics, IFAI Publ., St. Paul, MN, 1998, pp. 1-23.
- Soong, Te-Yang and Koerner, R. M., "The Design of Drainage Systems over Geosynthetically Lined Slopes", GRI Report #19, June 17, 1997.
- 3. Hydraulic Evaluation of Landfill Performance (HELP) Model, Version 3.07, USAE Waterways Experiment Station, November 1997.

METHODOLOGY

The cover soil stability of the proposed final cover system was evaluated using the methodologies presented in References 1 and 2. The authors used limit equilibrium and a finite slope model to analyze the stability of veneer cover soils over geosynthetic-lined slopes for several loading conditions. The development of the free body diagram shows that two zones are present for the finite slope analysis: (1) a small passive wedge at the toe of slope resisting (2) a long thin active wedge extending the length of the slope. The free body diagrams for each of the conditions evaluated are provided on the calculations in Attachment 2 of this calculation brief. By setting the forces on the passive wedge equal to the forces on the active wedge, a quadratic equation is developed to solve for the factor of safety (FS):

$$FS = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

Static Conditions with Parallel to Slope Seepage Condition

$$a = W_A (\sin \beta)(\cos \beta) - U_h(\cos^2 \beta) + U_h$$

$$b = -W_A (\sin^2 \beta)(\tan \Phi) + U_h(\sin \beta)(\cos \beta)(\tan \Phi) - N_A(\cos \beta)(\tan \delta) - (W_P - U_V)(\tan \Phi)$$

$$c = N_A(\sin \beta)(\tan \delta)(\tan \Phi)$$

Where:

$$W_{A} = \frac{\gamma_{dry} (h - h_{w}) [2H \cos \beta - (h + h_{w})] + \gamma_{sat} (h_{w}) (2H \cos \beta - h_{w})}{\sin 2\beta}$$

$$U_{h} = \frac{\gamma_{w}(h_{w})^{2}}{2}$$

$$N_{A} = W_{A}(\cos\beta) + U_{h}(\sin\beta) - U_{n}$$

$$U_{n} = \frac{\gamma_{w}(h_{w})(\cos\beta)(2H\cos\beta - h_{w})}{\sin 2\beta}$$

CLIENT: Dow Corning PROJECT: Midland Facility SUBJECT: Final Cover Slope Stability Analysis
 PAGE
 2
 OF
 4

 PROJECT NO.
 60134827

 Prepared By
 BPS
 Date
 3/23/2011

 Reviewed By TW
 Date
 4/5/2011

 Approved By
 Date
 4/5/2011

$$W_{P} = \frac{\gamma_{dry} (h^{2} - h_{w}^{2}) + \gamma_{sat} (h_{w}^{2})}{\sin 2\beta}$$

 $U_{\nu} = U_{h} / \tan \beta$

 γ_{dry} = dry unit weight of cover soil (assumed as 119 pcf or 18.69 kN/m³)

h = height of cover soil (2-ft or 0.61- meters)

 h_w = height of saturated cover soil

= PSR x h

PSR = parallel submergence ratio (based on cover soil drainage capacity)

H =vertical height of slope measured from the toe

- β = slope angle
- γ_{sat} = saturated unit weight of cover soil (assumed as 130 pcf or 20.42 kN/m³)
- $\gamma_{\rm w}$ = unit weight of water (9.81 kN/m³)
- L =length of slope
- Φ = friction angle of the cover soil (assumed as 20°)
- δ = interface friction angle between the cover soil and geosynthetic component (varies)

ASSUMPTIONS

1. Seepage

The head build-up above the LLDPE component of the cap was modeled using the HELP Model (Reference 3). The evaluation was run for several slope scenarios assuming a final cover soil permeability of 1×10^{-4} cm/sec. The results are included in Attachment 1 and are summarized below:

Geocomposite or Sand Drainage Layer	Drainage Layer Slope (%)	Head on LLDPE Liner (inches)
geocomposite	4	18.1
sand	4	20.1
geocomposite	25	0.036
geocomposite	25	0.036

The ratio of the head on the liner to the depth of cover soil is the parallel submergence ratio (PSR). For example, the PSR for 24-inches of head within a 24-inch thick layer of cover soil = 1.0.

2. Liner System Components

Two (2) alternate liner system cross-sections are proposed for the 4% plateau at the peak of the landfill:

CLIENT: Dow Corning PROJECT: Midland Facility SUBJECT: Final Cover Slope Stability Analysis
 PAGE
 3
 OF
 4

 PROJECT NO.
 60134827

 Prepared By
 BPS
 Date
 3/23/2011

 Reviewed By
 TW
 Date
 4/5/2011

 Approved By
 Date
 Date

Plateau Liner System Alternate 1	Plateau Liner System Alternate 2
2ft Vegetative Soil	2ft Vegetative Soil
Geocomposite	Filter Fabric
60mil Smooth LLDPE	1ft Drainage Sand
Reinforced GCL	60mil Smooth LLDPE
1ft Clay	3ft Clay

Two (2) alternate liner system cross-sections are also proposed for the 4:1 landfill sideslopes.

Sideslope Liner Alternate 1	Sideslope Liner Alternate 2
2ft Vegetative Soil	2ft Vegetative Soil
Geocomposite	Geocomposite
60mil Tex LLDPE	60mil Tex LLDPE
3ft Clay	Reinforced GCL
	1f Clay

3. Soil Parameters

The vegetative soil was assumed to be on-site soil with a dry unit weight of 119 pcf (18.69 kN/m³), a saturated unit weight of 130 pcf (20.42 kN/m³), and internal friction angle phi = 0°

4. Critical Interface

As required by the State of Michigan Department of Natural Resources & Environment Technical Notice of Deficiency date 7 March 2011, "the residual interface and internal shear strengths are to be assessed and considered for the multilayer cover system for design purposes to make the final cover system stable and safe..."

The minimum interface friction angle (phi, °) has been calculated for each alternate liner system. The cohesion/adhesion component (c) of shear strength is neglected in the veneer stability analyses considering seepage.

ANALYSIS

- a. The analysis was first carried out to calculate the minimum required friction angle for the plateau liner system alternate 1 with 18.1" of head buildup and the maximum design slope lengths along the landfill crest.
- b. The analysis was first carried out to calculate the minimum required friction angle for the plateau liner system alternate 2 with 20.1" of head buildup and the maximum design slope lengths along the landfill crest.
- c. The analysis was then carried out to calculate the minimum required friction angle for the sideslope liner system (alternate 1 or 2) with 0.036" of head buildup and the maximum design slope lengths on the landfill side slopes.

L:\WORK\SW\PROJECTS\60134827 DOW MIDLAND\FINAL COVER SLOPE STABILITY ANALYSIS R3 DOC

CLIENT: Dow Corning PROJECT: Midland Facility SUBJECT: Final Cover Slope Stability Analysis
 PAGE
 4
 OF
 4

 PROJECT NO.
 60134827

 Prepared By
 BPS
 Date
 3/23/2011

 Reviewed By TW
 Date
 4/5/2011

 Approved By
 Date

RESULTS

Liner Analyzed	Slope Analyzed (%)	Slope Length (m)	Head on Liner (Parallel Seepage) (in)	Required Interface Strength (°)
Plateau Alt 1	4	100	18.1	5.04
Plateau Al2 2	4	100	20.1	5.36
Sideslope Alt 1 or 2	25	59.74	0.036	20.14

CONCLUSIONS

Based on the design assumptions evaluated within this calculation brief, interface shear testing using on-site soils (cover soil and clay as applicable) and the selected geosynthetic materials should be carried out prior to construction to assure the components meet the following criteria:

Liner Analyzed	Required Interface Strength		
	phi (°)	c (psf)	
4% Plateau	5.04	0	
4:1 Sideslope	20.14	0	

Shear tests should be carried out using three loads representing typical loading on the final cover system (250psf, 500psf, and 1000psf or other loadings as determined by the engineer to suit anticipated field conditions). Interfaces should be loaded and soaked a minimum of 24-hours prior to shear. Shearing rates should be selected by the engineer as typical for geosynthetic to geosynthetic or geosynthetic to soil.

ATTACHMENT 1

HELP MODEL CALCULATION BRIEF (REFERENCE 3)

Of

Page 1

5

		Project No. <u>60134827</u>	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/5/11</u>
Renewal Application		Approved By DFP	Date <u>5/6/11</u>

FINAL COVER INFILTRATION EVALUATION

Objective

Calculate the quantity of surface water infiltrating into the drainage layer component of the final cover using the USEPA Hydrologic Evaluation of Landfill Performance Version 3.07 ("HELP") computer modeling program. This analysis was performed to provide base data for the evaluation of the final cover drainage layer.

Design Criteria and Assumptions

HELP Model Version 3.07 Input:

- 1. Temperature, precipitation, and solar radiation data can be default data, user input or synthetically generated by the HELP Model. Synthetically generated temperature, and solar radiation data for East Lansing, Michigan and synthetically generated precipitation data for Detroit, Michigan were used to simulate site weather conditions.
- 2. Geomembrane liner pinhole density and size were assumed to account for possible manufacturing defects during geomembrane production. The HELP Model User's Guide for Version 3.07 states that the pinhole density for a typical geomembrane is 0.5 to 1 pinhole per acre. The pinhole density at the upper end of the recommended range, or one hole per acre was assumed. The diameter of the hole was assumed to be 1 mm, therefore the area of the hole was 0.008 cm².
- 3. The placement quality for the geomembrane liner was assumed to be "good." According to the HELP Model User's Guide for Version 3.07, a "good" placement quality "assumes good field installation with well-prepared, smooth soil surface and geomembrane wrinkle control to insure good contact between geomembrane and adjacent soil that limits drainage rate."
- 4. The installation defects for the geomembrane liner were assumed to be four holes per acre. The area of the hole is 1 cm².
- 5. Various final cover slopes and drainage lengths will be present on the final cover. To provide conservative results and simplify the analysis, the maximum and minimum slopes are considered. To be conservative the maximum slope length for each slope is used in the analysis. The final cover slopes and flow paths used in the HELP model are as follows:
 - a. 4% Minimum Slope top area: 305 ft.
 - b. 25% Maximum Slope sideslopes: 196 ft.
- 6. Two cover scenarios were analyzed for the 4% top slope and two for the 25% sideslopes. The cover scenarios are described in Tables 1 through 4.
- 7. The initial moisture content of the soil layers were calculated by the HELP Model to be nearly steady state (i.e., the HELP Model automatically generates the initial moisture content for each layer based on weather inputs and layer data).

Page 2 Of 5

		Project No. 60134827	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/5/11</u>
Renewal Application		Approved By DFP	Date <u>5/6/11</u>

- 8. An assumed 1-acre unit design area was used for modeling purposes to compute unit quantities.
- 9. As presented in Table 5 of this appendix, soil layers were modeled using HELP Model default soil characteristics (porosity, field capacity, wilting point and saturated hydraulic conductivity).
- 10. When present, the compacted clay component of the final cover was assumed to have a maximum hydraulic conductivity of 1×10^{-7} cm/sec.
- 11. Final Cover Condition Inputs:
 - a. Fair grass conditions
 - b. Evaporative zone depth = 20 inches (recommended by the HELP Model for fair grass conditions for East Lansing, Michigan)
 - c. Maximum leaf area index = 2.0 (recommended by the HELP Model for fair grass conditions)
 - d. Fraction of area allowing run-off = 100 percent
 - e. Run-off curve number = calculated by HELP model based on soil types and slope information input.
 - f. Length of model run = 30 years (chosen to allow for more representative average values).
- 12. The HELP model does not allow the modeling of two "barrier" layers adjacent to one another. To overcome this software limitation, the GCL is modeled as a vertical percolation layer.
- 13. The use of geotextiles does not affect infiltration in the HELP model and therefore geotextiles are not included in the analysis.
- 14. A geocomposite with a 250 mil geonet is assumed. An effective hydraulic conductivity of 0.0293 m/s will be used for the assumed geocomposite drainage layer as calculated in the Geocomposite Capacity Analysis provided in Attachment 1.
- 15. The 4 percent top slope area drainage layer discharges to the diversion berms.

		Page <u>3</u> Of	5
		Project No. 60134827	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/5/11</u>
Renewal Application		Approved By DFP	Date <u>5/6/11</u>

HELP MODEL GENERAL LAYOUT

Table 1: 4% Top Slope, Cover A - HELP Model Layout

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\downarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\rightarrow	18 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	0.25 inches	2.93 cm/sec	geonet/#46
(4)geomembrane liner	\rightarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5) GCL	\rightarrow	0.25 inches	3.0 x 10 ⁻⁹ cm/sec	GCL/#17
(6)barrier soil liner	\rightarrow	12 inches	1.0 x 10 ⁻⁷ cm/sec	barrier layer/#16

Table 2: 4% Top Slope, Cover B - HELP Model Layout

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\downarrow	6 inches	1.2x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\rightarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	12 inches	5.8 x 10 ⁻³ cm/sec	sand/#2
(4)geomembrane liner	\rightarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5)barrier soil liner	\rightarrow	36 inches	1.0 x 10 ⁻⁵ cm/sec	barrier layer/#16

Table 3: 25% Side Slope, Cover A - HELP Model Layout

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\downarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\downarrow	18 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	0.25 inches	2.93 cm/sec	geonet/#46
(4)geomembrane liner	\downarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5)barrier soil liner	\rightarrow	36 inches	1.0 x 10 ⁻⁷ cm/sec	barrier layer/#16

Table 4:	25% Top	Slope,	Cover	B - HELI	P Model Layout
----------	---------	--------	-------	-----------------	----------------

(Layer Number) Layer Description	Flow	Thickness	Saturated Hydraulic Conductivity	Soil Type/ Texture Number
(1)vertical percolation	\rightarrow	6 inches	1.2 x 10 ⁻⁴ cm/sec	topsoil/#10
(2)vertical percolation	\rightarrow	18 inches	1.2 x 10 ⁻⁴ cm/sec	protective soil/#10
(3)lateral drainage	\rightarrow	0.25 inches	2.93 cm/sec	geonet/#46
(4)geomembrane liner	\rightarrow	0.06 inch	4.0 x 10 ⁻¹³ cm/sec	geomembrane/#36
(5) GCL	\rightarrow	0.25 inches	3.0 x 10 ⁻⁹ cm/sec	GCL/#17
(6)barrier soil liner	\rightarrow	12 inches	1.0 x 10 ⁻⁷ cm/sec	barrier layer/#16

Of

Page 4

5

		Project No. 60134827	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Plant Landfill	Infiltration Evaluation	Reviewed By NKW	Date <u>5/5/11</u>
Renewal Application		Approved By DFP	Date <u>5/6/11</u>

Table 5: Soil Texture Properties

Soil	Soil Classification		
Texture No.	USDA	USCS	Comments, Properties, and Uses
2	S		HELP Model default parameter to model drainage sand. The effective saturated hydraulic conductivity = 5.8×10^{-3} cm/sec.
10	SCL	SC	Assumed HELP model default soil to model the topsoil and vegetative support soil.
16	C Clay	CH Clay	HELP Model default parameter for a barrier soil. This soil was modeled for the compacted clay layer. This soil type was used based on an effective saturated hydraulic conductivity = 1×10^{-7} cm/sec.
17			HELP Model default parameter for a bentonite mat, used to model the GCL. The effective saturated hydraulic conductivity = $3x10^{-9}$ cm/sec
36			HELP Model default parameters for the LLDPE geomembrane, used to model the 60-mil VLDPE geomembrane in the final cover. Effective saturated hydraulic conductivity of the geomembrane is $4x10^{-13}$ cm/sec.
46			Based on the HELP Model default parameter for a drainage net, used to model the geocomposite drainage layer. The effective saturated hydraulic conductivity of the default parameter has been modified to 2.93 cm/sec.

NOTE: All soil properties are defaults of HELP Model, Version 3.07.

Calculations

HELP Model output files are provided in Attachments 2 and 3 for the 4% Top Slope and Attachments 4 and 5 for the 25% Side Slope. Summaries of HELP Model results for peak daily values are provided in Table 6. Peak daily values are presented in the HELP Model output file in both inches per day and cubic feet per day. These results are equivalent but presented in different units.

The drainage collected from the drainage layer is also the geocomposite surface water impingement rate. The HELP model presents the drainage collected in inches per day, a sample conversion to meters per second is provided below.

Sample Conversion: 1 inch/day x 1 day/86,400 sec x 1 inch/0.0254 meters = 4.56×10^{-4} m/s

		Project No. <u>60134827</u>	
Client DOW Corning Corp.	Subject Final Cover	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Plant Landfil	Infiltration Evaluation	Reviewed By NKW	Date <u>5/5/11</u>
Renewal Application		_ Approved By _DFP	Date <u>5/6/11</u>

