FORM EQP 5111 ATTACHMENT B2 CORRECTIVE ACTION INFORMATION

This document is an attachment to Gage Products Company's (Gage) 2024 RCRA permit renewal application Form EQP 5111. The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451) R 299.9504(1)(c), R 299.9508(1)(b), R 299.9525, R 299.9629, R 299.9635, and R 299.9636; §§324.11115a and 324.11115b of Act 451; and Title 40 of the Code of Federal Regulations (CFR) §270.14(d) and Part 264, Subpart F, establish requirements for submitting corrective action information and implementing a corrective action program for hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003.

This license application attachment addresses requirements for corrective action information for the waste management units (WMU) at Gage's Limited Storage Facility (Gage LSF) located in Ferndale, Michigan. This attachment includes facility background information, current conditions, and release assessment requirements for operating license applications. This attachment supplies information to support the corrective action program specified in R 299.9629.

Gage LSF has prepared a Quality Assurance/Quality Control (QA/QC) plan. A discussion of the QA/QC plan has been provided at the end of the Waste Analysis Plan contained in Attachment A3, Appendix A3-1. The QA/QC Plan follows the written procedures outlined in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," U.S. Environmental Protection Agency (EPA) Publication SW846, Third Edition, Chapter 1 (November 1986), and its updates.

(Check as appropriate)

Applicant for Operating License for Existing Facility:

R 299.9629 Corrective Action

Elimination from corrective action requirements proposed for one or more units

(P)	More than one box may be checked, if one or more WMUs are proposed for elimination from corrective
action I	requirements

Applicant for Operating License for New, Altered, Enlarged, or Expanded Operating License:

 \square

R 299.9629 Corrective Action

Elimination from corrective action requirements proposed for one or more units

More than one box may be checked, if one or more units are proposed for elimination from corrective action requirements.

This attachment is organized as follows:

B2.A FACILITY BACKGROUND

B2.A.1 History and Description of Ownership and Operation
 B2.A.1(a) Environmental Permits
 B2.A.1(b) Waste Management
 B2.A.1(c) Waste Disposal
 B2.A.1(d) Underground Storage Tanks

- B2.A.1.(e) Previous Studies
- B2.A.2 **Environmental Setting**
 - B2.A.2(a) Climate
 - B2.A.2(b) Topography
 - B2.A.2(c) Hydrogeology
 - B2.A.2(d) Soil
 - B2.A.2(e) Surface Water
 - B2.A.2(f) Surrounding Land Uses
 - B2.A.2(g) **Critical Habitats and Endangered Species**
- Characterization of Potential or Actual Sources of Contamination B2.A.3
 - B2.A.3(a) Former Underground Storage Tank Area on Parcel A
 - B2.A.3(b) Open Area on Parcel A
 - B2.A.3(c) Fill House 6
 - B2.A.3(d) Former Underground Storage Tank Area by Fill House 6
 - Tanker Off-Loading Area B2.A.3(e)
 - B2.A.3(f) Unpaved Area of Silman Avenue
 - Silman Avenue Sewers B2.A.3(g)
 - B2.A.3(h) **Covered Storage Area**
 - Tote and Drum Storage Area B2.A.3(i)
 - B2.A.3(j) **Truck Well**
 - Former Underground Storage by Truck Well B2.A.3(k)
 - B2.A.3(I) Bulk Tank Storage Area
 - B2.A.3(m) Generated Hazardous Waste Storage Area
 - B2.A.3(n) Limited Storage Area Tanks
 - B2.A.3(o) Railroad Loading/Unloading Area
 - B2.A.3(p) Former Piping Area
 - Former Underground Storage Tank by Fill House 2 B2.A.3(q)
 - B2.A.3(r) Tank Wagon Loading/Unloading Area
 - B2.A.3(s) Fill House 1
 - Former Generated Waste Storage Area B2.A.3(t)
 - B2.A.3(u) Former Storage Area at the Boiler Building
 - B2.A.3(v) **Back Storage Area**
 - Former Steam-Out and Storage Area B2.A.3(w)
 - Floor Drains that Connect to the POTW B2.A.3(x)
 - B2.A.3(y) Jewell Avenue
 - B2.A.3(z) Fuel Spill, AOC 11
 - B2.A.3(aa) Tote Rinse Area, WMU 29

FACILITY'S ASSESSMENT OF KNOWN NATURE AND EXTENT OF CONTAMINATION B2.B B2.B.1

- Groundwater
 - B2.B.1(a) **Characterization History**
 - Description of Horizontal and Vertical Extent of Plume(s) B2.B.1(b)
 - B2.B.1(c) Horizontal and Vertical Direction of Contaminant Movement
 - B2.B.1(d) Velocity of Groundwater Contaminant Movement
 - Factors Influencing Plume Movement B2.B.1(e)
 - B2.B.1(f) Extrapolation of Future contaminant Movement
 - B2.B.1(g) Recommendations or Established Requirements for Additional Investigations
- B2.B.2 Soil
 - B2.B.2(a) **Characterization History**

		B2.B.2(b)	Description of Horizontal and Vertical Extent of Contamination			
		B2.B.2(c)	Description of Soil and Contaminant Properties			
		B2.B.2(d)	Velocity and Direction of Contaminant Movement			
		B2.B.2(e)	Extrapolation of Future Contaminant Movement			
		B2.B.2(f)	Recommendations or Established Requirements for Additional			
			Investigations			
	B2.B.3	Surface Wat	rface Water and Sediment			
		B2.B.3(a)	Characterization History			
		B2.B.3(b)	Description of Horizontal and Vertical Extent of Any Contamination			
B2.B.3(c) Velocity of Contaminant Move			Velocity of Contaminant Movement			
		<u>B2.B.3(d)</u>	Description of Sediment Characteristics			
		<u>B2.B.3(e)</u>	Description of Physical, Biological, and Chemical Factors That May			
		~ /	Influence Contaminant Movement and Their Effects			
		B2.B.3(f)	Proposed or Final Mixing Zone Determinations for Any On-Site			
		- (/	Contamination Venting to a Surface Water Body			
		B2.B.3(g)	Recommendations or Established Requirements for Additional			
		(3)	Investigations			
	B2.B.4	Air				
			Characterization History			
		()	Description of Horizontal and Vertical Direction and Velocity of			
			Contaminant Movement			
		B2 B 4(c)	Rate and Amount of Release			
		<u>B2.B.4(d)</u>	Recommendations or Established Requirements for Additional			
		02.0.1(G)	Investigations			
	B2.B.5	Subsurface	Gas Contamination			
	82.8.0		Characterization History			
			Description of Horizontal and Vertical Extent of Subsurface Gas			
		D2.D.0(D)	Contamination Migration			
		B2 B 5(c)	Rate, among, and Density of Gases Being Emitted			
		()	Recommendations or Established Requirements for Additional			
		DZ.D.0(0)	Investigations			
B2.C	FACILITY'S F					
D2.0	.C FACILITY'S EXPOSURE ASSESSMENT B2.C.1 Human Exposure and Threats					
	D2.0.1		Exposure Pathway			
		B2.C.1(b)	• •			
		· · ·	Evidence of Exposure			
	B2.C.2	• • •	-			
	D2.0.2		tal Exposure and Threats			
		B2.C.2(a)	Exposure Pathway			
		B2.C.2(b)	Actual or Potential Receptors			
B2.D	INTERIM ME		Evidence of Exposure			
DZ.D						
B2.D.1 Bulk Tank Storage Area			•			
		B2.D.1(a)	Objective of the Measure			
		B2.D.1(b)	Design and Construction			
		B2.D.1(c)	Operation, Monitoring, and Maintenance			
		B2.D.1(d)	Evaluation of Measure Effectiveness			
		B2.D.1(e)	Proposed or Required Schedules for Continued Operation or Future			
			Changes in the Measure			
	B2.D.2		erground Storage Tank Area by Fill House 2			
		B2.D.2(a)	Objective of the Measure			

- B2.D.2(b) Design and Construction
- B2.D.2(c) Operation, Monitoring, and Maintenance
- B2.D.2(d) Evaluation of Measure Effectiveness
- B2.D.2(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure
- B2.D.3 AOC 8 Soil Excavation
 - B2.D.3(a) Objective of the Measure
 - B2.D.3(b) Design and Construction
 - B2.D.3(c) Operation, Monitoring, and Maintenance
 - B2.D.3(d) Evaluation of Measure Effectiveness
 - B2.D.3(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure
- B2.D.4 Onsite Vapor Intrusion Mitigation
 - B2.D.4(a) Objective of the Measure
 - B2.D.4(b) Design and Construction
 - B2.D.4(c) Operation, Monitoring, and Maintenance
 - B2.D.4(d) Evaluation of Measure Effectiveness
 - B2.D.4(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure
- B2.E ENVIRONMENTAL INDICATORS (See Appendix B2-7) Environmental Indicator Checklists
- B2.F FACILITY'S ASSESSMENT OF KNOWN OR PROPOSED CONSTITUENTS OF CONCERN
- B2.G ESTABLISHED OR PROPOSED CLEANUP CRITERIA
- B2.H ESTABLISHED OR PROPOSED COMPLIANCE POINTS AND PERIODS
- B2.I OFF-SITE ACCESS
- B2.J PUBLIC INVOLVEMENT PLAN
- B2.K HEALTH AND SAFETY PLAN
- B2.L NOTICE REQUIREMENTS
- B2.M JUSTIFICATION FOR PROPOSED ELIMINATION OF ANY WASTE MANAGEMENT UNIT FROM THE CORRECTIVE ACTION PROGRAM OR INTENT TO PROCEED WITH CORRECTIVE ACTIONS

LIST OF TABLES

- Table B2-1Description of Former Underground Storage Tanks
- Table B2-2
 Summary of Analytical Results for Soil
- Table B2-3aSummary of Analytical Results for Organics Ground Water Samples
- Table B2-3b
 Summary of Analytical Results for Inorganics Ground Water Samples
- Table B2-4Summary of Soil Boring Information
- Table B2-5
 Summary of Analytical Results from Ground Water Collection Trench

LIST OF FIGURES

- Figure B2-1 Site Location Map
- Figure B2-2 Site Map
- Figure B2-3 Site Elevation Contour Map
- Figure B2-4 Cross-Section Trace Map
- Figure B2-5 Cross-Section A-A'
- Figure B2-6 Cross-Section B-B'
- Figure B2-7 Cross-Section C-C'

Page 4 of 48

Figure B2-8	Cross-Section D-D'
Figure B2-9	Surface Contour Map of the Clay Till Unit
Figure B2-10	Saturated Fill Thickness from 2nd Quarter Monitoring Results
Figure B2-11	2nd Quarter Data Water Level Contour Map
Figure B2-12	Utility Map
Figure B2-13	Water Table Contour Map Drawdown Phase Water Levels
Figure B2-14	Zoning Designations of Surrounding Properties
Figure B2-15	Locations of Waste Management Units and Areas of Concern

LIST OF APPENDICIES

- Appendix B2-1 Soil Boring/Well Logs
- Appendix B2-2 Soil Test Data
- Appendix B2-3 Material Stored
- Appendix B2-4 Soil Survey Data
- Appendix B2-5 Community Relations Plan
- Appendix B2-6 Health and Safety Plan
- Appendix B2-7 Environmental Indicator Forms
- Appendix B2-8 Property Notice

B2.AFACILITY BACKGROUNDB2.A.1History and Description of Ownership and Operation

The Gage Products Company (hereinafter referred to as Gage) occupies approximately 11 acres at 625 Wanda Avenue in Ferndale, Michigan (Figure B2-1). The facility has been conceptually divided into five parcels (A, B, C, D and E) as illustrated on Figure B2-2. Gage purchased the property between Jewell and Silman Avenues (Parcel C; Figure B2-2) from Grand Trunk Western Railway. Gage subsequently developed the property and began operations in 1936. In 1970, Gage purchased the portion of property between Silman and Channing Avenues (Parcel B; Figure B2-2) and expanded the company's operations. In 1978, Gage purchased the former Wanda School property between Channing and Wordsworth Avenues (Parcel A; Figure B2-2). Dell Marking Systems rented a portion of the former school building from Gage, and currently rents a portion of Parcel B. In the early 1990's, Gage purchased the former Coca-Cola Bottling Company property located at 515 Wanda Avenue (Parcel D; Figure B2-2). In 1994, Gage acquired Jewell Avenue and closed this road to public use. In 2002, Gage purchased the former Wolf Wiping Cloth Company property located at 475 Wanda Avenue (Parcel E; Figure B2-2).

The majority of Gage's process and storage activities are presently conducted on Parcels B, C, and D (Figure B2-2). The present facility consists of several buildings that contain the company's offices, laboratories, storage, mixing, recycling and distribution operations. The remaining property generally consists of open, paved areas used for product and drum storage and vehicle loading/unloading. Parcel D is used for diesel fuel blending and packaging, equipment storage and storage of bulk finished product. Parcel E is used by Gage for equipment storage only. No process operations or management of hazardous materials associated with Gage's reclamation/reuse business have occurred on Parcel E.

The Gage limited storage facility (Gage LSF) accepts used solvents and hazardous secondary materials to produce reclaimed solvents, blended solvents, test and reference fuels, and specialty chemicals. Raw materials (solvents and additives) are stored on-site in pails, bags, 55-gallon drums, portable tanks, or tanks. These raw materials are then blended to customer specifications and packaged in pails, 55-gallon drums, totes, tankers, or railcars. For some of the specialty blended solvents, Gage recycles spent solvents into useable solvent fractions and combines these with virgin solvent to create finished products. Solvent recycling is conducted through thin film evaporation, distillation, or both.

Specialty product and fuel blending occurs in Fill House No. 6. In this process, the raw materials are blended in portable totes and tanks in quantities ranging from 55 gallons to 3,500 gallons. The finished products are stored in tanks, portable tanks,55-gallon drums, and pails. Solvent blending and filling are conducted in Fill House No. 1. In this process, solvents are dispensed into 55-gallon drums. Solvent remanufacturing is conducted in Fill House No. 2. In this process, evaporation and distillation takes place in process equipment. Finished product is stored in tanks in the product tank farm adjacent to the building.

B2.A.1 (a) Environmental Permits

The only environmental permits currently in effect at the Gage facility are Air Use Permits for regulated air emission sources and a Limited Storage Facility (LSF) operating license for the management of hazardous waste. These air permits and LSF license, and a wastewater discharge permit previously applicable to the facility, are described in this section.

Current Permits

The Gage facility is no longer subject to the Title V Renewal Operating Permit Program (Permit MI-ROP-N0841-2008). The facility is currently covered under the Permit to Install 64-18B issued on May 30, 2019 with no expiration date. The PTI 64-18B now covers the equipment from the voided Permit to Install Fuel Blending Expansion PTI-43-08.

A Part 111 LSF operating license was re-issued to the Gage LSF by the Michigan Department of Environmental Quality (MDEQ) on August 4, 2003. This permit allowed operation of a LSF at the site for the temporary storage of

hazardous waste received from off-site in containers or bulk storage tanks. The Gage LSF consists of a truck unloading and container storage building and an adjacent tank farm. The Part 111 LSF operating license was preceded by an Act 64 LSF operating license that was issued on May 10, 1994 and expired on May 10, 1999. The current LSF operating license expires on March 31, 2025, and this document supports the LSF license re-application due on October 2, 2024.

Past Permits

The Gage facility maintained an Industrial Waste Control Discharge Permit (Permit No. 489-001) to discharge wastewater to the City of Detroit's wastewater treatment plant. On July 29, 1994, the City of Detroit's Water and Sewerage Department notified Gage that their facility is classified as a Minor User of the Detroit sewerage system and as such Gage is not required to maintain a wastewater discharge permit from the City. Therefore, the Gage facility no longer maintains an Industrial Waste Control Discharge Permit from the City of Detroit.

B2.A.1 (b) Waste Management

The Gage LSF facility recycles spent solvents received from off-site sources to produce usable solvents for industrial use. Hazardous wastes are generated from the site's recycling processes and subsequent solvent blending operations. A description of the hazardous wastes managed at the Gage LSF facility and the waste management activities performed at the site is included in this section.

Waste Generation

Wastes managed at the Gage LSF include wastes generated both on- and off-site. Wastes generated on-site include residues from the site's recycling processes and subsequent solvent blending operations. These on-site generated wastes include still bottoms and spent solvents from equipment rinses. On-site generated wastes have the following U.S. EPA Hazardous Waste Numbers: D001, D002, D005, D007, D008, D018, D035, F003 and F005.

Hazardous wastes generated off-site and received at the Gage LSF for recycling include primarily ignitable and toxicity characteristic wastes (U.S. EPA Hazardous Waste Number D001, D005, D006, D007, D008, and D011) and spent solvents (U.S. EPA Hazardous Waste Numbers F001, F002, F003 and F005). Corrosive hazardous wastes (U.S. EPA Hazardous Waste Number D002) are also received from off-site for temporary storage prior to being shipped to a licensed treatment or disposal facility. Wastes are received in either bulk tanker truck or 55-gallon drum quantities.

Waste Treatment

No waste treatment activities are performed at the Gage LSF. Spent solvent recycling activities are performed at the site, including thin film evaporation and distillation.

Waste Storage

There are currently three active waste storage areas at the Gage facility and two inactive waste storage areas. A description of these five areas is provided in this section.

Current Storage Activities

Wastes are currently stored in 55-gallon drums in the Gage LSF and in bulk storage tanks in the Generated Hazardous Waste Storage Area (Solid Waste Management Unit [SWMU] 5). The Gage LSF is an approximately 4,200 square foot building that is enclosed on three sides and has a coated-concrete floor. Ignitable and corrosive hazardous wastes (D001 and D002, respectively) and spent solvents (F001, F002, F003 and F005) are stored in this building. A more detailed description of the Gage LSF is provided in Attachment B4, Environmental Assessment.

The Generated Hazardous Waste Storage Area includes three aboveground storage tanks and a concrete secondary containment system. Three tanks (9,000, 11,000 and 15,000 gallon capacities) are currently being used to store Gage-generated ignitable and toxicity characteristic hazardous wastes (D001, D005, D007, D008, D018, D035, F003 and F005). A more detailed description of the Generated Hazardous Waste Storage Area is provided in Section B2.A.3.

Treatment, Storage and Disposal Facility Waste Activities

The Gage LSF provides both bulk and container storage capacity for wastes received from off-site prior to it being recycled or shipped off-site to another treatment/disposal facility. The Gage LSF consists of a truck unloading and container storage building and an adjacent tank farm. The maximum storage capacity of the LSF is 25,000 gallons.

Past Storage Activities

Two areas of the Gage facility have previously been used to store hazardous waste. These areas include the Former Generated Hazardous Waste Storage Area (Area of Concern [AOC] 1) and the Back Storage Area (AOC 2), which are further discussed in Section B2.A.3.

The Former Generated Hazardous Waste Storage Area was located along the railroad tracks on the west side of the facility and was operated as a drum storage yard until the late 1980's. This area was used to store drums of hazardous waste (including D001, D002, F001, F002, and F003) that were generated on-site. A more detailed description of this storage area is provided in Section B2.A.3.

The Back Storage Area was located near the railroad tracks on the west side of the facility and was used to store both full and empty drums, including drums of ignitable hazardous waste (D001) and spent solvents (F003 and F005). In 1994, a limited storage facility for the storage of hazardous waste was constructed at the Back Storage Area location. A more detailed description of the Back Storage Area is provided in Section B2.A.3.

B2.A.1 (c) Waste Disposal

No waste disposal activities are performed at the Gage facility. Any waste generated on-site or received from offsite that cannot be beneficially reused or reclaimed is sent off-site for disposal.

In the early 1980's, fifteen 55-gallon drums of material were excavated from the site at the western edge of Parcel A (AOC 8). This material was transported off-site to a licensed disposal facility.

B2.A.1 (d) Underground Storage Tanks

Facility records show that 24 underground storage tanks (USTs) were located on the Gage facility property. A UST summary is provided on Table B2-1 that identifies for each tank: identification number, year removed, age at the time of removal, capacity, former contents, and former location. These tanks were located within seven separate underground storage tank areas (Figure B2-2). The 17 registered UST systems located on Parcels A, B, and C (as defined by Michigan Public Act 213 of 1994) were removed between 1985 and 1987 and the remaining UST systems were closed between 1986 and 2009.

B2.A.1 (e) Previous Studies

A summary of previous investigations at the Gage facility is presented below.

Underground Storage Tank Investigations

In 1984, O.H. Materials Company (OHM) evaluated the condition of the 17 USTs on Parcel A, B, and C at the Gage facility. Tanks 41, 48, and A (see Table B2-1) failed pressure-testing and were immediately emptied. OHM installed 12 monitoring wells (TMWs) around the four tank farms. OHM discovered free product in several of the wells near the truck dock and fill house areas and concluded that ground water existed in discontinuous zones across the site. In 1985, OHM installed an additional five monitoring wells (GMW-1 through GMW-5) at the perimeter of the site to provide additional ground water data. OHM's evaluation of the field data resulted in the following conclusions (OHM, 1986):

- The subsurface stratigraphy consists of approximately five feet of silty sand underlain by a gray-brown silty clay which appears to be continuous across the site,
- Fill material consisting of fine sand and construction debris is likely placed in low-lying areas,
- Ground water is present from three to six feet below the ground surface,
- Ground water flows toward the east-northeast,
- The horizontal hydraulic conductivity of the silty clay unit is 3.3 x 10⁻³ feet/day (1.16 x 10⁻⁶ cm/sec), and;
- Volatile organic compounds (VOCs; primarily chlorobenzene) were present in ground water beneath the facility with the greatest concentrations found at MW-4, located in the southwest corner of Parcel C.

Gage removed all 17 of the registered USTs from Parcels A, B and C between 1985 and 1987. In accordance with standard UST closure practices at the time, a representative of the City of Ferndale's Fire Marshal Department made a site visit to inspect that the USTs had been removed, and to assure that the UST excavations were free of contamination. Soil samples for chemical analysis were not required as part of the Fire Marshal's inspection. As documented in an October 30, 1987 letter, the Fire Marshal indicated that all of the USTs had been properly closed.

Following acquisition of Parcels D and E, additional USTs were identified (see listing on Table B2-1). On Parcel D, kerosene and a fuel oil tank were identified and closed in place. A 6,000 gallon gasoline UST was removed from this parcel in 1991, prior to Gage's ownership. On Parcel E, it was determined that a 4,000 gallon gasoline UST had been removed from the property in 1986, also prior to Gage's ownership. During construction activities in 2009 along the Parcel C and Parcel D boundary, a 1,000-gallon fuel oil UST was identified and subsequently removed.

In an attempt to control what was believed to be migration of impacted ground water across the site, Gage installed two separate ground water recovery systems. These systems are described in Section B2.D, Interim Measures. The first system was installed on the east end of the product storage tank farm. The second system transected the east-west length of Parcel C.

Phase I and II Hydrogeological Investigations

In July 1989, a Phase I Hydrogeological Investigation was initiated by Gage to further characterize soil and ground water quality beneath the site. This information was presented in a report prepared by WW Engineering & Science (WWES), titled "Results of Hydrogeological Investigation at Gage Products Company, Ferndale, Michigan", (WWES, 1990).

The 1989 Phase I investigation included the drilling of five soil borings to depths between 9 and 60 feet, the installation of one additional monitoring well (GMW-6), the replacement of two monitoring wells (GMW-4 and GMW-5), aquifer testing to determine the horizontal hydraulic conductivity of the shallow saturated fill material, collection of clay till soil samples to determine vertical hydraulic conductivity, collection of static water-level data, and collection and analysis of representative ground water samples for VOCs. The Phase I investigation

documented the following:

Soils beneath the site consist of an upper fill layer that includes varying amounts of sand, gravel, silt, and clay. The fill layer is underlain by clay till that extends to at least 60 feet below ground surface. The clay till unit was found to be an aquitard with a calculated average hydraulic conductivity of 3.4×10^{-7} cm/sec.

Ground water occurs within the upper fill layer in discontinuous zones beneath the site. When contoured, water levels indicated flow is west to east, and is consistent with the topography of the upper surface of the clay till unit.

The original 12 TMW monitoring wells installed by OHM no longer exist. Gage personnel indicated that these wells were removed with the USTs at each location.

Analytical results from representative ground water samples collected from six of the GMWs indicated that ground water has been impacted by several VOCs. The highest concentrations of VOCs in the site's ground water were reported in samples obtained from GMW-4 located near the railroad spur.

There were no known industrial, domestic, or irrigation wells within a one-mile radius of the Gage facility.

Subsurface structures (utility lines) did not appear to be influencing ground water flow and the ground water remediation system installed by OHM at the Remanufacturing Building (Fill House No. 2) was inactive.

In July and August 1990, WWES conducted a Phase II Hydrogeologic Investigation on Gage's behalf. This investigation included; verification of conclusions presented in the Phase I Investigation report, installation of five soil borings in former UST locations to document soil conditions (TSB-1 through TSB-5), installation of one soil boring, C-SB-1, on the west side of the site to document upgradient soil conditions, installation and collection of a ground water sample from one monitoring well (GMW-7) to document upgradient (west of the site) ground water quality and collection of ground water samples from the existing six monitoring wells for laboratory analysis.

Results of WWES' Phase II hydrogeologic investigation confirmed data presented in the Phase I investigation. In addition, the analytical results from soil samples obtained from five borings performed in the former UST areas indicated some impacted soil remained at two locations; low levels of benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX compounds) and chlorobenzene were detected in the truck dock UST area and low levels of BTEX, chlorobenzene and 1,1,1-trichloroethane were detected in the Fill House No. 2 UST area (WWES, 1990b).

Limited Storage Facility Operating License Application - 1992

Additional investigation of Gage facility was conducted in 1992 for the Gage LSF operating license application. The scope of that investigation included an extensive topographic and utility survey to locate all site features, installation of five driven well point piezometers in the fill unit (P-1 through P-5), collection of soil samples from seven borings (B-8 through B-14) for physical soil testing, collection and analysis of ground water samples from seven existing monitoring wells and measurement of water levels in all wells and piezometers. The investigation documented the following (WWES, 1992):

- Ground water impact, depth, and flow direction.
- Surveyed topographic contours, property boundaries, buildings, waste management and storage areas, monitoring wells, soil borings, piezometers, known subsurface utilities, and all other main site features.
- The grain-size distribution, Atterburg limits, Unified Soil Classification System designation, moisture content, and vertical hydraulic conductivity of site soils (fill and clay till unit).
- The subsurface utilities within the clay soil appeared to have minimal effect on ground water flow.

Hydraulic Evaluation of the Ground Water Collection Trench

Prior to issuance of Gage's LSF operating license, the MDEQ requested that Gage evaluate an inactive ground water collection trench at the facility for its effectiveness and its possible re-use as an interim corrective measure. A series of 14 shallow piezometers (P-6 through P-19) were installed in and adjacent to the collection trench. One piezometer (P-20) was installed along the southern boundary of Parcel C. Water levels in these and other piezometers and wells were monitored during a 72-hour pump test in the trench. Based on the following results of the trench evaluation, WWES did not recommend the use of the trench as an interim corrective measure (WWES, 1994):

- A portion of the trench was plugged and could not effectively transmit water.
- The collection system's zone of capture was limited; therefore, the trench would not affect movement of water within the fill layer.
- The saturated shallow fill layer was underlain by thick clay till aquitard and was thus vertically limited and not part of an aquifer system.

Hydraulic Monitoring Program

In accordance with Gage's former Act 64 Operating License, Part V. A. 3, a Hydraulic Monitoring Program was implemented at the Gage facility on a quarterly basis for a period of one year. The MDNR approved the program for implementation in a letter dated October 27, 1994.

The data revealed a northwest to southeast hydraulic gradient across Parcels B and C of the site. The average linear velocity of ground water flow beneath the parcels is less than 10 feet per year. The remnants of a nonfunctional ground water collection trench beneath Parcel C have no discernible effect on ground water flow, nor do any other superficial structures on the site.

Tote and Drum Storage Area Upgrade

In the spring of 1995, Gage undertook a project to upgrade the Tote and Drum Storage Area located on Parcel C of the Gage facility. As part of the project to resurface the Tote and Drum Storage Area, underlying fill material was removed and disposed of off-site. To ensure proper management of those soils, samples were collected and analyzed to determine if they were subject to regulation as a hazardous waste under applicable state and/or federal regulations. The scope of this work was discussed with and subsequently agreed upon by the MDEQ.

None of the samples analyzed exhibited the characteristic of a hazardous waste. In fact, no volatile or semi-volatile organic compounds were detected in any of the TCLP extract above the method detection limit.

Silman Avenue Utility Corridor Sampling and Analysis

In August 1995 Gage, in anticipation of the paving of Silman Avenue, negotiated with the MDEQ and the U.S. EPA an approved program to sample and analyze the ground water that may be present in the utility corridors beneath Silman Avenue.

Four proposed sampling locations were selected and subsequently approved by the MDEQ and U.S. EPA. U.S. EPA geologist, Mr. Greg Rudloff, was on-site to observe the sampling activities. At three of the proposed sampling locations ground water was encountered and sampled for analysis (GP-TMW-01, 02 and 03).

Low levels of 5 VOCs were detected. None of the reported detections exceeded the Part 201 generic residential direct human contact criteria. Table B2-2 summarizes the analytical results for these soil samples.

Silman Avenue High Voltage Utility Line Excavation Sampling and Analysis

MDEQ and Gage were on-site inspecting work being performed along Silman Avenue in January 1996 as a high voltage electrical utility line was being installed. PID screening of exposed soils within the trench by MDEQ isolated those areas suspected of being impacted and two samples were subsequently collected for analysis. Additionally, one sample of ground water that had seeped into the trench, and was subsequently pumped to a tote for temporary storage, was collected for analysis.

The resulting laboratory report for soils reveal the presence of xylenes at a concentration slightly above the direct human contact criteria. The ground water did not contain VOCs above either the direct contact criteria or volatilization to indoor air criteria. Table B2-2 summarizes the results of the analyses performed on the soil samples.

Pipe Trestle Foundation Excavation

During May 1997, ongoing facility upgrades in the vicinity of a new railcar load/unload containment area afforded the opportunity to sample subsurface soils that were exposed during the installation of pipe trestle foundations. MDEQ and Horizon, as a representative of Gage, were on-site to split samples representative of soil conditions in the four northern most excavations completed at the time.

An exceedance of the direct human contact and volatilization to indoor air was noted in one of the four samples (EX-9). The analytical data are also summarized on Table B2-2.

Soil and Ground Water Sampling on the Grand Trunk Switching Yard

The State of Michigan required Gage to perform an Off-Site Ground Water Assessment, pursuant to Part V of their former Act 64 Operating License, "Environmental Monitoring". A work plan outlining the scope of work to be executed under this permit requirement was submitted to U.S. EPA and MDEQ in August, 1994. This work plan was incorporated as an element of the Gage facilities RFI. As part of this scope of work, a portion of the Grand Trunk Western switching yard, located immediately west of Gage's Parcel C, was investigated.

To augment its shipping and receiving capacity and potentially reduce truck traffic on Wanda Avenue, Gage contemplated facility improvements that required them to purchase the portion of the Grand Trunk Western (GTW) switching yard that was investigated during the Off-Site Ground Water Assessment program.

Because Gage desired to finalize its plans for this facility upgrade as quickly as possible, and because future construction on the GTW parcel would likely restrict environmental investigation, Gage implemented a portion of the Off-Site Ground Water Assessment sampling program during the summer and fall of 1997.

The purpose of performing this off-site assessment of soil and ground water quality was twofold:

- to fulfill permit requirements as specified previously; and
- to provide determination regarding the environmental condition of this property prior to purchasing it from GTW.

To fulfill permit requirements, this assessment determined the quality of ground water (where encountered beneath the property) and the direction of ground water flow.

The results of this investigation determined that ground water was only present in two of the three locations investigated. The hydraulic gradient was to the southeast. Analytical results for the ground water samples did not reveal any exceedances of applicable regulatory criteria.

Eight soil samples were collected and analyzed. No exceedances of Part 201 soil criteria applicable to the site were observed. Tables B2-2 and B2-3 summarize the analytical results of soil and ground water samples,

respectively.

Off-site migration from the Gage property to the Grand Trunk property was not evident as a result of this work, and is unlikely to occur since the ground water flow direction is from Grand Trunk toward the Gage property.

Appendix IX Sampling

As explained in a letter from Horizon to Mr. Daniel Daily, MDEQ, dated August 8, 2000, Gage, in response to a request from the MDEQ, performed focused sampling and analysis for Appendix IX parameters to ensure that the Gage facility's RCRA Facility Investigation (RFI) work plan constituent list was sufficient to allow potential exposure risks posed by site environmental media to be fully assessed through the Corrective Action process. At MDEQ's request, Gage sampled ground water at select site locations and analyzed those samples for a modified Appendix IX list. It was MDEQ's preference that ground water be sampled rather than soil, given ground water's mobility and its potential to act as a transport mechanism.

In developing the modified Appendix IX constituent list, Horizon reviewed the list of materials currently used and/or stored on-site at the Gage facility to establish a preliminary list. The Appendix IX list was then reviewed and those constituents not commonly associated with surface coatings, related carriers, solvents and/or cleaning solvents were eliminated. The Appendix IX parameters that were eliminated generally included chemically incompatible compounds, pesticides, herbicides and pesticide/herbicide intermediates.

In a letter dated February 15, 2000, Horizon submitted the modified Appendix IX parameter list to the MDEQ for their approval. In a letter dated March 28, 2000 MDEQ responded wherein it was requested that an additional 18 organic compounds be added to the list. The final list included those compounds requested by the and PCBs as requested by Mr. Al Taylor.

Two Appendix IX sampling locations were selected:

- The first location was the former drum burial area in the northern portion of Parcel A, identified for purposes of the RCRA Corrective Action program as AOC 8. Existing ground water monitoring well GMW-1 is positioned in essentially the center of this former burial area and was used to obtain the groundwater sample during this event.
- The second location was in the vicinity of the intersection of Jewell and Wanda Avenues, at the southeast corner of Parcel C. The potential for ground water to migrate off-site has been suspected along a north-south oriented combined storm and sanitary sewer located beneath Parcel C. The combined sewer connects to a main beneath Jewell Avenue immediately south of Parcel C. A new permanent ground water monitoring well was to be installed to accommodate this sampling and analysis event. This well was to be positioned vertically and horizontally such that the screened interval of the well would intersect the backfill material surrounding the sewer line beneath Jewell Avenue.

Sampling at the first of the two locations (GMW-1) was completed on June 16, 2000. To briefly summarize those results, several inorganic species were detected; however, no concentrations were above applicable regulatory criteria including residential drinking water criteria. Additionally, three organic compounds were detected at low ppb levels, all of which were below applicable regulatory criteria including residential drinking water criteria. Of the three organic compounds detected, none were included in the list of additional compounds requested by the MDEQ.

Sampling at the second location, the intersection of Jewell and Wanda Avenues, could not be completed as ground water was not present in this location. MDEQ representatives were on-site to inspect this well installation and sampling effort. Based upon the absence for ground water, MDEQ agreed that installation of a monitoring well at this location was not necessary and that this particular migration route was not complete at the site.

Horizon concluded that there was no reason or justification to recommend the addition of any organic compound or

inorganic species to the list of compounds originally proposed in the RFI Work Plan. In a letter dated July 30, 2009, the MDEQ concurred with that conclusion.

Parcel D (Former Coca Cola Enterprises Property) Environmental Assessments and USTs

July 1993 Environmental Audit

As documented in a report dated July 6, 1993, an environmental audit of Parcel D was performed by the Traverse Group, on behalf of Coca Cola Enterprises (The Traverse Group, 1993). Results of the audit indicated that additional soil removal was in progress to address residual soil impact related to a confirmed release (dated July 9, 1991) from a 6,000 gallon unleaded gasoline UST and associated dispenser and piping. The UST, dispenser, and piping were removed in July of 1991 (prior to Gage's ownership of this property). The audit also described: 1) the presence of solvent like odors in the restroom in the northeast corner of the facility, apparently originating from the floor drain; 2) the presence of two paint booths inside the facility; and 4) railroad tracks observed directly west of the facility building.

October 1993 Environmental Assessment

As documented in a report dated October 4, 1993, an environmental assessment including: 1) a Phase I Baseline Investigation; 2) an Environmental Assessment (Second Phase); and 3) a Sewer Investigation, was performed by WW Engineering and Science (WWES) on behalf of Gage (WWES, 1993). The Phase I Investigation indicated that the MDNR, in a letter dated August 18, 1993, granted a closure approval for the former 6,000 gallon gasoline UST. The Phase II investigation included the collection and analysis of soil samples to evaluate the paint booth area and the railroad track area west of the building. Analytical results indicated that soils in these areas were not impacted. The Sewer Investigation included smoke testing of the sewers in the facility. Based on the results of that investigation, several drain repairs were recommended to prevent the backflow of odors from the combined sewers that serve the building.

USTs Discovered in 1998

As documented in a letter from Gage to Mr. Daniel Dailey dated July 23, 1998, Gage discovered two additional USTs beneath the floor in the back warehouse of the former Coca-Cola facility in May of 1998. The existence of these tanks had not been disclosed by the seller prior to Gage's purchasing the property, nor by two environmental consulting firms retained to perform Phase I, Phase II and Phase III Environmental Site Assessments of the property. The USTs, a 10,000 gallon kerosene tank and 20,000 gallon tank containing No. 5 fuel oil, were used as reservoirs to store heating oil for on-site consumptive purposes within the on-site boilers.

On June 4 and 5, 1998, Horizon conducted an investigation of the UST area. Samples of the fluids in the tanks were collected and soil borings were advanced to depths coincident with the bottoms of the tanks. Two samples were collected from the east end of Tank #1 at depths of 10-12 feet and 13-15 feet beneath the floor of the warehouse. The depth to the bottom of Tank #1 was measured to be 13 feet beneath the floor. A sample from each end (east and west ends) of Tank #2 was collected at depths of 14-16 feet. The depth to the bottom of Tank #2 was also measured to be 13 feet beneath the floor. No ground water was encountered at any of the probe locations.

The soil samples were analyzed for PNAs. Laboratory results indicated that none were detected in any of the samples; therefore, it was concluded that there had been no release from the USTs.

Fluid from Tank #1 was removed from the site by M.L. Chartier, Inc. and disposed of by General Oil Company on June 12, 1998. Disposal of the fluid within Tank #2 was performed by General Oil Company in August 1998

The USTs were closed in place by filling with an inert flowable material in accordance with applicable regulatory requirements.

UST Discovered in 2009

In a letter dated September 9, 2009, Gage notified Mr. Daniel Daily that a contractor working for Gage had discovered a small UST on August 12, 2009, during excavation of a trench for construction of a concrete security wall outside of the north wall of the building at 515 Wanda Avenue, near the intersection of Wanda and Jewel. The existence of this UST was not disclosed by the previous property owner prior to Gage's purchase of the property in 1994, nor by two environmental consulting firms retained on separate occasions to perform a Phase I Environmental Site Assessment of the property.

Upon discovery of the UST, Gage contacted the City of Ferndale Fire Department, who in turn contacted the MDEQ.

Gage personnel measured the tank contents with a dip stick and determined that it was full of liquid. The tank had a capacity of approximately 1,000-gallons. Gage transferred the liquid to three 330-gallon totes and analyzed a sample of the tank contents via GC/MS. Based on the results, Gage determined that the contents consisted of water mixed with residual fuel oil. Based on the tank contents, the observed brass feed/return lines and historic knowledge of a boiler, Gage concluded that the UST was used to store fuel oil that was burned in a former on-site boiler.

Horizon contracted Commercial & Industrial Dismantling (CID) to remove the UST. Upon removal of the UST, Horizon collected two soil samples from the floor of the excavation, one from beneath each end of the tank.

The UST was power washed and residual liquids transferred to a drum. CID rendered the UST unusable prior to removing it from the site and transporting it to H&H Metal in Inkster, Michigan, a metal recycling facility.

The two soil samples from the bottom of the excavation were analyzed for polynuclear aromatic hydrocarbons (PNAs). Analytical results indicated that with the exception of very low levels of 2-methylnaphthalene and naphthalene, no PNAs were detected. The observed concentrations of 2-methylnaphthalene and naphthalene are below the most restrictive residential use criteria as defined by Part 201 of P.A. 451 of 1994, as amended (Part 201). Based on these results, the UST removal was deemed complete and no further action is planned.

Parcel E Environmental Site Assessments

1998 Phase I ESA

Horizon performed a Phase I Environmental Site Assessment (ESA) of the former Wolf Wiping Cloth Company site located at 475 Wanda Avenue, Ferndale, Michigan (Parcel E) in June 1998 (Horizon, July 1998). The Phase I ESA identified seven areas of environmental concern:

Area 1: Two areas beneath the building floor where bailer machines were formerly located. The floor was covered with metal sheeting; consequently, the condition of the floor beneath the sheeting could not be identified.

Area 2: A pit located in the southern portion of the building. The pit was formerly used to obtain access to the bottoms of machinery for repair. The condition of the bottom of the pit could not be identified during the Phase I investigation.

Area 3: The floor drain located in the southeastern corner of the building. Heavy staining was noted on the floor around this drain.

Area 4: Staining on the pavement near an above ground storage tank (AST). The contents of the AST are unknown; however it is suspected that spent hydraulic oil may have been stored in the tank.

Area 5: Heavily stained soils along the western portion of the exterior parking/storage area.

Area 6: A former 4,000 gallon gasoline UST which was removed in 1986. There are no records documenting clean closure of the UST.

Area 7: A 550 gallon diesel UST included in the City of Ferndale Fire Marshall's records but not identified during the Phase I site inspection. The location of this UST is unknown.

1998 Phase II ESA

Horizon conducted a Phase II ESA of the site in August 1998 (Horizon, September 1998). The purpose of the Phase II ESA was to investigate these seven areas identified in the Phase I and determine if the site meets the definition of a "facility" as defined by the MDEQ pursuant to Part 201 of Michigan P.A. 451 of 1994, as amended.

Prior to performing field investigation activities, Horizon made additional inquiries regarding the location of the 550 gallon diesel UST which was included in the City of Ferndale Fire Marshall's records (Area 7). Through conversations with Mr. Fred Cohen, the site owner, Mr. Jeff Goodwin, former General Manager for Wolf Wiping Cloth Company, and Mr. Ken Van Sparrentak of the City of Ferndale Fire Department, it was determined that the 550 gallon UST identified in the fire department records was actually a 550 gallon diesel AST. The AST is being addressed as Area 4.

A total of ten soil borings were installed throughout the areas of concern. Soil borings extended to depths of up to 10 feet below grade. A thin layer of fill was present above the clay unit that occurs throughout the area. No ground water was encountered. Soil samples were collected and analyzed for VOCs, PNAs, the Michigan 10 suite of metals and PCBs. With one exception, all results were below generic Part 201 residential criteria developed by the MDEQ. One soil sample collected in Area 3 at the property was found to contain arsenic at a concentration of 13 mg/kg, which exceeds the generic residential direct contact cleanup criterion of 7.6 mg/kg.

1999 Addendum to the Phase II ESA

A later review of the exceedance for arsenic in Area 3 of the property indicated that, based on soil background data compiled by the Waste Management Division of the MDEQ, an arsenic concentration of 13 mg/kg is consistent with background levels in the area (Horizon Environmental, April 1999).

Evaluation of Parcels D and E

Parcel D is the former Coca-Cola Bottling Company property located at 515 Wanda Avenue. Parcel E is the former Wolf Wiping Cloth Company property located at 475 Wanda Avenue.

The Gage facility's 2003 re-issued LSF operating license identified the following WMUs and AOCs on Parcel D based on observations included in a 1993 Environmental Assessment:

WMU Number 24	Truck Wells and Oily Concrete Stains;
WMU Number 25	Floor Drains that Connect to the POTW;
WMU Number 26	Paint Room with Paint Filters Present;
WMU Number 27	The Mechanical Room;
WMU Number 28	Asbestos in Floor and Ceiling Tiles and Pipe Wrap;
AOC Number 9	Fill Material in Sewer Trenches; and,
AOC Number 10	Jewell Avenue.

No WMUs or AOCs were identified by U.S. EPA or MDEQ at Parcel E.

In 2009, Horizon Environmental conducted an evaluation of Parcels D and E, including a site inspection, interviews with site personnel, a review of both internal and MDEQ site inspection documents, and a review of the

environmental assessment reports for Parcels D and E. In a letter to the MDEQ dated December 30, 2009, Horizon provided a summary of the evaluation findings and recommendations regarding updating the RFI work plan. This evaluation determined that only SWMU 25 and AOC 10, both of which are associated with the combined sanitary/storm sewer that runs below the former Jewell Avenue roadway, warranted investigation as part of the RFI. Furthermore, no SWMUs or AOCs were identified on Parcel E.

B2.A.2 Environmental Setting

B2.A.2(a) Climate

Local, site-specific meteorological data has been provided in Attachment B4, Environmental Assessment.

B2.A.2(b) Topography

The Gage property is located near the boundary of the Highland Park and the Royal Oak 7-1/2 minute topographic quadrangles. The Highland Park quadrangle (Figure B2-1) shows the site grade to be fairly level, with elevation varying between 635 and 640 feet. The site elevation contour map (Figure B2-3) shows a similar range of elevation with an east to west rise on Parcel C from 635 to 639 feet; generally level land at 637 feet on Parcel B; and, on Parcel A, land rising gently 1 to 3 feet to the buildings situated on a gentle "high" at 637 feet.

Regionally, the topography is also generally flat, with a gradual eastward decline in elevation from 650 feet, a mile west of the site, to 625 feet two miles east of the site.

B2.A.2(c) Hydrogeology

Regional Geology

The regional geological and hydrogeologic setting of the Gage facility has been interpreted from several sources, including publications by J. A. Dorr, Jr. and D. F. Eschman, Western Michigan University, the United States Department of Agriculture, Soil Conservation Service (SCS); and glacial geology maps prepared by the Michigan Department of Natural Resources, Geological Survey Division.

The Gage facility is located in an area greatly influenced by the movement of glaciers that occupied Michigan during the Pleistocene Ice Age, which occurred approximately 11,000 to 12,000 years ago. Glacial drift soils beneath this part of Oakland County commonly range in thickness from 100 to 150 feet.

The glacial geologic profile is characterized in the available literature as consisting of layers of lacustrine clay and silt deposited in glacial lakes Wayne and Warren that were created by meltwaters from the Huron-Erie glacial lobe. These deposits are described as consisting of gray to dark reddish-brown clays and silts that are varved (laminated) in some locations. The laminations are created by slight textural differences created by seasonal increases or decreases in sediment load in the glacial meltwater. These deposits may also include small discontinuous layers of lacustrine sands and clay till.

The lacustrine deposits often overlie waterlain moraine deposits, which consist of brownish fine to medium sands, and occasional lenses of gravel and also include soil composed of lacustrine clay. These waterlain moraine deposits were deposited in beach or off-shore littoral environments.

Soil types near the site are classified by the SCS as "Urban Land" or land that is so altered by development that soil classification is not possible without subsurface investigation.

Bedrock in the region consists of the Antrim Formation shale at a depth of approximately 140 feet. The Antrim shale is late Devonian to early Mississippian in age (approximately 350 to 400 million years before present). The Antrim Formation is generally not considered a source of ground water in Michigan and is better known as a source of natural gas in southeast Michigan.

Regional Hydrogeology

A review of information from Western Michigan University and the MDEQ Geological Survey Division, Glacial Geology and Ground Water Section, indicates no ground water aquifers in use in the vicinity of the site. The U.S. Geological Survey (Geological Survey Water-Supply Paper 2000, 1972) reports that the glacial deposits of the Ferndale area have a low permeability and correspondingly low potential to yield water. Potable water for this area is supplied by the Detroit Municipal Water Department which draws from distant surface water reserves such as Lake St. Clair and Lake Huron.

Well logs of record in the vicinity of the Gage facility are few with only 3 well logs found within the surrounding 9 sections (9 square miles). A waste disposal well log from approximately 1 mile northwest of the property shows sand to 7 feet underlain by clay to 110 feet, all overlying 18 feet of gravel and clay. A domestic water well in the same general area shows yellow clay, sand and gravel to 30 feet overlying 12 feet of blue clay and gravel, over a water-bearing gravel from 42 to 57 feet that yielded 20 gallons per minute. The static water level is recorded as 9 feet. The final log is a water well from roughly 1-1/2 miles northeast of the site at the Hazel Park racetrack. That log shows fill to 19 feet underlain, in sequence, by clay and hardpan to 109 feet, "putty sand" (probably very silty sand and not water-bearing) to 121 feet, hard clay to 132 feet and fine and coarse sand to 145 feet. These well logs are included in Appendix B2-1.

In summary, the record of wells indicates that ground water suitable for a domestic supply is not found within 50 feet of the land surface in the area, and that a few feet of surficial sand or fill overlying clayey, non-water-bearing materials that extend to a depth of more than 100 feet is the expected profile.

Site Geology

<u>General</u>

The site geology has been described in boring logs for 17 soil borings, 7 wells, and 22 piezometers installed at the site. The available boring logs from each investigation performed at the site are compiled in Appendix B2-1 and summarized in Table B2-2. Soil boring, well, and piezometer locations are shown on Figure B2-4. Four site cross-sections were constructed using the information provided on these logs for depths of up to 60 feet (Figures B2-5 through B2-8). The surface traces of the cross-sections are shown in Figure B2-4.

In general, soils encountered at the site consists of two soil types: a thin surficial granular fill that contains minor saturation in some locations; and, an underlying dry to moist clay till containing varying amounts of admixed sand, silt, and traces of gravel.

The surface fill material consists predominantly of fine sand along with silt, clay, gravel, organic matter, and anthropogenic debris. A sample of this fill material collected from SB-8 was classified as SM under the Unified Soil Classification System (USCS; Appendix B2-2). The thickness of fill observed in soil and well borings ranges from 0 to almost 6 feet (thicknesses range up to 11 feet in local excavated areas including UST vaults and collection trenches).

Laboratory grain size analyses for 11 clay unit soil samples collected from 6 borings indicate that this unit is classified as CL under the USCS (Appendix B2-2). In different locations the clay unit can be described as a sandy clay or silty clay, depending on the percentages of sand or silts present. The clay unit generally varies in color from a brown and gray mottled color to gray with increased depth. Results from falling-head permeameter tests run of clay samples (Appendix B2-2) indicate vertical hydraulic conductivities of between 1 x 10⁻⁸ to 7.76 x 10⁻⁷ cm/sec. These hydraulic conductivity values approach or exceed the minimum value of 10⁻⁷ cm/sec required for earth materials used in the construction of a liner at a Type I or II landfill.

The clay unit was encountered at a depth of 0 to 6 feet below the surface and is documented to an explored depth of 55 and 60 feet (SB-1 and SB-2, respectively). The clay unit has not been fully penetrated at any of the boring

locations. Therefore, any granular, presumably water-lain moraine deposits in the area, if they exist, would lie below 60 feet in depth beneath the property.

Top of Clay Elevation

The attitude of the clay surface is depicted in a contour map of top of clay elevation data taken from the boring logs (Figure B2-9). There are abundant elevation data points in Parcel C, a handful in the south one-third of Parcel B, and one location (GMW-1) in Parcel A. (TSB-1 and TSB-2 are located in a former UST excavation in Parcel A and thus do not represent broader conditions.) The contour mapping in this and other report figures reflects this data point distribution.

The clay surface has little or no direct relationship to the site topography: A roughly east-west divide on the clay surface is apparent at approximately 635 feet elevation in the former Silman Avenue area. Southward across Parcel C the clay surface descends to below 630 feet, forming a portion of a shallow basin the lowest point of which is near Jewell Avenue (SB-14). North of the divide, the clay surface dips gently to the east and northeast across Parcel B. Farther north, in Parcel A, the clay surface is largely undefined due to lack of data.

The slope of the clay surface from the divide southward and from the Parcel C east boundary westward is as high as 0.04 feet/foot. The slope of the clay surface from the Parcel C west boundary eastward is between 0.01 and 0.02 feet/foot.

As will be discussed in the following sections, the clay surface topography controls the occurrence of saturated conditions within the fill, with infiltration accumulating in the low shallow basin areas.

Fill Thickness

The thickness of surficial fill encountered at the site has been contoured in Figure B2-10. This map greatly resembles the inversion of Figure B2-9, largely because the granular fill was imported to provide an even, if not perfectly level, site for development. The ridge on the clay in the Silman Avenue area corresponds approximately to the area of thinnest fill (0 to 1-foot); and filling in the clay basin of Parcel C was generally greater where the top of clay elevation was the deepest (SB-14).

Site Hydrogeology

<u>General</u>

Thin, localized zones of saturation occur within the granular surficial fill material where low spots in the underlying clay unit allow accumulation of infiltrating surface run-off. Where the surficial fill is absent (thickness of fill is documented as "zero"), the clay is directly overlain by pavement or buildings at the surface and there is no significant accumulation of infiltration (i.e., no saturation).

The clay unit is characterized at virtually all well and boring sites as dry or moist. Its content of sand and silt, therefore, imparts no significant water-bearing character to the clay, and it is considered to be non-water-bearing. Extremely low vertical hydraulic conductivity values measured in the clay unit indicate that the saturated zones are perched by the clay and isolated from any deeper water bearing units.

Hydrogeologic Data

Hydrogeologic data taken from soil boring/well logs and water level measurements in wells and piezometers are summarized in Table B2-4. A number of locations drilled strictly as soil borings showed no zone of saturation: Of approximately 17 soil borings on Parcels A, B and C and 2 borings on Parcel D, 12 showed no saturation of the fill unit, or no fill present. Based on variability observed on Parcels A, B, C and D, it is expected that hydrogeologic characteristic of Parcel E will be similar to those observed on other portions of the Gage facility.

Presently, there are data for 7 monitoring wells, and 22 piezometers including 2 hand-driven well points in place at the site for use in obtaining perched water elevation data. The well construction materials are tabulated with other construction details in Table B2-4. The wells are either of 2-inch ID PVC or galvanized steel well casing with slotted PVC or wire-wrapped stainless-steel screens.

Select wells are illustrated in the cross-sections depicted in Figures B2-5 through B2-8.

Saturated Thickness

The saturated zone of the fill is generally so thin that the GMW wells are partly or completely screened in the underlying confining clay unit. Positioning of well screens completely in the clay till unit, renders two of the wells, GMW-1 and GMW-3 not usable as piezometers because little fill is present and the well is screened such that the top of the sand envelope surrounding the well screen makes little or no contact with the fill (GMW-1), or because no fill is present (GMW-3). GMW-1 has shown "negative" water levels with the static water level lying below the clay surface, the borehole functioning effectively as a sump allowing accumulation of infiltrating surface run-off.

Wells GMW-5 and GMW-7 are provisionally usable because of the questionable effectiveness of the top of the well sand pack contact with the fill seepage zone. Wells GMW-2, GMW-4, and GMW-6 are considered reliable. Nearly all of the piezometers used to monitor seepage levels (P-6, and P-11 through P-20) are screened at maximum depths of 5.5 to 9.5 feet, are sand packed to within 1 foot of the land surface, and are considered mostly reliable.

Water levels observed in the wells screened entirely or almost completely in the clay are likely representative of seepage from shallow stray silty lenses within the clay, or from the little contact they have with the lowermost saturated fill, or both.

The site-specific saturated thickness values for wells and piezometers are determined by subtracting the clay elevation from the water table elevations measured by Horizon in May, 1995. Observations of saturated conditions in soil borings at the time the borings were constructed were used in a qualitative sense. These data are summarized in Table B2-2 and depicted in the cross-sections of Figures B2-5 through B2-8 and contoured in Figure B2-10.

The contour map of Figure B2-10 shows that the saturated thickness of the fill is generally less than 3 feet and occurs mostly beneath Parcel C. A localized area of greater saturated thickness (3 to 4 feet) is seen in the south central portion of Parcel C, suggesting some amount of concentration due to the gravity component of runoff imparted by the sloping clay surface.

The saturated fill at the east margin of Parcel B is hydraulically separated from the Parcel C basin as evidenced by the six intervening soil borings that showed the clay ridge and thus no saturation when drilled (Figures B2-9 and B2-11).

Information related to saturation of the fill on Parcel A is sparse. The saturated TSB-1 and TSB-2 area in the east segment of the parcel is related strictly to these borings having been placed in a UST vault excavated into the clay that had been backfilled with granular material after UST removal. Monitoring well GMW-1 at the west end of Parcel A was a dry hole when drilled. It is not considered to be a useful piezometer or to be a meaningful indicator of saturated fill because there is insufficient seepage available even to fill the well bore up to the level of the clay surface.

The saturated thickness shows variation seasonally and among monitoring sites even within the fairly dense data set of Parcel C. Records are documented for Parcel C piezometers P-1 through P-5 for February through July, 1992 (WWES, 1992). Except for P-3, all show low water levels in February rising to higher values in April, or, as often, continuing to rise into July. P-3 shows a high water level in February, decreasing through April, and increasing again into July. The high range over the 6 to 7-month period is 2.8 feet (P-2) and the low range is 0.5 feet (P-1).

Compiled information for Parcel B (WWES, 1992) is limited to occasional data for monitoring wells over the period August, 1989 to July, 1992 which show 1.7 feet of range for GMW-2 and 2.3 feet of variation for GMW-6. These variations represent 53% and 65%, respectively, of the total fill thicknesses at the two locations. In May, 1995, the saturated thickness at GMW-2 was 0 feet or nearly so.

Water Table

Fill unit water level elevation data are contoured in Figure B2-11. In this case, contouring is an integrative process that suggests a greater than warranted degree of hydraulic communication. The contouring is useful, however, in pointing out the influence of the clay basin on Parcel C and the clay ridge in the Silman Avenue area on the probable directions of water movement. A divide on the water surface is interpreted based on the lack of fill or accumulated infiltration in the area of the clay ridge; and the movement of water on Parcel C is inferred to have significant components into the basin from the west and north toward the south central portion of the site. Perched groundwater characteristics are fairly consistent throughout the Gage facility.

<u>Utilities</u>

Evidence of some external influence on the movement of water is seen in the general concentration of flow across Parcel C into the southeast area of the parcel. This includes the effect of the public water and sewer lines in the roadway rights-of-ways and the north-south storm sewer (up to 18 inches in diameter) which crosses Parcel C on a line nearly coinciding with the east wall of the truck well roughly 120 feet west of the east parcel boundary. If the utilities and/or the backfilled trenches affect perched water movement, the direction of movement likely corresponds to the flow direction of the sewer (and associated trench attitude). The flow directions of sewers based on surveyed invert elevations are indicated on Figure B2-12 and summarized below:

The elevations of the right-of-way storm sewer pipelines decrease to the south and east to intersect at a manhole at the intersection of Jewell and Wanda Avenues at elevations of roughly 629 feet (8-inch diameter) and 623 feet (18-inch diameter). The shallower pipeline is installed up to 5 or 6 feet into the clay and the deeper up to 11 or 12 feet into the clay.

The public water main is likely to be at a depth of approximately 5 feet. The 12-inch diameter main in the Jewell Avenue right-of-way is continuous with the water main in Wanda Avenue.

The north-south sewer pipe which traverse the eastern portion of Parcel C is at an elevation close to 632 feet (installed 3 to 4 feet into the clay) at Silman Avenue and at an elevation of 623 feet (installed approximately 9 feet into the clay) at Jewell Avenue (flow is toward the south).

The elevation information in northern Parcel C correlated with the limited perched water elevation data from eastern Parcel B indicate that seepage from the latter area migrates in a northeastward direction and may be intercepted by the storm sewer or public water main trenches in Wanda Avenue. The 8-inch diameter storm sewer invert is likely to be less than 5 feet below grade opposite Parcel B (based on the invert elevation of close to 629 feet at the Jewell Avenue intersection) and to be trenched a short vertical distance into the clay. The water main depth may be similar to the storm sewer depth.

As illustrated on Figure B2-2, an 18-inch diameter combined sanitary sewer/storm water crosses parcels D and E in a north-south direction. This is a fairly deep pipeline that is installed at a depth of up to 12 to 13 feet below ground surface. A 6-inch diameter water main crosses Parcel E in an east-west direction.

Collection Trenches

In an attempt to influence the movement of perched water across the site, Gage voluntarily installed ground water recovery/treatment systems in two separate locations on the site.

The first system was located between the site's existing above-ground storage-tank farm and truck well and

Form EQP 5111 Attachment B2

expanded to include a seepage drain on the south side of the tank farm parallel to Jewell Avenue and a sump/manhole located north of the tank farm. Some free product was recovered from this trench but pumping was discontinued when recovery became intermittent.

The second system was located in the central portion of Parcel C, adjacent to the remanufacturing building. This system consists of a 500 foot long, east-west trending subsurface trench and collection manhole (2 feet in diameter and 11 feet deep). Coarse pea gravel was placed as backfill around the manhole. A recovery system was installed in the manhole with a meter discharge line to the sanitary sewer. The west end (approximately 100 feet) of this trench was destroyed when the Gage LSF was constructed.

Currently, neither of the collection trenches are pumped and thus do not exert an influence on perched water movement at the site. Potential influences of the trenches, if they were to be pumped, can be inferred based on their locations with respect to areas of significant perched water accumulation (low spots in the clay unit) as illustrated in Figure B2-10. The trench located south of the tank farm is positioned to intersect a significant amount of the perched water accumulation in Parcel C. The central trench that runs adjacent to the remanufacturing building intersects only the northernmost portion of perched water accumulation which is very thin (< 2 feet) due to the southward dip of the clay surface in this area.

The potential effects of the central trench were evaluated through a pump test (WWES, 1994). The trench extends through the fill layer into the underlying native clay layer to a depth of six feet below ground surface at its east and west ends, and to a depth of nine feet at its center. The trench excavation was backfilled with gravel and connected to a centrally located pre-cast concrete collection sump. Water that collects in the trench flows under gravity towards the collection sump when the sump is pumped. The trench was in operation from December 18, 1986 until October 18, 1987. Operations were discontinued because the trench drew so little water, it was thought to be ineffective (the sump was completely dewatered even at minimal pumping rates).

A 72 hour pump test was performed on the collection trench to assess the effectiveness of the trench as an interim remedial response measure and for future corrective action. The test evaluated the zone of influence that developed from operating the trench and consisted of three phases: a pre-test phase to establish base-line data on normal water level fluctuations; a drawdown phase; and a recovery phase.

The results of the test indicate that the zone of capture created by pumping the trench system is very limited. Figure B2-13 is a contour map of water levels observed during the drawdown phase of the test. The contours show that the effective capture zone for the trench extends only 25 to 50 feet to the south of the trench itself, leaving the southern half of Parcel C unaffected. The observed stable pump rate of 1.2 GPM (any greater rate resulted in complete dewatering of the sump) and the narrow capture zone indicate that movement of the perched water is not much affected by pumping of the trench and very little of the perched water actually enters the trench. It was not recommended that the use of the trench be pursued as an interim corrective measure.

B2.A.2(d) Soil

The soils that can be expected to be encountered and most intensively impacted at the Gage facility and nearby areas are represented by the Urban Land-Thetford complex (see Appendix B2-4). This complex consists of Urban Land and nearly level (0 to 3 percent slopes), somewhat poorly drained Thetford soils, with moderately rapid permeable soils on lake plains and outwash plains. The soils formed in stratified sandy material. Thetford soils have a high water table at a depth of 1 to 2 feet in winter and spring. The available water capacity is low, and runoff is slow. Artificial drainage has represented the major management tool used for increasing the suitability's of these soils for various land uses.

B2.A.2(e) Surface Water

The nearest evident surface waters consist of a few widely scattered ponds: one located in Palmer Park 2 miles to the south; another located in Woodland Cemetery 1/2 mile to the southwest; another located at a racetrack 2 miles to the northeast; and several located in the Detroit Zoological Park 3 miles to the northwest. There are no nearby

permanent streams, surface drainage courses, wetlands or lakes.

Several shallow east-to-northeast-trending intermittent surface ditches, some of them apparently channelized natural runoff courses, occur 1-1/2 to 2 miles to the east and northeast of the site, and extend for 1/2 to 1 mile before terminating at an interstate highway or roadway. The high degree of residential development of the region suggests that surface runoff is handled primarily by curbside catch basins and the associated storm sewer system.

The U. S. Geological Survey (Geological Survey Water-Supply Paper 2000, 1972) reports that the southeast area of Oakland County, including the Ferndale area, is subject to damaging floods. No flood frequency or interval information is provided. According to the 2012 National Flood Insurance Program, the Gage facility is not located in a special flood hazard area.

In summary, permanent surface waters and cross-country runoff ditches and surface drains are regionally very sparse. The 7-1/2 minute topographic quadrangles show no wetland patterns in the region. There is currently no potential for flooding in the area of the Gage facility.

B2.A.2(f) Surrounding Land Uses

Current and historic land use, existing or proposed zoning regulations, and ownership patterns in and around the Gage facility are detailed in Attachment B4, Environmental Assessment and shown on Figure B2-14.

B2.A.2(g) Critical Habitats and Endangered Species

Habitat critical to the survival of local species and any rare or endangered plant or animal species in the area surrounding the Gage facility are discussed in Attachment B4, Environmental Assessment. There is no evidence of critical habitats or endangered species near the Gage facility.

B2.A.3 Characterization of Potential or Actual Sources of Contamination [R 299.9504(c) and 40 CFR §270.14(d)]

This section describes actual or potential sources of contamination at the Gage that are subject to the corrective action requirements of Part 111 of Act 451. These sources include WMUs that are discernible units at which contaminants have been placed at any time, or at which contaminants have been released, or at which there is a threat of release regardless of the intended use of such unit. These sources also include areas of concern that are those units which do not meet the definition of WMU, but which may have released contaminants to the environment on a non-routine basis, or which may present an unacceptable risk to public health, safety, welfare, or the environment.

The U.S. EPA conducted a RCRA Facility Assessment (RFA) of the Gage facility in 1992. This RFA resulted in the identification of 15 Solid Waste Management Units (SWMUs) and eight Areas of Concern (AOCs) on Parcels A, B, and C. The locations of the SWMUs and AOCs identified by the U.S. EPA are shown on Figure B2-15. In October 1993, an Environmental Assessment of Parcel D was performed, and several of the observations noted in the assessment were identified by MDEQ as SWMUs or AOCs. No SWMUs or AOCs have been identified on Parcel E. A description of each area is provided in the following sections. These descriptions are based on: 1) information obtained during a site visit and interviews of long-time Gage employees (Marvin Geary, Matt Partridge, and Sharon Stahl) conducted by Horizon personnel in June 1995; 2) information contained in the RFA document (U.S. EPA, 1992); and 3) information contained in the Environmental Assessment document for Parcel D (WWES, 1993).

B2.A.3(a) Former Underground Storage Tank Area on Parcel A

B2.A.3(a)(1) Unit Characteristics

According to Gage facility records, three USTs were located in the former underground storage tank area on Parcel

A (SWMU 15). These USTs were present on the property at the time that Gage purchased the former Wanda School property in 1978. The available information regarding these USTs is presented on Table B2-1 and below:

				Age at	
	Capacity		Material of	Removal	Year
<u>UST</u>	(gallons)	<u>Contents</u>	Construction	<u>(years)</u>	Removed
Α	6,000	Formaldehyde	Fiberglass	8-13	1985
В	6,000	Glycol	Steel	8-13	1985
С	3,000/3,000*	B-300 soap/Pine oil	Steel	8-13	1985

* This tank had two compartments of equal size.

B2.A.3(a)(2) Waste Characteristics and Management

No wastes were managed in these USTs.

B2.A.3(a)(3) History of Releases or Potential to Release

In 1984, Tank A failed a pressure-test and was immediately emptied. Gage personnel removed all three USTs in 1985. In accordance with standard UST closure practices at the time, a representative of the City of Ferndale's Fire Department made a site inspection to confirm that the USTs had been removed, and to witness that the UST excavations were free of contamination and properly closed. The Fire Marshal did not require the analysis of soil samples as part of the inspection.

The RFA states that floating organic solvents were detected in tank monitoring wells in this area in the past. However, this statement does not apply to this UST area because: 1) the USTs did not contain organic solvents; 2) the 1986 report by OHM did not identify this area as an area of concern (OHM, 1986); 3) the City of Ferndale's Fire Marshal Department witnessed the clean closure of the UST area; and 4) a 1990 investigation of the UST area did not identify contamination. To elaborate, in 1990 two soil borings (TSB-1 and TSB-2) were installed in this former UST area to a depth of 12.5 feet. A total of five soil samples were collected from various depths in these borings and analyzed for VOCs (EPA Methods 8010 and 8020) to document soil conditions in the area. Because none of these chemicals were detected in the soil samples and the boring logs did not indicate the presence of impacted soil, the report of the investigation concluded that the previous location of USTs did not appear to be an on-going source of contamination (WWES, 1990; Appendix B2-1).

B2.A.3(b) Open Area on Parcel A – AOC 8

B2.A.3(b)(1) Unit Characteristics

The open area on Parcel A (AOC 8) is used for employee parking, storage of old equipment including empty containers, and temporary storage of empty semi-truck trailers and tankers awaiting return to customers.

B2.A.3(b)(2) Waste Characteristics and Management

There are no wastes managed in this unit.

B2.A.3(b)(3) History of Releases or Potential to Release

The only known release in this area occurred in April of 1993 when approximately 45 gallons of rain water spilled from a tote to the ground. The affected soil was excavated and disposed off-site. Half of the area is paved with asphalt and the other half is bare ground. This area has been used for parking and storage since the parcel's purchase in 1978.

In the early 1980's, 15 55-gallon drums were excavated from the western edge of this area (near GMW-1; Figure

B2-3) by Gage personnel. The contents of these drums are unknown. However, the drums were disposed off-site in a licensed landfill by EETCO. In 1985, OHM installed a soil boring at GMW-1 to a depth of 30 feet. The boring log indicates that an organic odor was detected between depths of four to 10.5 feet. The boring was then backfilled to a depth of 15 feet and a 10 foot well screen was installed (OHM, 1986; Appendix B2-1). Low levels of VOCs have been historically detected in GMW-1 and are summarized on Table B2-3a.

Impacted soil in AOC 8 was removed in 2022/2023 and soil gas was subsequently sampled near the northwestern property boundary with an adjacent commercial property. On August 30, 2024, Michigan Department of Environment, Great Lakes and Energy (EGLE) issued a letter concluding, *"it does not appear that soil gas is migrating off-site from Parcel A above the residential site-specific volatilization to indoor air criteria (SSVIAC). However, a vapor source in soil remains in the AOC 8 area due to the exceedances of the SSVIAC soil criteria present. The remaining vapor source area with the soil exceedances must be restricted to require additional evaluation if the area is ever developed with an occupied building. It is expected that this restriction will be implemented as part of final corrective measures".*

B2.A.3(c) Fill House 6

B2.A.3(c)(1) Unit Characteristics

Fill House 6 (SWMU 12) contains solvent blending operations in which the raw material solvents are blended into products in one of several mixing tanks and dispensed into 550-gallon totes or 55-gallon drums.

B2.A.3(c)(2) Waste Characteristics and Management

Each mixing tank is cleaned with solvent between batches and the resulting waste is drained through a pipe at the base of the tank into a 5-gallon pail. This waste material is then accumulated in a 55-gallon drum for off-site disposal. The EPA hazardous waste numbers of waste managed in this area are primarily D001, F003, and F005, but also may include D018 and D035.

B2.A.3(c)(3) History of Releases or Potential to Release

Fill House 6 has been operated since 1982. According to Gage personnel, there have been no known releases from this area. During the 1992 RFA site inspection, the concrete floor of Fill House 6 was noted to be stained and cracked.

Soil borings SB-2, TSB-4, and SB-12 (Figure B2-3) were installed in the vicinity of Fill House 6 in 1989, 1990, and 1992, respectively. Monitoring well GMW-6 (Figure B2-6) was also installed in 1989. SB-2 was installed to a depth of 60 feet and soil samples were collected for visual classification of soil. Soil samples were not collected for laboratory analysis. However, because a sufficient saturated thickness was encountered within the fill at SB-2, monitoring well GMW-6 was installed at this location. The boring log sheet and well construction details are contained in Appendix B2-1. Low levels of organic compounds have been historically detected in GMW-6 and are summarized on Table B2-3a.

Soil boring TSB-4 was installed to a depth of 10.5 feet and three soil samples were collected from varying depths for laboratory analysis of VOCs (EPA Method 8010 and 8020). None of these compounds were detected in any of the soil samples (WWES, 1990b).

Soil boring SB-12 was installed to a depth of 30 feet and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. PID readings were similar to or below those of TSB-4 which correlated to levels below laboratory detection limits. The boring log sheet is contained in Appendix B2-1.

B2.A.3(d) Former Underground Storage Tank Area by Fill House 6

B2.A.3(d)(1) Unit Characteristics

According to Gage facility records, three UST systems were located in the former underground storage tank area by Fill House 6 (SWMU 13). The available information regarding these USTs is presented on Table 1 and below:

	Capacity		Materials of	Age at Removal	Year
<u>UST</u>	<u>(gallons)</u>	<u>Contents</u>	<u>Construction</u>	<u>(years)</u>	<u>Removed</u>
D	6,000	Leaded gasoline	Steel	10	1987
E	10,000	Unleaded gasoline	Steel	10	1987
F	10,000	#2 Diesel fuel	Steel	10	1987

B2.A.3(d)(2) Waste Characteristics and Management

No wastes were managed in these tanks.

B2.A.3(d)(3) History of Releases or Potential to Release

In 1984, these USTs passed a pressure test indicating that a release had not occurred from the tanks. Gage personnel removed all three USTs in 1987. In accordance with standard UST closure practices at the time, a representative of the City of Ferndale's Fire Marshal Department made a site visit to inspect that the USTs had been removed, and to witness that the UST excavations were free of contamination and properly closed. The Fire Marshal did not require the analysis of soil samples as part of the inspection.

The RFA states that floating organic solvents were detected in tank monitoring wells in this area in the past. However, this statement does not apply to this UST area because: 1) the USTs contained fuel, not organic solvents; 2) the 1986 report by OHM did not identify this area as an area of concern (OHM, 1986); 3) the City of Ferndale's Fire Marshal Department witnessed the clean closure of the UST area; and 4) subsequent investigation of the UST area did not identify contamination.

B2.A.3(e) Tanker Off-Loading Area

B2.A.3(e)(1) Unit Characteristics

The tanker off-loading area is located immediately north of Fill House 6 (SWMU 14). Tanker trucks containing raw material (i.e., solvent) are parked in this area while the contents are off-loaded into Fill House 6. This area has been operated in conjunction with Fill House 6 since 1982.

B2.A.3(e)(2) Waste Characteristics and Management

According to Gage personnel, there have been no known releases from this area and wastes are not managed in this area.

B2.A.3(e)(3) History of Releases or Potential to Release

During the 1992 RFA site inspection, the concrete pad of the tanker off-loading area was noted to have unsealed joints and some cracks, but no staining. The RFA states that the release potential to all media is low in this area. This statement has been confirmed by investigation of the area.

B2.A.3(f) Unpaved Area of Silman Avenue

B2.A.3(f)(1) Unit Characteristics

The area identified in the RFI as the "Unpaved Area of Silman Avenue" is located immediately south of Fill House 6 and north of the Tote and Drum Storage Area (AOC 5). Silman Avenue is a public road which vehicles traverse on their way to and from the Gage facility and the Alpha & Omega facility located immediately west of the Gage facility. This road was paved in 1995. Portions of this area are also used for the temporary storage of empty semi-truck trailers and tankers awaiting return to customers.

B2.A.3(f)(2) Waste Characteristics and Management

According to Gage personnel, wastes are not managed in this area. Material handling areas on either side of Silman Avenue have been curbed since 1987 to prevent the release of any potential spills in these areas to Silman Avenue.

B2.A.3(f)(3) History of Releases or Potential to Release

According to Gage personnel, there have been no known releases to this area. Soil boring SB-4 (Figure B2-3) was installed near Silman Avenue to a depth of 9.5 feet in 1989 and soil samples were collected for visual classification and headspace soil gas screening with a PID. Soil samples were not collected for laboratory analysis. PID readings were well below those of TSB-4 which correlated to non-detectable levels of VOCs in laboratory analyses. The boring log sheet for SB-4 is contained in Appendix B2-1.

B2.A.3(g) Silman Avenue Sewers

B2.A.3(g)(1) Unit Characteristics

Two sewer catch basins are located on the south side of Silman Avenue (AOC 6). Both sewers have perforated cast iron covers and drain Silman Avenue.

B2.A.3(g)(2) Waste Characteristics and Management

According to Gage personnel, there have been no known releases to these sewers.

B2.A.3(g)(3) History of Releases or Potential to Release

Material handling areas on either side of Silman Avenue have been curbed since 1987 to prevent the release of any potential spill in these areas to Silman Avenue and its sewers.

Soil boring SB-10 was installed to a depth of 30 feet in 1992 and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. PID readings were elevated to a depth of seven feet and an odor was noted on the boring log sheet at these depths. The boring log sheet for SB-10 is contained in Appendix B2-1.

B2.A.3(h) Covered Storage Area

B2.A.3(h)(1) Unit Characteristics

The Covered Storage Area (AOC 7) is located west of Fill House 6. This area is enclosed on three sides and is open on the fourth side for access. Raw material and product are stored in this area in pails, bags, and 55-gallon

drums.

B2.A.3(h)(2) Waste Characteristics and Management

At one time hazardous waste drums were stored in this area. The EPA hazardous waste numbers of waste that was managed in this area were D001, D002, F003, F005, D018, and D035. The drums were stored on the concrete floor.

B2.A.3(h)(3) History of Releases or Potential to Release

The Covered Storage Area was constructed in approximately 1981-1982. According to Gage personnel, there have been no known releases from this area. During the 1992 RFA site inspection, the concrete floor was noted to have unsealed joints and some cracks, but no staining.

The RFA states that the release potential to all media is low in this area. This statement was confirmed by an investigation of the area in 1992 in which soil boring SB-12 (Figure B2-3) was installed to a depth of 30 feet and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. PID readings were similar to or below those of other soil samples which correlated to levels below laboratory detection limits. The boring log sheet is contained in Appendix B2-1.

B2.A.3(i) Tote and Drum Storage Area

B2.A.3(i)(1) Unit Characteristics

The Tote and Drum Storage Area is located at the corner of Silman and Wanda Avenues (SWMU 1).

B2.A.3(i)(2) Waste Characteristics and Management

Finished product is stored in this area in 55-gallon drums and 550-gallon totes prior to shipment to customers. Some empty tanks are also stored in this area. Totes were also occasionally steam-cleaned in this area

A 6 to12 inch thick concrete pad was installed in this area in approximately 1980. Secondary containment was installed around the storage area pad in 1994 in the form of a 6-inch concrete curb and rolled access ramps. The RFA report states that at the time of the visual site inspection, the concrete pad had many unsealed joints and some cracks.

Drums are stored on wooden pallets or on the concrete pad and stacked up to two layers high. Tote tanks are 550-gallon stainless steel or aluminum rectangular tanks which are stored upright on legs. The Tote and Drum Storage Area is used to store final product, not wastes. No wastes are managed in this area.

B2.A.3(i)(3) History of Releases or Potential to Release

According to Gage personnel, there have been no known releases from this area. During the 1992 RFA site inspection, no evidence of releases was noted.

Soil borings SB-4, SB-10, and SB-11 (Figure B2-3) were installed in or near the Tote and Drum Storage Area in 1989 and 1992. Monitoring well GMW-3 (Figure B2-3) was installed in 1985. Soil boring SB-4 was installed to a depth of 9.5 feet and soil samples were collected for visual classification and headspace soil gas screening with a PID. Soil samples were not collected for laboratory analysis. PID readings were well below those of other soil samples which correlated to non-detectable levels of VOCs in laboratory analyses. The boring log sheet for SB-4 is contained in Appendix B2-1.

Soil boring SB-10 and SB-11 were installed to a depth of 30 feet and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. PID readings were elevated to a depth of seven feet in SB-10 and an odor was noted on the boring log sheet at these depths. PID readings were elevated to a depth of 20 feet in SB-10 and a slight odor was noted on the boring log sheet immediately below the concrete. The boring log sheet for SB-10 and SB-11 are contained in Appendix B2-1.

Monitoring well GMW-3 was installed at the southeast corner of Parcel C in 1985. The log sheet and well construction details are contained in Appendix B2-1. Low levels of organic compounds have been historically detected in GMW-3 and are summarized on Table B2-3a.

B2.A.3(j) Truck Well

B2.A.3(j)(1) Unit Characteristics

The Truck Well (SWMU 2) consists of a sloped concrete truck ramp with space for two trucks and adjoining retaining walls.

B2.A.3(j)(2) Waste Characteristics and Management

The Truck Well (SWMU 2) consists of a sloped concrete truck ramp with space for two trucks and adjoining retaining walls.

B2.A.3(j)(3) History of Releases or Potential to Release

According to Gage personnel there have been no known releases in this area. During the 1992 RFA site inspection, some staining, unsealed joints and cracks were noted in the Truck Well. No quantitative information is available for environmental media in the Truck Well area (TSB-3 was installed north of the Truck Well but was located within a tank vault).

B2.A.3(k) Former Underground Storage Tank Area by the Truck Well

B2.A.3(k)(1) Unit Characteristics

According to Gage facility records, five UST systems were located in the Former Underground Storage Tank Area by the Truck Well (SWMU 3). The available information regarding these USTs is presented on Table B2-1 and below:

<u>UST</u>	Capacity <u>(gallons)</u>	<u>Contents</u>	Material of <u>Construction</u>	Age at Removal <u>(vears)</u>	Year <u>Removed</u>
47	6,000	Mineral seal oil	Steel	8-13	1987
48	6,000	#4550 Solvent/ petroleum distillate	Steel	6-11	1987
49	6,000	Methanol	Steel	8-13	1987
50	6,000	Hydrocarbon solvent	Steel	8-13	1987
51	6,000	Hydrocarbon solvent	Steel	8-13	1987

B2.A.3(k)(2) Waste Characteristics and Management

No wastes were managed in these tanks.

B2.A.3(k)(3) History of Releases or Potential to Release

During a 1984 UST investigation, Tank 48 failed a pressure-test and free product was discovered in three monitoring wells (TMW-1, 2 and 3; no longer present at the site) placed within the tank area. Tank 48 was immediately emptied and a free product recovery system was established using the three monitoring wells (OHM, 1986). Gage personnel removed all five USTs in 1987. In accordance with standard UST closure practices at the time, a representative of the City of Ferndale's Fire Department inspected the site to confirm that the USTs had been removed, and to witness that the UST excavations were free of contamination and properly closed. The Fire Marshal did not require the analysis of soil samples as part of the inspection.

In 1990 soil boring TSB-3 was installed in this former UST area to a depth of 10.5 feet. Two soil samples were collected from this boring (one shallow and one deep) and analyzed for VOCs (EPA Methods 8010 and 8020) to document soil conditions in the area. Although some VOCs were detected in the soil samples, the report of the investigation concluded that the previous location of USTs did not appear to be an on-going source of contamination (WWES, 1990). The analytical results for TSB-3 are summarized on Table B2-2.

B2.A.3(I) Bulk Tank Storage Area

B2.A.3(I)(1) Unit Characteristics

The Bulk Tank Storage Area (SWMU 4) has been used to store finished product since the early 1950's. Secondary containment for this tank farm was originally provided by an earthen berm which was replaced with five to eight-foot high concrete containment walls in 1985. In the early 1980's, a concrete containment floor was installed. During the 1992 RFA, some of the secondary containment joints were thought to be unsealed, and cracks/deterioration were observed in the secondary containment structure. However, Gage personnel state that the integrity of the containment floor is continually monitored and repaired as necessary. Currently, the concrete dike is lined with a high density polyethylene liner which is inspected and maintained.

The Bulk Tank Storage Area currently contains 89 aboveground storage tanks of various ages which are used to store finished product prior to packaging. The tanks in this area are constructed of carbon or stainless steel and have capacities ranging from 1,000 gallons to 29,000 gallons. Permanent pipelines connect the tanks to the mixing and filling operations.

B2.A.3(I)(2) Waste Characteristics and Management

The Bulk Tank Storage Area is used to store raw materials, intermediate and finished product, not wastes. No wastes are managed in this area.

B2.A.3(I)(3) History of Releases or Potential to Release

During the 1992 RFA site inspection, some staining was noted on the concrete pad in the tank farm and where the ancillary piping from the tank farm entered Fill House 1 (SWMU 11).

Soil borings TSB-3 and SB-14 (Figure B2-3) were installed in or near the Bulk Tank Storage Area in 1990 and 1992, respectively. Soil boring TSB-3 was installed in the former UST area located immediately east of the Bulk Tank Storage Area to a depth of 10.5 feet. Two soil samples were collected from this boring (one shallow and one deep) and analyzed for VOCs (EPA Methods 8010 and 8020) to document soil conditions in the area (WWES, 1990). A few VOCs were detected in the soil samples at relatively low concentrations (Table B2-2).

B2.A.3(m) Generated Hazardous Waste Storage Area

B2.A.3(m)(1) Unit Characteristics

The Generated Hazardous Waste Storage Area (SWMU 5) has been used since 1987 to store hazardous waste generated on-site from Gage's recycling processes. Three aboveground storage tanks are located in this area. The capacities of these tanks are 9,000, 11,000 and 15,000 gallons, respectively. The floor and 5-foot walls of the secondary containment unit are lined with 6 inches of micro-silica concrete. Permanent pipelines connect the tanks to the remanufacturing operation.

B2.A.3(m)(2) Waste Characteristics and Management

The EPA hazardous waste numbers of waste managed in this area are D001, D005, D007, D008, D018, D035, F003, and F005.

B2.A.3(m)(3) History of Releases or Potential to Release

According to Gage personnel, there have been no known releases from this area. During the 1992 RFA site inspection, the flashing around the base of the 15,000-gallon tank was observed to be dented. No quantitative information is available for environmental media in the immediate vicinity of the Generated Hazardous Waste Storage Area.

B2.A.3(n) Limited Storage Area Tanks

B2.A.3(n)(1) Unit Characteristics

Under the terms of Gage's LSF operating license, waste is stored in five aboveground storage tanks with capacities ranging from 1,000 to 6,000 gallons. Permanent pipelines connect the tanks to the adjacent Gage LSF. The concrete floor and 5-foot walls of the unit's secondary containment system are lined with 6 inches of microsilica concrete.

B2.A.3(n)(2) Waste Characteristics and Management

The primary EPA hazardous waste numbers of wastes managed in this area are D001, D005, D007, D008, F003, and F005.

B2.A.3(n)(3) History of Releases or Potential to Release

No releases have occurred from this unit. Based on the design, operational history, and physical integrity of the unit, as described in Attachment B4, Environmental Assessment, releases from these tanks are not likely.

B2.A.3(o) Railroad Loading/Unloading Area

B2.A.3(o)(1) Unit Characteristics

The Railroad Loading/Unloading Area (SWMU 7) extends along the railroad spur on the southwest corner of the Gage facility. In this area rail cars were unloaded of raw material through aboveground and underground pipelines extending to the Bulk Tank Storage Area where the material was stored. The rail spur was upgraded in 1998 to include catch basins under both sidings indented to collect potential releases from rail cars during loading and unloading activities. These catch basins are connected to two 15,000 gallon secondary containment vessels.

B2.A.3(o)(2) Waste Characteristics and Management

According to Gage LSF personnel, wastes were shipped from the upgraded Railroad Loading/Unloading Area to cement kilns for disposal. The EPA hazardous waste numbers of waste managed in this area are D001, D005, D007, D008, D018, D035, F003, and F005.

B2.A.3(0)(3) History of Releases or Potential to Release

According to Gage LSF personnel, there have been no known releases in this area with the exception of *de minimis* spills associated with material handling practices (e.g., disconnecting hoses) when transferring raw materials before the upgrade occurred. The RFA report noted that the soil in this area was stained.

Soil boring C-SB-1 and monitoring wells GMW-4 and GMW-7 (Figure B2-3) were installed in the vicinity of the Railroad Loading/Unloading Area. Soil boring C-SB-1 was installed to a depth of 10.5 feet and four soil samples were collected from varying depths for laboratory analysis of VOCs (EPA Method 8010 and 8020). Nine VOCs were detected in these soil samples (WWES, 1990) at relatively low concentrations (Table B2-2). The boring log is contained in Appendix B2-1.

Monitoring well GMW-4 was originally installed in 1985 (OHM, 1986) and replaced in 1989 (WWES, 1990). Monitoring well GMW-7 was installed in 1990 (WWES, 1990). The boring logs and well construction details are contained in Appendix B2-1. Several organic compounds have been historically detected in GMW-4 and GMW-7 and are summarized on Table B2-3a.

B2.A.3(p) Former Piping Area

B2.A.3(p)(1) Unit Characteristics

The Former Piping Area (SWMU 8) extends along the north side of the Bulk Tank Storage Area. Historically, pipelines in this area were located on the surface of the ground and were used to convey raw material and finished product between the Bulk Tank Storage Area (SWMU 4) and Fill House No.1 (SWMU 11). These pipelines were replaced with aboveground elevated pipelines in 1991. A conveyor belt is presently located in this area and is used to transport clean, unused drums to Fill House No.1. Soil in this area is either covered with gravel or concrete.

B2.A.3(p)(2) Waste Characteristics and Management

The Former Piping Area was used to convey raw material and final product only. No wastes were managed in this area.

B2.A.3(p)(3) History of Releases or Potential to Release

According to Gage LSF personnel, there were no known releases in this area. During the 1992 RFA site inspection, stained soil was observed in this area. Soils were excavated and sent to a licensed landfill in 2012 when portions of this area were paved. No quantitative information is available for environmental media in the immediate vicinity of the Former Piping Area.

B2.A.3(q) Former Underground Storage Tank Area by Fill House 2

B2.A.3(q)(1) Unit Characteristics

According to Gage LSF facility records, six USTs were located in the Former Underground Storage Tank Area by Fill House 2 (SWMU 9). The available information regarding these USTs is presented on Table B2-1 and below:

<u>UST</u>	Capacity (gallons)	<u>Contents</u>	Material of Construction	Age at Removal <u>(year)</u>	Year <u>Removed</u>
41	3,000	Antifreeze	Steel	9-14	1987
42	3,000	Ethyl acetate	Steel	11-16	1987
43	1,500	n-Butanol	Steel	11-16	1987
44	1,500	Ethylene glycol monobutyl ether	Steel	11-16	1987
45	1,500	Diacetone alcohol	Steel	11-16	1987
46	1,500	Chlorobenzene or ethyl acetate	Steel	11-16	1986

B2.A.3(q)(2) Waste Characteristics and Management

No wastes were managed in these tanks.

B2.A.3(q)(3) History of Releases or Potential to Release

During a 1984 UST investigation, Tank 41 failed a pressure-test and free product was discovered in monitoring wells placed within the tank area. Tank 41 was immediately emptied and a ground water collection trench system was subsequently installed across Parcel C (OHM, 1986). Gage personnel removed all six USTs in 1986 and 1987. In accordance with standard UST closure practices at the time, a representative of the City of Ferndale's Fire Department inspected the site to confirm that the USTs had been removed, and to witness that the UST excavations were free of contamination and properly closed. The Fire Marshal did not require the analysis of soil samples as part of the inspection. Construction on Fill House 2 began in 1987 following removal of the six USTs.

In 1990 soil boring TSB-5 (Figure B2-3) was installed in this former UST area to a depth of 10.5 feet. Five soil samples were collected from this boring at varying depths and analyzed for VOCs (EPA Methods 8010 and 8020) to document soil conditions in the area. Although some VOCs were detected in the soil samples, the report of the investigation concluded that the previous location of USTs did not appear to be an on-going source of contamination (WWES, 1990). The analytical results for TSB-5 are summarized on Table B2-2.

B2.A.3(r) Tank Wagon Loading /Unloading Area

B2.A.3(r)(1) Unit Characteristics

The Tank Wagon Loading/Unloading Area (SWMU 10) is located immediately north of Fill House 1 (SWMU 11; Figure B2-15). Up to four tanker trucks can be parked in this area at one time while one of the following activities takes place:

- Finished product is loaded into the tankers from the tank farm through Fill House 1;
- Raw material (i.e., solvent) is off-loaded into the tank farm through Fill House 1; or,
- Spent solvent is off-loaded into the Remanufacturing Building (formerly known as Fill House 2) for recycling from the two most western truck bays.

B2.A.3(r)(2) Waste Characteristics and Management

The primary EPA hazardous waste numbers of waste managed in this area are D001, F001, F003, and F005.

B2.A.3(r)(3) History of Releases or Potential to Release

This area has been operated in conjunction with Fill House 1 since 1951. Release controls include a concrete floor with a 200-gallon capacity dry sump, a galvanized metal roof to prevent precipitation run-off, dry disconnect

couplings, and the placement of 5-gallon metal containers beneath the hose connections of trucks to contain leakage. According to Gage personnel, releases from this area have been limited to *de minimis* spills associated with material handling practices (e.g., disconnecting hoses) and were contained by either the 5-gallon containers or the dry sump. During the 1992 RFA site inspection, unsealed joints and staining were noted on the concrete pad, purple-gray paint was noted on several connections between pipes and hoses, and minor leaking was noted at two hose connections from Fill House 1. These minor leaks were contained by the dry sump. No quantitative information is available for environmental media in the immediate vicinity of the Tank Wagon Loading/Unloading Area.

B2.A.3(s) Fill House 1

B2.A.3(s)(1) Unit Characteristics

Fill House 1 (SWMU 11) contains solvent blending operations in which the raw material solvents are blended into product in the adjacent tank farm in blending tanks and dispensed directly into 550-gallon totes and 55-gallon drums or through the Tank Wagon Loading/Unloading Area (SWMU 10) into tanker trucks. Each blending tank is cleaned with solvent between batches and the resulting waste is drained through a pipe at the base of the tank into a 5-gallon pail. This waste material is then accumulated in a 55-gallon drum for further reclamation on-site, or off-site disposal.

B2.A.3(s)(2) Waste Characteristics and Management

The EPA hazardous waste numbers of waste managed in this area are D001, D018, D035, F003, and F005.

B2.A.3(s)(3) History of Releases or Potential to Release

Fill House 1 has been in operation since 1951. According to Gage personnel, releases from this area have been limited to *de minimis* spills associated with material handling practices (e.g., disconnecting hoses). During the 1992 RFA site inspection, the concrete floor of Fill House 1 was noted to have unsealed joints.

Soil boring TSB-3 (Figure B2-3) was installed in the former UST area located immediately south of Fill House 1 to a depth of 10.5 feet. Two soil samples were collected from this boring (one shallow and one deep) and analyzed for VOCs (EPA Methods 8010 and 8020) to document soil conditions in the area (WWES, 1990). A few VOCs were detected in the soil samples at relatively low concentrations (Table B2-2).

B2.A.3(t) Former Generated Hazardous Waste Storage Area

B2.A.3(t)(1) Unit Characteristics

The Former Generated Hazardous Waste Storage Area (AOC 1) was part of a storage yard for 55-gallon drums which was used until the late 1980's.

B2.A.3(t)(2) Waste Characteristics and Management

Drums stored in this area included new, reconditioned, or empty (as returned from clients) drums. Drums of hazardous waste generated by the Gage facility were also stored in this area. The EPA hazardous waste numbers of waste managed in this area were D001, D002, F001, F002, F003, and F005. The area is currently the location where the Gage LSF was built in the early 1990's, and the rail spur upgrade occurred in 1998.

B2.A.3(t)(3) History of Releases or Potential to Release

There were no reported releases in this area. Soil borings C-SB-1, SB-8 and monitoring well GMW-7 (Figure B2-3) were installed in the Former Generated Hazardous Waste Storage Area in 1990 and 1992. Soil boring C-SB-1 was

installed in 1990 to a depth of 10.5 feet and four soil samples were collected from varying depths for laboratory analysis of VOCs (EPA Method 8010 and 8020). Nine VOCs were detected in these soil samples (WWES, 1990) at relatively low concentrations (Table B2-2). The boring log is contained in Appendix B2-1.

Soil boring SB-8 was installed in 1992 to a depth of 30 feet and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. Elevated PID readings were obtained in soil at a depth of 15 feet. The boring log sheet for SB-8 is contained in Appendix B2-1.

Monitoring well GMW-7 was installed in 1990 (WWES, 1990). The boring logs and well construction details are contained in Appendix B2-1. Several organic compounds have been historically detected in GMW-7 and are summarized on Table B2-3a.

B2.A.3(u) Former Storage Area at the Boiler Building

B2.A.3(u)(1) Unit Characteristics

The Former Storage Area at the Boiler Building (AOC 2) was the site of a dry storage warehouse used for the storage of primarily powders, pigments and other dry materials. According to Gage facility personnel, the only liquid known to have been stored in this warehouse consisted of case oil for facility equipment. The Boiler Building was converted to this new use in 1991.

B2.A.3(u)(2) Waste Characteristics and Management

No wastes were managed in this area.

B2.A.3(u)(3) History of Releases or Potential to Release

During the 1992 RFA site inspection, no evidence of releases was noted in this area.

Soil borings SB-1, SB-9 and monitoring well GMW-5 (Figure B2-3) were installed in the vicinity of the Former Storage Area at the Boiler Building in 1989 and 1992. SB-1 was installed to a depth of 55 feet and soil samples were collected and screened in the field for visual classification and the presence of VOCs. Soil samples were not collected for laboratory analysis. The boring log sheet is contained in Appendix B2-1. Low levels of organic compounds have been historically detected in GMW-6 and are summarized on Table B2-3a.

Soil boring SB-9 was installed in 1992 to a depth of 30 feet and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. Elevated PID readings were obtained in soil to a depth of 10 feet. The boring log sheet for SB-9 is contained in Appendix B2-1.

Monitoring well GMW-5 was originally installed in 1985 (OHM, 1986) and replaced in 1989 (WWES, 1990a). A few organic compounds have been sporadically detected in GMW-5 since 1985. The analytical results of the historical sampling of GMW-5 are summarized on Table B2-3a and Table B2-3b.

B2.A.3(v) Back Storage Area

B2.A.3(v)(1) Unit Characteristics

The Back Storage Area (AOC 3) was part of the drum storage yard. In 1987, a concrete pad with a central containment sump was installed in this area to store drums of hazardous waste. The 1992 RFA report noted that joints in the pad appeared to be unsealed. In 1994, a state-of-the-art hazardous waste limited storage facility (LSF) was constructed at this location.

B2.A.3(v)(2) Waste Characteristics and Management

The EPA hazardous waste numbers of waste managed in this area are D001, F003, and F005.

B2.A.3(v)(3) History of Releases or Potential to Release

According to Gage personnel, there were no known releases in this area. During the 1992 RFA site inspection, minor staining of the concrete pad was observed.

Soil borings SB-8 and SB-9 were installed in the vicinity of the Back Storage Area in 1992 to a depth of 30 feet and soil samples were collected for visual classification, headspace soil gas screening with a PID, and physical laboratory testing. Soil samples were not collected for laboratory analysis. Elevated PID readings were observed in SB-8 to a depth of 15 feet. Elevated PID readings were obtained in SB-9 to a depth of 10 feet. The boring log sheets for SB-8 and SB9 are contained in Appendix B2-1.

B2.A.3(w) Former Steam-Out and Storage Area

B2.A.3(w)(1) Unit Characteristics

According to Gage personnel, the Former Steam-Out and Storage Area (AOC 4) is misnamed because containers were not steam-cleaned in this area with the exception of one tote during a site inspection by the MDEQ. During installation of a steam line, product containers (i.e., totes and drums) were temporarily stored in this location for safety reasons. However, this area is not typically used for container storage. This area may have been an extension of the drum storage yard. The area is currently covered with concrete.

B2.A.3(w)(2) Waste Characteristics and Management

There is no waste stored in this area.

B2.A.3(w)(3) History of Releases or Potential to Release

According to Gage personnel, there were no known releases in this area. During the 1992 RFA site inspection, no evidence of releases was observed. No quantitative information is available for environmental media in the immediate vicinity of this area.

B2.A.3(x) Floor Drains that Connect to the POTW

B2.A.3(x)(1) Unit Characteristics

A 1993 Environmental Assessment of Parcel D noted that several floor drains were observed throughout the warehouse/process area and a former mechanical room, all of which were connected to the municipal wastewater treatment system.

Horizon's evaluation found no evidence to indicate that the sewer system was degraded or damaged. As part of the 1993 Environmental Assessment, an investigation of the site's sewer system was conducted in response to reported sewer odor problems at the site. It was determined that inadequate sewer traps allowed the backflow of sewer gases and odors from the municipal sewer system into the building. No integrity problems were identified with the sewer system. Furthermore, past site operations (i.e., beverage production) would not have involved the discharge of materials that could have resulted in damage to the sewer system (e.g., strong acids).

B2.A.3(x)(2) Waste Characteristics and Management

Information on the site's development and past operations indicates that materials discharged to the sewer system were primarily food grade and not hazardous materials.

B2.A.3(x)(3) History of Releases or Potential to Release

Because of the age of the building and the primary use of food-grade materials at the site, there was no evidence of a release or potential release of hazardous substances to the environment from floor drains at the Parcel D property.

The 2009 evaluation of Parcel D concluded that even though there was little potential for a release of hazardous materials to the environment as a result of past discharges to the sewer system on Parcel D, any concern in that regard would be addressed by the approved RFI work plan which included investigation of subsurface utility corridors where they leave the Gage property. The utility corridor investigation included the combined sewer that runs below the former Jewell Avenue roadway to Wanda Avenue. This sewer manages sanitary wastewater and storm water from both Parcels C and D, and as such, investigation of this utility corridor would address potential releases from both Parcels C and D. No additional investigation of the floor drains or sewer corridors associated with Parcel D was recommended.

B2.A.3(y) Jewell Avenue

B2.A.3(y)(1) Unit Characteristics

In 1994, Gage acquired Jewell Avenue and closed this road to public use. During the 2009 site inspection, this drive appeared to have been recently rebuilt with concrete to support heavy truck traffic and sealed concrete joints to prevent releases to the environment.

B2.A.3(y)(2) Waste Characteristics and Management

A 1993 Environmental Assessment of Parcel D noted that the "MDNR file information indicates volatile organic, semi-volatile organic, and polychlorinated biphenyl compounds are present in perched ground water below the Gage facility. Ground-water movement below the Gage facility is reported to be to the southeast, in the general direction of Jewell Avenue...." No known waste were handled or stored in this area.

B2.A.3(y)(3) History of Releases or Potential to Release

The 2009 evaluation of Parcel D concluded that the approved RFI work plan included investigation of potential offsite migration of impacted ground water from the sewer corridor below the former Jewell Avenue roadway. The RFI investigation provided for the collection and analysis of environmental media at the point where the sewer system extended off-site at Wanda Avenue and was adequate to determine if impacted ground water had migrated onto the former Jewell Avenue roadway. No additional investigation of the former Jewell Avenue was recommended.

B2.A.3(z) 2024 Update: Fuel release AOC 11

B2.A.3(z)(1) Unit Characteristics

AOC 11 has been added to the License for fuel that was released from a fuel line leak to on-site soils and could not be fully recovered using excavation. Concentrations of toluene and chlorobenzene remain in-place in on-site soils on Parcel D at levels that exceed nonresidential cleanup criteria under Part 201, Environmental Remediation, of Act 451. Therefore, a corrective action program under Part 111 is required for the fuel release pursuant to R 299.9629(1) and (3), and Condition V.A of the License.

B2.A.3(z)(2) Waste Characteristics and Management

The spill was associated with a virgin fuel and not a hazardous waste. Soil samples showed detections of toluene and chlorobenzene above Part 201 criteria.

B2.A.3(z)(3) History of Releases or Potential to Release

Soil from fuel released from an on-site fuel line on March 8, 2019 in an area next to the west side of the secondary containment for the tank farm on the west end of the former Coca-Cola Building on Parcel D. East of the railroad tracks. The extent of the impact has not been fully characterized. Analytical data from the March 8, 2019, Memo soil samples showed detections of toluene and chlorobenzene above Part 201 criteria. Excavation has been completed in order to remove as much of the release as possible. Remaining soil impacts could not be excavated due to location: they are adjacent to an underground electrical line and the secondary containment foundation.

B2.A.3(aa) 2024 Update: Tote Rinse Area, SWMU 29

B2.A.3(aa)(1) Unit Characteristics

WMU 29 Tote Rinse Area – currently operating with no known or suspected releases. Under Gage's Operating License, PART V - CORRECTIVE ACTION CONDITIONS, this unit should be included under Paragraph C.2(b) WMUs and AOCs that do not require corrective action at this time, based on the design of the unit and available information described herein that indicates that no known or suspected releases of contaminants from the unit has occurred.

B2.A.3(aa)(2) Waste Characteristics and Management

The wastes that have been managed consist of the residual from the empty tote (materials that are managed at the facility). The totes are cleaned out using new reclaimed wash solvents produced by Gage.

B2.A.3(aa)(3) History of Releases or Potential to Release

The have been no known releases from WMU 29.

B2.B FACILITY'S ASSESSMENT OF KNOWN NATURE AND EXTENT OF CONTAMINATION

B2.B.1 Groundwater

B2.B.1(a) Characterization History

Historical analytical data for Gage facility ground water were also consolidated and compared to cleanup criteria developed by the MDEQ for non-residential properties pursuant to Part 201 of Act 451. A summary of the historical analytical data for the facility's ground water is provided on Tables B2-3a and B2-3b. A summary of analytical data for the "effluent" (i.e., ground water) collected from the ground water collection trench is provided on Table B2-5. Sample locations are shown on Figure B2-2 (effluent samples were collected from the center catch basin of the ground water collection trench).

The analytical data for the facility's ground water were compared to the same soil criteria discussed in Attachment B4, Environmental Assessment (i.e., direct contact criteria) because the facility's ground water is perched (i.e., not in an aquifer), occurs in isolated low spots (i.e., is not laterally continuous) and Rule 299.5709(4) of the Michigan Administrative Code allows ground water not in an aquifer to be addressed by the application of soil cleanup criteria.

A supplemental investigation was performed in 2013. This report is attached to the April 27, 2015 RCRA Facility Investigation, Risk Evaluation and Corrective Measures Plan as Appendix B. The supplemental investigation did not identify any additional impacts to groundwater but did identify low levels of VOC's associated with the utilities along Wanda Street. Both of these reports have previously been submitted to EGLE and are therefore, not included in this permit renewal application.

B2.B.1(b) Description of Horizontal and Vertical Extent of Plume(s)

As shown on Tables B2-3a, B2-3b and B2-5, results for the water samples collected from monitoring wells GMW-4 and GMW-7, located in the western portion of Parcel C, and the effluent from the collection trench contained VOCs above the residential and non-residential risk-based criteria (drinking water, ground water volatilization to indoor air and ground water contact criteria). These areas are delineated to the west by the results of the soil and ground water sampling on the Grand Trunk Switching Yard including the temporary monitoring wells (TMW-01 through TMW-03). No other ground water samples from the site contained chemical concentrations above these criteria. Most notably, results for the temporary and permanent monitoring wells located along the eastern property line at Wanda Avenue were below residential and non-residential risk-based criteria including residential drinking water criteria.

B2.B.1(c) Horizontal and Vertical Direction of Contaminant Movement

As presented in Section B2.A.2.c, due to the clay and fill nature of the soil at the Gage facility and because the ground water is perched, contaminant migration is unlikely to occur.

B2.B.1(d) Velocity of Groundwater Contaminant Movement

As presented in the Environmental Setting Section B2.A.c, due to the clay and fill nature of the soil at the Gage facility and because the ground water movement is limited for perched groundwater, a groundwater velocity determination is not applicable.

B2.B.1(e) Factors Influencing Plume Movement

As presented in Section B2.A.2.c, Environmental Setting, due to the clay and fill nature of the soil at the Gage facility and because the ground water movement is limited for perched groundwater, plume movement is not applicable.

B2.B.1(f) Extrapolation of Future Contaminant Movement

As presented in Section B2.A.2.c, Environmental Setting, due to the clay and fill nature of the soil at the Gage facility and because the ground water movement is limited for perched groundwater, future contaminant movement is not likely to occur.

B2.B.1(g) Recommendations or Established Requirements for Additional Investigations

Additional investigations are planned at the Gage facility as identified in the *Project Management Plan* of the *RCRA Facility Investigation Work Plan*, Revision 2 Update, February 2012 and approved by the MDEQ as documented in an October 19, 2012 letter from Elizabeth M. Brown, Chief of the Office of Waste Management and Radiological Protection with the identified subject "Approval with Modification; RCRA Facility investigation (RFI) Work Plan Revision 2 Update."

B2.B.2 Soil

B2.B.2(a) Characterization History

Historical analytical data for Gage facility soils were consolidated and compared to cleanup criteria developed by the MDEQ for non-residential properties pursuant to Part 201 of Michigan's Natural Resources and Environmental Protection Act (Act 451 of 1994 as amended). (Part 201 was formerly known as Michigan's Environmental Response Act [Act 307]). A summary of the historical analytical data for the Gage facility's soil is provided on Table B2-2 and sample locations are shown on Figure B2-3.

A supplemental investigation was performed in 2013. This report is attached to the April 27, 2015 RCRA Facility Investigation, Risk Evaluation and Corrective Measures Plan as Appendix B. The investigation delineated impacted soils in AOC 8. Both of these reports have previously been submitted to EGLE and are therefore, not included in this permit renewal application.

On November 9-10, 2022, Gage conducted a remedial excavation to remove approximately 550 tons of impacted soils and surrounding residual fill on Parcel A (AOC 8) as a presumptive remedy to address the potential vapor intrusion pathway for adjacent off-site properties. A report documenting the excavation, soil verification sampling, and post excavation soil gas sampling was provided to EGLE on February 24, 2023. In a letter from EGLE dated August 2024, EGLE acknowledged the removal of soil from AOC 8 and concurred soil vapors were not migrating off site.

B2.B.2(b) Description of Horizontal and Vertical Extent of Contamination

As shown on Table B2-2, the soil samples collected from the western portion of Parcel C contained trimethylbenzenes and xylenes above non-residential risk-based criteria (direct contact criteria and soil volatilization to into air criteria). This area is delineated to the west by the results of the soil and ground water sampling on the Grand Trunk Switching Yard including the soil and temporary monitoring wells (TMW-01 through TMW-03) and the soil samples collected when the area was excavated to install the Sprint line (Sprint -1 through Sprint-5).

B2.B.2(c) Description of Soil and Contaminant Properties

A general description of the available soil characterization for the facility is presented in Section B2.A.2.d, Environmental Setting. In general, soils encountered at the site consist of a thin surficial granular fill that contains minor saturation in some locations and an underlying dry to moist clay till containing varying amounts of admixed sand, silt, and traces of gravel.

B2.B.2(d) Velocity and Direction of Contaminant Movement

Due to the clayey nature of the soils and the limited amount of granular fill, contaminant movement has not been observed at the Gage facility.

B2.B.2(e) Extrapolation of Future Contaminant Movement

Due to the clayey nature of the soils and the limited amount of granular fill, contaminant movement is not expected to occur at the Gage facility.

B2.B.2(f) Recommendations or Established Requirements for Additional Investigations

Additional investigation is planned at the Gage facility as identified in the *RCRA Facility Investigation Work Plan*, Revision 2 Update, February 2012 and approved by the MDEQ.

B2.B.3 Surface Water and Sediment

There is no surface water or sediment present at the site or nearby as detailed in Section B2.A.2.e, Environmental Setting. As such, assessment of known nature and extent of contamination in surface water or sediment is not applicable.

B2.B.4 Air

Operations at the Gage facility are permitted under Permit to Install 64-18B pursuant to the Part 55 Air Pollution Control Rule. The hazardous waste management units are operated in accordance with Subparts BB and CC as detailed in Attachments C11a, C11b and C11c. In addition, the thin film evaporator vent is compliant with Subpart AA. Because air emissions at the Gage facility are regulated under applicable state requirements, assessment of potential air contamination at the facility is not required.

B2.B.5 Subsurface Gas Contamination

A supplemental investigation was performed in 2013. This report is attached to the April 27, 2015 RCRA Facility Investigation, Risk Evaluation and Corrective Measures Plan as Appendix B. The investigation delineated impacted soils in AOC 8. Additional investigation for the vapor intrusion (VI) pathway was conducted starting in 2018. These investigations are documented in reports which were submitted to EGLE and therefore are not included in this permit renewal application. Results of the VI investigations resulted in the following corrective actions:

- Vapor intrusion sampling off site at 600 Wanda indicated no risk of vapor intrusion. EGLE provided a letter confirming the results and that Gage had meet its obligation to evaluate the vapor pathway.
- On November 9-10, 2022, Gage conducted a remedial excavation to remove approximately 550 tons of impacted soils and surrounding residual fill on Parcel A (AOC 8) as a presumptive remedy to address the potential vapor intrusion pathway for adjacent off-site properties. A report documenting the excavation, soil verification sampling, and post excavation soil gas sampling was provided to EGLE on February 24, 2023. In a letter from EGLE dated August 2024, EGLE acknowledged the removal of soil from AOC 8, concurred soil vapors were not migrating off site and indicated, *"a vapor source in soil remains in the AOC 8 area due to the exceedances of the SSVIAC soil criteria present"*.

Gage planned to implement a sub-slab depressurization system (SSDS) to presumptively mitigate the VI pathway in three on-site indoor air spaces (Fill house #6, the Reman office, and the Production office next to Fill house #1). During design of these systems, several issues were identified including availability of fans with appropriate electrical hazard classification (required due to the locations of these fans) and the methane concentrations below the floor slabs. As a result, a revised work plan describing alternative VI mitigation approaches for each of these areas was submitted to EGLE on August 2, 2022. EGLE requested additional information in an email dated August 25, 2022, including demonstration of MIOSHA applicability for Fill House #6. A response to EGLE's request for additional information was submitted to EGLE on December 1, 2022. EGLE approved the responses, and the August 2, 2022 work plan with conditions on January 13, 2023. These plans have previously been submitted to EGLE and therefore have not been included in this permit renewal application.

B2.C FACILITY'S EXPOSURE ASSESSMENT

This section describes the potential exposure pathways at the site. An exposure pathway describes the course a chemical or physical agent takes from the source of contamination to the exposed population. An exposure pathway analysis links the sources, locations, and types of environmental releases with population locations and activity patterns to identify significant pathways of potential exposure.

An exposure pathway generally consists of four elements: (1) a source and mechanism of chemical release or potential release; (2) a retention or transport medium; (3) a point of potential human contact with the contaminated

medium (referred to as the exposure point); and (4) an exposure route (e.g., ingestion of drinking water) at the exposure point. Each pathway describes the mechanism by which a population may be exposed to chemicals that may originate from a site.

As previously discussed, conceptual models identify "reasonable" current and potential future exposure pathways. Current exposure pathways are based on existing conditions at the site while future exposure pathways are based on assumptions regarding future uses of the site. Reasonable exposures are the greatest exposures that are reasonably expected to occur. The determination of "reasonable" is based on quantitative information, standard assumptions, and best professional judgment. The intent is to identify conservative exposure scenarios that are still within the range of probability.

B2.C.1 Human Exposure and Threats

B2.C.1(a) Exposure Pathway

Portions of the Gage facility have been industrialized since 1936. Any chemicals and oils used in facility operations during this time have the potential to be sources of contamination if they were "improperly" (as defined by today's standards) used, handled, and/or disposed on-site. If chemicals and oils were improperly managed at the site, then these substances could have directly impacted the site's soil (through spillage or run-off from paved surfaces) and air (through volatilization and fugitive dust emissions). Contaminants could then have been transferred from the soil to the shallow perched ground water (through leaching from soil). This perched water might also have migrated into the utility corridors which traverse the site because the soil typically used to backfill utility trenches would be more permeable than the natural clayey soil present on-site and might thereby provide a preferential flow pathway for perched water.

Whether any contaminants actually impacted or remain in site-related soil, perched ground water, or utility trench backfill will be determined or confirmed through the RFI, as a result of the conceptual model having identified the potential for a complete exposure pathway relevant to the medium in question. For example, although historical operations may have directly discharged contaminants to the air, this medium would not currently be impacted from this source due to: 1) cessation of improper chemical management activities; and 2) the rapid movement of this medium from the site. Based on this information, investigation of the air pathway was not recommended as part of the RFI. However, if initial investigations of surface soil detect the presence of contaminants at concentrations and under conditions conducive to volatilization, then additional investigation of the air pathway would be recommended. Through this process, the conceptual model becomes a dynamic tool that can be used throughout all phases of site investigation to identify potential exposure pathways at a site.

Soil

Although the majority of soil at the Gage facility is covered with pavement or buildings, on-site workers might be exposed to unpaved soils through inadvertent ingestion, dermal absorption and/or inhalation during outdoor or subsurface (e.g., utility repair) work activities. Off-site residents and off-site workers would not be directly exposed to the Gage facility's soil at their off-site locations.

Perched Ground Water

On-site workers are not exposed to perched ground water under the Gage facility through direct ingestion because drinking water wells are not present on-site and the Gage facility's drinking water is supplied by Detroit Metro Water & Sewer. However, given the shallow depth of the perched ground water, on-site workers might be exposed to this perched ground water through inadvertent ingestion, dermal absorption and/or inhalation during subsurface (e.g., utility repair) work activities. These exposures would be similar to soil exposures.

Off-site subsurface utility workers and residents may be exposed to the perched ground water or vapors derived from the Gage facility if off-site migration through utility corridors or other permeable subsurface routes has occurred.

Backfilled Utility Corridors

Current and future on-site workers might be exposed to backfill material through inadvertent ingestion, dermal absorption and/or inhalation during activities related to the on-site utility corridors. Off-site workers might also be exposed to backfill material through inadvertent ingestion, dermal absorption and/or inhalation during activities related to off-site utility corridors which have connections to on-site utility corridors. Off-site residents would not be exposed to materials in utility corridors either on-site or off-site.

Air

Exposure points to impacted air can be either on or downwind of a subject property. Therefore, off-site residents, on-site workers, and off-site workers could be exposed to chemicals in the air through inhalation. Exposure may occur through inhalation of volatilized substances or air-borne particulates (i.e., dust) from a subject property's soil. However, air-borne particulates would not be a significant source of exposure from the Gage facility because the majority of the site's soil is covered with pavement, buildings or grass.

B2.C.1(b) Actual or Potential Receptors

The potential exposure pathways for each potentially exposed population under the current land use are summarized on below:

Off-Site Residents: may be exposed to potential contaminants from the Gage facility through air emanating from the Gage facility. Evidence to date indicates that ground water at the perimeter of the site, and that in utility corridors, does not present an inhalation threat to off-site residents. Similarly, soil beneath the site does not present an inhalation threat to off-site residents. However, the RFI will finitely address this concern coincident with the evaluation of potential off-site utility worker exposures.

On-Site Workers: may be exposed to potential contaminants from the Gage facility through contact, ingestion or inhalation of volatilized constituents derived from on-site soil, perched ground water, backfill material in on-site utility corridors, and air.

Off-Site Workers: may be exposed to potential contaminants from the Gage facility through contact, ingestion or inhalation of volatilized constituents derived from backfill material in off-site utility corridors, or other permeable subsurface conduits, and air emanating from the Gage facility.

If the site were maintained at current conditions in the future, then the future potential exposure pathways are the same as the current potential exposure pathways. However, future exposures will decrease if remedial actions are undertaken or if exposure controls are implemented at the Gage facility.

The exposure pathways identified above are only *potential* pathways because it is currently unknown whether the proper conditions exist to complete the exposure pathways. An exposure pathway consists of four elements: (1) a source and mechanism of chemical release or potential release; (2) a retention or transport medium; (3) a point of potential human contact with the contaminated medium (referred to as the exposure point); and (4) an exposure route (e.g., ingestion of drinking water) at the exposure point. If any of these four elements do not exist, the exposure pathway will be incomplete, and exposure will not occur. For example, even if ground water (a transport medium) were to flow beneath the site and into a downgradient well (the exposure point) from which the ground water was ingested (the exposure route), exposure would not occur if a chemical was not present in the ground water. In this example, because there was no source, the exposure pathway would be incomplete, and no exposure would exist.

To determine whether the potential exposure pathways are complete, investigations of the environmental media in question (i.e., areas of concern) must be conducted. A summary of this evaluation is provided in the following section.

B2.C.1(c) Evidence of Exposure

Known environmental impacts and release information is include in Attachment B4, Environmental Assessment. There is no evidence of exposure to human receptors.

B2.C.2 Environmental Exposure and Threats

B2.C.2(a) Exposure Pathway

The exposure pathways that present a potential threat to the environment are the same pathways that present a potential exposure threat to humans and are discussed in Section B2.C.1, Human Exposure and Threats.

B2.C.2(b) Actual or Potential Receptors

There is no evidence of contaminant migration within the perched ground water or ground water migration off-site. In addition, there are no surface water features present on the Gage facility or on nearby properties. Based on this, there are no known environmental threats to on-site or off-site receptors.

B2.C.2(c) Evidence of Exposure

Known environmental impacts and release information for the site are included in Attachment B4, Environmental Assessment. Documented environmental exposures include impacted soil and ground water at the Gage facility.

B2.D INTERIM MEASURES

In an attempt to control what was believed to be migration of impacted ground water across the site, Gage installed two separate ground water recovery systems. Information presented in this report regarding the design of each remediation system was obtained from previous reports and Gage personnel. Because "as-built" drawings are not available for either system, actual construction details are not known.

B2.D.1 Bulk Tank Storage Area

B2.D.1(a) Objective of the Measure

The first ground water recovery system was installed in 1984 following the discovery of free product in monitoring wells located near the Bulk Tank Storage Area (SWMU 4). The system was composed of ground water recovery pumps placed in well-driven points and was designed to be manually operated by Gage personnel based on water levels in each well (OHM, 1986).

B2.D.1(b) Design and Construction

Because "as-built" drawings are not available for either system, actual construction details are not known.

B2.D.1(c) Operation, Monitoring, and Maintenance

The water/product mixture removed from the wells was to be pumped to three storage tanks connected in series through which free product would be separated from water. The system was subsequently expanded to include a seepage drain on the south side of the tank farm parallel to Jewell Avenue and a sump located north of the tank farm. Drainage from these two locations was directed to a manhole located on the east side of the tank farm.

B2.D.1(d) Evaluation of Measure Effectiveness

Gage personnel indicated that design problems prevented long-term operation of this system. Documented operational information is not available and it is unknown how much free product was collected during operation of this system.

B2.D.1(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure

Because it was determined that the system was ineffective, operation schedules are not required.

B2.D.2 Former Underground Storage Tank Area by Fill House 2

B2.D.2(a) Objective of the Measure

The second ground water recovery system was installed in 1986 following the discovery of free product in monitoring wells located near the Former Underground Storage Tank Area by Fill House 2 (SWMU 9). The second system was installed in 1986 following the discovery of free product in monitoring wells located near the Former Underground Storage Tank Area by Fill House 2 (SWMU 9). Based on preliminary design plans, this system consists of a subsurface trench which was intended to intercept ground water and any free product and convey it to a collection basin from which it would be disposed.

B2.D.2(b) Design and Construction

The ground water collection trench was excavated from the natural clay soils and backfilled with pea gravel. A 2foot diameter, concrete catch basin was installed in approximately the center of the trench at a depth of 11 feet. A recovery system was installed in the catch basin, which consisted of a pneumatic-type ground water pump, a liquid level meter to indicate drawdown, discharge lines to a product/water separator, an air compressor, product storage barrels, and a metered discharge line to the sanitary sewer. Because "as-built" drawings are not available for either system, actual construction details are not known.

B2.D.2(c) Operation, Monitoring, and Maintenance

According to Gage personnel, this system began operating on December 18, 1986, and remained in service for approximately 304 days. During this period, approximately 387.5 gallons of free product and 369,992 gallons of ground water were recovered.

B2.D.2(d) Evaluation of Measure Effectiveness

Use of the system was discontinued after 304 days because the system did not function properly and was believed to be ineffective.

B2.D.2(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure

This system is no longer in operation and as such, this section is not applicable.

B2.D.3 AOC 8: Soil Excavation

B2.D.3(a) Objective of the Measure

The objective of the measure was to remove impacted soils. This interim measure is described in the 2013

Form EQP 5111 Attachment B2

Supplemental Investigation Report attached to the 2015 RCRA Facility Investigation, Risk Evaluation and Corrective Measures Plan as Appendix B. This report has been submitted to EGLE and has not been attached to this application. Impacted soils in AOC 8 were delineated and removed in 2022/2023. Soil vapor monitoring was performed following the excavation. In a letter dated August 30, 2024, EGLE concurred that the soil vapors were not migrating off site. Based on the August 30, 2024, letter from EGLE, it is Gage's understanding the AOC 8 interim measure has been completed.

B2.D.3(b) Design and Construction

There are no design or construction details associated with this interim measure.

B2.D.3(c) Operation, Monitoring, and Maintenance

There are no ongoing operation, monitoring or maintenance associated with this interim measure. An institutional control was established to address low levels of volatile organic compounds associated with utilities along Wanda Street. See the 2015 RCRA Facility Investigation, Risk Evaluation and Corrective Measures Plan as Appendix F, previously submitted to EGLE.

B2.D.3(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure

There are no proposed or required schedules for continued operation or future changes associated with this interim measure.

B2.D4 Onsite vapor intrusion mitigation

B2.D.4(a) Objective of the Measure

Gage planned to implement a sub-slab depressurization system (SSDS) to presumptively mitigate the VI pathway in three on-site indoor air spaces (Fill house #6, the Reman office, and the Production office next to Fill house #1). During design of these systems, several issues were identified including availability of fans with appropriate electrical hazard classification (required due to the locations of these fans) and the methane concentrations below the floor slabs. As a result, a revised work plan describing alternative VI mitigation approaches for each of these areas was submitted to EGLE on August 2, 2022. EGLE requested additional information in an email dated August 25, 2022, including demonstration of MIOSHA applicability for Fill House #6. A response to EGLE's request for additional information was submitted to EGLE on December 1, 2022. EGLE approved the responses, and the August 2, 2022 work plan with conditions on January 13, 2023. The new work plan included modifications to the HVAC system in the "Reman Control Room" to pressurize the building to prevent VI with a system to monitor positive pressure in the room. The plan included the installation of a Cupolex flooring system in the Production Office to address VI. The third area, Fill House 6, will be monitored under the OSHA 29 CFR 1910 safety rules. The positive pressure HVAC system in the Reman Control Room and the Cupolex floor in the Production Office were installed instead of the SSDS system(s).

B2.D.4(b) Design and Construction

A revised work plan with design and construction information has been approved by EGLE on August 25, 2022.

Gage has completed modifications to the HVAC system in the Reman Control Room to pressurize the building to prevent VI and is monitoring pressure in the room. The design included the installation of a cupolex flooring system in the production office to address VI. Design details were previously submitted and approved by EGLE. Therefore, design and construction details are not included in this permit application.

The onsite SSDS vapor mitigation system will not be installed due to the work plan modification to alternatively use the HVAC system, OSHA monitoring in Fill House 6 and the Cupolex Floor system.

B2.D.4(c) Operation, Monitoring, and Maintenance

Modifications to the HVAC system in the Reman Control Room will require some monitoring and maintenance. Gage is in the process of preparing an OM&M plan for the operation, monitoring and maintenance of the new HVAC system, Cupolex Floor and OSHA monitoring. The OM&M will include monitoring of pressure in the areas to ensure positive pressure to prevent potential vapor intrusion and OSHA monitoring in Fill House 6.

B2.D.4(e) Proposed or Required Schedules for Continued Operation or Future Changes in the Measure

Gage is in the process of preparing an OM&M plan for the operation, monitoring and maintenance of the new HVAC system, including monitoring the pressure in the area to ensure positive pressure to prevent potential vapor intrusion. The OM&M plan will include a schedule for continued operation of the HVAC system. No future changes to the HVAC measures are anticipated.

B2.E ENVIRONMENTAL INDICATORS

Environmental Indicator (EI) forms for the Gage facility are included in Appendix B2-7. There are no known uncontrolled exposures to contaminated soil or ground water. Human expose and ground water releases are controlled by facility controls and operational procedures as a requirement of the Part 111 LSF Operating License.

B2.F FACILITY'S ASSESSMENT OF KNOWN OR PROPOSED CONSTITUENTS OF CONCERN [R 299.9629(3)(a)(i) and (3)(b)(i)]

A list of materials handled at the site is included as Appendix B2-3. A review of the analyses which have been performed to date at the Gage facility reveals that perched ground water has been characterized for an extensive suite of compounds. These scans include full base-neutral-acid scans (8270), full VOC scans (8260), phenols (604/625), PCBs and pesticides (8080), the "Michigan 10" metals suite and various major ions. The vast majority of compounds detected in previous investigations are VOCs.

Based on a review of the analytical data and the Gage facility materials list, and additional ground water sampling and analysis for a modified Appendix IX list of constituents, the MDEQ¹ requested that the RFI Work Plan analytical parameters list include VOCs by U.S. EPA Method 8260/5035. These parameters and associated analytical methods are defined in the Quality Assurance Project Plan (QAPP), which included as an attachment to the RFI Work Plan and which has been approved by the MDEQ.

B2.G ESTABLISHED OR PROPOSED CLEANUP CRITERIA

[R 299.9629(3)(a)(ii) and (iii) and R 299.9629(3)(b)(ii) and (iii)]

All site investigation data will be evaluated so that the relationships between site investigation results for each medium are apparent. A summary will be prepared that describes the concentrations of specific contaminants at the site and the background levels surrounding the site. Part 201 generic non-residential cleanup standards will be used to screen site characterization data gathered on-site and generic residential criteria will be used to screen site characterization data perimeter, off-site, and at any other locations where unrestricted exposures may occur.

¹ Letter from Horizon Environmental to Mr. Daniel Daily, dated August 8, 2000, and MDEQ approval letter dated July 30, 2009.

B2.H ESTABLISHED OR PROPOSED COMPLIANCE POINTS AND PERIODS

[R 299.9629(3)(a)(iv) and (v) and R 299.9629(3)(b)(iv) and (v)]

No compliance points or periods have been proposed or established through an existing license or through existing facility-specific studies or reports, including those developed pursuant to Part 201 and RCRA Corrective Action.

B2.I OFF-SITE ACCESS

No information has been identified that indicates a need for off-site access to implement corrective action or remediations.

B2.J PUBLIC INVOLVEMENT PLAN

The Community Action Plan (Appendix B2-5) plan describes the procedures for dissemination of information to the public regarding RFI activities.

B2.K HEALTH AND SAFETY PLAN

The Health and Safety Plan (Appendix B2-6) provides a brief description of the facility and known hazards; an evaluation of the health risks to workers implementing the field investigation activities; a list of key personnel and alternates responsible for site safety, response operations, and for protection of human health; a delineation of work areas; a description of the levels of personal protective equipment to be worn by personnel; established procedures to control site access; a description of documentation procedures for personnel on-site or visiting and for calibration of field screening equipment; established site emergency procedures; a description of requirements for an environmental surveillance program; a specification of any routine and special training required for responders; and established procedures for protecting workers from weather-related problems. The H&SP also addresses emergency medical care for injuries and toxicological problems and provides directions and a map to nearby hospitals.

The H&SP is consistent with appropriate NIOSH, OSHA, and U.S. EPA guidance documents.

B2.L NOTICE REQUIREMENTS

[R 299.9525]

A notice of statutory obligations related to hazardous waste management for the Gage facility was issued to the Oakland County Register of Deeds on November 9, 2000, for the facility as required under R 299.9525. A copy of the notice is included in Appendix B2-8.

B2.M JUSTIFICATION FOR PROPOSED ELIMINATION OF ANY WASTE MANAGEMENT UNIT FROM THE CORRECTIVE ACTION PROGRAM OR INTENT TO PROCEED WITH CORRECTIVE ACTIONS

No waste management units have been removed since 2013 and there are no proposals to eliminate waste management units from the corrective action program at this time.

All relevant waste management units are addressed in the 2015 RFI Work Plan and detailed in Section B2.A.3. Implementation of the approved RFI Work Plan is ongoing. A supplemental investigation was performed in 2013. This report is attached to the April 27, 2015, RCRA Facility Investigation, Risk Evaluation and Corrective Measures Plan as Appendix B. These reports were previously submitted to EGLE and therefore have not been included with this permit application.

Tables

Table B2-1

Description of Former Underground Storage Tanks Gage Products Ferndale, Michigan

<u>UST</u>	<u>Capacity</u> (gallons)	<u>Contents</u>	Location	<u>Construction</u>	Age at <u>Removal</u> (year)	Year <u>Removed</u>
41	3,000	Antifreeze	Fill House 2	Steel	9-14	1987
42	3,000	Ethyl acetate	Fill House 2	Steel	11-16	1987
43	1,500	n-Butanol	Fill House 2	Steel	11-16	1987
44	1,500	Ethylene glycol monobutyl ether	Fill House 2	Steel	11-16	1987
45	1,500	Diacetone alcohol	Fill House 2	Steel	11-16	1987
46	1,500	Chlorobenzene or	Fill House 2	Steel	11-16	1986
		ethyl acetate				
47	6,000	Mineral seal oil	East of tank farm	Steel	8-13	1987
48	6,000	#4550 Solvent/	East of tank farm	Steel	6-11	1987
		petroleum distillate				
49	6,000	Methanol	East of tank farm	Steel	8-13	1987
50	6,000	Hydrocarbon solvent	East of tank farm	Steel	8-13	1987
51	6,000	Hydrocarbon solvent	East of tank farm	Steel	8-13	1987
А	6,000	Formaldehyde	Former schoolhouse	Fiberglass	8-13	1985
В	6,000	Glycol	Former schoolhouse	Steel	8-13	1985
С	3,000/3,000*	B-300 soap/Pine oil	Former schoolhouse	Steel	8-13	1985
D	6,000	Leaded gasoline	Maintenance area	Steel	10	1987
Е	10,000	Unleaded gasoline	Maintenance area	Steel	10	1987
F	10,000	#2 Diesel fuel	Maintenance area	Steel	10	1987
G**	40	Hydraulic oil	Maintenance area hoist	Steel	NA	NA
H**	40	Hydraulic oil	Fill House 2 hoist	Steel	NA	NA

* This tank had two compartments of equal size.

** This tank is not part of an underground storage tank system as defined in Michigan P.A. 213 of 1994, as amended, because it is part of a piece of equipment and used for the equipment's operational purposes.

Table B2-1

Description of Former Underground Storage Tanks Gage Products Ferndale, Michigan

<u>UST</u>	<u>Capacity</u> (gallons)	<u>Contents</u>	Location	<u>Construction</u>	Age at <u>Removal</u> (year)	Year <u>Removed</u>
	10,000	Kerosene	Below Floor; North Side Former Coca Cola Bldg. (Parcel D)	Steel	NA	1998 (Closed In Place)
	20,000	No. 5 Fuel Oil	Below Floor; North Side Former Coca Cola Bldg. (Parcel D)	Steel	NA	1998 (Closed In Place)
	1,000	Fuel Oil	Outside North Wall; Former Coca Cola Bldg. (Parcel C)	Steel	NA	2009
	6,000	Gasoline	Parking Lot South of Former Coca Cola Bldg. (Parcel D)	Steel	NA	1991
	4,000	Gasoline	Outside SW Corner of Bldg. (Parcel E)	Steel	NA	1986

Sample Location Background Non-Residential Non-Residential Residential Presidential 1 2 3 4 C-SB-1 C-SB-1 Lab Sample ID Target Soil Volatile Direct Soil 97-05-131 97-05-131 97-05-131 97-05-131 97-05-131 97-05-131 97-05-131 97-05-131 97-05-131 MDEQ MDEQ MDEQ WWES	45696 WWES 7/31/1990 9.0 - 10.5
Sampled By Analyzed By Sample Date Method Detection Volatilization to Indoor Air Soil Contact Volatilization to Indoor Air MDEQ	7/31/1990 9.0 - 10.5 -
Analyzed By Sample Date Detection Limit Indoor Air Inhalation Inhalation Inhalation Inhalation Indoor Air Inhalation Inhalation Inha	9.0 - 10.5 -
Sample Date Sample Depth (ft.) Limit Inhalation Infinite Inhalation 5/16/1997 5/16/1997 5/16/1997 5/16/1997 7/31/1990 6.0-7.5 6.0-7.5 Inorganics mg/Kg 18 NLV NLV 21000 NLV 2 2.5 3.5 2	9.0 - 10.5 -
Sample Depth (tt.) Units Units 0.0 - 1.5 3.0 - 4.5 6.0 - 7.4 Inorganics Units mg/Kg 5.8 NLV NLV 37 NLV 13 8.3 9.6 3.8 Arsenic (B) mg/Kg 5.8 NLV NLV 37 NLV 13 8.3 9.6 3.8 Cadmium (B) mg/Kg 1.2 NLV NLV 2100 NLV 2 2.5 3.5 2	
Arsenic {B} mg/kg 5.8 NLV NLV 37 NLV 13 8.3 9.6 3.8 Cadmium {B} mg/kg 1.2 NLV NLV 2100 NLV 2 2.5 3.5 2	
Cadmium (B) mg/Kg 1.2 NLV NLV 2100 NLV 2 2.5 3.5 2 Chromium, Total mg/Kg 18 NLV NLV 9200 NLV 34 77 116 7	
Chromium, Total mg/Kg 18 NLV NLV 9200 NLV 34 77 116 7 <	
Chromium (VI) mg/Kg 18 NLV NLV 9200 NLV Coper (B) Mg/Kg 32 NLV NLV 73000 NLV 86.5 207 243 6.9 <td></td>	
Chromium (III) {B,H} mg/Kg 18 NLV NLV 100000 {D} NLV	
Copper {B} mg/Kg 32 NLV NLV 73000 NLV 86.5 207 243 6.9 Iron mg/Kg 12000 NLV NLV 580000 NLV 18300 34000 23000 5940	
Interview Org 12000 NLV NLV 58000 NLV 18300 34000 23000 5940 Iron mg/Kg 21 NLV NLV 900 (DD) NLV 203 752 920 66.8 Mercury (Inorganic) {B} mg/Kg 0.13 89 62 580 48 0.13 0.14 0.15 0.17 Nickel mg/Kg 20 NLV NLV 150000 NLV 20 25 27 5 Zinc {B} mg/Kg 47 NLV NLV 630000 NLV 310 817 810 54.9	
Lead {B} mg/Kg 21 NLV NLV 900 (DD) NLV 203 752 920 66.8 Mercury (Inorganic) {B} mg/Kg 0.13 89 62 580 48 0.13 0.14 0.15 0.17 Nickel mg/Kg 20 NLV 150000 NLV 20 25 27 5 Zinc {B} mg/Kg 47 NLV NLV 630000 NLV 310 810 54.9	
Lead {B} mg/Kg 21 NLV 900 (DD) NLV 203 752 920 66.8 Mercury (Inorganic) {B} mg/Kg 0.13 89 62 580 48 0.13 0.14 0.15 0.17 Nickel mg/Kg 20 NLV NLV 150000 NLV 20 25 27 5 Zinc {B} mg/Kg 47 NLV NLV 630000 NLV 310 810 54.9	
Nickel mg/Kg 20 NLV NLV 150000 NLV 20 25 27 5 Zinc {B} mg/Kg 47 NLV NLV 630000 NLV 310 810 54.9	
Zinc {B} mg/Kg 47 NLV NLV 630000 NLV 310 817 810 54.9	
Sami Valatilas Units	
Semi-Volatiles Units	
Acenaphthene ug/Kg 330 3.5E+8 9.7E+7 1.3E+8 1.9E+8 2000 1700 < 130 430	
Acenaphthylene ug/Kg 330 3.0E+6 2.7E+6 5.2E+6 1.6E+6 <120 <1200 <130 <120	
Anthracene ug/Kg 330 1.0E+9 {D} 7.3E+8 1.0E+9 {D} <120 <130 240	
Benzo(a)anthracene {Q} ug/Kg 330 NLV NLV 80000 NLV 440 <1200 180 900	
Benzo(a)pyrene {Q} ug/Kg 330 NLV NLV 8000 NLV 370 <2400 <260 860	
Benzo(b&k)fluoranthene ug/Kg 330 ID ID 80000 ID 1910 <2400 950 1600	
Benzo(g,h,i)perylene ug/Kg 330 NLV NLV 7.0E+6 NLV 340 <6000 260 550	
bis(2-Chloroethoxy)methane ug/Kg 330 NA NA NA NA NA https://www.science.com/s	
bis(2-Chloroethyl)ether {I} ug/Kg 100 44000 13000 58000 8300 <120 <2400 <130 <120	
bis(2-Chloroisopropyl)ether ug/Kg 330 NA NA NA NA A A <120 <1200 <130 <120	
bis(2-Ethylhexyl)phthalate ug/Kg 330 NLV NLV 1.0E+7 {C} NLV 49000 170000 2500 1400	
4-Bromo diphenyl ether ug/Kg 330 NA NA NA NA A <240 <2400 <260 <240	
Butyl benzyl phthalate ug/Kg 330 NLV NLV 3.1E+5 {C} NLV 4400 <1200 <120	
beta-Chloronaphthalene ug/Kg 330 ID ID 1.8E+8 ID <240 <2400 <260 <240	
4-Chloro diphenyl ether ug/Kg 330 NA NA NA NA A A - 240 <130 <120	
Chrysene {Q} ug/Kg 330 ID ID 8.0E+6 ID 760 <1200 260 1000	
Decabromodiphenyl ether ug/Kg NA 1.0E+9 {D} 1.0E+9 {D}	
Di-n-butyl phthalate ug/Kg 330 NLV NLV 7.6E+5 {C} NLV 400 <1200 <130 190	
Di-n-octyl phthalate ug/Kg 330 NLV NLV 2.0E+7 NLV <240 <240 <260 <240	
Dibenzo(a,h)anthracene {Q} ug/Kg 330 NLV NLV 8000 NLV <600 <600 <650 150	
Dibenzofuran ug/Kg 330 3.6E+6 1.6E+5 ID 2.0E+6	
3,3'-Dichlorobenzidine ug/Kg 2000 NLV NLV 30000 NLV	
Diethyl phthalate ug/Kg 330 NLV 7.4E+5 {C} NLV <120 <130 2600	
Dimethyl phthalate ug/Kg 330 NLV NLV 7.9E+5 {C} NLV <240 <2400 <260 <240	
2,4-Dinitrotoluene ug/Kg 330 NLV NLV 2.2E+5 NLV <600 <600 <650 <600	
2,6-Dinitrotoluene ug/Kg 330 NA NA NA NA A - 600 <600 <650 <600	
1,2-Diphenylhydrazine ug/Kg 330 NA NA NA NA A -240 -2400 -260 -240	

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	1	2	3	4	C-SB-1	C-SB-1	C-SB-1	C-SB-1
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	97-05-131	97-05-131	97-05-131	97-05-131	45693	45694	45695	45696
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	MDEQ	MDEQ	MDEQ	MDEQ	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air								
Sample Date		Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	7/31/1990	7/31/1990	7/31/1990	7/31/1990
Sample Depth (ft.)											0.0 - 1.5	3.0 - 4.5	6.0 - 7.5	9.0 - 10.5
Semi-Volatiles Cont.	Units													
Fluoranthene	ug/Kg	330	1.0E+9 {D}	8.9E+8	1.3E+8	1.0E+9 {D}	750	870	310	2200				
Fluorene	ug/Kg	330	1.0E+9 {D}	1.5E+8	8.7E+7	5.8E+8	<120	2100	<130	<120				
Hexachlorobenzene (C-66)	ug/Kg	330	2.2E+5	56000	37000	41000	<120	<1200	<130	<120				
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5	<240	<2400	<260	<240				
Hexachlorocyclopentadiene (C-56)	ug/Kg	330	56000	60000	7.2E+5 {C}	30000								
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000	<120	<1200	<130	<120				
Indeno(1,2,3-cd)pyrene {Q}	ug/Kg	330	NLV	NLV	80000	NLV	290	<6000	200	550				
Isophorone	ug/Kg	330	NLV	NLV	2.4E+6 {C}	NLV	<120	<1200	<130	<120				
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6	96000	81000	59	91000				
n-Nitroso-di-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV								
n-Nitroso-di-propylamine	ug/Kg	330	NLV	NLV	5400	NLV	<240	<2400	<260	<240				
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5	11000	23000	950	12000				
Nitrobenzene {I}	ug/Kg	330	1.7E+5	64000	3.4E+5	91000	<240	<2400	<260	<240				
N-Nitrosodiphenylamine	ug/Kg	330	NLV	NLV	7.8E+6	NLV								
n-Nitroso-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV	<240	<2400	<260	<240				
Phenanthrene	ug/Kg	330	5.1E+6	1.9E+5	5.2E+6	2.8E+6	1400	1500	330	1500				
Pyrene	ug/Kg	330	1.0E+9 {D}	7.8E+8	8.4E+7	1.0E+9 {D}	830	1100	330	2000				
Volatiles	Units	-												
Acetone {I}	ug/Kg	1000	1.1E+8 {C}	1.6E+8	7.3E+7	1.1E+8 {C}	<61000	<50000	<140	<65000				
Acrylonitrile {I}	ug/Kg	100	35000	17000	74000	6600	<6100	<5000	<14	<6500				
Benzene {I}	ug/Kg	50	8400	45000	4.0E+5 {C}	1600	<6100	<5000	<14	<6500	33	<500	<250	<1000
Bromobenzene {I}	ug/Kg	100	5.8E+5	5.4E+5	7.6E+5 {C}	3.1E+5					<40	<1000	<500	<2000
Bromochloromethane	ug/Kg	100	NA	NA	NA	NA	<6100	<5000	<14	<6500	<300	<7500	<3800	<15000
Bromodichloromethane	ug/Kg	100	6400	31000	4.9E+5	1200					<40	<1000	<500	<2000
Bromoform	ug/Kg	100	7.7E+5	3.1E+6	8.7E+5 {C}	1.5E+5	<6100	<5000	<14	<6500	<300	<7500	<3800	<15000
Bromomethane	ug/Kg	200	1600	13000	1.0E+6	860	<12000	<10000	<29	<13000	<200	<5000	<2500	<10000
2-Butanone (MEK) {I}	ug/Kg	750	2.7E+7 {C}	3.5E+7	2.7E+7 {C,DD}	2.7E+7 {C}	<12000	<10000	<29	<13000				
n-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID								
sec-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID								
tert-Butylbenzene	ug/Kg	50	ID	ID 1 05 0	8.0E+6	ID								
Carbon disulfide {I,R}	ug/Kg	250	1.4E+5	1.6E+6	2.8E+5 {C,DD}	76000	<12000	<10000	<29	<13000				
Carbon tetrachloride	ug/Kg	50	990	12000	3.9E+5 {C}	190	<6100	<5000	<14	<6500	<80	<2000	<1000	<4000
Chlorobenzene {I} Dibromochloromethane	ug/Kg	50 100	2.2E+5 21000	9.2E+5 80000	2.6E+5 {C} 5.0E+5	1.2E+5 3900	<6100 <6100	<5000 <5000	360 <14	<6500 <6500	2800	70000	43000	220000
	ug/Kg													
Chloroethane {I}	ug/Kg	250 5000	9.5E+5 {C} ID	3.6E+7 ID	9.5E+5 {C} ID	9.5E+5 {C} ID	<12000	<10000	<29	<13000	<200 <200	<5000 <5000	<2500 <2500	<10000 <10000
2-Chloroethyl vinyl ether Chloroform	ug/Kg	5000	38000	1.5E+5	1.5E+6 {C}	تا 7200	 <6100	 <500	 <14	 <6500	<200 <20	<5000 <500	<2500 <250	<10000
	ug/Kg		38000		. ,		<12000	<500 <10000	<14 <29	<6500 <13000	<20 <200	<500 <5000	<250 <2500	<1000
Chloromethane {I}	ug/Kg	250		1.2E+5	1.1E+6 {C}	2300		<10000	<29	<13000	<200	<5000	<2500	<10000
2-Chlorotoluene	ug/Kg	50	5.0E+5 {C}	1.5E+6	5.0E+5 {C}	2.7E+5								
4-Chlorotoluene	ug/Kg	50	NA	NA	NA	NA	II							

Page 2 of 26

Sample Location	Back	kground	Non-Residential	Non-Residential	Non-Residential	Residential	1	2	3	4	C-SB-1	C-SB-1	C-SB-1	C-SB-1
Lab Sample ID		arget	Soil	Volatile	Direct	Soil	97-05-131	97-05-131	97-05-131	97-05-131	45693	45694	45695	45696
Sampled By		ethod	Volatilization to	Soil	Contact	Volatilization to	MDEQ	MDEQ	MDEQ	MDEQ	WWES	WWES	WWES	WWES
Analyzed By		tection	Indoor Air	Inhalation		Indoor Air								
Sample Date		_imit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	7/31/1990	7/31/1990	7/31/1990	7/31/1990
Sample Depth (ft.)											0.0 - 1.5	3.0 - 4.5	6.0 - 7.5	9.0 - 10.5
Volatiles Cont. Unit	s													
Dibromochloropropane ug/K	g 1	10	1200 {C}	15000	1200 {C}	1200 {C}	<12000	<10000	<29	<13000				
Dibromochloromethane ug/K	g 1	100	21000	80000	5.0E+5	3900					<60	<1500	<750	<3000
Ethylene dibromide ug/K	g 2	20	3600	5800	430	670								
Dibromomethane ug/K	g 2	250	ID	ID	2.0E+6 {C}	ID	<6100	<5000	1	<6500				
Ethylene dibromide ug/K	g 2	20	3600	5800	430	670	<6100	<5000	<14	<6500				
trans-1,4-Dichloro-2-butene ug/K	g t	50	NA	NA	NA	NA	<6100	<5000	<14	<6500				
1,2-Dichlorobenzene ug/K	g 1	100	2.1E+5 {C}	4.6E+7	2.1E+5 {C}	2.1E+5 {C}	<120	<5000	<14	<20	<300	<7500	<3800	<15000
1,3-Dichlorobenzene ug/K	g 1	100	48000	94000	1.7E+5 {C}	26000	<120	<5000	<14	<120	<300	<7500	<3800	<15000
1,4-Dichlorobenzene ug/K	g 1	100	1.0E+5	2.6E+5	1.9E+6	19000	<120	<5000	<14	<120	<300	<7500	<3800	<15000
Dibromochloromethane ug/K	0	100	21000	80000	5.0E+5	3900								
Dichlorodifluoromethane ug/K	g 2	250	1.7E+6	6.3E+7	1.0E+6 {C}	9.0E+5	<12000	<10000	<29	<13000	<200	<5000	<2500	<10000
1,1-Dichloroethane {I} ug/K	g t	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5								
1,2-Dichloroethane {I} ug/K	g t	50	11000	21000	4.2E+5	2100								
1,1-Dichloroethane {I} ug/K	g 5	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5	<6100	<5000	<14	<6500	170	<1000	<500	<2000
1,2-Dichloroethane {I} ug/K	g 5	50	11000	21000	4.2E+5	2100	<6100	<5000	<14	<6500	<40	<1000	<500	<2000
1,1-Dichloroethylene {I} ug/K	g 5	50	330	3700	5.7E+5 {C}	62	<6100	<5000	<29	<6500	<40	<1000	<500	<2000
cis-1,2-Dichloroethylene {I} ug/K	g 5	50	41000	2.1E+5	6.4E+5 {C}	22000	<6100	<5000	<14	<6500				
trans-1,2-Dichloroethylene ug/K	g 5	50	43000	3.3E+5	1.4E+6 {C}	23000	<6100	<5000	<14	<65000	<40	<1000	<500	<2000
2,2-Dichloropropane ug/K	g 5	50	NA	NA	NA	NA								
1,2-Dichloropropane {I} ug/K	g 5	50	7400	30000	5.5E+5 {C}	4000	<6100	<5000	<14	<6500	<60	<1500	<750	<3000
1,3-Dichloropropane ug/K	g 5	50	NA	NA	NA	NA								
1,1-Dichloropropene ug/K	g t	50	NA	NA	NA	NA								
cis-1,3-Dichloropropene {I,J} ug/K	g t	50	5400	60000	2.4E+5	1000	<6100	<5000	<14	<6500	<80	<2000	<1000	<4000
trans-1,3-Dichloropropene {I, J} ug/K	g 5	50	5400	60000	2.4E+5	1000	<6100	<5000	<14	<6500	<80	<2000	<1000	<4000
Diethyl ether {I} ug/K	g 2	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}								
Diethylbenzene ug/K	g t	50	NA	NA	NA	NA								
Dimethyl disulfide ug/K	g t	50	NA	NA	NA	NA								
Diethyl ether {I} ug/K	g 2	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}								
Ethylbenzene {I} ug/K	g 5	50	1.4E+5 {C}	2.4E+6	1.4E+5 {C}	87000	12000	40000	88	36000	220	11000	3500	1200
Hexachlorobutadiene (C-46) ug/K	g t	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5								
Hexachloroethane ug/K	g 3	300	79000	6.6E+5	7.3E+5	40000	<6100	<5000	<14	<6500				
2-Hexanone {I} ug/K	g 25	2500	1.8E+6	1.3E+6	2.5E+6 {C}	9.9E+5	<12000	<10000	<29	<13000				
lodomethane ug/K	g 1	100	NA	NA	NA	NA								
Isopropyl benzene {I} ug/K	g 2	250	3.9E+5 {C}	2.0E+6	3.9E+5 {C}	3.9E+5 {C}	2900	3200	<14	3900				
p-Isopropyltoluene ug/K	g 1	100	NA	NA	NA	NA								
5-Methly-2-Hexanone ug/K		100	NA	NA	NA	NA								
lodomethane ug/K	g 1	100	NA	NA	NA	NA								
4-Methyl-2-pentanone (MIBK) {I} ug/K	g 25	2500	2.7E+6 {C}	5.3E+7	2.7E+6 {C}	2.7E+6 {C}	<12000	<10000	<29	<13000				
Methyl-tert-butyl ether (MTBE) ug/K	g 2	250	5.9E+6 {C}	3.0E+7	5.9E+6 {C}	5.9E+6 {C}	<12000	<10000	<29	<13000				

Sample Location	Background	Non-Residential	Non-Residential	Non-Residential	Residential	1	2	3	4	C-SB-1	C-SB-1	C-SB-1	C-SB-1
Lab Sample ID	Target	Soil	Volatile	Direct	Soil	97-05-131	97-05-131	97-05-131	97-05-131	45693	45694	45695	45696
Sampled By	Method	Volatilization to	Soil	Contact	Volatilization to	MDEQ	MDEQ	MDEQ	MDEQ	WWES	WWES	WWES	WWES
Analyzed By	Detection	Indoor Air	Inhalation		Indoor Air								
Sample Date	Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	7/31/1990	7/31/1990	7/31/1990	7/31/1990
Sample Depth (ft.)										0.0 - 1.5	3.0 - 4.5	6.0 - 7.5	9.0 - 10.5
Volatiles Cont. Units													
Methylene chloride ug/Kg	100	2.4E+5	7.0E+5	2.3E+6 {C}	45000	<12000	<10000	<29	<13000	<100	<2500	<1300	<5000
2-Methylnaphthalene ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6								
Naphthalene ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5	22000	31000	68	66000				
n-Propylbenzene {I} ug/Kg	100	ID	ID	8.0E+6	ID	4500	5800	<14	9000				
Styrene {I} ug/Kg	50	5.2E+5 {C}	3.3E+6	5.2E+5 {C}	2.5E+5	<6100	<5000	<14	<6500				
1,1,1,2-Tetrachloroethane ug/Kg	100	33000	1.2E+5	4.4E+5 {C}	6200	<6100	<5000	<14	<6500				
1,1,2,2-Tetrachloroethane ug/Kg	50	23000	34000	2.4E+5	4300	<6100	<5000	<14	<6500	<40	<1000	<500	<2000
Tetrachloroethylene ug/Kg	50	60000	6.0E+5	88000 {C}	11000	<6100	<5000	<14	<6500	170	<1000	<500	<2000
Tetrahydrofuran ug/Kg	1000	2.4E+6	1.5E+7	9.5E+6	1.3E+6								
Toluene {I} ug/Kg	100	2.5E+5 {C}	3.3E+6	2.5E+5 {C}	2.5E+5 {C}	<6100	<5000	7.8	<6500	360	1900	860	1000
1,2,3-Trichlorobenzene ug/Kg	330	NA	NA	NA	NA								
1,2,4-Trichlorobenzene ug/Kg	330	1.1E+6 {C}	3.4E+7	1.1E+6 {C,DD}	1.1E+6 {C}	<240	<10000	<29	<13000				
1,1,1-Trichloroethane ug/Kg	50	4.6E+5	4.5E+6	4.6E+5 {C}	2.5E+5	<6100	<5000	<14	<6500	800	<1000	<500	<2000
1,1,2-Trichloroethane ug/Kg	50	24000	57000	8.4E+5	4600	<6100	<5000	<14	<6500	<60	<1500	<750	<3000
Trichloroethylene ug/Kg	50	37000	2.6E+5	5.0E+5 {C,DD}	7100	<6100	<5000	<14	<6500	87	<1000	<500	<2000
Trichlorofluoromethane ug/Kg	100	5.6E+5 {C}	1.1E+8	5.6E+5 {C}	5.6E+5 {C}	<12000	<10000	<29	<13000	<60	<1500	<750	<3000
1,2,3-Trichloropropane ug/Kg	100	7500	11000	8.3E+5 {C}	4000	<6100	<5000	<14	<6500				
1,2,4-Trimethylbenzene {I} ug/Kg	100	1.1E+5 {C}	2.5E+7	1.1E+5 {C}	1.1E+5 {C}	240000	<u>120000</u>	190	<u>170000</u>				
1,3,5-Trimethylbenzene {I} ug/Kg	100	94000 {C}	1.9E+7	94000 {C}	94000 {C}	80000	36000	660	49000				
Vinyl acetate ug/Kg	5000	1.5E+6	2.0E+6	2.4E+6 {C,DD}	7.9E+5	<12000	<10000	<29	<13000				
Vinyl chloride ug/Kg	40	2800	29000	34000	270	<12000	<10000	<29	<13000	<200	<5000	<2500	<10000
Xylene, p&m ug/Kg	100	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	100000	270000	110	160000				
Xylene, o ug/Kg	50	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	48000	8100	61	52000				
Xylene (Total) ug/Kg	150	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}					590	19000	6400	<5000
PCB's Units													
Aroclor 1016 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Aroclor 1221 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Aroclor 1232 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Aroclor 1242 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Aroclor 1248 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Aroclor 1254 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	780	390	<650	<600				
Aroclor 1260 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	590	<600				
Aroclor 1262 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Aroclor 1268 ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<600	<600	<650	<600				
Pesticides Units]												
Aldrin ug/Kg	20	7.1E+6	2.0E+5	4300	1.3E+6								
alpha-Hexachlorocyclohexane ug/Kg	10	1.6E+5	41000	12000	30000								
beta-Hexachlorocyclohexane ug/Kg	20	NLV	NLV	25000	NLV								
delta-Hexachlorocyclohexane ug/Kg	20	NA	NA	NA	NA								
4-4'-DDD ug/Kg	20	NLV	NLV	4.0E+5	NLV								