Page

5

Of

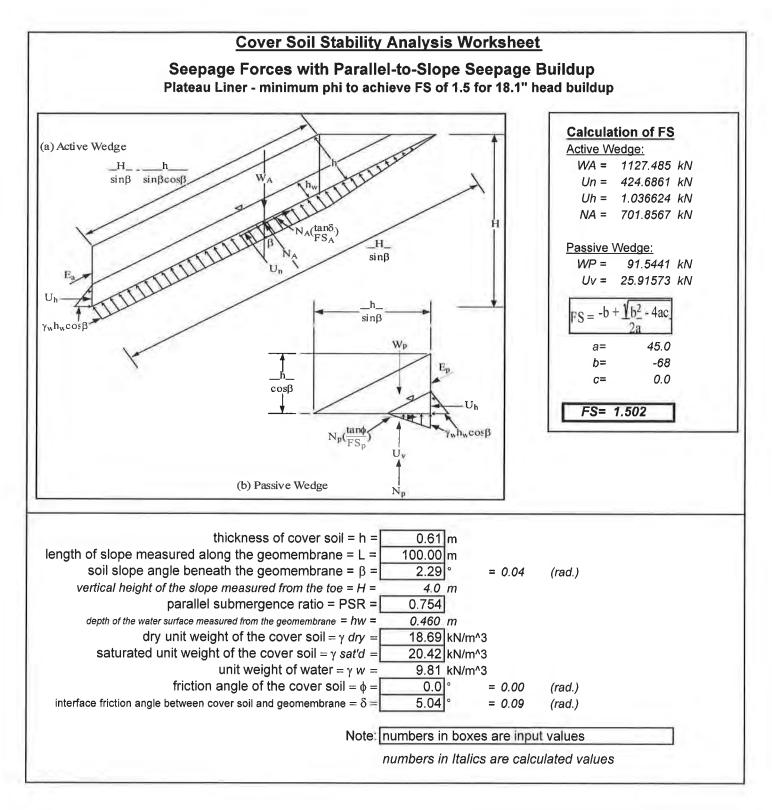
5

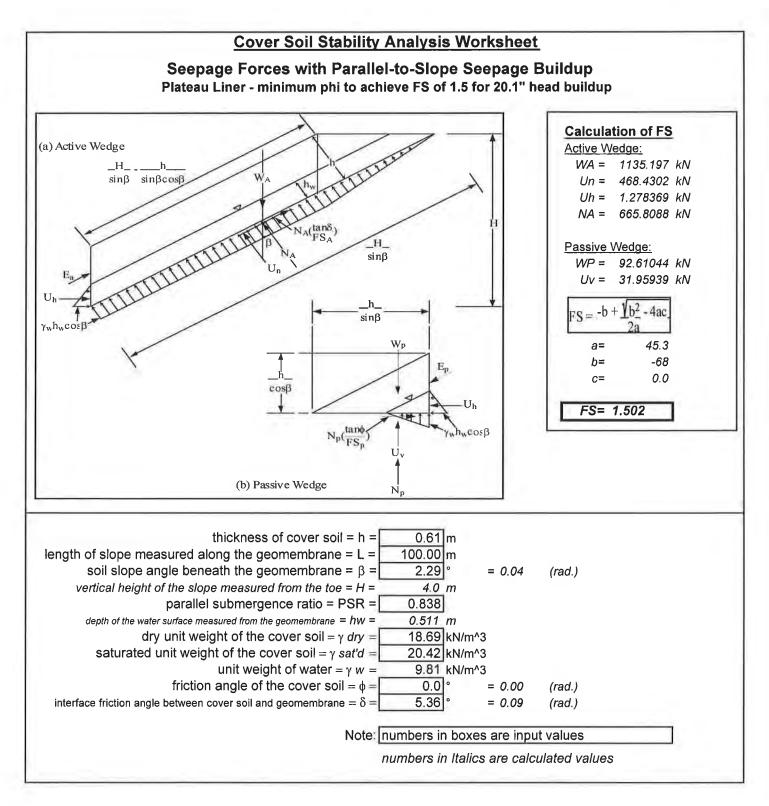
Table 6: Peak Daily Values

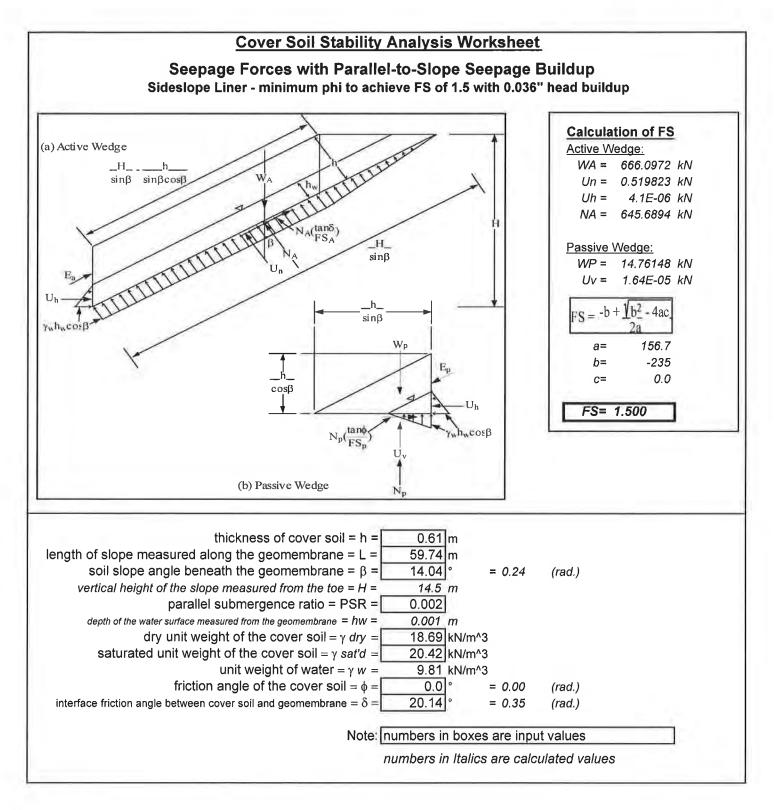
	4 Top Slope		25% Side Slope	
	Cover A	Cover B	Cover A	Cover B
Drainage collected from drainage layer - Impingement Rate (inches/day)	0.54474	0.04996	0.71355	0.71355
Drainage collected from drainage layer - Impingement Rate (meters/second)	0.000248	2.28E-05	0.000325	0.000325
Head in drainage layer (inches)	18.108	20.098	0.036	0.036

Conclusions

As shown in Table 6, the surface water infiltration rate (impingement rate) to the drainage layer and the liquid head in the drainage layer varies based on the cover option and slope. These values were used for the stability analysis and design of the final cover drainage system.


References


Schroeder, P.R., Dozier, T.S., Zappi, P.A., McEnroe, B.M., Sjostrom, J.W., and Peyton, R.L., 1994. "The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3," EPA/600/9-94/xxx, U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, Ohio


L:\work\60134827\ENG\WASTE\HELP Model-Cover\Final 5-5-11\Cover Infl Eval Rev3.docx

ATTACHMENT 2

STABILITY WORKSHEETS (REFERENCE 1)

CLIENT: Dow Corning PROJECT: Midland Facility SUBJECT: Global Stability Analysis

PAGE	1	OF	3
PROJEC	T NO.		60134827
Prepared By _	BPS	Date	04/05/11
Reviewed By			04/05/11
Approved By		Date	

TASK

Evaluate the global stability of the Dow Corning Midland Facility at final buildout (closure).

REFERENCES

- 1. Drawing Y1-36615 "Closure Plan for Hazardous Waste Landfill Final Topography", by W.A. Kibbe & Associates, revised 4 January 2010
- 2. Figure B3-2 "Topography, Cross Section Traces and Locations of Wells and Boring" from Module B3 Revision 2 (March 2010).
- 3. Appendix B3-2 "Logs of Wells and Borings: Dow Corning Facility" from Module B3 Revision 2 (March 2010).
- 4. "Summary Report Quality Assurance Testing" by Samtest, Inc., dated 6 February 1981 (perimeter clay barrier construction).
- 5. Table A11-2 "Native Clay Test Results" from Module A11 Revision 2 (March 2010).
- 6. "Principles of Geotechnical Engineering", B.Das, PWS Publishers 1985.
- 7. "Principles of Foundation Engineering, Second Edition", B.Das, PWS-Kent Publishing Company, 1990.

METHODOLOGY

The computer program GeoSlope was used to perform the stability analyses. GeoSlope is based on the program STABL4, developed by Purdue University for the Federal Highway Administration. The simplified Bishop Method for circular arc failure surfaces was used to perform the analysis. The GeoSlope program searches until it finds the surface that produces the lowest factor of safety. This surface is the potential failure surface.

One (1) cross-section was selected to evaluate the global stability of the Midland Facility. The location of the cross-section is shown on the attached Figure S1. Cross-Section A-A was chosen because it represents a worst-case scenario taken through the longest uninterrupted 4H:1V slope and nearly the peak height of refuse.

An analysis of veneer stability of the final closure cap geosynthetics is not included with these calculations and is presented within a separate calculation brief.

ASSUMPTIONS

- 1. Soil parameters were interpreted from references 3 through 7.
- 2. As the composition of the in-place industrial waste is unknown, a parametric analysis was performed using a range of unit weights and internal shear characteristics that represent industrial waste and C&D waste with little recycling to waste streams in which metals and uncontaminated material are reclaimed/recycled. The unit weights selected to represent this range are 60pcf and 100pcf. As internal shear strength varies dependent on waste type, compaction, uniformity, etc., several values of friction (phi) were evaluated while cohesion (c) was conservatively neglected.

PROJECT: Midland Facility

Dow Corning

CLIENT:

CALCULATION SHEET

SUBJECT: Global Stability Analysis

2	OF	3
T NO.	_	60134827
BPS	Date	04/05/11
ΤW		04/05/11
	Date	
	t no. BPS TW	T NO. BPS Date TW Date

3. For these calculations, final cover soil was assumed to be constructed of re-compacted native clay soils, which are assumed to be stiff with a cohesion value of c = 1,000 psf. The frictional component of shear strength is assumed to equal "0". Unit weight was estimated assuming re-compaction of native clay to 90% maximum dry density at optimum moisture content as:

Unit weight = $0.90 \times 119 \text{ pcf} \times 1.143 = 122 \text{ pcf}$

4. Clay "curtain wall" and base liner are assumed to be constructed of native clay (reference 4) re-compacted to 95% maximum dry density at optimum moisture content. Shear strength parameters are identical to assumption 3 while unit weight was estimated as:

Unit weight = $0.95 \times 134 \text{ pcf} \times 1.087 = 138 \text{ pcf}$

- 5. Native soil thicknesses and depth to groundwater were estimated from borings 86B, DMW8, DMW5, 800-002. and 1000-99 from reference 3.
- 6. The native clay thickness ranges from 15 to 40-ft thick in the area of Cross-Section A-A. Clay parameters are assumed to be consistent with reference 5 and correlations form references 6 and 7. Shear strength parameters are identical to assumption 3. Unit weight is estimated based on reference 5 as:

Unit weight = 119 pcf x 1.156 = 138 pcf

7. The native silty sand thickness ranges from 5 to 15-ft thick in the area of Cross-Section A-A. Sand parameters are assumed. Review of the boring logs indicates an average standard penetration number of 6. Per Table 13.5 of reference 6, this is indicative of a sandy soil with an angle of friction (phi) = 29°. The cohesion component of shear strength is assumed to equal 0. Unit weight is assumed based on Table 1.3 of reference 7 as based on loose silty sand. Unit weight was estimated as:

Unit weight = 102 pcf x 1.25 = 128 pcf

- 8. The elevation of groundwater was measured at an elevation of 3-ft to 10-ft below grade for the borings in the vicinity of Cross Section A-A. An average elevation of 625 was assumed within the silty sand layer from station 0+00 to the intercept with the perimeter clay barrier. Then the groundwater was assumed to follow the base of recompacted clay.
- 9. The Facility is not within a seismic impact zone. According to the USEPA, "if the maximum horizontal acceleration is less than or equal to 0.1g, then the design of the unit will not have to incorporate an evaluation of seismic effects unless the facility will be situated in an area with low strength foundation soils or soils with potential for liquefaction" (USEPA, 1993). Neither of these conditions exists at the Facility and, therefore, a seismic analysis is not required.
- 10. Circular failure surfaces are not extended into the glacial till layer assumed to coincide with an average elevation 597 at top of the "gravelly" clay layer from the boring logs.

CLIENT: Dow Corning PROJECT: Midland Facility SUBJECT: Global Stability Analysis

 PAGE
 3
 OF
 3

 PROJECT NO.
 60134827

 Prepared By
 BPS
 Date
 04/05/11

 Reviewed By
 TW
 Date
 04/05/11

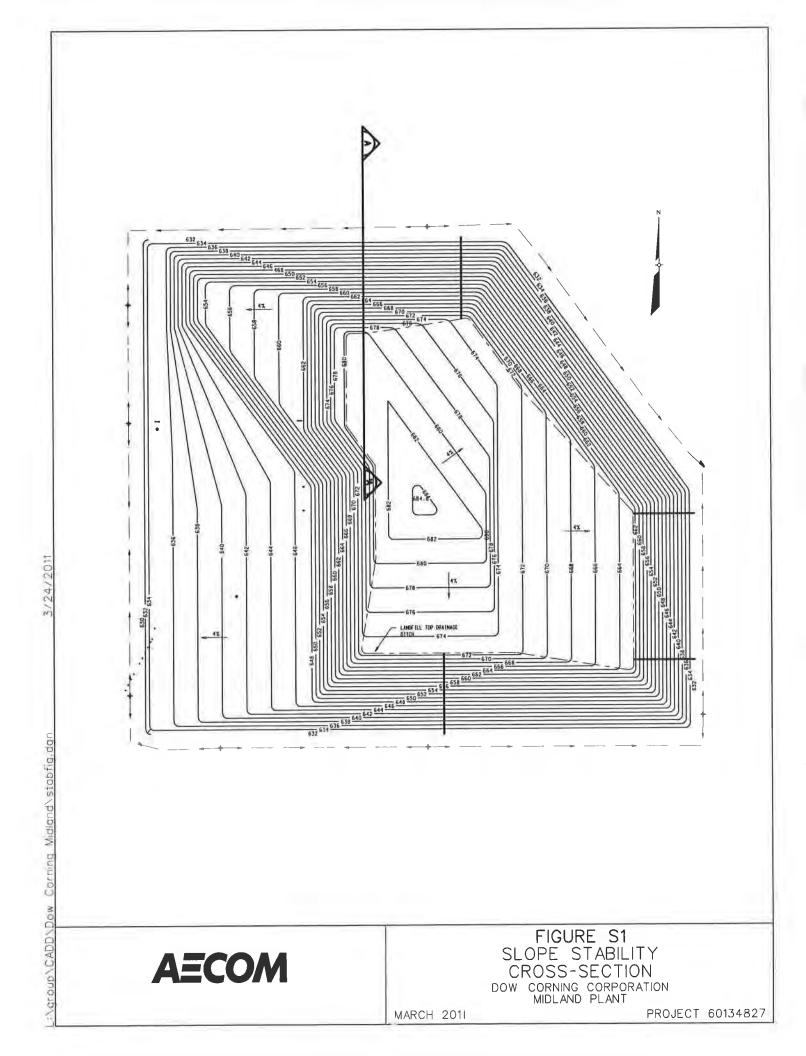
 Approved By
 Date

Summary of Soil Parameters

Soil Type No.	Component	Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
1	Final Cover	122	0	1,000
2	Compacted Refuse	60	25	0
			30	0
			35	0
		100	25	0
			30	0
			35	0
3	Re-compacted Clay	138	0	1,000
4	Native Clay	138	0	1,000
5	Native Sand	128	29	0

RESULTS

The GeoSlope output is attached for the global circular failure analyses. The results for Cross-Section A-A are summarized below.


Waste Unit Weight (pcf)	Waste Friction Angle (degrees)	Waste Cohesion (psf)	Static Factor of Safety
60	25	0	2.21
	30	0	2.34
	35	0	2.47
100	25	0	1.53
	30	0	1.63
	35	0	1.74

CONCLUSIONS

Generally, a factor of safety of 1.5 or greater is considered stable for the static condition.

Based on the assumptions for the subsurface soils and the parametric analysis for waste unit weight and internal shear strength, the long-term static factor of safety exceeds 1.5.

CROSS-SECTIONS LOCATION PLAN

CROSS-SECTION A-A STATIC CIRCULAR ANALYSIS $\gamma_{\text{waste}} = 60 \text{ pcf}$ $\Phi_{\text{waste}} = 25^{\circ}$

	DCMA1.OUT	
*******	***************************************	אל אד אל אל אל אל אל אל אל
****	GeoSlope	*****
* * * * *	Version 5.10	****
****		****
***	(c) 1992 by GEOCOMP Corp Concord MA	****
****	(c)1992 by GEOCOMP Corp, Concord, MA Licensed to RUST	*****
	***************************************	******
Problem Title Description Remarks	: Dow Corning Midland Facility : Slope Stability Cross-Section A-A' : Waste unit weight 60pcf, Waste phi=25	
*****	***************************************	******
****	TNPUT DATA	*****
*********	***************************************	****

Profile Boundaries

Number of Boundaries : 29 Number of Top Boundaries : 13

	· · · ·				
Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	0.00 119.79 141.79 169.60 173.60 195.79 199.79 207.98 387.79 451.02 639.94 674.77 199.79 387.79 451.02 639.94 674.77 205.79 387.79 451.02 639.94 674.77 205.79 387.96 307.96 199.80 0.00 90.000 211.96 217.96 307.96	628.00 628.38 628.38 628.00 626.00 632.00 633.00 635.05 680.00 675.50 675.50 675.50 675.00 675.80 675.80 675.80 675.50 675.400 675.400 675.400 628.000 622.000 622.000 621.000 621.000 617.50 617.84	$\begin{array}{c} 119.79\\ 141.79\\ 169.60\\ 173.60\\ 177.60\\ 195.79\\ 199.79\\ 207.98\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 199.80\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 205.79\\ 387.96\\ 300.00\\ 300.00\\$	628.38 628.00 626.00 628.00 632.00 633.00 635.05 680.80 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 670.50 670.50 670.50 670.50 620.00 621.00 621.00 621.00 621.84 616.35	5555551111115322222333544444

Soil Parameters

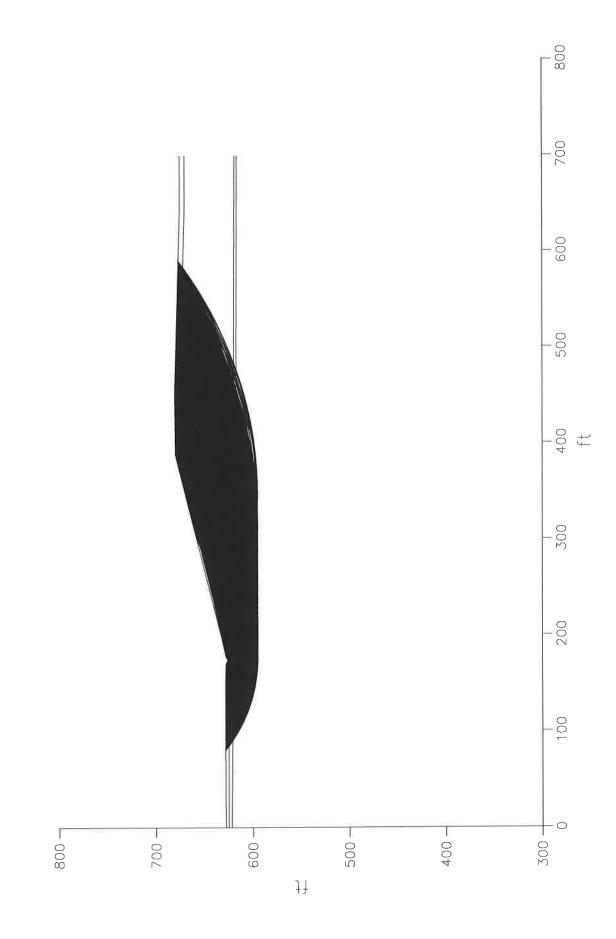
Number of Soil Types : 5

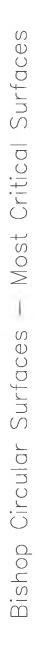
Soil	Unit Wt.	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type		Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.		(pcf)	(psf)	(deg)	Param.	(psf)	No.
1 2 3 4 5	122.0 60.0 138.0 138.0 128.0	122.0 60.0 138.0 138.0 128.0	$1000.0 \\ 0.0 \\ 1000.0 \\ 1000.0 \\ 0.0 \\ 0.0$	0.0 25.0 0.0 0.0 29.0	0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	0 0 0 0 0