Page 4 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	1	2	3	4	C-SB-1	C-SB-1	C-SB-1	C-SB-1
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	97-05-131	97-05-131	97-05-131	97-05-131	45693	45694	45695	45696
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	MDEQ	MDEQ	MDEQ	MDEQ	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air								
Sample Date		Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	7/31/1990	7/31/1990	7/31/1990	7/31/1990
Sample Depth (ft.)											0.0 - 1.5	3.0 - 4.5	6.0 - 7.5	9.0 - 10.5
Pesticides Cont.	Units													
4-4'-DDE	ug/Kg	20	NLV	NLV	1.9E+5	NLV								
4-4'-DDT	ug/Kg	20	NLV	NLV	2.8E+5	NLV								
Dieldrin	ug/Kg	20	7.2E+5	64000	4700	1.4E+5								
Endosulfan I {J}	ug/Kg	20	ID	ID	4.4E+6	ID								
Endosulfan II {J}	ug/Kg	20	ID	ID	4.4E+6	ID								
Endosulfan Sulfate {J}	ug/Kg	20	NA	NA	NA	NA								
Endrin	ug/Kg	20	NLV	NLV	1.9E+5	NLV								
Endrin Aldehyde	ug/Kg	20	NA	NA	NA	NA								
Heptachlor	ug/Kg	20	1.9E+6	2.1E+5	23000	3.5E+5								
Heptachlor epoxide	ug/Kg	20	NLV	NLV	9500	NLV								
Lindane	ug/Kg	20	ID	ID	42000	ID								
Methoxychlor	ug/Kg	50	ID	ID	5.6E+6	ID								
Misc	Units]												
Percent Solids	%	NA	NA	NA	NA	NA								

Lab Sample ID Sampled By Analyzed By		arget	Soil	Volatile	Dist										
Analyzed By	Me			volatile	Direct	Soil	170837	170834	170835	170836	173110	173111	173112	173113	173114
		ethod	Volatilization to	Soil	Contact	Volatilization to	Horizon								
	Det	ection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date	L	.imit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997
Sample Depth (ft.)															
Inorganics Un	nits														
Arsenic {B} mg	g/Kg !	5.8	NLV	NLV	37	NLV	6.2	8.5	8.7	5.3	6.8 {J}	1.8	2	4.7	4.3
Cadmium {B} mg	/Kg	1.2	NLV	NLV	2100	NLV	3.7	1.9	5.4	1.8	0.72	0.26	0.78	0.81	0.17
Chromium, Total mg	j/Kg	18	NLV	NLV	9200	NLV	58	86*	51	8	10 {J}	12	4.3	3.9	1.6
Chromium (VI) mg.	g/Kg	18	NLV	NLV	9200	NLV									
Chromium (III) {B,H} mg.	j/Kg	18	NLV	NLV	1000000 {D}	NLV									
	j/Kg	32	NLV	NLV	73000	NLV	76	86	74	15	54 {J}	8	11	30	9.4
Iron mg.	j/Kg 12	2000	NLV	NLV	580000	NLV	14900	36700	15500	16600	13400	13100 {J}	5560	10000	8500
Lead {B} mg	g/Kg	21	NLV	NLV	900 (DD)	NLV	312	350*	182	194	98	7	5.4	104	3.6
Mercury (Inorganic) {B} mg	J/Kg 0).13	89	62	580	48	0.25	0.21	0.15*	0.13	0.16	<0.10	<0.10	<0.10	<0.10
Nickel mg.	/Kg	20	NLV	NLV	150000	NLV	12	13*	11	8.5	9.3 {J}	11	4.6	6.4	7.3
Zinc {B} mg.	/Kg	47	NLV	NLV	630000	NLV	412	330*	259	442	346 {J}	32	22	130	20
Semi-Volatiles Un	nits														
Acenaphthene ug/	/Kg 3	330	3.5E+8	9.7E+7	1.3E+8	1.9E+8	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Acenaphthylene ug/	/Kg 3	330	3.0E+6	2.7E+6	5.2E+6	1.6E+6	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Anthracene ug/	/Kg 3	330	1.0E+9 {D}	1.6E+9	7.3E+8	1.0E+9 {D}	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Benzo(a)anthracene {Q} ug/	/Kg 3	330	NLV	NLV	80000	NLV	<6600	340	<3300	350	<330	<330	<330	570	<330
Benzo(a)pyrene {Q} ug/	/Kg 3	330	NLV	NLV	8000	NLV	<6600	330	<3300	410	<330	<330	<330	630	<330
Benzo(b&k)fluoranthene ug/	/Kg 3	330	ID	ID	80000	ID	<6600	830	<3300	800	660	<330	<330	1200	<330
Benzo(g,h,i)perylene ug/	/Kg 3	330	NLV	NLV	7.0E+6	NLV	<6600	380	<3300	360	<330	<330	<330	<330	<330
bis(2-Chloroethoxy)methane ug/	/Kg 3	330	NA	NA	NA	NA	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
bis(2-Chloroethyl)ether {I} ug/	/Kg 1	100	44000	13000	58000	8300	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
bis(2-Chloroisopropyl)ether ug/	/Kg 3	330	NA	NA	NA	NA	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
bis(2-Ethylhexyl)phthalate ug/	/Kg 3	330	NLV	NLV	1.0E+7 {C}	NLV	200000	3500	66000	530	<330	<330	<330	<330	<330
4-Bromo diphenyl ether ug/	/Kg 3	330	NA	NA	NA	NA	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Butyl benzyl phthalate ug/	/Kg 3	330	NLV	NLV	3.1E+5 {C}	NLV	<6600	<330	9100	<330	<330	<330	<330	<330	<330
beta-Chloronaphthalene ug/	/Kg 3	330	ID	ID	1.8E+8	ID	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
4-Chloro diphenyl ether ug/	/Kg 3	330	NA	NA	NA	NA	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Chrysene {Q} ug/	/Kg 3	330	ID	ID	8.0E+6	ID	<6600	370	<3300	360	<330	<330	<330	530	<330
Decabromodiphenyl ether ug/	/Kg l	NA	1.0E+9 {D}	1.0E+8	1.1E+7	1.0E+9 {D}					<330	<330	<330	<330	<330
Di-n-butyl phthalate ug/	/Kg 3	330	NLV	NLV	7.6E+5 {C}	NLV	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Di-n-octyl phthalate ug/	/Kg 3	330	NLV	NLV	2.0E+7	NLV	82000	420	31000	<330	<330	<330	<330	<330	<330
Dibenzo(a,h)anthracene {Q} ug/	/Kg 3	330	NLV	NLV	8000	NLV	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Dibenzofuran ug/	/Kg 3	330	3.6E+6	1.6E+5	ID	2.0E+6					<330	<330	<330	<330	<330
3,3'-Dichlorobenzidine ug/	/Kg 2	000	NLV	NLV	30000	NLV					<330	<330	<330	<330	<330
Diethyl phthalate ug/	/Kg 3	330	NLV	NLV	7.4E+5 {C}	NLV	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Dimethyl phthalate ug/	/Kg 3	330	NLV	NLV	7.9E+5 {C}	NLV	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
2,4-Dinitrotoluene ug/	/Kg 3	330	NLV	NLV	2.2E+5	NLV	<6600	<300*	<3300	<330	<330	<330	<330	<330	<330
2,6-Dinitrotoluene ug/	/Kg 3	330	NA	NA	NA	NA	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
1,2-Diphenylhydrazine ug/	/Kg 3	330	NA	NA	NA	NA	<6600	<330	<3300	<330	<330	<330	<330	<330	<330

Page 6 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	EX-10	EX-7	EX-8	EX-9	Sprint #1	Sprint #2	Sprint #3	Sprint #4	Sprint #5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	170837	170834	170835	170836	173110	173111	173112	173113	173114
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon								
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997
Sample Depth (ft.)															
Semi-Volatiles Cont.	Units														
Fluoranthene	ug/Kg	330	1.0E+9 {D}	8.9E+8	1.3E+8	1.0E+9 {D}	<6600	380	<3300	970	480	<330	<330	1000	<330
Fluorene	ug/Kg	330	1.0E+9 {D}	1.5E+8	8.7E+7	5.8E+8	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Hexachlorobenzene (C-66)	ug/Kg	330	2.2E+5	56000	37000	41000	<400	<20	<200	<20	<20	<20	<20	<20	<20
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Hexachlorocyclopentadiene (C-56)	ug/Kg	330	56000	60000	7.2E+5 {C}	30000	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000	<6600	<330	<3300	<330					
Indeno(1,2,3-cd)pyrene {Q}	ug/Kg	330	NLV	NLV	80000	NLV	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
Isophorone	ug/Kg	330	NLV	NLV	2.4E+6 {C}	NLV	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6	140000	480	66000	6300	<330	<330	<330	<330	<330
n-Nitroso-di-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV					<330	<330	<330	<330	<330
n-Nitroso-di-propylamine	ug/Kg	330	NLV	NLV	5400	NLV	<6600	<330	<3300	<330					
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5	45000	<330	7900	4000	<330	<330	<330	<330	<330
Nitrobenzene {I}	ug/Kg	330	1.7E+5	64000	3.4E+5	91000	<6600	<330	<3300	<330	<330	<330	<330	<330	<330
N-Nitrosodiphenylamine	ug/Kg	330	NLV	NLV	7.8E+6	NLV					<330	<330	<330	<330	<330
n-Nitroso-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV	<6600	<300*	<3300	<330					
Phenanthrene	ug/Kg	330	5.1E+6	1.9E+5	5.2E+6	2.8E+6	<6600	<330	<3300	440	<330	<330	<330	470	<330
Pyrene	ug/Kg	330	1.0E+9 {D}	7.8E+8	8.4E+7	1.0E+9 {D}	<6600	540	<3300	690	390	<330	<330	840	<330
Volatiles	Units														
Acetone {I}	ug/Kg	1000	1.1E+8 {C}	1.6E+8	7.3E+7	1.1E+8 {C}	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
Acrylonitrile {I}	ug/Kg	100	35000	17000	74000	6600	<290	<10	<330	<10	<10	<10	<10	<10	<10
Benzene {I}	ug/Kg	50	8400	45000	4.0E+5 {C}	1600	<290	<10	<330	<10	<10	<10	<10	<10	<10
Bromobenzene {I}	ug/Kg	100	5.8E+5	5.4E+5	7.6E+5 {C}	3.1E+5									
Bromochloromethane	ug/Kg	100	NA	NA	NA	NA	<290	<10	<330	<10	<10	<10	<10	<10	<10
Bromodichloromethane	ug/Kg	100	6400	31000	4.9E+5	1200									
Bromoform	ug/Kg	100	7.7E+5	3.1E+6	8.7E+5 {C}	1.5E+5	<290	<10	<330	<10	<10	<10	<10	<10	<10
Bromomethane	ug/Kg	200	1600	13000	1.0E+6	860	<290	<10	<330	<10	<10	<10	<10	<10	<10
2-Butanone (MEK) {I}	ug/Kg	750	2.7E+7 {C}	3.5E+7	2.7E+7 {C,DD}	2.7E+7 {C}	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
n-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID									
sec-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID									
tert-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID									
Carbon disulfide {I,R}	ug/Kg	250	1.4E+5	1.6E+6	2.8E+5 {C,DD}	76000	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
Carbon tetrachloride	ug/Kg	50	990	12000	3.9E+5 {C}	190	<290	<10	<330	<10	<10	<10	<10	<10	<10
Chlorobenzene {I}	ug/Kg	50	2.2E+5	9.2E+5	2.6E+5 {C}	1.2E+5	<290	<10	<330	<10	<10 {J}	<10	<10	<10	<10
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900	<290	<10	<330	<10	<10	<10	<10	<10	<10
Chloroethane {I}	ug/Kg	250	9.5E+5 {C}	3.6E+7	9.5E+5 {C}	9.5E+5 {C}	<290	<10	<330	<10	<10	<10	<10	<10	<10
2-Chloroethyl vinyl ether	ug/Kg	5000	ID	ID	ID	ID									
Chloroform	ug/Kg	50	38000	1.5E+5	1.5E+6 {C}	7200	<290	<10	<330	<10	<10	<10	<10	<10	<10
Chloromethane {I}	ug/Kg	250	10000	1.2E+5	1.1E+6 {C}	2300	<290	<10	<330	<10	<10	<10	<10	<10	<10
2-Chlorotoluene	ug/Kg	50	5.0E+5 {C}	1.5E+6	5.0E+5 {C}	2.7E+5									
4-Chlorotoluene	ug/Kg	50	NA	NA	NA	NA									
	~9/119						8	I	1	1	1	1	1	1	I

Page 7 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	EX-10	EX-7	EX-8	EX-9	Sprint #1	Sprint #2	Sprint #3	Sprint #4	Sprint #5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	170837	170834	170835	170836	173110	173111	173112	173113	173114
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon								
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997
Sample Depth (ft.)															
Volatiles Cont.	Units														
Dibromochloropropane	ug/Kg	10	1200 {C}	15000	1200 {C}	1200 {C}	<1500	<50	<1600	<50	<50	<50	<50	<50	<50
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900									
Ethylene dibromide	ug/Kg	20	3600	5800	430	670									
Dibromomethane	ug/Kg	250	ID	ID	2.0E+6 {C}	ID	<290	<10	<330	<10	<10	<10	<10	<10	<10
Ethylene dibromide	ug/Kg	20	3600	5800	430	670	<290	<10	<330	<10	<10	<10	<10	<10	<10
trans-1,4-Dichloro-2-butene	ug/Kg	50	NA	NA	NA	NA	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,2-Dichlorobenzene	ug/Kg	100	2.1E+5 {C}	4.6E+7	2.1E+5 {C}	2.1E+5 {C}	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,3-Dichlorobenzene	ug/Kg	100	48000	94000	1.7E+5 {C}	26000	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,4-Dichlorobenzene	ug/Kg	100	1.0E+5	2.6E+5	1.9E+6	19000	<290	<10	<330	<10	<10	<10	<10	<10	<10
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900									
Dichlorodifluoromethane	ug/Kg	250	1.7E+6	6.3E+7	1.0E+6 {C}	9.0E+5	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,1-Dichloroethane {I}	ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5									
1,2-Dichloroethane {I}	ug/Kg	50	11000	21000	4.2E+5	2100									
1,1-Dichloroethane {I}	ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,2-Dichloroethane {I}	ug/Kg	50	11000	21000	4.2E+5	2100	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,1-Dichloroethylene {I}	ug/Kg	50	330	3700	5.7E+5 {C}	62	<290	<10	<330	<10	<10	<10	<10	<10	<10
cis-1,2-Dichloroethylene {I}	ug/Kg	50	41000	2.1E+5	6.4E+5 {C}	22000	<290	<10	<10	<10	<10	<10	<10	<10	<10
trans-1,2-Dichloroethylene	ug/Kg	50	43000	3.3E+5	1.4E+6 {C}	23000	<290	<10	<10	<10	<10	<10	<10	<10	<10
2,2-Dichloropropane	ug/Kg	50	NA	NA	NA	NA									
1,2-Dichloropropane {I}	ug/Kg	50	7400	30000	5.5E+5 {C}	4000	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,3-Dichloropropane	ug/Kg	50	NA	NA	NA	NA									
1,1-Dichloropropene	ug/Kg	50	NA	NA	NA	NA									
cis-1,3-Dichloropropene {I,J}	ug/Kg	50	5400	60000	2.4E+5	1000	<290	<10	<330	<10	<10	<10	<10	<10	<10
trans-1,3-Dichloropropene {I, J}	ug/Kg	50	5400	60000	2.4E+5	1000	<290	<10	<330	<10	<10	<10	<10	<10	<10
Diethyl ether {I}	ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}									
Diethylbenzene	ug/Kg	50	NA	NA	NA	NA									
Dimethyl disulfide	ug/Kg	50	NA	NA	NA	NA									
Diethyl ether {I}	ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
Ethylbenzene {I}	ug/Kg	50	1.4E+5 {C}	2.4E+6	1.4E+5 {C}	87000	300	<10	630	8200	<10	<10	<10	<10	<10
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5									
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000	<290	<10	<330	<10	<10	<10	<10	<10	<10
2-Hexanone {I}	ug/Kg	2500	1.8E+6	1.3E+6	2.5E+6 {C}	9.9E+5	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
lodomethane	ug/Kg	100	NA	NA	NA	NA	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
Isopropyl benzene {I}	ug/Kg	250	3.9E+5 {C}	2.0E+6	3.9E+5 {C}	3.9E+5 {C}	<290	<10	380	3300	<10	<10	<10	<10	<10
p-Isopropyltoluene	ug/Kg	100	NA	NA	NA	NA									
5-Methly-2-Hexanone	ug/Kg	100	NA	NA	NA	NA									
lodomethane	ug/Kg	100	NA	NA	NA	NA									
4-Methyl-2-pentanone (MIBK) {I}	ug/Kg	2500	2.7E+6 {C}	5.3E+7	2.7E+6 {C}	2.7E+6 {C}	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
Methyl-tert-butyl ether (MTBE)	ug/Kg	250	5.9E+6 {C}	3.0E+7	5.9E+6 {C}	5.9E+6 {C}	<2900	<100	<3300	<100	<100	<100	<100	<100	<100

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	EX-10	EX-7	EX-8	EX-9	Sprint #1	Sprint #2	Sprint #3	Sprint #4	Sprint #5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	170837	170834	170835	170836	173110	173111	173112	173113	173114
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon	Horizon
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix	TriMatrix
Sample Date		Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997
Sample Depth (ft.)															
Volatiles Cont.	Units														
Methylene chloride	ug/Kg	100	2.4E+5	7.0E+5	2.3E+6 {C}	45000	<290	<10	<330	<10	<10	<10	<10	<10	<10
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6									
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5									
n-Propylbenzene {I}	ug/Kg	100	ID	ID	8.0E+6	ID	<290	<10	410	5400	<10	<10	<10	<10	<10
Styrene {I}	ug/Kg	50	5.2E+5 {C}	3.3E+6	5.2E+5 {C}	2.5E+5	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,1,1,2-Tetrachloroethane	ug/Kg	100	33000	1.2E+5	4.4E+5 {C}	6200	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,1,2,2-Tetrachloroethane	ug/Kg	50	23000	34000	2.4E+5	4300	<290	<10	<330	<10	<10	<10	<10	<10	<10
Tetrachloroethylene	ug/Kg	50	60000	6.0E+5	88000 {C}	11000	<290	<10	<330	<10	<10	<10	<10	<10	<10
Tetrahydrofuran	ug/Kg	1000	2.4E+6	1.5E+7	9.5E+6	1.3E+6									
Toluene {I}	ug/Kg	100	2.5E+5 {C}	3.3E+6	2.5E+5 {C}	2.5E+5 {C}	<290	<10	<330	8000	<10	<10	<10	<10	<10
1,2,3-Trichlorobenzene	ug/Kg	330	NA	NA	NA	NA									
1,2,4-Trichlorobenzene	ug/Kg	330	1.1E+6 {C}	3.4E+7	1.1E+6 {C,DD}	1.1E+6 {C}	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,1,1-Trichloroethane	ug/Kg	50	4.6E+5	4.5E+6	4.6E+5 {C}	2.5E+5	<290	<10	,330	<10	<10	<10	<10	<10	<10
1,1,2-Trichloroethane	ug/Kg	50	24000	57000	8.4E+5	4600	<290	<10	<330	<10	<10	<10	<10	<10	<10
Trichloroethylene	ug/Kg	50	37000	2.6E+5	5.0E+5 {C,DD}	7100	<290	<10	<330	<10	<10	<10	<10	<10	<10
Trichlorofluoromethane	ug/Kg	100	5.6E+5 {C}	1.1E+8	5.6E+5 {C}	5.6E+5 {C}	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,2,3-Trichloropropane	ug/Kg	100	7500	11000	8.3E+5 {C}	4000	<290	<10	<330	<10	<10	<10	<10	<10	<10
1,2,4-Trimethylbenzene {I}	ug/Kg	100	1.1E+5 {C}	2.5E+7	1.1E+5 {C}	1.1E+5 {C}	46000	13	40000	<u>150000</u>	<10	25	<10	<10	<10
1,3,5-Trimethylbenzene {I}	ug/Kg	100	94000 {C}	1.9E+7	94000 {C}	94000 {C}	27000	<10	44000	62000	<10	310	<10	<10	<10
Vinyl acetate	ug/Kg	5000	1.5E+6	2.0E+6	2.4E+6 {C,DD}	7.9E+5	<2900	<100	<3300	<100	<100	<100	<100	<100	<100
Vinyl chloride	ug/Kg	40	2800	29000	34000	270	<290	<10	<330	<10	<10	<10	<10	<10	<10
Xylene, p&m	ug/Kg	100	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	52000	<20	14000	73000	<20	<20	<20	<20	<20
Xylene, o	ug/Kg	50	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	2500	<10	22000	76000	<10	<10	<10	<10	<10
Xylene (Total)	ug/Kg	150	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}									
PCB's	Units														
Aroclor 1016	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Aroclor 1221	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Aroclor 1232	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Aroclor 1242	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Aroclor 1248	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Aroclor 1254	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	1600	1200	1100	<330	<330	<330	<330	<330	<330
Aroclor 1260	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	460	950	480	<330	<330	<330	<330	<330	<330
Aroclor 1262	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Aroclor 1268	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330	<330	<330	<330	<330	<330	<330	<330	<330
Pesticides	Units														
Aldrin	ug/Kg	20	7.1E+6	2.0E+5	4300	1.3E+6									
alpha-Hexachlorocyclohexane	ug/Kg	10	1.6E+5	41000	12000	30000									
beta-Hexachlorocyclohexane	ug/Kg	20	NLV	NLV	25000	NLV									
delta-Hexachlorocyclohexane	ug/Kg	20	NA	NA	NA	NA									
4-4'-DDD	ug/Kg	20	NLV	NLV	4.0E+5	NLV					0.0049	<0.0033	<0.0033	<0.0033	<0.0033
-		1													

Page 9 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	EX-10	EX-7	EX-8	EX-9	Sprint #1	Sprint #2	Sprint #3	Sprint #4	Sprint #5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	170837	170834	170835	170836	173110	173111	173112	173113	173114
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon								
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	5/16/1997	5/16/1997	5/16/1997	5/16/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997	6/26/1997
Sample Depth (ft.)															
Pesticides Cont.	Units														
4-4'-DDE	ug/Kg	20	NLV	NLV	1.9E+5	NLV					<0.0033	<0.0033	< 0.0033	<0.0033	<0.0033
4-4'-DDT	ug/Kg	20	NLV	NLV	2.8E+5	NLV					0.011	<0.0033	< 0.0033	<0.0033	<0.0033
Dieldrin	ug/Kg	20	7.2E+5	64000	4700	1.4E+5									
Endosulfan I {J}	ug/Kg	20	ID	ID	4.4E+6	ID									
Endosulfan II {J}	ug/Kg	20	ID	ID	4.4E+6	ID									
Endosulfan Sulfate {J}	ug/Kg	20	NA	NA	NA	NA									
Endrin	ug/Kg	20	NLV	NLV	1.9E+5	NLV									
Endrin Aldehyde	ug/Kg	20	NA	NA	NA	NA									
Heptachlor	ug/Kg	20	1.9E+6	2.1E+5	23000	3.5E+5									
Heptachlor epoxide	ug/Kg	20	NLV	NLV	9500	NLV									
Lindane	ug/Kg	20	ID	ID	42000	ID									
Methoxychlor	ug/Kg	50	ID	ID	5.6E+6	ID									
Misc	Units														
Percent Solids	%	NA	NA	NA	NA	NA									

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	SS #1 West Portion Trench	SS #2 East Portion Trench	SS#1	SS#2	TMW-01	TMW-02
Lab Sample ID		Target	Soil	Volatile	Direct	Soil					179275	179276
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	Horizon	MDEQ	MDEQ	Horizon	Horizon
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	DLZ	DLZ	MDEQ	MDEQ	TriMatrix	TriMatrix
Sample Date		Limit	Inhalation	Infinite		Inhalation	1/19/1996	1/19/1996	1/19/1996	1/19/1996	9/30/1997	9/30/1997
Sample Depth (ft.)											0-1	0-1
Inorganics	Units											
Arsenic {B}	mg/Kg	5.8	NLV	NLV	37	NLV					3.1	6.9
Cadmium {B}	mg/Kg	1.2	NLV	NLV	2100	NLV					0.094	0.16
Chromium, Total	mg/Kg	18	NLV	NLV	9200	NLV					9.4	51
Chromium (VI)	mg/Kg	18	NLV	NLV	9200	NLV					<0.2	<0.2
Chromium (III) {B,H}	mg/Kg	18	NLV	NLV	1000000 {D}	NLV					9.4	51
Copper {B}	mg/Kg	32	NLV	NLV	73000	NLV					9.6	18
Iron	mg/Kg	12000	NLV	NLV	580000	NLV					5940	14400
Lead {B}	mg/Kg	21	NLV	NLV	900 (DD)	NLV					5.6	22
Mercury (Inorganic) {B}	mg/Kg	0.13	89	62	580	48					<0.10	0.13
Nickel	mg/Kg	20	NLV	NLV	150000	NLV					7.3	9.2
Zinc {B}	mg/Kg	47	NLV	NLV	630000	NLV					22	52
Semi-Volatiles	Units											
Acenaphthene	ug/Kg	330	3.5E+8	9.7E+7	1.3E+8	1.9E+8					<330	<330
Acenaphthylene	ug/Kg	330	3.0E+6	2.7E+6	5.2E+6	1.6E+6					<330	<330
Anthracene	ug/Kg	330	1.0E+9 {D}	1.6E+9	7.3E+8	1.0E+9 {D}					<330	<330
Benzo(a)anthracene {Q}	ug/Kg	330	NLV	NLV	80000	NLV					<330	<330
Benzo(a)pyrene {Q}	ug/Kg	330	NLV	NLV	8000	NLV					<330	<330
Benzo(b&k)fluoranthene	ug/Kg	330	ID	ID	80000	ID					<330	490
Benzo(g,h,i)perylene	ug/Kg	330	NLV	NLV	7.0E+6	NLV					<330	<330
bis(2-Chloroethoxy)methane	ug/Kg	330	NA	NA	NA	NA					<330	<330
bis(2-Chloroethyl)ether {I}	ug/Kg	100	44000	13000	58000	8300					<330	<330
bis(2-Chloroisopropyl)ether	ug/Kg	330	NA	NA	NA	NA					<330	<330
bis(2-Ethylhexyl)phthalate	ug/Kg	330	NLV	NLV	1.0E+7 {C}	NLV					<330	<330
4-Bromo diphenyl ether	ug/Kg	330	NA	NA	NA	NA					<330	<330
Butyl benzyl phthalate	ug/Kg	330	NLV	NLV	3.1E+5 {C}	NLV					<330	<330
beta-Chloronaphthalene	ug/Kg	330	ID	ID	1.8E+8	ID					<330	<330
4-Chloro diphenyl ether	ug/Kg	330	NA	NA	NA	NA					<330	<330
Chrysene {Q}	ug/Kg	330	ID	ID	8.0E+6	ID					<330	<330
Decabromodiphenyl ether	ug/Kg	NA	1.0E+9 {D}	1.0E+8	1.1E+7	1.0E+9 {D}						
Di-n-butyl phthalate	ug/Kg	330	NLV	NLV	7.6E+5 {C}	NLV					<330	<330
Di-n-octyl phthalate	ug/Kg	330	NLV	NLV	2.0E+7	NLV					<330	<330
Dibenzo(a,h)anthracene {Q}	ug/Kg	330	NLV	NLV	8000	NLV					<330	<330
Dibenzofuran	ug/Kg	330	3.6E+6	1.6E+5	ID	2.0E+6						
3,3'-Dichlorobenzidine	ug/Kg	2000	NLV	NLV	30000	NLV						
Diethyl phthalate	ug/Kg	330	NLV	NLV	7.4E+5 {C}	NLV					<330	<330
Dimethyl phthalate	ug/Kg	330	NLV	NLV	7.9E+5 {C}	NLV					<330	<330
2,4-Dinitrotoluene	ug/Kg	330	NLV	NLV	2.2E+5	NLV					<330	<330
2,6-Dinitrotoluene	ug/Kg	330	NA	NA	NA	NA					<330	<330
1,2-Diphenylhydrazine	ug/Kg	330	NA	NA	NA	NA					<330	<330
	1.0.0						u	1	L			

Page 11 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	SS #1 West Portion Trench	SS #2 East Portion Trench	SS#1	SS#2	TMW-01	TMW-02
Lab Sample ID		Target	Soil	Volatile	Direct	Soil					179275	179276
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	Horizon	MDEQ	MDEQ	Horizon	Horizon
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	DLZ	DLZ	MDEQ	MDEQ	TriMatrix	TriMatrix
Sample Date		Limit	Inhalation	Infinite		Inhalation	1/19/1996	1/19/1996	1/19/1996	1/19/1996	9/30/1997	9/30/1997
Sample Depth (ft.)											0-1	0-1
Semi-Volatiles Cont.	Units											
Fluoranthene	ug/Kg	330	1.0E+9 {D}	8.9E+8	1.3E+8	1.0E+9 {D}					<330	<330
Fluorene	ug/Kg	330	1.0E+9 {D}	1.5E+8	8.7E+7	5.8E+8					<330	<330
Hexachlorobenzene (C-66)	ug/Kg	330	2.2E+5	56000	37000	41000					<20	<20
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5					<330	<330
Hexachlorocyclopentadiene (C-56)	ug/Kg	330	56000	60000	7.2E+5 {C}	30000					<330	<330
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000						
Indeno(1,2,3-cd)pyrene {Q}	ug/Kg	330	NLV	NLV	80000	NLV					<330	<330
Isophorone	ug/Kg	330	NLV	NLV	2.4E+6 {C}	NLV					<330	<330
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6					<330	<330
n-Nitroso-di-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV					<330	<330
n-Nitroso-di-propylamine	ug/Kg	330	NLV	NLV	5400	NLV						
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5					<330	<330
Nitrobenzene {I}	ug/Kg	330	1.7E+5	64000	3.4E+5	91000					<330	<330
N-Nitrosodiphenylamine	ug/Kg	330	NLV	NLV	7.8E+6	NLV					<330	<330
n-Nitroso-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV						
Phenanthrene	ug/Kg	330	5.1E+6	1.9E+5	5.2E+6	2.8E+6					<330	<330
Pyrene	ug/Kg	330	1.0E+9 {D}	7.8E+8	8.4E+7	1.0E+9 {D}					<330	<330
Volatiles	Units											
Acetone {I}	ug/Kg	1000	1.1E+8 {C}	1.6E+8	7.3E+7	1.1E+8 {C}	8200	<3800	<13000	<13000	<100	<100
Acrylonitrile {I}	ug/Kg	100	35000	17000	74000	6600			<1300	<1300	<10	<10
Benzene {I}	ug/Kg	50	8400	45000	4.0E+5 {C}	1600	<850	<750	<1300	<1300	<10	<10
Bromobenzene {I}	ug/Kg	100	5.8E+5	5.4E+5	7.6E+5 {C}	3.1E+5	<850	<750				
Bromochloromethane	ug/Kg	100	NA	NA	NA	NA	<850	<750	<1300	<1300	<10	<10
Bromodichloromethane	ug/Kg	100	6400	31000	4.9E+5	1200	<850	<750	<1300	<1300		
Bromoform	ug/Kg	100	7.7E+5	3.1E+6	8.7E+5 {C}	1.5E+5	<850	<750	<1300	<1300	<10	<10
Bromomethane	ug/Kg	200	1600	13000	1.0E+6	860	<850	<750	<2500	<2600	<10	<10
2-Butanone (MEK) {I}	ug/Kg	750	2.7E+7 {C}	3.5E+7	2.7E+7 {C,DD}	2.7E+7 {C}	7700	<3800	<2500	<2600	<100	<100
n-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID	35000	5500				
sec-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID	25000	3400				
tert-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID	<850	<750				
Carbon disulfide {I,R}	ug/Kg	250	1.4E+5	1.6E+6	2.8E+5 {C,DD}	76000	<4300	<3800	<2500	<2600	<100	<100
Carbon tetrachloride	ug/Kg	50	990	12000	3.9E+5 {C}	190	<850	<750	<1300	<1300	<10	<10
Chlorobenzene {I}	ug/Kg	50	2.2E+5	9.2E+5	2.6E+5 {C}	1.2E+5	1100	<750	<1300	<1300	<10	<10
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900					<10	<10
Chloroethane {I}	ug/Kg	250	9.5E+5 {C}	3.6E+7	9.5E+5 {C}	9.5E+5 {C}	<850	<750	<2500	<2600	<10	<10
2-Chloroethyl vinyl ether	ug/Kg	5000	ID	ID	ID	ID	<4300	<3800				
Chloroform	ug/Kg	50	38000	1.5E+5	1.5E+6 {C}	7200	<850	<750	<1300	<1300	<10	<10
Chloromethane {I}	ug/Kg	250	10000	1.2E+5	1.1E+6 {C}	2300	<850	<750	<2500	<2600	<10	<10
2-Chlorotoluene	ug/Kg	50	5.0E+5 {C}	1.5E+6	5.0E+5 {C}	2.7E+5	<850	<750				
4-Chlorotoluene	ug/Kg	50	NA	NA	NA	NA	<850	<750				
	~ 9 ,9								1	1	1]

Page 12 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	SS #1 West Portion Trench	SS #2 East Portion Trench	SS#1	SS#2	TMW-01	TMW-02
Lab Sample ID		Target	Soil	Volatile	Direct	Soil					179275	179276
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	Horizon	MDEQ	MDEQ	Horizon	Horizon
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	DLZ	DLZ	MDEQ	MDEQ	TriMatrix	TriMatrix
Sample Date		Limit	Inhalation	Infinite		Inhalation	1/19/1996	1/19/1996	1/19/1996	1/19/1996	9/30/1997	9/30/1997
Sample Depth (ft.)											0-1	0-1
Volatiles Cont.	Units											
Dibromochloropropane	ug/Kg	10	1200 {C}	15000	1200 {C}	1200 {C}	<850	<750	<2500	<2600	<50	<50
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900	<850	<750	<1300	<1300		
Ethylene dibromide	ug/Kg	20	3600	5800	430	670	<850	<750	<1300	<1300		
Dibromomethane	ug/Kg	250	ID	ID	2.0E+6 {C}	ID	<850	<750	<1300	<1300	<10	<10
Ethylene dibromide	ug/Kg	20	3600	5800	430	670					<10	<10
trans-1,4-Dichloro-2-butene	ug/Kg	50	NA	NA	NA	NA	<4300	<3800	<1300	<1300	<10	<10
1,2-Dichlorobenzene	ug/Kg	100	2.1E+5 {C}	4.6E+7	2.1E+5 {C}	2.1E+5 {C}	<850	<750	<1300	<1300	<10	<10
1,3-Dichlorobenzene	ug/Kg	100	48000	94000	1.7E+5 {C}	26000	<850	<750	<1300	<1300	<10	<10
1,4-Dichlorobenzene	ug/Kg	100	1.0E+5	2.6E+5	1.9E+6	19000	<850	<750	<1300	<1300	<10	<10
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900					<10	<10
Dichlorodifluoromethane	ug/Kg	250	1.7E+6	6.3E+7	1.0E+6 {C}	9.0E+5	<850	<750	<2500	<2600	<10	<10
1,1-Dichloroethane {I}	ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5	<850	<750	<1300	<1300		
1,2-Dichloroethane {I}	ug/Kg	50	11000	21000	4.2E+5	2100	<850	<750	<1300	<1300		
1,1-Dichloroethane {I}	ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5					<10	<10
1,2-Dichloroethane {I}	ug/Kg	50	11000	21000	4.2E+5	2100					<10	<10
1,1-Dichloroethylene {I}	ug/Kg	50	330	3700	5.7E+5 {C}	62	<850	<750	<1300	<1300	<10	<10
cis-1,2-Dichloroethylene {I}	ug/Kg	50	41000	2.1E+5	6.4E+5 {C}	22000	<850	<750	<1300	<1300	<10	<10
trans-1,2-Dichloroethylene	ug/Kg	50	43000	3.3E+5	1.4E+6 {C}	23000	<850	<750	<1300	<1300	<10	<10
2,2-Dichloropropane	ug/Kg	50	NA	NA	NA	NA	<850	<750				
1,2-Dichloropropane {I}	ug/Kg	50	7400	30000	5.5E+5 {C}	4000	<850	<750	<1300	<1300	<10	<10
1,3-Dichloropropane	ug/Kg	50	NA	NA	NA	NA	<850	<750				
1,1-Dichloropropene	ug/Kg	50	NA	NA	NA	NA	<850	<750				
cis-1,3-Dichloropropene {I,J}	ug/Kg	50	5400	60000	2.4E+5	1000	<850	<750	<1300	<1300	<10	<10
trans-1,3-Dichloropropene {I, J}	ug/Kg	50	5400	60000	2.4E+5	1000	<850	<750	<1300	<1300	<10	<10
Diethyl ether {I}	ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}			<2500	<2600		
Diethylbenzene	ug/Kg	50	NA	NA	NA	NA	38000	5100				
Dimethyl disulfide	ug/Kg	50	NA	NA	NA	NA	<4300	<3800				
Diethyl ether {I}	ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}					<100	<100
Ethylbenzene {I}	ug/Kg	50	1.4E+5 {C}	2.4E+6	1.4E+5 {C}	87000	50000	61000	39000	39000	<10	<10
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5	<4300	<3800				
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000			<1300	<1300	<10	<10
2-Hexanone {I}	ug/Kg	2500	1.8E+6	1.3E+6	2.5E+6 {C}	9.9E+5	<4300	<3800	<2500	2900	<100	<100
lodomethane	ug/Kg	100	NA	NA	NA	NA	<850	<750			<100	<100
Isopropyl benzene {I}	ug/Kg	250	3.9E+5 {C}	2.0E+6	3.9E+5 {C}	3.9E+5 {C}	12000	5700	7000	5400	<10	<10
p-Isopropyltoluene	ug/Kg	100	NA	NA	NA	NA	23000	3800				
5-Methly-2-Hexanone	ug/Kg	100	NA	NA	NA	NA	15000	64000				
lodomethane	ug/Kg	100	NA	NA	NA	NA			<1300	<1300		
4-Methyl-2-pentanone (MIBK) {I}	ug/Kg	2500	2.7E+6 {C}	5.3E+7	2.7E+6 {C}	2.7E+6 {C}	<4300	7500	<2500	<2600	<100	<100
Methyl-tert-butyl ether (MTBE)	ug/Kg	250	5.9E+6 {C}	3.0E+7	5.9E+6 {C}	5.9E+6 {C}	<4300	<3800	<2500	<2600	<100	<100

Page 14 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	SS #1 West Portion Trench	SS #2 East Portion Trench	SS#1	SS#2	TMW-01	TMW-02
Lab Sample ID		Target	Soil	Volatile	Direct	Soil					179275	179276
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	Horizon	MDEQ	MDEQ	Horizon	Horizon
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	DLZ	DLZ	MDEQ	MDEQ	TriMatrix	TriMatrix
Sample Date		Limit	Inhalation	Infinite		Inhalation	1/19/1996	1/19/1996	1/19/1996	1/19/1996	9/30/1997	9/30/1997
Sample Depth (ft.)											0-1	0-1
Volatiles Cont.	Units											
Methylene chloride	ug/Kg	100	2.4E+5	7.0E+5	2.3E+6 {C}	45000	<850	<750	<2500	<2600	<10	<10
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6			39000	42000		
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5	52000	15000	28000	8600		
n-Propylbenzene {I}	ug/Kg	100	ID	ID	8.0E+6	ID	34000	11000	23000	8200	<10	<10
Styrene {I}	ug/Kg	50	5.2E+5 {C}	3.3E+6	5.2E+5 {C}	2.5E+5	<850	<750	<1300	<1300	<10	<10
1,1,1,2-Tetrachloroethane	ug/Kg	100	33000	1.2E+5	4.4E+5 {C}	6200	<850	<750	<1300	<1300	<10	<10
1,1,2,2-Tetrachloroethane	ug/Kg	50	23000	34000	2.4E+5	4300	<850	<750	<1300	<1300	<10	<10
Tetrachloroethylene	ug/Kg	50	60000	6.0E+5	88000 {C}	11000	<850	1100	<1300	1800	<10	<10
Tetrahydrofuran	ug/Kg	1000	2.4E+6	1.5E+7	9.5E+6	1.3E+6	<10000	<10000				
Toluene {I}	ug/Kg	100	2.5E+5 {C}	3.3E+6	2.5E+5 {C}	2.5E+5 {C}	3000	<750	11000	79000	<10	<10
1,2,3-Trichlorobenzene	ug/Kg	330	NA	NA	NA	NA	<4300	<3800				
1,2,4-Trichlorobenzene	ug/Kg	330	1.1E+6 {C}	3.4E+7	1.1E+6 {C,DD}	1.1E+6 {C}	<4300	<3800	<2500	<2600	<10	<10
1,1,1-Trichloroethane	ug/Kg	50	4.6E+5	4.5E+6	4.6E+5 {C}	2.5E+5	<850	<750	<1300	<1300	<10	<10
1,1,2-Trichloroethane	ug/Kg	50	24000	57000	8.4E+5	4600	<850	<750	<1300	<1300	<10	<10
Trichloroethylene	ug/Kg	50	37000	2.6E+5	5.0E+5 {C,DD}	7100	<850	<750	<1300	<1300	<10	<10
Trichlorofluoromethane	ug/Kg	100	5.6E+5 {C}	1.1E+8	5.6E+5 {C}	5.6E+5 {C}	<850	<750	<2500	<2600	<10	<10
1,2,3-Trichloropropane	ug/Kg	100	7500	11000	8.3E+5 {C}	4000	<850	<750	<1300	<1300	<10	<10
1,2,4-Trimethylbenzene {I}	ug/Kg	100	1.1E+5 {C}	2.5E+7	1.1E+5 {C}	1.1E+5 {C}	<u>280000</u>	<u>170000</u>	<u>250000</u>	100000	<10	<10
1,3,5-Trimethylbenzene {I}	ug/Kg	100	94000 {C}	1.9E+7	94000 {C}	94000 {C}	76000	48000	61000	30000	<10	<10
Vinyl acetate	ug/Kg	5000	1.5E+6	2.0E+6	2.4E+6 {C,DD}	7.9E+5	<4300	<3800	<2500	<2600	<100	<100
Vinyl chloride	ug/Kg	40	2800	29000	34000	270	<850	<750	<2500	<2600	<10	<10
Xylene, p&m	ug/Kg	100	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}					<20	<20
Xylene, o	ug/Kg	50	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}					<10	<10
Xylene (Total)	ug/Kg	150	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	<u>320000</u>	<u>290000</u>	<u>242000</u>	<u>370000</u>		
PCB's	Units											
Aroclor 1016	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1221	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1232	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1242	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1248	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1254	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1260	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1262	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Aroclor 1268	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6					<330	<330
Pesticides	Units											
Aldrin	ug/Kg	20	7.1E+6	2.0E+5	4300	1.3E+6					<1.7	<1.7
alpha-Hexachlorocyclohexane	ug/Kg	10	1.6E+5	41000	12000	30000					<1.7	<1.7
beta-Hexachlorocyclohexane	ug/Kg	20	NLV	NLV	25000	NLV					<1.7	<1.7
delta-Hexachlorocyclohexane	ug/Kg	20	NA	NA	NA	NA					<1.7	<1.7
4-4'-DDD	ug/Kg	20	NLV	NLV	4.0E+5	NLV					<3.3	<3.3

Sample Location	E	Background	Non-Residential	Non-Residential	Non-Residential	Residential	SS #1 West Portion Trench	SS #2 East Portion Trench	SS#1	SS#2	TMW-01	TMW-02
Lab Sample ID		Target	Soil	Volatile	Direct	Soil					179275	179276
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	Horizon	MDEQ	MDEQ	Horizon	Horizon
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	DLZ	DLZ	MDEQ	MDEQ	TriMatrix	TriMatrix
Sample Date		Limit	Inhalation	Infinite		Inhalation	1/19/1996	1/19/1996	1/19/1996	1/19/1996	9/30/1997	9/30/1997
Sample Depth (ft.)											0-1	0-1
Pesticides Cont.	Units											
4-4'-DDE	ug/Kg	20	NLV	NLV	1.9E+5	NLV					<3.3	<3.3
4-4'-DDT	ug/Kg	20	NLV	NLV	2.8E+5	NLV					<3.3	6.6
Dieldrin	ug/Kg	20	7.2E+5	64000	4700	1.4E+5					<3.3	<3.3
Endosulfan I {J}	ug/Kg	20	ID	ID	4.4E+6	ID					<3.3	<3.3
Endosulfan II {J}	ug/Kg	20	ID	ID	4.4E+6	ID					<3.3	<3.3
Endosulfan Sulfate {J}	ug/Kg	20	NA	NA	NA	NA					<3.3	<3.3
Endrin	ug/Kg	20	NLV	NLV	1.9E+5	NLV					<3.3	<3.3
Endrin Aldehyde	ug/Kg	20	NA	NA	NA	NA					<3.3	<3.3
Heptachlor	ug/Kg	20	1.9E+6	2.1E+5	23000	3.5E+5					<1.7	<1.7
Heptachlor epoxide	ug/Kg	20	NLV	NLV	9500	NLV					<1.7	<1.7
Lindane	ug/Kg	20	ID	ID	42000	ID					<1.7	<1.7
Methoxychlor	ug/Kg	50	ID	ID	5.6E+6	ID					<50	<50
Misc	Units											
Percent Solids	%	NA	NA	NA	NA	NA	74	84	76	79		

Page 15 of 26

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TMW-03	TSB-1	TSB-1	TSB-1	TSB-2	TSB-2	TSB-3	TSB-3	TSB-4
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	179277	45669	45670	45671	45672	45673	45674	45675	45994
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	WWES	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	9/30/1997	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/6/1990
Sample Depth (ft.)							0-1	4.0-5.5	9.0-10.5	11.5-12.5	2.0-3.5	11.0-12.5	2.0 - 3.5	9.0 - 10.5	2.0-3.5
Inorganics U	Inits														
Arsenic {B} m	ng/Kg	5.8	NLV	NLV	37	NLV	7.9								
Cadmium {B} m	ng/Kg	1.2	NLV	NLV	2100	NLV	0.25								
Chromium, Total m	ng/Kg	18	NLV	NLV	9200	NLV	62								
Chromium (VI) m	ng/Kg	18	NLV	NLV	9200	NLV	<0.2								
Chromium (III) {B,H} m	ng/Kg	18	NLV	NLV	1000000 {D}	NLV	62								
Copper {B} m	ng/Kg	32	NLV	NLV	73000	NLV	19								
Iron m	ng/Kg	12000	NLV	NLV	580000	NLV	12700								
Lead {B} m	ng/Kg	21	NLV	NLV	900 (DD)	NLV	13								
Mercury (Inorganic) {B} m	ng/Kg	0.13	89	62	580	48	<0.10								
Nickel m	ng/Kg	20	NLV	NLV	150000	NLV	10								
	ng/Kg	47	NLV	NLV	630000	NLV	36								
Semi-Volatiles U	Inits														
Acenaphthene u	ig/Kg	330	3.5E+8	9.7E+7	1.3E+8	1.9E+8	<330								
	ig/Kg	330	3.0E+6	2.7E+6	5.2E+6	1.6E+6	<330								
Anthracene us	ig/Kg	330	1.0E+9 {D}	1.6E+9	7.3E+8	1.0E+9 {D}	<330								
Benzo(a)anthracene {Q} ug	ig/Kg	330	NLV	NLV	80000	NLV	<330								
Benzo(a)pyrene {Q}	ig/Kg	330	NLV	NLV	8000	NLV	<330								
Benzo(b&k)fluoranthene ug	ig/Kg	330	ID	ID	80000	ID	<330								
Benzo(g,h,i)perylene u	ig/Kg	330	NLV	NLV	7.0E+6	NLV	<330								
	ig/Kg	330	NA	NA	NA	NA	<330								
bis(2-Chloroethyl)ether {I} us	ig/Kg	100	44000	13000	58000	8300	<330								
	ig/Kg	330	NA	NA	NA	NA	<330								
bis(2-Ethylhexyl)phthalate	ig/Kg	330	NLV	NLV	1.0E+7 {C}	NLV	<330								
4-Bromo diphenyl ether ug	ig/Kg	330	NA	NA	NA	NA	<330								
Butyl benzyl phthalate ug	ig/Kg	330	NLV	NLV	3.1E+5 {C}	NLV	<330								
beta-Chloronaphthalene ug	ig/Kg	330	ID	ID	1.8E+8	ID	<330								
4-Chloro diphenyl ether ug	ig/Kg	330	NA	NA	NA	NA	<330								
Chrysene {Q} u	ig/Kg	330	ID	ID	8.0E+6	ID	<330								
	ig/Kg	NA	1.0E+9 {D}	1.0E+8	1.1E+7	1.0E+9 {D}									
Di-n-butyl phthalate ug	ig/Kg	330	NLV	NLV	7.6E+5 {C}	NLV	<330								
Di-n-octyl phthalate ug	ig/Kg	330	NLV	NLV	2.0E+7	NLV	<330								
Dibenzo(a,h)anthracene {Q}	ig/Kg	330	NLV	NLV	8000	NLV	<330								
Dibenzofuran ug	g/Kg	330	3.6E+6	1.6E+5	ID	2.0E+6									
3,3'-Dichlorobenzidine ug	g/Kg	2000	NLV	NLV	30000	NLV									
Diethyl phthalate ug	g/Kg	330	NLV	NLV	7.4E+5 {C}	NLV	<330								
Dimethyl phthalate ug	g/Kg	330	NLV	NLV	7.9E+5 {C}	NLV	<330								
2,4-Dinitrotoluene ug	g/Kg	330	NLV	NLV	2.2E+5	NLV	<330								
2,6-Dinitrotoluene us	g/Kg	330	NA	NA	NA	NA	<330								
1,2-Diphenylhydrazine ug	g/Kg	330	NA	NA	NA	NA	<330								

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TMW-03	TSB-1	TSB-1	TSB-1	TSB-2	TSB-2	TSB-3	TSB-3	TSB-4
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	179277	45669	45670	45671	45672	45673	45674	45675	45994
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	WWES	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	9/30/1997	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/6/1990
Sample Depth (ft.)							0-1	4.0-5.5	9.0-10.5	11.5-12.5	2.0-3.5	11.0-12.5	2.0 - 3.5	9.0 - 10.5	2.0-3.5
Semi-Volatiles Cont.	Units														
Fluoranthene	ug/Kg	330	1.0E+9 {D}	8.9E+8	1.3E+8	1.0E+9 {D}	<330								
Fluorene	ug/Kg	330	1.0E+9 {D}	1.5E+8	8.7E+7	5.8E+8	<330								
Hexachlorobenzene (C-66)	ug/Kg	330	2.2E+5	56000	37000	41000	<20								
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5	<330								
Hexachlorocyclopentadiene (C-56)	ug/Kg	330	56000	60000	7.2E+5 {C}	30000	<330								
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000									
Indeno(1,2,3-cd)pyrene {Q}	ug/Kg	330	NLV	NLV	80000	NLV	<330								
Isophorone	ug/Kg	330	NLV	NLV	2.4E+6 {C}	NLV	<330								
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6	<330								
n-Nitroso-di-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV	<330								
n-Nitroso-di-propylamine	ug/Kg	330	NLV	NLV	5400	NLV									
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5	<330								
Nitrobenzene {I}	ug/Kg	330	1.7E+5	64000	3.4E+5	91000	<330								
N-Nitrosodiphenylamine	ug/Kg	330	NLV	NLV	7.8E+6	NLV	<330								
n-Nitroso-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV									
Phenanthrene	ug/Kg	330	5.1E+6	1.9E+5	5.2E+6	2.8E+6	<330								
Pyrene	ug/Kg	330	1.0E+9 {D}	7.8E+8	8.4E+7	1.0E+9 {D}	<330								
Volatiles	Units														
Acetone {I}	ug/Kg	1000	1.1E+8 {C}	1.6E+8	7.3E+7	1.1E+8 {C}	<100								
Acrylonitrile {I}	ug/Kg	100	35000	17000	74000	6600	<10								
Benzene {I}	ug/Kg	50	8400	45000	4.0E+5 {C}	1600	<10	<20	<20	<20	<20	<20	2600	<20	<20
Bromobenzene {I}	ug/Kg	100	5.8E+5	5.4E+5	7.6E+5 {C}	3.1E+5		<40	<40	<40	<40	<40	<5000	<40	<40
Bromochloromethane	ug/Kg	100	NA	NA	NA	NA	<10	<300	<300	<300	<300	<300	<38000	<300	<300
Bromodichloromethane	ug/Kg	100	6400	31000	4.9E+5	1200		<40	<40	<40	<40	<40	<5000	<40	<40
Bromoform	ug/Kg	100	7.7E+5	3.1E+6	8.7E+5 {C}	1.5E+5	<10	<300	<300	<300	<300	<300	<38000	<300	<300
Bromomethane	ug/Kg	200	1600	13000	1.0E+6	860	<10	<200	<200	<200	<200	<200	<25000	<200	<200
2-Butanone (MEK) {I}	ug/Kg	750	2.7E+7 {C}	3.5E+7	2.7E+7 {C,DD}	2.7E+7 {C}	<100								
n-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID									
sec-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID									
tert-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID									
Carbon disulfide {I,R}	ug/Kg	250	1.4E+5	1.6E+6	2.8E+5 {C,DD}	76000	<100								
Carbon tetrachloride	ug/Kg	50	990	12000	3.9E+5 {C}	190	<10	<80	<80	<80	<80	<80	<10000	<80	<80
Chlorobenzene {I}	ug/Kg	50	2.2E+5	9.2E+5	2.6E+5 {C}	1.2E+5	<10	<20	<20	<20	<20	<20	87000	250	<20
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900	<10								
Chloroethane {I}	ug/Kg	250	9.5E+5 {C}	3.6E+7	9.5E+5 {C}	9.5E+5 {C}	<10	<200	<200	<200	<200	<200	<25000	<200	<200
2-Chloroethyl vinyl ether	ug/Kg	5000	ID	ID	ID	ID		<200	<200	<200	<200	<200	<25000	<200	<200
Chloroform	ug/Kg	50	38000	1.5E+5	1.5E+6 {C}	7200	<10	<20	<20	<20	<20	<20	<2500	<20	<20
Chloromethane {I}	ug/Kg	250	10000	1.2E+5	1.1E+6 {C}	2300	<10	<200	<200	<200	<200	<200	<25000	<200	<200
2-Chlorotoluene	ug/Kg	50	5.0E+5 {C}	1.5E+6	5.0E+5 {C}	2.7E+5									
4-Chlorotoluene	ug/Kg	50	NA	NA	NA	NA									

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TMW-03	TSB-1	TSB-1	TSB-1	TSB-2	TSB-2	TSB-3	TSB-3	TSB-4
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	179277	45669	45670	45671	45672	45673	45674	45675	45994
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	WWES	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	9/30/1997	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/6/1990
Sample Depth (ft.)							0-1	4.0-5.5	9.0-10.5	11.5-12.5	2.0-3.5	11.0-12.5	2.0 - 3.5	9.0 - 10.5	2.0-3.5
Volatiles Cont.	Units														
Dibromochloropropane	ug/Kg	10	1200 {C}	15000	1200 {C}	1200 {C}	<50								
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900		<60	<60	<60	<60	<60	<7500	<60	<60
Ethylene dibromide	ug/Kg	20	3600	5800	430	670									
Dibromomethane	ug/Kg	250	ID	ID	2.0E+6 {C}	ID	<10								
Ethylene dibromide	ug/Kg	20	3600	5800	430	670	<10								
trans-1,4-Dichloro-2-butene	ug/Kg	50	NA	NA	NA	NA	<10								
1,2-Dichlorobenzene	ug/Kg	100	2.1E+5 {C}	4.6E+7	2.1E+5 {C}	2.1E+5 {C}	<10	<300	<300	<300	<300	<300	<38000	<300	<300
1,3-Dichlorobenzene	ug/Kg	100	48000	94000	1.7E+5 {C}	26000	<10	<300	<300	<300	<300	<300	<38000	<300	<300
1,4-Dichlorobenzene	ug/Kg	100	1.0E+5	2.6E+5	1.9E+6	19000	<10	<300	<300	<300	<300	<300	<38000	<300	<300
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900	<10								
Dichlorodifluoromethane	ug/Kg	250	1.7E+6	6.3E+7	1.0E+6 {C}	9.0E+5	<10	<200	<200	<200	<200	<200	<25000	<200	<200
1,1-Dichloroethane {I}	ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5									
1,2-Dichloroethane {I}	ug/Kg	50	11000	21000	4.2E+5	2100									
1,1-Dichloroethane {I}	ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5	<10	<40	<40	<40	<40	<40	<5000	<40	<40
1,2-Dichloroethane {I}	ug/Kg	50	11000	21000	4.2E+5	2100	<10	<40	<40	<40	<40	<40	<5000	<40	<40
1,1-Dichloroethylene {I}	ug/Kg	50	330	3700	5.7E+5 {C}	62	<10	<40	<40	<40	<40	<40	<5000	<40	<40
cis-1,2-Dichloroethylene {I}	ug/Kg	50	41000	2.1E+5	6.4E+5 {C}	22000	<10								
trans-1,2-Dichloroethylene	ug/Kg	50	43000	3.3E+5	1.4E+6 {C}	23000	<10	<40	<40	<40	<40	<40	<5000	<40	<40
2,2-Dichloropropane	ug/Kg	50	NA	NA	NA	NA									
1,2-Dichloropropane {I}	ug/Kg	50	7400	30000	5.5E+5 {C}	4000	<10	<60	<60	<60	<60	<60	<7500	<60	<60
1,3-Dichloropropane	ug/Kg	50	NA	NA	NA	NA									
1,1-Dichloropropene	ug/Kg	50	NA	NA	NA	NA									
cis-1,3-Dichloropropene {I,J}	ug/Kg	50	5400	60000	2.4E+5	1000	<10	<80	<80	<80	<80	<80	<10000	<80	<80
trans-1,3-Dichloropropene {I, J}	ug/Kg	50	5400	60000	2.4E+5	1000	<10	<80	<80	<80	<80	<80	<10000	<80	<80
Diethyl ether {I}	ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}									
Diethylbenzene	ug/Kg	50	NA	NA	NA	NA									
Dimethyl disulfide	ug/Kg	50	NA	NA	NA	NA									
Diethyl ether {I}	ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}	<100								
Ethylbenzene {I}	ug/Kg	50	1.4E+5 {C}	2.4E+6	1.4E+5 {C}	87000	<10	<20	<20	<20	<20	<20	7500	22	<20
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5									
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000	<10								
2-Hexanone {I}	ug/Kg	2500	1.8E+6	1.3E+6	2.5E+6 {C}	9.9E+5	<100								
lodomethane	ug/Kg	100	NA	NA	NA	NA	<100								
Isopropyl benzene {I}	ug/Kg	250	3.9E+5 {C}	2.0E+6	3.9E+5 {C}	3.9E+5 {C}	<10								
p-Isopropyltoluene	ug/Kg	100	NA	NA	NA	NA									
5-Methly-2-Hexanone	ug/Kg	100	NA	NA	NA	NA									
lodomethane	ug/Kg	100	NA	NA	NA	NA									
4-Methyl-2-pentanone (MIBK) {I}	ug/Kg	2500	2.7E+6 {C}	5.3E+7	2.7E+6 {C}	2.7E+6 {C}	<100								
Methyl-tert-butyl ether (MTBE)	ug/Kg	250	5.9E+6 {C}	3.0E+7	5.9E+6 {C}	5.9E+6 {C}	<100								

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TMW-03	TSB-1	TSB-1	TSB-1	TSB-2	TSB-2	TSB-3	TSB-3	TSB-4
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	179277	45669	45670	45671	45672	45673	45674	45675	45994
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	WWES	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	9/30/1997	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/6/1990
Sample Depth (ft.)							0-1	4.0-5.5	9.0-10.5	11.5-12.5	2.0-3.5	11.0-12.5	2.0 - 3.5	9.0 - 10.5	2.0-3.5
Volatiles Cont.	Units														
Methylene chloride	ug/Kg	100	2.4E+5	7.0E+5	2.3E+6 {C}	45000	<10	<100	<100	<100	<100	<100	<13000	<100	<100
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6									
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5									
n-Propylbenzene {I}	ug/Kg	100	ID	ID	8.0E+6	ID	<10								
Styrene {I}	ug/Kg	50	5.2E+5 {C}	3.3E+6	5.2E+5 {C}	2.5E+5	<10								
1,1,1,2-Tetrachloroethane	ug/Kg	100	33000	1.2E+5	4.4E+5 {C}	6200	<10								
1,1,2,2-Tetrachloroethane	ug/Kg	50	23000	34000	2.4E+5	4300	<10	<40	<40	<40	<40	<40	<5000	<40	<40
Tetrachloroethylene	ug/Kg	50	60000	6.0E+5	88000 {C}	11000	<10	<40	<40	<40	<40	<40	<5000	<40	<40
Tetrahydrofuran	ug/Kg	1000	2.4E+6	1.5E+7	9.5E+6	1.3E+6									
Toluene {I}	ug/Kg	100	2.5E+5 {C}	3.3E+6	2.5E+5 {C}	2.5E+5 {C}	<10	<20	<20	<20	<20	<20	9900	58	<20
1,2,3-Trichlorobenzene	ug/Kg	330	NA	NA	NA	NA									
1,2,4-Trichlorobenzene	ug/Kg	330	1.1E+6 {C}	3.4E+7	1.1E+6 {C,DD}	1.1E+6 {C}	<10								
1,1,1-Trichloroethane	ug/Kg	50	4.6E+5	4.5E+6	4.6E+5 {C}	2.5E+5	<10	<40	<40	<40	<40	<40	<5000	<40	<40
1,1,2-Trichloroethane	ug/Kg	50	24000	57000	8.4E+5	4600	<10	<60	<60	<60	<60	<60	<7500	<60	<60
Trichloroethylene	ug/Kg	50	37000	2.6E+5	5.0E+5 {C,DD}	7100	<10	<40	<40	<40	<40	<40	<5000	<40	<40
Trichlorofluoromethane	ug/Kg	100	5.6E+5 {C}	1.1E+8	5.6E+5 {C}	5.6E+5 {C}	<10	<60	<60	<60	<60	<60	<7500	<60	<60
1,2,3-Trichloropropane	ug/Kg	100	7500	11000	8.3E+5 {C}	4000	<10								
1,2,4-Trimethylbenzene {I}	ug/Kg	100	1.1E+5 {C}	2.5E+7	1.1E+5 {C}	1.1E+5 {C}	<10								
1,3,5-Trimethylbenzene {I}	ug/Kg	100	94000 {C}	1.9E+7	94000 {C}	94000 {C}	<10								
Vinyl acetate	ug/Kg	5000	1.5E+6	2.0E+6	2.4E+6 {C,DD}	7.9E+5	<100								
Vinyl chloride	ug/Kg	40	2800	29000	34000	270	<10	<200	<200	<200	<200	<200	<25000	<200	<200
Xylene, p&m	ug/Kg	100	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	<20								
Xylene, o	ug/Kg	50	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	<10								
Xylene (Total)	ug/Kg	150	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}		<100	<100	<100	<100	<100	26000	110	<100
PCB's	Units														
Aroclor 1016	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1221	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1232	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1242	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1248	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1254	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1260	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1262	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Aroclor 1268	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6	<330								
Pesticides	Units														
Aldrin	ug/Kg	20	7.1E+6	2.0E+5	4300	1.3E+6	<1.7								
alpha-Hexachlorocyclohexane	ug/Kg	10	1.6E+5	41000	12000	30000	<1.7								
beta-Hexachlorocyclohexane	ug/Kg	20	NLV	NLV	25000	NLV	<1.7								
delta-Hexachlorocyclohexane	ug/Kg	20	NA	NA	NA	NA	<1.7								
4-4'-DDD	ug/Kg	20	NLV	NLV	4.0E+5	NLV	<3.3								

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TMW-03	TSB-1	TSB-1	TSB-1	TSB-2	TSB-2	TSB-3	TSB-3	TSB-4
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	179277	45669	45670	45671	45672	45673	45674	45675	45994
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	Horizon	WWES	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air	TriMatrix								
Sample Date		Limit	Inhalation	Infinite		Inhalation	9/30/1997	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/3/1990	8/6/1990
Sample Depth (ft.)							0-1	4.0-5.5	9.0-10.5	11.5-12.5	2.0-3.5	11.0-12.5	2.0 - 3.5	9.0 - 10.5	2.0-3.5
Pesticides Cont.	Units														
4-4'-DDE	ug/Kg	20	NLV	NLV	1.9E+5	NLV	6.4								
4-4'-DDT	ug/Kg	20	NLV	NLV	2.8E+5	NLV	12								
Dieldrin	ug/Kg	20	7.2E+5	64000	4700	1.4E+5	<3.3								
Endosulfan I {J}	ug/Kg	20	ID	ID	4.4E+6	ID	<3.3								
Endosulfan II {J}	ug/Kg	20	ID	ID	4.4E+6	ID	<3.3								
Endosulfan Sulfate {J}	ug/Kg	20	NA	NA	NA	NA	<3.3								
Endrin	ug/Kg	20	NLV	NLV	1.9E+5	NLV	<3.3								
Endrin Aldehyde	ug/Kg	20	NA	NA	NA	NA	<3.3								
Heptachlor	ug/Kg	20	1.9E+6	2.1E+5	23000	3.5E+5	<1.7								
Heptachlor epoxide	ug/Kg	20	NLV	NLV	9500	NLV	<1.7								
Lindane	ug/Kg	20	ID	ID	42000	ID	<1.7								
Methoxychlor	ug/Kg	50	ID	ID	5.6E+6	ID	<50								
Misc	Units]													
Percent Solids	%	NA	NA	NA	NA	NA									

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TSB-4	TSB-4	TSB-5	TSB-5	TSB-5	TSB-5	TSB-5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	45995	45996	45991	45992	45993	45997	45998
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation	Contact	Indoor Air		mileo					
Sample Date		Limit	Inhalation	Infinite		Inhalation	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990
Sample Depth (ft.)		Linin	initialation	minite		minalation	6.0-7.5	0.5-2.0	2.0 - 3.5	9.0 - 10.5		6.0 - 7.5	4.0 - 5.5
Inorganics	Units						0.0 7.0	0.0 2.0	2.0 0.0	5.0 10.5	0.0 2.0	0.0 1.0	4.0 0.0
Arsenic {B}	mg/Kg	5.8	NLV	NLV	37	NLV							
Cadmium {B}	mg/Kg	1.2	NLV	NLV	2100	NLV							
Chromium, Total	mg/Kg	18	NLV	NLV	9200	NLV							
Chromium (VI)	mg/Kg	18	NLV	NLV	9200	NLV							
Chromium (III) {B,H}	mg/Kg	18	NLV	NLV	1000000 {D}	NLV							
Copper {B}	mg/Kg	32	NLV	NLV	73000	NLV							
Iron	mg/Kg	12000	NLV	NLV	580000	NLV							
Lead {B}	mg/Kg	21	NLV	NLV	900 (DD)	NLV							
Mercury (Inorganic) {B}	mg/Kg	0.13	89	62	580	48							
Nickel	mg/Kg	20	NLV	NLV	150000	NLV							
Zinc {B}	mg/Kg	47	NLV	NLV	630000	NLV							
Semi-Volatiles	Units												
Acenaphthene	ug/Kg	330	3.5E+8	9.7E+7	1.3E+8	1.9E+8							
Acenaphthylene	ug/Kg	330	3.0E+6	2.7E+6	5.2E+6	1.6E+6							
Anthracene	ug/Kg	330	1.0E+9 {D}	1.6E+9	7.3E+8	1.0E+9 {D}							
Benzo(a)anthracene {Q}	ug/Kg	330	NLV	NLV	80000	NLV							
Benzo(a)pyrene {Q}	ug/Kg	330	NLV	NLV	8000	NLV							
Benzo(b&k)fluoranthene	ug/Kg	330	ID	ID	80000	ID							
Benzo(g,h,i)perylene	ug/Kg	330	NLV	NLV	7.0E+6	NLV							
bis(2-Chloroethoxy)methane	ug/Kg	330	NA	NA	NA	NA							
bis(2-Chloroethyl)ether {I}	ug/Kg	100	44000	13000	58000	8300							
bis(2-Chloroisopropyl)ether	ug/Kg	330	NA	NA	NA	NA							
bis(2-Ethylhexyl)phthalate	ug/Kg	330	NLV	NLV	1.0E+7 {C}	NLV							
4-Bromo diphenyl ether	ug/Kg	330	NA	NA	NA	NA							
Butyl benzyl phthalate	ug/Kg	330	NLV	NLV	3.1E+5 {C}	NLV							
beta-Chloronaphthalene	ug/Kg	330	ID	ID	1.8E+8	ID							
4-Chloro diphenyl ether	ug/Kg	330	NA	NA	NA	NA							
Chrysene {Q}	ug/Kg	330	ID	ID	8.0E+6	ID							
Decabromodiphenyl ether	ug/Kg	NA	1.0E+9 {D}	1.0E+8	1.1E+7	1.0E+9 {D}							
Di-n-butyl phthalate	ug/Kg	330	NLV	NLV	7.6E+5 {C}	NLV							
Di-n-octyl phthalate	ug/Kg	330	NLV	NLV	2.0E+7	NLV							
Dibenzo(a,h)anthracene {Q}	ug/Kg	330	NLV	NLV	8000	NLV							
Dibenzofuran	ug/Kg	330	3.6E+6	1.6E+5	ID	2.0E+6							
3,3'-Dichlorobenzidine	ug/Kg	2000	NLV	NLV	30000	NLV							
Diethyl phthalate	ug/Kg	330	NLV	NLV	7.4E+5 {C}	NLV							
, 1		330	NLV	NLV	. ,	NLV							
Dimethyl phthalate	ug/Kg			NLV NLV	7.9E+5 {C} 2.2E+5	NLV							
2,4-Dinitrotoluene	ug/Kg	330	NLV										
2,6-Dinitrotoluene	ug/Kg	330	NA	NA	NA	NA							
1,2-Diphenylhydrazine	ug/Kg	330	NA	NA	NA	NA							

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TSB-4	TSB-4	TSB-5	TSB-5	TSB-5	TSB-5	TSB-5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	45995	45996	45991	45992	45993	45997	45998
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air							
Sample Date		Limit	Inhalation	Infinite		Inhalation	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990
Sample Depth (ft.)							6.0-7.5	0.5-2.0	2.0 - 3.5	9.0 - 10.5	0.5 - 2.0	6.0 - 7.5	4.0 - 5.5
Semi-Volatiles Cont.	Units												
Fluoranthene	ug/Kg	330	1.0E+9 {D}	8.9E+8	1.3E+8	1.0E+9 {D}							
Fluorene	ug/Kg	330	1.0E+9 {D}	1.5E+8	8.7E+7	5.8E+8							
Hexachlorobenzene (C-66)	ug/Kg	330	2.2E+5	56000	37000	41000							
Hexachlorobutadiene (C-46)	ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5							
Hexachlorocyclopentadiene (C-56)	ug/Kg	330	56000	60000	7.2E+5 {C}	30000							
Hexachloroethane	ug/Kg	300	79000	6.6E+5	7.3E+5	40000							
Indeno(1,2,3-cd)pyrene {Q}	ug/Kg	330	NLV	NLV	80000	NLV							
Isophorone	ug/Kg	330	NLV	NLV	2.4E+6 {C}	NLV							
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6							
n-Nitroso-di-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV							
n-Nitroso-di-propylamine	ug/Kg	330	NLV	NLV	5400	NLV							
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5							
Nitrobenzene {I}	ug/Kg	330	1.7E+5	64000	3.4E+5	91000							
N-Nitrosodiphenylamine	ug/Kg	330	NLV	NLV	7.8E+6	NLV							
n-Nitroso-n-propylamine	ug/Kg	330	NLV	NLV	5400	NLV							
Phenanthrene	ug/Kg	330	5.1E+6	1.9E+5	5.2E+6	2.8E+6							
Pyrene	ug/Kg	330	1.0E+9 {D}	7.8E+8	8.4E+7	1.0E+9 {D}							
Volatiles	Units												
Acetone {I}	ug/Kg	1000	1.1E+8 {C}	1.6E+8	7.3E+7	1.1E+8 {C}							
Acrylonitrile {I}	ug/Kg	100	35000	17000	74000	6600							
Benzene {I}	ug/Kg	50	8400	45000	4.0E+5 {C}	1600	<20	<20	<20	<20	<5000	210	<20
Bromobenzene {I}	ug/Kg	100	5.8E+5	5.4E+5	7.6E+5 {C}	3.1E+5	<40	<40	<40	<40	<10000	<40	<40
Bromochloromethane	ug/Kg	100	NA	NA	NA	NA	<300	<300	<300	<300	<75000	<300	<300
Bromodichloromethane	ug/Kg	100	6400	31000	4.9E+5	1200	<40	<40	<40	<40	<10000	<40	<40
Bromoform	ug/Kg	100	7.7E+5	3.1E+6	8.7E+5 {C}	1.5E+5	<300	<300	<300	<300	<75000	<300	<300
Bromomethane	ug/Kg	200	1600	13000	1.0E+6	860	<200	<200	<200	<200	<50000	<200	<200
2-Butanone (MEK) {I}	ug/Kg	750	2.7E+7 {C}	3.5E+7	2.7E+7 {C,DD}	2.7E+7 {C}							
n-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID							
sec-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID							
tert-Butylbenzene	ug/Kg	50	ID	ID	8.0E+6	ID							
Carbon disulfide {I,R}	ug/Kg	250	1.4E+5	1.6E+6	2.8E+5 {C,DD}	76000							
Carbon tetrachloride	ug/Kg	50	990	12000	3.9E+5 {C}	190	<80	<80	<80	<80	<20000	<80	<80
Chlorobenzene {I}	ug/Kg	50	2.2E+5	9.2E+5	2.6E+5 {C}	1.2E+5	<20	<20	<20	<20	<5000	160	<20
Dibromochloromethane	ug/Kg	100	21000	80000	5.0E+5	3900							
Chloroethane {I}	ug/Kg	250	9.5E+5 {C}	3.6E+7	9.5E+5 {C}	9.5E+5 {C}	<200	<200	<200	<200	<50000	<200	<200
2-Chloroethyl vinyl ether	ug/Kg	5000	ID	ID	ID	ID	<200	<200	<200	<200	<50000	<200	<200
Chloroform	ug/Kg	50	38000	1.5E+5	1.5E+6 {C}	7200	<20	<20	<20	<20	<5000	<20	<20
Chloromethane {I}	ug/Kg	250	10000	1.2E+5	1.1E+6 {C}	2300	<200	<200	<200	<200	<50000	<200	<200
2-Chlorotoluene	ug/Kg	50	5.0E+5 {C}	1.5E+6	5.0E+5 {C}	2.7E+5							
4-Chlorotoluene	ug/Kg	50	NA	NA	NA	NA							

Sample Location	Background	Non-Residential	Non-Residential	Non-Residential	Residential	TSB-4	TSB-4	TSB-5	TSB-5	TSB-5	TSB-5	TSB-5
Lab Sample ID	Target	Soil	Volatile	Direct	Soil	45995	45996	45991	45992	45993	45997	45998
Sampled By	Method	Volatilization to	Soil	Contact	Volatilization to	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By	Detection	Indoor Air	Inhalation	Contact	Indoor Air							
Sample Date	Limit	Inhalation	Infinite		Inhalation	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990
Sample Depth (ft.)		initialation			initialation	6.0-7.5	0.5-2.0	2.0 - 3.5	9.0 - 10.5	0.5 - 2.0	6.0 - 7.5	4.0 - 5.5
Volatiles Cont. Units						1						
Dibromochloropropane ug/Kg	10	1200 {C}	15000	1200 {C}	1200 {C}							
Dibromochloromethane ug/Kg	100	21000	80000	5.0E+5	3900	<60	<60	<60	<60	<15000	<60	<60
Ethylene dibromide ug/Kg	20	3600	5800	430	670							
Dibromomethane ug/Kg	250	ID	ID	2.0E+6 {C}	ID							
Ethylene dibromide ug/Kg	20	3600	5800	430	670							
trans-1,4-Dichloro-2-butene ug/Kg	50	NA	NA	NA	NA							
1,2-Dichlorobenzene ug/Kg	100	2.1E+5 {C}	4.6E+7	2.1E+5 {C}	2.1E+5 {C}	<300	<300	<300	<300	<75000	<300	<300
1,3-Dichlorobenzene ug/Kg	100	48000	94000	1.7E+5 {C}	26000	<300	<300	<300	<300	<75000	<300	<300
1,4-Dichlorobenzene ug/Kg	100	1.0E+5	2.6E+5	1.9E+6	19000	<300	<300	<300	<300	<75000	<300	<300
Dibromochloromethane ug/Kg	100	21000	80000	5.0E+5	3900							
Dichlorodifluoromethane ug/Kg	250	1.7E+6	6.3E+7	1.0E+6 {C}	9.0E+5	<200	<200	<200	<200	<50000	<200	<200
1,1-Dichloroethane {I} ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5							
1,2-Dichloroethane {I} ug/Kg	50	11000	21000	4.2E+5	2100							
1,1-Dichloroethane {I} ug/Kg	50	4.3E+5	2.5E+6	8.9E+5 {C}	2.3E+5	<40	<40	<40	<40	<10000	<40	<40
1,2-Dichloroethane {I} ug/Kg	50	11000	21000	4.2E+5	2100	<40	<40	<40	<40	<10000	<40	<40
1,1-Dichloroethylene {I} ug/Kg	50	330	3700	5.7E+5 {C}	62	<40	<40	<40	<40	<10000	<40	<40
cis-1,2-Dichloroethylene {I} ug/Kg	50	41000	2.1E+5	6.4E+5 {C}	22000							
trans-1,2-Dichloroethylene ug/Kg	50	43000	3.3E+5	1.4E+6 {C}	23000	<40	<40	<40	<40	<10000	<40	<40
2,2-Dichloropropane ug/Kg	50	NA	NA	NA	NA							
1,2-Dichloropropane {I} ug/Kg	50	7400	30000	5.5E+5 {C}	4000	<60	<60	<60	<60	<15000	<60	<60
1,3-Dichloropropane ug/Kg	50	NA	NA	NA	NA							
1,1-Dichloropropene ug/Kg	50	NA	NA	NA	NA							
cis-1,3-Dichloropropene {I,J} ug/Kg	50	5400	60000	2.4E+5	1000	<80	<80	<80	<80	<20000	<80	<80
trans-1,3-Dichloropropene {I, J} ug/Kg	50	5400	60000	2.4E+5	1000	<80	<80	<80	<80	<20000	<80	<80
Diethyl ether {I} ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}							
Diethylbenzene ug/Kg	50	NA	NA	NA	NA							
Dimethyl disulfide ug/Kg	50	NA	NA	NA	NA							
Diethyl ether {I} ug/Kg	200	7.4E+6 {C}	1.0E+8	7.4E+6 {C}	7.4E+6 {C}							
Ethylbenzene {I} ug/Kg	50	1.4E+5 {C}	2.4E+6	1.4E+5 {C}	87000	<20	<20	23	120	32000	810	90
Hexachlorobutadiene (C-46) ug/Kg	50	3.5E+5 {C}	4.6E+5	3.5E+5 {C}	1.3E+5							
Hexachloroethane ug/Kg	300	79000	6.6E+5	7.3E+5	40000							
2-Hexanone {I} ug/Kg	2500	1.8E+6	1.3E+6	2.5E+6 {C}	9.9E+5							
lodomethane ug/Kg	100	NA	NA	NA	NA							
Isopropyl benzene {I} ug/Kg	250	3.9E+5 {C}	2.0E+6	3.9E+5 {C}	3.9E+5 {C}							
p-Isopropyltoluene ug/Kg	100	NA	NA	NA	NA							
5-Methly-2-Hexanone ug/Kg	100	NA	NA	NA	NA							
lodomethane ug/Kg	100	NA	NA	NA	NA							
4-Methyl-2-pentanone (MIBK) {I} ug/Kg	2500	2.7E+6 {C}	5.3E+7	2.7E+6 {C}	2.7E+6 {C}							
Methyl-tert-butyl ether (MTBE) ug/Kg	250	5.9E+6 {C}	3.0E+7	5.9E+6 {C}	5.9E+6 {C}							

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TSB-4	TSB-4	TSB-5	TSB-5	TSB-5	TSB-5	TSB-5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	45995	45996	45991	45992	45993	45997	45998
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air							
Sample Date		Limit	Inhalation	Infinite		Inhalation	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990
Sample Depth (ft.)							6.0-7.5	0.5-2.0	2.0 - 3.5	9.0 - 10.5	0.5 - 2.0	6.0 - 7.5	4.0 - 5.5
Volatiles Cont.	Units						1						
Methylene chloride	ug/Kg	100	2.4E+5	7.0E+5	2.3E+6 {C}	45000	<100	<100	<100	<100	<25000	<100	<100
2-Methylnaphthalene	ug/Kg	330	4.9E+6	1.8E+6	2.6E+7	2.7E+6							
Naphthalene	ug/Kg	330	4.7E+5	3.5E+5	5.2E+7	2.5E+5							
n-Propylbenzene {I}	ug/Kg	100	ID	ID	8.0E+6	ID							
Styrene {I}	ug/Kg	50	5.2E+5 {C}	3.3E+6	5.2E+5 {C}	2.5E+5							
1,1,1,2-Tetrachloroethane	ug/Kg	100	33000	1.2E+5	4.4E+5 {C}	6200							
1,1,2,2-Tetrachloroethane	ug/Kg	50	23000	34000	2.4E+5	4300	<40	<40	<40	<40	<10000	<40	<40
Tetrachloroethylene	ug/Kg	50	60000	6.0E+5	88000 {C}	11000	<40	<40	<40	<40	<10000	<40	<40
Tetrahydrofuran	ug/Kg	1000	2.4E+6	1.5E+7	9.5E+6	1.3E+6							
Toluene {I}	ug/Kg	100	2.5E+5 {C}	3.3E+6	2.5E+5 {C}	2.5E+5 {C}	<40	<20	<20	290	<5000	360	<20
1,2,3-Trichlorobenzene	ug/Kg	330	NA	NA	NA	NA							
1,2,4-Trichlorobenzene	ug/Kg	330	1.1E+6 {C}	3.4E+7	1.1E+6 {C,DD}	1.1E+6 {C}							
1,1,1-Trichloroethane	ug/Kg	50	4.6E+5	4.5E+6	4.6E+5 {C}	2.5E+5	<40	<40	<40	140	<10000	150	<40
1,1,2-Trichloroethane	ug/Kg	50	24000	57000	8.4E+5	4600	<60	<60	<60	<60	<15000	<60	<60
Trichloroethylene	ug/Kg	50	37000	2.6E+5	5.0E+5 {C,DD}	7100	<40	<40	<40	<40	<10000	<40	<40
Trichlorofluoromethane	ug/Kg	100	5.6E+5 {C}	1.1E+8	5.6E+5 {C}	5.6E+5 {C}	<60	<60	<60	<60	<15000	<60	<60
1,2,3-Trichloropropane	ug/Kg	100	7500	11000	8.3E+5 {C}	4000							
1,2,4-Trimethylbenzene {I}	ug/Kg	100	1.1E+5 {C}	2.5E+7	1.1E+5 {C}	1.1E+5 {C}							
1,3,5-Trimethylbenzene {I}	ug/Kg	100	94000 {C}	1.9E+7	94000 {C}	94000 {C}							
Vinyl acetate	ug/Kg	5000	1.5E+6	2.0E+6	2.4E+6 {C,DD}	7.9E+5							
Vinyl chloride	ug/Kg	40	2800	29000	34000	270	<200	<200	<200	<200	<50000	<200	<200
Xylene, p&m	ug/Kg	100	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}							
Xylene, o	ug/Kg	50	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}							
Xylene (Total)	ug/Kg	150	1.5E+5 {C}	5.4E+7	1.5E+5 {C}	1.5E+5 {C}	<100	<100	9200	1400	170000	2100	550
PCB's	Units				. ,								
Aroclor 1016	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1221	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1232	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1242	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1248	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1254	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1260	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1262	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Aroclor 1268	ug/Kg	330	1.6E+7	8.1E+5	16000 {T}	3.0E+6							
Pesticides	Units												
Aldrin	ug/Kg	20	7.1E+6	2.0E+5	4300	1.3E+6							
alpha-Hexachlorocyclohexane	ug/Kg	10	1.6E+5	41000	12000	30000							
beta-Hexachlorocyclohexane	ug/Kg	20	NLV	NLV	25000	NLV							
delta-Hexachlorocyclohexane	ug/Kg	20	NA	NA	NA	NA							
4-4'-DDD	ug/Kg	20	NLV	NLV	4.0E+5	NLV							

Sample Location		Background	Non-Residential	Non-Residential	Non-Residential	Residential	TSB-4	TSB-4	TSB-5	TSB-5	TSB-5	TSB-5	TSB-5
Lab Sample ID		Target	Soil	Volatile	Direct	Soil	45995	45996	45991	45992	45993	45997	45998
Sampled By		Method	Volatilization to	Soil	Contact	Volatilization to	WWES	WWES	WWES	WWES	WWES	WWES	WWES
Analyzed By		Detection	Indoor Air	Inhalation		Indoor Air							
Sample Date		Limit	Inhalation	Infinite		Inhalation	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990	8/6/1990
Sample Depth (ft.)							6.0-7.5	0.5-2.0	2.0 - 3.5	9.0 - 10.5	0.5 - 2.0	6.0 - 7.5	4.0 - 5.5
Pesticides Cont.	Units												
4-4'-DDE	ug/Kg	20	NLV	NLV	1.9E+5	NLV							
4-4'-DDT	ug/Kg	20	NLV	NLV	2.8E+5	NLV							
Dieldrin	ug/Kg	20	7.2E+5	64000	4700	1.4E+5							
Endosulfan I {J}	ug/Kg	20	ID	ID	4.4E+6	ID							
Endosulfan II {J}	ug/Kg	20	ID	ID	4.4E+6	ID							
Endosulfan Sulfate {J}	ug/Kg	20	NA	NA	NA	NA							
Endrin	ug/Kg	20	NLV	NLV	1.9E+5	NLV							
Endrin Aldehyde	ug/Kg	20	NA	NA	NA	NA							
Heptachlor	ug/Kg	20	1.9E+6	2.1E+5	23000	3.5E+5							
Heptachlor epoxide	ug/Kg	20	NLV	NLV	9500	NLV							
Lindane	ug/Kg	20	ID	ID	42000	ID							
Methoxychlor	ug/Kg	50	ID	ID	5.6E+6	ID							
Misc	Units												
Percent Solids	%	NA	NA	NA	NA	NA							

Footnotes

Criteria from RRD Op Memo 1, Part 201 Rule 299-5748 January 23, 2006 » Target Method Detection Limit (TMDL) from MDEQ RRD Operational Memo#2 July 5, 2007.