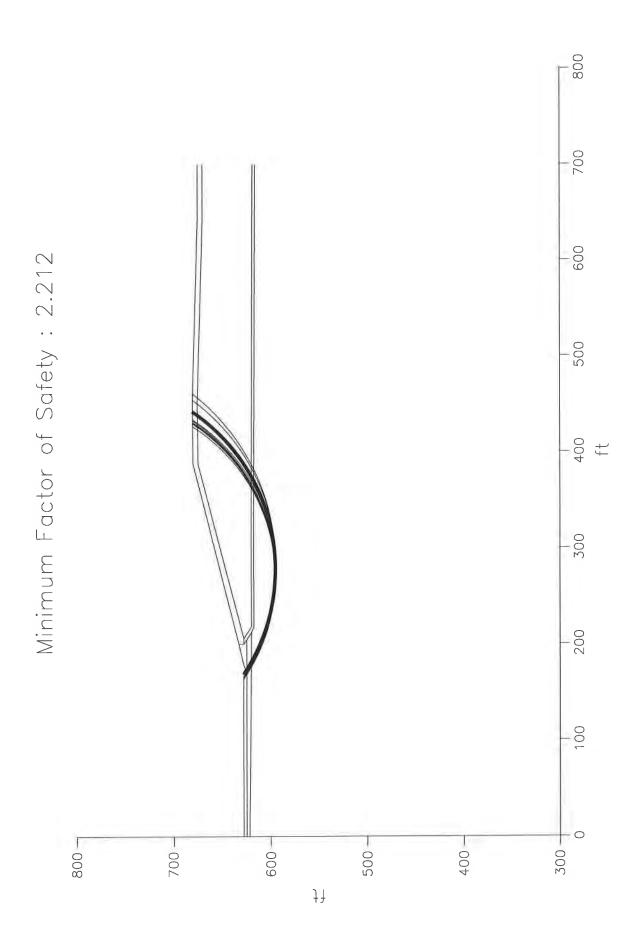
Piezometric Surfaces

Number of Sur Unit Weight of N	faces : 1 Water : 62.40	DCMA1.	OUT
Piezometric Sur Number of Coord		: 6	
Point No.	X-Water (ft)	Y-Water (ft)	
1 2 3 4 5 6	0.00 204.35 211.96 217.96 307.96 700.00	625.00 625.00 620.00 617.50 617.84 616.35	
****	TRIAL SUR	FACE GENERAT	**************************************
Data for Generating Cir	cular Surface	S	
Number o	f Initiation	Points : 100	

NUMBER OF INITIATION POINTS		100
Number of Surfaces From Each Point	:	100
Left Initiation Point	:	80.00 ft
Right Initiation Point	:	200.00 ft
Left Termination Point	:	300.00 ft
Right Termination Point	:	590.00 ft
Minimum Elevation	:	595.00 ft
Segment Length	:	5.00 ft
Positive Angle Limit	:	0.00 deg
Negative Angle Limit	:	0.00 deg


*******	************	******
****	RESULTS	****
******	***************************************	*************


Critical Surfaces


NO.	Safety Factor	Center X (ft)	Center Y (ft)	Circle Radius (ft)
1 2 3 4 5 6 7 8 9 10	2.212 2.215 2.215 2.216 2.220 2.223 2.223 2.223 2.225 2.226 2.228	278.15 273.01 283.43 276.29 272.42 274.68 272.60 270.98 269.49 284.25	795.20 781.71 808.28 783.83 789.15 783.56 785.28 786.37 783.33 820.56	199.94 186.54 213.20 188.33 193.70 187.38 189.26 190.59 187.90 225.27

D

CROSS-SECTION A-A STATIC CIRCULAR ANALYSIS $\gamma_{\text{waste}} = 60 \text{ pcf}$ $\Phi_{\text{waste}} = 30^{\circ}$

	DCMA2.OUT	
******	***************************************	********************
****	GeoSlope	*****
****	Version 5.10	****
* * * * *		****
****	(c)1992 by GEOCOMP Corp. Concord	. MA *****
****	(c)1992 by GEOCOMP Corp, Concord Licensed to RUST	*****
****	***************************************	
	v Corning Midland Facility ope Stability Cross-Section A-A' ste unit weight 60pcf, Waste phi=30	
**********	***************	***********
* * * * *	INPUT DATA	te te te te

* * * * *	INPUT DATA	77 77 77 77 77
********	********************************	********

Profile Boundaries

Nur	nber	of '	Boundaries	:	29
Number	of	тор	Boundaries	:	13

X-Left (ft) 0.00	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
0.00				
119.79141.79169.60173.60177.60195.79199.79207.98387.79451.02639.94674.77199.79199.80205.79387.79451.02639.94674.77205.79217.96307.96199.800.00	628.00 628.38 628.00 628.00 628.00 632.00 633.00 635.05 680.80 675.50 675.50 628.00 628.00 675.50 675.50 675.50 675.50 628.00 675.00 675.00 628.00 670.50 628.00 620.00 620.00 620.00 620.00 620.00 621.00	$\begin{array}{c} 119.79\\ 141.79\\ 169.60\\ 173.60\\ 177.60\\ 195.79\\ 199.79\\ 207.98\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 199.80\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 205.79\\ 387.99\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 217.96\\ 307.96\\ 700.00\\ 211.96\\ 90.00\\ 211.96\end{array}$	628.38 628.00 626.00 628.00 632.00 633.00 635.05 680.00 675.50 675.50 675.50 675.50 675.00 675.80 675.80 675.50 675.00 675.00 628.00 675.00 675.00 670.50 670.50 670.50 620.00 621.00 620.00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
211.96 217.96 307.96	620.00 617.50 617.84	217.96 307.96 700.00	617.50 617.84 616.35	4 4 4
	$\begin{array}{c} 119.79\\ 141.79\\ 169.60\\ 173.60\\ 177.60\\ 195.79\\ 199.79\\ 207.98\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 199.79\\ 199.80\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 205.79\\ 307.96\\ 199.80\\ 0.00\\ 90.00\\ 211.96\\ 217.96\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Soil Parameters

Number of Soil Types : 5

	Unit Wt.		Cohesion Intercept (psf)		Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1 2 3 4	$122.0 \\ 60.0 \\ 138.0 \\ 138.0$	122.0 60.0 138.0 138.0	$1000.0 \\ 0.0 \\ 1000.0 \\ 1000.0$	0.0 30.0 0.0 0.0 Page 1	0.00 0.00 0.00 0.00	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0 0 0 0

				DCMA2.OL	л		
5	128.0	128.0	0.0	29.0	0.00	0.0	0

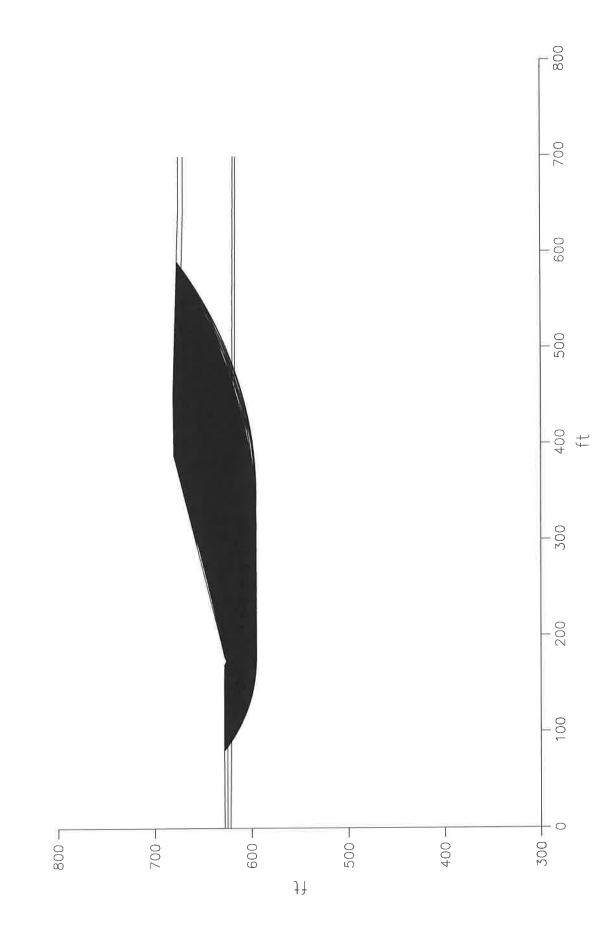
Piezometric Surfaces

•

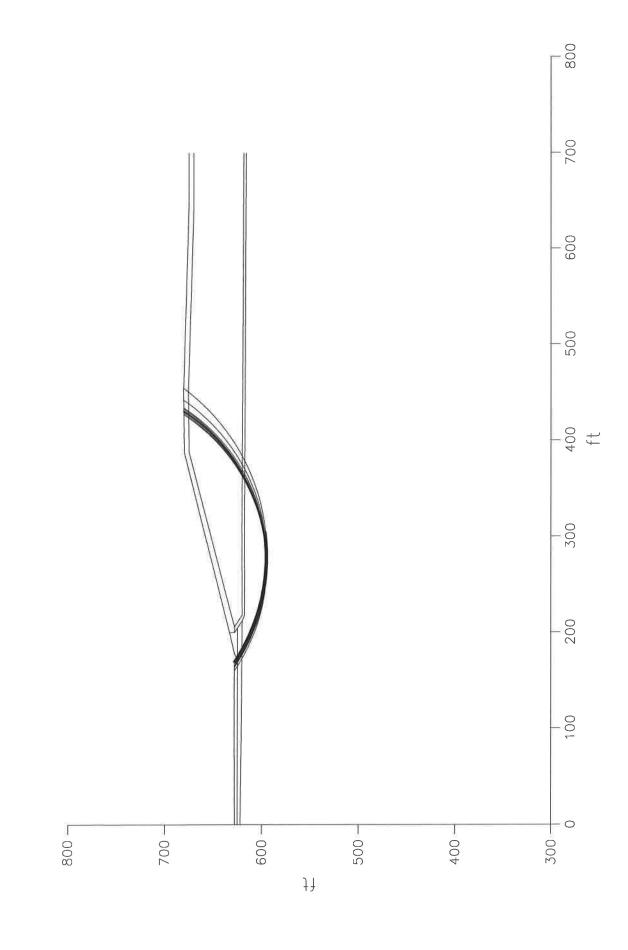
Number of Surf Unit Weight of V) pcf	
Piezometric Surf Number of Coordi		: 6	
Point No.	X-Water (ft)	Y-Water (ft)	
1 2 3 4 5 6	0.00 204.35 211.96 217.96 307.96	625.00 625.00 620.00 617.50 617.84	
ő	700.00	616.35	
******	*******	*******	***********
*****	TRIAL SUF	RFACE GENERA	.TION ***** *******************************

Data for Generating Circular Surfaces

Number of Initiation Points	:	100
Number of Surfaces From Each Point	:	100
Left Initiation Point	:	80.00 ft
Right Initiation Point	:	200.00 ft
Left Termination Point	:	300.00 ft
Right Termination Point	:	590.00 ft
Minimum Elevation	2	595.00 ft
Seament Lenath	1	5.00 ft
Positive Anale Limit	:	0.00 deg
Negative Angle Limit	:	0.00 deg


******	***************	**********
****	RESULTS	*****

Critical Surfaces


No.	Safety Factor	Center X (ft)	Center Y (ft)	Circle Radius (ft)
1 2 3 4 5 6 7 8 9 10	2.339 2.339 2.342 2.344 2.345 2.351 2.351 2.351 2.351 2.351 2.351 2.351	278.15 273.01 276.29 283.43 272.42 272.60 269.49 274.68 270.98 267.94	795.20 781.71 783.83 808.28 789.15 785.28 783.33 783.56 786.37 788.06	199.94 186.54 188.33 213.20 193.70 189.26 187.90 187.38 190.59 192.94

Π

Bishop Circular Surfaces - Most Critical Surfaces

CROSS-SECTION A-A STATIC CIRCULAR ANALYSIS $\gamma_{\text{waste}} = 60 \text{ pcf}$ $\Phi_{\text{waste}} = 35^{\circ}$

بالوجاد والرجاد والرجاد والرجاد والرجاد والرجاد والرجاد	DCMA3.OUT	***
*****		****
	GeoSlope	*****
****	Version 5.10	
****		****
****	(c)1992 by GEOCOMP Corp, Concord, MA	****
***	(c)1992 by GEOCOMP Corp, Concord, MA Licensed to RUST	****
*******	************	********

Problem Title : Dow Corning Midland Facility Description : Slope Stability Cross-Section A-A' Remarks : Waste unit weight 60pcf, Waste phi=35

*****	********	******
****	INPUT DATA	****
******	*****************************	******

Profile Boundaries

	Boundaries		
Number of Top	Boundaries	:	13

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 5 26 27 28	$\begin{array}{c} 0.00\\ 119.79\\ 141.79\\ 169.60\\ 173.60\\ 177.60\\ 195.79\\ 199.79\\ 207.98\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 199.79\\ 199.80\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 205.79\\ 217.96\\ 307.96\\ 199.80\\ 0.00\\ 90.00\\ 211.96\\ 217.96\end{array}$	$\begin{array}{c} 628.00\\ 628.38\\ 628.38\\ 628.00\\ 626.00\\ 628.00\\ 632.00\\ 633.00\\ 635.05\\ 680.00\\ 635.05\\ 680.00\\ 635.05\\ 680.00\\ 635.05\\ 675.50\\ 675.50\\ 675.50\\ 675.50\\ 675.80\\ 670.50\\ 670.50\\ 670.50\\ 628.00\\ 620.00\\ 620.00\\ 621.00\\ 621.00\\ 620.00\\ 621.00\\$	$\begin{array}{c} 119.79\\ 141.79\\ 169.60\\ 173.60\\ 177.60\\ 195.79\\ 199.79\\ 207.98\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 199.80\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 205.79\\ 387.79\\ 451.02\\ 639.94\\ 674.77\\ 700.00\\ 217.96\\ 307.96\\ 700.00\\ 211.96\\ 90.00\\ 211.96\\ 307.96\\ 307.96\end{array}$	$\begin{array}{c} 628.38\\ 628.38\\ 628.00\\ 626.00\\ 628.00\\ 632.00\\ 633.00\\ 635.05\\ 680.80\\ 675.50\\ 675.50\\ 675.50\\ 675.50\\ 628.00\\ 675.80\\ 670.50\\ 670.50\\ 670.50\\ 670.50\\ 620.00\\ 620.34\\ 618.85\\ 620.00\\ 621.00\\ 621.00\\ 621.00\\ 621.84\end{array}$	5555551111115322222333354444
29	307.96	617.84	700.00	616.35	4

Soil Parameters

Number of Soil Types : 5

			Cohesion				
Туре	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
NO.	(pcf)	(pcf)	(psf)	(dēg)	Param.	(psf)	No.

	DCMA3.OUT							
1 122.0 122.0 1000.0	0.0 0.00 0.0 0							
2 60.0 60.0 0.0	35.0 0.00 0.0 0							
3 138.0 138.0 1000.0	0.0 0.00 0.0 0							
4 138.0 138.0 1000.0	0.0 0.00 0.0 0							
5 128.0 128.0 0.0	29.0 0.00 0.0 0							

Piezometric Surfaces

Number of Surfaces : 1 Unit Weight of Water : 62.40 pcf

Piezometric Surface No. : 1 Number of Coordinate Points : 6

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	0.00	625.00
2	204.35	625.00
3	211.96	620.00
4	217.96	617.50
5	307.96	617.84
6	700.00	616.35

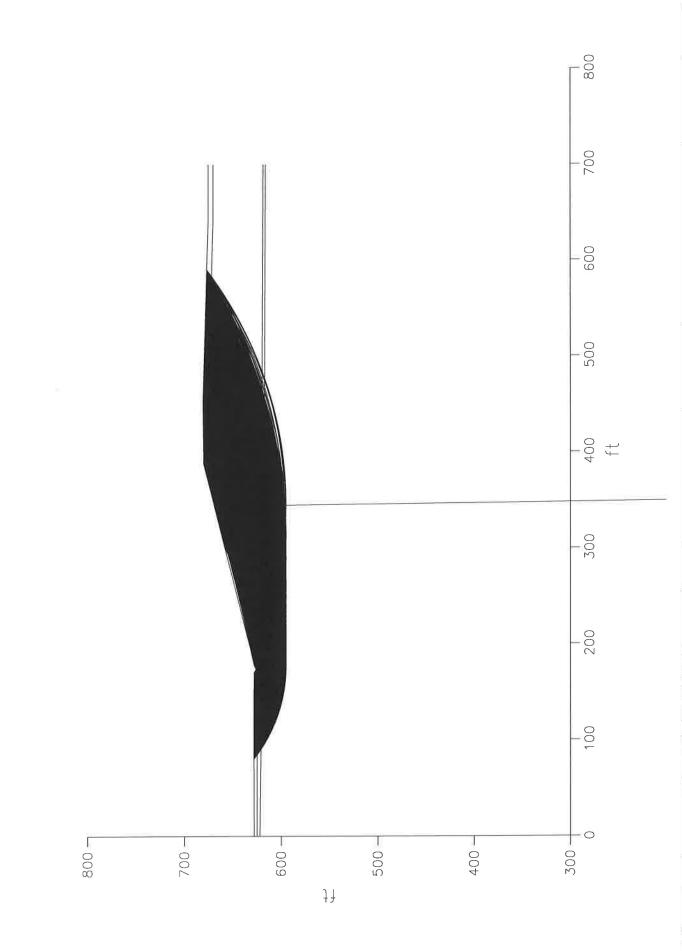
*******	*****************	*******
****	TRIAL SURFACE GENERATION	****
*****	***************************************	******

Data for Generating Circular Surfaces

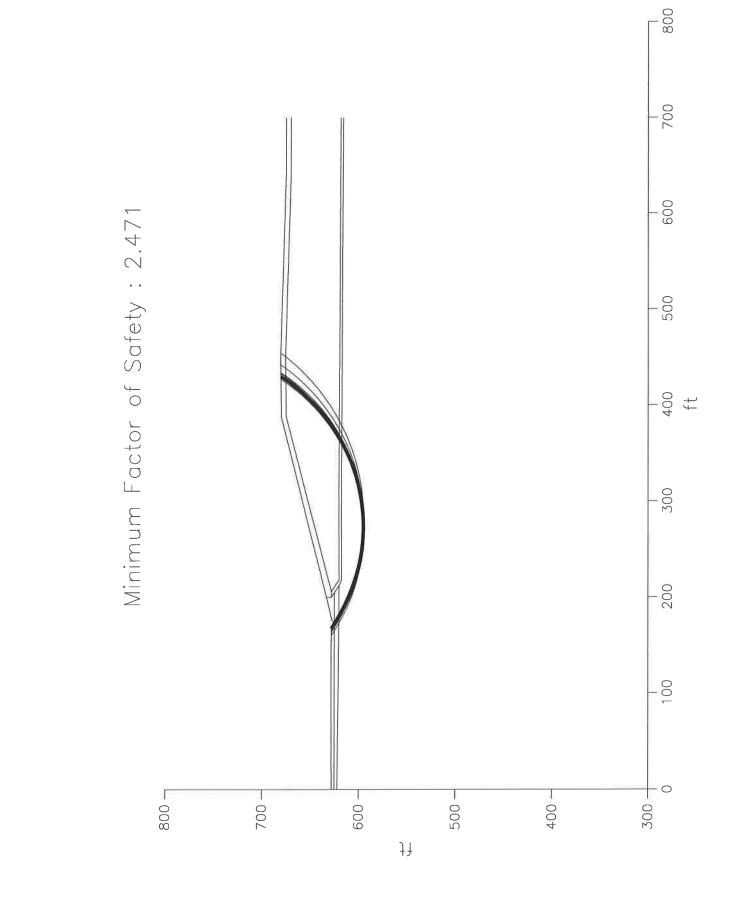
Number of Initiation Points : Number of Surfaces From Each Point : Left Initiation Point : Right Initiation Point : Left Termination Point : Right Termination Point :	100 80.00 ft 200.00 ft 300.00 ft 590.00 ft
Minimum Elevation :	595.00 ft
Segment Length :	5.00 ft
Positive Angle Limit 🗧	0.00 deg
Negative Angle Limit :	0.00 deg

*****	RESULTS	****			
*******	***************************************	******			

Critical Surfaces


No -	Safety Factor	Center X (ft)	Center Y (ft)	Circle Radius (ft)
1 2 3 4 5 6 7 8	2.471 2.474 2.476 2.480 2.482 2.484 2.484 2.486 2.487	273.01 278.15 276.29 272.42 283.43 269.49 270.98 272.60	781.71 795.20 783.83 789.15 808.28 783.33 786.37 785.28	186.54 199.94 188.33 193.70 213.20 187.90 190.59 189.26 age 2

			DCM	IA3.OUT
9	2.488	274.68	783.56	187.38
10	2.491	267.94	788.06	192.94


2

П

Bishop Circular Surfaces — Most Critical Surfaces

CROSS-SECTION A-A STATIC CIRCULAR ANALYSIS $\gamma_{\text{waste}} = 100 \text{ pcf}$ $\Phi_{\text{waste}} = 25^{\circ}$

	DCMA4.OUT	
***********	*************************	*****
*****	GeoSlope	****
****	Version 5.10	****
****		*****
****	(c)1992 by GEOCOMP Corp. Concord. MA	*****
****	(c)1992 by GEOCOMP Corp, Concord, MA Licensed to RUST	*****
******	***************************************	*****
Problem Title	: Dow Corning Midland Facility	
Description	: Dow Corning Midland Facility : Slope Stability Cross-Section A-A' : Waste unit weight = 100 pcf, Waste phi = 25	
Remarks	: waste unit weight = 100 pcf . Waste phi = 25	
Kellur K5	, waste unit wergine - 100 pert, waste pin - 15	

*******	**************	*******************
* * * * *	INPUT DATA	****
*******************	**********	**********

Profile Boundaries

Number of Number of Top	Boundaries Boundaries				
Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	0.00 119.79 141.79 169.60 173.60 177.60 195.79 207.98 387.79 451.02 639.94 674.77 199.79 199.80 205.79 387.79 451.02 639.94 674.77 199.79 199.80 205.79 387.79 451.02 639.94 674.77 199.79 199.80 205.79 387.79 451.02 639.94 674.77 205.79 307.96 199.80 0.00 90.00 211.96 307.96	628.00 628.38 628.38 628.00 626.00 632.00 633.00 635.05 680.00 675.50 675.50 673.00 628.00 628.00 675.80 670.50 670.50 670.50 670.50 628.00 620.00 622.00 622.00 622.00 621.00 621.00 627.50 617.50 617.84	119.79 141.79 169.60 173.60 177.60 195.79 199.79 207.98 387.79 451.02 639.94 674.77 700.00 199.80 205.79 387.79 451.02 639.94 674.77 700.00 215.79 387.79 451.02 639.94 674.77 700.00 217.96 307.96 700.00 211.96 90.00 211.96 307.96 700.00	$\begin{array}{c} 628.38\\ 628.00\\ 626.00\\ 628.00\\ 628.00\\ 632.00\\ 633.00\\ 635.05\\ 680.00\\ 635.50\\ 675.50\\ 675.50\\ 675.50\\ 675.50\\ 675.80\\ 670.50\\ 670.50\\ 670.50\\ 670.50\\ 670.50\\ 620.00\\ 620.00\\ 621.00\\ 621.00\\ 621.00\\ 621.50\\ 617.84\\ 616.35\end{array}$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Soil Parameters

Number of Soil Types : 5

			Cohesion				
Туре	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	NO.

1 2 3 4 5	122.0 100.0 138.0 138.0 128.0	122.0 100.0 138.0 138.0 128.0	$1000.0 \\ 0.0 \\ 1000.0 \\ 1000.0 \\ 0.0$	DCMA4.00 0.0 25.0 0.0 0.0 29.0	DT 0.00 0.00 0.00 0.00 0.00 0.00	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0 0 0 0
-----------------------	---	---	--	---	--	---	------------------

Piezometric Surfaces

Number of Unit Weight	Surfaces : 1 of water : 62.40 pcf
Piezometric	Surface No. : 1

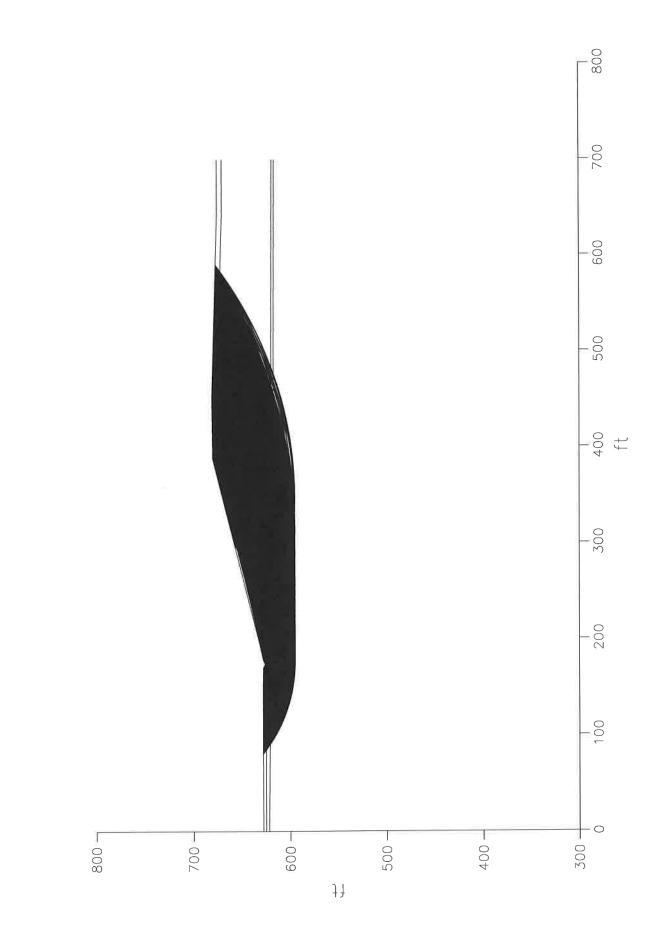
Number of Coordinate Points : 6

Point	X-Water	Y-Water
NO.	(ft)	(ft)
1	0.00	625.00
2	204.35	625.00
3	211.96	620.00
4	217.96	617.50
5	307.96	617.84
6	700.00	616.35

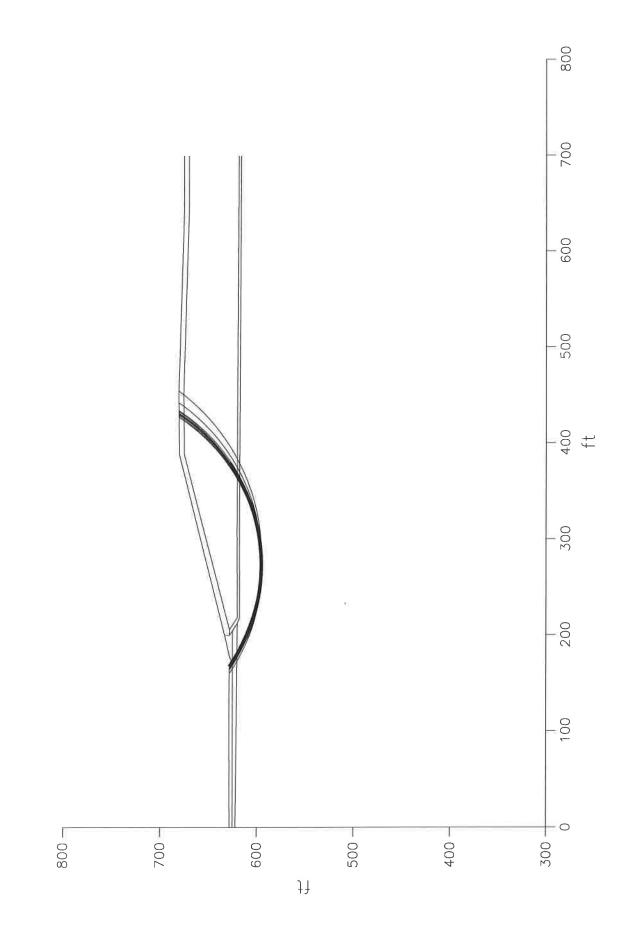
***	TRIAL SURFACE GENERATION	****				
TO TO TO TO TO TO	**************************************	******				
***************************************	*******					

Data for Generating Circular Surfaces

****	********	**********
*****	RESULTS	****
*****	**************************************	****************
****************************	********	


Critical Surfaces

No.	Safety Factor	Center X (ft)	Center Y (ft)	Circle Radius (ft)
1 2 3 4 5 6 7 8	1.527 1.531 1.535 1.535 1.536 1.537 1.539 1.540	273.01 276.29 278.15 272.42 269.49 283.43 270.98 272.60	781.71 783.83 795.20 789.15 783.33 808.28 786.37 785.28	186.54 188.33 199.94 193.70 187.90 213.20 190.59 189.26 age 2


			DCMA4.OUT	
9	1.541	274.68	783.56	187.38
10	1.541	267.94	788.06	192.94

П

Bishop Circular Surfaces — Most Critical Surfaces

CROSS-SECTION A-A STATIC CIRCULAR ANALYSIS

 $\gamma_{\text{waste}} = 100 \text{ pcf}$ $\Phi_{\text{waste}} = 30^{\circ}$

	DCMA5.OUT	
*********	**********************	*****
* * * * *	GeoSlope	****
****	Version 5.10	****
****		****
****	(c)1992 by GEOCOMP Corp, Concord, MA	** ** ** **
****	Licensed to RUST	** ** ** **
***********	***************************************	*******
Problem Title	e : Dow Corning Midland Facility	
Description	e : Dow Corning Midland Facility n : Slope Stability Cross-Section A-A'	
Remarks	Waste unit weight = 100 ncf Waste phi = 30	

Remarks	Waste	unit	weight	=	100	pct,	Waste	phi	=	30	

*********************	***************************************	****************
* * * * *	INPUT DATA	****
***********	*************************************	*********

Profile Boundaries

Number of Number of Top	Boundaries Boundaries	5 : 29 5 : 13			
Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28	0.00 119.79 141.79 169.60 173.60 177.60 195.79 199.79 207.98 387.79 451.02 639.94 674.77 199.79 199.80 205.79 387.79 451.02 639.94 674.77 199.80 205.79 387.79 451.02 639.94 674.77 199.80 205.79 217.96 307.96 199.80 0.000 90.000 211.96 217.96	628.00 628.38 628.38 628.00 626.00 632.00 633.00 635.05 680.80 675.50 675.50 633.00 628.00 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 670.50 670.50 670.50 628.00 622.00 622.00 622.00 622.00 622.00 621.00 620.00 621.00 620.00 621.50	119.79141.79169.60173.60177.60195.79199.79207.98387.79451.02639.94674.77700.00199.80205.79387.79451.02639.94674.77700.00215.94674.77700.00217.96307.96700.00211.9690.00217.96307.96	628.38 628.30 626.00 628.00 632.00 633.00 635.05 680.00 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.30 670.50 670.50 670.50 670.50 670.50 620.00 620.34 618.85 620.00 621.00 627.50 617.50	5555551111111532222233354444
28 29	307.96	617.84	700.00	616.35	4

Soil Parameters

Number of Soil Types : 5

			Cohesion				
			Intercept	Angle	Pressure	Constant	Surface
NO.	(pcf)	(pcf)	(psf)	(dēg)	Param.	(psf)	NO.

			1000 0	DCMA5.0U		0.0	0
1	$122.0 \\ 100.0$	$122.0 \\ 100.0$	1000.0	0.0 30.0	$0.00 \\ 0.00$	$0.0 \\ 0.0$	ŏ
3	138.0	138.0	1000.0	0.0	ŏ.ŏŏ	0.0	Õ
4	138.0	138.0	1000.0	0.0	0.00	0.0	0
5	128.0	128.0	0.0	29.0	0.00	0.0	0

Piezometric Surfaces

Number of	Surfaces	:	1	
Unit Weight	of Water	:	62.40	pcf

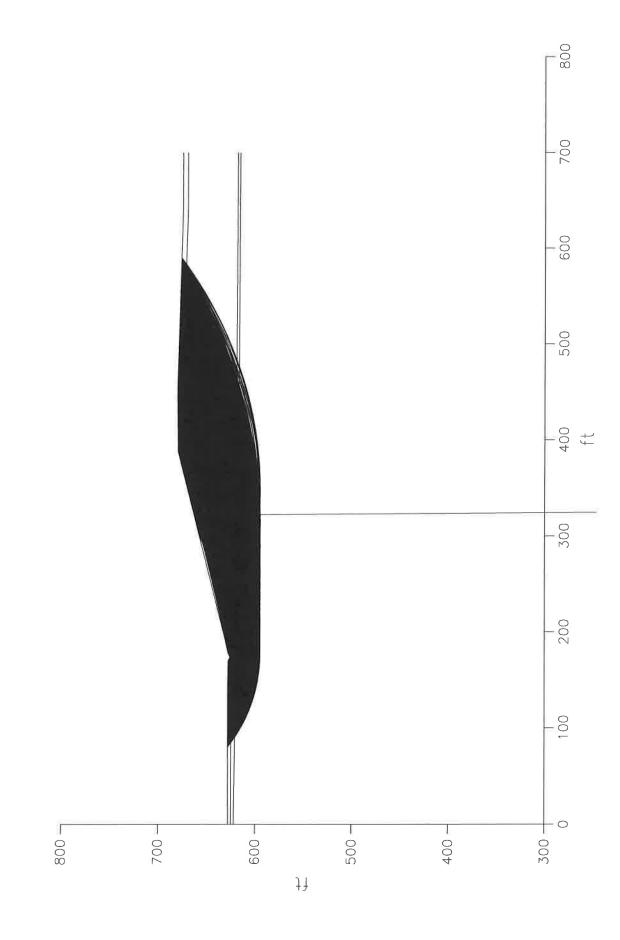
Piezometric Surface No. : 1 Number of Coordinate Points : 6

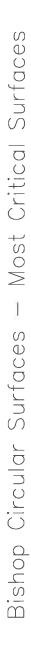
Point	X-Water	Y-Water
No.	(ft)	(ft)
1 2 3 4 5 6	0.00 204.35 211.96 217.96 307.96 700.00	625.00 625.00 617.50 617.84 616.35

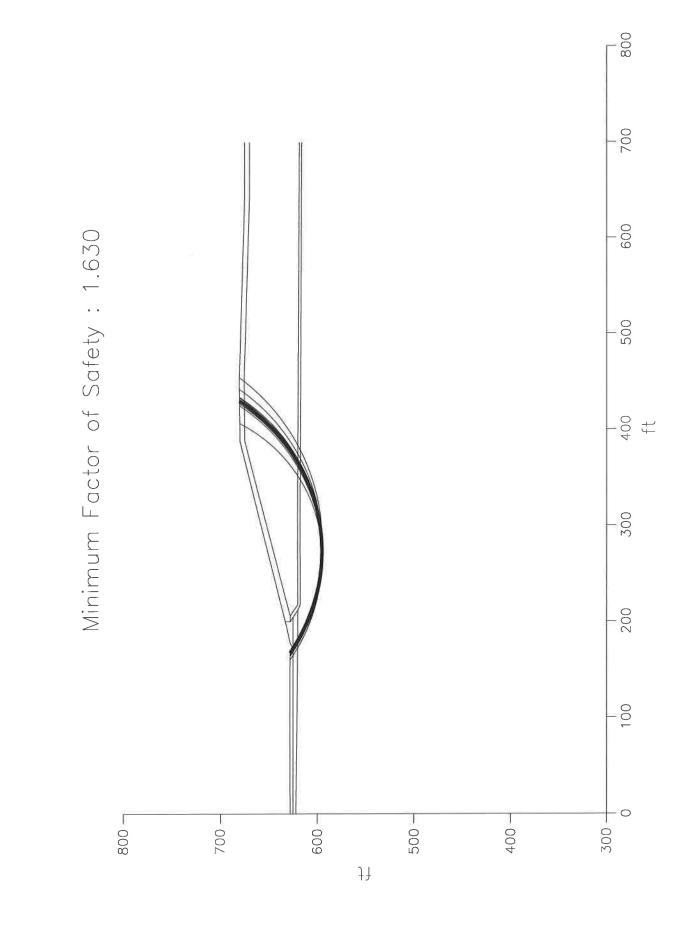
***********	***********************************	***********
***	TRIAL SURFACE GENERATION	****
	*****	**********

Data for Generating Circular Surfaces

*****	*************	*******
*****	RESULTS	****
	KESULIS	******
****************************	* * * * * * * * * * * * * * * * * * * *	


Critical Surfaces


NO.	Safety Factor	Center X (ft)	Center Y (ft)	Circle Radius (ft)
1 2 3 4 5 6 7 8	1.630 1.637 1.638 1.640 1.641 1.641 1.646 1.646	273.01 276.29 278.15 266.72 269.49 272.42 267.94 270.98	781.71 783.83 795.20 752.31 783.33 789.15 788.06 786.37	186.54 188.33 199.94 157.22 187.90 193.70 192.94 190.59 age 2


			DCM	IA5.OUT
9	$1.646 \\ 1.647$	283.43	808.28	213.20
10		266.70	784.49	189.30

0

CROSS-SECTION A-A STATIC CIRCULAR ANALYSIS $\gamma_{\text{waste}} = 100 \text{ pcf}$ $\Phi_{\text{waste}} = 35^{\circ}$

	DCMA6.OUT	
***********	***************************************	*********
****	GeoSlope	****
****	Version 5.10	****
***		* * * * *
***	(c)1992 by GEOCOMP Corp. Concord, MA	****
****	(c)1992 by GEOCOMP Corp, Concord, MA Licensed to RUST	****
*******	***************************************	*****

Description	1	Dow Corning Midland Facility Slope Stability Cross-Section A-A'
Remarks	:	Waste unit weight = 100 pcf, Waste phi = 35

******	************	*********
*****	INPUT DATA	****
*********	********************************	*********

Profile Boundaries

Number of Number of Top	Boundaries Boundaries				
Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22 23 4 25 6 27 28 29	0.00 119.79 141.79 169.60 173.60 177.60 195.79 207.98 387.79 451.02 639.94 674.77 199.79 199.80 205.79 387.79 451.02 639.94 674.77 199.80 205.79 307.96 199.80 0.000 90.000 211.96 217.96 307.96	628.00 628.38 628.38 628.00 626.00 632.00 633.00 635.05 680.00 680.80 675.50 675.50 675.50 675.00 628.00 675.80 670.50 670.50 670.50 670.50 628.00 620.00 622.00 622.00 622.00 622.00 621.00 622.00 621.00 627.50 627.50 627.50 628.00 627.50 628.00 627.50 620.00 620.34 628.00 620.00 621.00 621.00 627.50 627.50 627.50 627.50 627.50 627.50 628.00 620.00 627.50 627.	119.79 141.79 169.60 173.60 177.60 195.79 199.79 207.98 387.79 451.02 639.94 674.77 700.00 199.80 205.79 387.79 451.02 639.94 674.77 700.00 217.96 307.96 700.00 211.96 307.96 307.96 700.00	628.38 628.30 626.00 628.00 632.00 633.00 635.05 680.00 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 675.50 670.50 670.50 670.50 670.50 620.00 620.00 621.00 627.50 617.84 616.35	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Soil Parameters

Number of Soil Types : 5

soil Tota	l Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Type Unit	Wt. Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No. (pc) (pcf)	(psf)	(deg)	Param.	(psf)	No.