Results Qualifiers:

J=Estimated value or value not accurate.

--- Parameter not analyzed

Bolded value denotes parameter detected above detection limit

Shaded values exceed TMDL and Non-Residential Soil Volatilization to Indoor Air Inhalation Criteria.

Underlined values exceed TMDL and Non-Residential Direct Contact Criteria

Italicized values exceed TMDL and Residential SVIIC

Criteria Qualifiers:

¹ Although criteria is hexavlent Chromium, results are total

{B} Background, may be substitued if higher than cleanup criterion

{C} Value presented is a screening level based on the chemical-specific generic Csat.

{D} Calculated criterion exceeds 100% hence is reduced to 100% or 1.0E+9 ppb

{H} Valence-specific chromium data must be compared to the corresponding valence-specific clean-up critieria

{I} Hazardous substance may exhibit the characteristic of ignitability

{J} Hazardous substance may be present in several isomer forms and shall be added together for comparison to criteria

{Q} Criteria for carcinogenic PAHs were developed using RPPs to benzo(a)pyrene

{T} Refer to the TSCA

{DD} Hazardous substance causes developmental effects

ID = Inadequate data to develop criterion

IP = Development of generic GSI value in process.

NA = Criterion or value is not available, or not applicable

NLL = Hazardous substance is not likely to leach under most soil conditions

NLV = Hazardous substance is not likely to volatilize under most conditions

Page 1 of 26

Sample Location		Target	Residential	Residential	Non-Residential	Groundwater	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-2	GMW-2	GMW-2
Lab Sample ID		Method	Drinking	Groundwater	Groundwater	Contact	2930-01	2930-11	23464	30187	45676	253477	2930-02	2930-10	23465
Sampled By		Detection	Water	Volatilization to	Volatilization to	Criteria	OHM	OHM	EDI	WWES	WWES	Horizon	OHM	OHM	EDI
Analyzed By		Limit	Criteria	Indoor Air	Indoor Air							TriMatrix			
Sample Date				Inhalation	Inhalation		9/5/85	3/19/86	8/2/89	12/5/89	8/2/90	6/16/2000	9/5/85	3/19/86	8/2/89
Sample Depth (Ft.)				Criteria	Criteria										
Volatiles	Units														
Acetate	ug/L	1000	4200	ID	ID	ID						<50			
Acetonitrile	ug/L	50	140	2.4E+7	4.5E+7	5.6E+6						<10			
Acrylonitrile {I}	ug/L	2	2.6	34000	1.9E+5	14000						<1.0			
Allyl Chloride	ug/L	NA	NA	NA	NA	NA						<5.0			
Benzene {I}	ug/L	1	5.0 {A}	5600	35000	11000	<1	<1	<1	300	<5	<1.0	<1	<1	<1
Bromobenzene	ug/L	1	18	1.8E+5	3.9E+5	12000									
Bromochloromethane	ug/L	1	NA	NA	NA	NA									
Bromodichloromethane	ug/L	1	80 {A,W}	4800	37000	14000	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
Bromoform	ug/L	1	80 {A,W}	4.7E+5	3.1E+6 {S}	1.4E+5	<1	<1	<15	<10	<75	<1.0	<1	<1	<15
Bromomethane	ug/L	5	10	4000	9000	70000	<1	<1	<10	<10	<50	<1.0	<1	<1	<10
2-Butanone (MEK) {I}	ug/L	25	13000	2.4E+8 {S}	2.4E+8 {S}	2.4E+8 {S}						<10			
n-Butylbenzene	ug/L	1	80	ID	ID	5900									
sec-Butylbenzene	ug/L	1	80	ID	ID	4400									
Tert-Butylbenzene	ug/L	1	80	ID	ID	8900									
Carbon disulfide {I,R}	ug/L	5	800	2.5E+5	5.5E+5	1.2E+6 {S}						<5.0			
Carbon tetrachloride	ug/L	1	5.0 {A}	370	2400	4600	<1	<1	<4	<10	<20	<1.0	<1	<1	<4
Chlorobenzene {I}	ug/L	1	100 {A}	2.1E+5	4.7E+5 {S}	86000	115	<1	<1	<10	<5	<1.0	77	<1	<1
Chlorodibromomethane	ug/L	5	80 {A,W}	14000	1.1E+5	18000									
Chloroethane {I}	ug/L	5	430	5.7E+6 {S}	5.7E+6 {S}	4.4E+5	<1	114	<10	71	<50	<1.0	<1	<1	<10
2-Chloroethyl vinyl ether	ug/L	10	ID	ID	ID	ID	<1	<1	<10	<10	<50		<1	<1	<10
Chloroform	ug/L	1	80 {A,W}	28000	1.8E+5	1.5E+5	<1	<1	<1	<10	<5	<1.0	<1	<1	<1
1-Chlorohexane	ug/L	NA	NA	NA	NA	NA									
Chloromethane {I}	ug/L	5	260	8600	45000	4.9E+5	<1	<1	<10	<10	<50	<1.0	<1	<1	<10
2-Chlorotoluene	ug/L	5	150	2.2E+5	3.7E+5 {S}	44000									
4-Chlorotoluene	ug/L	5	NA	NA	NA	NA									
1,2-Dibromo-3-Chloropropane	ug/L	0.2	0.2 {A}	1200 {S}	1200 {S}	390									
Dibromochloromethane	ug/L	5	80 {A,W}	14000	1.1E+5	18000	<1	<1	<3	<10	<15		<1	<1	<3
Ethylene dibromide	ug/L	0.05	0.05 {A}	2400	15000	25									
Ethylene dibromide	ug/L	0.05	0.05 {A}	2400	15000	25									
Dibromomethane	ug/L	5	80	ID	ID	5.3E+5						<1.0			
trans-1,4-Dichloro-2-butene	ug/L	1	NA	NA	NA	NA						<5.0			
1,2-Dichlorobenzene	ug/L	1	600 {A}	1.6E+5 {S}	1.6E+5 {S}	1.6E+5 {S}			<15	<10	<75				<15
1,3-Dichlorobenzene	ug/L	1	6.6	18000	41000	2000			<15	<10	<75				<15
1,4-Dichlorobenzene	ug/L	1	75 {A}	16000	74000 {S}	6400			<15	<10	<75				<15
Dichlorodifluoromethane	ug/L	5	1700	2.2E+5	3.0E+5 {S}	3.0E+5 {S}			<10	<10	<50	<1.0			<10
1,1-Dichloroethane {I}	ug/L	1	880	1.0E+6	2.3E+6	2.4E+6	3.7	123	30	23	20	3.8	<1	<1	<2
1,2-Dichloroethane {I}	ug/L	1	5.0 {A}	9600	59000	19000	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
1,1-Dichloroethylene {I}	ug/L	1	7.0 {A}	200	1300	11000	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
cis-1,2-Dichloroethylene {I}	ug/L	1	70 {A}	93000	2.1E+5	2.0E+5				<10		<1.0			
trans-1,2-Dichloroethylene	ug/L	1	100 {A}	85000	2.0E+5	2.2E+5	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
1,2-Dichloropropane {I}	ug/L	1	5.0 {A}	16000	36000	16000	<1	<1	<3	<10	<15	<1.0	<1	<1	<3
1,3-Dichloropropane	ug/L	1	NA	NA	NA	NA									
2,2-Dichloropropane	ug/L	1	NA	NA	NA	NA									
cis-1,3-Dichloropropene {I,J}	ug/L	1	8.5	3900	26000	5500		<1				<1.0		<1	

Page 2 of 26

Sample Location		Target	Residential	Residential	Non-Residential	Groundwater	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-2	GMW-2	GMW-2
Lab Sample ID		Method	Drinking	Groundwater	Groundwater	Contact	2930-01	2930-11	23464	30187	45676	253477	2930-02	2930-10	23465
Sampled By		Detection	Water	Volatilization to	Volatilization to	Criteria	OHM	OHM	EDI	WWES	WWES	Horizon	OHM	OHM	EDI
Analyzed By		Limit	Criteria	Indoor Air	Indoor Air							TriMatrix			
Sample Date				Inhalation	Inhalation		9/5/85	3/19/86	8/2/89	12/5/89	8/2/90	6/16/2000	9/5/85	3/19/86	8/2/89
Sample Depth (Ft.)				Criteria	Criteria										
Volatiles Cont. U	Inits														
1,1-Dichloropropene u	Jg/L	1	NA	NA	NA	NA									
trans-1,3-Dichloropropene {I, J}	ug/L	1	8.5	3900	26000	5500	<1	<1	<4	<10	<20	<1.0	<1	<1	<4
cis-1,3-Dichloropropene {I,J}	Jg/L	1	8.5	3900	26000	5500	<1		<4	<10	<20		<1		<4
1,4-Dioxane u	Jg/L	1	85	NLV	NLV	1.7E+6						<150			
Ethyl ether u	Jg/L	10	10 {E}	6.1E+7 {S}	6.1E+7 {S}	3.5E+7									
Ethylbenzene {I}	ug/L	1	74 {E}	1.1E+5	1.7E+5 {S}	1.7E+5 {S}	<1	9.3	<1	<10	<5	<1.0	<1	<1	<1
Formaldehyde u	Jg/L	100	1300	63000	3.6E+5	3.0E+7									
Hexachloroethane u	Jg/L	5	7.3	27000	50000 {S}	1900									
2-Hexanone {I} u	Jg/L	50	1000	4.2E+6	8.7E+6	5.2E+6						<50			
Iodomethane u	Jg/L	1	NA	NA	NA	NA						<10			
Isopropyl benzene {I} u	Jg/L	5	800	56000 {S}	56000 {S}	56000 {S}						<1.0			
p-Isopropyltoluene u	Jg/L	5	NA	NA	NA	NA									
Methyl ethyl ketone	Jg/L	25	13000	2.4E+8 {S}	2.4E+8 {S}	2.4E+8 {S}									
Methyl isobutyl ketone u	Jg/L	50	1800	2.0E+7 {S}	2.0E+7 {S}	1.3E+7									
4-Methyl-2-pentanone (MIBK) {I}	Jg/L	50	1800	2.0E+7 {S}	2.0E+7 {S}	1.3E+7						<50			
Methyl-tert-butyl ether (MTBE) u	Jg/L	5	40 {E}	4.7E+7 {S}	4.7E+7 {S}	6.1E+5									
Methylene chloride	Jg/L	5	5.0 {A}	2.2E+5	1.4E+6	2.2E+5	<1	<1	<5	<10	<25	<5.0	<1	<1	<5
n-Propylbenzene {I} u	Jg/L	1	80	ID	ID	15000						<1.0			
Propionitrile u	Jg/L	NA	NA	NA	NA	NA						<10			
Styrene {I} u	Jg/L	1	100 {A}	1.7E+5	3.1E+5 {S}	9700						<1.0			
1,1,1,2-Tetrachloroethane u	Jg/L	1	77	15000	96000	30000						<1.0			
1,1,2,2-Tetrachloroethane u	Jg/L	1	8.5	12000	77000	4700	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
Tetrachloroethylene	Jg/L	1	5.0 {A}	25000	1.7E+5	12000	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
Toluene {I} u	Jg/L	1	790 {E}	5.3E+5 {S}	5.3E+5 {S}	5.3E+5 {S}	4.7	445	250	170	300	6.1	<1	<1	<1
1,2,3-Trichlorobenzene u	Jg/L	5	NA	NA	NA	NA									
1,2,4-Trichlorobenzene u	Jg/L	5	70 {A}	3.0E+5 {S}	3.0E+5 {S}	19000						<1.0			
1,1,1-Trichloroethane u	Jg/L	1	200 {A}	6.6E+5	1.3E+6 {S}	1.3E+6 {S}	<1	<1	<2	<10	<10	<1.0	<1	<1	<2
1,1,2-Trichloroethane u	Jg/L	1	5.0 {A}	17000	1.1E+5	21000	<1	<1	<3	<10	<15	<1.0	<1	<1	<3
Trichloroethylene	Jg/L	1	5.0 {A}	15000	97000	22000	<1	<1	<2	<10	<10	3.2	<1	<1	<2
Trichlorofluoromethane u	Jg/L	1	2600	1.1E+6 {S}	1.1E+6 {S}	1.1E+6 {S}		<10	<3	<10	<15	<1.0		<10	<3
1,2,3-Trichloropropane u	Jg/L	1	42	8300	18000	84000						<1.0			
	Jg/L	1	63 {E}	56000 {S}	56000 {S}	56000 {S}						<1.0			
1,3,5-Trimethylbenzene {I} u	Jg/L	1	72 {E}	61000 {S}	61000 {S}	61000 {S}						<1.0			
Vinyl acetate u	Jg/L	100	640	4.1E+6	8.9E+6	8.0E+6						<5.0			
Vinyl chloride u	Jg/L	1	2.0 {A}	1100	13000	1000	<1	<1	<10	<10	<50	<1.0	<1	<1	<10
Xylene, p&m u	Jg/L	2	280 {E}	1.9E+5 {S}	1.9E+5 {S}	1.9E+5 {S}									
Xylene (Total)	ug/L	3	280 {E}	1.9E+5 {S}	1.9E+5 {S}	1.9E+5 {S}		48.4		<30	32				
Xylene, o u	ug/L	1	280 {E}	1.9E+5 {S}	1.9E+5 {S}	1.9E+5 {S}						<3.0			
Semi-Volatiles U	Inits														
Acenaphthene u	Jg/L	5	1300	4200 {S}	4200 {S}	4200 {S}						<5.0			
Acenaphthylene u	Jg/L	5	52	3900 {S}	3900 {S}	3900 {S}						<5.0			
Acetophenone u	ug/L	5	1500	6.1E+6 {S}	6.1E+6 {S}	6.1E+6 {S}						<10			
Aniline {I}		4	53	NLV	NLV	1.4E+5				1		<5.0			

Page 3 of 26

Lab Sample ID Method Direkting Orinizing Decision Orinizing France Consider France Consoconsider France Consider France <th>Sample Location</th> <th></th> <th>Target</th> <th>Residential</th> <th>Residential</th> <th>Non-Residential</th> <th>Groundwater</th> <th>GMW-1</th> <th>GMW-1</th> <th>GMW-1</th> <th>GMW-1</th> <th>GMW-1</th> <th>GMW-1</th> <th>GMW-2</th> <th>GMW-2</th> <th>GMW-2</th>	Sample Location		Target	Residential	Residential	Non-Residential	Groundwater	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-2	GMW-2	GMW-2
Analyzou Sy Limit Criteria Inductor Air Instalation Criteria Instalation (Criteria PS-56 3/19/86 8/209 PC/16/200 9/16/80 >>>>>>>>>>>>>>>>>>>>>>>>>>>>	Lab Sample ID		-	Drinking	Groundwater	Groundwater	Contact	2930-01	2930-11	23464	30187	45676	253477	2930-02	2930-10	23465
Analyzed by Sample Date Limit Criteria Industrian Prob Signale Date Prob Criteria Prob Prob< Prob Prob Prob Prob< Prob Prob< Prob< Pro <t< td=""><td>Sampled By</td><td></td><td>Detection</td><td>Water</td><td>Volatilization to</td><td>Volatilization to</td><td>Criteria</td><td>ОНМ</td><td>OHM</td><td>EDI</td><td>WWES</td><td>WWES</td><td>Horizon</td><td>ОНМ</td><td>OHM</td><td>EDI</td></t<>	Sampled By		Detection	Water	Volatilization to	Volatilization to	Criteria	ОНМ	OHM	EDI	WWES	WWES	Horizon	ОНМ	OHM	EDI
Sample Darke term Inhelation Criteria Strate 91986 92/98 12/89 </td <td></td> <td></td> <td>Limit</td> <td>Criteria</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TriMatrix</td> <td></td> <td></td> <td></td>			Limit	Criteria									TriMatrix			
Semi-Value Cont Unit T					Inhalation	Inhalation		9/5/85	3/19/86	8/2/89	12/5/89	8/2/90	6/16/2000	9/5/85	3/19/86	8/2/89
Anthream up1 5 43 (5) 43 (5) 43 (5) 43 (5) - <th< td=""><td>Sample Depth (Ft.)</td><td></td><td></td><td></td><td>Criteria</td><td>Criteria</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Sample Depth (Ft.)				Criteria	Criteria										
Bandadine upl. 0.3 0.3 (M) 50037 NLV NLV 7.1 <td>Semi-Volatiles Cont.</td> <td>Jnits</td> <td></td>	Semi-Volatiles Cont.	Jnits														
Benzonjantrisone (Q) up1, 1 2.1 NLV NLV NLV 94 (S,AA)	Anthracene	ug/L	5	43 {S}	43 {S}	43 {S}	43 {S}						<5.0			
Benzoighyrene (Q) Upt 1 15 (SA) NLV NLV NLV 10 (MAA): 0.64	Benzidine	ug/L	0.3	0.3 {M} :0.0037	NLV	NLV	7.1									
Benzolzskilluoranthene (Q) upL 1 15.(S.AA) ID ID ID 15.(S.AA) ID	Benzo(a)anthracene {Q}	ug/L	1	2.1	NLV	NLV	9.4 {S,AA}						<5.0			
Berzogh, Journantene (Q) upL 1 1.5 (S,AA) ID ID 1.5 (S,AA) ID ID 1.5 (S,AA) ID ID 1.5 (S,AA) ID	Benzo(a)pyrene {Q}	ug/L	1	5.0 {A}	NLV	NLV	1.0 {M,AA} :0.64						<5.0			
Benzoghumenene (D) ug/L 1 10 (M) 32 (S) NLV NLV 10 (MAA) 32 (S)	Benzo(b&k)fluoranthene {Q}	ug/L	1	1.5 {S,AA}	ID	ID	1.5 {S,AA}									
Benzolikuoaninhene (Q) uglt 1 10 (M) (38 (S) NLV NLV 10 (MAA) (38 (S)	Benzo(b)fluoranthene {Q}	ug/L	1	1.5 {S,AA}	ID	ID	1.5 {S,AA}						<5.0			
Benzy action ugl 50 3.2000 NLV NLV 3.5E+6 (S)	Benzo(g,h,i)perylene	ug/L	1	1.0 {M} :0.26 {S}	NLV	NLV	1.0 {M,AA} :0.26 {S}						<5.0			
Berryal achol und 50 10000 NLV NLV A.4.E+7 (B)	Benzo(k)fluoranthene {Q}	ug/L	1	1.0 {M} :0.8 {S}	NLV	NLV	1.0 {M,AA} :0.8 {S}						<5.0			
bis/c/Choronethoxy)methane ug/L 5 NA	Benzoic acid	ug/L	50	32000	NLV	NLV	3.5E+6 {S}									
bis/2 Dis/2 Dis/2 <thdis 2<="" th=""> <thdis 2<="" th=""> <thdi< td=""><td>Benzyl alcohol</td><td>ug/L</td><td>50</td><td>10000</td><td>NLV</td><td>NLV</td><td>4.4E+7 {S}</td><td></td><td></td><td></td><td></td><td></td><td><20</td><td></td><td></td><td></td></thdi<></thdis></thdis>	Benzyl alcohol	ug/L	50	10000	NLV	NLV	4.4E+7 {S}						<20			
bick2-Ethydneydphthatate ugL 5 NA N			5	NA	NA	NA	NA						<5.0			
bis/2 Emylperyliphinalate ug/L 5 6.0 (A) NLV NLV 320 (AA)	bis(2-Chloroethyl)ether {I}	ug/L	1	2.0	38000	2.1E+5	5700						<5.0			
bis/C Ethylhexyl)phthalate up/L 5 6.0 (A) NLV NLV 320 (AA)	bis(2-Chloroisopropyl)ether	uq/L	5	NA	NA	NA	NA						<5.0			
A-Brono diphenyl ether ugL 5 NA NA<		•	5	6.0 {A}	NLV	NLV	320 {AA}						<5.0			
Burly benzy phthalate understyle 5 1200 NLV NLV 2700 (S) <t< td=""><td></td><td>-</td><td>5</td><td>NA</td><td>NA</td><td>NA</td><td>NĂ</td><td></td><td></td><td></td><td></td><td></td><td><5.0</td><td></td><td></td><td></td></t<>		-	5	NA	NA	NA	NĂ						<5.0			
d-Chforonanitine ug/L 10 NA N		•	5	1200	NLV	NLV	2700 {S}						<5.0			
L-Chiroraniline ug/L 10 NA	4-Chloro-3-methylphenol	uq/L	5	150	NLV	NLV	79000									
beta-Chioronaphthalene ug/L 5 1800 D D 6700 (S) <td></td> <td>•</td> <td>10</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><20</td> <td></td> <td></td> <td></td>		•	10	NA	NA	NA	NA						<20			
2-Chiorophenol ug/L 10 45 4.9E+5 1.1E+6 94000		•	5	1800	ID	ID	6700 {S}						<5.0			
4-Chibror diphenyl ether ug/L 5 NA		-	10		4.9E+5	1.1E+6	• •						<5.0			
Chrysene (Q) ug/L 1 1.6 {S} ID ID 1.6 {S,AA}		•	5	NA	NA	NA	NA						<5.0			
Decabromodiphenyl ether ug/L 10 30 (S) 30 (S) 30 (S) 30 (S) 30 (S)		•		1.6 {S}		ID										
Din-actyl phthalate ug/L 5 130 NLV NLV 400			10		30 {S}	30 {S}	30 {S}									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5	• •		• •	• •						<5.0			
Dibenzofuran ug/L 4 ID 10000 {S} 10000 {S} ID							2.0 {M.AA} :0.31									
Din-butyl phthalate ug/L 5 880 NLV NLV 11000 {S} <td></td> <td>-</td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td>		-											<5.0			
1,2-Dichlorobenzene ug/L 1 600 {A} 1.6E+5 {S} 1.6E+5 {S} <td></td> <td></td> <td>5</td> <td>880</td> <td></td> <td></td> <td>11000 {S}</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td>			5	880			11000 {S}						<5.0			
1,3-Dichlorobenzene ug/L 1 6.6 18000 41000 2000 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 <td></td> <td>•</td> <td>1</td> <td>600 {A}</td> <td>1.6E+5 {S}</td> <td>1.6E+5 {S}</td> <td>1.6E+5 {S}</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td>		•	1	600 {A}	1.6E+5 {S}	1.6E+5 {S}	1.6E+5 {S}						<5.0			
1,4-Dichlorobenzene ug/L 1 75 {A} 16000 74000 {S} 6400		-	1			. ,							<5.0			
3,3'-Dichlorobenzidine ug/L 0.3 1.1 NLV NLV 180			1	75 {A}	16000	74000 {S}	6400						<5.0			
2,4-Dichlorophenol ug/L 10 73 NLV NLV 48000 </td <td></td> <td>•</td> <td>0.3</td> <td></td> <td>NLV</td> <td>• •</td> <td>180</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		•	0.3		NLV	• •	180									
2,6-Dichlorophenol ug/L 5 NA NA NA NA NA NA		•	10	73	NLV	NLV	48000						<5.0			
Diethyl phthalate ug/L 5 5500 NLV NLV 1.1E+6 {S} <td>·</td> <td>0</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td>	·	0	5										<5.0			
Dimethyl phthalate ug/L 5 73000 NLV NLV 4.2E+6 {S} </td <td></td> <td></td> <td>5</td> <td>5500</td> <td>NLV</td> <td>NLV</td> <td>1.1E+6 {S}</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td>			5	5500	NLV	NLV	1.1E+6 {S}						<5.0			
2,4-Dimethylphenol ug/L 5 370 NLV NLV 5.2E+5		-					• •									
3,3-Dimethylbenzidine ug/L 0.3 NA			-													
2,4-Dinitrophenol ug/L 25 NA NA NA NA		•	-													
2,4-Dinitrotoluene ug/L 5 7.7 NLV NLV 8600 </td <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		•											-			
2,6-Dinitrotoluene ug/L 5 NA NA NA NA		-														
Diphenylamine ug/L NA NA NA NA NA < <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-														
1,2-Diphenylhydrazine ug/L 5 NA NA NA NA NA													<10			
		•											-			
Fluoranthene ug/L 1 210 {S} 210 {S} 210 {S} < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		•	-										<5.0			

Page 4 of 26

Sample Location		Target	Residential	Residential	Non-Residential	Groundwater	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-2	GMW-2	GMW-2
Lab Sample ID		Method	Drinking	Groundwater	Groundwater	Contact	2930-01	2930-11	23464	30187	45676	253477	2930-02	-	-
Sampled By		Detection	Water	Volatilization to	Volatilization to	Criteria	OHM	OHM	EDI	WWES	WWES	Horizon	OHM	OHM	EDI
Analyzed By		Limit	Criteria	Indoor Air	Indoor Air	Ontonia	OT IN	011101	LDI			TriMatrix	OT IN	OT IN	LDI
Sample Date		Linit	Onteria	Inhalation	Inhalation		9/5/85	3/19/86	8/2/89	12/5/89	8/2/90	6/16/2000	9/5/85	3/19/86	8/2/89
Sample Depth (Ft.)				Criteria	Criteria		5/6/00	0/10/00	0/2/03	12/0/00	0/2/30	0/10/2000	5/0/00	0/10/00	0/2/03
Semi-Volatiles Cont.	Units			ontonia	ontonia										
Fluorene	ug/L	5	880	2000 {S}	2000 {S}	2000 {S}						<5.0			
Hexachlorobenzene (C-66)	ug/L	0.2	1.0 {A}	440	3000	4.6									
Hexachlorobutadiene (C-46)	ug/L	0.05	15	1600	3200 {S}	400									
Hexachlorocyclopentadiene (C-56)	ug/L	5	50 {A}	130	420	1600									
Hexachloroethane	ug/L	5	7.3	27000	50000 {S}	1900						<5.0			
Hexachloropropene	ug/L	NA	NA	NA	NA	NA						<50			
Indeno(1,2,3-cd)pyrene {Q}	ug/L	2	2.0 {M} :0.022 {S}	NLV	NLV	2.0 {M} :0.022 {S}						<5.0			
Isophorone	ug/L	5	2.0 (W) .0.022 (O) 770	NLV	NLV	2.0 (M) .0.022 (0) 9.9E+5						<5.0			
2-Methyl-4,6-dinitrophenol	ug/L	20	20 {M} :2.6	NLV	NLV	9500									
2-Methylnaphthalene	ug/L	5	260	25000 {S}	25000 {S}	25000 {S}						<5.0			
2-Methylphenol {J}	ug/L ug/L	10	370	25000 {3} NLV	25000 {5} NLV	8.1E+5						<5.0			
3-Methylphenol {J}	ug/L	10	370	NLV	NLV	8.1E+5						<5.0			
4-Methylphenol {J}	ug/L	10	370	NLV	NLV	8.1E+5						<5.0			
Naphthalene	ug/L	5	520	31000 {S}	31000 {S}	31000 {S}						<5.0			
1,4-Naphthylamine	ug/L	NA	NA	NA	NA	NA						<10			
1-Naphthylamine	ug/L	NA	NA	NA	NA	NA						<10			
2-Naphthylamine	ug/∟ ug/L	NA	NA	NA	NA	NA						<10			
2-Nitroaniline	ug/∟ ug/L	25	NA	NA	NA	NA						<20			
3-Nitroaniline	ug/L ug/L	25	NA	NA	NA	NA						<20			
4-Nitroaniline	ug/L ug/L	25	NA	NA	NA	NA						<20			
Nitrobenzene {I}	ug/∟ ug/L	3	3.4	2.8E+5	5.5E+5	11000						<5.0			
2-Nitrophenol	ug/L ug/L	5	20	NLV	NLV	79000						<5.0			
4-Nitrophenol	ug/∟ ug/L	25	NA	NA	NA	7 9000 NA						<5.0			
4-Nitroquinoline-1-oxide	•	NA NA	NA	NA	NA	NA						<10			
n-Nitroso-di-n-propylamine	ug/L	5	5.0 {M} :0.19	NLV	NLV	360						<10			
N-Nitroso-di-methylamine	ug/L ug/L	5	5.0 {IN} .0.19 NA	NA	NA	NA									
N-Nitroso-di-methylamine	•	5	NA	NA	NA	NA									
N-Nitrosodiphenylamine	ug/L	5	270	NLV	NLV	35000 {S}									
Pentachlorophenol	ug/L ug/L	1	1.0 {A}	NLV	NLV	200									
Phenacetin	ug/L	NA	NA	NA	NA	NA						<10			
Phenanthrene	ug/L	2	52	1000 {S}	1000 {S}	1000 {S}						<5.0			
Phenol	ug/L	5	4400	NLV	NLV	2.9E+7						<5.0			
1,4-Phenylenediamine	ug/L	NA	4400 NA	NA	NA	NA						<10			
Pyrene	ug/L	5	140 {S}	140 {S}	140 {S}	140 {S}						<5.0			
Pyridine	ug/L ug/L	20	20 {M} :7.3	5500	12000	94000						<5.0 <10			
1,2,4-Trichlorobenzene	ug/L ug/L	20 5	20 {IVI} .7.3 70 {A}	3.0E+5 {S}	3.0E+5 {S}	19000						<10			
2,4,5-Trichlorophenol	-	5 5	70 {A} 730	3.0E+5 {5} NLV	3.0E+5 {5} NLV	1.7E+5						<10			
2,4,5-Trichlorophenol	ug/L ug/L	5	120	NLV	NLV	10000						<10			
Halogenateds	Units	4	120			10000						<3.0			
Hexabromobenzene	ug/L	0.02	0.17 {S} :20	ID	ID	0.17 {S} :1500									
Pentachlorobenzene	ug/L	0.02 5	6.1	ID	ID	240									
1,2,3,4-Tetrachlorobenzene	ug/L	5	NA	NA	NA	NA						<10			
1,2,4,5-Tetrachlorobenzene	ug/L ug/L	2	1300 {S}	1300 {S}	1300 {S}	1300 {S}						<10			
1,3,5-Trichlorobenzene	ug/L ug/L	5	NA	NA	NA	NA									
1,0,0-11011010000120110	uy/L	5	11/1	11/1	11/71	11/7	II								

Page 5 of 26

Sample Location		Target	Residential	Residential	Non-Residential	Groundwater	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-1	GMW-2	GMW-2	
Lab Sample ID		Method	Drinking	Groundwater	Groundwater	Contact	2930-01	2930-11	23464	30187	45676	253477	2930-02	2930-10	23465
Sampled By		Detection	Water	Volatilization to	Volatilization to	Criteria	OHM	OHM	EDI	WWES	WWES	Horizon	OHM	OHM	EDI
Analyzed By		Limit	Criteria	Indoor Air	Indoor Air							TriMatrix			
Sample Date				Inhalation	Inhalation		9/5/85	3/19/86	8/2/89	12/5/89	8/2/90	6/16/2000	9/5/85	3/19/86	8/2/89
Sample Depth (Ft.)				Criteria	Criteria										
PCB's	Units														
BP-6	ug/L	NA	NA	NA	NA	NA									
Aroclor 1016	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1221	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1232	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1242	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1248	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1254	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1260	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}						<0.20			
Aroclor 1262	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}									
Aroclor 1268	ug/L	0.2	0.5 {A}	45 {S}	45 {S}	3.3 {AA}									
Pesticides	Units				. ,										
Aldrin	ug/L	0.01	0.098	180 {S}	180 {S}	0.34 {AA}									
alpha-BHC	ug/L	0.05	0.43	2000 {S}	2000 {S}	60									
beta-BHC	ug/L	0.02	0.88	NLV	NLV	120									
delta-BHC	ug/L	0.05	NA	NA	NA	NA									
gamma-BHC (Lindane)	ug/L	0.03	0.2 {A}	ID	ID	190									
a-Chlordane {J}	ug/L	2	2.0 {A}	56 {S}	56 {S}	15 {AA}									
g-Chlordane {J}	ug/L	2	2.0 {A}	56 {S}	56 {S}	15 {AA}									
4-4'-DDD	ug/L	0.1	9.1	NLV	NLV	44 {AA}									
4-4'-DDE	ug/L	0.1	4.3	NLV	NLV	27 {AA}									
4-4'-DDT	ug/L	0.02	3.6	NLV	NLV	13 {AA}									
Dieldrin	ug/L	0.02	0.11	200 {S}	200 {S}	2.4 {AA}									
Endosulfan I {J}	ug/L	0.03	44	ID	ID	510 {S}									
Endosulfan II {J}	ug/L	0.03	44	ID	ID	510 {S}									
Endosulfan Sulfate {J}	ug/L	0.05	44	ID	ID	510 {S}									
Endrin	ug/L	0.02	2.0 {A}	NLV	NLV	160 {AA}									
Endrin Aldehyde	ug/L	0.02	NA	NA	NA	NA									
Heptachlor	ug/L	0.01	0.4 {A}	180 {S}	180 {S}	2.9 {AA}									
Heptachlor epoxide	ug/L	0.01	0.2 {A}	NLV	NLV	9.0 {AA}									
Methoxychlor	ug/L	0.5	40 {A}	ID	ID	45 (S)									
Mirex	ug/L	0.02	0.02 {M} :6.8E-6 {S}	ID	ID	0.02 {M} :6.8E-6 {S}									
Pentachloronitrobenzene	ug/L	20	32 {S}	32 {S}	32 {S}	32 {S}									
Toxaphene	ug/L	1	3.0 {A}	NLV	NLV	44									
Misc.	Units	1	. ,												
Alkalinity	ug/L	NA	NA	NA	NA	NA									
Bicarbonate Alkalinity	ug/L	NA	NA	NA	NA	NA									
Carbonate Alkalinity	ug/L	NA	NA	NA	NA	NA									
	umho/cm	NA	NA	NA	NA	NA									
PH	pН	NA	6.5 to 8.5 {E}	NA	NA	NA									

Page 6 of 26

Sample Location		Target	GMW-2	GMW-2	GMW-2	GMW-2	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-4 (dup)	GMW-4	GMW-4	GMW-4
Lab Sample ID		Method	30184	46003	109071-0001		2930-03	2930-09	23466	30185	46000		109071-0002		109071-0004	2930-04	2930-08	23468
Sampled By		Detection	WWES	WWES	WWES	MDNR	OHM	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR	WWES	OHM	OHM	EDI
Analyzed By		Limit																
Sample Date			12/5/89	8/6/90	11/23/92	11/24/92	9/5/85	3/19/86	8/2/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	11/23/92	9/5/85	3/19/86	8/3/89
Sample Depth (Ft.)																		
Volatiles	Units																	
Acetate	ug/L	1000				<5						<5						
Acetonitrile	ug/L	50																
Acrylonitrile {I}	ug/L	2																
Allyl Chloride	ug/L	NA																
Benzene {I}	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.6			44.8	<1000	<5000
Bromobenzene	ug/L	1			<1								<1					
Bromochloromethane	ug/L	1			<1								<1					
Bromodichloromethane	ug/L	1	<1	<2	<1	<1	<1	<1	<2	<1	<2	<1	<1			<1	<1000	<10000.
Bromoform	ug/L	1	<1	<15	<1	<1	<1	<1	<15	<1	<15	<1	<1			<1	<1000	<75000.
Bromomethane	ug/L	5	<1	<10	<1	<5	<1	<1	<10	<1	<10	<5	<1			<1	<1000	<50000
2-Butanone (MEK) {I}	ug/L	25																
n-Butylbenzene	ug/L	1			<1								<1					
sec-Butylbenzene	ug/L	1			<1								<1					
Tert-Butylbenzene	ug/L	1			<1								<1					
Carbon disulfide {I,R}	ug/L	5				<5						<5						
Carbon tetrachloride	ug/L	1	<1	<4	<1	<1	<1	<1	<4	<1	<4	<1	<1			<1	<1000	<20000
Chlorobenzene {I}	ug/L	1	8	7	<1	<1	23.1	13.3	<1	39	<1	2.2	<1			390000	141000	360000
Chlorodibromomethane	ug/L	5																
Chloroethane {I}	ug/L	5	<1	<10	<1	<5	<1	<1	<10	<1	<10	<5	<1			24.3	<1000	<50000.
2-Chloroethyl vinyl ether	ug/L	10	<1	<10			<1	<1	<10	<1	<10					<1	<1000	<50000.
Chloroform	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1	<1000	<5000
1-Chlorohexane	ug/L	NA			<1								<1					
Chloromethane {I}	ug/L	5	<1	<10	<1	<5	<1	<1	<10	<1	<10	<5	<1			<1	<1000	<50000.
2-Chlorotoluene	ug/L	5			<1								<1					
4-Chlorotoluene	ug/L	5			<1								<1					
1,2-Dibromo-3-Chloropropane	ug/L	0.2			<1								<1					
Dibromochloromethane	ug/L	5	<1	<3	<1	<1	<1	<1	<3	<1	<3	<1	<1			<1	<1000	<15000.
Ethylene dibromide	ug/L	0.05			<1	<1						<1	<1					
Ethylene dibromide	ug/L	0.05																
Dibromomethane	ug/L	5			<1								<1					
trans-1,4-Dichloro-2-butene	ug/L	1																
1,2-Dichlorobenzene	ug/L	1	<1	<15	<1				<15	<1	<15	<0.7	<1					<75000.
1,3-Dichlorobenzene	ug/L	1	<1	<15	<1				<15	<1	<15	<0.1	<1					<75000.
1,4-Dichlorobenzene	ug/L	1	<1	<15	<1				<15	<1	<15	<0.25	<1					<75000.
Dichlorodifluoromethane	ug/L	5	<1	<10	<1				<10	<1	<10		<1					<50000.
1,1-Dichloroethane {I}	ug/L	1	<1	<2	<1	<1	<1	10.1	<2	1	<2	9.4 J	7			371	<1000	<10000.
1,2-Dichloroethane {I}	ug/L	1	<1	<2	<1	<1	<1	<1	<2	<1	<2	<1	<1			<1	<1000	<10000.
1,1-Dichloroethylene {I}	ug/L	1	<1	<2		<1	<1	<1	<2	<1	<2	<1				1.1	<1000	<10000.
cis-1,2-Dichloroethylene {I}	ug/L	1	<1		<1	<1				<1		<1	<1					
trans-1,2-Dichloroethylene	ug/L	1	<1	<2	<1	<1	<1	<1	<2	<1	<2	<1	<1			109	<1000	<10000.
1,2-Dichloropropane {I}	ug/L	1	<1	<3	<1	<1	<1	<1	<3	<1	<3	<1	<1			<1	<1000	<15000.
1,3-Dichloropropane	ug/L	1			<1								<1					
2,2-Dichloropropane	ug/L	1			<1								<1					
cis-1,3-Dichloropropene {I,J}	ug/L	1						<1									<1000	
	~g/ L	<u> </u>						N									~1000	

Page 7 of 26

Sample Location		Target	GMW-2	GMW-2	GMW-2	GMW-2	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-4 (dup)	GMW-4	GMW-4	GMW-4
Lab Sample ID		Method	30184	46003	109071-0001	-	2930-03	2930-09	23466	30185	46000		109071-0002		109071-0004	2930-04	2930-08	23468
Sampled By		Detection	WWES	WWES	WWES	MDNR	OHM	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR	WWES	OHM	OHM	EDI
Analyzed By		Limit																
Sample Date			12/5/89	8/6/90	11/23/92	11/24/92	9/5/85	3/19/86	8/2/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	11/23/92	9/5/85	3/19/86	8/3/89
Sample Depth (Ft.)			, 0, 00	0,0,00			0,0,00	0, 10,00	0, 2, 00	, 0, 00	0,0,00		1,20,02			0,0,00	0, 10,00	0,0,00
Volatiles Cont.	Units																	
1,1-Dichloropropene	ug/L	1			<1								<1					
trans-1,3-Dichloropropene {I, J}	ug/L	1	<1	<4		<1	<1	<1	<4	<1	<4	<1				<1	<1000	<20000.
cis-1,3-Dichloropropene {I,J}	ug/L	1	<1	<4		<1	<1		<4	<1	<4	<1				<1		<20000.
1,4-Dioxane	ug/L	1																
Ethyl ether	ug/L	10																
Ethylbenzene {I}	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1	<1000	<5000
Formaldehyde	ug/L	100																
Hexachloroethane	ug/L	5																
2-Hexanone {I}	ug/L	50				<5						<5						
lodomethane	ug/L	1																
Isopropyl benzene {I}	ug/L	5			<1								<1					
p-Isopropyltoluene	ug/L	5			<1								<1					
Methyl ethyl ketone	ug/L	25				<5						<5						
Methyl isobutyl ketone	ug/L	50				<5						<5						
4-Methyl-2-pentanone (MIBK) {I}	ug/L	50																
Methyl-tert-butyl ether (MTBE)	ug/L	5				<5						<5						
Methylene chloride	ug/L	5	<1	<5	<1	<5	<1	<1	<5	<1	<5	<5	<1			42	<1000	<25000.
n-Propylbenzene {I}	ug/L	1			<1								<1					
Propionitrile	ug/L	NA																
Styrene {I}	ug/L	1			<1	<1						<1	<1					
1,1,1,2-Tetrachloroethane	ug/L	1			<1								<1					
1,1,2,2-Tetrachloroethane	ug/L	1	<1	<2	<1	<1	<1	<1	<2	<1	<2	<1	<1			<1	<1000	<10000.
Tetrachloroethylene	ug/L	1	<1	<2	<1	<1	<1	<1	<2	<1	<2	<1	<1			11	<1000	<10000.
Toluene {I}	ug/L	1	<1	<1	3.5	<1	<1	<1	<1	<1	<1	<1	1.2			2020	<1000	<5000
1,2,3-Trichlorobenzene	ug/L	5			<1							<0.01	<1					
1,2,4-Trichlorobenzene	ug/L	5			<1							< 0.01	<1					
1,1,1-Trichloroethane	ug/L	1	<1	<2	<1	<1	<1	5.55	<2	<1	<2	<1	<1			5.5	<1000	<10000.
1,1,2-Trichloroethane	ug/L	1	<1	<3	<1	<1	<1	<1	<3	<1	<3	<1	<1			<1	<1000	<15000.
Trichloroethylene	ug/L	1	<1	<2	<1	<1	<1	<1	<2	2	<2	2.5	<1			21.6	<1000	<10000.
Trichlorofluoromethane	ug/L	1	<1	<3	<1			<10	<3	<1	<3		<1				<1000	<15000.
1,2,3-Trichloropropane	ug/L	1			<1								<1					
1,2,4-Trimethylbenzene {I}	ug/L	1			<1								<1					
1,3,5-Trimethylbenzene {I}	ug/L	1			<1								<1					
Vinyl acetate	ug/L	100																
Vinyl chloride	ug/L	1	<1	<10	<1	<5	<1	<1	<10	<1	<10	<5	<1			4.6	<1000	<50000.
Xylene, p&m	ug/L	2																
Xylene (Total)	ug/L	3	<3	<5	<1	<1				<3	<5	1.9	<1					
Xylene, o	ug/L	1																
Semi-Volatiles	Units	1																
Acenaphthene	ug/L	5			<5	<1						<1	<5					
Acenaphthylene	ug/L	5			<5	<1						<1	<5					
Acetophenone	ug/L	5																
Aniline {I}	ug/L	4			<5								<5					
	~9/ L				~~	1	1					1	~~	1	1	1	1	

Page 8 of 26

Sample Location	Target	GMW-2	GMW-2	GMW-2	GMW-2	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-4 (dup)	GMW-4	GMW-4	GMW-4
Lab Sample ID	Method	30184	46003	109071-0001		2930-03	2930-09	23466	30185	46000		109071-0002		109071-0004	2930-04	2930-08	23468
Sampled By	Detection	WWES	WWES	WWES	MDNR	OHM	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR	WWES	OHM	OHM	EDI
Analyzed By	Limit																
Sample Date		12/5/89	8/6/90	11/23/92	11/24/92	9/5/85	3/19/86	8/2/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	11/23/92	9/5/85	3/19/86	8/3/89
Sample Depth (Ft.)		, .,							, .,								
Semi-Volatiles Cont. Units																	
Anthracene ug/L	5			<5	<1						<1	<5					
Benzidine ug/L	0.3			<5	<15						<15	<5					
Benzo(a)anthracene {Q} ug/L	1			<5	<1						<1	<5					
Benzo(a)pyrene {Q} ug/L	1			<5	<2						<2	<5					
Benzo(b&k)fluoranthene {Q} ug/L	1																
Benzo(b)fluoranthene {Q} ug/L	1			<5	<2						<2	<5					
Benzo(g,h,i)perylene ug/L	1			<5	<5						<5	<5					
Benzo(k)fluoranthene {Q} ug/L	1			<5	<2						<2	<5					
Benzoic acid ug/L	50			<5								<5					
Benzyl alcohol ug/L	50			<5								<5					
bis(2-Chloroethoxy)methane ug/L	5			<5	<2						<2	<5					
bis(2-Chloroethyl)ether {I} ug/L	1			<5	<1						<1	<5					
bis(2-Chloroisopropyl)ether ug/L	5			<5	<1						<1	<5					
bis(2-Ethylhexyl)phthalate	5			<5	2.5						2.5	<5					
4-Bromo diphenyl ether ug/L	5			<5	<2						<2	<5					
Butyl benzyl phthalate ug/L	5			<5	<1						<1	<5					
4-Chloro-3-methylphenol ug/L	5			<5	<10						<10	<5					
4-Chloroaniline ug/L	10			<5 <5								<5 <5					
beta-Chloronaphthalene uq/L	5			<5 <5	<2						<2	<5 <5					
2-Chlorophenol ug/L	10			<5 <5	<10						<10	<5 <5					
4-Chloro diphenyl ether ug/L	5			<5								<5					
Chrysene {Q} ug/L	1			<5	<1						<1	<5 <5					
, , ,	10																
	5			 <5	<2						<2	 <5					
Di-n-octyl phthalate ug/L Dibenzo(a,h)anthracene {Q} ug/L	2			<5 <5	<2 <5						<2 <5	<5 <5					
	4				<0						<0	<5 <5					
	4 5			<5								-					
Di-n-butyl phthalate ug/L	5 1			<5	<1						<1	<5					
1,2-Dichlorobenzene ug/L				<5	<1						<1	<5					
1,3-Dichlorobenzene ug/L	1			<5	<1						<1	<5					
1,4-Dichlorobenzene ug/L	1			<5	<1						<1	<5					
3,3'-Dichlorobenzidine ug/L	0.3			<5	<10						<10	<5					
2,4-Dichlorophenol ug/L	10			<5	<10						<10	<5					
2,6-Dichlorophenol ug/L	5																
Diethyl phthalate ug/L	5			<5	<1						<1	<5					
Dimethyl phthalate ug/L	5			<5	<2						<2	<5					
2,4-Dimethylphenol ug/L	5			<5	<10						<10	<5					
3,3-Dimethylbenzidine ug/L	0.3																
2,4-Dinitrophenol ug/L	25			<5	<50						<50	<5					
2,4-Dinitrotoluene ug/L	5			<5	<5						<5	<5					
2,6-Dinitrotoluene ug/L	5			<5	<5						<5	<5					
Diphenylamine ug/L	NA																
1,2-Diphenylhydrazine ug/L	5				<2						<2						
Fluoranthene ug/L	1			<5	<1						<1	<5					

Page 9 of 26

Lab. Sample ID Merrior 3014 4000 VES VMCS VMCS VMCS	Sample Location		Target	GMW-2	GMW-2	GMW-2	GMW-2	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-3	GMW-4 (dup)	GMW-4	GMW-4	GMW-4
Sampled by Detection WOVES WOVES WOVES MONR WVES MONR <td>Lab Sample ID</td> <td></td> <td>•</td> <td></td> <td>46003</td> <td>109071-0001</td> <td></td> <td>2930-03</td> <td>2930-09</td> <td>23466</td> <td>30185</td> <td>46000</td> <td></td> <td>109071-0002</td> <td></td> <td></td> <td></td> <td>2930-08</td> <td>23468</td>	Lab Sample ID		•		46003	109071-0001		2930-03	2930-09	23466	30185	46000		109071-0002				2930-08	23468
Analyzed by Limit Limit <thlimit< th=""> Limit Limit</thlimit<>						WWES	MDNR	OHM	OHM	EDI	WWES		MDNR	WWES	MDNR			OHM	EDI
Sample Depine																		• • • • • • • • • • • • • • • • • • • •	
Sample Depth (FL) Image				12/5/89	8/6/90	11/23/92	11/24/92	9/5/85	3/19/86	8/2/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	11/23/92	9/5/85	3/19/86	8/3/89
Semi-Vacality Cont Units	•			, 0, 00	0,0,00			0,0,00	0, 10,00	0,2,00	, 0, 00	0,0,00		1.1.20,02			0,0,00	0, 10,00	0,0,00
Fluctede Up1 5		Units																	
Herachickbanzene (C-64) ugL 0.2 u. u. d. d. u. u. u. u. u			5																
Hoadehoodshiden (C-4) Ug1 0.5 ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···<		0																	
HouseAbsorphisAligne (2-69) ugl 5 n		•																	
Heise Heise Up 5 " <th"< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th"<>		-																	
HeakeAltoparpoine Ugl NA Im Im <td></td> <td>0</td> <td></td>		0																	
Inden (1,2,3-cd) pyrene (Q) up (L) 2																			
Isophore Upt 5 -		-																	
2.Methy/4.G-initrophenol upl 20		-																	
2.Metry/phanel upl 5 m		-																	
Zheffryghen (i) uglt, 10		0											-						
3-Metryphon (j) ug/L 10																			
4-Metrylphenol (J) uglt 10		0	-										-						
Naphtheine ugl 5		-																	
1.4-Naphthy/amine ug/L NA <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-																	
1-Naphtylamine uğl NA		0	-																
2-Naporthylamine ug/L NA <td></td>																			
2-Nitroaniline ug/L 25		-																	
3-Niroscol-in-propriamine ug/L 25 <		-																	
4-Nitroaniline ug/L 25																			
Nitrobargene (I) ug/L 3 <td></td> <td>0</td> <td></td>		0																	
2-Nirophenol ug/L 5 < < <td></td> <td>-</td> <td></td>		-																	
4-Nitrophenol ug/L 25 <td></td> <td>-</td> <td>-</td> <td></td>		-	-																
4-Nirogunoline-1-oxide ug/L NA		-																	
n-Nitroso-di-n-propylamine ug/L 5 <		-																	
N-Nitroso-di-methylamine ug/L 5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			
N-Nitroso-di-methylamine ug/L 5 $< < 5$ $< < 5$ $< < 5$ $< < 5$ $< < 5$ $< < 5$ $< < 5$ $< < 5$ $< < < 5$ $< < 5$ $< < 5$ $< < < < 5$ $< < 5$ $< < 5$ $< < < 5$ $< < < 5$ $< < < 5$ $< < 5$ $< < 5$ $< < < 5$ $< < < 5$ $< < < 5$ $< < < 5$ $< < < 5$ $< < < 5$ $< < 5$ $< < < < < < < < < < < < < < < < < < < $,	-	-				<2						<2						
N-Nitrosodiphenylamine ug/L 5	-	-																	
Pentachlorophenol ug/L 1 < <td>-</td> <td>0</td> <td></td>	-	0																	
Phenacetin ug/L NA		ug/L	5			<5	<5						<5	<5					
Phenanthrene ug/L 2	Pentachlorophenol	ug/L	1			<5	<40						<40	<5					
Phenol ug/L 5 <-5 10	Phenacetin	ug/L																	
1,4-Phenylenediamine ug/L NA	Phenanthrene	ug/L	2			<5	<1						<1	<5					
Pyrene ug/L 5 < <	Phenol	ug/L	5			<5	10						10	<5					
Pyridine ug/L 20	1,4-Phenylenediamine	ug/L	NA																
1,2,4-Trichlorobenzene ug/L 5 <-2 <-5 -	Pyrene	ug/L	5			<5	<1						<1	<5					
1,2,4-Trichlorobenzene ug/L 5 <-2 <-5 -	Pyridine	ug/L	20																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,4-Trichlorobenzene	ug/L	5			<5	<2						<2	<5					
2,4,6-Trichlorophenol ug/L 4 <-5 <10	2,4,5-Trichlorophenol	-	5			<5	<10						<10	<5					
Halogenateds Units Hexabromobenzene ug/L 0.02 <0.011	2,4,6-Trichlorophenol	0	4			<5	<10						<10	<5					
Pentachlorobenzene ug/L 5 <0.011 <0.011 <0.01 <t< td=""><td>Halogenateds</td><td>Units</td><td>]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Halogenateds	Units]																
1,2,3,4-Tetrachlorobenzene ug/L 5 < <t< td=""><td>Hexabromobenzene</td><td>ug/L</td><td>0.02</td><td></td><td></td><td></td><td><0.011</td><td></td><td></td><td></td><td></td><td></td><td><0.01</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Hexabromobenzene	ug/L	0.02				<0.011						<0.01						
1,2,4,5-Tetrachlorobenzene ug/L 2 <0.011 <0.01	Pentachlorobenzene	ug/L	5				<0.011						<0.01						
1,2,4,5-Tetrachlorobenzene ug/L 2 <0.011 <0.01	1,2,3,4-Tetrachlorobenzene	ug/L	5				<0.011						<0.01						
	1,2,4,5-Tetrachlorobenzene	0																	
	1,3,5-Trichlorobenzene	-																	

Page 10 of 26

Sampled By Detr Analyzed By Li Sample Date Sample Depth (Ft.) PCB's Units BP-6 ug/L Aroclor 1016 ug/L	NA 0.2	/5/89	46003 WWES 8/6/90	109071-0001 WWES 11/23/92	MDNR 11/24/92	2930-03 OHM 9/5/85	2930-09 OHM 3/19/86	23466 EDI 8/2/89	30185 WWES	46000 WWES	MDNR	109071-0002 WWES	MDNR	109071-0004 WWES	2930-04 OHM	2930-08 OHM	23468 EDI
Analyzed By Li Sample Date Li Sample Depth (Ft.) Units PCB's Units BP-6 ug/L Aroclor 1016 ug/L	imit 12. NA 0.2	/5/89	8/6/90	-			-			_	MDNR	WWES	MDNR	WWES	OHM	OHM	EDI
Sample Date Sample Depth (Ft.) PCB's Units BP-6 ug/L Aroclor 1016 ug/L	12. NA 0.2			11/23/92	11/24/92	9/5/85	3/19/86	0/0/00									I
Sample Depth (Ft.) PCB's Units BP-6 ug/L N Aroclor 1016 ug/L N	NA 0.2			11/23/92	11/24/92	9/5/85	3/19/86	0/2/00						1			
PCB's Units BP-6 ug/L N Aroclor 1016 ug/L 0	0.2							0/2/09	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	11/23/92	9/5/85	3/19/86	8/3/89
BP-6 ug/L N Aroclor 1016 ug/L 0	0.2																
Aroclor 1016 ug/L 0	0.2																
					<0.055						<0.05						
	0.2				<0.11						<0.1						
Aroclor 1221 ug/L 0					<0.11						<0.1						
Aroclor 1232 ug/L 0	0.2				<0.11						<0.1						
Aroclor 1242 ug/L 0	0.2				<0.11						<0.1						
Aroclor 1248 ug/L 0	0.2				<0.11						<0.1						
Aroclor 1254 ug/L 0	0.2				<0.11						<0.1						
	0.2				<0.11						<0.1						
	0.2				<0.11						<0.1						
	0.2				<0.11						<0.1						
Pesticides Units																	
	0.01				<0.011						<0.01						
alpha-BHC ug/L 0	0.05				<0.011						<0.01						
	0.02				<0.011						<0.01						
delta-BHC ug/L 0	0.05				<0.011						<0.01						
gamma-BHC (Lindane) ug/L 0	0.03				<0.011						<0.01						
a-Chlordane {J} ug/L	2				<0.011						<0.01						
g-Chlordane {J} ug/L	2				<0.011						<0.01						
4-4'-DDD ug/L 0	0.1				<0.011						<0.01						
4-4'-DDE ug/L 0	0.1				<0.011						<0.01						
	0.02				<0.011						<0.01						
	0.02				<0.011						<0.01						
Endosulfan I {J} ug/L 0	0.03				<0.011						<0.01						
	0.03																
	0.05																
	0.02				<0.011						<0.01						
	0.02																
	0.01				<0.011						<0.01						
	0.01				<0.011						<0.01						
	0.5				<0.011						<0.01						
	0.02				<0.011						<0.01						
	20				<0.011						<0.01						
5					<0.11						<0.1						
Misc. Units																	
Alkalinity ug/L N	NA				430000								64000				
Bicarbonate Alkalinity ug/L N	NA				430000								64000				
	NA				<5000								<5000				
	NA				1605								876				
pH PH N	NA				7.57								8.62				

Page 11 of 26

Sample Location		Target	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4D	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5
Lab Sample ID		Method	30189	46002		109071-0003		110664-0001	109071-0004	2930-05	2930-12	23469	30188	45999		109071-0005	
Sampled By		Detection		WWES	MDNR	WWES	MDNR	WWES	WWES	OHM	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR
Analyzed By		Limit	_	_		_		-	-	_	-					_	
Sample Date			12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	8/9/93	11/23/92	9/5/85	3/19/86	8/3/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92
Sample Depth (Ft.)			, .,														
Volatiles	Units																
Acetate	ug/L	1000			560 BK										<5		
Acetonitrile	ug/L	50															
Acrylonitrile {I}	ug/L	2															
Allyl Chloride	ug/L	NA															
Benzene {I}	ug/L	1	<5000.	<5000	23	42			<1	<1	<1	<1	<1	<1	<1	<1	
Bromobenzene	ug/L	1				16			<1							<1	
Bromochloromethane	ug/L	1				<1			<1							<1	
Bromodichloromethane	ug/L	1	<5000.	<10000.	<10	<1			<1	<1	<1	<2	<1	<2	<1	<1	
Bromoform	ug/L	1	<5000.	<75000.	<10	<1			<1	<1	<1	<15	<1	<15	<1	<1	
Bromomethane	ug/L	5	<5000.	<50000	<50	<1			<1	<1	<1	<10	<1	<10	<5	<1	
2-Butanone (MEK) {I}	ug/L	25															
n-Butylbenzene	ug/L	1				<1			<1							<1	
sec-Butylbenzene	ug/L	1				<1			<1							<1	
Tert-Butylbenzene	ug/L	1				<1			<1							<1	
Carbon disulfide {I,R}	ug/L	5			<10										<5		
Carbon tetrachloride	ug/L	1	<5000.	<20000	<10	<1			<1	<1	<1	<4	<1	<4	<1	<1	
Chlorobenzene {I}	ug/L	1	210000	390000	62000	96000			86000	28	17.4	95	<1	<1	<1	2.5	
Chlorodibromomethane	ug/L	5															
Chloroethane {I}	ug/L	5	<5000.	<50000.	<50	<1			<1	<1	<1	<10	<1	<10	<5	<1	
2-Chloroethyl vinyl ether	ug/L	10	<5000.	<50000.						<1	<1	<10	<1	<10			
Chloroform	ug/L	1	<5000.	<5000	<10	<1			<1	<1	<1	<1	<1	<1	<1	<1	
1-Chlorohexane	ug/L	NA				<1			<1							<1	
Chloromethane {I}	ug/L	5	<5000.	<50000.	<50	<1			<1	<1	<1	<10	<1	<10	<5	<1	
2-Chlorotoluene	ug/L	5				<1			<1							<1	
4-Chlorotoluene	ug/L	5				<1			<1							<1	
1,2-Dibromo-3-Chloropropane	ug/L	0.2				<1			<1							<1	
Dibromochloromethane	ug/L	5	<5000.	<15000.	<10	<1			<1	<1	<1	<3	<1	<3	<1	<1	
Ethylene dibromide	ug/L	0.05			<10	<1			<1						<1	<1	
Ethylene dibromide	ug/L	0.05															
Dibromomethane	ug/L	5				<1			<1							<1	
trans-1,4-Dichloro-2-butene	ug/L	1															
1.2-Dichlorobenzene	ug/L	1	<5000.	<75000.	120 DMJ	280			290			<15	<1	<15	<0.5	<1	
1,3-Dichlorobenzene	ug/L	1	<5000.	<75000.	<10	<1			<1			<15	<1	<15	<0.11	<1	
1.4-Dichlorobenzene	ug/L	1	<5000.	<75000.	17 DM	41			<1			<15	<1	<15	<0.11	<1	
Dichlorodifluoromethane	ug/L	5	<5000.	<50000.		<1			<1			<10	<1	<10		<1	
1,1-Dichloroethane {I}	ug/L	1	<5000.	<10000.	71 J	110			<1	<1	10.6	<2	1	<2	<1	<1	
1,2-Dichloroethane {I}	ug/L	1	<5000.	<10000.	<10	<1			<1	<1	<1	<2	<1	<2	<1	<1	
1,1-Dichloroethylene {I}	ug/L	1	<5000.	<10000.	<10					<1	<1	<2	<1	<2	<1		
cis-1,2-Dichloroethylene {I}	ug/L	1	<5000.		28	56			<1				<1		<1	<1	
trans-1,2-Dichloroethylene	ug/L	1	<5000.	<10000.	<10	<1			<1	<1	<1	<2	<1	<2	<1	<1	
1,2-Dichloropropane {I}	ug/L	1	<5000.	<15000.	<10	<1			<1	<1	<1	<3	<1	<3	<1	<1	
1,3-Dichloropropane	ug/L	1				<1			<1							<1	
2,2-Dichloropropane	ug/L	1				<1			<1							<1	
cis-1,3-Dichloropropene {I,J}	ug/L	1									<1						
	~g/ L							-									-

Page 12 of 26

Sample Location		Target	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4D	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5
Lab Sample ID		Method	30189	46002		109071-0003		110664-0001	109071-0004	2930-05	2930-12	23469	30188	45999	Chill 0	109071-0005	0
Sampled By		Detection	WWES	WWES	MDNR	WWES	MDNR	WWES	WWES	OHM	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR
Analyzed By		Limit			MENT		MBRIT			01111	01111	LDI			mertit		in Brut
Sample Date		Linix	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	8/9/93	11/23/92	9/5/85	3/19/86	8/3/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92
Sample Depth (Ft.)			12/0/03	0/0/00	11/20/02	11/20/02	11/24/32	0/0/00	11/20/02	5/0/00	0/10/00	0/0/00	12/0/00	0/0/00	11/20/02	11/20/02	11/24/52
Volatiles Cont.	Units																
1,1-Dichloropropene	ug/L	1				<1			<1							<1	
trans-1,3-Dichloropropene {I, J}	ug/L	1	<5000.	<20000.	<10					<1	<1	<4	<1	<4	<1		
cis-1,3-Dichloropropene {I,J}	ug/L	1	<5000.	<20000.	<10					<1		<4	<1	<4 <4	<1		
1,4-Dioxane	ug/L	1	<0000. 	~20000.	~10												
Ethyl ether	ug/L	10															
Ethylbenzene {I}	ug/L	1	<5000.	11000	730 PS	360			370	<1	<1	<1	<1	<1	<1	<1	
Formaldehyde	•	100	<5000.												< I 		
Hexachloroethane	ug/L	5															
	ug/L	-															
2-Hexanone {I}	ug/L	50			100										<5		
lodomethane	ug/L	1															
Isopropyl benzene {I}	ug/L	5				<1			<1							<1	
p-lsopropyltoluene	ug/L	5				<1			<1							<1	
Methyl ethyl ketone	ug/L	25			89										<5		
Methyl isobutyl ketone	ug/L	50			<50										<5		
4-Methyl-2-pentanone (MIBK) {I}	ug/L	50															
Methyl-tert-butyl ether (MTBE)	ug/L	5			<50										<5		
Methylene chloride	ug/L	5	<5000.	<25000.	<50	<1			<1	<1	<1	<5	<1	<5	<5	<1	
n-Propylbenzene {I}	ug/L	1				<1			<1							<1	
Propionitrile	ug/L	NA															
Styrene {I}	ug/L	1			<10	<1			<1						<1	<1	
1,1,1,2-Tetrachloroethane	ug/L	1				<1			<1							<1	
1,1,2,2-Tetrachloroethane	ug/L	1	<5000.	<10000.	<10	<1			<1	<1	<1	<2	<1	<2	<1	<1	
Tetrachloroethylene	ug/L	1	<5000.	<10000.	14 PS	<1			<1	<1	<1	<2	<1	<2	<1	<1	
Toluene {I}	ug/L	1	<5000.	6500	1400 PS	760			790	<1	<1	<1	<1	<1	<1	<1	
1,2,3-Trichlorobenzene	ug/L	5			<10	<1			<1						<0.11	<1	
1,2,4-Trichlorobenzene	ug/L	5			0.099 BK	<1			<1						<0.11	<1	
1,1,1-Trichloroethane	ug/L	1	<5000.	<10000.	<10	<1			<1	<1	<1	<2	<1	<2	<1	<1	
1,1,2-Trichloroethane	ug/L	1	<5000.	<15000.	<10	<1			<1	<1	<1	<3	<1	<3	<1	<1	
Trichloroethylene	ug/L	1	<5000.	<10000.	<10	<1			<1	<1	<1	<2	<1	<2	<1	<1	
Trichlorofluoromethane	ug/L	1	<5000.	<15000.		<1			<1		<10	<3	<1	<3		<1	
1,2,3-Trichloropropane	ug/L	1				<1			<1							<1	
1,2,4-Trimethylbenzene {I}	ug/L	1				280			270							<1	
1,3,5-Trimethylbenzene {I}	ug/L	1				98			110							<1	
Vinyl acetate	ug/L	100															
Vinyl chloride	ug/L	1	<5000.	<50000.	<50	<1			<1	<1	<1	<10	<1	<10	<5	<1	
Xylene, p&m	ug/L	2															
Xylene (Total)	ug/L	3	<15000.	<25000.	1980 PS	920			910				<3	<5	<1	<1	
Xylene, o	ug/L	1															
Semi-Volatiles	Units	1															
Acenaphthene	ug/L	5			1.4	<5			<5						<1	<5	
Acenaphthylene	ug/L	5			<1	<5			<5						<1	<5	
Acetophenone	ug/L	5															
Aniline {I}	ug/L	4				<5			<5							<5	
- C)				1			1	1									1

Page 13 of 26

Sample Location		Target	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4D	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5
Lab Sample ID		Method	30189	46002		109071-0003		110664-0001	109071-0004	2930-05	2930-12	23469	30188	45999		109071-0005	
Sampled By		Detection	WWES	WWES	MDNR	WWES	MDNR	WWES	WWES	OHM	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR
Analyzed By		Limit															
Sample Date			12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	8/9/93	11/23/92	9/5/85	3/19/86	8/3/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92
Sample Depth (Ft.)																	
Semi-Volatiles Cont.	Units																
Anthracene	ug/L	5			<1	<5			<5						<1	<5	
Benzidine	ug/L	0.3			<15	<5			<5						<15	<5	
Benzo(a)anthracene {Q}	ug/L	1			<1	<5			<5						<1	<5	
Benzo(a)pyrene {Q}	ug/L	1			<2	<5			<5						<2	<5	
Benzo(b&k)fluoranthene {Q}	ug/L	1															
Benzo(b)fluoranthene {Q}	ug/L	1			<2	<5			<5						<2	<5	
Benzo(g,h,i)perylene	ug/L	1			<5	<5			<5						<5	<5	
Benzo(k)fluoranthene {Q}	ug/L	1			<2	<5			<5						<2	<5	
Benzoic acid	ug/L	50				<5			<5							<5	
Benzyl alcohol	ug/L	50				<5			<5							<5	
bis(2-Chloroethoxy)methane	ug/L	5			<2	<5			<5						<2	<5	
bis(2-Chloroethyl)ether {I}	ug/L	1			<1	5			<5						<1	<5	
bis(2-Chloroisopropyl)ether	ug/L	5			<1	<5			<5						<1	<5	
bis(2-Ethylhexyl)phthalate	ug/L	5			4.7	8			8						<2	<5	
4-Bromo diphenyl ether	ug/L	5			<2	<5			<5						<2	<5	
Butyl benzyl phthalate	ug/L	5			<1	<5			<5						<1	<5	
4-Chloro-3-methylphenol	ug/L	5			<11	<5			<5						<10	<5	
4-Chloroaniline	ug/L	10				<5			<5							<5	
beta-Chloronaphthalene	ug/L	5			<2	<5			<5						<2	<5	
2-Chlorophenol	ug/L	10			<11	<5			35						<10	<5	
4-Chloro diphenyl ether	ug/L	5			<1	<5			<5						<1	<5	
Chrysene {Q}	ug/L	1			<1	<5			<5						<1	<5	
Decabromodiphenyl ether	ug/L	10															
Di-n-octyl phthalate	ug/L	5			<2	<5			<5						<2	<5	
Dibenzo(a,h)anthracene {Q}	ug/L	2			<5	<5			<5						<5	<5	
Dibenzofuran	ug/L	4				<5			<5							<5	
Di-n-butyl phthalate	ug/L	5			<1	<5			<5						<1	<5	
1,2-Dichlorobenzene	ug/L	1			290J	<5			108						<1	<5	
1.3-Dichlorobenzene	ug/L	1			< 0.10	<5			<5						<1	<5	
1,4-Dichlorobenzene	ug/L	1			55	33			17						<1	<5	
3,3'-Dichlorobenzidine	ug/L	0.3			<10	<5			<5						<10	<5	
2,4-Dichlorophenol	ug/L	10			<11	<5			<5						<10	<5	
2,6-Dichlorophenol	ug/L	5															
Diethyl phthalate	ug/L	5			<1	<5			<5.0						<1	<5	
Dimethyl phthalate	0	5			<2	<5			<5						<2	<5	
2,4-Dimethylphenol	ug/L	5			<11	<5			<5 <5						<2 <10	<5 <5	
3,3-Dimethylbenzidine	ug/L	0.3				<5			<0						<10	<0	
2,4-Dinitrophenol	ug/L	25			 <55	 <5			 <5						 <50	 <5	
2,4-Dinitrophenoi	ug/L	25 5			<55	<5 <5			<5 <5							<5 <5	
	ug/L														<5		
2,6-Dinitrotoluene	ug/L	5			<5	<5			<5						<5	<5	
Diphenylamine	ug/L	NA															
1,2-Diphenylhydrazine	ug/L	5			<2										<2		
Fluoranthene	ug/L	1			0.87T	<5			<5						<1	<5	

Page 14 of 26

Sample Location		Target	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4	GMW-4D	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5	GMW-5
Lab Sample ID		Method	30189	46002		109071-0003		110664-0001	109071-0004	2930-05	2930-12	23469	30188	45999		109071-0005	
Sampled By		Detection	WWES	WWES	MDNR	WWES	MDNR	WWES	WWES	ОНМ	OHM	EDI	WWES	WWES	MDNR	WWES	MDNR
Analyzed By		Limit	_			_		-		-	-		_			_	
Sample Date			12/5/89	8/6/90	11/23/92	11/23/92	11/24/92	8/9/93	11/23/92	9/5/85	3/19/86	8/3/89	12/5/89	8/6/90	11/23/92	11/23/92	11/24/92
Sample Depth (Ft.)																	
Semi-Volatiles Cont.	Units																
Fluorene	ug/L	5			0.61T	<5			<5						<1	<5	
Hexachlorobenzene (C-66)	ug/L	0.2			<1	<5			<5						<1	<5	
Hexachlorobutadiene (C-46)	ug/L	0.05			<2	<5			<5						<2	<5	
Hexachlorocyclopentadiene (C-56)	ug/L	5			<2	<5			<5						<2	<5	
Hexachloroethane	ug/L	5			<1	<5			<5						<1	<5	
Hexachloropropene	ug/L	NA															
Indeno(1,2,3-cd)pyrene {Q}	ug/L	2			<5	<5			<5						<5	<5	
Isophorone	ug/L	5			<1	<5			<5						<1	<5	
2-Methyl-4,6-dinitrophenol	ug/L	20			<44	<5			<5						<40	<5	
2-Methylnaphthalene	ug/L	5				33			27							<5	
2-Methylphenol {J}	ug/L	10			<11	7			5						<10	<5	
3-Methylphenol {J}	ug/L	10															
4-Methylphenol {J}	ug/L	10			46	40			30						<10	<5	
Naphthalene	ug/L	5			84	56			59						<1	<5	
1,4-Naphthylamine	ug/L	NA															
1-Naphthylamine	ug/L	NA															
2-Naphthylamine	ug/L	NA															
2-Nitroaniline	ug/L	25				<5			<5							<5	
3-Nitroaniline	ug/L	25				<5			<5							<5	
4-Nitroaniline	ug/L	25				<5			<5							<5	
Nitrobenzene {I}	ug/L	3			<2	16			<5						<2	<5	
2-Nitrophenol	ug/L	5			<11	<5			<5						<10	<5	
4-Nitrophenol	ug/L	25			<44	<5			<5						<40	<5	
4-Nitroquinoline-1-oxide	ug/L	NA															
n-Nitroso-di-n-propylamine	ug/L	5			<2	<5			<5						<2	<5	
N-Nitroso-di-methylamine	ug/L	5				<5			<5							<5	
N-Nitroso-di-methylamine	ug/L	5				<5			<5							<5	
N-Nitrosodiphenylamine	ug/L	5			<5	<5			<5						<5	<5	
Pentachlorophenol	ug/L	1			<44	<5			<5						<40	<5	
Phenacetin	ug/L	NA															
Phenanthrene	ug/L	2			0.57T	<5			<5						<1	<5	
Phenol	ug/L	5			<11	<5			<5						<10	<5	
1,4-Phenylenediamine	ug/L	NA															
Pyrene	ug/L	5			1	<5			<5						<1	<5	
Pyridine	ug/L	20															
1,2,4-Trichlorobenzene	ug/∟ ug/L	5			<2	<5			<5						<2	<5	
2,4,5-Trichlorophenol	ug/L	5			<11	<5			<5 <5						<10	<5	
2,4,6-Trichlorophenol	ug/L ug/L	4			<11	<5			<5 <5						<10 <10	<5	
Halogenateds	Units				~	~~		-	~~						~10	~~	
Hexabromobenzene	ug/L	0.02			<0.01										<0.011		
Pentachlorobenzene	ug/L	5			<0.01										<0.011		
1,2,3,4-Tetrachlorobenzene	ug/L	5			<0.01										<0.011		
1,2,4.5-Tetrachlorobenzene	ug/L	2			<0.01										<0.011		
1,3,5-Trichlorobenzene	ug/∟ ug/L	5			<0.01										<0.011		
1,0,0-1110110100001120110	uy/L	5			<0.01										<u>\0.011</u>		