		DCMA6.OUT						
1	122.0	122.0	1000.0	0.0	0.00	0.0	0	
2	100.0	100.0	0.0	35.0	0.00	0.0	0	
3	138.0	138.0	1000.0	0.0	0.00	0.0	0	
4	138.0	138.0	1000.0	0.0	0.00	0.0	0	
5	128.0	128.0	0.0	29.0	0.00	0.0	0	

Piezometric Surfaces

Number of Surfaces : 1 Unit Weight of Water : 62.40 pcf

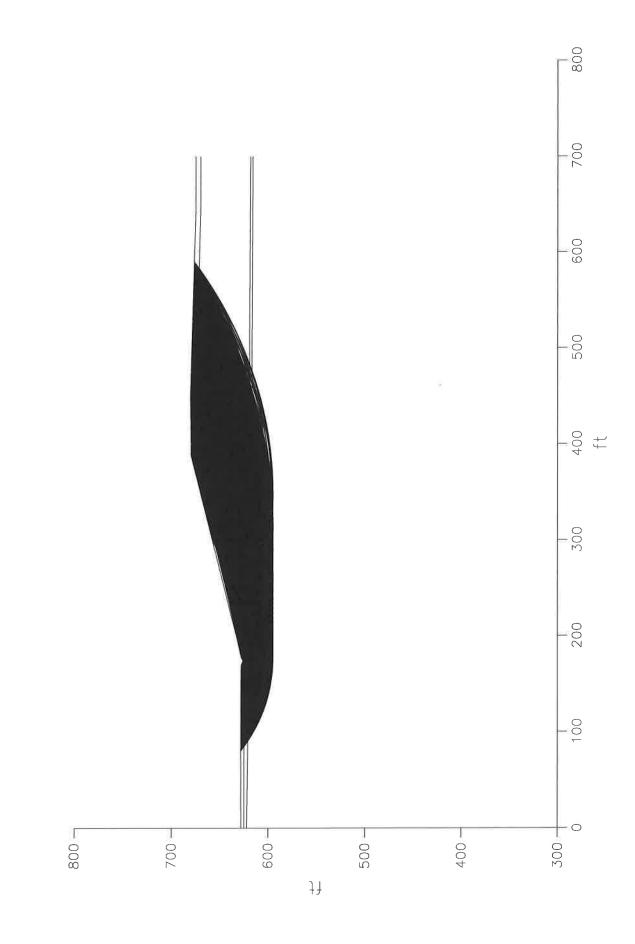
Piezometric Surface No. : 1 Number of Coordinate Points : 6

Point	X-Water	Y-Water
No.	(ft)	(ft)
1	0.00	625.00
2	204.35	625.00
3	211.96	620.00
4	217.96	617.50
5	307.96	617.84
6	700.00	616.35

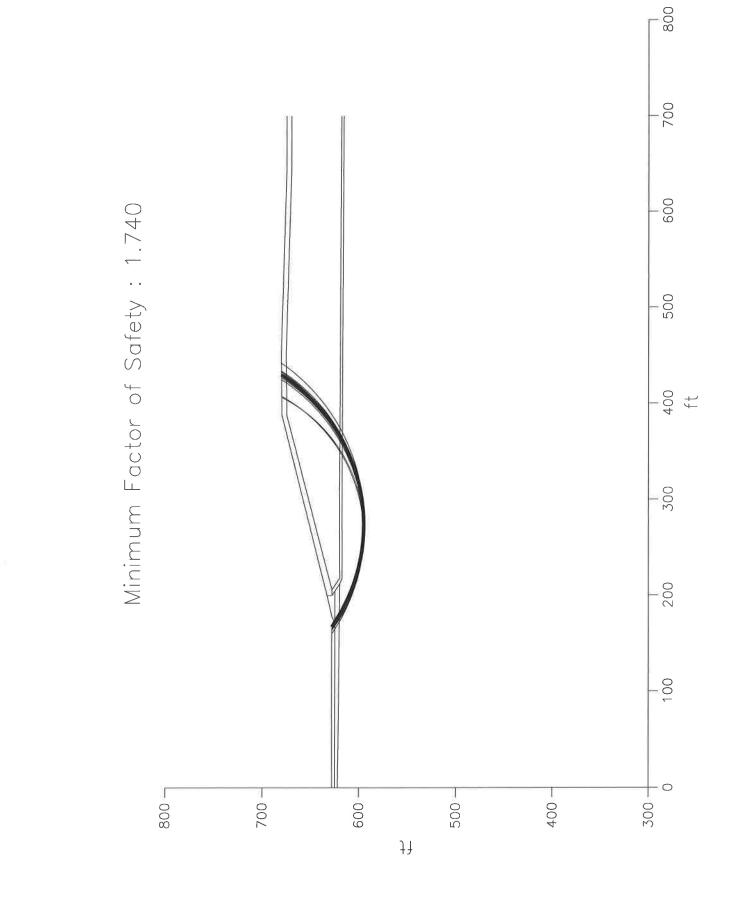
******	***************************************	******
****	TRIAL SURFACE GENERATION	****
******	*****************	*****

Data for Generating Circular Surfaces

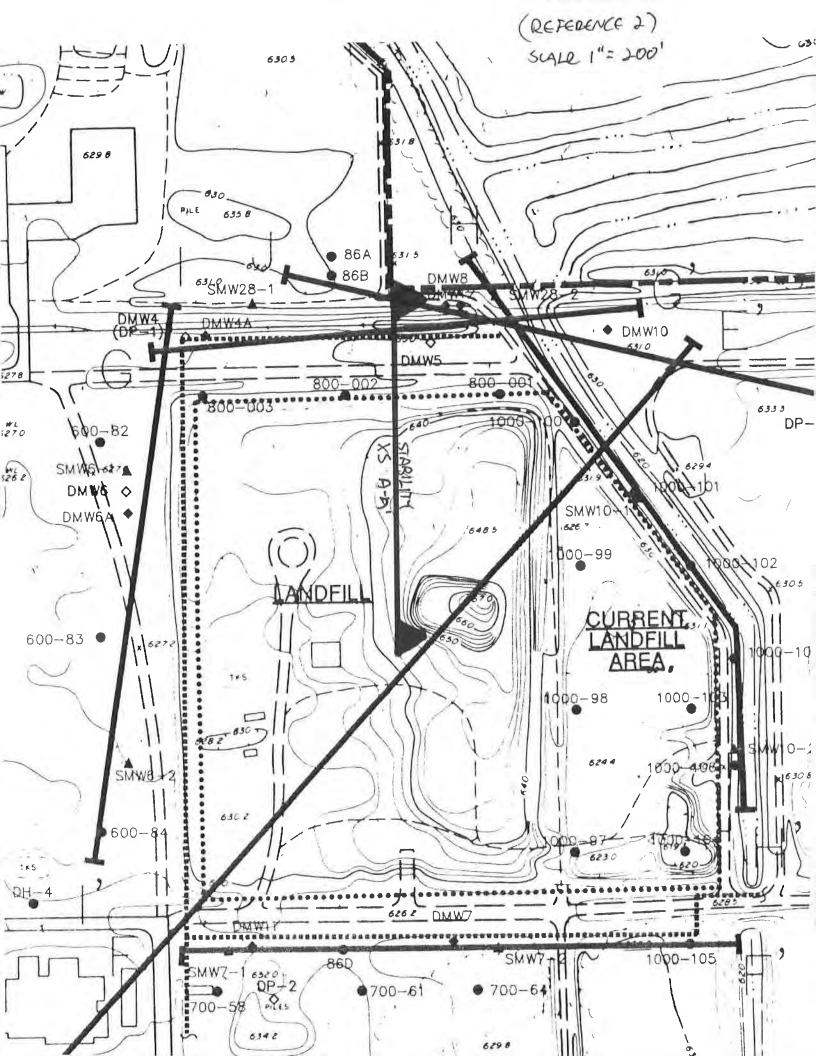
Number of Initiation Points	:	100
Number of Surfaces From Each Point	:	100
Left Initiation Point	:	80.00 ft
Right Initiation Point	:	200.00 ft
Left Termination Point	:	300.00 ft
Right Termination Point	:	590.00 ft
Minimum Elevation	:	595.00 ft
Segment Length	:	5.00 ft
Positive Angle Limit	:	0.00 deg
Negative Angle Limit	:	0.00 deg


*******	***************************************	*******
****	RESULTS	****
******	***************************************	*************

Critical Surfaces


NO.	Safety Factor	Center X (ft)	Center Y (ft)	Circle Radius (ft)
1 2 3 4 5 6 7 8	1.740 1.741 1.749 1.752 1.753 1.754 1.754 1.757	273.01 266.72 276.29 269.49 278.15 272.42 262.62 267.94	781.71 752.31 783.83 783.33 795.20 789.15 761.06 788.06 788.06	186.54 157.22 188.33 187.90 199.94 193.70 165.77 192.94 age 2

			DCM	IA6.OUT
9	1.757	266.70	784.49	$189.30 \\ 190.59$
10	1.759	270.98	786.37	


0

Bishop Circular Surfaces - Most Critical Surfaces

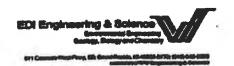
REFERENCE INFORMATION

(REFERENCE 3)

	Page: 1_of Well/Boring No.:	1	86 -	B	02
	Client:Ow Project No.:	Corni 0600	<u>ng</u>		- : \
	Permit No.: Date Started		ished	9/17	786
-	10.000		-	1	- 1

Well / Boring Log Sheet

County	Township	Fraction			Section	T	A
MIDLAND	MIDLAND	1/4	1/4	1/4	• 26	14N	2E


Contractor: Raymer Address: Grand Rapids, Mi	Scruen: Manufact, Materiai:	wer:		Location Sketch
Equipment Failing Rig #10	Model:		4. 63	
and the second se	Slot/Gauze		Dia.:	
Supervisor D. Pierce	Length:			· Den service and a service an
Drilling Method(s) Depth Rotary	Depth Set Casing Dia.	Туре	To: Depth Set	
Grouting/Seel Depth To Material	Elevation Casing:		To To	
Development:	Ground: Ref. Pt.: Remarks (in	ictude neré, att	ner çlata availabile)	
Water Level: Pt. Below: Measured On:				

(FEET) Thick- n ess	(FEET) Depth To Base	Remarks	
7.0	7.0	SAND - fine to medium, light brown	
31.0	38.0	CLAY - gray	
11.0	49.0	CLAY - gravelly, gray	
15.0	64.0	SAND - fine to medium, brown	
11.0	75.0	GRAVEL - medium, sandy	
21.0	96.0	GRAVEL - coarse, sandý	
		coarse gravel refusal @ 96'	

.....

(REFERENCE 3)

٦

MIDLAND .

County

0.0

1

Township

MIDLAND

	1	na il	•5	Page: <u>1 of 1</u> Well/Boring No.: - Client: <u>Dow C</u> Project No.: <u>20</u> Permit No.:	DMW-8	
Well/Bo	oring Log	She	et	Date Started	Finished	10/1/86
MIDLAND	Fraction	1/4	1/4	Section 26 .	T 14N	R 25

Contractor: Raymer Address: Grand Rapids, MI	Screen: Johnson	Location Sketch	9283.78 N 3821.24 E	
Address:	Material: Stainless steel			
Equipment Failing Rig #10	Montal: 960			
	Slot/Geuze: 10 slot Dia: 2"	distant and the second	and the second s	
Supervisor: D. Pierce	Length: 5'			
	Depth Set: 74.9' To: 79.9'			
Drilling Method(s) Depth				
Rotary	Caning			
Name of the Owner	2" S.S. + 2.1 To 74.9"			
Grouting/Seal				
Durah Ta Alexandral	7" Blk. + 0.5 To 12.8			
70 72' Bentonite Pelle	Casing: 634.94'			
0 70' Bentonite/Cemen		1.1		
Development: Water Jet w/	Ref. Pt.:			
Development: Water Jet W/ Deionized Water	Restlights (include here, other data evaluate)			
and the second se	Filter pack from 72'	to 82'	#7 grade.	
Water Level: Ft. Below:				4
Measured On:	Pea gravel from 82' to	244'.		

(FEET) Thick- ness	(FEET) Depth To Base	Bemarks	 1	
9.0	9.0	CLAY - sandy, some small stones, dark brown		
33.0	42.0	CLAY - gray		
30.0	72.0	SAND - fine to medium, brown		
15.0	87.0	GRAVEL - medium to coarse	-	T
3.0	90.0	GRAVEL - sandy, clayey, brown		
5.0	95.0	SHALE - black		
2.0	97.0	CLAY - gravelly, gray		
48.0	145.0	CLAY - gray		T
7.0	152.0	CLAY - shale, dark brown to black		
92.0	244.0	SHALE ~ interbedded with coal seams		+
				1
				+
			 	+

(Actenence 3)

S	約	McDOWELL Geotechnical Eng	& ASSOCIATES		PROJECT.	0	bserv	ation	Well(
V		JOB NO.	Mw 5	81-111	LOCATION	D	ow-Co	rning		
3		SURFACE ELEV.		DATE 11-16-					chigan	-
Sample 5 Troe	Depth	Legend	SOIL DESCRIPT		Penetration Blows For S"	Moisture	Natural WL P C.F.	Bry Den Wil P.C.F	Unc. Camp. Strength PSF.	51
Î	1	1'6"		e brown sand,						
		T. P.	fill Maist fin	e oxidized						-
	4		brown sand		-					
-		4'6"								-
-	6	· · · ·	Moist to	discolored				1000		
	18		brown and	discolored						
	10	8'6"	sand su	A suce Sand						-
1	10		Lake bed da	y						1
	12	1								
-	14		Stiff moi:	st silty		10				-
			blue clay							1
	16	1								1
	1 18									1
1		N.			i			1		1
	20									
	22								7	
1		23'0K								
1	24		Extremely	stiff moist						-
-	26		(gravelly)							1
1				· · · · · · · · · · · · · · · · · · ·						
	28		-1. Julia C	lan						-
	30	29'6"	- Lakebed C Glacial Ti	11		2				
	32	100								
-	35			stiff moist						
	34		sandy blue	e craypan		a 1				
-	36									-
-	30									-
	38									
	40	39'6"								-
	1. 1		Extremely	compact wet						1
			medium bro	wn sand					1	-
1	44			1 · 1.	32 1				1	
	and the second se	45'0"			601			1		
	-0 -	12 45 · U.	Extramely	stiff moist	1_1		1	1	1	1
		- * De 14	-	iva diar						-
- ÷.		N.N	besselera.					****		
	50	101	(Cont'd.)					1		1
TYPE	OF SAMPLE	REMARKS:	(00110 01)				UND WATE	A OBSERVA	TIONS	
0 .	- DISTURBED UNDIST. LIN				GWE	NCOUNTERE		5		INS

1.4

÷.....

1

,

(REFERENCE 3)

	11	Geotechnical Eng	ineers 81–111	PROJECT		w-Cor	ning		
1	E A	JOB NO.	DATE 11-16			dland	, Mic	higan	
Samcie 5 Type	Desth	SURFACE ELEV.	SOIL DESCRIPTION	Penetration Blows For 6"	Moisture	Natural Wt. P C F	Dry Den Wt. P C.F	Une. Como Strength PSF	S
1	1 52	1114							F
	1 52		Extremely stiff moist gravelly blue clay,		-	1	1		+
	T 54 1		occasional stones						L
	X								+
	156		11			1		1	t
-	58		-h.					l	T
1		59'd"							+
B				60					t
л	62		Extremely compact we medium to coarse gray	60/	3"				1
	1	16	sand (q')						+
	64					1			t
	66					1		1	1
	1		21			1			+
	1681.	68' dut			1	1	1		+
	700	111			1	1	1		1
	IN	124	Extremely stiff mois					1	-
	1-1-	113	silty blue clay, hardpan, layers of		1	1	1	1	÷
	174	113	sand and gravel		1	ľ.	1	1	1
1		6.6.3	Quite y =						+
	176	1113				1		1	Ì
	78	78'0"							+
	1	10 0							+
	80	o plut o		1					Í
	82		tick-Up. m of screen 68'0".				-		+
			.010 screen.						+
	84		for 30 minutes at 10			1		1	1
	86	gallo	ns per minute 🕇			-			+
	88					1	-		+
								1	1
	90					-		1	
	92			-	1	1	1	- 1	1
	1			- 100	1	1	1	1	-
-	94					+	1	1	-
	וכיד י				1	1	1	1	ī
		4			1	1	1	1	
-					1		1		-
					1	1	1		1
		1			Ĩ			1	1
	E DE SAMPL					ROUND WA	TER OBSER	~	
UL	- UNDIST. LI - UNDIST. LI - SHELBY TO	INER		GW.	ENCOUNT	ERED AT	59	л о	
S.5.	- SPLIT SPO - ROCK COR	ON .	idard Penetration Test - Driving 2" DD Sampler 1' With		AFTER CO AFTER	MPLETION	HRS	ក	

3.74.7

1....