Page 15 of 26

Lab Sample ID Method 30189 46002 109071-0003 110664-0001 109071-0004 2930-05 2930-12 23469 30188 45999 Analyzed By Limit WWES MDNR WWES MDNR WWES MDNR WWES OHM OHM OHM B0H WWES MDNR Sample Date 11/25/89 8/6/90 11/23/92 11/23/92 11/24/92 8/9/93 11/123/92 9/5/85 3/19/86 8/3/89 12/5/89 8/6/90 11/23/92 PCB's Units NA <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05 <0.01	11/23/92 11	MDNR 11/24/92 -
Analyzed By Sample Date Sample Depth (Ft.) Limit I Limit I II/25/89 8/6/90 II/23/92 II/23/92 8/9/93 II/23/92 9/5/85 3/19/86 8/3/89 12/5/89 8/6/90 11/23/92 PCB's Units BP-6 Ug/L NA < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <t< td=""><td>11/23/92 11</td><td>11/24/92 </td></t<>	11/23/92 11	11/24/92
Sample Date Sample Depth (Ft.) Linits 12/5/89 8/6/90 11/23/92 11/23/92 8/9/93 11/23/92 9/5/85 3/19/86 8/3/89 12/5/89 8/6/90 11/23/92 PCB's Units Emploit MA <td>5</td> <td></td>	5	
Sample Depth (Ft.) Units Image: Construction of the second secon	5	
PCB's Units <td> 1</td> <td> </td>	 1	
BP-6 ug/L NA	 1	
Aroclor 1016 ug/L 0.2 <0.1 <0.05 <0.1 Aroclor 1221 ug/L 0.2 <0.1	 1	
Aroclor 1221 ug/L 0.2 <0.1 <0.05 <0.1 Aroclor 1232 ug/L 0.2 <0.1	 1	
Aroclor 1221 ug/L 0.2 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	 1	
Aroclor 1232 ug/L 0.2 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	 1	
Aroclor 1248 ug/L 0.2 <td> </td> <td> </td>	 	
Aroclor 1254 ug/L 0.2 0.39 0.21	 1	
Aroclor 1254 ug/L 0.2 0.39 0.21 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	 1	
Aroclor 1260 ug/L 0.2 0.083 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <t< td=""><td> </td><td></td></t<>	 	
Aroclor 1262 ug/L 0.2 <-0.1 <-0.05 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < </td <td>1</td> <td></td>	1	
Aroclor 1268 ug/L 0.2 <0.1 <0.05 <0.1' Pesticides Units ug/L 0.01 <0.01 <0.1' Aldrin ug/L 0.01 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	1	
Pesticides Units Aldrin ug/L 0.01 <0.01	1	
alpha-BHC ug/L 0.05 < <		
beta-BHC ug/L 0.02 < <	1	
delta-BHC ug/L 0.05 < <	1	
gamma-BHC (Lindane) ug/L 0.03 < <	1	
a-Chlordane {J} ug/L 2 <	1	
g-Chlordane {J} ug/L 2 <	1	
4-4'-DDD ug/L 0.1 <0.01 <0.01	1	
4-4'-DDE ug/L 0.1 <0.01	1	
4-4'-DDT ug/L 0.02 <0.01	1	
Dieldrin ug/L 0.02 <	1	
Endosulfan I {J} ug/L 0.03 < <	1	
Endosulfan II {/} ug/L 0.03		
Endosulfan Sulfate {J} ug/L 0.05		
Endrin ug/L 0.02 <0.01	1	
Endrin Aldehyde ug/L 0.02		
Heptachlor ug/L 0.01 <	1	
Heptachlor epoxide ug/L 0.01 <	1	
Methoxychlor ug/L 0.5 <0.01 <0.01	1	
Mirex ug/L 0.02 <0.01	1	
Pentachloronitrobenzene ug/L 20 < <	1	
Toxaphene ug/L 1 <0.01		
Misc. Units		
Alkalinity ug/L NA 518000	4	485000
Bicarbonate Alkalinity ug/L NA 518000	4	485000
Carbonate Alkalinity ug/L NA <5000	<	<5000
Conductivity umho/cm NA 1195		1249
pH NA 6.68		7.43

Page 16 of 26

Sample Location		Target	GMW-6	GMW-6	GMW-6	GMW-6	GMW-6	GMW-7	GMW-7	GMW-7	GMW-7	GP-TMW01	GP-TMW02	GP-TMW02	GP-TMW03	P-1
Lab Sample ID		Method	23470	30186	46004		109071-0006	46001	0	109071-0007	0	124880	124881	124883	124882	109055-0001
Sampled By		Detection	EDI	WWES	WWES	MDNR	WWES	WWES	MDNR	WWES	MDNR	Horizon	Horizon	Horizon	Horizon	WWES
Analyzed By		Limit	LDI			MDINK	milo	****	WEINK	millo	MDNN	EarthTech	EarthTech	EarthTech	EarthTech	millo
Sample Date		Linin	8/3/89	12/5/89	8/8/90	11/24/92	11/24/92	8/6/90	11/23/92	11/23/92	11/24/92	8/10/95	8/10/95	8/10/95	8/10/95	11/19/92
Sample Depth (Ft.)			0/0/03	12/0/00	0/0/00	11/24/52	11/24/32	0/0/00	11/20/02	11/20/02	11/24/52	0/10/00	0/10/00	0/10/00	0/10/00	11/13/32
Volatiles	Units															
Acetate	ug/L	1000				140 BK			53 BK			<50	<50	<50	<50	65000
Acetonitrile	ug/L	50														
Acrylonitrile {I}	ug/L	2														
Allyl Chloride	ug/L	NA														
Benzene {I}	ug/L	1	<1	<1	<1	<1	<1	<200	4.5	<1		1.1	<1	<1	<1	410
Bromobenzene	ug/L	1					<1			<1						<250
Bromochloromethane	ug/L	1					<1			<1						<250
Bromodichloromethane	ug/L	1	<2	<1	<2	<1	<1	<400	<1	<1		<1	<1	<1	<1	<250
Bromoform	ug/L	1	<15	<1	<15	<1	<1	<3000	<1	<1		<1	<1	<1	<1	<250
Bromomethane	ug/L	5	<10	<1	<10	<5	<1	<2000	<5	<1		<1	<1	<1	<1	<250
2-Butanone (MEK) {I}	ug/L	25						~2000				<50	<50	<50	<50	~250
n-Butylbenzene	ug/L	1					<1			<1						<250
sec-Butylbenzene	ug/L	1					<1			<1						<250
Tert-Butylbenzene	ug/L	1					<1			<1						<250
Carbon disulfide {I,R}	ug/L	5				<5			<5			<5	<5	<5	<5	~200
Carbon tetrachloride	ug/L	1	<4	<1	<4	<1	<1	<800	<1	<1		<1	<1	<1	<1	6000
Chlorobenzene {I}	ug/L	1	9	6	14	<2	<1	1300	35	<1		46	<1	<1	<1	<250
Chlorodibromomethane	-	5	-													~200
Chloroethane {I}	ug/L	5	 <10	<1	 <10	 <5	 <1	<2000	1700	 <1		 <1	 <1	<1	11	<250
2-Chloroethyl vinyl ether	ug/L	10	<10	<1	<10 <10	<0		<2000		<1 						<250
Chloroform	ug/L	10	<1	<1	<10	 <1	 <1	<2000	 <1	 <1		<1	<1	<1	<1	<250
1-Chlorohexane	ug/L	NA		< 1			<1 <1	<200	< I 	<1				<1		<250
Chloromethane {I}	ug/L ug/L	5	<10	<1	 <10	 <5	<1 <1	<2000	 <5	<1		<1	<1	<1	<1	<250 <250
2-Chlorotoluene	ug/L ug/L	5	<10			<0	<1 <1	<2000	<5	<1						<250
4-Chlorotoluene	ug/L	5					<1			<1						<250
1,2-Dibromo-3-Chloropropane	ug/L	0.2					<1			<1						<250
Dibromochloromethane	ug/L	5	<3	<1	<3	<1	<1	<600	<1	<1		<1	<1	<1	<1	<250
Ethylene dibromide	ug/L	0.05			23	<1	<1		<1	<1						<250
Ethylene dibromide	ug/L	0.05														<250
Dibromomethane	ug/L	5					<1			<1						<250
trans-1,4-Dichloro-2-butene	ug/L	1														~230
1,2-Dichlorobenzene	ug/L	1	<15	<1	<15		<1	<3000	<0.6	<1						<250
1,3-Dichlorobenzene	ug/L	1	<15	<1	<15		<1	<3000	<0.0	<1						<250
1.4-Dichlorobenzene	ug/L	1	<15	<1	<15		<1	<3000	<0.5	<1						<250
Dichlorodifluoromethane	ug/L	5	<10	<1	<10		<1	<2000	<0.5 	<1						<250
1,1-Dichloroethane {I}	ug/L	1	<10	<1	<10	5.3 J	<1 <1	<400	1200	1400		7.8	11	<1	5.1	9300
1,2-Dichloroethane {I}	ug/L	1	<2	<1	<2	<1	<1	<400 <400	<1	<1		<1	<1	<1	<1	<250
1,1-Dichloroethylene {I}	ug/L	1	<2	<1	<2	<1		<400	<1			<1	<1	<1	<1	900
cis-1,2-Dichloroethylene {I}	ug/L	1		<1	~2	<1	<1		6.6	<1		<1	<1	<1	<1	<250
trans-1,2-Dichloroethylene	-	1	<2	<1	<2	<1 <1	<1 <1	<400		<1 <1			<1	<1	<1	<250 <250
1,2-Dichloropropane {I}	ug/L	1	<2 <3		<2 <3		<1 <1	<400 <600	<1	<1 <1		<1	<1		<1	<250 <250
1,2-Dichloropropane {I}	ug/L	1	<3	<1 	<3	<1 	<1 <1	<600	<1 	<1 <1		<1 	<1	<1	<1	<250 <250
	ug/L	1					<1 <1			<1 <1						<250 <250
2,2-Dichloropropane	ug/L	1														<200
cis-1,3-Dichloropropene {I,J}	ug/L															

Page 17 of 26

Sample Location		Target	GMW-6	GMW-6	GMW-6	GMW-6	GMW-6	GMW-7	GMW-7	GMW-7	GMW-7	GP-TMW01	GP-TMW02	GP-TMW02	GP-TMW03	P-1
Lab Sample ID		Method	23470	30186	46004	0	109071-0006	46001	0	109071-0007	•	124880	124881	124883	124882	109055-0001
Sampled By		Detection		WWES	WWES	MDNR	WWES	WWES	MDNR	WWES	MDNR	Horizon	Horizon	Horizon	Horizon	WWES
Analyzed By		Limit	201			mertit	mileo		mertit		MBINK	EarthTech	EarthTech	EarthTech	EarthTech	
Sample Date		Linit	8/3/89	12/5/89	8/8/90	11/24/92	11/24/92	8/6/90	11/23/92	11/23/92	11/24/92	8/10/95	8/10/95	8/10/95	8/10/95	11/19/92
Sample Depth (Ft.)			0/0/00	12/0/00	0/0/00	11/24/52	11/24/32	0/0/00	11/20/52	11/20/02	11/24/52	0/10/00	0/10/00	0,10,30	0,10,00	11/13/32
Volatiles Cont.	Units															
1,1-Dichloropropene	ug/L	1					<1			<1						<250
trans-1,3-Dichloropropene {I, J}	ug/L	1	<4	<1	<4	<1		<800	<1			<1	<1	<1	<1	
cis-1,3-Dichloropropene {I,J}	ug/L	1	<4	<1	<4	<1		<800	<1			<1	<1	<1	<1	
1.4-Dioxane	ug/L	1														
Ethyl ether	ug/L	10														
Ethylbenzene {I}	ug/L	1	<1	<1	<1	<1	<1	2200	570	910		<1	<1	<1	<1	4000
Formaldehyde	ug/L	100										<0.1	<0.1	<0.1	<0.1	
Hexachloroethane	ug/L	5														
2-Hexanone {I}	ug/L	50				<5			<5			<50	<50	<50	<50	
lodomethane	ug/L	1														
Isopropyl benzene {I}	ug/L	5					<1			<1						<250
p-Isopropyltoluene	ug/L	5					<1			<1						<250
Methyl ethyl ketone	ug/L	25				37			<5							69000
Methyl isobutyl ketone	ug/L	50				<5			<5 <5							620000
4-Methyl-2-pentanone (MIBK) {I}	ug/L	50										<50	<50	<50	<50	
Methyl-tert-butyl ether (MTBE)	ug/L	5				<5			<5			<50 <50	<50	<50 <50	<50 <50	
Methylene chloride	ug/L	5	<5	<1	<5	<5 <5	<1	<1000	14 BK	<1		<1	<1	<1	<1	1400
n-Propylbenzene {I}	ug/L	1			2		<1		14 DK	<1						<250
Propionitrile	ug/L	NA														~230
Styrene {I}	ug/L	1				<1	<1		<1	<1						<250
1,1,1,2-Tetrachloroethane	0	1					<1			<1						<250
1,1,2,2-Tetrachloroethane	ug/L	1	 <2	<1	 <2	 <1	<1 <1	<400	 <1	<1		 <1	 <1	<1	 <1	<250 <250
Tetrachloroethylene	ug/L	1	<2	<1	<2	<1	<1	<400 <400	<1.4	<1		<1	<1	<1	<1	<250
Toluene {I}	ug/L	1	<1	<1	<2 <1	<1	<1	2400 1200	1.4	160			<1	<1	<1	210000
1,2,3-Trichlorobenzene	ug/L	5	<1	<1	<1	<1	<1	1200	< 0.01	<1		<1 	<1	<1	<1	<250
1,2,4-Trichlorobenzene	ug/L	5							<0.01 <0.01	<1						<250
1,1,1-Trichloroethane	ug/L	1	<2	<1	<2	<1	<1 <1	<400	110	<1		 <1	<1		 <1	44000
	ug/L	1												<1		
1,1,2-Trichloroethane	ug/L	1	<3	<1	<3	<1	<1	<600 <400	<1	<1		<1	<1	<1	<1	<250
Trichloroethylene Trichlorofluoromethane	ug/L	1	<2	<1	<2 <3	<1 	<1		2.2	<1		<1	<1	<1	<1 	<250 <250
	ug/L	1	<3	<1			<1	<600		<1						<250 <250
1,2,3-Trichloropropane	ug/L						<1		<1	<1						
1,2,4-Trimethylbenzene {I}	ug/L	1					<1		<1	130						750
1,3,5-Trimethylbenzene {I}	ug/L						<1		<1	<1						<250
Vinyl acetate	ug/L	100														600
Vinyl chloride	ug/L	1	<10	<1	<10	<5	<1	<2000	40 J	<1		1.5	<1	<1	<1	<250
Xylene, p&m	ug/L	2							4700							
Xylene (Total)	ug/L	3		<3	<5	<1	<1	3600	1730	2500		<3	<3	<3	<3	18000
Xylene, o	ug/L	1														
Semi-Volatiles	Units	-														
Acenaphthene	ug/L	5					<5		<1.1	<5						<5
Acenaphthylene	ug/L	5					<5		<1.1	<5						<5
Acetophenone	ug/L	5														
Aniline {I}	ug/L	4					<5			<5						<5

Page 18 of 26

Sample Location		Target	GMW-6	GMW-6	GMW-6	GMW-6	GMW-6	GMW-7	GMW-7	GMW-7	GMW-7	GP-TMW01	GP-TMW02	GP-TMW02	GP-TMW03	P-1
Lab Sample ID		Method	23470	30186	46004		109071-0006	46001		109071-0007		124880	124881	124883	124882	109055-0001
Sampled By		Detection	EDI	WWES	WWES	MDNR	WWES	WWES	MDNR	WWES	MDNR	Horizon	Horizon	Horizon	Horizon	WWES
Analyzed By		Limit		_				_		_		EarthTech	EarthTech	EarthTech	EarthTech	_
Sample Date			8/3/89	12/5/89	8/8/90	11/24/92	11/24/92	8/6/90	11/23/92	11/23/92	11/24/92	8/10/95	8/10/95	8/10/95	8/10/95	11/19/92
Sample Depth (Ft.)																
Semi-Volatiles Cont.	Units															
Anthracene	ug/L	5					<5		<1.1	<5						<5
Benzidine	ug/L	0.3					<5		<17	<5						<5
Benzo(a)anthracene {Q}	ug/L	1					<5		<1.1	<5						<5
Benzo(a)pyrene {Q}	ug/L	1					<5		<2.2	<5						<5
Benzo(b&k)fluoranthene {Q}	ug/L	1														
Benzo(b)fluoranthene {Q}	ug/L	1					<5		<2.2	<5						<5
Benzo(g,h,i)perylene	ug/L	1					<5		<5.5	<5						<5
Benzo(k)fluoranthene {Q}	ug/L	1					<5		<2.2	<5						<5
Benzoic acid	ug/L	50					84			<5.0						<5
Benzyl alcohol	ug/L	50					<5			<5						20
bis(2-Chloroethoxy)methane	ug/L	5					<5		<2.2	<5						<5
bis(2-Chloroethyl)ether {I}	ug/L	1					<5		<1.1	<5						<5
bis(2-Chloroisopropyl)ether	ug/L	5					<5		<1.1	<5						<5 <5
bis(2-Ethylhexyl)phthalate	ug/L	5					<5		<2.2	7						44
4-Bromo diphenyl ether	ug/L	5					<5		<2.2	<5						44 <5
Butyl benzyl phthalate	ug/L ug/L	5					<5 <5		<2.2 <1.1	<5 <5						<5 <5
	-	5					<5 <5			<5 <5						<5 <5
4-Chloro-3-methylphenol	ug/L	-							<12							
4-Chloroaniline	ug/L	10					<5			<5						<5
beta-Chloronaphthalene	ug/L	5					<5		<2.2	<5						<5
2-Chlorophenol	ug/L	10					<5		<10	<5						<5
4-Chloro diphenyl ether	ug/L	5					<5		<1.1	<5						<5
Chrysene {Q}	ug/L	1					<5		<1.1	<5						<5
Decabromodiphenyl ether	ug/L	10														
Di-n-octyl phthalate	ug/L	5					<5		<2.2	<5						<5
Dibenzo(a,h)anthracene {Q}	ug/L	2					<5		<5.5	<5						<5
Dibenzofuran	ug/L	4					<5			<5						<5
Di-n-butyl phthalate	ug/L	5					<5		<1.1	<5						7
1,2-Dichlorobenzene	ug/L	1					<5		<1.1	<5						<5
1,3-Dichlorobenzene	ug/L	1					<5		<1.1	<5						<5
1,4-Dichlorobenzene	ug/L	1					<5		<1.1	<5						<5
3,3'-Dichlorobenzidine	ug/L	0.3					<5		<11	<5						<5
2,4-Dichlorophenol	ug/L	10					<5		<12	<5						<5
2,6-Dichlorophenol	ug/L	5														
Diethyl phthalate	ug/L	5					<5		<1.1	<5						<5
Dimethyl phthalate	ug/L	5					<5		<2.2	<5						<5
2,4-Dimethylphenol	ug/L	5					<5		40	52						38
3,3-Dimethylbenzidine	ug/L	0.3														
2,4-Dinitrophenol	ug/L	25					<5		<60	<5						<5
2.4-Dinitrotoluene	ug/L	5					<5		<5.5	<5						<5
2,6-Dinitrotoluene	ug/L	5					<5		<5.5	<5						<5
Diphenylamine	ug/L	NA														
1,2-Diphenylhydrazine	ug/L	5							<2.2							
Fluoranthene	ug/L	1					<5		<1.1	<5						<5
	ug/L	1 1					~~	1	N 1.1	~~	1					~~

Page 19 of 26

Sample Location		Target	GMW-6	GMW-6	GMW-6	GMW-6	GMW-6	GMW-7	GMW-7	GMW-7	GMW-7	GP-TMW01	GP-TMW02	GP-TMW02	GP-TMW03	P-1
Lab Sample ID		Method	23470	30186	46004		109071-0006	46001	-	109071-0007	-	124880	124881	124883	124882	109055-0001
Sampled By		Detection	EDI	WWES	WWES	MDNR	WWES	WWES	MDNR	WWES	MDNR	Horizon	Horizon	Horizon	Horizon	WWES
Analyzed By		Limit		0	0							EarthTech	EarthTech	EarthTech	EarthTech	
Sample Date			8/3/89	12/5/89	8/8/90	11/24/92	11/24/92	8/6/90	11/23/92	11/23/92	11/24/92	8/10/95	8/10/95	8/10/95	8/10/95	11/19/92
Sample Depth (Ft.)			0,0,00	12/0/00	0/0/00	11/21/02	11/2 1/02	0,0,00	11/20/02	11/20/02	1 1/2 1/02	0,10,00	0,10,00	0,10,00	0,10,00	11,10,02
	Units															
Fluorene	ug/L	5					<5		<1.1	<5						<5
Hexachlorobenzene (C-66)	ug/L	0.2					<5		<1.1	<5						<5
Hexachlorobutadiene (C-46)	ug/L	0.05					<5		<2.2	<5						<5
Hexachlorocyclopentadiene (C-56)	ug/L	5					<5		<2.2	<5						<5
Hexachloroethane	ug/L	5					<5		<1.1	<5						<5
Hexachloropropene	ug/L	NA														
Indeno(1,2,3-cd)pyrene {Q}	ug/L	2					<5		<5.5	<5						<5
	ug/L	5					<5		<1.1	<5						20
2-Methyl-4,6-dinitrophenol	ug/L	20					<5		<48	<5						<5
2-Methylnaphthalene	ug/L	5					<5			<5						28
2-Methylphenol {J}	ug/L	10					<5			<5						<5
3-Methylphenol {J}	ug/L	10														
4-Methylphenol {J}	ug/L	10					13			<5.0						163
Naphthalene	ug/L	5					<5		22	<3.0 7						151
1,4-Naphthylamine	-	NA														
	ug/L	NA														
1-Naphthylamine	ug/L	NA														
	ug/L															
2-Nitroaniline	ug/L	25					<5			<5						<5
	ug/L	25					<5			<5						<5
4-Nitroaniline	ug/L	25					<5			<5						<5
Nitrobenzene {I}	ug/L	3					<5		<2.2	<5						260
	ug/L	5					<5		<12	<5						<5
4-Nitrophenol	ug/L	25					<5		<48	<5						<5
4-Nitroquinoline-1-oxide	ug/L	NA														
	ug/L	5					<5		<2.2	<5						<5
	ug/L	5					<5			<5						<5
N-Nitroso-di-methylamine	ug/L	5					<5			<5						<5
N-Nitrosodiphenylamine	ug/L	5					<5		<5.5	<5						<5
Pentachlorophenol	ug/L	1					<5		<48	<5						<5
Phenacetin	ug/L	NA														
Phenanthrene	ug/L	2					<5		<1.1	<5						<5
Phenol	ug/L	5					10		<12	<5						<5
1,4-Phenylenediamine	ug/L	NA														
Pyrene	ug/L	5					<5		<1.1	<5						<5
Pyridine	ug/L	20														
1,2,4-Trichlorobenzene	ug/L	5					<5		<2.2	<5						<5
2,4,5-Trichlorophenol	ug/L	5					<5		<12	<5						<5
2,4,6-Trichlorophenol	ug/L	4					<5		<12	<5						<5
Halogenateds	Units]														
Hexabromobenzene	ug/L	0.02							<0.01							
Pentachlorobenzene	ug/L	5							<0.01							
1,2,3,4-Tetrachlorobenzene	ug/L	5							<0.01							
1,2,4,5-Tetrachlorobenzene	ug/L	2							<0.01							
1,3,5-Trichlorobenzene	ug/L	5							<0.01							

Page 20 of 26

Sample Location		Target	GMW-6	GMW-6	GMW-6	GMW-6	GMW-6	GMW-7	GMW-7	GMW-7	GMW-7	GP-TMW01	GP-TMW02	GP-TMW02	GP-TMW03	P-1
Lab Sample ID		Method	23470	30186	46004		109071-0006	46001	000007	109071-0007		124880	124881	124883	124882	109055-0001
Sampled By		Detection	EDI		WWES	MDNR	WWES	WWES	MDNR	WWES	MDNR	Horizon	Horizon	Horizon	Horizon	WWES
Analyzed By		Limit	LDI	WWLO	WWLO	WIDININ	WWL0	WWLO	WIDININ	WWLO	WIDINI	EarthTech	EarthTech	EarthTech	EarthTech	WWEG
Sample Date		Linnt	8/3/89	12/5/89	8/8/90	11/24/92	11/24/92	8/6/90	11/23/92	11/23/92	11/24/92	8/10/95	8/10/95	8/10/95	8/10/95	11/19/92
Sample Depth (Ft.)			0/3/09	12/3/09	0/0/90	11/24/92	11/24/92	0/0/90	11/23/92	11/23/92	11/24/92	6/10/95	6/10/95	6/10/95	0/10/95	11/19/92
PCB's	Units															
BP-6									0.05							
-	ug/L	NA							< 0.05							
Aroclor 1016	ug/L	0.2							<0.1							
Aroclor 1221	ug/L	0.2							<0.1							
Aroclor 1232	ug/L	0.2							<0.1							
Aroclor 1242	ug/L	0.2							<0.1							
Aroclor 1248	ug/L	0.2							<0.1							
Aroclor 1254	ug/L	0.2							<0.1							
Aroclor 1260	ug/L	0.2							<0.1							
Aroclor 1262	ug/L	0.2							<0.1							
Aroclor 1268	ug/L	0.2							<0.1							
Pesticides	Units]														
Aldrin	ug/L	0.01							<0.01							
alpha-BHC	ug/L	0.05							<0.01							
beta-BHC	ug/L	0.02							<0.01							
delta-BHC	ug/L	0.05							<0.01							
gamma-BHC (Lindane)	ug/L	0.03							< 0.01							
a-Chlordane {J}	ug/L	2							< 0.01							
g-Chlordane {J}	ug/L	2							< 0.01							
4-4'-DDD	ug/L	0.1							< 0.01							
4-4'-DDE	ug/L	0.1							< 0.01							
4-4'-DDT	ug/L	0.02							< 0.01							
Dieldrin	ug/L	0.02							< 0.01							
Endosulfan I {J}	ug/L	0.03							< 0.01							
Endosulfan II {J}	ug/L	0.03														
Endosulfan Sulfate {J}	ug/L	0.05														
Endrin	ug/L	0.02							<0.01							
Endrin Aldehyde	ug/L	0.02														
Heptachlor	ug/L	0.02							< 0.01							
Heptachlor epoxide	ug/L	0.01							<0.01							
Methoxychlor	ug/L ug/L	0.01							<0.01 <0.01							
Mirex	ug/L ug/L	0.5							<0.01 <0.01							
-	•															
Pentachloronitrobenzene	ug/L	20							< 0.01							
Toxaphene	ug/L	1							<0.1							
Misc.	Units										440000					
Alkalinity	ug/L	NA									410000					
Bicarbonate Alkalinity	ug/L	NA									410000					
Carbonate Alkalinity	ug/L	NA									<5000					
Conductivity	umho/cm	NA									847					
рН	рН	NA									7.22					

Page 21 of 26

Table B2-3ASummary of Analytical Results for Organic Groundwater Samples - Update 2011 CriteriaGage ProductsFerndale, Michigan

	1				
Sample Location		Target	TMW-01		X (GMW-4D)
Lab Sample ID		Method	179278	179279	
Sampled By		Detection		Horizon	MDNR
Analyzed By		Limit	TriMatrix	TriMatrix	
Sample Date			9/30/97	9/30/97	11/23/92
Sample Depth (Ft.)					
Volatiles	Units				
Acetate	ug/L	1000	<50	<50	1500 BK
Acetonitrile	ug/L	50	<10	<10	
Acrylonitrile {I}	ug/L	2			
Allyl Chloride	ug/L	NA			
Benzene {I}	ug/L	1	<1.0	<1.0	28
Bromobenzene	ug/L	1			
Bromochloromethane	ug/L	1	<1.0	<1.0	
Bromodichloromethane	ug/L	1	<1.0	<1.0	<20
Bromoform	ug/L	1	<1.0	<1.0	<20
Bromomethane	ug/L	5	<1.0	<1.0	<100
2-Butanone (MEK) {I}	ug/L	25	<50	<50	
n-Butylbenzene	ug/L	1			
sec-Butylbenzene	ug/L	1			
Tert-Butylbenzene	ug/L	1			
Carbon disulfide {I,R}	ug/L	5	<5.0	<5.0	<100
Carbon tetrachloride	ug/L	1	<1.0	<1.0	<20
Chlorobenzene {I}	ug/L	1	75	<1.0	55000
Chlorodibromomethane	ug/L	5	<1.0	<1.0	
Chloroethane {I}	ug/L	5	<1.0	<1.0	<100
2-Chloroethyl vinyl ether	ug/L	10			
Chloroform	ug/L	1	<1.0	<1.0	<20
1-Chlorohexane	ug/L	NA			
Chloromethane {I}	ug/L	5	<1.0	<1.0	<100
2-Chlorotoluene	ug/L	5			
4-Chlorotoluene	ug/L	5			
1,2-Dibromo-3-Chloropropane	ug/L	0.2	<1.0	<1.0	
Dibromochloromethane	ug/L	5			<20
Ethylene dibromide	ug/L	0.05			<20
Ethylene dibromide	ug/L	0.05	<10	<10	
Dibromomethane	ug/L	5	<1.0	<1.0	
trans-1,4-Dichloro-2-butene	ug/L	1	<5.0	<5.0	
1,2-Dichlorobenzene	ug/L	1	<1.0	<1.0	160 DMJ
1,3-Dichlorobenzene	ug/L	1	<1.0	<1.0	0.11
1,4-Dichlorobenzene	ug/L	1	<1.0	<1.0	23 DM
Dichlorodifluoromethane	ug/L	5	<1.0	<1.0	
1,1-Dichloroethane {I}	ug/L	1	<1.0	<1.0	94 J
1,2-Dichloroethane {I}	ug/L	1	<1.0	<1.0	<20
1,1-Dichloroethylene {I}	ug/L	1	<1.0	<1.0	<20
cis-1,2-Dichloroethylene {I}	ug/L	1	<1.0	<1.0	37
trans-1,2-Dichloroethylene	ug/L	1	<1.0	<1.0	<20
1,2-Dichloropropane {I}	ug/L	1	<1.0	<1.0	<20
1,3-Dichloropropane	ug/L	1			
2,2-Dichloropropane	ug/L	1			
cis-1,3-Dichloropropene {I,J}	ug/L	1			

Page 22 of 26

			TI I I I I I I I I I	T 1 0 1 / 00	
Sample Location		Target	TMW-01		X (GMW-4D)
Lab Sample ID		Method	179278	179279	
Sampled By		Detection		Horizon	MDNR
Analyzed By		Limit	TriMatrix	TriMatrix	
Sample Date			9/30/97	9/30/97	11/23/92
Sample Depth (Ft.)					
Volatiles Cont.	Units				
1,1-Dichloropropene	ug/L	1			
trans-1,3-Dichloropropene {I, J}	ug/L	1	<1.0	<1.0	<20
cis-1,3-Dichloropropene {I,J}	ug/L	1	<1.0	<1.0	<20
1,4-Dioxane	ug/L	1			
Ethyl ether	ug/L	10	<10	<10	
Ethylbenzene {I}	ug/L	1	<1.0	<1.0	350
Formaldehyde	ug/L	100			
Hexachloroethane	ug/L	5	<5.0	<5.0	
2-Hexanone {I}	ug/L	50	<50	<50	150
lodomethane	ug/L	1	<10	<10	
Isopropyl benzene {I}	ug/L	5	<1.0	<1.0	
p-Isopropyltoluene	ug/L	5			
Methyl ethyl ketone	ug/L	25			150
Methyl isobutyl ketone	ug/L	50			<100
4-Methyl-2-pentanone (MIBK) {I}	ug/L	50	<50	<50	
Methyl-tert-butyl ether (MTBE)	ug/L	5	<50	<50	<100
Methylene chloride	ug/L	5	<1.0	<1.0	<100
n-Propylbenzene {I}	ug/L	1	<1.0	<1.0	
Propionitrile	ug/L	NA			
Styrene {I}	ug/L	1	<1.0	<1.0	<20
1,1,1,2-Tetrachloroethane	ug/L	1	<1.0	<1.0	
1,1,2,2-Tetrachloroethane	ug/L	1	<1.0	<1.0	<20
Tetrachloroethylene	ug/L	1	<1.0	<1.0	<20
Toluene {I}	ug/L	1	<1.0	<1.0	630 PS
1,2,3-Trichlorobenzene	ug/L	5			
1,2,4-Trichlorobenzene	ug/L	5	<1.0	<1.0	0.11 BK
1,1,1-Trichloroethane	ug/L	1	<1.0	<1.0	<20
1,1,2-Trichloroethane	ug/L	1	<1.0	<1.0	<20
Trichloroethylene	ug/L	1	<1.0	<1.0	<20
Trichlorofluoromethane	ug/L	1	<1.0	<1.0	
1,2,3-Trichloropropane	ug/L	1	<1.0	<1.0	
1,2,4-Trimethylbenzene {I}	ug/L	1	<1.0	<1.0	
1,3,5-Trimethylbenzene {I}	ug/L	1	<1.0	<1.0	
Vinyl acetate	ug/L	100	<10	<10	
Vinyl chloride	ug/L	1	<1.0	<1.0	<100
Xylene, p&m	ug/L	2	<2.0	<2.0	
Xylene (Total)	ug/L	3			970
Xylene, o	ug/L	1	<1.0	<1.0	
Semi-Volatiles	Units				
Acenaphthene	ug/L	5	<5.0	<5.0	0.97T
Acenaphthylene	ug/L	5	<5.0	<5.0	<1
Acetophenone	ug/L	5			
Aniline {I}	ug/L	4			
	~9′-	· ·			

Page 23 of 26

Table B2-3ASummary of Analytical Results for Organic Groundwater Samples - Update 2011 CriteriaGage ProductsFerndale, Michigan

		T (TI I I I I I I I I I	T1 1 1 1 1 1 1 1 1 1	
Sample Location		Target	TMW-01		X (GMW-4D)
Lab Sample ID		Method	179278	179279	
Sampled By		Detection		Horizon	MDNR
Analyzed By		Limit	TriMatrix	TriMatrix	
Sample Date			9/30/97	9/30/97	11/23/92
Sample Depth (Ft.)					
Semi-Volatiles Cont.	Units				
Anthracene	ug/L	5	<5.0	<5.0	<1
Benzidine	ug/L	0.3			<15
Benzo(a)anthracene {Q}	ug/L	1	<5.0	<5.0	<1
Benzo(a)pyrene {Q}	ug/L	1	<5.0	<5.0	<2
Benzo(b&k)fluoranthene {Q}	ug/L	1	<5.0	<5.0	
Benzo(b)fluoranthene {Q}	ug/L	1			<2
Benzo(g,h,i)perylene	ug/L	1	<5.0	<5.0	<5
Benzo(k)fluoranthene {Q}	ug/L	1			<2
Benzoic acid	ug/L	50			
Benzyl alcohol	ug/L	50			
bis(2-Chloroethoxy)methane	ug/L	5	<5.0	<5.0	<2
bis(2-Chloroethyl)ether {I}	ug/L	1	<5.0	<5.0	<1
bis(2-Chloroisopropyl)ether	ug/L	5	<5.0	<5.0	<1
bis(2-Ethylhexyl)phthalate	ug/L	5	<5.0	<5.0	3.7
4-Bromo diphenyl ether	ug/L	5	<5.0	<5.0	<2
Butyl benzyl phthalate	ug/L	5	<5.0	<5.0	<1
4-Chloro-3-methylphenol	ug/L	5			<10
4-Chloroaniline	ug/L	10			
beta-Chloronaphthalene	ug/L	5	<5.0	<5.0	<2
2-Chlorophenol	ug/L	10			22
4-Chloro diphenyl ether	ug/L	5	<5.0	<5.0	<1
Chrysene {Q}	ug/L	1	<5.0	<5.0	<1
Decabromodiphenyl ether	ug/L	10	<5.0	<5.0	
Di-n-octyl phthalate	ug/L	5	<5.0	<5.0	<2
Dibenzo(a,h)anthracene {Q}	ug/L	2	<5.0	<5.0	<5
Dibenzofuran	ug/L	4			
Di-n-butyl phthalate	ug/L	5	6	6	<1
1,2-Dichlorobenzene	ug/L	1			320J
1,3-Dichlorobenzene	ug/L	1			<1
1,4-Dichlorobenzene	ug/L	1			45
3,3'-Dichlorobenzidine	ug/L	0.3			<10
2,4-Dichlorophenol	ug/L	10			<10
2,6-Dichlorophenol	ug/L	5			
Diethyl phthalate	ug/L	5	<5.0	<5.0	<1
Dimethyl phthalate	ug/L	5	<5.0	<5.0	<2
2,4-Dimethylphenol	ug/L	5			<10
3,3-Dimethylbenzidine	ug/L	0.3			
2,4-Dinitrophenol	ug/L	25			<50
2,4-Dinitrophenol	ug/L	5	<5.0	<5.0	<5
2,6-Dinitrotoluene	•	5	<5.0 <5.0	<5.0 <5.0	<5 <5
Diphenylamine	ug/L ug/L	5 NA	<5.0	<5.0	<5
1,2-Diphenylhydrazine	ug/L ug/L	5	 <5.0	 <5.0	<2
	•	5 1			
Fluoranthene	ug/L	I	<5.0	<5.0	0.68T

Page 24 of 26

Sample Location		Target	TMW-01	TMM/_03	X (GMW-4D)
Lab Sample ID		Method	179278	179279	∧ (Givivv-4D)
					MDNR
Sampled By		Detection Limit		Horizon TriMatrix	WIDINK
Analyzed By		LIMIL			44/00/00
Sample Date			9/30/97	9/30/97	11/23/92
Sample Depth (Ft.)					
Semi-Volatiles Cont.	Units	_			
Fluorene	ug/L	5	<5.0	<5.0	0.49T
Hexachlorobenzene (C-66)	ug/L	0.2	<5.0	<5.0	<1
Hexachlorobutadiene (C-46)	ug/L	0.05	<5.0	<5.0	<2
Hexachlorocyclopentadiene (C-56)	ug/L	5	<5.0	<5.0	<2
Hexachloroethane	ug/L	5			<1
Hexachloropropene	ug/L	NA			
Indeno(1,2,3-cd)pyrene {Q}	ug/L	2	<5.0	<5.0	<5
Isophorone	ug/L	5	<5.0	<5.0	<1
2-Methyl-4,6-dinitrophenol	ug/L	20			<40
2-Methylnaphthalene	ug/L	5	<5.0	<5.0	
2-Methylphenol {J}	ug/L	10			<10
3-Methylphenol {J}	ug/L	10			
4-Methylphenol {J}	ug/L	10			38
Naphthalene	ug/L	5	<5.0	<5.0	79
1,4-Naphthylamine	ug/L	NA			
1-Naphthylamine	ug/L	NA			
2-Naphthylamine	ug/L	NA			
2-Nitroaniline	ug/L	25			
3-Nitroaniline	ug/L	25			
4-Nitroaniline	ug/L	25			
Nitrobenzene {I}	ug/L	3	<5.0	<5.0	<2
2-Nitrophenol	ug/L	5			<10
4-Nitrophenol	ug/L	25			<40
4-Nitroquinoline-1-oxide	ug/L	NA			
n-Nitroso-di-n-propylamine	ug/L	5	<5.0	<5.0	<2
N-Nitroso-di-methylamine	ug/L	5			
N-Nitroso-di-methylamine	ug/L	5			
N-Nitrosodiphenylamine	ug/L	5	<5.0	<5.0	<5
Pentachlorophenol	ug/L	1			<40
Phenacetin	ug/L	NA			
Phenanthrene	ug/L	2	<5.0	<5.0	0.45T
Phenol	ug/L	5			<10
1,4-Phenylenediamine	ug/L	NA			
Pyrene	ug/L	5	<5.0	<5.0	0.87T
Pyridine	ug/L	20			
1,2,4-Trichlorobenzene	ug/L	5			<2
2,4,5-Trichlorophenol	ug/L	5			<10
2,4,6-Trichlorophenol	ug/L	4			<10
Halogenateds	Units				
Hexabromobenzene	ug/L	0.02			<0.01
Pentachlorobenzene	ug/L	5			<0.01
1,2,3,4-Tetrachlorobenzene	ug/L	5			<0.01
1,2,4,5-Tetrachlorobenzene	ug/L	2			<0.01
1,3,5-Trichlorobenzene	ug/L	5			<0.01
.,-,	~9/L	5			-0.01

Page 25 of 26

Comple Leastion		Torget		TMM/ 02	X (GMW-4D)
Sample Location		Target	TMW-01	TMW-03	X (GIVIVV-4D)
Lab Sample ID		Method	179278	179279	
Sampled By		Detection	Horizon	Horizon	MDNR
Analyzed By		Limit	TriMatrix		4.4/00/00
Sample Date			9/30/97	9/30/97	11/23/92
Sample Depth (Ft.)					
PCB's	Units				
BP-6	ug/L	NA			<0.05
Aroclor 1016	ug/L	0.2	<0.20	<0.20	<0.1
Aroclor 1221	ug/L	0.2	<0.20	<0.20	<0.1
Aroclor 1232	ug/L	0.2	<0.40	<0.40	<0.1
Aroclor 1242	ug/L	0.2	<0.20	<0.20	<0.1
Aroclor 1248	ug/L	0.2	<0.20	<0.20	<0.1
Aroclor 1254	ug/L	0.2	<0.20	<0.20	0.43
Aroclor 1260	ug/L	0.2	<0.20	<0.20	<0.1
Aroclor 1262	ug/L	0.2	<0.20	<0.20	<0.1
Aroclor 1268	ug/L	0.2	<0.20	<0.20	<0.1
Pesticides	Units				
Aldrin	ug/L	0.01	<0.010	<0.010	<0.01
alpha-BHC	ug/L	0.05	<0.010	<0.010	<0.01
beta-BHC	ug/L	0.02	<0.010	<0.010	<0.01
delta-BHC	ug/L	0.05	<0.010	<0.010	<0.01
gamma-BHC (Lindane)	ug/L	0.03	<0.010	<0.010	<0.01
a-Chlordane {J}	ug/L	2			<0.01
g-Chlordane {J}	ug/L	2			<0.01
4-4'-DDD	ug/L	0.1	<0.020	<0.020	<0.01
4-4'-DDE	ug/L	0.1	<0.020	<0.020	<0.01
4-4'-DDT	ug/L	0.02	<0.020	<0.020	< 0.04
Dieldrin	ug/L	0.02	<0.020	<0.020	<0.01
Endosulfan I {J}	ug/L	0.03	<0.010	<0.010	<0.01
Endosulfan II {J}	ug/L	0.03	<0.020	<0.020	
Endosulfan Sulfate {J}	ug/L	0.05	<0.020	<0.020	
Endrin	ug/L	0.02	<0.020	<0.020	<0.01
Endrin Aldehyde	ug/L	0.02	<0.020	<0.020	
Heptachlor	ug/L	0.01	<0.010	<0.010	<0.01
Heptachlor epoxide	ug/L	0.01	<0.010	<0.010	<0.01
Methoxychlor	ug/L	0.5	<0.50	<0.50	<0.01
Mirex	ug/L	0.02			<0.01
Pentachloronitrobenzene	ug/L	20			<0.01
Toxaphene	ug/L	1			<0.1
Misc.	Units	1			
Alkalinity	ug/L	NA			
Bicarbonate Alkalinity	ug/L	NA			
Carbonate Alkalinity	ug/L	NA			
Conductivity	umho/cm	NA			
pH	pH	NA			
<u>ic</u>	· ۲۰			1	1

Page 26 of 26

Table B2-3A Summary of Analytical Results for Organic Groundwater Samples - Update 2011 Criteria Gage Products Ferndale, Michigan

Footnotes

Criteria from Part 201 RRD Memo, March 25, 2011

» Target Method Detection Limit from MDEQ-ERD Operational Memorandum #2, October 22, 2004

Results Qualifiers:

J=Estimated value or value not accurate.

T=Value reported is less than criteria of detection.

--- Parameter not analyzed

ND - Parameter not detected

Bolded value denotes parameter detected above detection limit

	Shaded values exceed TMDL and Residential Drinking Water Criteria
	Boxes exceed TMDL and Residential GVIIC Criteria
	Double Boxes exceed TMDL and Non-Residential GVIIC Criteria

Underlined values exceed TMDL and Groundwater Contact Criteria

Criteria Qualifiers:

{A} Criterion is MI Drinking Water Standard

{E} Criterion is the aesthetic DW value

{I} Hazardous substance may exhibit the characteristic of ignitability

{J} Hazardous substance may be present in several isomer forms and shall be added together for comparison to criteria

{M} Calculated criterion is below the analytical TDL

{Q} Criteria for carcinogenic PAHs were developed using RPPs to benzo(a)pyrene

{R} Hazardous substance may exhibit the characteristic of reactivity

{S} Criterion defaults to the chemical-specfic water solubility limit

{W} Concentrations of trihalomethanes in GW must be added together to determine compliance with the MI DW standard of 100 ug/L

{AA} Comparison to these criteria may take into account an evaluation of whether the substances are absorbed to particulates rather than dissolved in water

ID = Inadequate data to develop criterion

IP = Development of generic GSI value in process.

NA = Criterion or value is not available, or not applicable

NLL = Hazardous substance is not likely to leach under most soil conditions

NLV = Hazardous substance is not likely to volatilize under most conditions

Page 1 of 3

Sample Location		Target	Residential	Groundwater	GMW-1	GMW-2	GMW-2	GMW-3	GMW-3	GMW-4 (dup)	GMW-4	GMW-4	GMW-5
Lab Sample ID		Method	Drinking	Contact	253477	109071-0001	0 2	109071-0002	0	109071-0004	109071-0003		109071-0005
Sampled By		Detection	Water	Criteria	Horizon	WWES	MDNR	WWES	MDNR	WWES	WWES	MDNR	WWES
Analyzed By		Limit	Criteria	ontonia	TriMatrix		MERT		mertit			MBIN	
Sample Date			ententa		6/16/2000	11/23/92	11/24/92	11/23/92	11/24/92	11/23/92	11/23/92	11/24/92	11/23/92
Sample Depth (Ft.)					0,10,2000						11/20/02		
Inorganics	Units												
Antimony	mg/L	0.002	0.006 {A}	68	< 0.002								
Arsenic {B} Total	mg/L	0.005	0.01 {A}	4.3	0.0076	0.12	0.011	< 0.06	<0.001	0.063	0.062		0.072
Arsenic (B) Dissolved	mg/L	0.005	0.01 {A}	4.3			0.0046		<0.001			[
Barium Total	mg/L	0.1	2 {A}	14000		0.24		<0.2		0.33	0.34		<0.2
Cadmium {B} Total	mg/L	0.001	0.005 {A}	190	0.0008	0.045	0.002	0.019	0.008	0.033	0.034	0.0036	0.014
Cadmium (B) Dissolved	mg/L	0.001	0.005 {A}	190			0.0006		0.003			0.002	
Calcium Total	mg/L	NA	NA	NA			229		87.1			227	
Calcium Dissolved	mg/L	NA	NA	NA			140		68.7			213	
Chloride	mg/L	10	250 {E}	ID			161		151			30	
Chromium, Total	mg/L	0.01	0.1 {A}	460	<0.001	0.19	0.04	<0.05	0.0019	0.09	0.09	0.011	0.16
Chromium, Total Dissolved	mg/L	0.01	0.1 {A}	460			0.0084		0.0022			0.007	
Chromium (III) {B,H} Total	mg/L	0.01	0.1 {A}	290000									
Chromium (VI) Total	mg/L	0.01	0.1 {A}	460									
Cobalt	mg/L	0.02	0.04	2400	<0.10								
Copper {B} Total	mg/L	0.004	1 {E}	7400	0.0015	0.07	0.036	<0.025	0.0014	0.06	0.06	0.032	0.04
Copper {B} Dissolved	mg/L	0.004	1 {E}	7400			0.0074		<0.001			0.02	
Iron Dissolved	mg/L	0.2	0.3 {E}	58000									
Lead {B} Total	mg/L	0.003	0.004 {L}	ID	<0.001	0.062	0.026	< 0.003	<0.001	0.073	0.087	0.047	0.028
Lead {B} Dissolved	mg/L	0.003	0.004 {L}	ID			0.0051		<0.001			0.028	
Magnesium Total	mg/L	1	400	1000000 {D}			109		33.5			31.3	
Magnesium Dissolved	mg/L	1	400	1000000 {D}			75		30.2			28.8	
Mercury, Total {B,Z} Total	mg/L	1E-06	0.002 {A}	0.056 {S}	<0.0002	<0.001	<0.0002	<0.001	< 0.0002	<0.001	<0.001	<0.0002	<0.001
Mercury, Total {B,Z} Dissolved	mg/L	1E-06	0.002 {A}	0.056 {S}			<0.0002		< 0.0002			<0.0002	
Nickel Total	mg/L	0.02	0.1 {A}	74000	0.0063		0.048		0.004			0.022	
Nickel Dissolved	mg/L	0.02	0.1 {A}	74000			0.012		0.0042			0.015	
Potassium Total	mg/L	NA	NA	NA			5.8		2.92			6.1	
Potassium Dissolved	mg/L	NA	NA	NA			4.25		2.75			6.2	
Selenium {B} Total	mg/L	0.005	0.05 {A}	970	0.0047	<0.005		<0.005		<0.005	<0.005		<0.005
Silver {B} Total	mg/L	0.0002	0.034	1500		0.0034		0.00061		0.0012	0.0016		0.00064
Sodium Total	mg/L	1	120	1000000 {D}			120		38.2			12.4	
Sodium Dissolved	mg/L	1	120	1000000 {D}			114		36.6			12.3	
Sulfate Total	mg/L	1	250 {E}	ID			197		68			22	
Vanadium	mg/L	0.004	0.0045	970	<0.010								
Zinc {B} Total	mg/L	0.05	2.4	110000		0.23	0.207	0.025	<0.004	4.9	5	3.64	1.9
Zinc {B} Dissolved	mg/L	0.05	2.4	110000	0.046		0.083		0.053			2.27	
Misc.	Units												
Alkalinity	ug/L	NA	NA	NA			430000		64000			518000	
Bicarbonate Alkalinity	ug/L	NA	NA	NA			430000		64000			518000	
Carbonate Alkalinity	ug/L	NA	NA	NA			<5000		<5000			<5000	
Conductivity	umho/cm	NA	NA	NA			1605		876			1195	
Cyanide {R}	ug/L	5.0	200 {A}	57000	<0.005								
рН	рН	NA	6.5 to 8.5 {E}	NA			7.57		8.62			6.68	

Page 2 of 3

Sample Location		Target	Residential	Groundwater	GMW-5	GMW-6	GMW-7	GMW-7	P-1	TMW-01	TMW-03	X (GMW-4D)	FB
Lab Sample ID		Method	Drinking	Contact		109071-0006	109071-0007		109055-0001	179278	179279	. ,	
Sampled By		Detection	Water	Criteria	MDNR	WWES	WWES	MDNR	WWES	Horizon	Horizon	MDNR	MDNR
Analyzed By		Limit	Criteria							TriMatrix	TriMatrix		
Sample Date					11/24/92	11/24/92	11/23/92	11/24/92	11/19/92	9/30/97	9/30/97	11/24/92	11/24/92
Sample Depth (Ft.)									11,10,02	0,00,01	0,00,01		
Inorganics	Units												
Antimony	mg/L	0.002	0.006 {A}	68									
Arsenic {B} Total	mg/L	0.005	0.01 {A}	4.3	0.0063	<0.06	<0.06	0.014	0.012				
Arsenic {B} Dissolved	mg/L	0.005	0.01 {A}	4.3	0.0059			0.0083		0.0021	0.005		
Barium Total	mg/L	0.1	2 {A}	14000		<0.2	<0.2		0.58				
Cadmium {B} Total	mg/L	0.001	0.005 {A}	190	0.0011	0.012	< 0.01	0.0007	0.0072			0.003	< 0.0002
Cadmium (B) Dissolved	mg/L	0.001	0.005 {A}	190	0.0003			< 0.0002		<0.01	<0.01		< 0.0002
Calcium Total	mg/L	NA	NA	NA	247			142				221	<1
Calcium Dissolved	mg/L	NA	NA	NA	97.1			122					<1
Chloride	mg/L	10	250 {E}	ID	49			13				39	<1
Chromium, Total	mg/L	0.01	0.1 {A}	460	0.02	0.11	0.09	0.025	0.21			0.011	<0.001
Chromium, Total Dissolved	mg/L	0.01	0.1 {A}	460	0.002		0.09	0.0013		< 0.05	< 0.05		< 0.001
	Ű				0.0037			0.0013		< 0.05	<0.05 <0.05		<0.001
Chromium (III) {B,H} Total	mg/L	0.01	0.1 {A}	290000									
Chromium (VI) Total	mg/L	0.01	0.1 {A}	460						0.002	<0.001		
Cobalt	mg/L	0.02	0.04	2400									
Copper {B} Total	mg/L	0.004	1 {E}	7400	0.021	0.12	0.04	0.026	0.11			0.035	<0.001
Copper {B} Dissolved	mg/L	0.004	1 {E}	7400	0.004			0.0023		<0.01	<0.01		<0.001
Iron Dissolved	mg/L	0.2	0.3 {E}	58000						<0.1	0.18		
Lead {B} Total	mg/L	0.003	0.004 {L}	ID	0.029	0.038	0.049	0.05	0.3			0.054	<0.001
Lead {B} Dissolved	mg/L	0.003	0.004 {L}	ID	0.0052			0.0064		<0.001	<0.001		<0.001
Magnesium Total	mg/L	1	400	1000000 {D}	132			29.7				29.2	<1
Magnesium Dissolved	mg/L	1	400	1000000 {D}	86			21.7					<1
Mercury, Total {B,Z} Total	mg/L	1E-06	0.002 {A}	0.056 {S}	< 0.0002	<0.001	<0.001	<0.0002	<0.001			<0.0002	<0.0002
Mercury, Total {B,Z} Dissolved	mg/L	1E-06	0.002 {A}	0.056 {S}	< 0.0002			<0.0002		< 0.0002	< 0.0002		<0.0002
Nickel Total	mg/L	0.02	0.1 {A}	74000	0.056			0.057				0.02	<0.002
Nickel Dissolved	mg/L	0.02	0.1 {A}	74000	0.036			0.039		<0.01	<0.01		<0.002
Potassium Total	mg/L	NA	NA	NA	2.94			2.91				6	<0.1
Potassium Dissolved	mg/L	NA	NA	NA	2.04			2.67					<0.1
Selenium (B) Total	mg/L	0.005	0.05 {A}	970		< 0.005	< 0.005		< 0.005				
Silver {B} Total	mg/L	0.0002	0.034	1500		0.0034	0.00063		0.004				
Sodium Total	mg/L	1	120	1000000 {D}	51.7			34.7				11.5	<1
Sodium Dissolved	mg/L	1	120	1000000 {D}	50.8			34.5					<1
Sulfate Total	mg/L	1	250 {E}	ID	143			29				27	<2
Vanadium	mg/L	0.004	0.0045	970									
Zinc {B} Total	mg/L	0.05	2.4	110000	2.86	3.7	3.8	3.76	37.1			4.67	<0.004
Zinc {B} Dissolved	mg/L	0.05	2.4	110000	0.58			0.88		<0.02	<0.02		0.026
Misc.	Units												
Alkalinity	ug/L	NA	NA	NA	485000			410000				521000	<10000
Bicarbonate Alkalinity	ug/L	NA	NA	NA	485000			410000				521000	<10000
Carbonate Alkalinity	ug/L	NA	NA	NA	<5000			<5000				<5000	<5000
Conductivity	umho/cm	NA	NA	NA	<0000 1249			<30000 847				1268	2.6
Cyanide {R}	unno/cnn ug/L	5.0	200 {A}	57000	1243			140				1200	2.0
pH	ug/∟ pH	NA	6.5 to 8.5 {E}	NA	7.43			7.22				6.55	
111	рп		0.0 to 0.0 <u>1</u> ∟}	IN/A	1.45			1.22				0.00	

Table B2-3BSummary of Analytical Results for Inorganic Groundwater Samples - Update 2011 CriteriaGage ProductsFerndale, Michigan

Footnotes

Criteria from Part 201 RRD Memo, March 25, 2011 » Target Method Detection Limit from MDEQ-ERD Operational Memorandum #2, October 22, 2004

Results Qualifiers:

--- Parameter not analyzed

Bolded value denotes parameter detected above detection limit

Shaded values exceed TMDL and Residential Drinking Water Criteria

Criteria Qualifiers:

¹ Although criteria is hexavlent Chromium, results are total

{A} Criterion is MI Drinking Water Standard

{B} Background, may be substitued if higher than cleanup criterion

{D} Calculated criterion exceeds 100% hence is reduced to 100% or 1.0E+9 ppb

{E} Criterion is the aesthetic DW value

{L} Criteria for Lead are derived using a biologically based model

{S} Criterion defaults to the chemical-specfic water solubility limit

{Z} The current TDL for mercury is 0.2 ppb, however, a TDL of 5.0E-4 using U.S. EPA Method 1631, will be required after Sept. 30, 2000

TABLE B2 - 4 SUMMARY OF SOIL BORING INFORMATION Gage Products Company Ferndale, Michigan

r erndale, Michigan										
	Installation	Surface	T.O.C.	Total	Depth to Clay/	Top of Clay	Depth to	Water	Saturated	
I.D Number	Date	Elevation	Elevation	Depth	Fill Thickness	Elevation	Water	Elevation	Thickness	Purpose
SB-1	7/25/1989	637.4	NAp	55.0	2.0	635.4	Dry	Dry	Dry	
SB-2 (GMW-6)	7/27/1989	635.8	NAp	60.0	3.5	632.3		See GMW -	6	Provide additional delineation of
SB-3	7/28/1989	635.7	NAp	9.0	2.3	633.4	Dry	Dry	Dry	top of Clay till and check for
SB-4	7/28/1989	NAv	NAp	9.5	2.3	ND	Dry	Dry	Dry	extent of saturated fill.
SB-5	7/28/1989	636.2	NAp	9.5	1.5	634.7	Dry	Dry	Dry	
TSB-1	8/3/1990	637.7	NAp	12.5	* 11.0	* 626.7	4.5	633.2	* 6.5	
TSB-2	8/3/1990	637.7	NAp	12.5	* 11.0	* 626.7	4.0	633.7	* 7.0	Investigate soil quality after
TSB-3	8/3/1990	635.5	NAp	10.5	* 6.0	* 629.5	4.0	631.5	* 2.0	UST removal. Wells drilled in or
TSB-4	8/6/1990	NAv	NAp	10.5	2.5	NAv	Dry	Dry	Dry	near old UST vaults.
TSB-5	8/6/1990	636.7	NAp	10.5	* 6.0	* 630.73	4.2	632.5	* 1.8	_
C-SB-1	7/31/1990	635.5	NAp	10.5	1.5	634.0	Dry	Dry	Dry	Upgradient soil & GW conditions.
SB-8	2/11/1992	637.8	NAp	37.5	3.5	634.3	Dry	Dry	Dry	
SB-9	2/11/1992	638.0	NAp	30.0	6.0	632.0	3.5	634.5	2.5	Collect soil samples for
SB-10	2/10/1992	634.9	NAp	30.0	0.0	634.9	Dry	Dry	Dry	classification and physical
SB-11	2/10/1992	634.9	NAp	30.0	0.0	634.9	Dry	Dry	Dry	laboratory testing.
SB-12	2/12/1992	636.6	NAp	30.0	1.7	634.9	Dry	Dry	Dry	_
SB-14	2/12/1992	635.8	NAp	30.0	6.0	629.8	0.2	635.6	5.8	_
	1	1	1		Former Co	ca Cola Prope rty	7	1	1	
SB-1 (HAB 1)	8/27/1993	636 +/-	NAp	6.0	3.0	633 +/-	Dry	Dry	Dry	Environmental Site Assessment
SB-2 (HAB 2)	8/27/1993	637 +/-	NAp	5.5	5.0	632 +/-	Dry	Dry	Dry	-

NAp = Not Applicable

NAv = Not Available

ND = Not Determined

Water elevations and saturated fill thicknesses for soil borings are calculated from "depth to water" indications during drilling. * Depth to Clay within former UST vault excavation or collection trench.

TABLE B2-4 SUMMARY OF SOIL BORING INFORMATION Gage Products Company Ferndale, Michigan

				1	Геги	dale, Michigan	L			
	Installation	Surface	T.O.C.	Total	Depth to Clay/	Top of Clay	Depth to	Water	Saturated	
I.D Number	Date	Elevation	Elevation	Depth	Fill Thickness	Elevation	Water	Elevation	Thickness	Purpose
P-1	2/13/1992	636.8	636.24	5.5	ND	ND	ND	ND	ND	Monitor GW levels, provide
P-2	2/13/1992	636.2	635.67	6.1	ND	ND	2.06	633.61	ND	additional data on GW movement
P-3	2/13/1992	636.3	635.80	6.1	ND	ND	0.50	635.30	ND	in shallow fill. (P1 to P5 pushed
P-4	2/12/1992	637.4	637.21	5.5	ND	ND	ND	ND	ND	to completion depth, no lithology)
P-5	2/13/1992	636.0	635.67	5.5	ND	ND	ND	ND	ND	
P-6	10/12/1993	638.2	637.90	9.0	*8.5	* 629.7	NAv	ND	ND	Destroyed during LSF construction
P-6 (R)	1/26/1995	NAv	637.06	6.2	5.5	NA	1.19	635.87	ND	Replacement for P-6.
P-7	10/12/1993	637.6	637.35	6.0	*5.5	*632.1	NAv	ND	ND	_
P-8	10/12/1993	637.6	637.40	6.0	3.5	* 634.1	NAv	ND	ND	Monitor GW levels during
P-9	10/12/1993	637.7	637.51	6.0	5.5	632.2	NAv	ND	ND	pump test of GW collection
P-10	10/13/1993	637.7	637.36	6.0	5.5	632.2	NAv	ND	ND	trench, and subsequent general
P-11	10/13/1993	636.2	635.99	6.0	3.0	633.2	1.19	634.80	1.6	monitoring and sampling.
P-12	10/13/1993	636.2	635.98	6.0	2.9	633.3	1.57	634.41	1.1	(P-7, P-8, P-9, P-10 destroyed
P-13	10/13/1993	636.2	636.07	6.0	3.3	632.9	1.65	634.42	1.5	during LSF construction)
P-14	10/15/1993	636.8	636.46	8.5	* 8.0	* 628.8	2.86	633.60	* 4.8	Located in GW collection trench
P-15	10/15/1993	635.9	635.60	5.5	3.5	632.4	1.75	633.85	1.5	
P-16	10/15/1993	636.0	635.81	8.2	* 8.0	* 628.0	2.31	633.50	* 5.5	Located in GW collection trench
P-17	10/15/1993	635.3	634.83	5.5	3.5	631.8	1.25	633.58	1.8	
P-18	10/15/1993	635.3	634.84	6.2	* 6.0	* 629.3	1.64	633.20	* 3.9	Located in GW collection trench
P-19	10/15/1993	634.9	634.62	5.2	* 5.0	* 629.9	1.26	633.36	* 3.5	Located in GW collection trench
P-20	10/15/1993	635.1	634.70	5.5	3.5	631.6	1.02	633.68	2.1	
WP-1	NAv	635.5	636.18	6.9	ND	ND	4.45	631.73	ND	Installed by Gage for additional
WP-2	NAv	635.9	638.07	6.2	ND	ND	4.86	633.21	ND	GW monitoring.

NAp = Not Applicable NAv = Not Available

ND = Not Determined

* Depth to Clay within former UST vault excavation or collection trench.

Water level information for piezometers taken from May 1995 data.

TABLE B2-4 SUMMARY OF SOIL BORING INFORMATION Gage Products Company Ferndale, Michigan

	Installation	Surface	T.O.C.	Total	Depth to Clay/	Top of Clay	Depth to	Water	Saturated				
I.D Number	Date	Elevation	Elevation	Depth	Fill Thickness	Elevation	Water	Elevation	Thickness	Purpose			
GMW-1	7/24/1985	638.0	639.27	30.5	3.2	634.8	5.09	634.18	0.0	Monitor GW quality and water			
GMW-2	7/24/1985	635.7	638.23	30.5	3.2	632.5	4.90	633.33	0.8	levels.			
GMW-3	7/24/1985	635.1	637.20	30.5	0.0	635.1	6.23	630.97	0.0				
GMW-4	7/25/1985	639.7	639.89	15.5	5.2	634.5	NAv	NAv	NAv	Abandoned			
GMW-5	7/25/1985	637.4	639.06	15.5	3.2	634.2	NAv	NAv	NAv	Abandoned			
GMW-4 (R)	7/28/1989	639.6	639.87	14.5	5.2	634.4	4.16	635.71	1.3	Re-drill of GMW-4			
GMW-5 (R)	7/27/1989	637.1	638.95	10.5	3.2	633.9	3.23	635.72	1.8	Re-drill of GMW-5			
GMW-6	7/27/1989	635.8	635.49	9.5	3.5	632.3	1.02	634.47	2.2	Investigate soil and GW			
GMW-7	7/31/1990	638.3	637.87	16.5	4.0	634.3	1.92	635.95	1.7	quality			

Water level information for monitoring wells (GMW's) taken from May 1995 data.

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

Units as Given

Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Semi-Volatiles	Units									
Acenaphthene	μg/l				ND	ND	ND	ND	ND	ND
Acenaphthylene	μg/l				ND	ND	ND	ND	ND	ND
Aniline	μg/l				ND	ND	ND	ND	ND	ND
Anthracene	μg/l				ND	ND	ND	ND	ND	ND
Benzidine	μg/l				ND	ND	ND	ND	ND	ND
Benzo(a)Anthracene	μg/l				ND	ND	ND	ND	ND	ND
Benzo(a)Pyrene	μg/l				ND	ND	ND	ND	ND	ND
Benzo(b)Fluoranthene	μg/l				ND	ND	ND	ND	ND	ND
Benzo(k)Fluoranthene	μg/l				ND	ND	ND	ND	ND	ND
Benzoic Acid	μg/l	50	32000	3.5E+6 {S}	ND	ND	ND	ND	15	18
Benzo(ghi)Perylene	μg/l				ND	ND	ND	ND	ND	ND
Benzyl Alcohol	μg/l	50	10000	4.4E+7 {S}	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-Chloroethoxy)methane	μg/l				ND	ND	ND	ND	ND	ND
Bis(2-Chloroethyl)ether	µg/l				ND	ND	ND	ND	ND	ND
Bis(2-Chloroisopropyl)ether	μg/l				ND	ND	ND	ND	ND	ND
Bis(2-Ethylhexyl)phthalate	μg/l	5	6.0 {A}	320 {AA}	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Bromodiphenyl ether	μg/l				ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	μg/l				ND	ND	ND	ND	ND	ND
4-Chloroaniline	μg/l				ND	ND	ND	ND	ND	ND
4-Chloro-3-Methylphenol	μg/l				ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	μg/l				ND	ND	ND	ND	ND	ND
2-Chlorophenol	μg/l				ND	ND	ND	ND	ND	ND
4-Chlorodiphenyl ether	μg/l				ND	ND	ND	ND	ND	ND
Chrysene	μg/l				ND	ND	ND	ND	ND	ND
Dibenzo(a,h)Anthracene	μg/l				ND	ND	ND	ND	ND	ND
Dibenzofuran	μg/l				ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/l	1	600 {A}	1.6E+5 {S}	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	μg/l	1	6.6	2000	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/l	1	75 {A}	6400	ND	ND	ND	<5.0	ND	<5.0
2,4-Dichlorophenol	μg/l				ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	μg/l				ND	ND	ND	ND	ND	ND

Page 1 of 7

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

Units as Given

Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Semi-Volatiles Continued	Units									
Diethylphthalate	μg/l				ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	μg/l	5	370	5.2E+5	ND	ND	15	14	15	13
Dimethylphthalate	μg/l				ND	ND	ND	ND	ND	ND
Di-n-Butylphthalate	μg/l	5	880	11000 {S}	<5.0	ND	ND	ND	ND	ND
4,6-Dinitro-2-Methylphenol	µg/l				ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	μg/l				ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	μg/l				ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	μg/l				ND	ND	ND	ND	ND	ND
Di-n-Octylphthalate	μg/l				ND	ND	ND	ND	ND	ND
Fluoranthene	μg/l				ND	ND	ND	ND	ND	ND
Fluorene	μg/l				ND	ND	ND	ND	ND	ND
Hexachlorobenzene	μg/l				ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	μg/l				ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	μg/l				ND	ND	ND	ND	ND	ND
Hexachloroethane	μg/l				ND	ND	ND	ND	ND	ND
Indeno(1,2,3-c,d)Pyrene	μg/l				ND	ND	ND	ND	ND	ND
Isophorone	μg/l				ND	ND	ND	ND	ND	ND
Naphthalene	μg/l	5	520	31000 {S}	72	89	93	95	71	94
Nitrobenzene	μg/l				ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	μg/l	5	260	25000 {S}	37	40	53	54	41	44
2-Methylphenol	μg/l	10	370	8.1E+5	26	27	20	16	24	22
4-Methylphenol	μg/l	10	370	8.1E+5	16	24	34	34	38	41
2-Nitroaniline	μg/l				ND	ND	ND	ND	ND	ND
3-Nitroaniline	μg/l				ND	ND	ND	ND	ND	ND
4-Nitroaniline	μg/l				ND	ND	ND	ND	ND	ND
2-Nitrophenol	μg/l				ND	ND	ND	ND	ND	ND
4-Nitrophenol	μg/l				ND	ND	ND	ND	ND	ND
N-Nitrosodimethylamine	μg/l				ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	μg/l				ND	ND	ND	ND	ND	ND
N-Nitroso-di-n-Propylamine	μg/l				ND	ND	ND	ND	ND	ND
Pentachlorophenol	μg/l				ND	ND	ND	ND	ND	ND
Phenanthrene	μg/l	2	52	1000 {S}	<5.0	ND	ND	ND	ND	ND

Page 2 of 7

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

Units as Given

Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Semi-Volatiles Continued	Units			-						
Phenol	μg/l	5	4400	2.9E+7	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Pyrene	µg/l				ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	µg/l				ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	μg/l				ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	µg/l				ND	ND	ND	ND	ND	ND
1,2-Diphenylhydrazine	μg/l				ND	ND	ND	ND	ND	ND
Azobenzene	μg/l								ND	
Phenols	Units									
4-Chloro-3-methylphenol	μg/l								ND	
2-Chlorophenol	μg/l								ND	
2,4-Dichlorophenol	μg/l								ND	
2,4-Dimethylphenol	µg/l	5	370	5.2E+5					15	
4,6-Dinitro-2-methylphenol	μg/l								ND	
2,4-Dinitrophenol	μg/l								ND	
2-Methylphenol	μg/l	10	370	8.1E+5					24	
4-Methylphenol	μg/l	10	370	8.1E+5					38	
2-Nitrophenol	μg/l								ND	
4-Nitrophenol	μg/l								ND	
Pentachlorophenol	µg/l								ND	
Phenol	μg/l	5	4400	2.9E+7					<5.0	
2,4,5-Trichlorophenol	µg/l								ND	
2,4,6-Trichlorophenol	µg/l								ND	
Volatiles	Units									
Acetone	μg/l	50	730	3.1E+7					2100	
Benzene	μg/l	1	5.0 {A}	11000	63	65	74	77	77	82
Bromobenzene	μg/l				ND	ND	ND	ND	ND	ND
Bromochloromethane	µg/l				ND	ND	ND	ND	ND	ND
Bromodichloromethane	μg/l				ND	ND	ND	ND	ND	ND
Bromoform	μg/l				ND	ND	ND	ND	ND	ND
Bromomethane	μg/l				ND	ND	ND	ND	ND	ND
n-Butylbenzene	μg/l				ND	ND	ND	ND	ND	ND
s-Butylbenzene	µg/l				ND	ND	ND	ND	ND	ND

Page 3 of 7

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

Units as Given

Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Volatiles Continued	Units									
t-Butylbenzene	μg/l				ND	ND	ND	ND	ND	ND
Carbon disulfide	μg/l								ND	
Carbon Tetrachloride	μg/l				ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/l	1	100 {A}	86000	81	110	120	110	110	120
Chlorodibromomethane	μg/l				ND	ND	ND	ND	ND	ND
Chloroethane	μg/l	5	430	4.4E+5	2400	3000	3200	3100	2100	2400
Chloroform	μg/l				ND	ND	ND	ND	ND	ND
1-Chlorohexane	μg/l				ND	ND	ND	ND	ND	ND
Chloromethane	μg/l				ND	ND	ND	ND	ND	ND
2-Chlorotoluene	μg/l				ND	ND	ND	ND	ND	ND
4-Chlorotoluene	μg/l				ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	μg/l				ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	μg/l				ND	ND	ND	ND	ND	ND
Dibromomethane	μg/l				ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/l				ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	μg/l				ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/l				ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	μg/l				ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	μg/l	1	5.0 {A}	19000	190	190	210	210	37	ND
1,1-Dichloroethane	μg/l	1	880	2.4E+6	150	380	740	1000	1200	1400
1,1-Dichloroethene	μg/l				ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	μg/l	1	70 {A}	2.0E+5	22	84	250	390	430	610
trans-1,2-Dichloroethylene	μg/l				ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	μg/l				ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	μg/l				ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	μg/l				ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	μg/l				ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	μg/l								ND	
trans-1,3-Dichloropropene	μg/l								ND	
Ethylbenzene	μg/l	1	74 {E}	1.7E+5 {S}	900	990	970	980	950	1000
Hexachlorobutadiene	μg/l				ND	ND	ND	ND	ND	ND
2-Hexanone	μg/l								ND	

Page 4 of 7

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

Units as Given

Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Volatiles Continued	Units									
Isopropylbenzene (Cumene)	μg/l	5	800	56000 {S}	34	43	42	44	43	ND
p-Isopropyltoluene	μg/l				ND	ND	ND	ND	ND	ND
Methyl ethyl ketone	μg/l	25	13000	2.4E+8 {S}					<1000	
Methyl isobutyl ketone	μg/l	50	1800	1.3E+7					9200	
Methyl tert-butyl ether	μg/l								ND	
Methylene Chloride	μg/l	5	5.0 {A}	2.2E+5	44	59	76	78	ND	ND
Naphthalene	μg/l	5	520	31000 {S}	160	210	220	230	250	250
N-propylbenzene	μg/l	1	80	15000	46	60	56	65	63	62
Styrene	μg/l				ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	μg/l				ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/l				ND	ND	ND	ND	ND	ND
Tetrachloroethylene	μg/l				ND	ND	ND	ND	ND	ND
Toluene	μg/l	1	790 {E}	5.3E+5 {S}	5100	7800	8100	8000	7900	8400
1,2,3-Trichlorobenzene	μg/l				ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	μg/l				ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	μg/l	1	200 {A}	1.3E+6 {S}	ND	ND	73	260	490	740
1,1,2-Trichloroethane	μg/l				ND	ND	ND	ND	ND	ND
Trichloroethylene	μg/l				ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	μg/l				ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	μg/l				ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	μg/l	1	63 {E}	56000 {S}	970	1300	1300	1400	1300	ND
1,3,5-Trimethylbenzene	μg/l	1	72 {E}	61000 {S}	300	380	380	430	370	410
Vinyl Chloride	μg/l	1	2.0 {A}	1000	66	140	410	570	180	540
Xylenes (o,m & p), total	μg/l	3	280 {E}	1.9E+5 {S}	3800	4300	4300	4200	3900	4300
Inorganics	Units									
Arsenic	μg/l	5	10 {A}	4300	4.8	9.1	9.8	10	8.6	7.3
Barium	μg/l	100	2000 {A}	1.4E+7	320	340	370	370	380	410
Cadmium	μg/l	1	5.0 {A}	1.9E+5	0.77	ND	<0.20	<0.20	< 0.20	ND
Calcium	mg/l	NA	NA	NA					100	
Chloride	mg/l	10	250 {E}	ID					73	
Chromium	μg/l				ND	ND	ND	ND	ND	ND
Copper	μg/l				ND	ND	ND	ND	ND	ND

Page 5 of 7

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

Units as Given

Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Inorganics Continued	Units									
Iron	mg/l	0.2	0.3 {E}	58000					23	
Lead	μg/l	3	4.0 {L}	ID	22	4.7	4.2	5.8	4.6	6.3
Magnesium	mg/l	1	400	1000000 {D}					26	
Mercury	μg/l	0.001	2.0 {A}	56 {S}	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2
Nickel	mg/l								ND	
Potassium	mg/l	NA	NA	NA					10	
Selenium	μg/l	5	50 {A}	9.7E+5	ND	ND	ND	ND	<5.0	<5.0
Silver	μg/l	0.2	34	1.5E+6	< 0.50	< 0.50	ND	ND	ND	< 0.50
Sodium	mg/l	1	120	1000000 {D}					40	
Sulfate	mg/l	1	250 {E}	ID					6.5	
Zinc	μg/l	50	2400	1.1E+8	310	60	50	50	60	60
Alkalinity	mg/l	NA	NA	NA					460	
Bicarbonate Alk as HCO3	mg/l	NA	NA	NA					460	
Pesticides	Units									
Aldrin	μg/l								ND	
a-BHC	μg/l								ND	
b-BHC	μg/l								ND	
d-BHC	μg/l								ND	
g-BHC (lindane)	μg/l								ND	
Chlordane	μg/l								ND	
4,4-DDD	μg/l								ND	
4,4-DDE	μg/l								ND	
4,4-DDT	μg/l								ND	
Dieldrin	μg/l								ND	
Endosulfan I	μg/l								ND	
Endosulfan II	μg/l								ND	
Endosulfan sulfate	μg/l								ND	
Endrin	μg/l								ND	
Endrin aldehyde	μg/l								ND	
Heptachlor	μg/l								ND	
Heptachlor epoxide	μg/l								ND	
Methoxychlor	μg/l								ND	

Page 6 of 7

Table B2-5 Summary of Analytical Results for Effluent from the Ground Water Collection Trench Gage Products, Ferndale, Michigan