(REFERENCE 3)

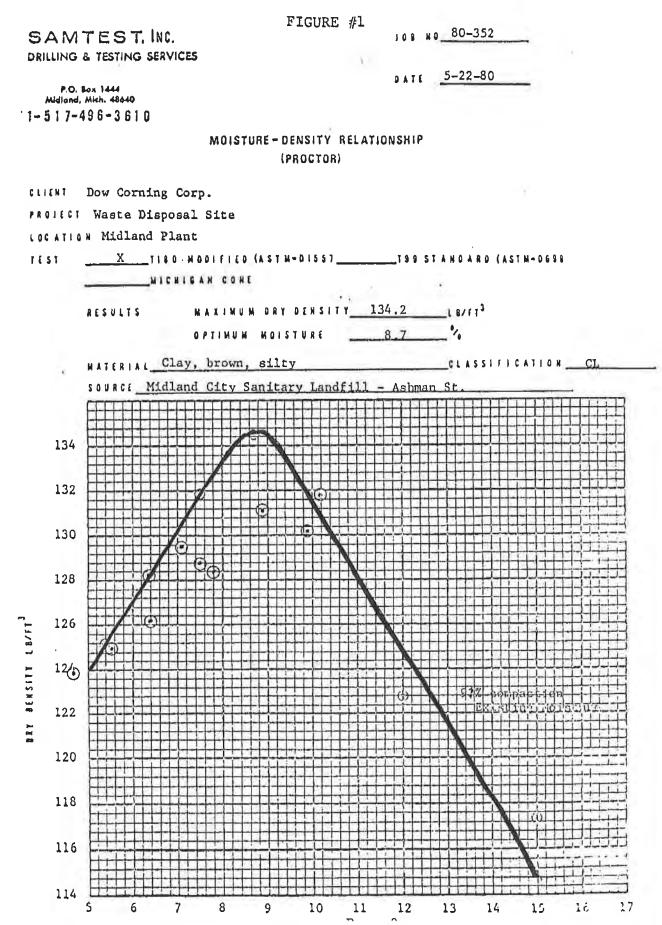
B1245-3

DC 6901-P (

PRO	JECT		Turturation C. t. D. Stanot			SIT	E low Cor	mine	COTR	Mid	lland	мт	
105			Evaluation - C & D Street	_	Tee	DJECT		2	MPLE	-		1.14	
	ING		2-20-79 COMPLETED 2-20-	79	""	B1245				·AUG		-SHEL	B Y
TA	RTED	T	2-20-79 COMPLETED 2-20-	T	P=	T	UNCONFI					TONS	No. of Concession, Name
FEE		113	DESCRIPTION OF MATERIAL	=	F001	10	_1	-	8	-0	4	+	
DEPTH IN	LEGEND	SAHPLE		SAMPLE	STD. PENETRATION	BHLT NAT.	PLAS		C1	WATER HTENT -			7
-		Ц	SURFACE ELEVATION - 103.0*	-			10	-	.20	30	40	50	
1 - 1 -		X	Sand-yellow, graded med. <u>fine SP</u> Sand-brown, med. fine SP		5 6 7								4
1.1		X	Clay-stiff, brown, silty, trace of sand & pebbles CL		6	128	•			· , ·			2
					14				1				
111				B	10	133			8				
		Ă		c	5 10 12	134			4		+		
1.1.1	記述	X	Clayey-silt-compact, gray, some sand ML	D	6 6 7	125				- -			
	51.		Sand-compact, brown SP	E	7 9 11	130		8					-
		X	Clay-extremely hard, gray some sand & pebbles Clayey-sand-very compact,	F	42	144	.0						
I		X	brown, graded med. SC End of Boring at 40 ft.	G	70	134		à					-
		-	Boring cement grouted to 3 Mineral Well permit #	35 £	79					+			
-									-				
			OSSERVATIONS cered initially at 3 ft.				AMI						-
			level at 3 ft.			01	HLLING L	TESTI	NG SERV	1642			

•

LOG OF BORING NO. 800-002-79


(11

.

108 NO. ______ 106 OF SOIL BORING NO .__ MICHIGAN TESTING ENGINEERS, INC. 1000-99-PROJECT PROPOSED SOILS EXPLORATION MICHIGAN DRILLING DIVISION consulting engineers in soils & foundations LOCATION DOV CORNING ISINI WYMING AVENUE + GETROIT, MICHIGAN 19231 HIDLAND, HICHIGAN SURFACE ELEV. 111.80 Natural Unc. Comp. Wt. P.C.F. Strength PSF. 7-31-74 Str. Maisture Penetresion Blows Fer 6" DATE_ * SOIL DESCRIPTION % ismpla Loyand Depth L Type . STIFF MOIST BROWN SANDY CLAY, FILL, LIGHT VEGETATION, 1 . + SLIGHTLY ORGANIC 2 Â. 6 5 5 UL 4 з . FILL 3 '9" 4 COMPACT MOIST MEDIUM BROWN 7 B 5 6 SAND, FILL, CINDERS, 5 5 UL. SLIGHT ORGANIC STREAKS 5555 6 . 7 Ĩ1 C 7 4 6 UL 8 FILL 8 '6" VERY COMPACT MOIST MEDIUM 9 .. BROWN SAND . 12 6 8 10 UL Ĩ 10'0" COMPACT WET MEDIUM BROWN . • 11 SAND 2 F 12 13 * The second . 14 14 '0" VERY STIFF MOIST BLUE SILTY £ 7 5 T 15 CLAY UL 15'0" 16 1.1.1 17 18 19 -20 GROUND WATER OBSERVATIONS 3 REMARKS: IHS. FT. TYPE OF SAMPLE 10 G.W. ENCOUNTERED AT 1H\$. <T. D. -DISTURBED G.W. ENCOUNTERED AT 6 INS. U.L.-UNDIST. LINER FT. 9 G.W. AFTER COMPLETION INS. 1 S.T. -SHELDY TUDE ET. G.W. AFTER HRS. Stundard Penatrolian Tast - Driving 2" OD Sampler 1" With S.S. -SPLIT SPOON G.W. VOLUMES UFAVY

(REFERENCE 3)

(REFERENCE 4)

....

Native Clay Test Results

Å

(

(

Test	Method	Sample 1 Results	Sample 2 Results	Specification	Meets/Exceeds Specification?
 Hydraulic Conductivity (@ compaction > 90%) 	Falling Head	3.5 x 10 [*] to 4.4 x 10 [*] cm/sec.	1.7 x 10 ^{-a} to 5.8 x 10 ^{-a} cm/sec.	< 1.0 x 10 ⁻⁷ cm/sec.	Yes
2. Particle Size Distribution	ASTM C-136	82% < 5 µm	77% < 5 µm	Minimum 25% < 5 µm	Yes
3. Unified Soil Classification (Atterberg limits)	ASTM D-423, D-424	CL	ರ	Must be type CL or CH	Yes
4. Soil density/moisture relationships: (No regulatory specification, but data will be used during cover construction to ensure required moisture content range after compaction is met.)	e relationships: (No nt range after compac	regulatory specificatio tion is met.)	on, but data will be use	ed during cover constru	uction to ensure
a. Maximum density	ASTM D-1557	119.2 lb/ft ³	118.5 lb/ft ³	none	n/a
b. Optimum moisture	ASTM D-1557	13.9	14.5	none	n/a
c. Natural moisture	ASTM D-2216	15.0	16.1	none	n/a

(REFERENCE 5)

(REFERENCE 6)

(RGFERENCE 6)

2.4

1

Table 13.2Approximate Correlation of
Standard Penetration Number and
Consistency of Clay

Consistency	Unconfined compression strength, q _u (ton/ft ²)
	0
Very soft	
	0.25
Soft	
	0.5
Medium stiff	
Stiff	
	2
Very stiff	
	4
Hard	>4
	Very soft Soft Medium stiff Stiff Very stiff

Note: $1 \text{ ton/ft}^2 = 95.76 \text{ kN/m}^2$

ŝ,

12.8

Table 13.3Approximate RelationBetween Corrected StandardPenetration Number, Angle of Friction,and Relative Density of Sand

Corrected standard penetration number, N	Relative density, D _r (%)	Angle of friction, ϕ (degrees)
0-5	0-5	26-30
5 - 10	5-30	28 - 35
10-30	30-60	35 - 42
30 - 50	60-95	38 - 46

(REFERENCE 7)

· • •		Natural moisture content in saturated	Dry u weigh	
Type of soil	Void ratio	condition (%)	(kN/m^3)	(lb/ft ³)
Loose uniform sand	0.8	30	14.5	92
Dense uniform sand	0.45	16	18	115
Loose angular-grained	1.1.1		1.0	
silty sand	0.65	25	16	102
Dense angular-grained		· · ·		
silty sand	0.4	15	19	120
Stiff clay	0.6	21	17	108
Soft clay	0.9-1.4	30-50	11.5-14.5	73-92
Loess	0.9	25	13.5	86
Soft organic clay	2.5-3.2	90–120	6-8	38-51
Glacial till	0.3	10	21	134

Page 1 Of 2

		Project No. 60134827	
Client Dow Corning	Subject Surface Water	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Facility	Diversion Berm Analysis	Reviewed By NKW	Date <u>5/5/11</u>
		Approved By DFP	Date <u>5/6/11</u>

SURFACE WATER DIVERSION BERM ANALYSIS

Objective

Design diversion berms to intercept surface water runoff from the top area of the final cover and divert surface water runoff to the downslope pipes.

Design Criteria and Assumptions

- 1. The Channel Design Utility of SEDCAD+, a computer program, was used to design the diversion berms. SEDCAD+ is a program developed at the University of Kentucky to assist in the design and evaluation of surface water management system components.
- 2. Diversion berms should be able to convey runoff from a 25-year, 24-hour storm event, with 6 inches of freeboard.
- 3. Diversion berm design will be based on maximum flow conditions. As discussed in the Surface Water Run-off Estimates, the design peak run-off flow is 3.94 cfs.
- 4. Diversion berms are located at the top of the 25 percent sideslopes around the perimeter of the top area. Diversion berms will slope toward the downslope pipes. Diversion berm slopes vary from a 0.5 percent minimum to a maximum of approximately 3.3 percent. To be conservative, the analysis considers a maximum diversion berm slope of 4 percent to evaluate riprap size and a minimum slope of 0.5 percent for depth.
- 5. Diversion berm channels will be triangular in shape with 3:1 (horizontal:vertical) channel sideslopes.
- 6. Diversion berm channels will be lined with riprap.
- 7. Flow from the cover drainage layer on the landfill top slope will be discharged to the diversion berms. The flow from the drainage layer will be low and will not coincide with peak surface water run-off flows. The surface water run-off peak flow is conservative and therefore used in this analysis.

Calculations

One analysis was performed to design the diversion berms for the landfill. For the analysis the largest area, which results in the largest peak flow, draining to a diversion berm is considered. The maximum and minimum berm slopes are included in the analysis so that a single final design can be chosen to function properly in all diversion berm locations. The maximum slope is considered to evaluate the riprap size and limiting velocity, while the minimum slope is considered to evaluate the required flow depth.

SEDCAD+ results for the maximum slope and minimum slope diversion berms is attached and summarized in Table 1 below.

Af

		Page <u>2</u> Of <u>2</u>
		Project No. 60134827
Client Dow Corning	Subject Surface Water	_ Prepared By <u>TCR</u> Date <u>5/5/11</u>
Project Midland Facility	Diversion Berm Analysis	_ Reviewed By <u>NKW</u> Date <u>5/5/11</u>
		_ Approved By _DFP Date _5/6/11

Subwatersheds are labeled with the structure number and the subwatershed number. The subwatersheds that drain to a diversion berm are 6-2, 6-3, 6-5, and 7-1. The largest SWS, 6-3, is considered in this analysis.

Based on experience, to be conservative, and to limit the opportunity for riprap to enter downslope pipes, a design riprap $D_{50} = 6$ inches.

Table 1: Maximum Flow Summary							
ComponentSlope (%)Max. Flow (cfs)SEDCAD+ Flow Depth (ft)Design Channel Depth (ft)Maximur Velocity (fps)						SEDCAD+ Riprap D ₅₀ (in)	Design Riprap D ₅₀ (in)
Diversion Berm - maximum slope	4	3.94	0.58	1.5	3.84	1.50	6.0
Diversion Berm - minimum slope	0.5	3.94	0.79	1.5	2.11	0.50	0.0

Conclusions

One typical cross-section of a diversion berm was developed for the triangular channel to meet the requirements of the SEDCAD+ analysis (attached). The typical cross-section for diversion berms is a 1.5 foot deep triangular channel with 3:1 (horizontal:vertical) sideslopes and a minimum slope of 0.5 percent and a maximum slope of 4 percent. The diversion berms will be lined with riprap or stone with a minimum D_{50} of 6 inches.

L:\work\60134827\ENG\WASTE\Surface Water\Final 5-5-11\Midland Berm Rev2.doc

Diversion Berm, Minimum Slope

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
0.00	3.0:1	3.0:1	0.5			

PADER Method - Mild Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	3.94 cfs	
Depth:	0.79 ft	
Top Width:	4.74 ft	
Velocity:	2.11 fps	
X-Section Area:	1.87 sq ft	
Hydraulic Radius:	0.375	
Froude Number:	0.59	
Manning's n:	0.0260	
Dmin:	0.50 in	
D50:	0.75 in	
Dmax:	1.50 in	

Diversion Berm, Maximum Slope

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
0.00	3.0:1	3.0:1	4.0			

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	3.94 cfs	
Depth:	0.58 ft	
Top Width:	3.51 ft	
Velocity:	3.84 fps	
X-Section Area:	1.03 sq ft	
Hydraulic Radius:	0.277	
Froude Number:	1.25	
Manning's n:	0.0330	
Dmin:	1.00 in	
D50:	1.50 in	
Dmax:	3.00 in	

Page 1 Of 1

		Project No. 60134827	
Client Dow Corning	Subject Downslope Pipe	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Facility	Analysis	Reviewed By NKW	Date <u>5/5/11</u>
		Approved By DFP	Date <u>5/6/11</u>

DOWNSLOPE PIPE ANALYSIS

Objective

Design downslope pipes to convey surface water runoff from the diversion berms to the perimeter ditches.

Design Criteria and Assumptions

- 1. The Channel Design Utility of SEDCAD+, a computer program, was used to design the downslope pipes. SEDCAD+ is a program developed at the University of Kentucky to assist in the design and evaluation of surface water management system components.
- 2. Downslope pipes should be able to convey runoff from the 25-year, 24-hour storm from the top area diversion berms to the perimeter ditches.
- 3. Downslope pipe design will be based on maximum flow conditions. As discussed in the Surface Water Run-off Estimates, the design peak run-off flow is 3.94 cfs.
- 4. Downslope pipes are located on the 25 percent sideslopes.
- 5. Downslope pipes will consist of 8-inch HDPE pipes.
- 6. Downslope pipes will outlet to energy dissipators through a 3 foot section of 8-inch HDPE pipe at a slope of 1 percent. Riprap or alternative materials will be used to provide erosion protection.

Calculations

One analysis was performed to design the downslope pipes for the landfill. For the analysis the largest area, which results in the largest peak flow, draining to a downslope pipe is considered. Downslope pipe locations are shown on the Surface Water Run-off Estimates Attachment 5 figure.

The SEDCAD+ Channel Design Utility was used to evaluate the downslope pipes. The results of this analysis is attached. For an 8 inch diameter HDPE pipe, the maximum design flow velocity is approximately 18.5 fps and the flow depth is approximately 0.4 feet (4.8 inches).

Conclusions

Based on the analysis, a downslope pipe with a minimum diameter of 8 inches is sufficient to handle the design flow. Erosion protection at downslope pipe inlets and outlets will be required.

8" HDPE Downslope Pipe

Material: Plastic

Circular Channel

Pipe Diameter (in)	Slope (%)	Manning's n	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
8.00	25.0	0.0130			

	w/o Freeboard	w/ Freeboard
Design Discharge:	3.94 cfs	
Depth:	0.39 ft	
Top Width:	0.66 ft	
Velocity:	18.48 fps	
X-Section Area:	0.21 sq ft	
Hydraulic Radius:	0.183	
Froude Number:	5.71	

Page 1 Of 3

			Project No. 60134827	
Client	Dow Corning	Subject Surface Water	Prepared By TCR	Date <u>5/5/11</u>
Project	Midland Facility	Energy Dissipator Analysis	Reviewed By NKW	Date <u>5/5/11</u>
			Approved By DFP	Date <u>5/6/11</u>

SURFACE WATER ENERGY DISSIPATOR ANALYSIS

Objective

Size energy dissipator structures to limit erosion at the point where downslope pipes discharge into perimeter ditches.

Design Criteria and Assumptions

- 1. Use impact-type energy dissipator, U.S. Bureau of Reclamation (USBR) Type VI Baffle Wall Energy Dissipator.
- Use energy dissipator design procedure presented in Section 9 and riprap sizing from Appendix D of "Hydraulic Design of Energy Dissipators for Culverts and Channels," (HEC-14, 3rd Edition),U.S. Federal Highway Administration, Washington, D.C., July 2006.
- 3. Size energy dissipator for the maximum downslope pipe flow for the 25-year, 24-hour storm event using data from Downslope Pipe Analysis calculation.
- 4. Energy dissipators will be located at the outlet of each downslope pipe.
- 5. The downslope pipe will be connected the energy dissipator by a minimum 3 foot section of pipe at a 1% slope.

Calculations

One analysis was performed to design the energy dissipators for the landfill.

The following data is from the Downslope Pipe Analysis calculation:

Discharge	= 3.94 ft ³ /sec
Velocity	= 18.48 ft/sec
Cross-sectional area	= 0.21 ft ²
Froude number	= 5.71

Calculate the equivalent flow depth, ye

$$y_e = (A/2)^{1/2} = (0.21 \text{ ft}^2/2)^{1/2}$$

= 0.324 ft

Calculate the flow energy, H₀:

$$H_0 = y_e + (V_0)^2 / 2g$$

Where $H_0 =$ flow energy, ft. of water $y_e =$ equivalent flow depth, ft $V_0 =$ channel velocity, ft/sec g = 32.2 ft/sec²:

		Page _2 Of _3
		Project No. 60134827
Client Dow Corning	Subject Surface Water	Prepared By TCR Date 5/5/11
Project Midland Facility	Energy Dissipator Analysis	Reviewed By <u>NKW</u> Date <u>5/5/11</u>
		Approved By <u>DFP</u> Date <u>5/6/11</u>

 $H_0 = (0.324) + (18.48)^2/(2 * 32.2)$ $H_0 = 5.627$ ft

From the attached Figure 9.14, determine H_0/W , based on the Froude number of 5.71 (W is the width of the energy dissipator).

 $H_0/W = 1.97$ W = 5.71 ft/1.97 = 2.90 ft Round up to 4.0 feet to match the smallest available energy dissipator.

Calculate the exit velocity from the dissipator by trial and error using an energy balance between the culvert exit and the basin exit. A spreadsheet is used for the iterative trial and error process.

 $H_{B} = Q/(W_{B}V_{B}) + V_{B}^{2}/(2g) = H_{0}(1 - H_{1}/H_{0})$

Where

Q = flow, cfs W_B = width of dissipator, ft V_{B} = exit velocity from dissipator, fps $g = 32.2 \text{ ft/sec}^2$ H_L/H_0 = Loss of energy (from attached Figure 9.15) H_L = dissipater discharge flow energy, ft. of water

Exit Velocity Calculation									
Q	W _B	V _B	g	H _o	$\rm H_L/\rm H_o$				
(cfs)	(ft)	(fps)	(ft/sec ²)	(ft of water)	(ft of water)				
3.94	4	10.12	32.2	5.627	0.7				
	$Q/(W_BV_B)$	$+ V_{B}^{2}/(2g)$	=	$H_o(1- H_L/H_o)$					
		1.6876	=	1.6881					

Use equation D.2 from Appendix D of HEC 14 to size riprap at the energy dissipator outlet:

 $\mathsf{D}_{50} = \alpha \mathsf{V}^2$

Where: V = culvert exit velocity, ft/s

 α = unit conversion constant, 0.0126 for customary units $D_{50} = 0.0126 * 10.12^2 = 1.29$ ft.

For design purposes, use a minimum $D_{50} = 1.3$ ft. = 16 in.

Per recommendations in HEC 14, riprap will extend a minimum of 4 pipe diameters, or 3 feet, from the energy dissipator. For design purposes use 4 feet.

		Project No. <u>60134827</u>	
Client Dow Corning	Subject Surface Water	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Facility	Energy Dissipator Analysis	Reviewed By NKW	Date <u>5/5/11</u>
		Approved By DFP	Date <u>5/6/11</u>

Page

3

Of

3

Conclusions

At the discharge of Downslope Pipes, a 3 foot section of pipe with a slope of 1 percent and a 4foot wide energy dissipator is required. The remaining dimensions of the energy dissipator, summarized in Table 1 below, can be found on the attached Table 9.2 and are shown graphically on attached Figure 9.13. Energy dissipators that have similar hydraulic performance may be substituted for this design.

Tab	ole 1: E	Energy	Dissipa	tor Dim	nension	is (in fe	et-inch	es)

W	h_1	L	H_2	H_3	L ₁	L ₂	H_4	W_1	W_2	t ₃	t ₂	t1	t4	t ₅
4-0	3-1	5-5	1-6	0-8	2-4	3-1	1-8	0-4	1-1	0-6	0-6	0-6	0-6	0-3

The estimated surface water exit velocity from the dissipator is approximately 10.12 fps. A minimum $D_{50} = 1.3$ foot riprap should be placed a minimum of 2.0 feet thick ($D_{50} * 1.5$), on the perimeter channel bottom and sideslopes extending downstream 4 feet from the energy dissipator.

L:\work\60134827\ENG\WASTE\Surface Water\Final 5-5-11\Midland Energy Dis Rev2.docx

9.4 USBR TYPE VI IMPACT BASIN

The U.S. Bureau of Reclamation (USBR) Type VI impact basin was developed at the USBR Laboratory (ASCE, 1957). The dissipator is contained in a relatively small box-like structure that requires no tailwater for successful performance. Although the emphasis in this manual is on its use at culvert outlets, the structure may also be used in open channels.

The shape of the basin has evolved from extensive tests, but these were limited in range by the practical size of field structures required. With the many combinations of discharge, velocity, and depth possible for the incoming flow, it became apparent that some device was needed which would be equally effective over the entire range. The vertical hanging baffle, shown in Figure 9.13, proved to be this device. Energy dissipation is initiated by flow striking the vertical hanging baffle and being deflected upstream by the horizontal portion of the baffle and by the floor, creating horizontal eddies.

Notches in the baffle are provided to aid in cleaning the basin after prolonged periods of low or no flow. If the basin is full of sediment, the notches provide concentrated jets of water for cleaning. The basin is designed to carry the full discharge over the top of the baffle if the space beneath the baffle becomes completely clogged. Although this performance is not good, it is acceptable for short periods of time.

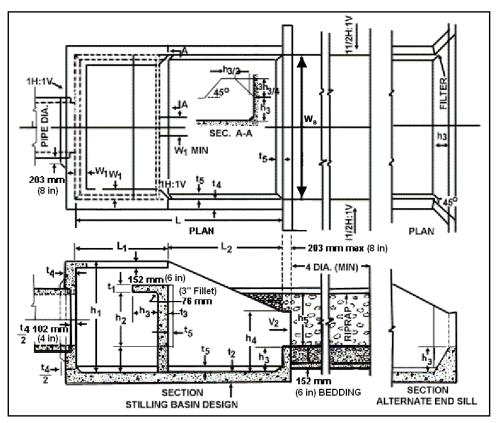


Figure 9.13. USBR Type VI Impact Basin

The design information is presented as a dimensionless curve in Figure 9.14. This curve incorporates the original information contained in ASCE (1957) and the results of additional experimentation performed by the Department of Public Works, City of Los Angeles. The curve

shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible.

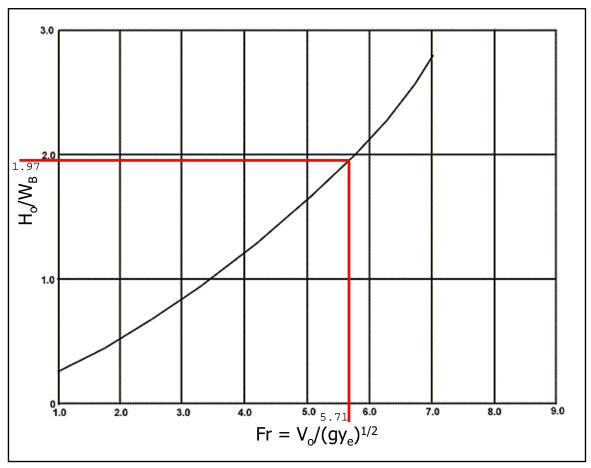


Figure 9.14. Design Curve for USBR Type VI Impact Basin

Once the basin width, W_B , has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of W_B to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary.

In calculating the energy and the Froude number, the equivalent depth of flow, $y_e = (A/2)^{1/2}$, entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section.

The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USBR Type VI impact basin shows a greater capacity for dissipating energy.

1	14/							
	W _B	h ₁	h ₂	h ₃	h ₄	L	L ₁	L ₂
>	4.	3.08	1.50	0.67	1.67	5.42	2.33	3.08
	5.	3.83	1.92	0.83	2.08	6.67	2.92	3.83
	6.	4.58	2.25	1.00	2.50	8.00	3.42	4.58
	7.	5.42	2.58	1.17	2.92	9.42	4.00	5.42
	8.	6.17	3.00	1.33	3.33	10.67	4.58	6.17
	9.	6.92	3.42	1.50	3.75	12.00	5.17	6.92
	10.	7.58	3.75	1.67	4.17	13.42	5.75	7.67
	11.	8.42	4.17	1.83	4.58	14.58	6.33	8.42
	12.	9.17	4.50	2.00	5.00	16.00	6.83	9.17
	13.	10.17	4.92	2.17	5.42	17.33	7.42	10.00
	14.	10.75	5.25	2.33	5.83	18.67	8.00	10.75
	15.	11.50	5.58	2.50	6.25	20.00	8.50	11.50
	16.	12.25	6.00	2.67	6.67	21.33	9.08	12.25
	17.	13.00	6.33	2.83	7.08	21.50	9.67	13.00
	18.	13.75	6.67	3.00	7.50	23.92	10.25	13.75
	19.	14.58	7.08	3.17	7.92	25.33	10.83	14.58
	20.	15.33	7.50	3.33	8.33	26.58	11.42	15.33
-								
	W _B	W ₁	W_2	t ₁	t ₂	t ₃	t ₄	t ₅
>	4.	0.33	1.08	0.50	0.50	0.50	0.50	0.25
	5.	0.42	1.42	0.50	0.50	0.50	0.50	0.25
	6.	0.50	1.67	0.50	0.50	0.50	0.50	0.25
	7.	0.50	1.92	0.50	0.50	0.50	0.50	0.25
	8.	0.58	2.17	0.50	0.58	0.58	0.50	0.25
	9.	0.67	2.50	0.58	0.58	0.67	0.58	0.25
	10.	0.75	2.75	0.67	0.67	0.75	0.67	0.25
	11.	0.83	3.00	0.67	0.75	0.75	0.67	0.33
	12.	0.92	3.00	0.67	0.83	0.83	0.75	0.33
	13.	1.00	3.00	0.67	0.92	0.83	0.83	0.33
	14.	1.08	3.00	0.67	1.00	0.92	0.92	0.42
	14. 15.	1.08 1.17		0.67 0.67	1.00 1.00	0.92 1.00	0.92 1.00	0.42 0.42
			3.00					
	15.	1.17	3.00 3.00	0.67	1.00	1.00	1.00	0.42
	15. 16.	1.17 1.25	3.00 3.00 3.00	0.67 0.75	1.00 1.00	1.00 1.00	1.00 1.00	0.42 0.50
	15. 16. 17.	1.17 1.25 1.33	3.00 3.00 3.00 3.00	0.67 0.75 0.75	1.00 1.00 1.08	1.00 1.00 1.00	1.00 1.00 1.00	0.42 0.50 0.50
	15. 16. 17. 18.	1.17 1.25 1.33 1.33	3.00 3.00 3.00 3.00 3.00 3.00	0.67 0.75 0.75 0.75	1.00 1.00 1.08 1.08	1.00 1.00 1.00 1.08	1.00 1.00 1.00 1.08	0.42 0.50 0.50 0.58

Table 9.2 (CU). USBR Type VI Impact Basin Dimensions (ft) (AASHTO, 2005)

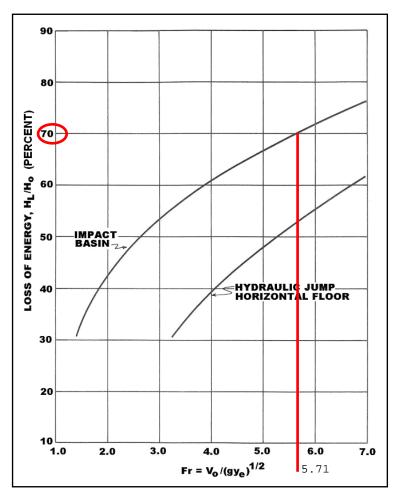


Figure 9.15. Energy Loss of USBR Type VI Impact Basin versus Hydraulic Jump

For erosion reduction and better basin operation, use the alternative end sill and 45° wingwall design as shown in Figure 9.13. The sill should be set as low as possible to prevent degradation downstream. For best performance, the downstream channel should be at the same elevation as the top of the sill. A slot should be placed in the end sill to provide for drainage during periods of low flow. Although the basin is depressed, the slot allows water to drain into the surrounding soil.

For protection against undermining, a cutoff wall should be added at the end of the basin. Its depth will depend on the type of soil present. Riprap should be placed downstream of the basin for a length of at least four conduit widths. For riprap size recommendations see Chapter 10.

The Los Angeles experiments simulated discharges up to 11.3 m^3/s (400 ft³/s) and entrance velocities as high as 15.2 m/s (50 ft/s). Therefore, use of the basin is limited to installations within these parameters. Velocities up to 15.2 m/s (50 ft/s) can be used without subjecting the structure to damage from cavitation forces. Some structures already constructed have exceeded these thresholds suggesting there may be some design flexibility. For larger installations where discharge is separable, two or more structures may be placed side by side. The USBR Type VI is not recommended where debris or ice buildup may cause substantial clogging.

Page 1 Of 2

			Project No. 60134827	
Client	Dow Corning	Subject Perimeter Ditch	Prepared By TCR	Date <u>5/5/11</u>
Project	Midland Facility	Analysis	Reviewed By NKW	Date <u>5/5/11</u>
			Approved By DFP	Date <u>5/6/11</u>

PERIMETER DITCH ANALYSIS

Objective

Design perimeter ditches to convey surface water runoff from the downslope pipes to catch basins and manholes.

Design Criteria and Assumptions

- 1. The Channel Design Utility of SEDCAD+, a computer program, was used to design the perimeter ditches. SEDCAD+ is a program developed at the University of Kentucky to assist in the design and evaluation of surface water management system components.
- 2. Perimeter ditch should be able to convey runoff from a 25-year, 24-hour storm event, with 6 inches of freeboard.
- 3. Perimeter ditch design will be based on maximum flow conditions as provided in the Surface Water Run-off Estimates calculation.
- 4. Perimeter ditches are located around the entire perimeter of the landfill.
- 5. The slope of the perimeter ditches will be either 0.5 or 0.25 percent depending on location.
- 6. Perimeter ditches will be trapezoidal in shape with 3:1 (horizontal:vertical) ditch sideslopes. The bottom width of the ditch will be 4 feet.
- 7. Perimeter ditches will be vegetated. Riprap or other alternative materials, such as a geotextile erosion control mat, will be provided on the perimeter ditch bottoms and sideslopes at energy dissipator outlets, and catch basin and manhole inlets.
- 8. Flow from the cover drainage layer on the landfill sidelsopes will be discharged to the perimeter ditches. The flow from the drainage layer will be low and will not coincide with peak surface water run-off flows. The surface water run-off peak flow is conservative and therefore used in this analysis.

Calculations

The worst case flow conditions for the perimeter ditches on each side of the landfill were analyzed. To reduce the number of design variations for the perimeter ditch and for ease of construction, the perimeter ditch design required for the worst case flow conditions on each side of the landfill will be used for the entire length of the perimeter ditch on that side.

SEDCAD+ Channel Design Utility results for the perimeter ditch analysis are attached and summarized in Table 1 below.

CALCULATION SHEET

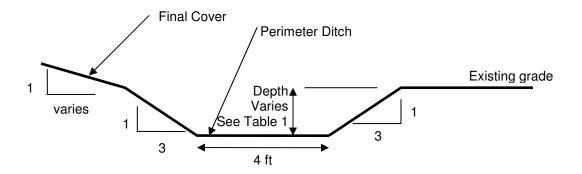
Of

2

		Project No. <u>60134827</u>	
Client Dow Corning	Subject Perimeter Ditch	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Facility	Analysis	Reviewed By NKW	Date <u>5/5/11</u>
		Approved By DFP	Date <u>5/6/11</u>

Page

2


Table 1: Perimeter Ditch Analysis Summary										
Description	SWS of max flow	Maximum Flow (cfs)	Ditch Slope (%)	Depth SEDCAD+	(ft) Design	Velocity (fps)				
West Side	5-1	4.04	0.5	1.40	2.0	0.92				
East Side	6-1, 6-2, & 6-3	7.71	0.5	1.68	2.25	1.24				
South Side	7-1 & 7-2	5.27	0.25	1.84	2.5	0.79				
Notes: 1. SEDC	AD+ depth is	flow depth ar	nd does not in	nclude freebo	ard.					

2. SEDCAD+ output rounds the ditch slope to the nearest tenth of a percent but uses the actual slope input in the analysis.

Conclusions

A typical cross section of a perimeter ditch was developed to convey the maximum-case flow rates. Dimensions identified by the SEDCAD+ analysis were rounded up to the nearest 0.25 foot to obtain the typical cross-section. The typical cross-section for perimeter ditches is:

Perimeter Ditch Typical Section

In general, grass vegetation will be stable with the low design velocities. Provide riprap or other erosion protection material at dissipator outlets and catch basin and manhole inlets.

L:\work\60134827\ENG\WASTE\Surface Water\Final 5-5-11\Midland Perim Ditch Rev2.doc

Perimeter Channel - West

Material: Grass mixture

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
4.00	3.0:1	3.0:1	0.5	D, B				5.0

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	4.04 cfs		4.04 cfs	
Depth:	0.71 ft		1.40 ft	
Top Width:	8.28 ft		12.41 ft	
Velocity:	0.92 fps		0.35 fps	
X-Section Area:	4.38 sq ft		11.49 sq ft	
Hydraulic Radius:	0.514		0.894	
Froude Number:	0.22		0.06	
Roughness Coefficient:	0.0732		0.2781	

Perimeter Channel - East

Material: Grass mixture

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
4.00	3.0:1	3.0:1	0.5	D, B				5.0

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	7.71 cfs		7.71 cfs	
Depth:	0.92 ft		1.68 ft	
Top Width:	9.53 ft		14.06 ft	
Velocity:	1.24 fps		0.51 fps	
X-Section Area:	6.23 sq ft		15.13 sq ft	
Hydraulic Radius:	0.634		1.036	
Froude Number:	0.27		0.09	
Roughness Coefficient:	0.0628		0.2116	

Perimeter Channel - South

Material: Grass mixture

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
4.00	3.0:1	3.0:1	0.3	D, B				5.0

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	5.27 cfs		5.27 cfs	
Depth:	0.96 ft		1.84 ft	
Top Width:	9.79 ft		15.06 ft	
Velocity:	0.79 fps		0.30 fps	
X-Section Area:	6.65 sq ft		17.58 sq ft	
Hydraulic Radius:	0.659		1.122	
Froude Number:	0.17		0.05	
Roughness Coefficient:	0.0711		0.2682	

CALCULATION SHEET

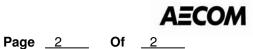
Page 1 Of 2

		Project No. <u>60134827</u>	
Client Dow Corning	Subject Surface Water	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Facility	Run-off Estimates	Reviewed By NKW	Date <u>5/5/11</u>
		Approved By DFP	Date <u>5/6/11</u>

SURFACE WATER RUN-OFF ESTIMATES

Objective

Estimate surface water run-off flows for the landfill after final cover is in place.


Design Criteria and Assumptions

1. SEDCAD+, a computer program, was used to estimate run-off flows and design the surface water management system for the landfill. SEDCAD+ is a program developed at the University of Kentucky to assist in the design and evaluation of surface water management system components.

The program is capable of computing peak flow, calculating runoff volume, sizing channels and culverts, and computing the hydraulic performance of sedimentation basins. SEDCAD+ utilizes the following methods within the program:

- SCS Upland Curve Method for calculating time of concentration.
- Muskingum's Method for routing between structures.
- SCS Technical Release 55 (TR-55) parameter for runoff volume.
- In accordance with R299.9505(1)(f) the 25-year, 24-hour storm will be used in the analysis. The peak rainfall value of 3.90 inches is based on the figure provided in Attachment 1 obtained from the Illinois State Water Survey Bulletin, Rainfall Frequency Atlas of the Midwest, MCC Research Report 92-03, Bulletin 71, by Floyd A. Huff and James R. Angel.
- 3. Use SCS storm distribution Type II, per the figure from SCS TR-55 provided in Attachment 2.
- 4. The curve number is based on the cover soil characteristics and the condition of the vegetation. Based on soil information from the USDA, Natural Resources Conservation Service Web Soil Survey, <u>http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm</u>, soils in the vicinity of the landfill are classified as Hydrologic soil group B. It is assumed that locally available soils will be used for topsoil. Soils in the vicinity of the landfill include the following: Wixom Loamy Sand, Parkhill Loam, and Lenawee Silty Clay as shown in Attachment 3.
- 5. Determine the curve number from tables provided in SCS TR-55 and included in Attachment 4. A curve number of 69 is chosen based on hydrologic soil group B assuming final cover conditions are pasture, fair condition.
- 6. In the SEDCAD inputs to calculate time of concentration, paved areas are used to represent downslope pipes and riprap or stone lined channels.
- 7. Sub-watershed (SWS) areas and SEDCAD structure labels are shown on the figure provided in Attachment 5.

CALCULATION SHEET

		Project No. 60134827	
Client Dow Corning	Subject Surface Water	Prepared By TCR	Date <u>5/5/11</u>
Project Midland Facility	Run-off Estimates	Reviewed By NKW	Date <u>5/5/11</u>
		Approved By DFP	Date <u>5/6/11</u>

Calculations

SEDCAD output which includes input data is provided in Attachment 6. Table 1 summarizes the maximum flows for various conditions.

	Table 1: Maximum Flow Summary								
Component	SWS Considered [Structure #]-[SWS #]	SWS with Max. Flow	25-yr, 24-hr Storm Maximum Flow (cfs)						
Diversion Berm	6-2, 6-3, 6-5, and 7-2	6-3	3.94						
Downslope Pipe	6-2, 6-3, 6-5, and 7-2	6-3	3.94						
Perimeter Ditch West	2-1, 3-1, 3-2, 4-1, and 5-1	5-1	4.04						
Perimeter Ditch South	1-1 and (7-1 + 7-2)	(7-1 +7-2)	5.27 (3.06 + 2.21)						
Perimeter Ditch East	(6-1 + 6-2 + 6-3) and (6-4 + 6-5)	(6-1 + 6-2 + 6-3)	7.71 (2.41 + 1.36 + 3.94)						

Conclusions

The surface water run-off estimates for use in the design of the surface water management system components are summarized in Table 1.