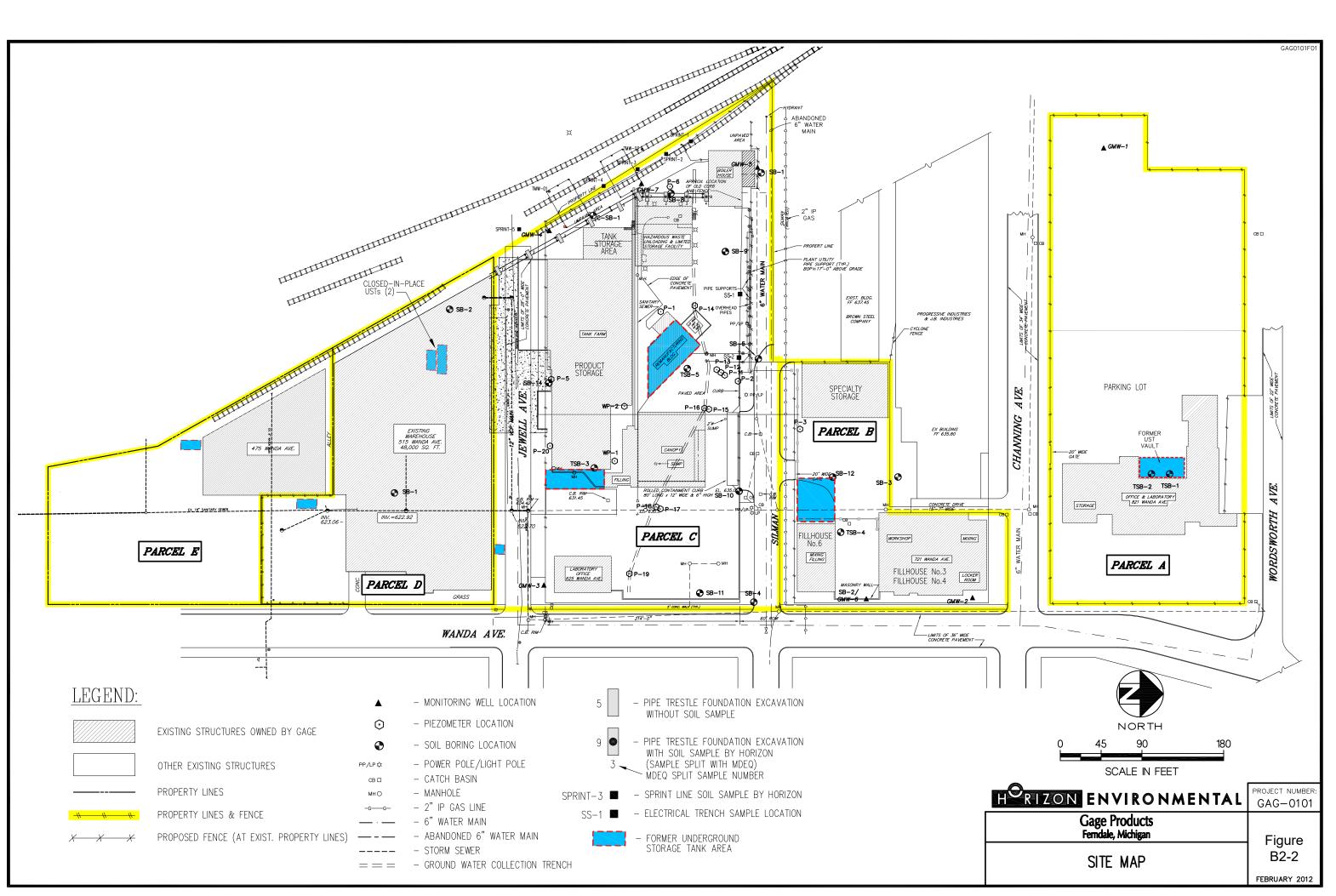
Units as Given

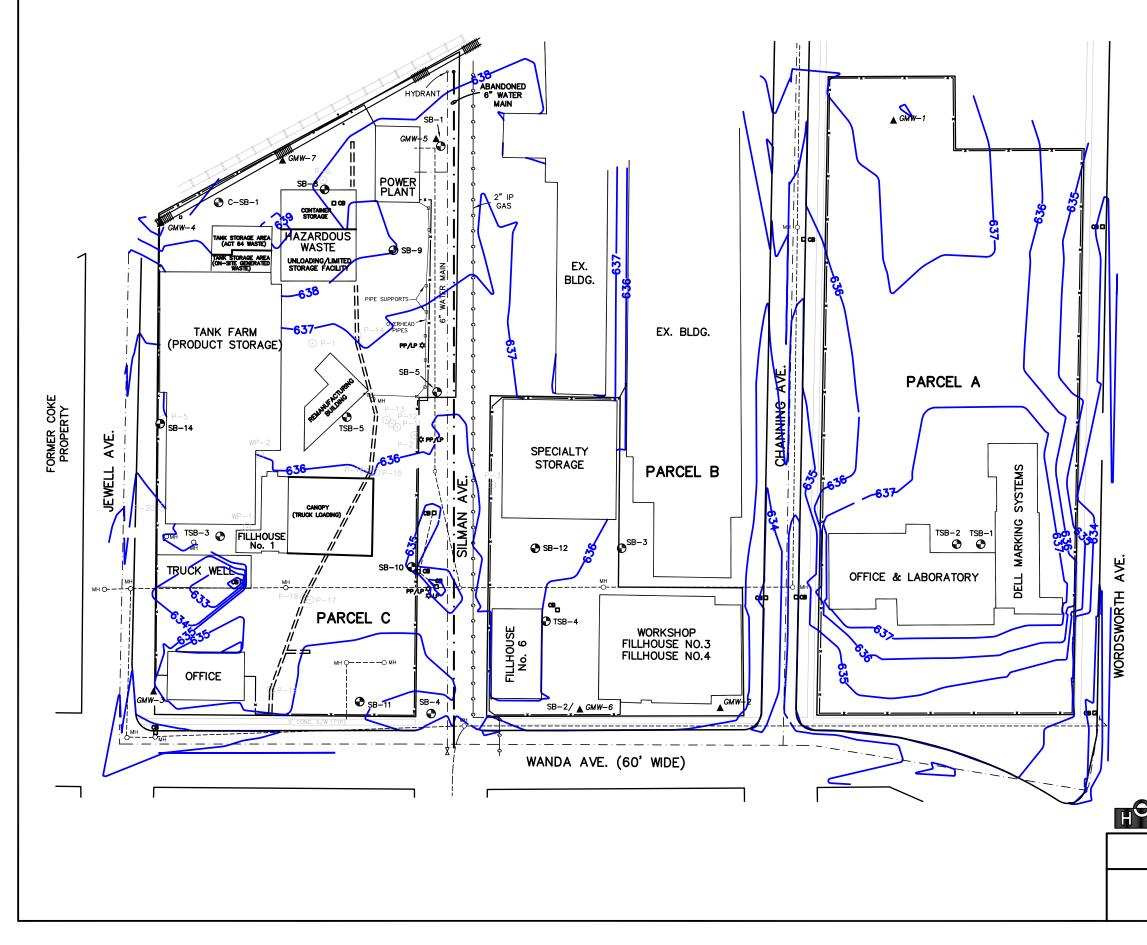
Sample Identification:		Target	Residential	Groundwater	Effluent #1	Effluent #2	Effluent #3	Effluent #4	Effluent #5	Effluent #6
Sample Date:		Method	Drinking	Contact	10/18/1993	10/18/1993	10/19/1993	10/19/1993	10/20/1993	10/20/1993
Laboratory ID:		Detection	Water	Criteria	111131-0001	111131-0002	111139-0001	111139-0002	111150-0001	111150-0002
Sampled By:		Limit	Criteria		WWES	WWES	WWES	WWES	WWES	WWES
Pesticides	Units									
Toxaphene	μg/l								ND	
Aroclor 1016	μg/l								ND	
Aroclor 1221	μg/l								ND	
Aroclor 1232	μg/l								ND	
Aroclor 1242	μg/l								ND	
Aroclor 1248	μg/l								ND	
Aroclor 1254	μg/l								ND	
Aroclor 1260	μg/l								ND	

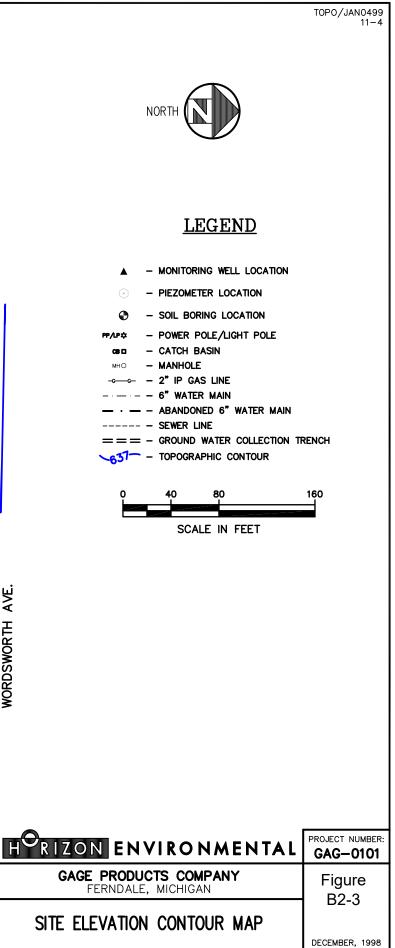
»Shaded values exceed Residential Drinking Water Criteria

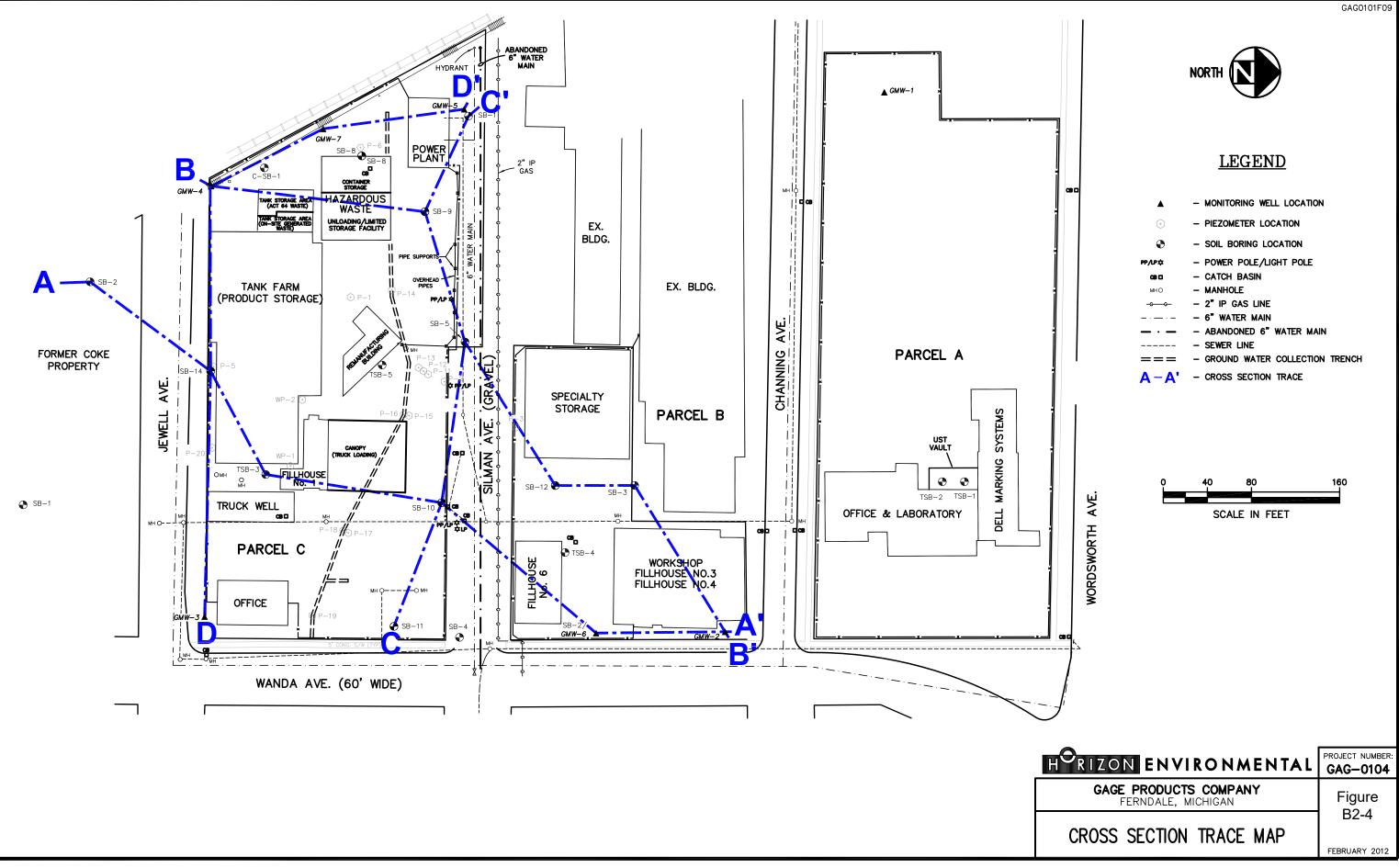
NA = Not available

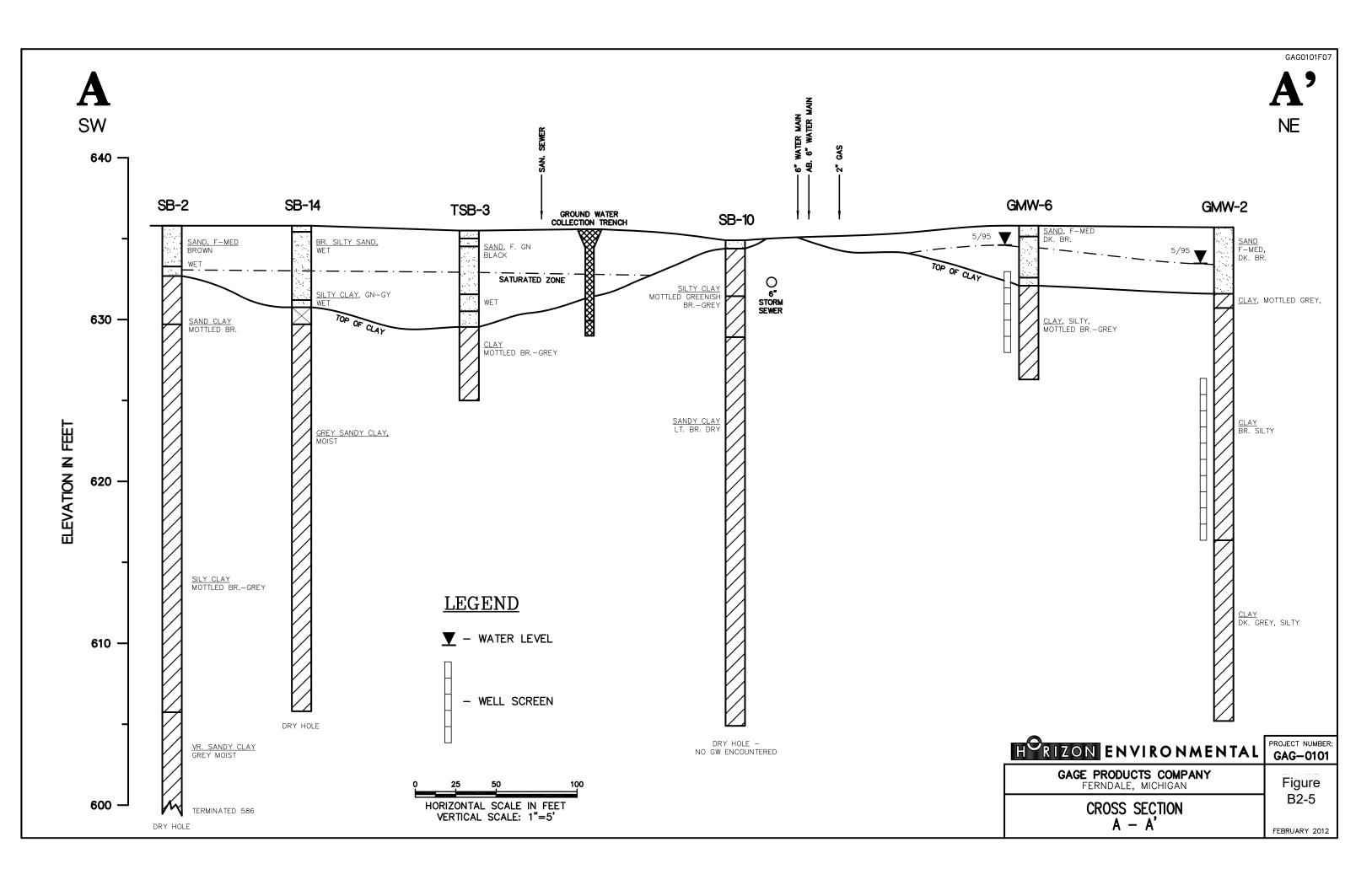
--- = not analyzed

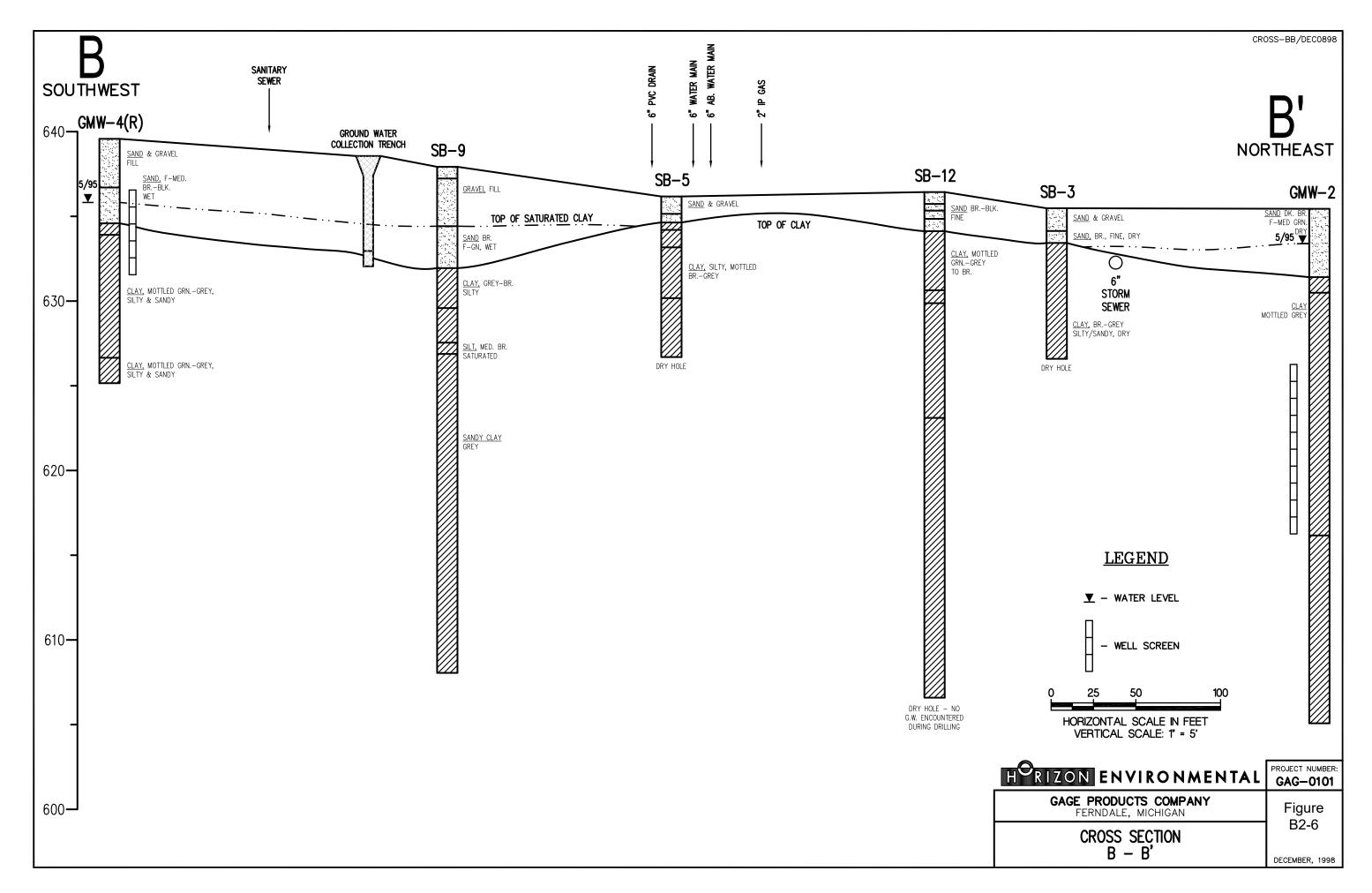

ID = Insufficient data to calculate a criterion

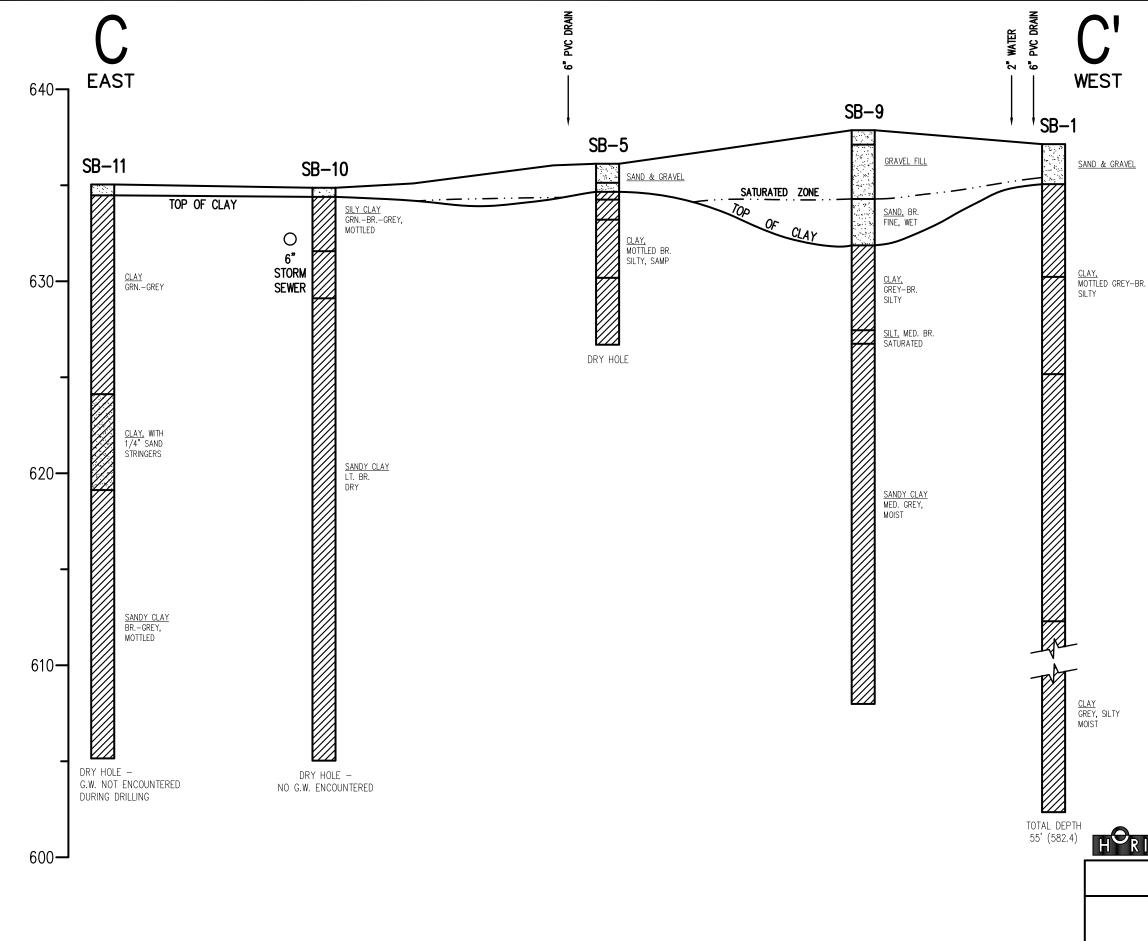

ND = Not detected

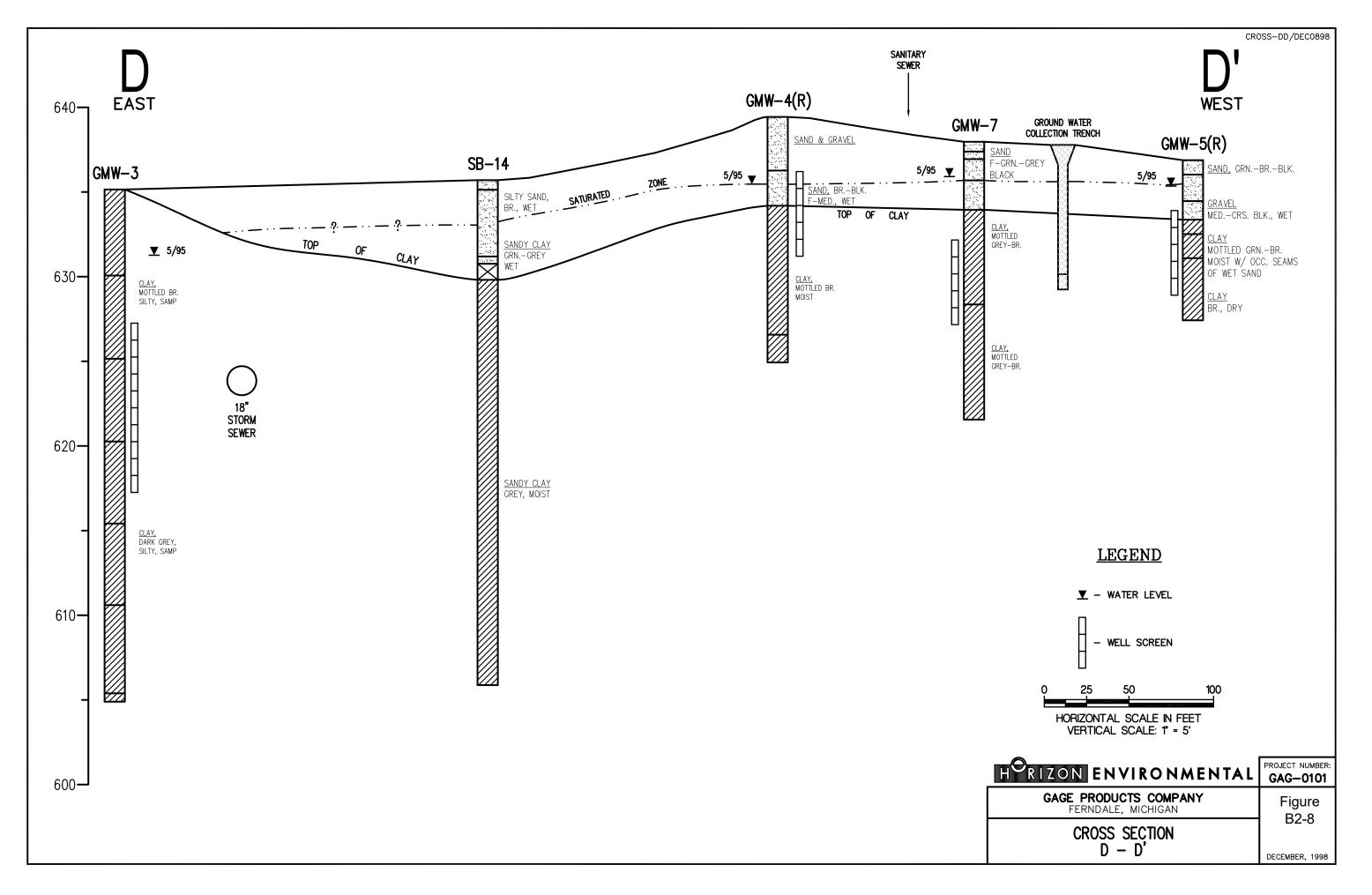


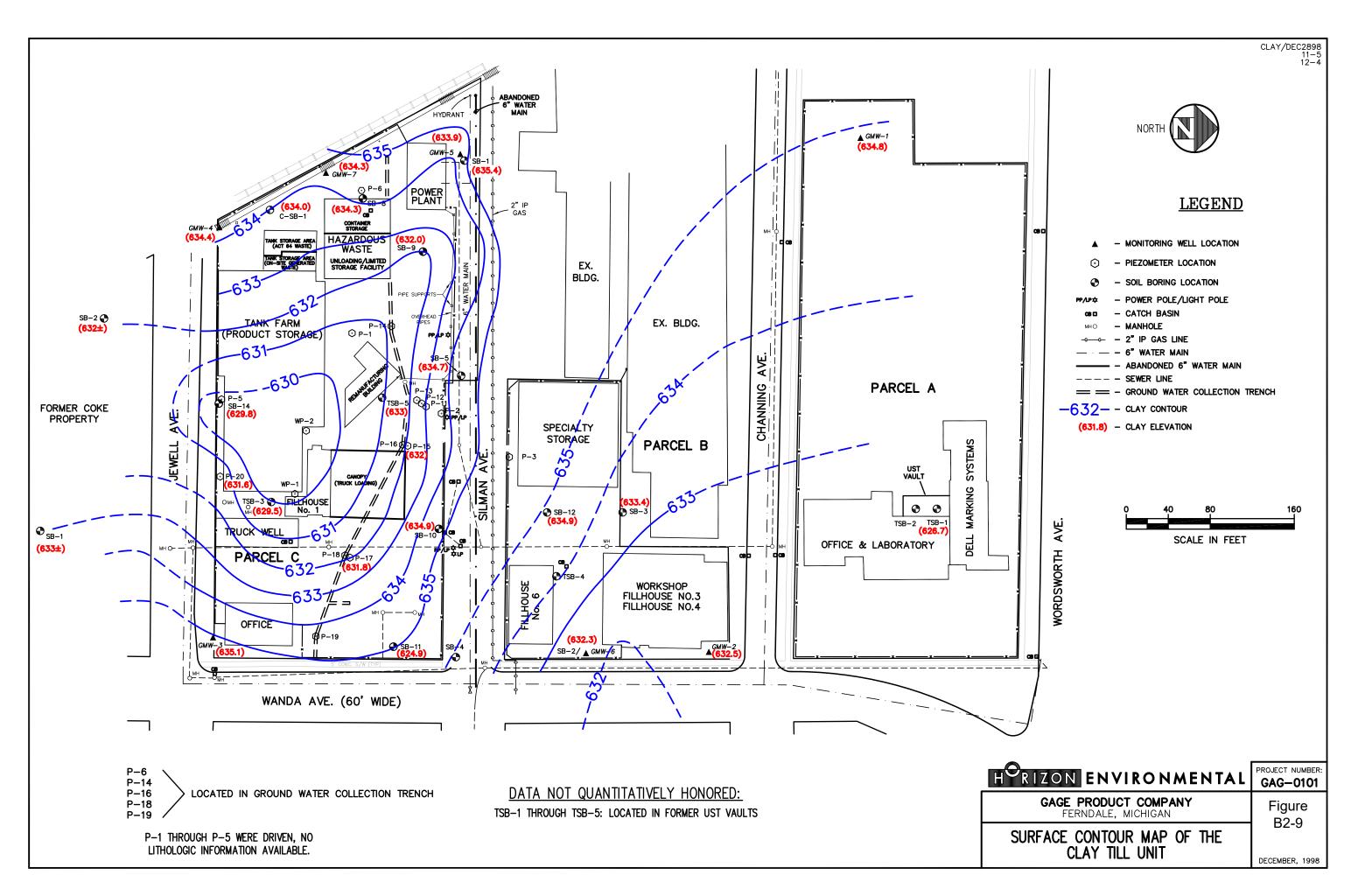

Figures

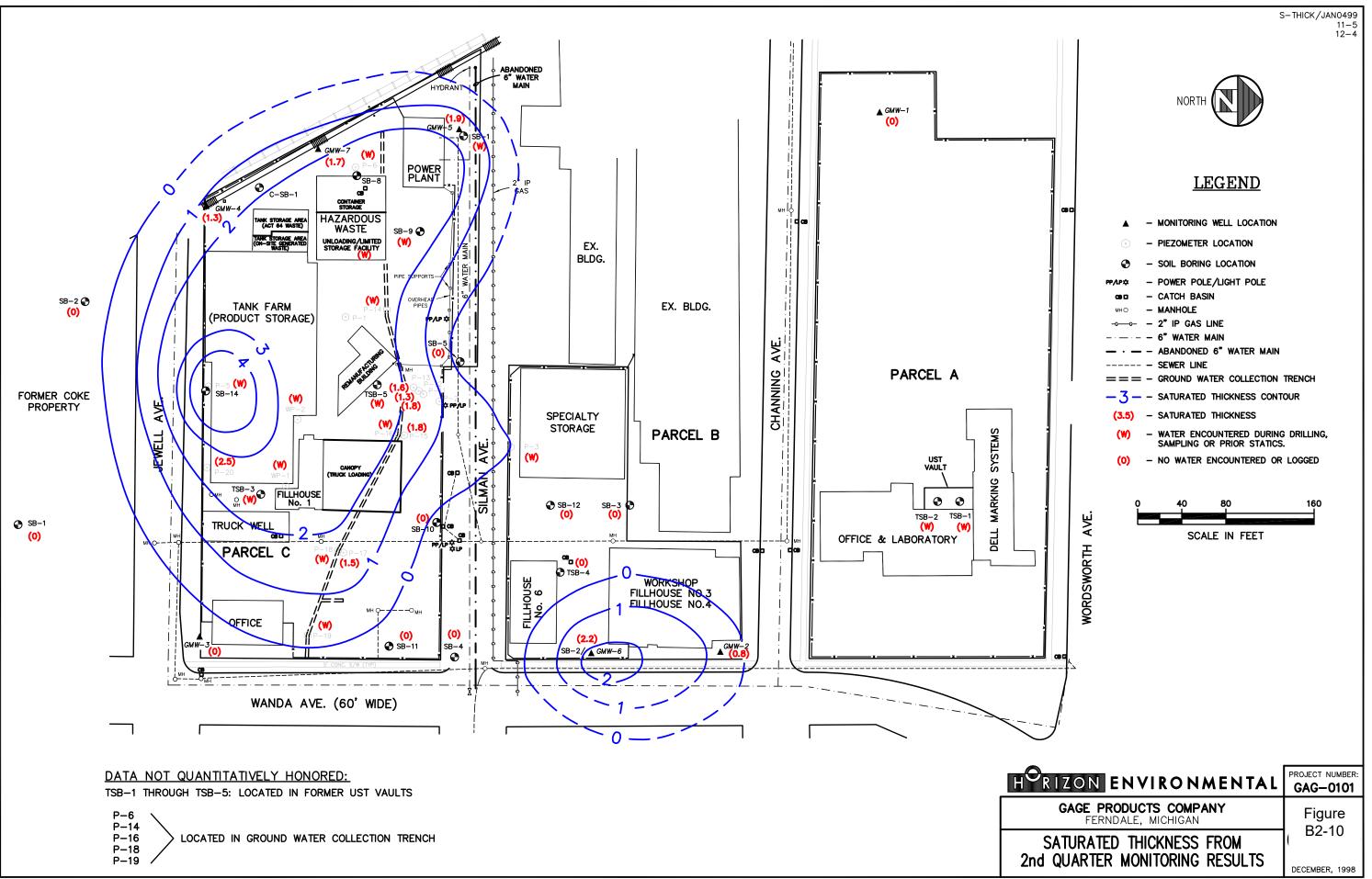


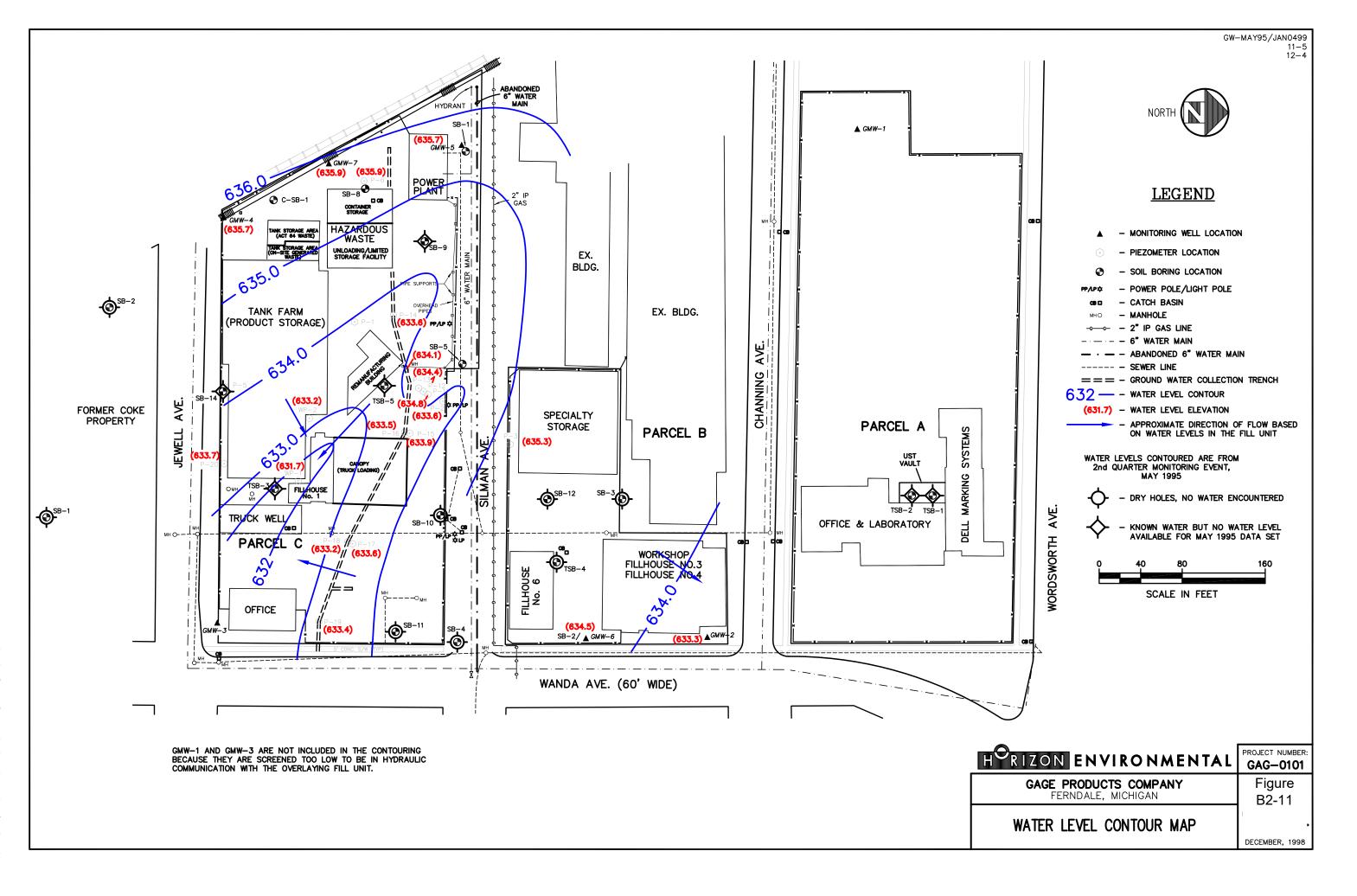


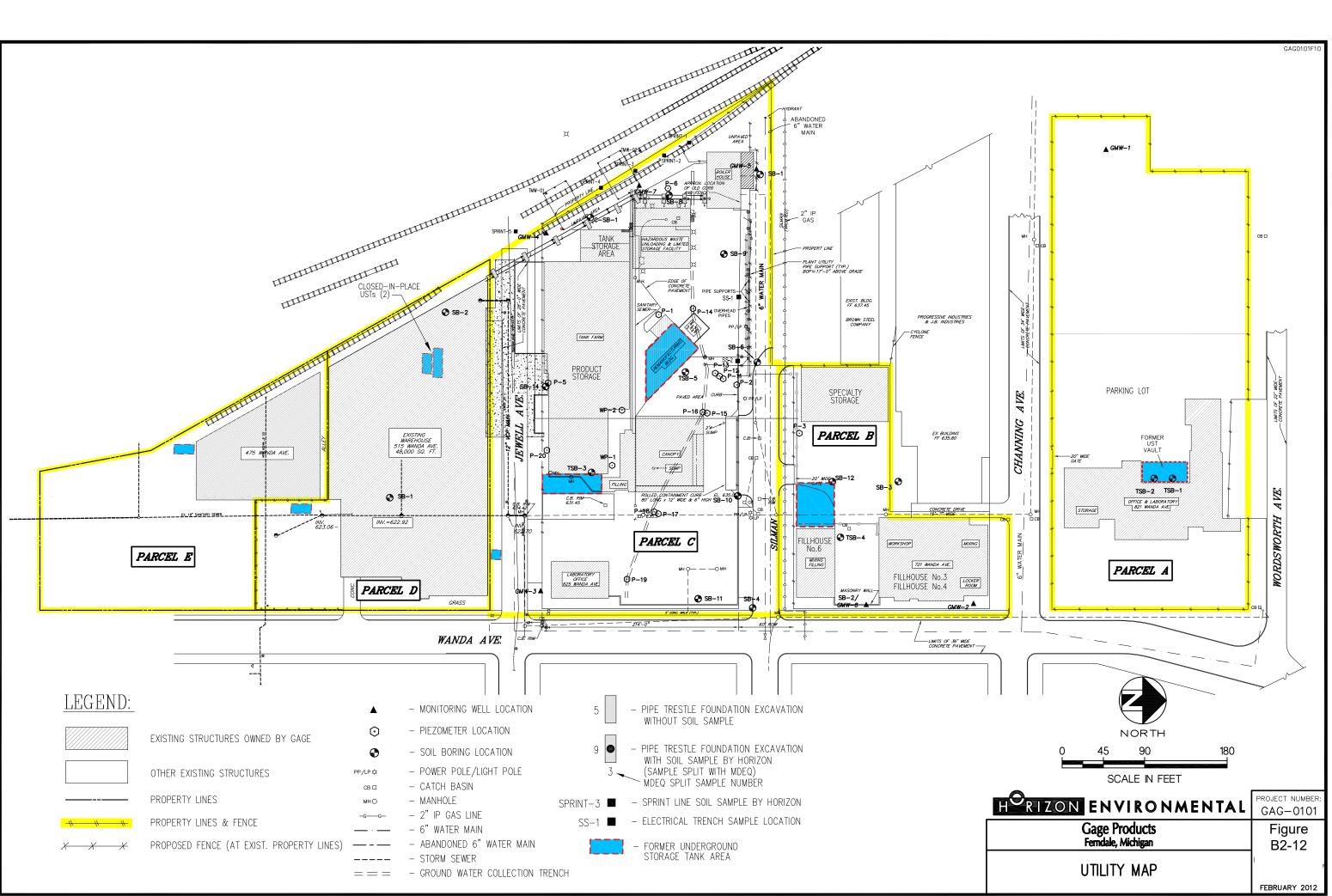


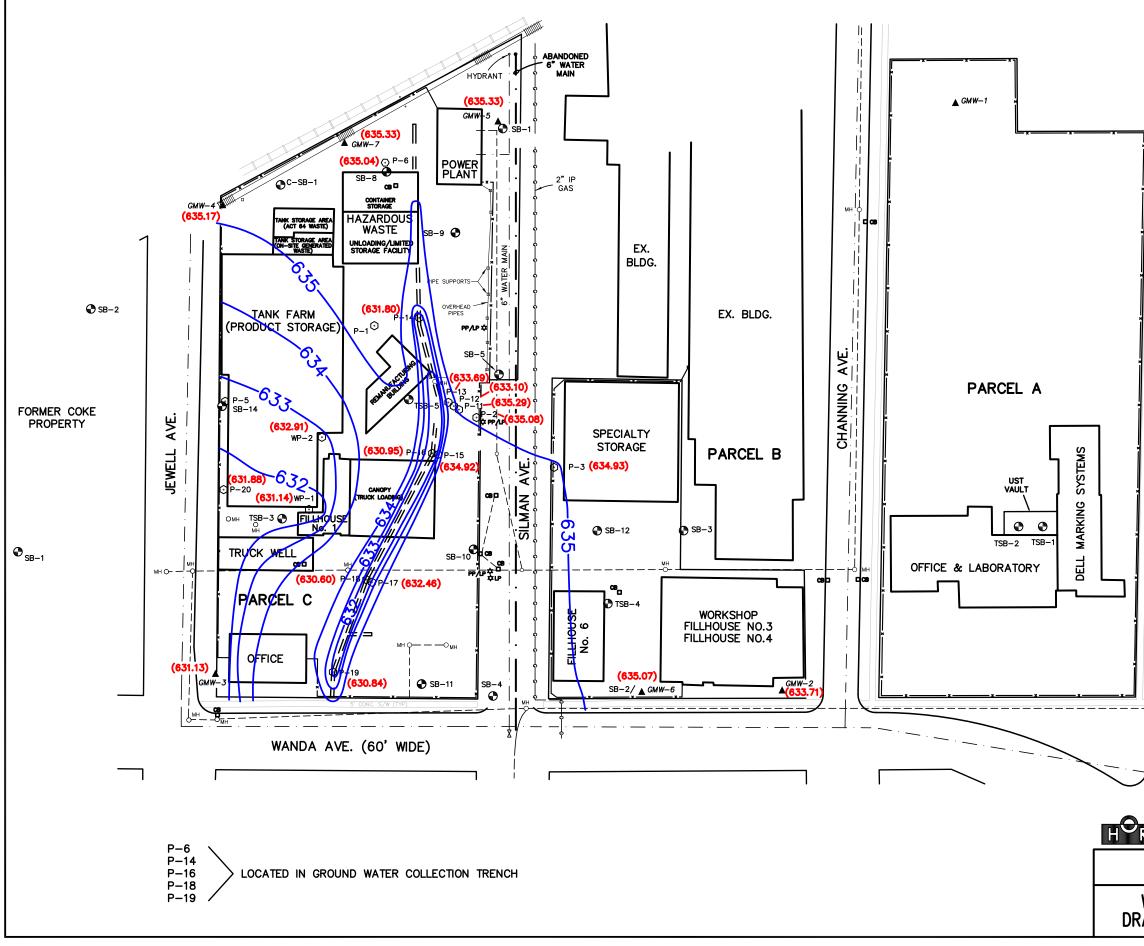




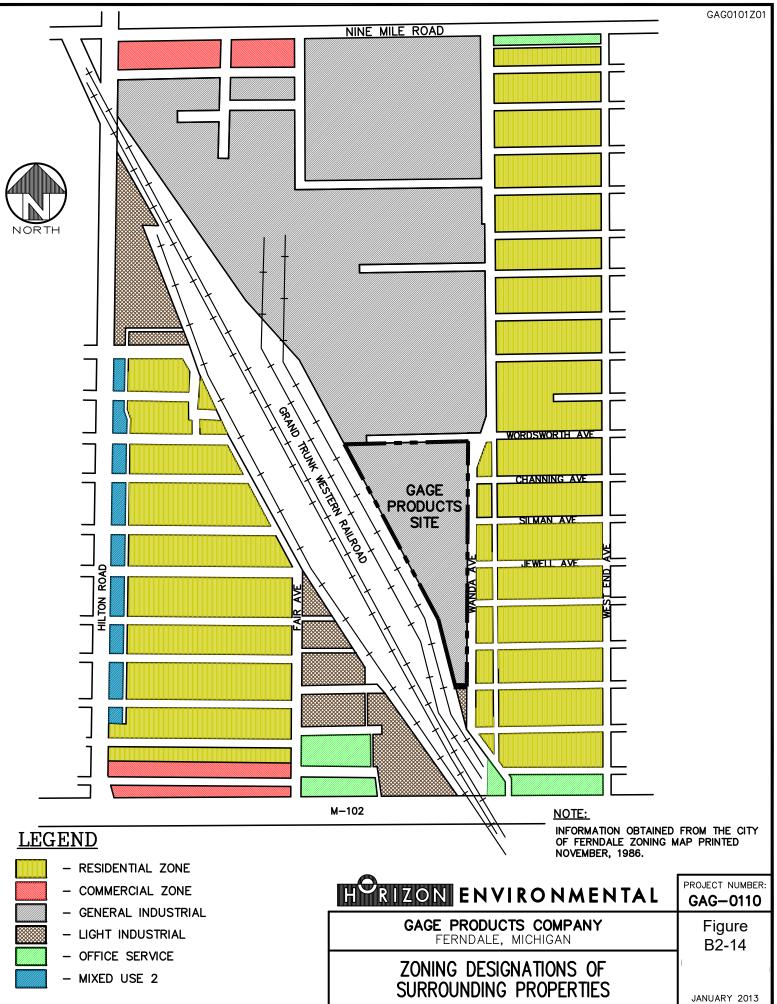

LEGEND ▼ – WATER LEVEL - WELL SCREEN 25 50 100 HORIZONTAL SCALE IN FEET VERTICAL SCALE: 1° = 5' HORIZON ENVIRONMENTAL PROJECT NUMBER: GAG-0101 GAGE PRODUCTS COMPANY FERNDALE, MICHIGAN Figure B2-7 CROSS SECTION C - C'DECEMBER, 1998

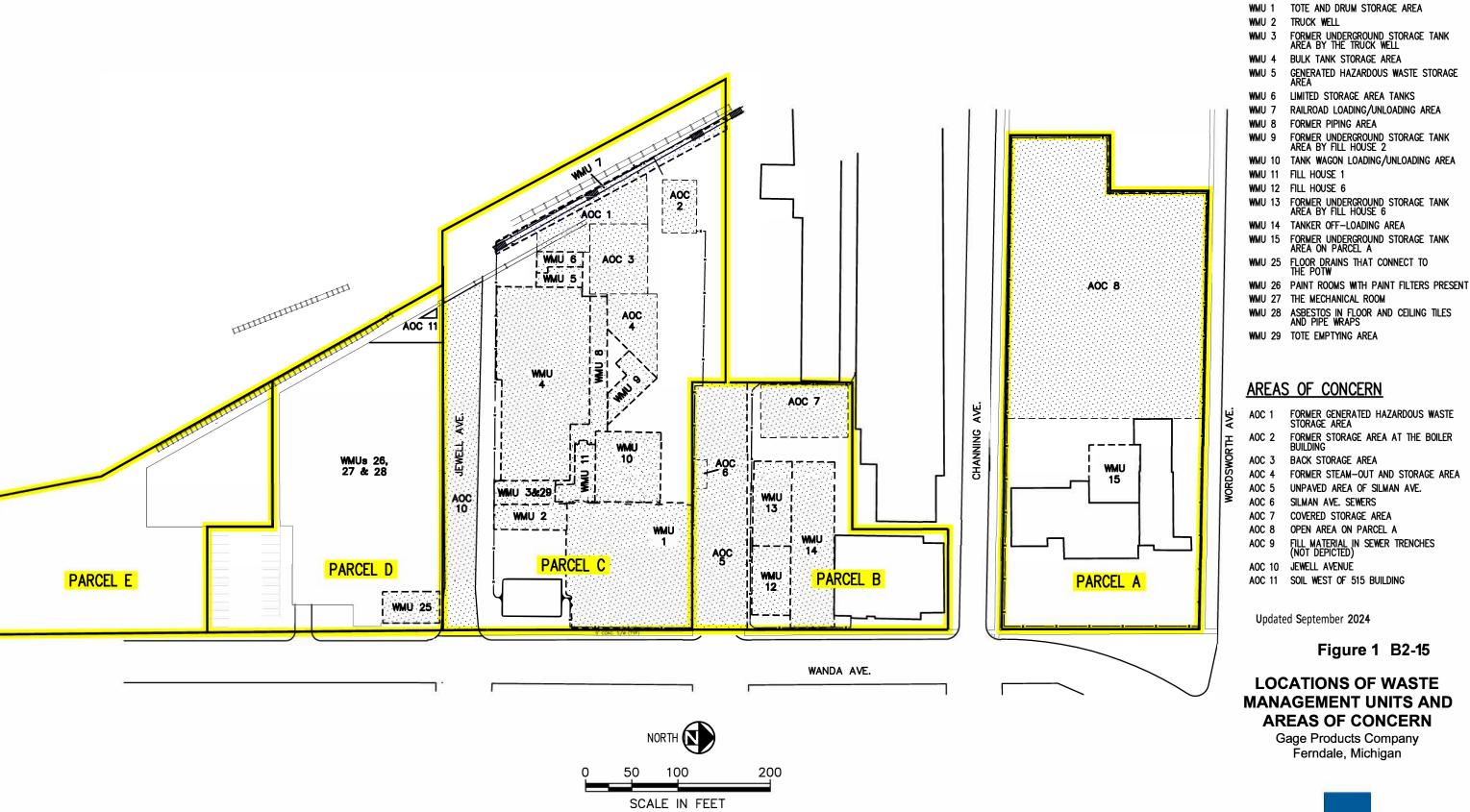

CROSS-CC/DEC0898





Lvanprooyen\DWGS\GAG\rfi\CLAY.dwg, 1/17/2013 11:17:41 A


DRAWDOWN/DEC2898 11-5 12-4


DECEMBER, 1998

LEGEND

- MONITORING WELL LOCATION - PIEZOMETER LOCATION \odot - SOIL BORING LOCATION ക - POWER POLE/LIGHT POLE ₽₽∕₽₽ - CATCH BASIN CR [] - MANHOLE 2" IP GAS LINE 6" WATER MAIN ABANDONED 6" WATER MAIN - SEWER LINE - GROUND WATER COLLECTION TRENCH 633- - WATER TABLE CONTOUR (635.29) - WATER TABLE ELEVATION 160 AVE. SCALE IN FEET WORDSWORTH H^ORIZON ENVIRONMENTAL PROJECT NUMBER GAG-0101 **GAGE PRODUCT COMPANY** FERNDALE, MICHIGAN Figure B2-13 WATER TABLE CONTOUR MAP DRAWDOWN PHASE WATER LEVELS

5/7/2020

DATE:

PLOT

1

SCALE:

D O

FIG01

b

02500

CO\22621

CLIS

PRODU

GAGE 02500

CAD\ DE

(DAD)

//GR

Ë

USER:

CADD 1

LOCATIONS OF WASTE MANAGEMENT UNITS AND **AREAS OF CONCERN**

Gage Products Company Ferndale, Michigan

4771 50th Street SE Grand Rapids, MI 49512

WASTE MANAGEMENT UNITS

Appendices

Appendix B2-1

Soil Boring/Well Logs

5 00 27-1N-11E TD 1064 in Bois Blanc Royal Oak Twp., (Osklani Co.) Waste Disposal Well 20. 20 Reichhold Chemicels, Incorporated Fea No. 2 B. D. No. 64 Drilling Contractor: 0.0. Corseant (Cable) Location: NV4 SW4 NES section 27, T 1N, E 11E 1630.46' from north and 499.64' from west line of quarter section Elevation: 640 feet above sea level Record by: B. L. Champion from driller's log & incomplete samples 7-1060 Thickness •••• Depth (Fee%) (Feet) PLEISTOCENE: Drift: Sand Clay with gravel imbedded 103 Gravel & clay 18 MISSISSIPPIAN-DEVONIAN: Antrim: Shale, black with a few spore cases (fresh water 185) 74 202 DEVONIAN: Treverse formation: Shale, gray, calcareous 20 222 Traverse limestone: Dolomite, brown-buff to light gray, broken crystalline, with some perosity; trase of glauconite 14 236 Delomite, buff to light brown & gray-brown, broken grystalline to very fine grained, with a little porosity; considerable chert, buff to white, dense (salt water 240) 9 245 Shale, gray, calcareous 12 257 Limestone, gray, mostly very fine grained, argillaceous in part; some chert, gray, dense 23 280 Shale, gray, calcareous with a little linestone 25 305 No sample- driller's log: shale, blue 68 385 Shale, gray & limestone, gray, fossiliferous (bryosca) 52 437 Limestone, gray, very fine grained, argillaceous in DENS 15 450 (228)Dundee: Limestone, buff-gray, very fine grained, with stylolitic partings; minor pinpoint perceity (salt water 500) 150 600 Detroit River: Dolomite, brown-buff, very fine grained, with some pinpoint porosity; tracs white anhydrite 5 605 Dolomite, brown-buff to gray-buff, very fine gramming with some pinpoint porosity & considerable enbydrite; a little gypeva 9 614 Dolomite, gray-buff, colitic, with a little pinpoint porosity; trace of subjects 12 626

MICHIGAN I	, Departi	MENT OF	PUBLIC HEALTH
GEOLOGICAL SURVEY NO. WATER V	NELL A	AND PU	
	yel (Dak	PERMIT NUMBER
County OAKLAND Township Name	ປຸ 	Fraction NEA	NEA NEA Section Number Town Number Range Number
istance And Direction From Road Intersection	<i>(</i>	1.0	3 OWNER OF WELL: Charles Neidererim
790 St.C	hArl	ES .	Address 7 90 St. Charles
Street Address & City of Well Location		المد	Address Same As Well Location? X Yes No
Locate with "X" in Section Below	atchylap: C	harles	4 WELL DEPTH: (completed) Date of Completion
Locate with 'X' in Section Below			57 1 5-9-86
	stter		5 X Cable tool Rotary Driven Dug Hollow rod Auger Jetted
PONT #	0		6 USE: Domestic Type I Public Type III Public
	.		Irrigation Type Ila Public Heat pump Test Well Type Ilb Public
			7 CASING: Sieel Threaded Height: Above/Below
	THICKNESS	DEPTH TO	4 in. to tr. ft. depth Weided Surfaceft.
2 FORMATION DESCRIPTION	OF STRATUM	BOTTOM OF STRATUM	in. toft. depth Grouted Drill Hole Diameter
Yellow CLAY SAND + GRAVA	.30	30	in. toft. depth Drive Shoe Yes
B CLAY a GRAbel.	12	217	8 SCREEN:
		7 -	Type STAIN Diameter 411 Stot/Gene 15 Length 41
GRey WAter GRAVE	115	57	Set between <u>53</u> ft. and <u>57</u> ft.
· ·			FITTINGS: DKK-Packer 🗌 Lead Packer 🗍 Bremer Check
j			9 STATIC WATER LEVEL:
f			The second surface The second surface The second surface The second surface
			30 ft. after 3 hrs. pumping at 20 G.P.M.
	,		ft. after hrs. pumping at G.P.M.
			11 WELL HEAD COMPLETION: Ritless adapter 12" above grade Basement offset Approved pit
			12 WELL GROUTED?
			Neat cement Bentonite Other
· · · · · · · · · · · · · · · · · · ·			No. of bags of cement Additives 13 Nearest source of possible contamination
· · ·			Type Septic Distance E IL Direction 75
:			Well disinfected upon completion? 🛛 Yes 🗌 No
			14 PUMP: Not Installed NE Pump Installation Only Manufacturer's name MEDUXALB
		1	Manufacturer's nameHPV015-30
······································		1	Length of Drop Pipe <u>30</u> ft. capacity <u>10</u> G.P.M.
		<u> </u>	PRESSURE TANK: # ON WILHIU
USE A 2ND SHEET IF NEEDED	en.		Manufacturer's nameCapacityGallons
15. Remarks, elevation, source of data; etc. Dect. of p			R WELL CONTRACTOR'S CERTIFICATION:
	10-5	to the	Point of the second second second and this report is true Point in the second
		<u> </u>	REGISTERED BUSINESS NAMEDIA C. REGISTRATION NO.
in and an environment of and	en de la com Histo fa como	, Addres	S CARDO WILHSANT VY
D67d 2/84	Ser (.)	Signed	AUTHORIZED REPRESENTATIVE
GE	OLOGICA	L SURVE	Authority: Act 368 PA 1978 Completion: Required Y COPY Penalty: Conviction of a violation of any provision is a

ż

	4	WATER WE		RD MICHIGAN DEPARTMENT
LOCATION OF WELL		ACT 294	PA 1965	OF PUBLIC HEALTH
onty	Twp. >-		Fraction	Section No. Town Range
Oakland	Royal Oak		NEX N	EN NEW 25 I NGS - EA
ance And Direction from Ro		OWNER No		3 OWNER OF WELL Park Racing Assoc. Inc.
S. W. Corner of	10 Mile and Dequ	indre		Address 650 E. 10 Mile Road
eet address & City of Well L	cation			Hazel Park, Michigan
FORMA	TION	THICKNESS	DEPTH TO BOTTOM OF	4 WELL DEPTH: (completed) Date of Completion
		STRATUM	STRATUM	145 ft. 2-23-67
F111		19*	19'	5 🙀 Cable tool 🔲 Rotary 🗌 Driven 🗌 Du Hollow rod 🗍 Jetted 🗍 Bored 🗍 🗌
				6 USE: Domestic Deblic Supply Industry
Gray Clay		651	84.	Irrigation Air Conditioning Commercia
Hardpan		13"	071	
			97	7 CASING: Threaded Dr Welded Height: Above/Balow
Clay	·	12.	109'	6_in. to 1343_ft. Depth surface_6_ft. Weight19_45_lbs/ft.
Dubben Care S				in. toit. Depth Drive Shoe? Yes X No
Putty Sand	-	12"	121.	8 SCREEN:
Hard Clay		111	132'	Typ Johnson Stainless Dia.: 6" top 5" #10
				Btoom 5 + 85 Length 10*
Fine Sand		61	138.	Set between 131 ft. and 145 ft.
Coarse Sand		71	145.	Fittings:
,				9 STATIC WATER LEVEL
				ft. below land surface
				10 PUMPING LEVEL below land surface
,	······		<u> </u>	<u>117 ft. ofter 16 hrs. pumping 50</u> g.p.m.
				ft. afterhrs. pumpingg.p.m.
		/		11 WATER QUALITY in Parts Per Million:
	**********			Iron (Fe)_2_0Chlorides (CI)85_5
·····				Hardness 68.4
				12 WELL HEAD COMPLETION: In Approved Pit
				Pitless Adapter 12'' Above Grade
•	,			13 GROUTING: Well Grouted? Yes 🕱 No
				Material: Neat Cement
				Depth: Fromft. toft.
				14 SANITARY: UNKOWN Nearest Source of possible contamination
······		····		feetDirectionType
·	· · · · · · · · · · · · · · · · · · ·		 	Well disinfected upon completion Yes No
	·.			15 PUMP:
······································				Manufacturer's Name Model Number_2354.577HP2
······································				Length of Drop Pipe 117 ft. capacity 15 G.P.M.
	· · · ·			Type: X Submersible
Remarks, elevation, source (of data, etc.		17 WATER	U Jet Reciprocating WELL CONTRACTOR'S CERTIFICATION:
,	·		This we	II was drilled under my jurisdiction and this report is true
INFO. BY DRILLER. ITEM NO.			to the be	est of my knowledge and belief.
TOTO DA	r		0.	O. Corsaut Inc. 0025 REGISTERED BUSINESS NAME REGISTRATION NO.
ECTED BY:			1	15101 W. 11 Mile Road, Oak Park 480
			1 AUGIESS	

GEOLOGICAL SURVEY COPY

OHN	A
-----	---

ł

5

PAGE 1 OF 2 BORE HOLE NO. GMM-1

LOB NO.	2930						E	BORE	HOLE NO.	GMW-1
ALCOT	Gage Produ				LOCATION	Ferndal	e, M	I		-
	ONTRACTOR		T.I.		DRILLING E	QUIPMENT	Hol	low	Stem Auger	
HYDROGEO	LOGIST		/D. Young	blada	ORILLER	R. Near			Jeen Aller	
DATE STAR		0/	ATE FINISH		SURFACE			Bail	AL DEPTH filled to 15'	'ka. 51
WELL CASIN Flush join	IG		CREEN TY Jush Join		LENGTH 10			SLO	T	<u></u>
		NO W/				CASING	cc) RE	0.010	TUBE
DATE	TIME		DEPTH	WEATHER	TYPE	PVC			Split	
7-25-85	0745				DIAMETER	2*			spoon	
/-23-05	. 0745		DRY		HAMMER				2"	
					FALL				140 lb	
REMARKS							qa aaaaaatait	*****	<u> </u>	<u> </u>
	FOC elevati	on 10	4.68'						a	
DEPTH SAMPLE NO. BLOW	-ERY		ام و هو ر		RE HOLE LO			0 e i	WARKS	GRAPHIC
		Man ²		LOGIC DESC.			***			
		SAND 1	with some	rown clayey organic fra	igments. S	lightly	. u: SC		lass	
2.5'		damp a	and loose	very low mo	olding or p	lasticity	31	-		
5 SS 25	-9-12 18	Ned	olive bro	wn and light	to mod a					
- 4.0- - 5.5'		silty	CLAY. M	oderate to l	nigh plasti	city.	CI			
		Damp. fragme		odor of orga	nics. Som	e root	<u>ل</u> ب			
10-ss 3 6										
- 9.0- - 10.5				live brown i vel. Mottle						
		Low p	lasticity	-friable. S			CI	4		
		STIGU	t odor or	organics.						
15 SS 4 7				rey, fine si		Trace	CI	4		
-15.5		grave.	L. Med.	plasticity.	No odor.	Damp				
20 - ss 5 e	6-8-12 11-	Med.	to dark g	rey-brown si	Lity CLAY.	trace				
-20.5			gravel.	High plastic			CI			
		Juli.								
			•							
1 35 6 6 1 324.0	6-9-12 18	Med.	to dark g	rey-brown s:	Llty <u>CLAY</u> .	Med. to				
25.5				y. No odor			CI			
329.0-										
	8-11-3 15									
• •			<u></u>						·····	

PAGE	2	0 #	
BORE	HOLE	NO.	GMW-1

OB NO 2930

AOJECT Gage Products

LOCATION Ferndale, MI

REMARK

	0	NO N		S Y								IARKS	BRAP
SAMPLE	NO.	BLOW	<u>w</u>	RECOV - ERY		LITHOLOGIC DESCRIPTION						100	
					Med. to gravel. odor.	dark o Med.	jrey-br to hig	rown silt h plasti	y <u>CLAY</u> , t city damp	race), no	USCS (CL	CLASS	End of Bori
										-			
												:	
	-					•				•	,		
												·	
												·	
								٠					
								~					

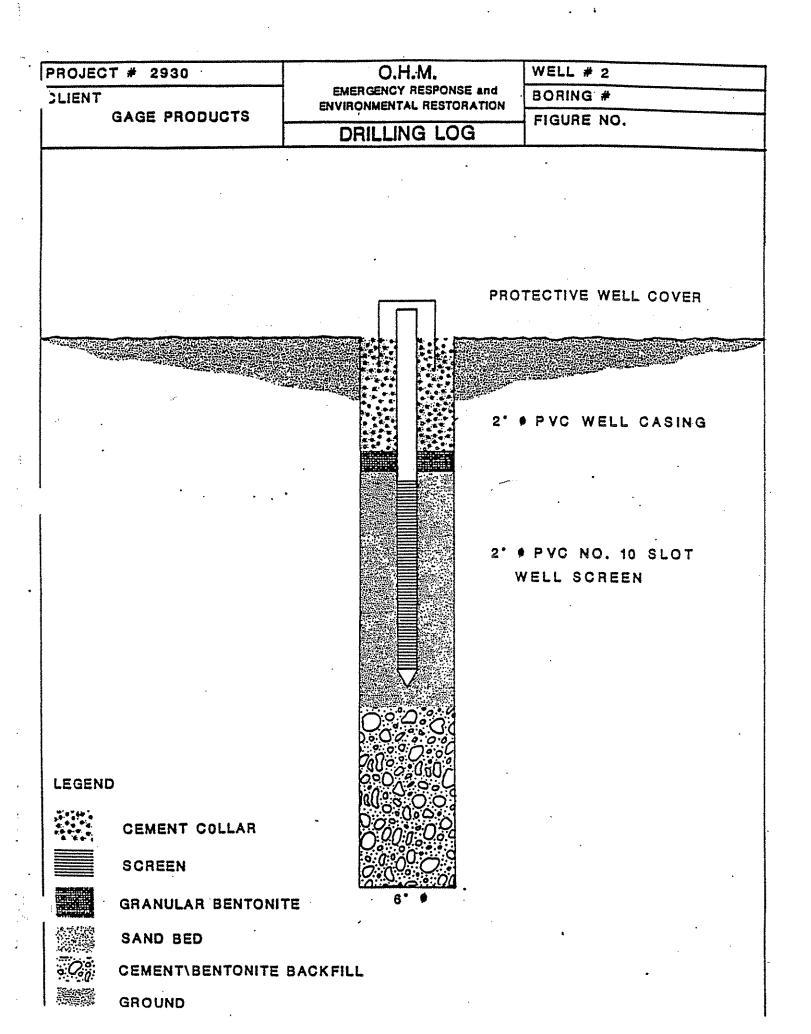
PAGE ____OF ____

1

9	NO.					1			L	BORE	HOLE NO.	GMW-2		
<u>1 - 1</u>	JECT	293		Drodu				LOCATION	Ferndale, 1	MI				
DRILLING CONTRACTOR C.T.I.								DRILLING EQUIPMENT Hollow Stem Auger						
	HYDROGEOLOGIST J. Barone/D. Youngblade								DRILLER R. Near					
DATE START/TIME DATE SINISH (1195							1/ TIME	SURFACE	-	(JoI	計記長び、	0.5		
								LENGTH	10*	SLO				
WELL CASING SCREEN TYPE Flush Joint 2" PVC Flush Joint 2" PVC							at 2" PVC		CASING	CORE	SAMPLER	TUBE		
GROUND WATER							WEATHER	TYPE		Jone	Split	1086		
0	ATE		T	IME		DEPTH	WEATHER		PVC		spoon			
7-2	5-85		075	0		7.96'		DIAMETER	2*		2"			
						-		WEIGHT			140 lb			
						•		FALL			<u> </u>			
REM	ARKS	TO				103.22'	ь		a statement	······	• •			
EP TH	SAMPLE NO.	MO	6	RECOV -ERY			BC	RE HOLE LO	DG.					
0EP	N N N	BL	PEF	а -		LITH	OLOGIC DESC	RIPTION -		RE	MARKS	LOG		
-	SS 1				Dar	•	lty, med. t organic mat			USCS (SM	LASS			
					ođo		Organic mac	cer, cwrys,	,	242	•			
	1.0- 2.5'								:					
						·								
	ISS 2 4.0-	2-:	3-5	18	Mot	tled grey a	ilty CLAY,	trace of fi	ne gravel.	CL				
	4.0- 5.5'						plasticity. Split spoon			علب				
-	-	ĺ								_				
	1		:							•				
	-65 3 9.0-	4-8	3-7	6	Mot	tled brown	fine silty	CLAY. Med.	. to high					
	10.5	.			pla	sticity. [Damp. No od	or.		CL.				
-	4			ļ										
	3													
15 -	ss 4	1	9-1(1 18		to dark o	grey silty C	TAY, Med.	to high					
	-15.5				•		Damp. No od		oo nagn	CL				
-]													
	1													
<u>ko</u> -	ss s		8-1	2 18		k aray gilt		ce med. gra	1701					
	-19.0	-			Dark grey silty <u>CLAY</u> , trace med. gravel. Med. to high plasticity. No odor. Damp CL									
	1	ļ												
) (.	4		•											
25	- 1	. 1	-9-3	ւր ւ	ا	.1			•					
	_24.0						ty <u>CLAY</u> , som to high plas			CT.				
	-				Dan			-						
	4								i					
1	<u></u>	ŧ		ł	1					ł				

		_
PAGE	2	0
		-

JOB NO 2930


DJECT Gage Products

LOCATION Ferndale, MI

BORE HOLE NO. GMW-2

2

. . REMARKS BLOW COUNT PER 6. RECOV - ERY DEPTH SAMPLE NO. GRAPHIC REMARKS LOG DESCRIPTION LITHOLOGIC 30 USGS CLASS SS 7 7-11 Dark grey silty <u>CLAY</u>, some med.-coarse CL gravel. Med. to high plasticity. Damp. EOB No odor. 35-

₹.

•

•

4.

;

÷

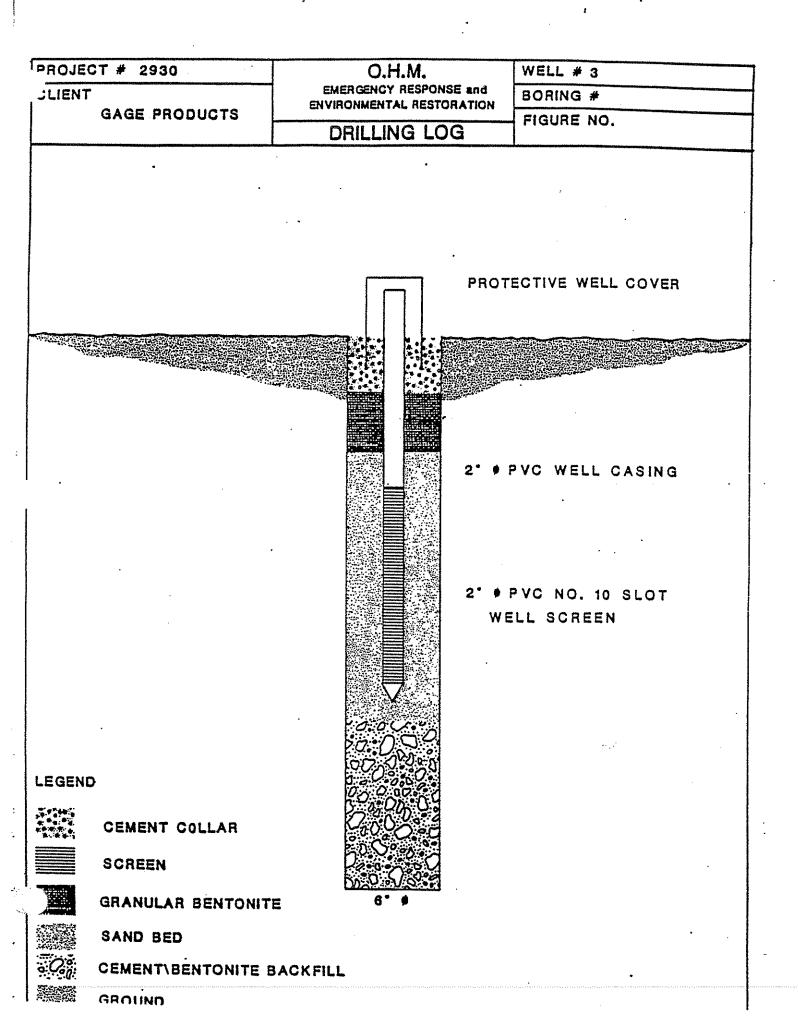
C.T.I. DRILLER BY DRO GEOLO GIST J. Barone/D. Youngblade DRILLER ATE START/TIME DATE FINISH/TIME Y-24-85 1535 7-24-85 1735 ELE VATION IOTAL DEPTH WELL CASING SCREEN TYPE Flush Joint 2" PVC LENGTH 10' GROUND WATER CASING OATE TIME DEPTH WEATHER TYPE PVC Split Spoon 9.48' /- DIAMETER YEIGHT HAMMER WEIGHT 140 150		OHM						PAGE1OF2				
AGUSCT Gage Products DOWNING Perndale, NT DRILING CONTRACTOR C.T.I. OAILING CONTRACTOR OAILING CONPMENT BOILOW Stem Auger VG ROGEOLOGAT, Darone/D. Youngblade OAILING CONPACT DOWNIER DOWNIER AGUSCI CASING OAILING CONPACT BOILDER R. Near VG ROGEOLOGAT DESCRIPTION SLOT 0.010 GROUND WAYER CASING COAE SAMPLER CASING COAE SAMPLER TUBE OATE TIME DEPTH WEATHER TVPE PVC Split Split TUBE CASING COAE SAMPLER TUBE CASING DEPTH WEATHER TVPE PVC Split CASING TUBE DEPTH WEATHER IAO IAO IAO SUBATING DEPTH VEATHER	8	NO.	2930			T				BORE	HOLE NO.	GMW-3
AILLING CONTRACTOR C.T.I. ORILING EQUIPMENT Hollow Stem Auger VGROGEOLOGIST J. Barome/D. Youngblade ORILLER N. Near VGROGEOLOGIST J. Barome/D. Youngblade ORILLER N. Near AISABATTIMES OATE FINING D'22-85 ORIGHT SUBFACE ELEVATION COTALDEFT, A.S. SUFFACE ELEVATION AISABATTING FILLOASING 2* PVC SORREAT YEAR FILLOASING OATE CASING COAE COAE OATE TIME DEFTH WEATHER FILLOASING COAE IM DEFTH WEATHER FILLOASING COAE SAMMER FILL TUBE IM DEFTH WEATHER FILL PVC Solat Solat IM Solat Mathematics Solat Solat Solat IM Solat <td></td> <td></td> <td></td> <td>Prod</td> <td>ucts</td> <td></td> <td></td> <td>LOCATION</td> <td>Ferndal</td> <td>e, MI</td> <td></td> <td></td>				Prod	ucts			LOCATION	Ferndal	e, MI		
VOROGEOLOGIST J. Barone/D. Youngblads DRILER B. Near Arg.shaft/Time OATE FNUSH/THUS SURFACE (CLANING PURCHADE) GATESTAT/TIME OATE FNUSH/THUS SURFACE (CLANING PURCHADE) GROUND WATER CASING CORE SAMPLER TUBE OATE TIME DEPTH WEATHER CASING CORE SAMPLER TUBE OATE TOC Elevation - 1-2.56 E SORE HOLE LOG FALL Identify SAPHING 1.0 STORE SORE SORE HOLE LOG FALL Identify Identify Identify 1.0 STORE SORE SORE SORE CL CL Identify 1.0 Sore SORE	DAIL	DRILLING CONTRACTOR							QUIPMENT	Hollow S	tem Auger	
Arts OATE PINE OATE	HY D	ROGE	DLO GI	ST J.		ne/D. Young	blade	DRILLER	R. Near			
Scheme Schem Scheme Scheme						DATE FINISH	1/TIME 1735	SURFACE		Back	Alled to 15	80.5'
CALL CASING CORE SAMPLER TUBE GATE TIME DEPTH WEATHER TYPE PVC Split 0ATE TIME DEPTH WEATHER TYPE PVC Split 7-25-85 0800 9.48' DIAMETER 2* 2' 1	WEL	LCAS	ING			SCREEN TY	PE			SLO	T 0.010	
DATE TIME DEPTH WEATHER TYPE PVC Split 7-25-85 0800 9.43' 01AMETER 2" 2" H WEIGHT 140 1b TOC Elevation - 1-2.56 BORE HOLE LOG BAPHI H A BORE HOLE LOG BAPHI It a 0 BORE HOLE LOG BAPHI It does a start of the start	FIU	sn Jo:	ine_2		UND				CASING			TUBE
John John John John J-25-85 0800 9.48' NAMMETER 2" 2" NAMMER NAMMER 140 lb PALL 140 lb FALL PALL PALL 140 lb IEMARKS ICC Elevation - 1-2.56 SORE HOLE LOG PALL IEMARKS ICC Elevation - 1-2.56 SORE HOLE LOG PALL IEMARKS ICTHOLOGIC DESCRIPTION REMARKS LOG ISS 14-4-7 6 Mottled brown silty CLAY with some sand and gravel. USCS CLASS I.o. I.o. SS 24-5-6 16 Mottled brown silty CLAY, trace med. gravel. CL I.o. I.o. I.o. I.o. I.o. I.o. I.o. I.o.	 0	A.TE					WEATHER	TYPE				
2-25-03 USUD 9.43 HAAMMER 140 150 150												
IEMAARKS TOC Elevation - 1-2.56 SORE HOLE LOG SRAPH UITHOLOGIC DESCRIPTION* REMARKS CL SS 14-4-7 SS 14-4-7 SS 14-4-7 ST SS 2 SS 14-4-7 ST SS 2 SS 3 Light brown silty CLAY, trace med. gravel. CL SS 3 Dark grey silty CLAY, some med. sand and gravel. Dark grey silty CLAY, some med. gravel. CL Dark grey silty CLAY, some	7-25	5-85	80	00		9.48'		HAMMER	4			
Image: Start Star			_			·				<u></u>	140 10	
Image: Start Star	8 E M	ARKS					<u> </u>	1				
-SS 14-4-7 6 Mottled brown silty CLAY with some sand and gravel. Med. Plasticity. Little organic odor. Slightly damp. USCS CLASS -2.5			TOC EL	evati	on -	1-2.55						
-SS 14-4-7 6 Mottled brown silty CLAY with some sand and gravel. Med. Plasticity. Little organic odor. Slightly damp. USCS CLASS -2.5	РТН	NPL.	LOW NUN B	CO					D G		4.040	
1.0- 2.5' gravel. Med. Plasticity. Little organic odor. Slightly damp. CL 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5			E C E									
2.5' odor. Slightly damp. 5 SS 2 4.0- Low to med. plasticity. Damp 5.5' Light brown silty CLAY, some med. sand and gravel. Low to med. plasticity. Black mottled. No odor. Damp. 10.5 Dark grey silty CLAY, trace fine gravel. Med. to high plasticity. No odor. 15 SS 4 14.0 Dark grey silty CLAY, some med. gravel. Med. Plasticity. No odor. 15.5 Dark grey silty CLAY, some med. gravel. Med. Plasticity. Damp. 15.5 Dark grey silty CLAY, some med. gravel. Med. Plasticity. Damp. No odor. 20 SS 5 15.0 Dark grey silty CLAY, some med. gravel. Med. Plasticity. Damp. No odor. 20 SS 6 20 Dark grey silty CLAY, some med. gravel. Med. Plasticity. No odor. 20 Dark grey silty CLAY, some med. gravel. Med. Plasticity. No odor.		7 1	4-4-7	6								
4.0- 5.5' Low to med. plasticity. / Damp CL 5.5' Light brown silty <u>CLAY</u> , some med. sand and gravel. Low to med. plasticity. Black mottled. No odor. Damp. CL 10- 10.5 Dark grey silty <u>CLAY</u> , trace fine gravel. Med. to high plasticity. No odor. Damp. CL 15- 15- 15- 15- 15- 15- 15- 15- 19-0- 20- 20- 5- 19-0- 20- 20- 5- 19-0- 20- 20- 5- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 19-0- 20- 15- 19-0- 20- 20- 20- 20- 20- 20- 20- 20- 20-									•			
4.0- 5.5' Low to med. plasticity. / Damp CL 5.5' Light brown silty <u>CLAY</u> , some med. sand and gravel. Low to med. plasticity. Black mottled. No odor. Damp. CL 10- 10.5 Dark grey silty <u>CLAY</u> , trace fine gravel. Med. to high plasticity. No odor. Damp. CL 15- 15- 15- 15- 15- 15- 15- 15- 19-0- 20- 20- 5- 19-0- 20- 20- 5- 19-0- 20- 20- 5- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 19-0- 20- 15- 19-0- 20- 20- 20- 20- 20- 20- 20- 20- 20-	-	•		. •								
4.0- 5.5' Low to med. plasticity. / Damp CL 5.5' Light brown silty <u>CLAY</u> , some med. sand and gravel. Low to med. plasticity. Black mottled. No odor. Damp. CL 10- 10.5 Dark grey silty <u>CLAY</u> , trace fine gravel. Med. to high plasticity. No odor. Damp. CL 15- 15- 15- 15- 15- 15- 15- 15- 19-0- 20- 20- 5- 19-0- 20- 20- 5- 19-0- 20- 20- 5- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 15- 19-0- 20- 19-0- 20- 15- 19-0- 20- 20- 20- 20- 20- 20- 20- 20- 20-			1-5-5	16	Voti	lad brown	ATTAN CTAV	traca mad	gravel			
Light brown silty CLAY, some med. sand and 9.0- 10.5	_		4-3-0	TO					yraver.			
9.0- 10.5 gravel. Low to med. plasticity. Black mottled. No odor. Damp. CL 10.5 mottled. No odor. Damp. CL 15- SS 4 Dark grey silty CLAY, trace fine gravel. CL 14.0- Med. to high plasticity. No odor. Damp. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. to coarse CL 20- SS 5 Dark grey silty CLAY, some med. to coarse CL 20- SS 6 Dark grey silty CLAY, some med. to coarse CL 25- SS 6 Dark grey silty CLAY, some med. to coarse CL 24.0- Dark grey silty CLAY, some med. to coarse CL 25.5 Dark grey silty CLAY, some med. to coarse CL	-	5.5'				• .						
9.0- 10.5 gravel. Low to med. plasticity. Black mottled. No odor. Damp. CL 10.5 mottled. No odor. Damp. CL 15- SS 4 Dark grey silty CLAY, trace fine gravel. CL 14.0- Med. to high plasticity. No odor. Damp. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. to coarse CL 20- SS 5 Dark grey silty CLAY, some med. to coarse CL 20- SS 6 Dark grey silty CLAY, some med. to coarse CL 25- SS 6 Dark grey silty CLAY, some med. to coarse CL 24.0- Dark grey silty CLAY, some med. to coarse CL 25.5 Dark grey silty CLAY, some med. to coarse CL		I										
9.0- 10.5 gravel. Low to med. plasticity. Black mottled. No odor. Damp. CL 10.5 mottled. No odor. Damp. CL 15- SS 4 Dark grey silty CLAY, trace fine gravel. CL 14.0- Med. to high plasticity. No odor. Damp. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. gravel. CL 20- SS 5 Dark grey silty CLAY, some med. to coarse CL 20- SS 5 Dark grey silty CLAY, some med. to coarse CL 20- SS 6 Dark grey silty CLAY, some med. to coarse CL 25- SS 6 Dark grey silty CLAY, some med. to coarse CL 24.0- Dark grey silty CLAY, some med. to coarse CL 25.5 Dark grey silty CLAY, some med. to coarse CL	, =											
10.5 gravel: Now do motif productly. Damp. mottled. No odor. Damp. 15.5 15.5 15.5 19.0 19.0 20.55 Dark grey silty CLAY, some med. gravel. CL 20.55 Dark grey silty CLAY, some med. gravel. CL 20.5 Dark grey silty CLAY, some med. gravel. CL 24.0 22.5 Dark grey silty CLAY, some med. to coarse gravel. CL		19.0-									CL.	
14.0- Med. to high plasticity. No odor. Damp. 20-SS 5 Dark grey silty CLAY, some med. gravel. 19.0- Med. Plasticity. Damp. No odor. 20.5 Dark grey silty CLAY, some med. to coarse 25-SS 6 Dark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse	-	10.5	Þ		-		-		LACK			
14.0- Med. to high plasticity. No odor. Damp. 20-SS 5 Dark grey silty CLAY, some med. gravel. 19.0- Med. Plasticity. Damp. No odor. 20.5 Dark grey silty CLAY, some med. to coarse 25-SS 6 Dark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse	 					•	-					
14.0- Med. to high plasticity. No odor. Damp. 20-SS 5 Dark grey silty CLAY, some med. gravel. 19.0- Med. Plasticity. Damp. No odor. 20.5 Dark grey silty CLAY, some med. to coarse 25-SS 6 Dark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse 25-SS 6 Jark grey silty CLAY, some med. to coarse	-											
20-ss s Dark grey silty CLAY, some med. gravel. 20-ss s Dark grey silty CLAY, some med. gravel. 20-ss s Dark grey silty CLAY, some med. gravel. 20-ss s Dark grey silty CLAY, some med. gravel. 20-ss s Dark grey silty CLAY, some med. to coarse gravel.	-	T									CL	
19.0- Dark grey silty CLAY, some med. gravel. CL 20.5 Med. Plasticity. Damp. No odor. CL 45-SS 6 Dark grey silty CLAY, some med. to coarse	-	1	1 '		Med	to high g	plasticity.	No odor.	Damp.			
19.0- Dark grey silty CLAY, some med. gravel. CL 20.5 Med. Plasticity. Damp. No odor. CL 45-SS 6 Dark grey silty CLAY, some med. to coarse		4										
19.0- Dark grey silty CLAY, some med. gravel. CL 20.5 Med. Plasticity. Damp. No odor. CL 45-SS 6 Dark grey silty CLAY, some med. to coarse												
19.0 Med. Plasticity. Damp. No odor. 20.5 Med. Plasticity. Damp. No odor. 25-SS 6 Dark grey silty CLAY, some med. to coarse 24.0 gravel. Med. to high plasticity. No odor.	20 -		1		Dan	Dark grey silty CLAY, some med. gravel.						
124.0 Dark grey silty CLAY, some med. to coarse 25.5 gravel. Med. to high plasticity. No odor.												
124.0 Dark grey silty CLAY, some med. to coarse 25.5 gravel. Med. to high plasticity. No odor.	-	-					•					
124.0 Dark grey silty CLAY, some med. to coarse 25.5 gravel. Med. to high plasticity. No odor.	ب ا	1					٠					
25.5 gravel. Med. to high plasticity. No odor.	۲ ⁵ -	and a second			Day	rk grev sil	LY CLAY SOT	a med. to	COALSO			
			·								CL	
	-	∃			Dar	np						
		1									· · · · ·	

0	H	M
---	---	---

.

PAGE 2 OF 2 BORE HOLE NO. GMW-3

AOJECT Gage Products

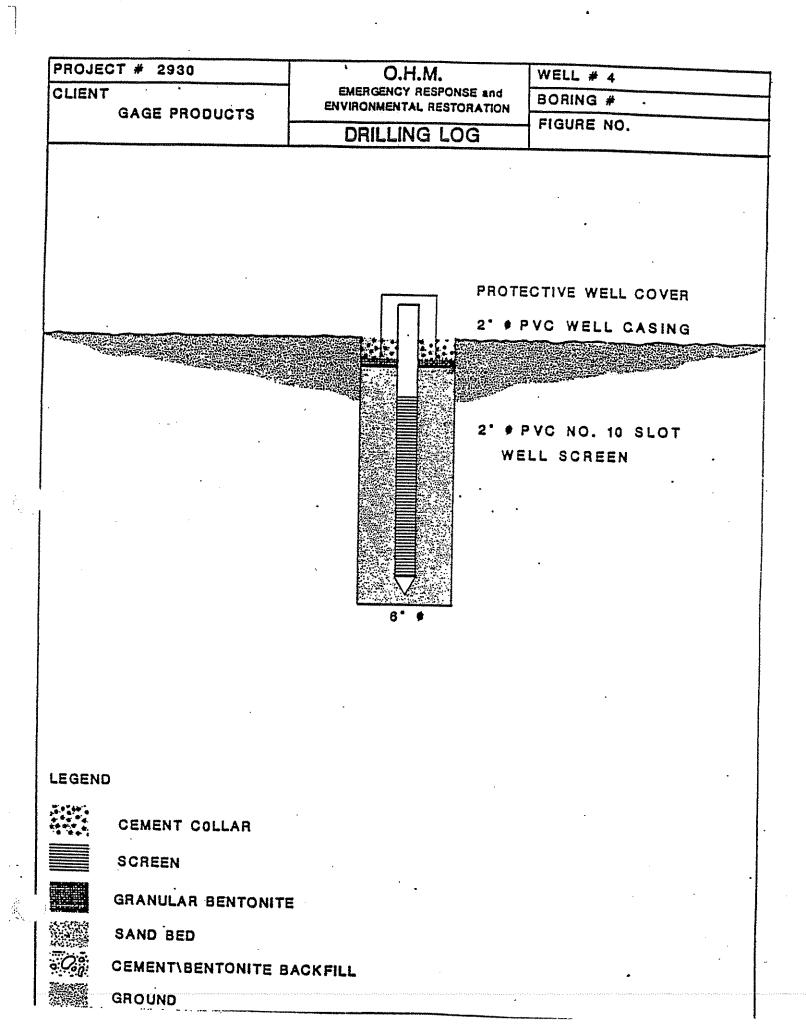

'OB NO 2930

1

.

LOCATION Ferndale, MI

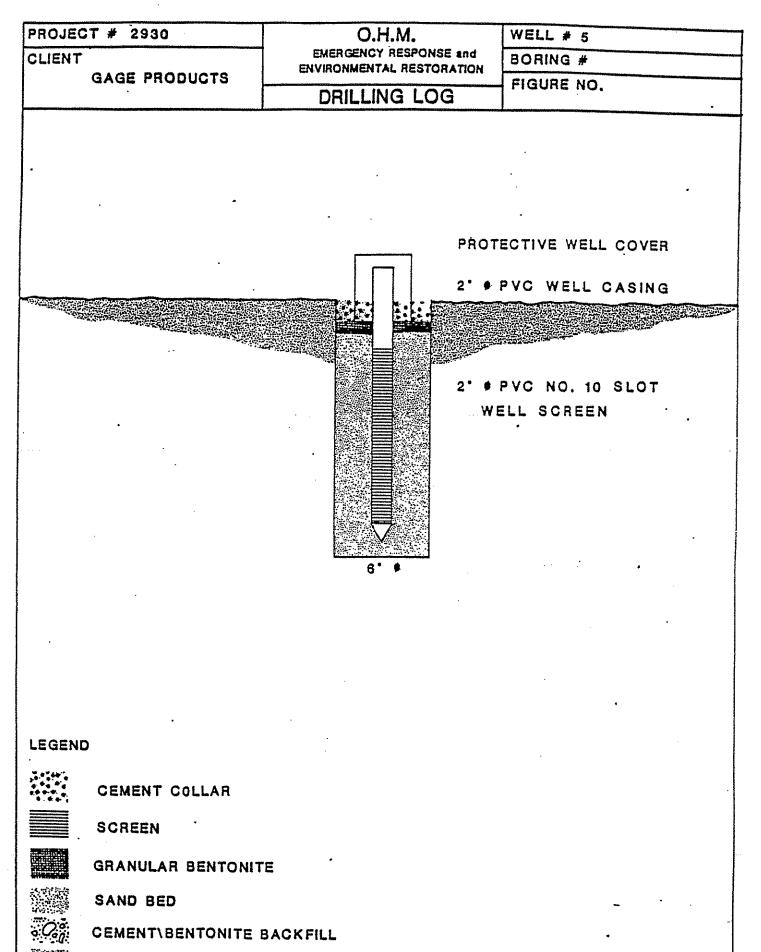
30-SS 7 7-9-15 18 Dark grey silty CLAY, some med. to coarse USCS CLASS 29.0- gravel. Med. plasticity. Damp. No odor. CL		N N N	<u>3 ≿</u>	•	•				GRAPH
30 SS 7 7-9-15 18 Dark grey silty <u>CLAY</u> , some med. to coarse 29.0- 30.5 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-	N N N	L O L		LIT	HOLOGIC	DESCRIPTIO	N	REMARKS	LOG
	-30.5	7-9-15	18	Dark grey gravel.	y silty <u>CLA</u> Med. plast	Y, some med icity. Dam	. to coarse p. No odor.	USCS CLASS CL	EOB
							· · ·		
					•			- -	



PAGE_ OF. BORE HOLE NO n., .

1

			-			1	- F		OF	
OB NO. 2	930		I			1		BORE	HOLE NO.	GMW-4
PROJECT G	age Produ	icts			LOCATION	Ferndale	, MI			
DRILLING C	ONTRACTO	DA C.T			DRILLING	QUIPMENT		low s	tem Auger	
HYDROGEO	LOGIST J.	Baro	ne/D. Youn	gblade.	DRILLER	R. Near			oca Auger	
DATE STAR	T/TIME 0956		DATE FINIS	H/TIME 1103	SURFACE ELEVATION			TOT	L DEPTH	
WELL CASIN Flush Join	IG	·	SCREEN TY Flush Joi			10'		SLO	T	15.5'
			WATER			CASING		J	0.010	
DATE	TIME		DEPTH	WEATHER	TYPE				SAMPLER Split	TUBE
				nevi úsu		PVC 2 *	<u> </u>		spoon	-
7-26-85			5.08		DIAMETER	۷.	<u> </u>		2"	
					WEIGHT		<u> </u>		140 18	
REMARKS				 	FALL		ļ			
REMARKS TO	C Elevat	ion -	106.03'	-						
DEPTH SAMPLE NO. BLOW	COUNT PER 6 RECOV -ERY	ļ		80	RE HOLE LO) G				GRAPHIC
	<u>8</u>			DLOGIC DESC				REM	ARKS	LOG
_SS 1 3- 	-3-3 6	Blac	k and dark	t brown silt	y, fine to	coarse	ប	scs c	LASS	
-2.5'		No c	dor.	. Dmap. S	ome glass s	shards.		SM		
				•					•	
5	-1-2 6		3* - dark	grey silty,	fine to co	areo '				
120.5		SAND	Med. to	high plast:	icity. Wet	at 5'.			•	
5.5		Bott	.om 3" - da	rk grey sil	ty CLAY. E	ligh		SM/(CL	
<u> </u>		pias	ticity. S	trong odor o	of organic	solvents				
10-ss 3 7-	-14-22 9									
39.0-		Mott	led dark g	rey/light b	cown silty	CLAY,				
-10.5		some	med. grav	el. Low to Slight org	med. plast	icity.		CL		
			mani annis.	orraite or	AULIC SOLVE	nt odor.				
15-55 4 8-	-16-21 18		C Grow eile	W CTAV						
14.0+		Low	to med. pl	ty CLAY, tra lasticity.	ce mea. gra Slight orga	nic		CL		
-15.5		solv	vent odor.	Damp	- 4					EOB
E										
20										
3										
4								•		
30 -										
	1	1				ļ				



PAGE _____ OF___

JC3 NO. 2930 BORE HOLE NO. GMW-5 LEGT Gage Products LOCATION Ferndale, MI DRILLING CONTRACTOR DRILLING EQUIPMENT C.T.I. Hollow Stem Auger . HYDROGEOLOGIST J. Barone/D. Youngblade DAILLER R. Near DATE START/TIME 7-25-85 1126 SURFACE DATE FINISH/TIME TOTAL DEPTH ELEVATION 7-25-85 1220 15.5' WELL CASING Flush Joint 2" PVC SCREEN TYPE Flush Joint 2" PVC SLOT LENGTH 10' 0.010 GROUND WATER CORE CASING SAMPLER TUBE DATE TIME DEPTH WEATHER Split TYPE PVC spoon DIAMETER 7-26-85 2.69 2* 2* HAMMER 140 lb WEIGHT FALL REMARKS TOC Elevation - 103.98-SAMPLE NO. BLOW COUNT PER 6' RECOV BORE HOLE LOG đ RAPHIC LITHOLOGIC DESCRIPTION . REMARKS LOG SS 1 3-5-1 Dark brown, med. SAND and SILT, with some 4 USCS CLASS 11.0fine gravel. Damp. Low to med. plasticity. SM 2.5' Slight organic solvent odor. Water at 2.5' -SS 2 3-7-12 18 Mottled grey-brown silty CLAY, some med. 4.0-15.51 gravel. Low to med. plasticity. Slightly CL damp. SS 3 11020-28 15 Mottled brown silty CLAY, trace fine gravel 0 --9.0-Low to Med. Plasticity. No odor. Slightly CL **∐**15.5 damp. 5 - SS 4 5-11-15 12 Dark grey silty CLAY, trace med.-fine -14.0 -15.5 gravel. Med. plasticity. Damp. No odor. EOB 20

1

GROUND

46.9

:

.

Page:_1_	of1
Well/Borin	g No. GMW-4
~ !! .	
Droloot Ma	

Project No.: 21073

Well/B	loring	Log S	Sheet
--------	--------	-------	-------

]	Cour	nty	Town	ship	Fraction	474		Section	(·	٦	Γ	Т	R		٦
	Addr	ess: _	CTI & Associates Novi, MI 313-473-7530 CME 45C Mounted o	n Model:	S. Steel	1/4	Ele	tarted: <u>7/28</u> evation				7/28	3/89		1
S	uper	visor;	Wood Tiger Tracked EDI-Ed Culver	Slot/Gauge:	<u>10 slot</u> D 2 x 60 x 60 <u>3'</u> To: From Ground	ia.: <u>2"</u> 3 <u>8'</u>	Gr	ising: ound: f. Pt.:	<u>639.</u> USG		7		<u></u>		
	8*		1/4" ID	Dia, 1 2" Gaiv.	+2	oth Set [o <u>-3'</u> [o		ater Level_ leasure On: 9/2/89							
	epth	To .8	Material/Method	Remarks				cation -	(cama	nt aroi	· ·				
D	evel	opme	nt	· · · · · · · · · · · · · · · · · · ·	Backfilled	auger hole	with sa	nd pack from	<u>13'ι</u>	ip to 8*	the	n se	et we	<u>.</u>	
		k- De	epth Base					Blow Counts	Hnu A	Sample	t	1	1		
. Г		3	Sand and Gravel, rubb		IC DESCRIPTIO	N		S	ample T	Depth	1	<u> </u>			
÷Γ			Sand, fine to medium,		clavev wet sligi	at odor, sof	+			<u>2-3.5</u> 3.5-5	1	÷	1	1	1
	.6	5.8	Clay, silty, sandy, mott	led brown to dirty bro	wn. moist. odor	11 0001, 301	<u>.</u>			<u>3.5-5</u> 5-6,5	1	T		_	2
Ŀ	7.2		Clay, silty, sandy, pebb				ires etr	opa odor a		<u>8-9.5</u>	1	T			<u>5</u> 8
	1.5+	14.5	Clay, silty, sandy, occa	sional pebble, mottle	d brown to gray,	moist, ven	y firm, r	no odor		<u>3-14.5</u>	1				_
┠															<u></u>
╞															
ŀ															
ſ									<u> </u>						
ŀ															
ŀ													·		
f								-			Ŀ				
: -															
-														_	
	- 1	1												1	
Í	4													-	
ŀ					· · · · · · · · · · · · · · · · · · ·										
					······································			******				· · · · · · · · · · · · · · · · · · ·			

Page: 1 of 1 Well/Boring No. <u>GMW-5</u> Client: <u>Gage Products</u> Project No.: <u>21073</u>

County		Township	ell/Borir	Fraction		~ L	1 Qaatin-		<u> </u>	-	<u> </u>		
Jounty				1/4	1/4	1/4	Section					R	
Address:	<u>CTI & Assoc</u> Novi, Mi 313-473-753	30	Screen Manufacturer: Material: Model:	S. Steel	•		te Started: <u>7/2</u> evation	7/89	_Finish	ied;	7/27	7/89	
	CME 45C M Wood Tiger	Tracked	Slot/Gauge: Length:			– Gr	ising: ound:	637.0	07	5			
Supervisor. Drilling Me	EDI-Ed Culv		Depth Set:F	<u>3'</u> To: rom Ground	s 8'	- Re	of. Pt.:	USG	<u>s</u>				
8" HSA	4 1/4" ID	pth 	Dia. Typ <u>2[*] Galv.</u>	+2	oth Set [o <u>-3*</u>	N	ater Level Jeasure Or 9/2/	n:					
Grouting/S Depth To	Material/Me	thod			Го		cation .				<u></u>		
<u>0-0.8</u> <u>0.8-2</u>	Concrete Benseal	· · · · · · · · · · · · · · · · · · ·	Remarks	Sand pack			en up to 1*	above t	op of				
Developme	ant		······	Total depti									
	····	·····											
- <u></u>			•••••••••••••••••••••••••••••••••••••••										
							Blow	3rd 6 2nd 6 1st 6	+				
Thick- D ness to			LITHOLOGIC	DESCRIPTIC	N		Counts		Sample Ambien Depth	t]		
1 1		avel, some rubbl							0-1.5	.2	13		•
1.5 2.5	Sand, fine, sil	t, greenish brow	n to black, clay l	binder, root sti	<u>ucture, dr</u>	ry			1.5-3		11	-	-
		um to coarse, bla	enish brown, pe	bhlan anti m					3-4.5	1	1	-	-
1.5 6	Clay silty sa	nd, mottled brow	n to gray, occas	Doles, soll, mo					4.5-6	1	1	-	-
1 1	Clav. brown. v	very sandy, silty	, pebbles, verv fi	irm, dry	soit, mois	t, seams	of wet sar	10	<u>8-9,5</u>	-	-	15	16 2
										<u> </u>			
<u> </u>										 	Ļ		
				*							$\left - \right $		
											$\left - \right $		
										-	\square		
											\square		
·		÷											
					•						\Box		
											\square		
											Ш		

7

۰.

Page:_1	of	1	
Well/Boring	No. G	MW-6	
Client:	Gage F	roducts	
Project No.:			

Well/Boring Log Sheet

1000	inty		Township		Fraction		s	ection		1	Γ.	Т	F		7
L			1		1/4	1/4	1/4								
Add Equij Supe Drillin <u>8"</u> Grout	ress: oment rvisor ng Me		D <u>unted on</u> racked tr	Model: Slot/Gauge: Length: Depth Set:	<u>S. Steel</u> <u>10 slot</u> D <u>2 x 60 x 60</u> <u>2.5'</u> To: pe Dep 0	ia.: 2*	Elevat Casing Groun Ref. P Wate Meas	lon g: d: t.: r Leve sure O: 8/2/		2 <u>635,</u> .73 3S 3'Ft.	53 Bel	low_	тос	<u> </u>	
	0.5	Concrete					Locati	on .							
0.	5-1.5			Remarks											
						-									
Deve	lopm	ent		*****								••••			
······				······	·····										
1	-														
									<u>3rd 6</u> 2nd 6						
					1			low unts	1st 6				1		
	sk- D	epth Base		LITHOLOGIC	DESCRIPTIO	N		unis	Hnu : Hnu :	Sample Ambien	it]			
nes .5	<u>s to</u>	Base Concrete				N		unis	Hnu	Sample Ambien Depth	¥]]]			
nes .5 2.5	<u>.5</u> 3	Base Concrete Sand, fine to m	edium, dark br	rown, moist	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien	1.8		-	-	-
nes .5 2.5 .5	.5 3 3.5	Base Concrete Sand, fine to m Sand, fine to m	edium, clavey,	rown, moist . brown, wet	DESCRIPTIO	N		unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2	1.8 1.6	0	3	8	-
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5	1.8 1.6 1.6	0	•	- 8	
nes .5 2.5 .5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	
nes .5 2.5 .5 2.5	.5 3 3.5 6	Base Concrete Sand, fine to m Sand, fine to m Clay, silty, trace	edium, clavey, e sand, mottled	rown, moist . brown, wet d brown to gray,	DESCRIPTIO			unis	Hnu : Hnu :	Sample Ambien Depth 0.5-2 2-3.5 3.5-5	1.8 1.6 1.6	0 0	3	- 8	

ł

 $\mathbb{R}_{\mathbb{R}}$

ł

Environmental Services Division

Page: 1	of	1	
Well/Borit		MW-7	
Client:	Gage F		
Project N/	A. 010	75	

Well/Boring Log Sheet Fraction County Township Section Т R 1/4 1/4 1/4 . Date Contractor Steams Drilling Screen Started: 7/31/90 Finished: 7/31/90 Address: ____Dutton. MI__ Manufacturer: Johnson Material: Stainless Steel 616-698-7770 Elevation Model: Water mark Equipment: CME - 550 Casing:_ 637.87 Slot/Gauge: 7 slot _ Dia.:_ 2" Dennis & Jeff Ground: 638.3 Length: 2 x 60 x 65 Supervisor: Ed Culver Ret/ Pt.: US 65 Depth Set: 6' 11' _____To:__ Drilling Method(s) Depth 4.80) Ft. Below TOC Water Level 8" HSA 4 1/4" ID Dia. Depth Set 16.5 Туре Measure On: 8/6/90 2" gaiv. .3' To 5.7! Grouting/Seal To Depth To Material/Method Location 0-0.5 Concrete Remarks Ambient OVA 6 ppm Development . 4 gals, bailed Sample OVA (ppm) Blow . Counts (feet) Thick- Depth to LITHOLOGIC DESCRIPTION Sample Depth 6" ness Base 12"18" Railroad ballast 0.5 0.5 0.0 - 1.5 2 1 10 9 Sand fine black 0.5 1.0 2.0 - 3.3 2 1 1 30 1.5 2.5 Sand fine black some rubble & trash odor 4.0 - 5.5 2 2 4 150 4.0 1.5 Sand fine gray very clayey moist odor 6.0 - 7.5 6 11 13 15 9.5 5.5 Clay mottled gray to brown sandy odor 10.0 - 11.5 4 8 15 14 16.5 7.0+ Clay gray sandy pebbles trace odor 15.0 - 16.5 3 6 9 5 . . ٠ .

 Page: 1 of 1

 Boring No.: <u>GMW-7 Replacement</u>

 Completed Well No.: <u>GMW-7R</u>

 Client: <u>Gage Products</u>

 Project No.: <u>GAG-0103</u>

 Date: Started: <u>6/16/00</u> Finished: <u>6/16/00</u>

 Time: Started: <u>10:35 am</u> Finished: ______

Well/Boring Log Sheet

State	Cour	nty		Township	Fraction		Sect	tion	Т			R	
Contra Address Equipm Crew C Horizor	s: ient:	Ol Si Ri	EST kemos, N mco EP : ick Brye l Culver		Drilling M			l TC Da Sta	Elevat)C Ele tum (f	ater Le): (ft.)	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Dep	t/Seal th/to 5'	Benton X Aba		al/Method	dditional Field Note	11.5' northwest of the 8.2' southeast of the n canopy.	orthern		pport				
Thick ness (feet)	Depth to Base (feet)	USCS*			gic Description	Sam	ple				24"	H e ad s p a c	B a c k g r o u n đ
0.5	0.5	FILL	Limeste	one Ballast			-3.0	-	-	<u> </u>	T	e 0.0	<u>d</u> 0.0
1.5	2.0	SP		ine, brown			-5.0				1	0.0	0.0
2.0	4.0	SP		ine, dark brown to			-6.0				1	0.0	0.0
2.0	6.0	CL			ly, moist, trace odo	r							
1.0	7.0		Ciay, g	ray, sandy, moist									
·			Well sc	reened 1-6' below	grade surface								
							······						
				*****	·····								
	·			· · · · · · · · · · · · · · · · · · ·									

* = The USCS symbol assigned is based on visual and manual observations and not on tests performed in the laboratory.

HORIZON ENVIRONMENTAL

Project Name: Project Number: Gage Products

GAG-0103

Log of Well Installation			of Casing	
Well Number: GMW-7R			ation (feet)	L
		Water	Level Data	
Generalized	Date	Time	Water Level	Elevation
Subsurface 0.3' Length of Casing Above Ground			·	
Surface				
Concrete Cap				
Depth to Top of				
N/A Grout or Backfill	Development	t:		
Material (Backfill)				

	Survey Refer	ence:		
0.0' Depth to Top of Bentonite Pellets		Diameter:	2"	
	Well	Total Length:	1.0'	·····
	Casing	Material:	PVC	
0.5' Depth to Top of		Cap Type:	J-Plug	·····
		i 		
Type: <u>#7 Filter</u> Pack		Diameter:	2"	
	Well	Length:	5'	
6.0° Depth to Bottom	Screen	Slot/Type:	10 slot	
of Well Screen		Material:	PVC	
Filter Pack Borehole Backfill			Or at Taxa	
Material	Protective	Material:	Cast Iron	Dia. 8"
7.0' Total Depth	Well	Height Above Ground:	0.5'	
of Borehole		Lock Type:		
eral Notes:				
			- · · · · · · · · · · · · · · · · · · ·	
			-	
······································	. ·			

Page: <u>1</u> of <u>1</u>	
Boring No.: <u>SB-01-00</u>	
Completed Well No .:	
Client: Gage Products	
Project No.: GAG-0103	
Date: Started: <u>6/16/00</u>	Finished: <u>6/16/00</u>
Time: Started:	_Finished:

Well/Boring Log Sheet

State	Cour	nty		Township		Fraction		Sect	tion	T			R	
Address Equipm Crew C	Contractor: BEST Address: Okemos, MI Equipment: Simco EP 200 Crew Chief: Rick Brye Horizon Supervisor: Ed Culver					Drilling Method(s) Geoprobe Macro	Dep		TC Da	Elevat)C Ele atum (f	ater Le): (ft.)	Dry 1	Hole
Grout/Seal Depth/to Material/Method 12.0' Benseal						Location: Jewell Avenue Wanda. 60' ea	st of sev	ver ma		ist sou				
Thick ness (feet)	Depth to Base (feet)	USCS*		Litholo	gic]	Description	Sam Dep		<u>B</u> 6"	low C 12"	<u>ounts</u> 18"	24"	H e a d s p a c e	B ackgro und
0.5	0.5	NA	Concre				0.0-	4.0	 -	-	- 1	- 1	0.0	0.0
0.5	1.0	GM	Sand &				4.0-		-	-	-	-	0.0	0.0
10.3	11.3	CL		rayish brown			8.0-	12.0	-	**	<u> </u>	-	0.0	0.0
0.7	12.0	CL	Clay, g	ray, sandy, firm		-	<u> </u>					 		
									+	 				
							<u> </u>		†			 	+	<u> </u>
														[
							<u> </u>			ļ				
							. <u> </u>		<u> </u>				-	
									1	 		1	-	
														ļ
							<u> </u>					 		
												-		
							1		1					<u> </u>
												1	1	
												1		
							<u> </u>				ļ		1	
	110.00	l	L.,,,.,				<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>		

* = The USCS symbol assigned is based on visual and manual observations and not on tests performed in the laboratory.

Page:1	of1
Well/Boring	No. <u>SB-1</u>
Client:	Gage Products
Project No.:	21073

Well/Boring Log Sheet

Cou	nty		Township		Fraction		Sectio	n	1	Γ	Т	R	}	٦
L					1/4	1/4	1/4		1			-		
Addr Equip Super	ress: ment: rvisor:	CTI & Associa Novi, Mi 313-473-7530 CME 45C Mou Wood Tiger Tr EDI-Ed Culver thod(s) Dept	unted on acked	Screen Manufacturer: Material: Model: Slot/Gauge: Length: Depth Set:	Di	a.:	Date Started: <u>7</u> Elevation Casing: Ground: Ref. Pt.:		÷.					
8" HSA 4 1/4" ID 53,5				Dia. Typ	e Der	Water Lev								
•	To	eal Material/Metho Cernent/Bent.		N/A	Ť	o	Measure C . <u>Measurec</u> Location	I through	auger		com	pleti	<u>on</u>	
Devel	opme			Remarks Breakdown 3' of water wet zone a	in augers ove	might, see	air left side 4 pm page through au	7/25, re ger joint	tum 2 p	om 7 shai	7/26 low			
	k- De s to	əpth Base		LITHOLOGIC		N	Blow Counts	Hnu	6" " Sample Ambien	t	1			
2	2	Sand and Grave	al some rubble						e Depth	1	-			
3	5	Clay					·····		3-5	.4	-		•	-
2	7	Clav	-						<u>8.5-10</u> 18.5-20			5 3		20
5	12	Clay, silty, trace	sand. pebbles	. mottled brown	to grav firm t	iii		ł	<u>18.5-20</u> 28.5-30	1				<u>12</u>
13		Clay, silty, trace						1			F		8	
7.5	32.5	<u>Clay, silty, trace</u>	sand, occasio	nal pebble, grav	, firm fill mois	:t	-		<u>38,5-40</u>		<u>-</u>	6		
1		Soft Zone			<u>j nata, na, mo</u> a				53,5-55	-		3	6	<u>6</u>
21.5+	1	Clay, trace silt, t	race sand, occ	asional nebble	arey firm fill	moist]	·····					
				<u>aoronal popolo.</u>		moist								
														_
													_	
	· ·													
•														
	 				•		······							
÷.,							-							
					·									
											·	T		
													1	1
-														

Page:_1	0	[1	
Well/Boring	No.	SB-2		

Client:__ **Gage Products** Project No.: 21073

Fraction County Township Section T R 1/4 1/4 1/4 Date Contractor CTI & Associates Screen Started: 7/27/89 Finished: 7/27/89 Address: Novi, MI Manufacturer:___ N/A Material: 313-473-7530 Elevation Model: Equipment: CME 45C Mounted on Casing: Slot/Gauge: Dia.: Wood Tiger Tracked Ground: Length: Supervisor: EDI-Ed Culver Ref. Pt .:_ Depth Set: To: Drilling Method(s) Depth Water Level_____Ft. Below_____ 8" HSA 3 1/4" ID Dia. Туре Depth Set Measure On: To - N/A • • Grouting/Seal To Depth To Material/Method Location Cement/Bent, Slurry 0-55 Remarks Development N/A 3rd 6*

		pth C	ounts	<u>2nd 6"</u> <u>2nd 6"</u> <u>1st 6"</u> <u>Hnu Sample</u> <u>Hnu Ambient</u> Sample Depth				
).5	0.5	Sand and Gravel		1 1		6	9	12
2.5	3	Sand, medium to fine, dirty brown, clayey		28.5-30		10	12	14
).5	3.5	Sand, fine to medium, dirty brown, clayey, wet		38,5-40		12	<u> 10</u>	14
2.5	6	Clay, sandy, pebbles, mottled dirty brown, moist		48.5-50		5	6	6
				58.5-60		5	8	10
	30	Clay, slity, sandy, occasional pebble, gray, firm, moist					_	\square
							<u> </u>	
							<u> </u>	
							╇	$\left - \right $
							–	$\left - \right $
2 <u>+</u>	60	Clay, gray, moist, plastic, soft					╇	↓]
					<u> </u>		-	$\left - \right $
							–	┝╌┨
				·····		╇	–	$\left - \right $
				·		+-	╇	$\left - \right $
						┽	╇	$\left - \right $
							–	$\left - \right $
								$\left - \right $
	ness).5).5).5).5).5).5).5).5).5).5	ness to I 0.5 0.5 2.5 3 0.5 3.5 2.5 6 6 12 18 30 5 35 2 37 10 47 3 55	C Thick- Depth LITHOLOGIC DESCRIPTION 0.5 0.5 0.5 Sand and Gravel 2.5 3 2.5 3 Sand, medium to fine, dirty brown, clayey 0.5 3.5 Sand, medium to fine, dirty brown, clayey, wet 2.5 6 Clay, sandy, pebbles, mottled dirty brown, moist 3 12 Clay, silty, sandy, pebbles, mottled brown to gray, firm, dry 18 30 Clay, silty, sandy, occasional pebble, gray, firm, moist 5 35 Clay, very sandy, pebbles, gray, wery firm, moist 2 37 Clay, sandy, pebbles, gray, moist, lenses of wet sand 10 47 Clay, gray, moist, very plastic, soft	ness to BaseLITHOLOGIC DESCRIPTION0.50.5Sand and Gravel2.53Sand, medium to fine, dirty brown, clayey0.53.5Sand, fine to medium, dirty brown, clayey, wet2.56Clay, sandy, pebbles, mottled dirty brown, moist2.56Clay, sandy, pebbles, mottled brown to gray, firm, dry1830Clay, silty, sandy, occasional pebble, gray, firm, moist237Clay, very sandy, pebbles, gray, moist, lenses of wet sand1047Clay, sandy, pebbles, gray, moist, firm355Clay, gray, molst, very plastic, soft	Blow 2nd 6* 1st 6* Hnu Sample Depth Sand and Gravel 0.5 0.5 Sand and Gravel 2.5 3 Sand, medium to fine, dirty brown, clayey 28.5-30 0.5 6 Clay, sandy, pebbles, mottled dirty brown, moist 48.5-50 12 Clay, silty, sandy, pebbles, mottled brown to gray, firm, dry 58.5-60 18 30 Clay, silty, sandy, pebbles, gray, moist, lenses of wet sand 1 10 47 Clay, sandy, pebbles, gray, moist, firm 1 23 55 Clay, gray, moist, very plastic, soft 1	Blow Counts 2nd 6* 1st 6* Hnu Sample Hnu Amblent Sample Depth Hnu Amblent Sample Depth 0.5 0.5 Sand and Gravel 18.5-20 2.5 3 Sand, medium to fine, dirty brown, clayey 28.5-30 0.5 0.5 Sand, medium to fine, dirty brown, clayey, wet 38.5-40 2.5 6 Clay, sandy, pebbles, mottled dirty brown, moist 48.5-50 3 12 Clay, silty, sandy, pebbles, mottled brown to gray, firm, dry 58.5-60 3 30 Clay, silty, sandy, occasional pebble, gray, firm, moist 1 5 35 Clay, very sandy, pebbles, gray, moist, lenses of wet sand 1 10 47 Clay, sandy, pebbles, gray, moist, firm 1 3 55 Clay, gray, moist, very plastic, soft 1	Blow Counts 2nd 6" 1st 6" Hnu Sample Hnu Ambient Sample Depth Hnu Ambient Sample Depth 0.5 0.5 Sand and Gravel 18.5-20 6 2.5 3 Sand, medium to fine, dirty brown, clayey 28.5-30 10 0.5 0.5 Sand, medium to fine, dirty brown, clayey, wet 38.5-40 13 2.5 6 Clay, sandy, pebbles, mottled dirty brown, moist 48.5-50 5 3.12 Clay, silty, sandy, pebbles, mottled brown to gray, firm, dry 58.5-60 5 3.8 Clay, silty, sandy, pebbles, gray, moist, lenses of wet sand 1 1 10 47 Clay, sandy, pebbles, gray, moist, firm 1 1 3.8 55 Clay, gray, moist, firm 1 1	Initial and the problem is to Base LITHOLOGIC DESCRIPTION Blow Counts Init 6" Hnu Sample Hnu Ambient Sample Depth Sample Depth 0.5 0.5 Sand, medium to fine, dirty brown, clayey 28,5-30 10 12 2.5 3 Sand, fine to medium, dirty brown, clayey, wet 38,5-40 13 10 2.5 6 Clay, sandy, pebbles, mottled dirty brown, moist 48,5-50 5 6 3.1 2.5 6 Clay, sandy, pebbles, mottled brown to gray, firm, dry 58,5-60 5 8 3.2 Clay, silty, sandy, pebbles, gray, wery firm, moist 48 4 4 4 3.3 Clay, silty, sandy, pebbles, gray, tirm, moist 4 4 4 4 3.3 Clay, sandy, pebbles, gray, moist, lenses of wet sand 4 4 4 4 3.4 Clay, sandy, pebbles, gray, moist, firm 4 4 4 4 3.4 55 Clay, sandy, pebbles, gray, moist, firm 4 4 4

Well/Boring Log Sheet

:

Page:_1 of1	
Well/Boring No. SB-3	
Client: Gage Products	
Project No.: 21073	

Well/Boring Log Sheet County Fraction Township Section T R 1/4 1/4 1/4 Contractor ______ & Associates Date Screen Started: 7/28/89 Finished: 7/28/89 Address: <u>Novi, MI</u> Manufacturer: N/A 313-473-7530 Material: Elevation Model: Equipment: CME 45C Mounted on Casing: Wood Tiger Tracked Slot/Gauge: Dia.: Ground: Supervisor: EDI-Ed Culver Length: Ref. Pt.: To: Depth Set: Drilling Method(s) Depth Water Level dry hole Ft. Below 8" HSA 4 1/4" ID Dia. Туре Depth Set Measure On:____ То N/A Grouting/Seal То Depth. To Material/Method Location -0-9 Nat Soils Remarks Development N/A 3rd 6" 2nd 6" Blow 1st 6" Counts Hnu Sample Thick- Depth Hnu Ambient ness to Base LITHOLOGIC DESCRIPTION Sample Depth 1.5 Sand and Gravel, rubble 1.5 2-3.5 1.20 2.3 Sand, fine, brown, dry 8 3.5-5 1.20 7 6 9 6.7 9 Clay, silty, sandy, mottled, brown to gray, firm, dry 7.5-9 4 11 14 . . ÷ . .

};; ;

Page: 1	of_	1	
Well/Boring	No.	SB-4	•
Client:	Gage	Products	5

Project No.: 21073

				ell/Borir			Snee	÷[_		
Coui	nty		Township		Fraction	n 4	1/4	1/4	Section		Т			R	
Addr Equip	ment:_	CTI & Associ Novi, MI 313-473-753 CME 45C Mc Wood Tiger 1	0 ounted on Fracked	Screen Manufacturer: Material: Model: Slot/Gauge:		N/A Dia		Da S Ele Ca	te started: <u>7/2</u> evation asing: ound:						
Super	visor:_	EDI-Ed Culve	ər	Length: Depth Set:	· · ·	To:		- Re	of. Pt.:						
<u>.8</u> *	_	nod(s) Dep <u>1/4" ID</u>			99	_ Ť			/ater Leve l /leasure Or	1:					
Depth	То	Material/Meti Nat Soils/Be		Remarks	, ,	/ `		- Lo	cation -						
Deve	lopme	nt N/A	99919999999999999999999999999999999999		*****										
					ŗ	-			Blow Counts	<u>3rd (</u> 2nd 1st 6 Hnu	<u>6"</u>			1	
	ck-De ss to i			LITHOLOGIC	DESCRI	ΙΡΠΟΙ	1			Hnu	Ambien e Depth	ţ]		
1		Topsoil									2-3.5	-	<u> -</u>		
<u>1.3</u> .7	-			clayey, some ru							3.5-5	.4	1		6 (
3				lirty brown, som	e organic	000r.	moist, so	1			6.5-8		<u> 0</u>	1	9 -
1.5				ray, moist, firm							8-9.5	.4	10	8	15
2				ray, moist, firm, ottled brown to e				SIII							
													Ļ		
-													<u> </u>	ļ	
		· · · · · · · · · · · · · · · · · · ·	······································		<u></u>		·	-					┝		
												 		<u> </u>	
													┝	<u> </u>	\vdash
	+-												┝		
	-{	·								· · · ·				-	
به ال	-		· · · · ·									-	┝		┝─┼
-											· · ·			<u> </u>	┝╍╄
-													┝		┝──╄
-	+												┝──		
					· · · · · ·				<u>.</u>		<u> </u>		┣—		\vdash
												Į.	1		

		V Engin Environ	mental Se	rvices		Boring	Log Shee		Clien	/Borin it: <u>G</u> ict No.	g No <u>.</u>	HAE 3284.1 : 08/2	13 17/93	_ Fin	ished	
State MI	Coun Oa	ty kland		Township Ferndale	>	57.24 (h.x. 1976) (h.h.s. 1976) (h.h.s. 1976)	Fraction NW 1/4 SW	¥ 1/4		Secti		T	1N		R	11E
Addre Equipn	nent:	WWES 39209 W. 6 Livonia, M Hand Auge	I 48152	Lo	cation <u>:</u> 	Wanda	building, inside and Jewell St. g Method(s)		h ath th Dept	•	ner Coca	-Cola	plant l	ocated	l at	
Grout Depth	upervis ting/Se /To	Mater	(ivari rial/Method	Re	mark <u>s:</u>	<u>3 " Har</u>	nd Auger		<u> 6.0'</u>				ind Si ation			[
0.0-0.6 0.6-6.0 Water) '	Concrete Soil Cutting			 	······································	· · · · · · · · · · · · · · · · · · ·								······	
				The second s	-											
Thick-	Depth	1	1							ow Counts		PID]		space
Thick- ness (feet)	Depth to base (fect)	USCS *		L	itholog	ic Descr	intion			Blow	le Denth		1.2"	10*	24"	Headspace
ness (feet) 0.5	to base (feet) 0.5	Other	Concrete			ic Descr	iption			Blow	ile Depth 2.0'		12"	18"	24"	-
ness (feet) 0.5 1.1	to base (feet) 0.5 1.6	Other Other	FILL:SAND, I	Fine, Light Brown	n to Gray, 1) No odor	iption			Samr 0.0- 2.0-	2.0' 4.0']_6"			24"	149.0
ness (feet) 0.5 1.1 0.4	to base (feet) 0.5 1.6 2.0	Other Other - Other	FILL:SAND, I FILL:SAND, I	Fine, Light Brown Fine, Dark Brown	n to Gray, 1 , No Odor,	/ No odor , Dry	iption			80	2.0' 4.0']_6"	-		-	149.0 125.0
ness (feet) 0.5 1.1	to base (feet) 0.5 1.6	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u>-</u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other - Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I	Fine, Light Brown Fine, Dark Brown	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, I	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	/ No odor Dry No Odor	iption			Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	езеклание 149.0 125.0 53.6
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, i @ 6.0 *	n to Gray, 1 1, No Odor, rown, Dry, Dry, Still,	No odor , Dry , No Odor No Odor				Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, i @ 6.0 *	n to Gray, 1 , No Odor, rown, Dry, Dry, Stiff,	No odor , Dry , No Odor No Odor				Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0
ness (feet) 0.5 1.1 0.4 1.0	to base (feet) 0.5 1.6 2.0 3.0	Other Other Other Other	FILL:SAND, I FILL:SAND, I FILL:SAND, I CLAY, Some S	Fine, Light Brown Fine, Dark Brown Fine, Yellow to B Silt, Trace Sand, i @ 6.0 *	n to Gray, 1 , No Odor, rown, Dry, Dry, Stiff,	No odor , Dry , No Odor No Odor				Samr 0.0- 2.0-	2.0' 4.0'	<u> </u>	-		-	149.0 125.0

·

•

.....

;

÷

* = The USCS symbol assigned is based on visual and manual observations and not on tests performed in the laboratory.

	WV		neering d mental Se	& Science ervices			Clier Proje	l/Bori nt: <u>C</u> ect No	ng No. Jage D.: 8	3284.	3-2 13			SB-	
				Well/B	oring	Log Sheet	Date		Started Started						
State MI	Coun Oa	ty kland		Township Ferndale		Fraction NW 1/4 SW 1/4		Sect		T	1N		R	11E	
Contra Addre		WWES 39209 W. (·····	Location:		building, outside near r and Jewell	ailroad	tracks	at former	r Coca	-Cola	plant l	ocate	l at	
Crew (WW S	Livonia, MI 48152 Equipment: Hand Auger Crew Chief:						Dept 5.5				ind Si ation			[
Grou Depth 0.0-5.5			rial/Method gs	Remarks:	Wood	debris at 5 foot. Obstr	uction	in bor	ehole at	5.5 fe	et. Bi	oke a	uger	bit.	
Water	I evel·	ft.	Below												
		L								PID					
Thick- ness (feet)	Depth to base (feet)	USCS *		T itholog	- D '			Blow Counts]			Headspace	Background
0.5	0.5	Other	FILL:GRAVE	Lithologi L, Medium to Coarse	<u>e Descri</u>	ption		· · · · · · · · · · · · · · · · · · ·	ple Depth 2.0'	6"	12"	<u>18"</u> -	State and state	226.0	0.0
0.5	1.0 5.0	Other		Fine, Little Silt, Trace Mediu					4.0'	<u> </u>	-	-	-	396.0	0.0
4.0	5.0	Other	FILL:CLAY a to Moist	nd SILT, Little Sand, Light 1	Brown, Iron S	Staining/Mottling, Stiff, Dry				 					
5.5	5.5	a		Fine Sand, Gray, Mottling, S	oft, Moist	. *				+					
			EOB	@ 5.5 '						ļ					
				· · ·											
									· · · · · · · · · · · · · · · · · · ·						
				· ·····											

					·····										
						·									
							[]								·
]]			
						·······]

* = The USCS symbol assigned is based on visual and manual observations and not on tests performed in the laboratory.

• ال

•

Page: 1	of 1
Well/Boring	No. SB-5
Client:	Gage Products
Project No.	21073

Well/Boring Log Sheet

Cour	nty	Township		Fraction 1/4	1/4	1/4	Section		1	Γ	Τ	R		٦
Addr Equip Super Drillin	ess: _ ment: visor: g Met HSA 4	CTI & Associates Novi, MI 313-473-7530 CME 45C Mounted on Wood Tiger Tracked EDI-Ed Culver hod(s) Depth 4 1/4* ID 8*	Screen Manufacturer: Material: Model: Slot/Gauge: Length: Depth Set: Dia. Typ N/A	Di To: De Dep T	a.:	- Elev - Cas - Gro - Ref - Wa	arted: <u>7/2</u> vation ling: und: . Pt.: ter Leve	l_dry_h	ole_Ft.	Be	low_			_
Grouti Depth 0-9	To .5	Material/Method	Remarks	Τ	o	- Loc 	ation		······	·				
Devel	opme		·····											-
Thic	k- De s to	epth Base	LITHOLOGIC	DESCRIPTIO	N		Blow Counts	Hnu	6" 5" Sample Ambien	ıt	 			
1	1	Sand and Gravel, moist							e Depth	1	<u> </u>	┢──		┢──
.5		Concrete rubble							<u>2-3.5</u> 3.5-5	1	400 100	1	- 5	E
.5	2	Clay, silty, dirty brown, strong	aasoline odors						8-9,5	4		15	-	8
1.5	3.5	Clay, silty, sandy, mottled bro			lenses, st	trong gas	oline odo		<u>v-v.v</u>	Ľ		ات	23	
2.5		Clay, silty, mottled brown to g								\vdash	1			┢──
3.5		Clay, silty, sandy, occasional				firm. slial	nt odor			ſ				┢
				,						Γ				
<u> </u>														
	 		•	·										
												ŀ		
			· · · · · · · · · · · · · · · · · · ·											
ŀ			······································											
		· · · · ·												
ŕ									-					
ļ														
1	r 1													
 			· · ·											1

, .

Well/Boring Log Sheet County Township Fraction Section T R Contractor Steams Drilling Screen Date Started: 8/3/90 Finished: 8/3/90 Address: Dutton, MI Manufacturer: N/A Date Started: 8/3/90 Finished: 8/3/90 Address: Dutton, MI Manufacturer: N/A Date Started: 8/3/90 Finished: 8/3/90 Equipment: CME - 550 Model: Dia.: Dia.: Ground: Elevation Supervisor: Ed Culver Depth Set: To: Depth Set: To: Water Level 4.5± Ft. Below_cond	WW I		eering & Scienc ronmental Services			Page:1 of1 Well/Boring No <u>TSB-1</u> Client: <u>Gage Products</u> Project No.: <u>21275</u>								
County Township Fraction T R Contractor Stearns Drilling Screen Date Address: Dutton MI Manufacturer, N/A Started: g/2/30 Finished: g/3/20 Equipment: CME - S50 Manufacturer, N/A Started: g/2/30 Finished: g/3/20 Supervisor: Ed Other Date Started: g/2/30 Finished: g/3/20 Supervisor: Ed Other Depth 58t: To: Ground: Ground: 20:-30: Benseal Solis N/A To Measure On: Measure On: 20:-30: Benseal Solis Depth Sample OVA (porn) Measure On: Supervisor: (feet) N/A To Location Sample Depth 6': 12' 18'' N/A Solis Depth Sample OVA (porn) Blow Counts Sterright to N/A Sample Depth 6': 12'' 18''' Sample Depth 6': 12'' 18''' Sample Depth 6': 12'' 18''' 0.5 Sand fine brown concrete rubble 0.5: 2.0: 7: 5: 1: 1 Sample Dept			We	ell/Borin	na Loa Shee				M.I.Y		,			
Address: Dutton. MI Manufacturer: N/A Started: 8/3/90 Finished: 8/3/90 Equipment: CME + 550 Stor/Gauge Elevation Damis & Jaff Stor/Gauge Dia.: Ground: Casing: Opensel & Jaff Dia. To: Ref. Pt: Casing: Drilling Method(s) Depth Dia. To: Water Level _ 4.5± Ft. Below.com Address: N/A To Costor Masure On: Masure On: Masure On: To: Dia. Type Depth Set: To: N/A To: Location Measure On: Location Measure On: Location Measure On: Location Masure On: Location Counts Counts Location Location Sample Opth o: Location Location Location Location	County	′			Fraction	1	Sectio	n	Т			R		
c. Disk tills Disk Type Depth Set Measure On: Grouting/Seal N/A To Location West of office/Lab Bidg. 0-0.5 Concrete Location West of office/Lab Bidg. 2.0-3.0 Benseal & Solis Exempte OVA 1.5 ppm Location West of office/Lab Bidg. 2.0-3.0 Benseal & Solis Exempte OVA 1.5 ppm Sample OVA (ppm) Development N/A Sample OVA (ppm) Sample OVA (ppm) Insess Base LITHOLOGIC DESCRIPTION Sample Depth 6 ⁺ 12 ⁺ 18 ⁺ 0.5 Concrete 0.5 - 2.0 - - 3.0 3.5 Sand fine brown concrete rubble 2.0 - 3.5 7 5 3.0 6.5 Sand fine dirty brown layery moist pebbles some rubble 4.0 - 5.5 4 4 1.5 8.0 Clay dirty brown very sandy very soft *6.0 - 7.5 - - 3.0 11.0 Sand fine to med dirty brown wet *9.0 - 10.5 - - 1.5 12.5 Clay brown sandy pebbles 11.2 1 1 1 1.5 12.5 <t< td=""><td>Addres Equipme Supervis</td><td>s: <u>D</u> 61 ent: <u>CM</u> De sor: Ec</td><td>ntton, MI 6-698-7770 ME - 550 nnis & Jeff Culver</td><td>Manufacturer: Material: Model: Slot/Gauge:</td><td>Dia.:</td><td>Sti Elev Cas Gro Ref</td><td>arted:_8 vation sing: und: . Pt.:</td><td>·····</td><td></td><td></td><td></td><td></td></t<>	Addres Equipme Supervis	s: <u>D</u> 61 ent: <u>CM</u> De sor: Ec	ntton, MI 6-698-7770 ME - 550 nnis & Jeff Culver	Manufacturer: Material: Model: Slot/Gauge:	Dia.:	Sti Elev Cas Gro Ref	arted:_8 vation sing: und: . Pt.:	·····						
Grouting/Seal 10/1 10/1 10/1 Depth To Material/Method Location West of office/Lab Bidg. 00.5 Concrete Location West of office/Lab Bidg. 2.0-3.0 Benseal & Solis Emarks Ambient OVA 1.5 ppm 2.0-3.0 Benseal & Solis Emarks Ambient OVA 1.5 ppm Development N/A Sample OVA (ppm) Image: Sease LITHOLOGIC DESCRIPTION Sample Depth 6 ⁺ 12 ⁺ 18 ⁺ 0.5 0.5 Concrete 0.5-2.0 - 3.0 3.5 Sand fine brown concrete rubble 2.0-3.5 7 5 1 3.0 6.5 Sand fine brown concrete rubble 2.0-3.5 7 5 1 3.0 1.5 Sand fine brown concrete rubble 2.0-3.5 - - - 3.0 1.0 Sand fine to med dirdy brown very soft *6.0-7.5 -	-													
Blow Counts Blow Counts Thick-Depth to ness Base LITHOLOGIC DESCRIPTION Sample Depth 6* 12* 18* 0.5 0.5 Concrete 0.5 - 2.0 - - - 3.0 3.5 Sand fine brown concrete rubble 2.0 - 3.5 7 5 1 3.0 6.5 Sand fine dirty brown clayey moist pebbles some rubble 4.0 - 5.5 4 4 1 1.5 8.0 Clay dirty brown very sandy very soft *6.0 - 7.5 - - - 3.0 11.0 Sand fine to med dirty brown wet *9.0 - 10.5 -	Depth 0 - 0. 0.5 - 2.0 - 3.0 - Develop	To Ma 5 Co 2.0 Be 3.0 Be 11.0 Be oment	encrete enseal & Solis enseal enseal & Solis		To	Loc	ation	West of o	lfice/L	ab I	3ldg.			
Blow Counts Blow Counts Thick-Depth to ness Base LITHOLOGIC DESCRIPTION Sample Depth 6* 12* 18* 0.5 0.5 Concrete 0.5 - 2.0 - - - 3.0 3.5 Sand fine brown concrete rubble 2.0 - 3.5 7 5 1 3.0 6.5 Sand fine dirty brown clayey moist pebbles some rubble 4.0 - 5.5 4 4 1 1.5 8.0 Clay dirty brown very sandy very soft *6.0 - 7.5 - </td <td>F</td> <td></td> <td></td> <td></td> <td></td> <td>74</td> <td></td> <td>Sample OV</td> <td>A (non</td> <td></td> <td></td> <td></td>	F					74		Sample OV	A (non					
ness Base LITHOLOGIC DESCRIPTION Sample Depth 6* 12* 18* 0.5 0.5 Concrete 0.5 - 2.0 - <td>Thisk</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>ow</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td>	Thisk				1		ow		<u> </u>					
0.5 0.5 Concrete 0.5 - 2.0 - - - 3.0 3.5 Sand fine brown concrete rubble 2.0 - 3.5 7 5 1 3.0 6.5 Sand fine dirty brown clayey moist pebbles some rubble 4.0 - 5.5 4 4 1 1.5 8.0 Clay dirty brown very sandy very soft *6.0 - 7.5 - - - 3.0 11.0 Sand fine to med dirty brown wet *9.0 - 10.5 -			• .	LITHOLOGIC	DESCRIPTION			Sample De	epth 6	5" h	2"1	B"		
3.0 6.5 Sand fine dirty brown clayey moist pebbles some rubble 4.0 - 5.5 4 4 1 1.5 8.0 Clay dirty brown very sandy very soft *6.0 - 7.5 - - - 3.0 11.0 Sand fine to med dirty brown wet *9.0 - 10.5 - - - - 1.5 12.5 Clay brown sandy pebbles 11.0 - 12.5 10 10 13	0.5	0.5	Concrete	•		· .						1		
1.5 8.0 Clay dirty brown very sandy very soft *6.0 - 7.5 - - 3.0 11.0 Sand fine to med dirty brown wet *9.0 - 10.5 - - 1.5 12.5 Clay brown sandy pebbles 11.0 - 12.5 10 10 13 - - - - - - - - - -								2.0 - 3.	5 7	7	5 1	1		
3.0 11.0 Sand fine to med dirty brown wet *9.0 - 10.5 - - - 1.5 12.5 Clay brown sandy pebbles 11.0 - 12.5 10 10 13 - - - - - - - - - -			•		les some rubble			4.0 - 5.	5 4	<u> </u>	4 1	4		
1.5 12.5 Clay brown sandy pebbles 11.0 - 12.5 10 10 13			, , , , , , , , , , , , , , , , , , , ,		-			*6.0 - 7	.5 -		<u> </u>	4		
11.0 - 12.5 10 10 13									· · · · ·	_	<u> </u>	4		
		. 12.5	Ciay brown sandy people	95	•	·····		<u> </u>	2.5 1	0	101	3 4		
	 		· .							_	4			
				· · · · · · · · · · · · · · · · · · ·		•				_		_		
		· · .					•			-		-		
			•	* Note verv so	oft 1/2 blow per foot					-				
			- -							+				
		• *	,	•						-		1		
				•	······································					-				
					·					+	+			
			· · ·		· · · · · · · · · · · · · · · · · · ·	•				┿	+			
		·	s.	· · · · · · · · · · · · · · · · · · ·						╉	- -	1		
				<u> </u>						╈		<u>† </u>		
						· · · · · · · · · · · · · · · · · · ·				+				

۰.

Page:	1	_ of_	1	
Well/Bo	oring	No	SB-2	
Client:				
Project				
	-			

			Well/B				Shee	t	•						•
County	, ·	1	wnship		Fraction 1/4		1/4	1/4	Section	n				R	
Addres Equipme	s: <u>D</u> 61 ent: <u>C</u> De	earns Drilling utton, MI 16-698-7770 ME - 550 ennîs & Jeff 1 Culver	Manufa Materia Model: Siot/Ga	cturer: l: uge:	N	Dia	.:	Ele Ca	tarted: vation sing: ound:	•) Finisł				
			Depth S	Set:		То:		He	I. Pt.:						
<u>8" H</u> s	SA 4 1/4	(s) Depth "ID 12.5"	Dia.	Typ N/A	8		h Set	М			<u>'+</u> Ft.				
Grouting Depth		aterial/Method	<u> </u>			To)		cation	We	st of office	/Lab	Bld	<u>g.</u>	
<u> </u>	2.0 B 4.0 B 10.0 B	oncrete enseal & Soils enseal enseal & Soils N/A	Rem:	arks			A 6 ppm					······	· · · · · · · · · · · · · · · · · · ·		
			<u></u>				······			Sam	ple OVA (p	pm)			
Thick-	(feet) Depth				7				low unts	•		1			
ness	Base		LITHO	LOGIC	DESCRI	PTION	1				nple Depth	6"	12"	18"	
0.5 2.0	0.5 3.0	Concrete								_	0.5 - 2.0	4	2	2	15
2.0	3.0	Sand fine to r	ned brown ned clayey brown w								<u>2.0 - 3.5</u>	-	-	÷	200
2.0	5.0	1	dirty brown very sa		niet						<u>4.0 - 5.5</u> 6.0 - 7.5	0	1	2	<u>100</u> 30
6.0	11.0	1	ned dirty brown wet		7131						9.0 - 10.5				100
1.5	12.5	Clay brown s									11.0 - 12.5	7	10	13	50
				·				-	·						
			·	W											
				•											
	i				-										
		_		-											
ļ		•		-	•				-						
		·	•		•										
i		•			•			•••••••••••••••••••••••••••••••••••••••							
1													ļ		

WW Engineering & Science, Inc. Environmental Services Division							Vell/Borir	of Ig No <u>TSB</u> Gage Pro D.:2127	-3 duci	-		
		W	ell/Borir	ng Log	Shee	et 👘						
Count	У	Township		Fraction	1/4	1/4	Section		Т	Τ	R	8
		· · · · · · · · · · · · · · · · · · ·	•					·····			·	I
Contrac	tor <u>St</u>	earns Drilling	Screen			Date						
Addres		Itton, MI 6-698-7770	Manufacturer: Material:	N/A		•		90 Finis	hed:	8/3/	90	
Equipm	ent:	ME - 550	Model:				ation		•			
	De	ennis & Jeff	Slot/Gauge;	D	ia.:	Grou	ing ind:					
Supervi	sor: <u> </u>	Culver	Length: Depth Set:	To:		Ref.	Pt.:					-
Drilling	Method	(s) Depth										
<u>8" H</u>	<u>SA 4 1/4</u>	" ID 9.0"	Dia. Typ N/A		pth Set To	Me		<u>4.0'</u> Fi				
-	To Ma	aterial/Method		·······	To		ation E	ast of Tank	Farm	1		
0.5 - 1		anseal & atural Soils	Remarks	Ambient C								
Develo;	oment	N/A		•	•	······	· · · · · · · · · · · · · · · · · · ·					
				-			Sa	mple OVA (p	(ma			
		· ·							<u> </u>			1
	(feet)			7		Blo Cou				1		
Thick- ness	Depth t	0	LITHOLOGIC		N		-	ample Depth	6"	12"	18*	
0.5	0.5	Concrete						0.5 - 2.0	2	1	2	150
0.5	_1.0	Sand fine to med brown						2.0 - 3.5	1	1	1	.15%
3.0	-4.0	Sand fine black odor bit		ling	-			*4.0 - 5.5	<u> -</u>	-		.2%
1.0	5.0	Sand fine to med black						6.0 - 7.5	5	8	9	.50
<u>1.0</u> 4.5	<u>6.0</u> 10.5	Pea stone wet (pieces o						9.0 - 10.5	4	7	10	.50
-7.5	10.5	Clay mottled brown to g	ray sandy people	25						$\left - \right $		
						•						
								1.		$\left - \right $	-	
											-	
			* no sam	ole	· · · · · · · · · · · · · · · · · · ·						-	
			,10 Cum								\neg	
			•									
		,									-	
										┝─┤	-+	
			•								-+	
		e1									\neg	
								·	[:]		+	
		-			-			•			\neg	

]

** **	-	ineering & Science, Inc. vironmental Services Division					Page: 1 of 1 Well/Boring No. <u>TSB-4</u> Client: <u>Gage Products</u> Project No.: <u>21275</u>							
		W	ell/Borin	na Loo	Shee			1 T V						
Count	у	Township		Fraction	1/4	1/4	Sectio	n	-	Г		R		
				<u></u>					I	•			لـــــ	
		earns Drilling	Screen			Dat	-							
Addres		itton. MI	Manufacturer:	N/A			arted: 8	3/6/90	Finist	ned:	8/6/	90_		
Equipm		6-698-7770 · · · · · · · · · · · · · · · · · ·	Material: Model:				vation							
	De	ennis & Jeff	Slot/Gauge:		Dia.:	- Cas	sing:	·····						
Supervi	isor: <u>E</u> c	L Cuiver	Length: Depth Set:	To	•	- Ref	. Pt.:	·						
Drillina	Method	(s) Depth				- .								
		" ID 9.0'	Dia. Typ N/A		epth Set	M		rel <u>dry ho</u> On:						
Depth		aterial/Method			То То	•	ation	<u>N of mix</u>	ing/filli	ing b	oldg.			
<u>0 - 0.5</u> 0.5 - 1	0.5' Be	oncrete onseal & atural Soils	Remarks	Ambi	ent HNU 9 p	 mqc			· · ·					
Develor	pment	<u>N/A</u>		•		······································				· .	•			
						•	•	Sample H	NU (p	pm)			1	
			• •			BI	ow .							
	(feet)			2			unts)			
ness	1		LITHOLOGIC	DESCRIPTI	ON		-	Sample (Depth	6"	12"	18"		
0.5	0.5	Concrete						0.5 -		2		3	6*	
2.0	2.5	Sand fine greenish brow						. 2.0 -			4		12*	
<u>2.5</u> 5.5	5.0	Clay mottled brown to g			•			4.0 -		3	6	- 1	11	
5,5	10.5	Clay mottled brown san	dy peoples		-			6.0 -		4	10	······		
							·	9.0 -	10.5	5	11	14	5*	
			<u> </u>											
									-			\neg		
		· · · · · · · · · · · · · · · · · · ·		· · · · ·							-			
			*Sample	Collected										
												\neg	****	
			· · · · · · · · · · · · · · · · · · ·	<u></u>								\neg		
										•		\neg	•	
			•											
		**************************************					<u>.</u>			-		\dashv		
											\neg	\dashv		
	·	•									\neg	+		
												-		

.

2

. . . **.**

Page:	1	of	1		
Well/Bc	ring	No. C	-SB-	1	
Client:_		Gage			
Project	No.:	21	275		

Well/Boring Log Sheet

County	/	Township	•	Fraction 1/4	1/4	1/4	Sectio	n		Т		R	
Addres Equipm	s: <u>Du</u> 61 ent: <u>CM</u> De	earns Drilling tton, Mi 6-698-7770 ME - 550 nnis & Jeff Cuiver	Model:	E	ia.:	- Ele - Ca	vation sing:	3:40 pm	Finis	. • 	4:00	pm	
-	Method(SA 4 1/4	s) Depth / ID 9.0	Dia. Ty	vpe De	pth Set To	W	ater Lev leasure	vel <u>dry</u> On:	hole_Ft	. Bel	ow		
Grouting Depth <u>0 - 10.</u>	Το Με <u>5 Β</u> ε	nterial/Method	Remarks	nyn a san an a	10	Lo 	cation						
Develoj	*****	N/A		Ambient	VA 7 ppm			······	****				
	(feet) • Depth t			1			low unts		϶ OVA (բ	1]		
ness	Basé		LITHOLOGIC	C DESCRIPTION	DN			Samp	le Depth	6*	12"	18"	
0.8	0.8	Railroad ballast						0	.0 - 1.5	-	-	•	-
0.7	1.5	Sand fine black some tr						<u>3.</u>	0 - 4.5	3	1	2	.5%
7,0	8.5	Clay mottled gray to bro		solvent odor				6.	0 - 7.5	2	3	3	30
2.0+	10.5	Clay brown sandy trace	odor					9.	0 - 10.5	5	11	17	15
													<u>.</u>
				,									
		•	······										
					•		•						
												T	,
		•	. •										
		-				•							• •••• ••
	•		******									\neg	
·				· · · · · · · · · · · · · · · · · · ·									
		·											
	·												
						•							-
L	1									· · ·			

بل

Page:_1	of	1	•
Well/Boring	No. T	SB-5	
Client:		Produc	ots
Project No.:	21	275	

Well/Boring Log Sheet

County	y	Township	· · · ·	Fraction 1/4	1/4	Section 1/4	n	ר	ſ	Τ	R	
Addres Equipm Supervi Drilling <u>8" H:</u> Grouting Depth	ss:61 ent:0 sor:6 Method(SA 4 1/4 g/Seal To Ma 6 0.5' Be 0	earns Drilling tton. M1 6-698-7770 AE - 550 mnis & Jeff Culver (s) Depth 1D 9.0' aterial/Method oncrete enseal & atural Soils		Di To: pe Dep AT	a.:	Casing: Ground: Ref. Pt.: Water Lev Measure Location	vel 4. On: <u>NE of I</u>	2'Ft.	Belo Ise ing)	ow_c	conc	rete
	Jineill	<u>N/A</u>	-		• . · ·	·						
Thists	(feet)	_		, ·		Blow Counts	Sample	HNU (p	pm)]		
ness	Depth t Base	0	LITHOLOGIC	DESCRIPTIO	N		Sample	Depth	6"	12"	18-	
0.6	0.6	Concrete					0.5	- 2.0	14	20	6	50*
0.6	1.2	Sand fine black			•		2.0	- 3.5	3	2	2	140*
0.6	1.8	Gravel					4.0	- 5.5	1	2	1	15*
1.2	3.0	Sand fine black	······				6.0	- 7.5	4	6	7	7*
3.0	6.0	Sand fine dirty brown cl					9.0	- 10.5	7	11	13	5*
2.0	8.0	Clay brownish gray silt										
2.5+	10.5	Clay gray sandy pebble	S			,						
			· ·	•		•		···				
<u> </u>			· · ·	<u> </u>						<u> </u>		
	·		Sample	Collected								
<u>├</u> ───┤											_	•
								•			_	
		•		<u> </u>						 	_	
├ ──┤											_	
 		·····										
											_	
 	<u>· ·</u>		• •			•					_	
		•		•			l					

٦,

Log of Boring

Page_1___of_2 Project No. 83284

Ground Surface Elevation: 637.8 based on

Fence

Ground-Water Data Ground water was not encountered during drilling.

Silman XXXXXXXXXXXXXXXXXX

• SB-8

Completed 2-11-92

Boring Designation SB-8

Start Date 2-11-92

U.S.G.S. datum

Site Map 1/

Client	Gage Products Compar 625 Wanda Ave, Fernd	iy ale Michigan
Location		ale, midnigen
	M. Vincent	
Driller	R. Christensen	
Contractor	Stearns Drilling	
Drilling Mel		Depth Range 0.0-37.5 feet
		0.0 01.0 1001
<u>8 inch O.I</u>		
Sampling I	Method(s)	Depth Range
	D. Split Spoon	0.0-37.5 feet
0.1	<u></u>	2.5 foot interval
Grouting	Material/Method	Depth Range
Portland		0.0-37.5 feet
Contraction of the local data and the local data an		
and Bent	onte	

General Notes tion System is presented in . . .

Unified So	<u>l Class</u>	ificatio	on Sys	stem is	presen	ted in	- A Storage Tapks
brackets		1					NI // Storage Tanks
"NT" = Not	T			T			
Borehole Depth (feet) Sample Type and Number	Depth of Sample Tip (feet)	Sample Recovered (inches)	Hammer Blows (6-Inch Intervals)	Standard Penetration (N)	Natural Moisture Content (%)	Field Data PID Reading (ppm)	Graphic Connection Graphic Connection Graphi
						4	0.0 CEMENT 0.7 ROAD GRAVEL - FILL
-1 -2 -3 -3 -3 -3 -3 -3 -3 -3	2.5	11	2 2 2 3	5	15.8	1001	Loose Black SILTY SAND, trace clay, gravel and organics, moist, odor [SM]
- 4 - - 5 - 5 - 5	5.0	15	2 N 5	7	NT	575	3.5 Medium Gray CLAY, trace silt and fine gravel, moist, odor
- 6 - - 7 - 5 5-3	7.5	13	334	7	NT	423	6.0 Medium Gray and Light Brown Mottled SANDY CLAY,some silt, trace gravel,moist, slight odor [CL]
- 9 - - 10	10.0	18	4 9 14	23	12.7	87.6	9.0 Very Stiff
11 12 SS 13	5 12.5	18	10 16 27	. 43	NT	64.7	[]] 11.5 Hard
- 14 - - 15 ^{SS-}	6 15.0	17	9 15 21	36	NT	69.7	: 11
- 16 - - 17 - 55 - 18 -	-7 17.5	5 17	10 17 24	41	. NL	0.0	11 16.0 Very Stiff Gray SANDY CLAY, some silt, trace gravel, moist [CL]
- 19 - - 20 - 55	-8 20.0	0 17	4 7	17	NT	0.0	

2

:

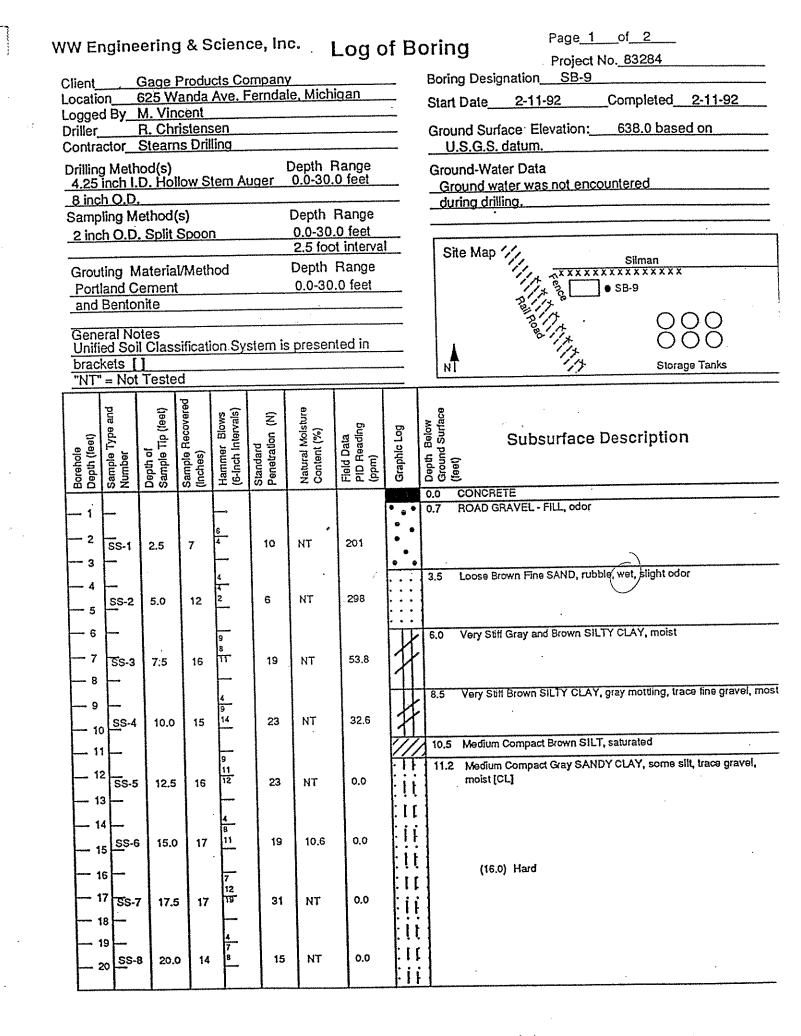
Log of Boring

Page 2_of 2

Project No. 83284

Client Gage Products Company Location 625 Wanda Ave. Ferndale, Michigan Notes_____

Boring Designation____ SB-8


Start Date 2-11-92

_Completed 2-11-92 Ground Surface Elevation: 637.8 based on

U.S.G.S. datum

									0.0.0.0. 0atum
Borehole Depth (feet)	Sample Type and Number	Depth of Sample TIp (feet)	Sample Recovered (inches)	Hammer Blows (6-Inch Intervals)	Standard Penetration (N)	Natural Moisture Content (%)	Field Data PID Reading (ppm)	Graphic Log	Debth Below Ground Surface Description (feet)
- 21 - 22 - 23		22.5	18	10 16 23 4	39	NT	0.0		Very Stiff Gay SANDY CLAY, some silt, trace gravel, moist [CL]
- 24 - 25 - 26		25.0	16	a 10	18	NT	0.0	1.1.	1
27 28	SS-11	27.5	18	9 11 14 .	25	NT	0.0		
- 29 - 30 - 31		30.0	18	4 7 10	17	NT	0.0	1:1: 1:1:	
32 33	55-13 —	32.5	18	7 9 18	27	NT	0.0		
- 34		35.0	18	4 7 10	17	NT	0.0		(35.0) Shelby Tube sample collected, 30 inch recovery
- 36 - 37 - 38	ST-1	37.5				15.2			
					•				· ·
							-		
-									
· •									Figure

.

WW Engineering & Science

Sample Recovered (inches)

•...

12

18

18

18

Depth of Sample Tip (feet)

22.5

25.0

27.5

SS-12 30.0

Sample Type and Number

Borehole Depth (leet)

- 21

- 23

24

- 25 - 26

- 27

- 28

- 29

• 30 . 31

. 32

33 - 34 - 35 36 - 37 - 38

- 22 SS-9

<u>55-10</u>

SS-11

ł

nce, l pany ndale,	nc. Michiga	-	of I	Page_2_of_2 Boring Project No83284 Boring DesignationSB-9 Start Date_2-11-92 Completed_2-11-92 Ground Surface Elevation: 638.0 based on U.S.G.S. datum. Description
Standard Penetration (N)	Natural Moisture Content (%)	Field Data PID Reading (ppm)	Graphic Log	Subsurface Description
43	нт	0.0		Hard Gray SANDY CLAY, some silt, trace gravel, moist [CL]
20	NT	0.0	111	
31	NT	0.0		

END OF BORING AT 30.0 FEET

Client	Gage Pro	oducts Co	mpany			
Location	625 Wan	<u>da Ave. I</u>	-erndale,	M	chi	gan
Notes						

Hammer Blows (6-Inch Intervals)

9 17 26

4

7 13

> 7 13 18

> > 7 10

.

17

:[[

0.0

Ż

NT

.

Figure

W

.

2

WW En	gine	erin	g & 9	Scien	ice, In	iC.	Log	of	Page_1of_2 Boring Project No83284
Client		age F	rodu	cts Co	mpany		······		Boring Designation SB-10
Location	6	25 W	anda .	<u>Ave. F</u>	erndal	e, Michi	gan		Start Date 2-10-92 Completed 2-10-92
Logged I	By <u>n</u> F	<u>4. Vind</u> 3. Chri	stens	en					Ground Surface Elevation: 634.9 based on
Contract									U.S.G.S. datum.
Drilling N 4.25 incl	Netho	od(s)	.	•	D	epth F 0.0-30.	lange Difost		Ground-Water Data
4.25 incl	<u>h I.D.</u>	Hollo	w Ste	m Auc	jer	0.0-30.	<u>o ieel</u>		Ground water was not encountered
8 inch O Samplin		thod(s	;)		[Depth I	Range		during drilling.
2 inch C						0.0-30.			
							<u>t interval</u>		Site Map Channing
Grouting					i	Depth F 0.0-30			
Portland and Ber						0.0-00	.0 1000		Silman
and bei		6					· • •		x x x x SB-10
Genera Unified	I Not	es Classi	ficatio	n Svs	tem is	present	ed in	_	
bracket	Is []								NI Jewell L
"NT" =	Not 1								
, p	2	÷	Sample Recovered (inches)			9			e,
		eej)	сои	3lows srval:	. <u>S</u>	olstu %)	ng	ß	Subsurface Description
(100) TVT	5_	Р Ц Ц	e Re s)	ier E 1 Inte	ratio	al M	Datz Read	Graphic Log	
Borehole Depth (feat) Samria Tvna and	Number	Depth of Sample Tip (feet)	ampl iche:	Hammer Blows (6-Inch Intervals)	Standard Penetration (N)	Natural Molsture Content (%)	Field Data PID Reading (ppm)	Grap	Subsurface Description
ŭ ŭ ŭ	ŏŹ	Δö	· 이 트	ΞΞ	S d.				0.0 CONCRETE
-1-	-			2		•		}	0.5 Medium Greenish Brown Gray Molled St. 11 CLAT, Vace mile sand and fine gravel, moist, anerobic odor
-2-	-			22	5 ·	NT	187	XX	
	SS-1 	2.5	8	[411		11	
				3				TZ	3.5 Very Stiff Greenish Gray and Brown Mottled SILTY CLAY, trace fine gravel, moist, slight anerobic odor
	SS-2	5.0	14	11	18	NT	57.1	1X	
								11	6.0 Hard Light Brown SANDY CLAY, some silt, trace gravel, dry
F 6				9 16				11	
	<u>5</u> 8-3	7.5	17	16 23	39	13.4	39.8	11	
8								11	
9				6 14				11	1
- 10	<u>ss-4</u>	10.0	18	20	34	NT	6.7		
11				8				1	(11.0) Gray with brown motung
12				14	29	NT	1.1		
- 13	SS-5	12.5	14	Ĺ	23				
	1			4					
- 14	000	15.0	15	6 9	15	NT	1.0		
- 15	۴			Γ				.1	
- 16	F			7	1			1	
- 17	SS-7	7 17.	5 15	12 18	30	ТИ	0.0	1	
- 18	+			┢					of manifestruit,
- 19	· -			-			.		• •
20	ST-	1 20.	0	<u> </u>		13.7		• •	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
L	<u> </u>							<u>··</u>	<u>* • • • • • • • • • • • • • • • • • • •</u>

.

Log of Boring

Page 2 of

	Ρ	٢O	leci	E	40	
--	---	----	------	---	----	--

Client Gage Products Company Location 625 Wanda Ave. Ferndale, Michigan Notes___

Boring Designation_ SB-10

Completed 2-10-92 Start Date 2-10-92 634.9 based on

Ground Surface Elevation:____ U.S.G.S. datum.

				T	
Borehole Depth (feet) Sample Type and Number	Sample TIP (feet) Sample Recovered (inches)	Hammer Blows (6-Inch Intervals) Standard Penetration (N)	Natural Moisture Content (%)	PID Reading (ppm)	Bio Subsurface Description Signation Subsurface Description
- 21 - 22 - 23 - 24	25.0 16 30.0 17	auad 4 -	NT NT Con	0.0	B B B Hard Light Brown SANDY CLAY, some silt, trace gravel, dry 11 ICL] 11 III 11 III 11 III 11 III 11 III III III IIII IIII IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
					Figure

R. Christensen

4.25 inch I.D. Hollow Stem Auger

Client

Location

Driller

Logged By M. Vincent

Drilling Method(s)

8 inch O.D.

Contractor Stearns Drilling

Gage Products Company

625 Wanda Ave. Ferndale, Michigan

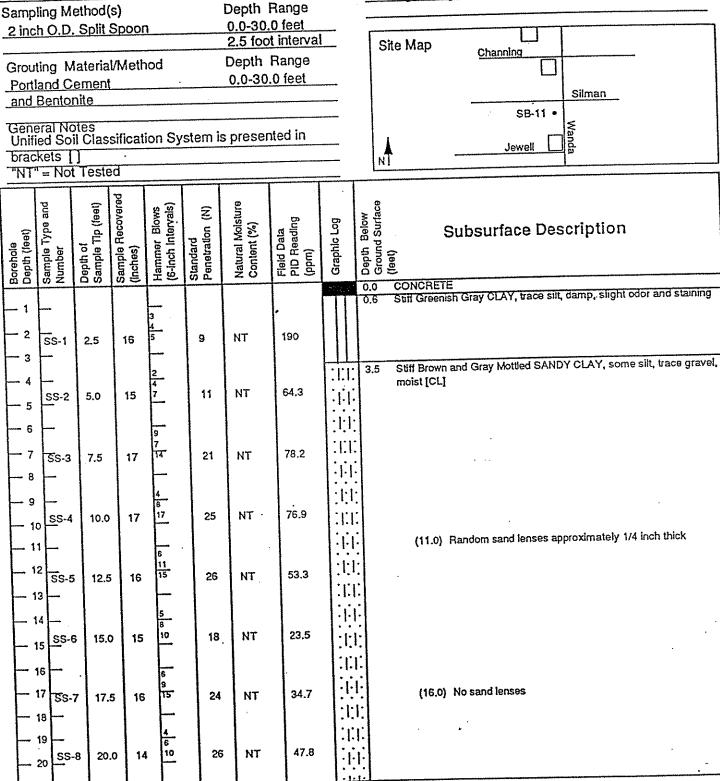
Depth Range

0.0-30.0 feet

Log of Boring

Page<u>1</u>of<u>2</u> Project No.<u>83284</u> n SB-11

Start Date 2-10-92 Completed 2-10-92


Ground Surface Elevation: 634.9 based on U.S.G.S. datum.

Ground-Water Data

Boring Designation_

Ground water was not encountered

<u>during drilling.</u>

Log of Boring

Page_2__of__2__

Proj	ect	No.	83284
------	-----	-----	-------

Boring Designation	SB-11
--------------------	-------

		J		
Start D	ate	2-10-92	Completed_	2-10-92

Client	Gage Products Company
Location	625 Wanda Ave. Ferndale, Michigan
Notes	

Ground Surface Elevation: 634.9 based on U.S.G.S. datum.

Image: Second				T							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Subsurface Description	Depth Below Ground Surface (feet)		Fleid Data PID Reading (ppm)	Natural Molsture Content (%)	Standard Penetration (N)	Hammer Blows (6-Inch Intervals)	Sample Recovered (inches)	Depth of Sample TIp (feet)	Sample Type and Number	Borehole Depth (feet)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	stiff Brown and Gray Moladed SAND FOLL (1, Sound Sur, 1999 Shared and moist [CL]	Stiff Brow moist [Cl					Ļ	⁷ •			•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· .			7.7	NT	21	8	17	22.5	55-9	- 22
- 26 -			: [[3.5	ΝТ	16	5 7 9	18	25.0	<u></u>	- 24
-28 -			11:	0.3	NŤ	20	5 7 13	18		-	- 26
-30 SS-12 30.0 14 9 14 15.0 0.0 END OF BORING AT 30.0 FEET -31 - - - - - - - -32 - - - - - - -33 - - - - - -34 - - - - - -35 - - - - - -36 - - - - - -37 - - - - -			:11				3		61.3	3 -	- 28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	END OF BORING AT 30.0 FEET				15.0	14	5 9	14	2 30.0	100.40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•				ł			1
- 35				1			-		,	ł	l l
							L				
- 37							F				
							┢			1	1
										38	
					`					F	
							-			-	-
							F				
	· · ·					-	-				-
						-	E			. –	
						-	-			. [F
	· .					-	-			-	
	Figure					-			-	- -	

. 1

Log of Boring

Page 1 of 2

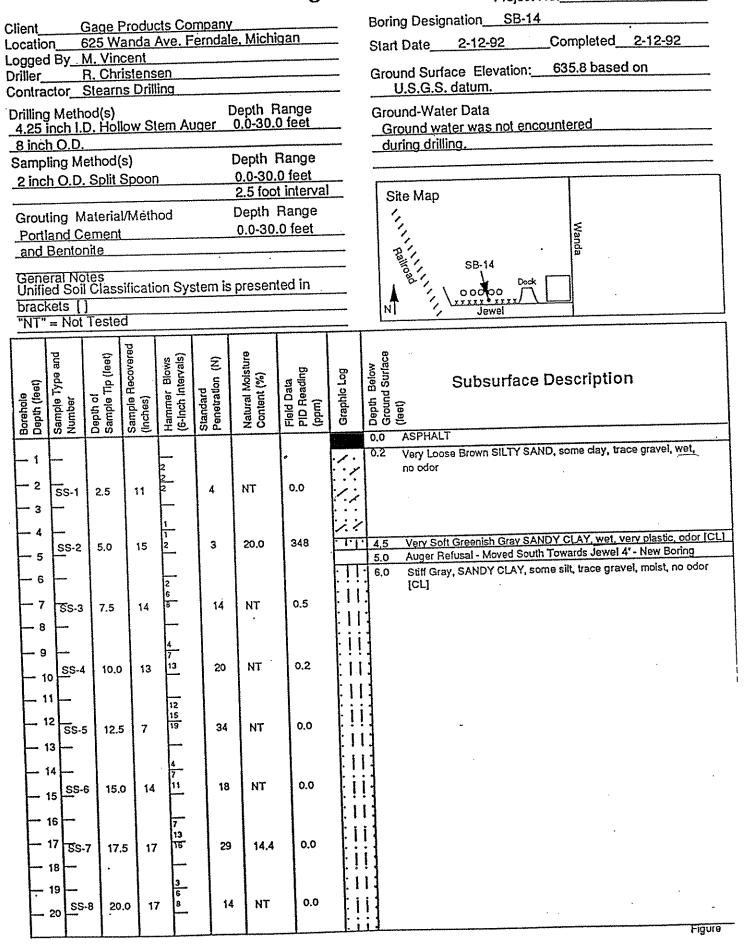
Project No. 83284 Boring Designation_ SB-12 Gage Products Company Client 625 Wanda Ave. Ferndale, Michigan Completed 2-12-92 2-12-92 Location Start Date M. Vincent Logged By_ Ground Surface Elevation: 636.6 based on R. Christensen Driller U.S.G.S. datum. Stearns Drilling Contractor_ Depth Range Ground-Water Data Drilling Method(s) 4.25 inch I.D. Hollow Stem Auger 0.0-30.0 feet Ground water was not encountered during drilling. 8 inch O.D. Depth Range Sampling Method(s) 0.0-30.0 feet 2 inch O.D. Split Spoon 2.5 foot interval Site Map Depth Range Grouting Material/Method Wanda 0.0-30.0 feet Portland Cement and Bentonite SB-12 General Notes Unified Soil Classification System is presented in N brackets [] Silman "NT" = Not Tested Sample Recovered (Inches) Depth Below Ground Surface (feet) Natural Moisture Content (%) Hammer Blows (6-inch Intervals) Depth of Sample Tip (feet) and Ē Fleid Data PID Reading Sample Type & Number Graphic Log Subsurface Description Standard Penetration (Depth (feel) Borehole (widd) CONCRETE 0.0 Loose Black Fine SAND, dry, slight odor 0.7 Loose Brown Fine SAND, slightly moist, no odor 1 1.3 Stiff Greenish Gray and Brown Mottled CLAYEY SILT, dry, no odor 1.7 Stiff Greenish Gray and Brown Mottled CLAY, trace silt and fine 2 NT 17.4 10 17 **SS-1** 2.5 2.5 gravel, moist, no odor З 4 2.3 NT 15 15 SS-2 5.0 9 5 Stiff Brown and Gray Mottled CLAYEY SILT, moist, no odor 6.0 - 6 Stiff Brown and Gray Mottled CLAYEY SILT, some sand, 1.0 6.8 13 20 NT 7 <u>SS-3</u> 16 7.5 moist, no odor [CL] 8 (8.5) Very Stiff, trace fine gravel 9 0.3 21 NT 30 10.0 18 **SS-4** 10 11 12 0.3 24 39 12.5 12.5 18 **SS-5** 13 Very Stiff Gray SANDY CLAY, some silt trace gravel, moist, 13.5 $|\mathbf{l}|$ 14 plastic, no odor [CL] NT 0.5 11 18 <u>SS-6</u> 15.0 18 111 15 11 16 12 :**[:]** 0.0 17 18 30 NT 17.5 18 **S**S-7 11 18 - [-] 19 6 10 16 NT 0.0 20.0 18 **SS-8** 20

Log of Boring

Page_2_of_2_

Project No. 83284

Client	Gage Products Company
Location	625 Wanda Ave, Ferndale, Michigan
Notes	


Boring Designation SB-12 _Completed_ 2-12-92 Start Date 2-12-92 Ground Surface Elevation: U.S.G.S. datum. 636.6 based on

Borehole Depth (feet)	Sample Type and Number	Depth of Sample TTp (feet)	Sample Recovered (inches)	Hammer Blows (6-Inch Intervals)	Standard Penetration (N)	Natural Moisture Content (%)	Field Data PID Reading (ppm)		Subsurface Description
- 21 - 22 - 23		22.5	18	12 18 21 5 8	39	NT	0.0		plastic, no odor [CL]
- 24 - 25 - 26 - 27	<u>s</u> s-10		18 18	12 10 12 17	20 29	13.5 NT	0.0		
- 21	8 — 9 —			4	14	NT	0.0		END OF BORING AT 30.0 FEET
-	32 33 						•	/ .	
	34 — 35 — 36 — 37 —								
1	38								
									- -
	- -				•				
	- -				-			·	Figure

WW Engineering & Science, Inc.

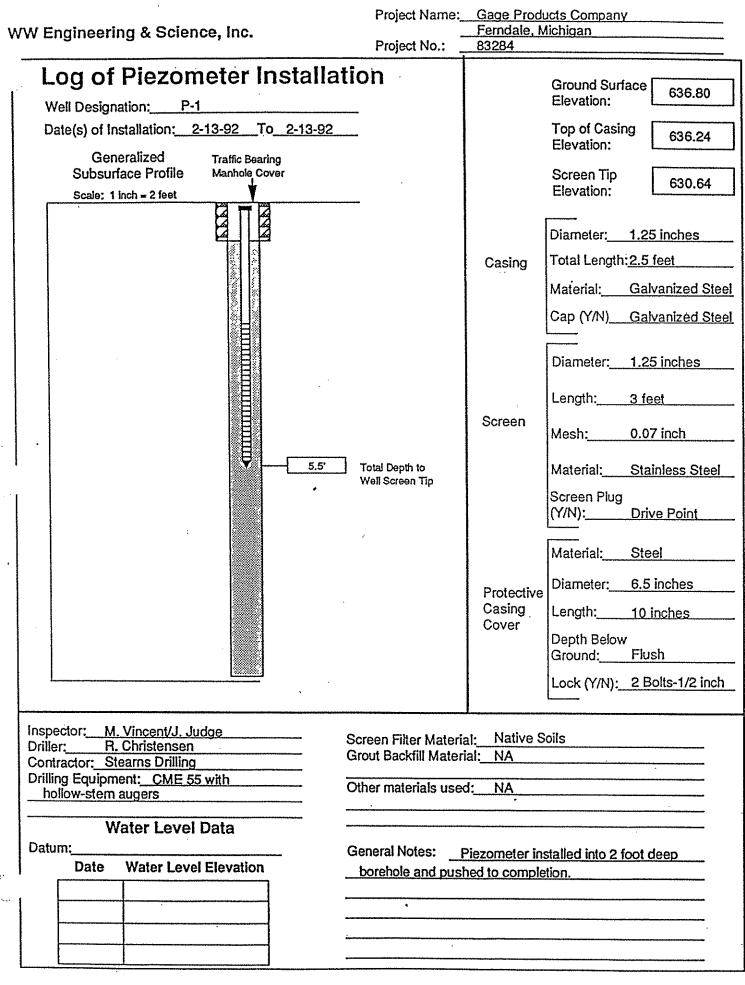
Log of Boring

Page 1 of 2 Project No. 83284

WW Engineering & Science, Inc.

Log of Boring

Page_2__of__2__ Project No.__83284__


Client	Gage Products Company
Location	625 Wanda Ave. Ferndale, Michigan
Notes	

Boring Designation SB-	-14
	Completed2-12-92
Ground Surface Elevation	635.8 based on
U.S.G.S. datum.	·

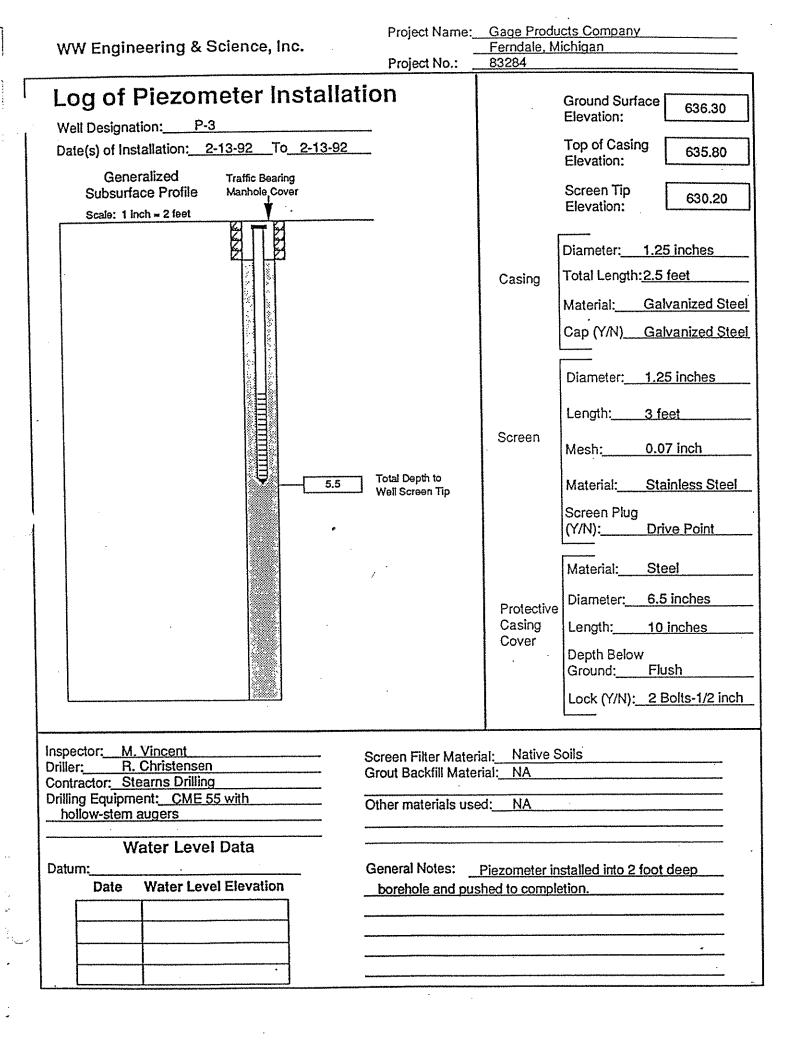
Borehole Depth (feet)	Sample Type and Number	Depth of Sample Tip (feet)	Sample Recovered (inches)	Hammer Blows (6-Inch Intervals)	Standard Penetration (N)	Natural Moisture Content (%)	Field Data PID Reading (ppm)	Graphic Log	Debth Below Subsurface Description (feed)
- 21	55-9 - ss-10	22.5	17 18 18	5 9 13 7 9 6 10 13	22 16 23	NT NT NT	0.0		Stiff Gray, SANDY CLAY, some silt, trace gravel, moist, no odor [CL]
	5 5	2 30.0	18	4610	16	NT	0.0		
	37								
								-	Figure

•

.

. . . .

- .


WW Engineering & Science, Inc.			chigan
	Project No .:	83284	
Log of Piezometer Installation: P-2	on		Ground Surface 636.20
Date(s) of Installation: 2-13-92 To 2-13-92			Top of Casing 635.67
Generalized Traffic Bearing Subsurface Profile Manhole Cover Scale: 1 inch = 2 feet	_		Screen Tip Elevation: 630.07
	Total Depth to Well Screen Tip	Casing Screen	Diameter: 1.25 inches Total Length: 2.5 feet Material: Galvanized Steel Cap (Y/N) Galvanized Steel Diameter: 1.25 inches Length: 3 feet Material: Stainless Steel Screen Plug (Y/N): Drive Point Material: Steel
		Protective Casing Cover	Diameter: <u>6.5 inches</u> Length: <u>10 inches</u> Depth Below Ground: <u>Flush</u> Lock (Y/N): <u>2 Bolts-1/2 inch</u>
Driller: R. Christensen	Screen Filter Mater Grout Backfill Mate		Soils
Contractor: Stearns Drilling Drilling Equipment: CME 55 with hollow-stem augers	Other materials us	ed: <u>NA</u>	
Water Level Data	General Notes:	shed to compl	nstalled into 2 foot deep

:

:

•

•

WW Engineering & Science, Inc.	Project Name: Project No.:	Gage Produc Ferndale, Mic 83284	higan
Log of Piezometer Installation: Well Designation: P-4 Date(s) of Installation: 2-12-92 Generalized Traffic Bearing Scale: 1 Inch = 2 feet	D Total Depth to Well Screen Tip	Casing	Ground Surface 637.40 Elevation: 637.21 Top of Casing 637.21 Elevation: 631.61 Screen Tip 631.61 Elevation: 631.61 Diameter: 1.25 inches Total Length: 2.5 feet Material: Galvanized Stee Cap (Y/N) Galvanized Stee Diameter: 1.25 inches Length: 3 feet Mesh: 0.07 inch Material: Stainless Steel Screen Plug (Y/N): Drive Point Diameter: Material: Steel Diameter: 6.5 inches Length: 10 inches Depth Below Ground: Ground: Flush Lock (Y/N): 2 Bolts-1/2 inc
Inspector: M. Vincent Driller: R. Christensen Contractor: Steams Drilling Drilling Equipment: CME 55 with hollow-stem augers Water Level Data Datum: Date Water Level Elevation	Screen Filter Mat Grout Backfill Ma Other materials u General Notes: borehole and p	terial: NA used: NA <u>Piezometer</u> pushed to comp	Soils

•

way Engineering & Science, Inc.	Project Name: Project No.:	Gage Products Company Ferndale, Michigan 83284
WW Engineering & Science, Inc. Log of Piezometer Installatio Well Designation: P-5 Date(s) of Installation: 2-13-92 To 2-13-92 Generalized Subsurface Profile Scale: 1 inch = 2 feet	Project No.: Total Depth to Well Screen Tip	
Inspector: M. Vincent Driller: R. Christensen Contractor: Stearns Drilling Drilling Equipment: CME 55 with hollow-stem augers Water Level Data Datum: Date Water Level Elevation	Grout Backfill M Other materials	Iaterial: Native Soils Material: NA Is used: NA Is: Piezometer installed into 2 foot deep Id pushed to completion.

[______

÷

٠

•

. ب

:

		V Engin Enviror	umental Se	ervice	ç			377.1	100						
									l/Boring No nt: Gage P				·····		
										83575					
							,	Dat		zd: 10		3 17			
					Well	/Boring	Log Sheet	Tim		zd: <u>10</u>			nishe	d: <u>10</u> , 4:00	/1
State	Cour	ity		City			Fraction				.50 hi			a: <u>02</u>	:2
MI		kland			mdale		SE 1/4 NW 1/4		Section 35	Т	IN		R	117	-
				<u> </u>			<u> </u>		<u> </u>		** 1			11E	3
Contra Addre		CTI & Ass	sociates nd River Ave		Locatio	the state of the s	ide of power plant; we	est side of	parcel C, app	roxima	tely 10	55 fee	west		
	~~~.	<u>40385 Gia</u> Novi, MI 4		<u>.</u>		of colle	ction sump						~~~~~		
	nent:	CME 45				Drillin	g Method(s)	Dept	h						
Crew C	Chief:	D. Arquett	e				Hollow Stem Auger	9.0	1	Gro	ound S	urfac	e		
14 14 31	upervis	sor: <u>M. Ne</u>	derveld				*********		<u> </u>	Ele	vation	(feet	):	63	38
	ting/Se	al							······						
Depth/			rial/Method		Remark	s: Piezon	eter located in north	iern grou	nd water co	lection	n tren	ch.			
0.0-0.5		Concrete Bentonite		[											
1.0-8.5	······	#5 Silica S:	and			<del></del>		·			·				
						•	·			•					
			·			······									
Nater I	Level:	<u>2.9</u> ft.	Below Grad	de											
										DID					
									si	PID				1	T
		1	1						Counts	PID			7	ප	
	Depth to base								-	PID		1	]	Ispace	
ness	Depth to base (feet)	USCS *			Litholo	gic Descri	nfion		Blow		 ] _{12*}			Headspace	
ness (feet) 0.7	to base (feet) 0.7	Other	Concrete			gic Descri			Sample Dept			1	24"	- Headspace	
ness (feet) 0.7	to base (feet)		FILL:SAND, FI				DfiOn 'race Debris (Brick, Glass),		Blow	h 6*	12" 3 2	18" 2 2	24" 1 2	- Headspace	
ness (feet) 0.7 3.3	to base (feet) 0.7 4.0	Other Other	FILL:SAND, Fi Black, Wet, Odd	lor	Fine to Coarse	Gravel, Clay, 7			Sample Dept 3.0- 5.0'	h 6"	3	2	1	1	
ness (feet)	to base (feet) 0.7	Other Other Other	FILL:SAND, Fi Black, Wei, Odd TRENCH FILL:	or PEA GR	Fine to Coarse AVEL, Black,	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	-	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other	FILL:SAND, Fi Black, Wei, Odd TRENCH FILL:	or PEA GR	Fine to Coarse AVEL, Black,	Gravel, Clay, 7 Wet, Odor			Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	-	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or PEA GR	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2		
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or :PEA GR filt, Trace	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	-	
ness <u>feet</u> ) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or :PEA GR filt, Trace	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2		
ness <u>feet</u> ) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or :PEA GR filt, Trace	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness <u>feet</u> ) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or :PEA GR filt, Trace	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness <u>feet</u> ) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or :PEA GR filt, Trace	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	'race Debris (Brick, Glass),		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness <u>feet</u> ) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	or :PEA GR filt, Trace	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	
ness (feet) 0.7 3.3 4.5	to base (feet) 0.7 4.0 8.5	Other Other Other	FILL:SAND, FI Black, Wet, Odd TRENCH FILL CLAY, Some Si	lor PEA GR ilt, Trace @ 9.0 *	Fine to Coarse AVEL, Black, Coarse Sand, E	Gravel, Clay, 7 Wet, Odor	Yrace Debris (Brick, Glass), Mottling, Moist, Slight Odor		Sample Dept 3.0- 5.0' 5.0- 7.0'	h 6" - 1	3	22	1 2	- 33.9	

:

* = The USCS symbol assigned is based on visual and manual observations and not on tests performed in the laboratory.

. .

WW Engineering & Science	
Environmental Services	

Project Name: Gage Products Co.

		Project	No: 83575.00	······································	
Log of	Well Installation	T			
Well Number:				Top of Casing Elevation (feet):	637.90
Generalized				er Level Data	
Subsurface	Flush Length of Casing Above Ground Surface	Dat	e Time	Water Level	Elevation
Profile	Flushi Above Ground Surface				
	Concrete Cap (Y)		· · ·		
	Depth to Top of		· • [		
	0.5 ' Grout or Backfill	Developm	ent: Polyethyler	ne Bailer	
1 11	Material (Grout or Backfill)			······	·······
I NK	Bentonite	Su	rvey Reference:	USGS	
	······································		•		
		577-11	Diameter:	2.0 "	
ИИ		Well	Total Length:	3.5 '	
		Casing	Material:	Schedule 40 PVC	
			Cap Type:	Compression	
	1.0 ' Depth to Top of Filter Pack			, ,	
		117.11	Diameter:	2.0 "	
	Type #5 Silica Sand	Well	Length:	5.0 '	
	8.5 'Depth to Bottom of Well Screen	Screen	Slot/Type:	<u>10 - Slot</u>	<u> </u>
	0.5 of Well Screen	4	Material:	Schedule 40 PVC	
	Borchole		Material:	Cast Iron Dia.	7.0 "
	Natural Cave in Backfill Material	Protective	Height Above		7.0 "
		well casing		Flush	
·	9.0 ' Total Depth	J	Lock Type:	Master P506	
	of Borchole		······································		~*
General Notes:				Marchanna Balancia - Anlining See Schlotpulmu Cravite Schlotpum	
······				-	
		· · · · · · · · · · · · · · · · · · ·			
		•		······································	
······					
`					
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	· · · · · · · · · · · · · · · · · · ·				
	·	······································		•	
			-		

م ....

# Horizon Environmental

Ī

Page: of			
Boring No .: <u>P-6 Replacement</u>			
Completed Well No.:			•
Client: <u>Gage Products</u>			•
Project No.: <u>GAG-0104</u>		-	•
Date: Started: <u>1/26/95</u>	Finished:	1/26/95	•
Time: Started:	Finished:		

#### Well/Boring Log Sheet

State	_	County	•	City	Fraction	Sec	tion	T	in China a	R		7
	<u>vu</u>			City of Ferndale								1
			nvironmental				Grou	nd Surf	face			
Addres	is: <u>4595</u>	5 Broadmo	or SE Suite 2	00 Drilling Met	thod(s)	Depth		ation (fe				
			s, MI 49512			-		Elevati		eet) 6	37 06	
				<u>3 1/4" Hand</u>	Auger	<u>_6.2'</u>	Datu	m (feet)	)		<u></u>	
	hief:							Water				
Horizo	n Supervi	sor: <u>M</u>	Potter					rence:	2	· · · · · · · · · · · · · · · · · · ·		
				Location:			1					
Grouti	ng/Seal											
Depth/1		Materia	l/Method	Description:_								
		112000010		01								
			***************************************	Sketch:								
												:
												ł
Constru	uction:	K_ Abar	idonment:	Additional Fiel	ld Notes: Log Book _	Compute	er File			******		
											T	<u> </u>
•	Depth		-									
Thick ness	to Base	1					E	low Co	unts			
(feet)	(feet)	USCS*		Lithologic Desc	ription	Sample						
3.0	3.0		Cond & const	al maint han dett	-	Depth	<u>್</u>	12"	18"	24"		
			& metal (we	el, moist, brown (fill)	, trace glass, plastic						1	
2.5	5.5	<u>}</u>		ay, wet, green-brown	en attlad		<u> </u>	<u> </u>				
0.7+	6.2+		Clay some c	ilt, moist, green brov	mouled,			<u>                                     </u>				
			Ciay, some s	nie moise gréen prov	ni moutea.			<b>ļ</b>				<u> </u>
		<u> </u>		6.2' Bottom of I	Boring			<b> </b>				
		1		0.2 00000000	owing			<b> </b>				
								<u>                                     </u>				
							<u> </u>	<b>├</b> ───┤				
								┨────┤				
	•							<u>                                      </u>				<b> </b>
												<b> </b>
		1						╂				<u> </u>
								┼───┤				
							-{	┼───┤				
							1	<del>  </del>				
							1	<u> </u>			<u> </u>	
				· · · · · · · · · · · · · · · · · · ·			1	1				
				······································			1	11				
					•		1	1				
	<u> </u>						1	1	j		<u>                                     </u>	<u> </u>
			·····				1	1				┣
	<u> </u>	1					1	11		ι.		
		l					1	┼───┤		•	<u> </u>	╂──
* = The	TICOC -			an administration of second		1					Ŧ	1

## HORIZON ENVIRONMENTAL

Project Name: Gage Products - Hydraulic Mon.

Project Number: GAG-0103

Log of Well Installation	
	Top of Casing Elevation (feet) 637.06
Well Number: P-6 Replacement	
Generalized	Water Level Data
	Date Time Water Level Elevation
Subsurface     Length of Casin       Profile     Flush       Above Ground	IIIg 1/26/05 2:40 DM 1.02
Surface	1/26/95 4:30 PM 1.03 636.03
Depth to Top o	of interview of the second sec
None Grout or Backf	
Material (Grout or Backf	fill) Development:
	Survey Reference:
0.8' Depth to Top or Pellets	× *
0.8' Depth to Top of Pellets	Diameter: 2"
	Well Total Length: 3.0'
	Casing Material: PVC
Depth to Top of	f Cap Type: J-Plug
Image: 1.8 Filter Pack       Type:	· · · ·
6.0' Depth to Bottor	it off Dougan
of Well Screen	
Cave-in Borehole Backf	
Cave-in Borehole Backi Material	Material: Steel Dia. 9"
	Protective Height Above
6.2' Total Depth of Borehole	Well Ground: Flush
	Casing Lock Type: P-506
General Notes:	
	•
· · · · · ·	
/	
······	

	W	W Eng Enviro	ineering onmental So	& Science ervices			Clie	e: 1 VBoring N nt: <u>Gage</u> 1 ect No.:		s Co.			
				Well/B	oring ]	Log Sheet	Date Time	: Star	ted: 10	/12/93		ished: 1 ished: 0	0/12/9
State MI		nty Pakland		City Ferndale		Fraction SE 1/4 NW 1/4		Section 35	Т	1N		R	1E
Cont Addi	ractor:	<u>CTI &amp; As</u> 46585 Gr Novi, MI	and River Ave	Location:	Approxin	nately 105 feet west o	of collecti	on sump	<u> </u>				
Crew WW;	Supervi	CME 45 D. Arquet sor: <u>M. Ne</u>	ite		Drilling   4 1/4 * Ho	Method(s) bllow Stem Auger	Dept 6.0'	h			urface (feet):		637.6
Grou Depti 0.0-0. 0.5-1. 1.0-6.	5' 0'	Mate Concrete Bentonite	erial/Method	Remarks:	Piezomet	ter located in north	ern grour	nd water co	ollection	1 trenc	h.		
		#5 Silica S	. Below Grad			· · · · · · · · · · · · · · · · · · ·				······································			
						•		S	PID				
Thick- ness (feet)	Depth to base (feet)	USCS *		Lithologic	Docowiwa							Headspace	Background
0.8 4.7	0.8 5.5	Other Other	Concrete FILL: SAND, Fi	ne, Some Clay and Fine to Co	////			Sample Dept 1.0- 3.0* 4.0- 6.0*	11	12"	8	8 729.0	0 3.4
0.5	6.0	сĻ	Pea Gravel in Cu	ttings t, Little Sand, Gray with Gree				4.0+ 6.0		1		2 57.6	6 7.3
			EOB@	6.0 °									
						5							
			······			· · · · · · · · · · · · · · · · · · ·	<u> </u>						
										<u>_</u>			·
									┼──┼				
						······	-1		╏──┼╴				
	· · ·		· · · ·		****			······					

٠

WW Engineering & Science Environmental Services	Project Name: Gage Products Co.
	Project No: 83575.00
Log of Well Installation	Top of Casing
Well Number: <u>P-7</u>	Elevation (feet): 637.35
Generalized Subsurface Flush Length of Casing Above Ground Surface Profile	Water Level Data           Date         Time         Water Level         Elevation
Concrete Cap (Y) Depth to Top of 0.5' Grout or Backfill	Development: Polyethylene Bailer
Material (Grout or Backfill) Bentonite	Survey Reference: USGS
	Diameter:       2.0 "         Well       Total Length:       1.0 '         Casing       Material:       Schedule 40 PVC         Cap Type:       Compression
1.0 ' Depth to Top of Filter Pack Type #5 Silica Sand 0 6.0 ' Depth to Bottom of Well Screen	Well       Diameter:       2.0 "         Length:       5.0 '         Screen       Slot/Type:       10 - Slot         Material:       Schedule 40 PVC
	Protective Material: Cast Iron Dia. 7.0 " Height Above well casing Ground: Flush Lock Type: Master P506
of Borebole General Notes:	Lock Type: Master P506
	·

:

	W	W Engi Enviro	neering on mental Se	& Science ervices		Clie	/Boring No. nt: <u>Gage Pr</u> cct No.:	oduct 83575	3 s Co. 1.00				
<b>1</b>					l/Boring Log Sheet	Time				the second s	inishe inishe	d: <u>10</u> d: 02:	/12/93 :45 рт
Stat MI		ity akland		City Ferndale	Fraction SE 1/4 NW 1/4		Section 35	T	1N		R	11E	
Add Equin Crew WW	vment: Chief: Supervis nting/Se h/To 5' 0'	Novi, MI CME 45 D. Arquett sor: <u>M. Ne</u> cal	nd River Ave, 48374 te derveld rial/Method	Location	Drilling Method(s) <u>4 1/4 * Hollow Stem Auger</u> ks:	Dept			und S vation		-	63	37.6
Wate Thick- ness (feet) 0.6 2.9 2.5	1	,	Odor .	Litholo: nc, Some Clay and Fine 1	Dgic Description to Coarse Gravel, Trace Debris, Black, Moist,		Sample Depth 1.0- 3.0' 4.0- 6.0'	PID 6" 8 1	12" 15 1	18" 9 2	24" 7 4	61 22 Headspace	2.5 Background
				0       6.0 *	with Brown Mottling, Slight Green Tint, Moist								

.

Project No: 83575.00         Log of Well Installation         Well Number:       P-8       Top of Casing Blevation (feet):       Top of Casing 637.4         Generalized Subsurface       Flush       Length of Casing Above Ground Surface       Water Level Data         Profile       Concrete Cap (Y)       Depts to Top of 0.5.*       Concrete Backfill       Development:       Polyethylene Bailer         Bertonite       Survey Reference:       USGS       User       Diameter:       2.0."         Well       Diameter:       2.0."       Compression       Stord & OPVC Cap Type:       Compression         Material:       So ' Slov/Type:       So ' Slov/Type:       So ' Slov/Type:       So ' Slov/Type:       So ' Slov/Type:         Material:       Cast Iron       Dia.       7.0 *         Material:       Cast Iron       Dia.       7.0 *         Model       Backfill Material of Bachelie       Flush Lock Type:       Flush Material:       Cast Iron       Dia.       7.0 *	WW Engineering & Science Environmental Services	Project Name: Gage Products Co.
Log of Well Installation       Top of Casing Elevation (fee): 637.4         Well Number: · P-8       Itength of Casing Elevation (fee): 637.4         Generalized Subsurface       Flush         Concrete Cap (Y)       Depth to Top of O.5 · Groot or Backfill         Material (Groot or Backfill Bentonite       Development: Polyethylene Bailer         Subsurface       Flush         I.0 · Depth to Top of Flike Pack Type #5 Silica Sand       Diameter: 2.0 "         I.0 · Depth to Top of Flike Pack Type #5 Silica Sand       Well         Digna to Bottom of Well Screen       Digna to Bottom of Well Screen         MAterial:       Schedule 40 PVC         Cap Type:       Compression         Well       Diameter: 2.0 "         Upph to Top of Flike Pack Type #5 Silica Sand       Well         Diameter:       2.0 "         I.0 · Depth to Top of Flike Pack Type #5 Silica Sand       Well         Diameter:       2.0 "         I.0 · Depth to Bottom of Well Screen       Schedule 40 PVC         Material:       Schedule 40 PVC         Material:       Cast Iron       Dia         Material:       Cast Iron       Dia         Material:       Cast Iron       Dia         Material:       Cast Iron       <		Project No: 83575.00
Well Number: · P-8       Top of Casing Elevation (fee): 637.4         Generalized Subsurface Profile       Length of Casing Coorrete Cap (Y)         Depth to Top of O.5 * Groot or Backfill Material (Groot or Backfill) Bentoaite       Date         Material (Groot or Backfill) Bentoaite       Depth to Top of Filter Pack Type #5 Silica Sand         1.0 *       Depth to Top of Filter Pack 	Log of Well Installation	
Subsurface       Flush       Length of Casing Above Ground Surface         Profile       Concrete Cap (Y)         Depth to Top of 0.5'       Grout or Backfill         Material (Grout or Backfill)       Development:         Profile       Diameter:         2.0 "         Total Length:       1.0 '         Type #5 Silica Sand         6.0 '       Orght to Bottom of Well Screen         N/A       Borchole         N/A       Borchole         N/A       Borchole         O'       Total Depth of Borehole		Top of Casing Elevation (feet): 637.40
Substituace       Flush       Address Ground Surface         Profile       Concrete Cap (Y)         Depth to Top of       0.5 ° Grout or Backfull         Material (Grout or Backfull)       Bentonite         Depth to Top of Filer Pack       Diameter:         1.0 °       Depth to Top of Filer Pack         Type #5 Silica Sand       Well         Control to Borthole       Streen         Material:       Conpression         0.0 °       Total Depth         My/A       Borchole         My/A       Borchole         Model casing       Ground:         Flush       Lock Type:         Material:       Cast Iron         Diameter:       2.0 "         Conpression       Conpression		
Concrete Cap (Y)       Depth to Top of Growt or Backfill         Material (Growt or Backfill)       Development: Polyethylene Bailer         Material (Growt or Backfill)       Bentonite         Bentonite       Survey Reference: USGS         Used on the second secon	Subsurface Flush Length of Casing Above Ground Surface	Bate I mile Water Level Elevation
Depth to Top of       0.5 '       Groat or Backfill         Material (Groat or Backfill)       Development: Polyethylene Bailer         Bentonite       Survey Reference: USGS         Use of the total constraints       Diameter: 2.0 "         Total Length:       1.0 '         Type #5 Silica Sand       Well         Casing       Diameter: 2.0 "         Total Length:       5.0 '         Type #5 Silica Sand       Well         Screen       Slot/Type: 10 - Slot         Material:       Schedule 40 PVC         Compression       Slot/Type: 10 - Slot         Material:       Schedule 40 PVC         Schedule 40 PVC       Compression         Material:       Schedule 40 PVC         Cap Type:       10 - Slot         Material:       Schedule 40 PVC         Schedule 40 PVC       Material:         Schedule 40 PVC       Slot/Type:         Material:       Schedule 40 PVC		
0.5'       Groat or Backfill         Material (Groat or Backfill)       Bentonite         Bentonite       Survey Reference:         Used       Diameter:         2.0 "         Total Length:       1.0 '         Material:       Schedule 40 PVC         Cap Type:       Compression         1.0'       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         Goot well Screen       Material:         6.0'       Total Depth         Material:       Cast Iron         Material:       Cast Iron <tr< td=""><td></td><td></td></tr<>		
Material (Grout or Backfill)       Bentonite       Survey Reference: USGS         Bentonite       Vell       Diameter: 2.0 "         Total Length:       1.0 '         Material:       Schedule 40 PVC         Cap Type:       Compression         1.0 '       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         Screen       Diameter: 2.0 "         1.0 '       Depth to Bottom         6.0 '       Of Well Screea         N/A       Borchole         Backfill Material       Cast Iron         Material:       Material:         Material:       Material:         Material:       Material:         Material:       Material:         Materi P506 <td></td> <td>Development: Polyethylene Boiler</td>		Development: Polyethylene Boiler
Bentonite       Survey Reference: USGS         USGS       Diameter: 2.0 "         Total Length:       1.0 '         Type #5 Silica Sand       Well         Cap Type:       Compression         1.0 '       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         Compression       Stort/Type:         0.0 '       Depth to Bottom of Well Screen         MA       Borehole         N/A       Borehole         6.0 '       Total Depth of Bottom of Well Screen         6.0 '       Total Depth of Total Depth of Bottom of Well Screen         6.0 '       Total Depth of Bottom of Well Screen         Material:       Cast Iron         Dianeter:		
I.0'       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         G.0'       Depth to Bottom of Well Screen         N/A       Borehole         Borehole       Protective         Material:       Cast Iron         Diameter:       Cast Iron         Diameterial:       Schedule 40 PVC         Cap Type:       Compression         Well       Length:         5.0'       Storeen         Material:       Schedule 40 PVC         Material:       Schedul		Survey Reference: USGS
I.0'       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         G.0'       Depth to Bottom of Well Screen         N/A       Borehole         Borehole       Material:         Casing       Material:         Schedule 40 PVC         Cap Type:       Compression         Users       Diameter:         2.0 "         Length:       5.0 '         Storeen       Slot/Type:         Material:       Schedule 40 PVC         Material:		
1.0'       Depth to Top of Filter Pack         Type #5 Silica Sand       Casing         Material:       Schedule 40 PVC         Cap Type:       Compression         Diameter:       2.0 "         Length:       5.0'         Schedule 40 PVC       Schedule 40 PVC         Diameter:       2.0 "         Length:       5.0'         Schedule 40 PVC       Schedule 40 PVC         Material:	N N N	
1.0'       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         6.0'       Depth to Bottom of Well Screen         N/A       Borchole         Borchole       Material:         Cap Type:       Compression         Diameter:       2.0 "         Length:       5.0'         Stot/Type:       10 - Slot         Material:       Schedule 40 PVC         Material:       Cast Iron       Dia.         6.0'       Total Depth of Borchole       Protective       Material:         Cast Iron       Dia.       7.0 "         Height Above       Ground:       Flush         Lock Type:       Master P506		1.V
1.0'       Depth to Top of Filter Pack         Type #5 Silica Sand       Well         G.0'       Depth to Bottom of Well Screen         N/A       Borehole         Backfill Material       Protective         G.0'       Total Depth of Bottone         6.0'       Total Depth of Bottone         6.0'       Total Depth of Bottone         6.0'       Total Depth of Bottone         Borehole       Material         Cast Iron       Dia.         Total Depth of Borehole       Material         Cast Iron       Dia.         Material:       Screen         Material:       Cast Iron         Dia.       7.0 "		
Type #5 Silica Sand       Well       Length: 5.0 '         6.0 '       Depth to Bottom of Well Screen       Screen       Slot/Type: 10 - Slot         Material:       Schedule 40 PVC         N/A       Borehole         6.0 '       Total Depth of Borehole         6.0 '       Total Depth of Borehole         6.0 '       Total Depth of Borehole		
Type #5 Silica Sand       Well       Length: 5.0 '         G.0 '       Depth to Bottom of Well Screen       Screen       Slot/Type: 10 - Slot         Material:       Schedule 40 PVC         N/A       Borehole         Borehole       Backfill Material         6.0 '       Total Depth of Bochole         6.0 '       Total Depth of Bochole		
6.0 '       Depth to Bottom of Well Screen         N/A       Borehole Backfill Material         6.0 '       Total Depth of Borehole         6.0 '       Total Depth of Borehole             6.0 '       Total Depth of Borehole             Screen       Screen             Screen       Stot/Type:         10 - Slot         Material:       Schedule 40 PVC             Protective       Material:         Cast Iron       Dia.         0f Borehole       Well casing		
6.0 '       Depth to Bottom of Well Screen         Material:       Schedule 40 PVC         Material:       Cast Iron         Dia.       7.0 "         Height Above       Well casing         Ground:       Flush         Lock Type:       Master P506	Type #5 Silica Sand	
Borehole       Borehole         N/A       Borehole         Backfill Material       Protective         G.0 '       Total Depth         of Borehole       Ground:         Flush         Lock Type:       Master P506	60' Depth to Bottom	20 0100
N/A     Backfill Material     Protective     Height Above       6.0 '     Total Depth of Borehole     Total Depth     Ground:     Flush		Material: Schedule 40 PVC
Image: N/A     Backfill Material     Protective     Height Above       6.0 '     Total Depth     well casing     Ground:     Flush       of Borehole     Lock Type:     Master P506	Borehole	Material: Cast Iron Dia 7.0 "
6.0 ' Total Depth of Borehole Lock Type: Master P506	Backhil Material	Protective Height Above
of Borehole LOCK Type:Master P506		
		Lock Type: Master P506
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		·

		Envir	ineering & onmental Se	rvices		Wa Cli	ell/Boring No ent: <u>Gage I</u> bject No.:	roduci 83574	9 ts Co. 5.00				
Sta	6 1 C				Boring Log Sheet	Tin	ne: Start	ed: 04	:00 pi	3 Fi m Fi	inishe inishe	ed: <u>10/</u> ed: <u>04:</u>	12/9
M		nty akland		City Ferndale	Fraction SE 1/4 NW 1/4		Section 35	T	1N		R		
Add	ress:	<u>CTI & A</u> 46585 G Novi, MI	and River Ave.	Location	: Approximately 105 feet west	of collec	<u> </u>					11E	
Crew WW	Supervi	<u>CME 45</u> <u>D. Arque</u> sor: <u>M. N</u>	tte ederveld	[Drilling Method(s) 4 1/4 * Hollow Stem Auger	Dep 6.0		Gro Elev	und S ⁄ation	urface (feet)	e):	<u>63</u>	7.7
Gro Dept 0.0-0 0.5-1 1.0-6	.0'		erial/Method	Remarks									
Wate	r Level:	<u>2.1</u> ft	. Below <u>Grade</u>	,	·		Counts	PID			······································		
Thick- ness (fect)	to base (feet)	USCS *		Lithologi	c Description		B					Headspace	Background
0.8 4.7 0.5	0.8 5.5 6.0	Other Other CL	Concrete FILL:CLAY and S. CLAY, Some Sand		o Coarse Gravel, Black, Wet, Odor		Sample Depth 1.0- 3.0* 4.0- 6.0*	3 1	12" 5 2	18" 9 3	24" 9 4	453	4.1 4.0
	••		EOB @		Inn, Moist		·						
												~	
]]							
			······································								T		
			-	· · · · · · · · · · · · · · · · · · ·									

÷

۰.

.

WW Engineering & Science Environmental Services

San Stern wo

3

. 5

.**

Project Name: Gage Products Co.

	Pro	ject No	83575.00			
Log of Well Installation	T			······		
Well Number: <u>P-9</u>				Top o Elevatio	f Casing n (feet):	637.51
Generalized			Wa	ter Level Data		
		Date	Time	Water Le	vel	Elevation
Subsurface Flush Length of Casing Above Ground Surface						AICTALION
		<u> </u>				1
Concrete Cap (Y)		•	<u> </u>			
Depth to Top of 0.5 ' Grout or Backfill	Develop	pment:	Polyethyle	ne Bailer		L
Material (Grout or Backfill)			······································			
Beatonite	· .	Surivau	Reference:	TROO		······································
		Jurvey	Norcicience;	0363		
			Diameter:	2.0 "		
	Well	To	tal Length:	1.0 '		
	Casing		Material:	Schedule 40 I	NC	
	.0		Сар Туре:		- 10	
			cap rype.	Compression		
						
1.0 ' Depth to Top of Filter Pack			Diameter:	0.0.8		
Type #5 Silica Sand	Well		-	2.0 "	·····	
	Screen		Length:	5.0'		
6.0 ' Depth to Bottom of Well Screen	oucui		Slot/Type:	<u>10 - Slot</u>		
		L	Material:	Schedule 40 P	<u>VC</u>	
Borehole		Γ	Material:	Cast Iron	D:-	7.0.1
N/A Backfill Material	Protective	ł	ght Above		Dia	7.0 "
	well casin		Ground:	Flush		
6.0 ' Total Depth		-1	ock Type:		······	
of Borehole			**			
				-		
General Notes:						
			•			
*				······		
				·	· ·	······
·						
					•	
·				· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·						
• • • • • • • • • • • • • • • • • • •						
				,		

		Enviro	ineering onmental Se		oring Log Sheet	Clie	ent: Gag ject No.:		ots Co. 5.00 0/13/9	3 Fir	ished: 1	0/13/
Stat MI		nty akland		City Ferndale	Fraction SE 1/4 NW 1/4		Sectior 35	1 I			R	
Add Equij Crew WW	ress: pment: Chief: Supervi uting/S h/To 	Novi, MI CME 45 D. Arquet sor: <u>M. Ne</u> eal	and River Ave 48374 te ederveld erial/Method	·	Approximately 105 feet wes Drilling Method(s) 4 1/4 * Hollow Stem Auger	t of collec Dep 6.0	th			Surface (feet):	I	6 <u>37.7</u>
Wate Thick- ness (feet) 0.7 4.8 0.5		2.5 ft. USCS * Other Other CL	Below Grad	Lithologic 1	Coarse Gravel, Black, Wet, Odor		st O O E Sample D 1.0- 3.0' 4.0- 6.0'	3	· 12" 4 5	18" 3 6	Headspace	1 6.
			EOB @		ist							
			imad is base									

WW Engineering & Science Environmental Services	Project N	Iame: Gage Prod	ucts Co.	
	Projec	t No: 83575.00		
Log of Well Installation	I			
Well Number: P-10			Top of Casi Elevation (fee	ng t): <u>637.36</u>
Generalized Subsurface Flush Length of Casing Above Ground Surface Profile Concrete Cap (Y)	,	Wate Time	ter Level Data Water Level	Elevation
Depth to Top of 0.5 ' Groat or Backfill	Developm	ent: <u>Polyethyle</u>	ne Bailer	
Material (Grout or Backfill) Bentonite	່ຽນ	rvey Reference:	USGS	
	Well Casing	Diameter: Total Length: Material: Cap Type:	2.0 " 1.0 ' Schedule 40 PVC Compression	
1.0' Depth to Top of Filter Pack Type #5 Silica Sand 6.0' Depth to Bottom of Well Screen	Well Screen	Diameter: Length: Slot/Type: Material:	2.0 " 5.0 ' 10 - Slot Schedule 40 PVC	
6.0 ' Total Depth	Protective well casing	Material: Height Above Ground: Lock Type:	Cast Iron Dia Flush Master P506	a. <u>7.0 "</u>
of Borebole General Notes:				· · · · · · · · · · · · · · · · · · ·
	······································			
· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·			

<u>}</u>`

2

۰

Date:: Started: 10/13/93 Finished: 1 State County Time: Started: 11:30 am Finished: 1 Mill Oakland City Ferndale Fraction Section T N R 11 Contractor: CIT & Ansointes Location: Approximately 20 feet northeast of collection sump Address: Address: Ground Surface Equipment: CMR 45 Contractor: Contractor Contractor: Contractor	State County City Fraction Section T N R 11 Contractor: CIT&& Associates Address: 4535 Grand River Ave. Location: Approximately 20 feet northeast of collection sump Address: 4535 Grand River Ave. Location: Approximately 20 feet northeast of collection sump MW Supervisor: M. Medaryali Ground Surface Elevation (feed): I Grouting/Seal Depth/To Material/Method Address: 6.0' Ground Surface 0.0-0.5' Concrete Stice Sand Sanole Deed 6.0' Ground Surface Water Level:			Enviro	onmental So	& Science ervices			W Cl Pro	ge: 1 ell/Boring ient: <u>Ga</u> p oject No.:	No <u>1</u> ge Produ 835	icts Co 75.00	•		
State County City Fraction Section T R Address: 4585 Grand River Ave. Section: Approximately 20 feet northeast of collection sump Contractor: CME 454 Correw Chief; Depth 41/2 Hold Surface Equipment: CME 45 Connot Surface Drilling Method(s) Depth Ground Surface Use of the state of collection sump 6.0° Ground Surface Elevation (feed): 6 0.0.0.5^* Concrete 6.0° Ground Surface Elevation (feed): 6 0.5.10.° Pentonite Elevation (feed): 6 6 10 5 11 10 13 13 9 Water Level:	State MI Country Oakland City Perndale Fraction SE 1/4 NW 1/4 Section 35 T IN R II Contractor: CTL& Associates Address: Location: Approximately 20 feet northeast of collection sump Address:					Well	/Boring	Log Sheet		ite: S	tarted:	10/13/	9 <u>3</u> Fi	nished:	10
MI Oakland Femdale SE 1/4 NW 1/4	MI Oakland Ferndale SE 1/4 NW 1/4 Section I R II Contractor: CTE & Associates Address: 46585 Gmand River Ave. 35 I N R II Address:	f	Cou	nty						LC: 0			<u> </u>		12
Contractor: CTI & Associates Address: 4538 Grand River Ave. Novi, MI 48374 Diffling Method(5) Depth Equipment: CME 45 Crow Chief: D. Aqueete WW Supervisor: M. Nederveid Grouting/Seal Elevation (feet): 60' Depth/To Material/Method 0.0-0.5' Concrete Concrete 0.5-1.0' Bentonite Elevation (feet): 6 1.0-6.0' #5 Silica Sand Silica Sand Silica Sand	Contractor: CTI & Associates Location: Approximately 20 feet northeast of collection sump Address: <u>45385 Grand River Ave.</u> Novi, MI 48374 Equipment: CMB 45 Equipment: CMB 45 Crew Chieft: D. Arquette Drilling Method(s) Depth Grouting/Seal Depth/To Material/Method Remarks: Grouting 1/4 * Hollow Stem Auger 6.0* Ground Surface U.5-1.0' Bentonite Docation: Audress Standard Grouting 1/4 * Hollow Stem Auger 6.0* Ground Surface Water Level:	М	0	akland		Ferndale				1			t	1	117
Equipment: CME 45 Orgential Ground Surface Crew Chief: D. Arguette 6.0* Ground Surface Eduing/Seal Depth/To Material/Method Material/Method 00-0.5* Concrete Goroutine Goroutine 0.5-1.0* Bentonite Hollow Grade Femarks: Water Level:	Equipment: CMB 45 Crew Chief: D.Arguette WW Supervisor: M. Nederveld Grouting/Seal Depth/To Depth/To Material/Method 00-0.5' Concrete 0.5-1.0' Bentonite 10-6.0' #5 Silica Sand Water Level: Thick Depth 0.7 Ofher Cheeded USCS * Lithologic Description 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Median Gravel, Metal Debrte, Black, 1.0 0.1 CLAY, Some Sith, Trace Fine Gravel, Gray with Green That, Moist 0.1 CLAY, Some Sith, Trace Fine Gravel, Gray with Green That, Moist 0.1 CLAY, Some Sith, Trace Fine Gravel, Gray with Green That, Moist	Conti Addr	ractor: ess:	<u>CTI & As</u> 46585 Gr	ssociates and River Ave	Locatio	n: Approxi	mately 20 feet northe	ast of co	llection su	mp				
Crew Chief: D. Arquette Depth Jepth Ground Surface WW Supervisor: M. Nederveld 41/4 * Hollow Stem Auger 6.0' Ground Surface Bethonite 0.0-0.5' Concrete 6.0' Ground Surface 0.5-1.0' Bentonite 10-6.0' #5 Silica Sand Ground Surface 1.0-6.0' #5 Silica Sand Silica Sand Ground Surface Ground Surface Water Level: ft. Below Grade Lithologic Description Sample Denth 6' 12" 18" 24" 24" Thick- Depth Interview of the thologic Description Sample Denth 6' 12" 18" 24" 24" 14 0.7 0.7 Other Concrete I.0 3.0' 5 11 10 4.0* 6.0' 13 13 9.9 3.0 Other Else Site, Trace Fine Gravel, Gray with Green Tint, Molts Interview of the site Site Site Site Site Site Site Site S	Crew Chief: D. Arquette WW Supervisor: M. Nederveld Grouting/Seal Depth/To Material/Method 0.0-0.5' Concrete 0.5-1.0' Bentonite 1.0-6.0' #5 Silica Sand Water Level: ft. Below Grade Thick Depth ness to base (feed) USCS * Lithologic Description 0.7 0.7 Other Concrete 0.7 0.7 0.7 Other Concrete 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Emin	ment•		48374										
WW Supervisor: M. Nederveld Ground Surface Grounting/Seal Ellevation (feet): Depth/To Material/Method 0.0-0.5' Concrete 0.5-1.0' Bentonite 10-6.0' #5 Silica Sand water Level:ft. Below Grade	WW Supervisor: M. Nederveld Image: State of the st	Crew	Chief:	D. Arquet	te		Drilling	Method(s)							
Grouting/Seal Depth/To 0.0-0.5' Concrete Material/Method 0.0-0.5' Concrete Remarks: I.0-6.0' #5 Silica Sand Water Level: ft. Below Grade Thick- feet) ft. Below Grade Thick- feet) ISSS * Issample Depth feet) ISSS * Issample Depth feet) O.7 Other Concrete Issample Depth feet) J.3.0 Other FELLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black. J.0 5 J.0 Issample Depth feet) Issample Depth 6''' Issample Depth 6'''' Issample Depth 6'''' Issample Depth 6''''' Issample Depth 6''''''''''''''''''''''''''''''''''''	Grouting/Seal Depth/To Material/Method 0.0-0.5' Concrete 0.5-1.0' Bentonite 1.0-6.0' #5 Silics Sand water Level:ft. Below Grade	WW S	Supervi	sor: <u>M. N</u> e	derveld		<u>41/4 II</u>	ollow Stem Auger	6.	<u>)'</u>					
Depth/To Material/Method 0.0-0.5' Concrete 0.5-1.0' Bentonite 1.0-5.0' #5 Silica Sand	Depth/To Material/Method 0.0-0.5' Concrete 0.5-1.0' Bentonite 10-6.0' #5 Silica Sand Water Level:ft. Below Grade Thick: Depth ness to base (feed) USCS * Lithologic Description Sample Depth 60 Concrete 2.3 3.0 Other FELLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, Moist, Oder 1.0 3.0 6.0 CL CLAY, Some Sill, Trace Fine Gravel, Gray with Green Tint, Moist E EDB @ 6.0' E EDB @ 6.0' E EDB @ 6.0'	Grou	ting/Se	eal						······		104440	u (1661)	; L	6
0.0-0.5' Concrete 0.5-1.0' Bentonite 1.0-6.0' #5 Silica Sand Water Level: ft. Below Grade Thick Depth Intess to base (feet) USCS * Lithologic Description 3.0 Other Moist, Odor 3.0 Cl. CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, Moist, Odor 3.0 Cl. CLAY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. CLAY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. CLAY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. Cl. Cl. AY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. Cl. Cl. AY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. Cl. Cl. Cl. AY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. Cl. Cl. Cl. AY and SAND, Fine, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. Cl. Cl. Cl. Cl. AY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist Example Degh Cl. Cl. Cl. Cl. Cl. Cl. Cl. AY and SAND, Fine, Trace Fine Gravel, Gray with Green Tint, Moist <t< td=""><td>0.0-0.5' Concrete 0.5-1.0' Bentonite 1.0-6.0' #5 Silica Sand Water Level: ft. Below Grade </td><td>Deptl</td><td>ı/To</td><td></td><td>erial/Method</td><td>Remark</td><td>St</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.0-0.5' Concrete 0.5-1.0' Bentonite 1.0-6.0' #5 Silica Sand Water Level: ft. Below Grade	Deptl	ı/To		erial/Method	Remark	St								
1.0-6.0' #5 Silica Sand	1.0-6.0' #5 Silica Sand Water Level: ft. Below Grade Thick- Depth ness to base (feet) USCS * Lithologic Description Sample Depth 0.7 0.7 0.7 Ofter Concrete 1.0-3.0' 2.3 3.0 Other FILI-CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist Example Depth 6.0' 7 10 13 13 93 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <														
Water Level:ft. Below Grade Thick: Depth ness to base (cet) USCS * Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 0.7 Other 2.3 3.0 Other FILL-CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black. 1.0 3.0 5.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist EOB @ 6.0 ' EOB @ 6.0 ' I.0 I.0 I.0	Water Level:ft. Below Grade Thick: Depth (feed) USCS * Lithologic Description 07 0.7 Other Concrete 2.3 3.0 Other FILL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0 3.0 5 11 10 4 137 3.0 Other FILL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0 4.0 6.0' 7 10 13 13 9.5 3.0 GL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1				'and										
Water Level:ft. Below Grade	Water Level:ft. Below Grade PID Thick Depth to base PID PID (feet) USCS * Lithologic Description PID PID 0.7 0.7 Other Concrete PID PID 2.3 3.0 Other FELL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black. $I.0 - 3.0^{\circ}$ 5 $I1$ $I0$ 4 $I37$ 3.0 Other FELL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black. $I.0 - 3.0^{\circ}$ 5 $I1$ $I0$ 4 $I37$ 3.0 6.0 CL CLAY, Some Sili, Trace Fine Gravel, Gray with Green Tint, Moist I			#2 200 C	and										
Thick- ness Depth to base Lithologic Description PID 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 19" 2.3 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0-3.0" 5 11 10 4 1378 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 4.0-6.0" 7 10 13 13 9.9 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1.0 3.0 6.0 1.	Thick- Depth is to base Lithologic Description 30° 5° 12° 18° 24° 30° 5° 11° 10° 4° 6° 12° 18° 24° 10° 30° 5° 11° 10° 4° 10° 11°									_ ``					
Thick- ness to base (feet) USCS * Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 2.3 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Blact, 1.0-3.0" 5 11 10 4 1378 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Blact, 1.0-3.0" 5 11 10 4 1378 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Grav with Green Tint, Moist 1.0 4 1.0 2.0 1.0 1.0 1.0 4 1.0 <t< td=""><td>Thick- Depth ness to base Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 2.3 3.0 Other FILL-CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0-3.0' 5 11 10 4 137 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1 1 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1</td><td>Water</td><td>Level:</td><td> ft.</td><td>Below Grad</td><td>le</td><td></td><td></td><td></td><td>······</td><td></td><td></td><td></td><td></td><td></td></t<>	Thick- Depth ness to base Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 2.3 3.0 Other FILL-CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0-3.0' 5 11 10 4 137 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1 1 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1	Water	Level:	ft.	Below Grad	le				······					
Thick- ness to base (feet) USCS * Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 2.3 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Blact, 1.0-3.0" 5 11 10 4 1378 3.0 Other FILLCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Blact, 1.0-3.0" 5 11 10 4 1378 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Grav with Green Tint, Moist 1.0 4 1.0 2.0 1.0 1.0 1.0 4 1.0 <t< th=""><th>Thick- Depth ness to base Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 2.3 3.0 Other FILL-CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0-3.0' 5 11 10 4 137 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1 1 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th></t<>	Thick- Depth ness to base Lithologic Description Sample Depth 6" 12" 18" 24" 0.7 0.7 Other Concrete Sample Depth 6" 12" 18" 24" 2.3 3.0 Other FILL-CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 1.0-3.0' 5 11 10 4 137 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1 1 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist 1									-					
1.0-3.0° 5 11 10 4 1378 2.3 3.0 Other FILL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 4.0-6.0° 7 10 13 9.9 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist - </th <th>One of the concrete One of the concrete 1.0-3.0° 5 11 10 4 137 2.3 3.0 Other FILL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 4.0-6.0° 7 10 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist -</th> <th>ness (feet)</th> <th>to base (feet)</th> <th>USCS *</th> <th></th> <th>Litholog</th> <th>gic Descript</th> <th>ion</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Tandana</th> <th>Jeauspar</th>	One of the concrete One of the concrete 1.0-3.0° 5 11 10 4 137 2.3 3.0 Other FILL:CLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 4.0-6.0° 7 10 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist -	ness (feet)	to base (feet)	USCS *		Litholog	gic Descript	ion						Tandana	Jeauspar
J.0 Other HILLCCLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black. 4.0- 6.0' 7 10 13 13 9.9 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist -	2.0 Other FILLECLAY and SAND, Fine, Trace Fine to Medium Gravel, Metal Debris, Black, 4.0-6.0' 7 10 13 13 9.5 3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist -				· · · · · · · · · · · · · · · · · · ·							í	1		_
3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist	3.0 6.0 CL CLAY, Some Silt, Trace Fine Gravel, Gray with Green Tint, Moist			Ottler	HILL-CLAY and	SAND, Fine, Trace Fin	e to Medium Grav	vel, Metal Debris, Black,		4.0- 6.0	' 7	10	- <u> </u>		
EOB@ 6.0*	EOB@ 6.0 *	3.0	6.0	CL		lt, Trace Fine Gravel, Gra	av with Green Tin	* Males				_			
Image: Section of the sec	Image: Section of the sec						-y mat Green Th	44 MOISE							
Image: Section of the section of t	Image: Section of the section of t				EOB	9 6.0 '									_
Image: Section of the section of th	Image: Section of the section of th														
Image: Section of the section of th	Image:								[] [
Image:	Image: Section of the section of t						·								4
Image: Section of the section of th	Image: Section of the section of th		<u> </u> .					·							+
	Image: Section of the sec														+
Image: Section of the sec	Image:							-							\dagger
	Image: Image							• .							T
Image: Section of the sec]						Ţ
									{}}						+
Image: Sector									┉╢			$\left - \right $			╀
		<u> </u>		<u> </u>			3					╆┈╢			╉
				<u> </u>								 			+
													. -	-	1.
									_ <u> </u> [T
									↓ -						L

	WW Engineering & Science Environmental Services	Project Nam	e: Gage Prod	ucts Co.	
2		Project No	0: 83575.00		
	Log of Well Installation Well Number: P-11			Top of Ca Elevation (f	asing eet): 635.99
	Generalized Subsurface Flush Length of Casing Above Ground Surface Profile Concrete Cap (Y) Depth to Top of 0.5 ' Grout or Backfill Material (Grout or Backfill) Bentonite	Development:	Polyethyle		Elevation
		Well To Casing	Diameter: Diameter: Dial Length: Material: Cap Type:	2.0 " 1.0 ' Schedule 40 PVC Compression	
	1.0 ' Depth to Top of Filter Pack Type <u>#5 Silica Sand</u> 0 6.0 ' Depth to Bottom of Well Screen Borchole Backfill Material	Well Screen	Diameter: Length: Slot/Type: Material:	2.0 " 5.0 ' 10 - Slot Schedule 40 PVC Cast Iron I	Dia. 7.0 "
		well casing	ight Above Ground: ock Type:	Flush Master P506	
	General Notes:				······································
- - -	· · · · · · · · · · · · · · · · · · ·				
· ·					
(1) - C - C - C - C - C - C - C - C - C -					
			· · · · · · · · · · · · · · · · · · ·		

!

- 30 00000		Envir	onmental Ser	vices			W Cl Pr	age: 1 [ell/Boring] ient: Gage oject No.:	Produce 8357	ts Co. 5.00				
State	Cour				/Boring	Log Sheet			rted: 1			^v inisho ^v inisho	ed: 1(ed: 11)/13/ :24
MI		akland	ľ	City Ferndale		Fraction SE 1/4 NW 1/4		Section 35	T			R	-	
Addre Equipn Crew C	nent:	Novi, MI CME 45 D. Arque	and River Ave. 48374	Locatio	Drilling	imately 15 feet northe g Method(s) Hollow Stem Auger	ast of co Dep 6.	oth	7	ound S				
Grout Depth/ 0.0-0.5 0.5-1.0 1.0-6.0	ing/Se /To ,	Mat Concrete Bentonite #5 Silica S	erial/Method	- Remark		· · · · · · · · · · · · · · · · · · ·				ound S vation			6	36.2
			. Below Grade				T	[g	PID					1
ness t feet) 0.6	Depth to base (feet) 0.6	USCS * Other	Concrete		tic Descrip			\$1			18"	1	Headspace	
ness t feet) = 0.6 2.3	to base (feet)		FILL: CLAY and S.	AND, Fine, Debris, D Frace Fine Gravel, Gra	ark Brown, Mo	İst		Blow	<u></u>	12" 11 13	<u>18"</u> 11 -	24"	S S Headspace	4
ness t feet) 1).6 2.3	to base (feet) 0.6 2.9	Other Other	FILL: CLAY and S. CLAY, Some Silt, 7	AND, Fine, Debris, D Frace Fine Gravel, Gra	ark Brown, Mo	İst		★ Sample De 1.0- 3.0'	oth 6"	11	(. 8	45.9	4
1ess t feet) 1).6	to base (feet) 0.6 2.9	Other Other	FILL: CLAY and S. CLAY, Some Silt, 7	AND, Fine, Debris, D Frace Fine Gravel, Gra	ark Brown, Mo	İst		★ Sample De 1.0- 3.0'	oth 6"	11		. 8	45.9	4
ness t feet)	to base (feet) 0.6 2.9	Other Other	FILL: CLAY and S. CLAY, Some Silt, 7	AND, Fine, Debris, D Frace Fine Gravel, Gra	ark Brown, Mo	ist int, Moist		★ Sample De 1.0- 3.0'	oth 6"	11		. 8	45.9	4
ness t feet) (0.6 2.3	to base (feet) 0.6 2.9	Other Other	FILL: CLAY and S. CLAY, Some Silt, 7	AND, Fine, Debris, D Frace Fine Gravel, Gra	ark Brown, Mo	ist int, Moist		★ Sample De 1.0- 3.0'	oth 6"	11		. 8	45.9	4.3.

1.

Water Level Data Water Level Data Date Time Water Level Elevation Date Time Water Level Data Date Time Date Mell Diameter: 2.0 " Date Diameter: 2.0 " Type #5 Silica Sand Well Diameter: 2.0 " Leopth to Top of Filter Park <th colspa<="" th=""><th>Log of Well Installation Top of Casing Elevation (feet): 635.98 Well Number: P-12 Water Level Data Generalized Length of Casing Subsurface Profile Concrete Cap (Y) 0.5⁺ Groot or Backfill) Development: Polyethylene Bailer Bestonite Survey Reference: USGS 1.0⁺ Depth to Top of Filter Pack Total Length: 1.0⁺ Total Length: 5.0⁺ Store Total Cap Type: Compression 1.0⁺ Depth to Top of Filter Pack Well Trye #Stilla Stand Well N/A Backfill Borchoile N/A</th><th></th><th>WW Engineeri Environment</th><th>al Services</th><th>_</th><th>Name: Gage Prod</th><th>ucts Co.</th><th></th></th>	<th>Log of Well Installation Top of Casing Elevation (feet): 635.98 Well Number: P-12 Water Level Data Generalized Length of Casing Subsurface Profile Concrete Cap (Y) 0.5⁺ Groot or Backfill) Development: Polyethylene Bailer Bestonite Survey Reference: USGS 1.0⁺ Depth to Top of Filter Pack Total Length: 1.0⁺ Total Length: 5.0⁺ Store Total Cap Type: Compression 1.0⁺ Depth to Top of Filter Pack Well Trye #Stilla Stand Well N/A Backfill Borchoile N/A</th> <th></th> <th>WW Engineeri Environment</th> <th>al Services</th> <th>_</th> <th>Name: Gage Prod</th> <th>ucts Co.</th> <th></th>	Log of Well Installation Top of Casing Elevation (feet): 635.98 Well Number: P-12 Water Level Data Generalized Length of Casing Subsurface Profile Concrete Cap (Y) 0.5 ⁺ Groot or Backfill) Development: Polyethylene Bailer Bestonite Survey Reference: USGS 1.0 ⁺ Depth to Top of Filter Pack Total Length: 1.0 ⁺ Total Length: 5.0 ⁺ Store Total Cap Type: Compression 1.0 ⁺ Depth to Top of Filter Pack Well Trye #Stilla Stand Well N/A Backfill Borchoile N/A		WW Engineeri Environment	al Services	_	Name: Gage Prod	ucts Co.	
Well Number: P-12 Generalized Subsurface Flush Length of Casing Above Ground Surface Time Water Level Data Occerete Cap (Y) O.5 Generalized Subsurface Flush Above Ground Surface Profile Concrete Cap (Y) Depts to Top of Material (Grout or Backfil) Bestonite Diameter: 2.0 " Total Length: 1.0 ' Gap Type: Compression Gov of Well Steen Material: Schedule 40 PVC Sold Type: Cap Type: Compression Gov of Well Steen Material: Schedule 40 PVC Material: Schedule 40 PVC Sold Type: Material: Schedule 40 PVC Material: Sche	Well Number: P-12 Generalized Flush Length of Casing Subsurface Flush Above Ground Surface Profile Coercete Cap (Y) Depts to Top of 0.5* Generalized Coercete Cap (Y) Depts to Top of 0.5* Generalized Coercete Cap (Y) Depts to Top of 0.5* Generalized Coercete Cap (Y) Depts to Top of 0.5* Generalized Coercete Cap (Y) Depts to Top of 0.5* Generalized Coercete Cap (Y) Depts to Top of Casing Development: Polyethylene Bailer Development: Development: Dolameter: Casing Diameter: Casing Diameter: Cap Type: Compression Goot Depts to Bottom Metrial: Schedule 40 PVC Cas Top of Total Depts Schedule 40 PVC Material: Schedule 40 PVC Cas Top of Total Depts Schedule 40 PVC Material: Cast Iron Dia. Materi		Τ	TTT	Projec	xt No: <u>83575.00</u>			
Outstand and the second set of the	Subsurface Flush Length of Casing Above Ground Surface Date Time Water Level Elevati Profile Concrete Cap (Y) Depth to Top of Depth to Top of Depth to Top of Development: Polyethylene Bailer Material (Grout or Backfill) Material (Grout or Backfill) Development: Polyethylene Bailer Material (Grout or Backfill) Development: Polyethylene Bailer Material (Grout or Backfill) Development: 1.0 ' Depth to Top of Filter Pack Type #5 Silica Sand O 1.0 ' Depth to Top of Filter Pack Type #5 Silica Sand O 6.0 ' Orbyth to Bottom of Well Screen Material: Schedule 40 PVC N/A Boethole Backfill Material Cast Iron Dia 7.0 " Material: Cast Iron Dia 7.0 " Material: Cast Iron Dia 7.0 " Material: Good Total Depth of Bachole Flush Material: Cast Iron Dia 7.0 "							635.98	
Bentonite Survey Reference: USGS User of the sector of the se	Bentonite Survey Reference: USGS USGS Diameter: 1.0 * Depth to Top of Filter Pack Type #5 Silica Sand Well 6.0 * Of the Bottom of Well Screea NVA Borchole Borchole Protective Material: Cast Iron 0.0 * Total Depth of Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.0 * Total