L:\work\60134827\ENG\WASTE\Surface Water\Final 5-5-11\Midland Surface Water Run-off Rev3.doc

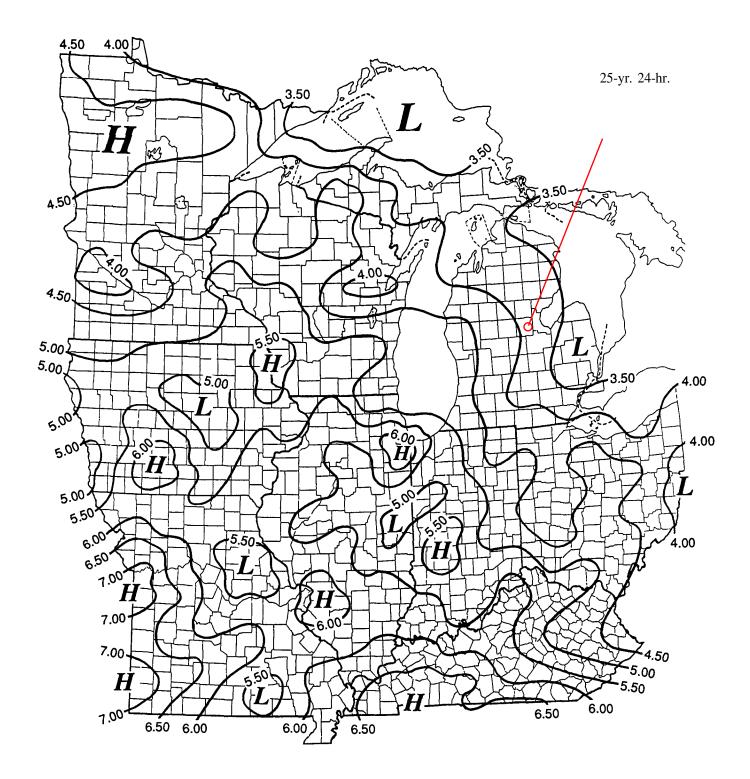


Figure 6. Continued

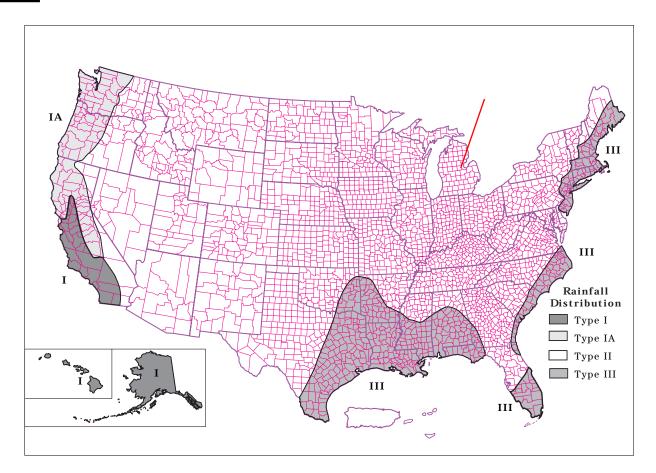


Figure B-2 Approximate geographic boundaries for NRCS (SCS) rainfall distributions

Rainfall data sources

This section lists the most current 24-hour rainfall data published by the National Weather Service (NWS) for various parts of the country. Because NWS Technical Paper 40 (TP-40) is out of print, the 24-hour rainfall maps for areas east of the 105th meridian are included here as figures B-3 through B-8. For the area generally west of the 105th meridian, TP-40 has been superseded by NOAA Atlas 2, the Precipitation-Frequency Atlas of the Western United States, published by the National Ocean and Atmospheric Administration.

East of 105th meridian

Hershfield, D.M. 1961. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 40. Washington, DC. 155 p.

West of 105th meridian

Miller, J.F., R.H. Frederick, and R.J. Tracey. 1973. Precipitation-frequency atlas of the Western United States. Vol. I Montana; Vol. II, Wyoming; Vol III, Colorado; Vol. IV, New Mexico; Vol V, Idaho; Vol. VI, Utah; Vol. VII, Nevada; Vol. VIII, Arizona; Vol. IX, Washington; Vol. X, Oregon; Vol. XI, California. U.S. Dept. of Commerce, National Weather Service, NOAA Atlas 2. Silver Spring, MD.

Alaska

Miller, John F. 1963. Probable maximum precipitation and rainfall-frequency data for Alaska for areas to 400 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. of Commerce, Weather Bur. Tech. Pap. No. 47. Washington, DC. 69 p.

Hawaii

Weather Bureau. 1962. Rainfall-frequency atlas of the Hawaiian Islands for areas to 200 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 43. Washington, DC. 60 p.

Puerto Rico and Virgin Islands

Weather Bureau. 1961. Generalized estimates of probable maximum precipitation and rainfall-frequency data for Puerto Rico and Virgin Islands for areas to 400 square miles, durations to 24 hours, and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 42. Washington, DC. 94 P.

				Printable Ve	rsion
earch				Soil Map	
lap Un	it Legend			Scale (not to scale)	
			C		ar0240
OaB	Oakville fine sand, 0 to 6 percent slopes	6,827.3	2.0%		L C
Pa	Parkhill loam	20,441.4	6.0%		
Pe	Pella silt loam	4,374.4	1.3%		
PsB	Pipestone sand, 0 to 3 percent slopes	49,571.8	14.7%		PtB
PtB	Pipestone sand, loamy substratum, 0 to 3 percent slopes	18,065.2	5,3%		
PuB	Pipestone- Oakville-Urban land complex, 0 to 6 percent slopes	4,014.6	1.2%		-
PwB	Plainfield sand, 0 to 6 percent slopes	3,204.6	0.9%		_
PxB	Poseyville-Londo complex, 0 to 4 percent slopes	5,428.3	1.6%		WxB
Sz	Sloan loam	3,079.4	0.9%	0 975ft 975f	-A
Jr	Urban land	3,796.1	1.1%		
N	Water	4,516.3	1.3%		
Na	Wauseon sandy Ioam	1,960.0	0.6%		
WхB	Wixom loamy sand	35,367.9	10.5%		

Table 2-2cRunoff curve numbers for other agricultural lands 1/2

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	В	C	D	
Pasture, grassland, or range—continuous	Poor	68	79	86	89	
forage for grazing. 2/	Fair	49 <	69	79	84 <	
	Good	39	61	74	80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78	
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83	
the major element. 3/	Fair	35	56	70	77	
	Good	30 4∕	48	65	73	
Woods—grass combination (orchard	Poor	57	73	82	86	
or tree farm). 5/	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods. 6/	Poor	45	66	77	83	
	Fair	36	60	73	79	
	Good	30 4⁄	55	70	77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86	

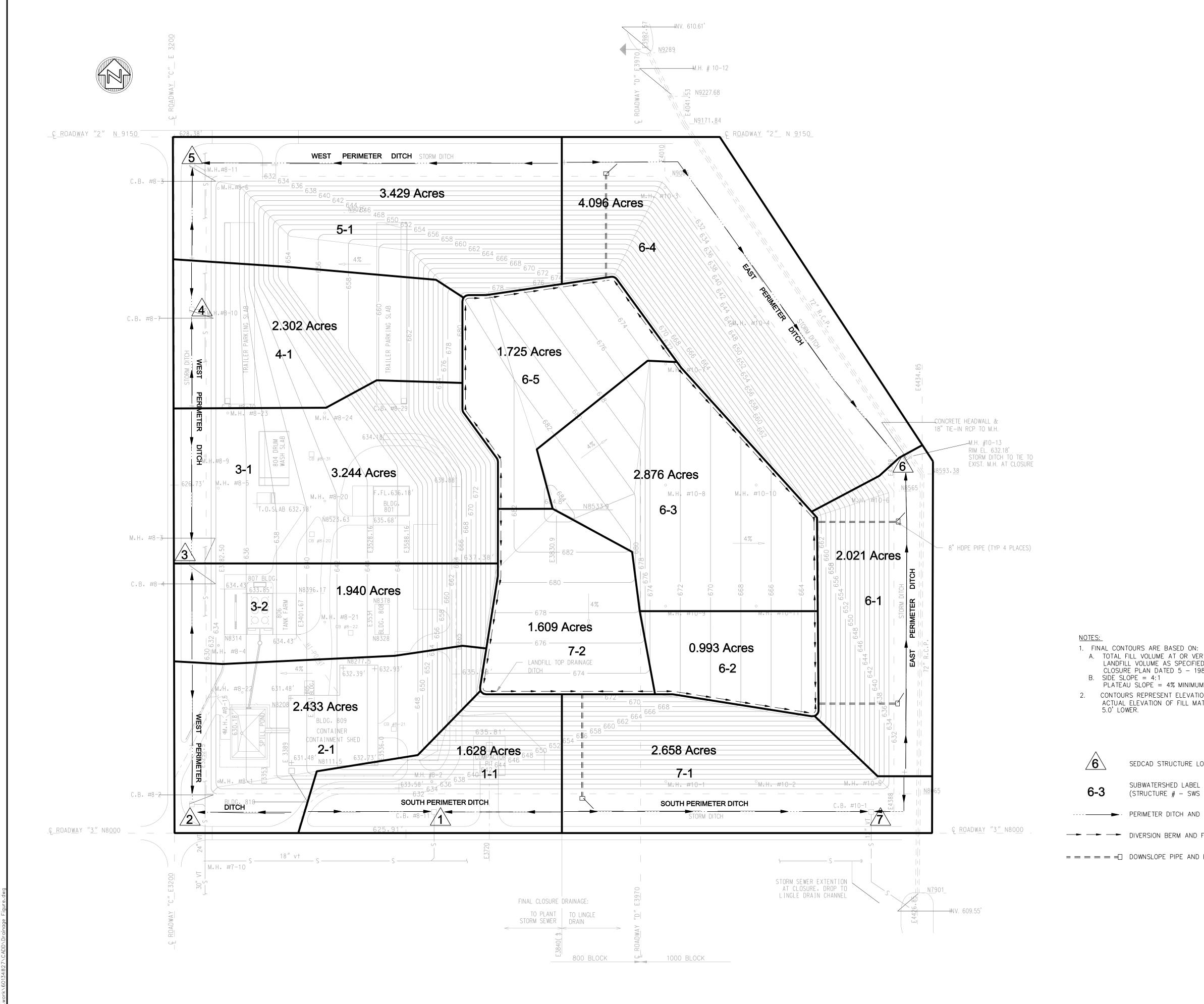
 1 $\,$ Average runoff condition, and I_a = 0.2S.

² Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

Poor: <50% ground cover.

3


Fair: 50 to 75% ground cover.

Good: >75% ground cover.

⁴ Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ *Poor:* Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.
 Fair: Woods are grazed but not burned, and some forest litter covers the soil.
 Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

						DRN CHK DATE	
						NO REVISIONS	
Sheboygan, Wisconsin	DRN	DES	СНК	APP	Copyright (C)	AECOM All Rights Reserved	
AECOM							
MIDLAND LANDFILL CLOSURE DOW CORNING CORPORATION					SEUCAD LATOU		
MIDI	NOQ						

 A. TOTAL FILL VOLUME AT OR VERY CLOSE TO MAXIMUM LANDFILL VOLUME AS SPECIFIED IN LANDFILL CLOSURE PLAN DATED 5 – 1988.
 B. SIDE SLOPE = 4:1 PLATEAU SLOPE = 4% MINIMUM 2. CONTOURS REPRESENT ELEVATION OF A CLOSURE CAP. ACTUAL ELEVATION OF FILL MATERIAL WILL BE 5.0' LOWER.

SEDCAD STRUCTURE LOCATION/LABEL

SUBWATERSHED LABEL (STRUCTURE # - SWS #)

···· PERIMETER DITCH AND FLOW DIRECTION

---- DIVERSION BERM AND FLOW DIRECTION

= = = = = DOWNSLOPE PIPE AND ENERGY DISSIPATOR

<u>Midland Landfill</u>

25-year, 24-hour Storm Event

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	3.900 inches

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description			
Null	#1	==>	#8	0.000	0.000	CB #8-11			
Null	#2	==>	#8	0.000	0.000	CB #8-2			
Null	#3	==>	#8	0.000	0.000	CB #8-4			
Null	#4	==>	#8	0.000	0.000	CB #8-7			
Null	#5	==>	#8	0.000	0.000	CB #8-3			
Null	#6	==>	#8	0.000	0.000	MH #10-13			
Null	#7	==>	#8	0.000	0.000	CB #10-1			
Null	#8	==>	End	0.000	0.000	Node for software setup purposes			

Structure Networking:

Æ	#7
~	Null
F	#6
	Null
Æ	#5
*	Null
Æ	#4
<u>ب</u>	Null
Æ	#3
V	Null
Ŕ	#2
<₽	Null
Ŕ	#1
44	Null
#8	
Null	

	Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#7	4.270	4.270	5.00	0.43
#6	11.720	11.720	12.79	1.17
#5	3.430	3.430	4.04	0.34
#4	2.300	2.300	3.15	0.23
#3	5.180	5.180	6.14	0.52
#2	2.430	2.430	2.90	0.24
#1	1.630	1.630	2.23	0.16
#8	0.000	30.960	35.06	3.10

Structure Summary:

Structure Detail:

<u>Structure #7 (Null)</u> CB #10-1 <u>Structure #6 (Null)</u> MH #10-13 <u>Structure #5 (Null)</u> CB #8-3 <u>Structure #4 (Null)</u> CB #8-7 <u>Structure #3 (Null)</u> CB #8-4 <u>Structure #2 (Null)</u> CB #8-2 <u>Structure #1 (Null)</u> CB #8-11 <u>Structure #8 (Null)</u>

Node for software setup purposes

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge	Runoff Volume
			(hrs)					(cfs)	(ac-ft)
#7	1	2.660	0.201	0.000	0.000	69.000	TR55	3.06	0.266
	2	1.610	0.069	0.179	0.334	69.000	TR55	2.21	0.161
	Σ	4.270						5.00	0.428
#6	1	2.020	0.136	0.000	0.000	69.000	TR55	2.41	0.202
	2	0.990	0.079	0.106	0.338	69.000	TR55	1.36	0.099
	3	2.880	0.077	0.030	0.395	69.000	TR55	3.94	0.289
	4	4.100	0.223	0.000	0.000	69.000	TR55	4.50	0.411
	5	1.730	0.108	0.196	0.318	69.000	TR55	2.37	0.173
	Σ	11.720						12.79	1.174
#5	1	3.430	0.174	0.000	0.000	69.000	TR55	4.04	0.344
	Σ	3.430						4.04	0.344
#4	1	2.300	0.100	0.000	0.000	69.000	TR55	3.15	0.230
	Σ	2.300						3.15	0.230
#3	1	3.240	0.125	0.000	0.000	69.000	TR55	3.87	0.325
	2	1.940	0.050	0.000	0.000	69.000	TR55	2.66	0.194
	Σ	5.180						6.14	0.519
#2	1	2.430	0.129	0.000	0.000	69.000	TR55	2.90	0.243
	Σ	2.430						2.90	0.243
#1	1	1.630	0.090	0.000	0.000	69.000	TR55	2.23	0.163
	Σ	1.630						2.23	0.163
#8	Σ	30.960						35.06	3.101

Subwatershed Time of Concentration Details:

#2	1	Time of Concentration:					0.129
		6. Grassed waterway	0.50	1.12	225.00	1.060	0.058
		3. Short grass pasture	4.00	14.92	373.00	1.600	0.064
#2	1	3. Short grass pasture	25.00	26.75	107.00	4.000	0.007
#1	1	Time of Concentration:					0.090
		6. Grassed waterway	0.25	0.52	208.00	0.750	0.077
#1	1	3. Short grass pasture	25.00	47.50	190.00	4.000	0.013
Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)

SEDCAD 4 for Windows Attachment 6 (cont.)

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#3	1	3. Short grass pasture	20.00	39.60	198.00	3.570	0.015
		3. Short grass pasture	4.00	10.28	257.00	1.600	0.044
		6. Grassed waterway	0.50	1.27	255.00	1.060	0.066
#3	1	Time of Concentration:					0.125
#3	2	3. Short grass pasture	25.00	26.75	107.00	4.000	0.007
		6. Grassed waterway	0.50	0.82	165.00	1.060	0.043
#3	2	Time of Concentration:					0.050
#4	1	3. Short grass pasture	20.00	39.60	198.00	3.570	0.015
		3. Short grass pasture	4.00	10.28	257.00	1.600	0.044
		6. Grassed waterway	0.50	0.78	157.00	1.060	0.041
#4	1	Time of Concentration:					0.100
#5	1	3. Short grass pasture	25.00	49.50	198.00	4.000	0.013
		6. Grassed waterway	0.50	3.07	615.00	1.060	0.161
#5	1	Time of Concentration:					0.174
#6	1	3. Short grass pasture	25.00	15.50	62.00	4.000	0.004
		6. Grassed waterway	0.50	2.53	507.00	1.060	0.132
#6	1	Time of Concentration:					0.136
#6	2	3. Short grass pasture	4.00	11.52	288.00	1.600	0.050
		7. Paved area and small upland gullies	0.50	0.75	150.00	1.420	0.029
#6	2	Time of Concentration:					0.079
#6	3	3. Short grass pasture	4.00	11.08	277.00	1.600	0.048
		7. Paved area and small upland gullies	2.60	9.07	349.00	3.240	0.029
#6	3	Time of Concentration:					0.077
#6	4	3. Short grass pasture	25.00	49.50	198.00	4.000	0.013
		6. Grassed waterway	0.50	4.00	802.00	1.060	0.210
#6	4	Time of Concentration:					0.223
#6	5	3. Short grass pasture	4.00	3.52	88.00	1.600	0.015
		7. Paved area and small upland gullies	0.50	2.04	408.00	1.420	0.079
		7. Paved area and small upland gullies	3.30	6.43	195.00	3.650	0.014
#6	5	Time of Concentration:					0.108
#7	1	3. Short grass pasture	25.00	47.50	190.00	4.000	0.013
		6. Grassed waterway	0.25	1.27	510.00	0.750	0.188
#7	1	Time of Concentration:					0.201
#7	2	3. Short grass pasture	4.00	3.52	88.00	1.600	0.015
		7. Paved area and small upland gullies	2.70	8.04	298.00	3.300	0.025
		7. Paved area and small upland gullies	0.50	0.76	152.00	1.420	0.029
#7	2	Time of Concentration:					0.069

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#6	2	7. Paved area and small upland gullies	25.00	37.00	148.00	10.060	0.004
		6. Grassed waterway	0.50	1.95	391.00	1.060	0.102
#6	2	Muskingum K:					0.106
#6	3	7. Paved area and small upland gullies	25.00	37.00	148.00	10.060	0.004
		6. Grassed waterway	0.50	0.50	101.00	1.060	0.026
#6	3	Muskingum K:					0.030
#6	5	7. Paved area and small upland gullies	25.00	49.50	198.00	10.060	0.005
		6. Grassed waterway	0.50	3.65	730.00	1.060	0.191
#6	5	Muskingum K:					0.196
#7	2	7. Paved area and small upland gullies	25.00	47.50	190.00	10.060	0.005
		6. Grassed waterway	0.25	1.17	470.00	0.750	0.174
#7	2	Muskingum K:					0.179

Subwatershed Muskingum Routing Details: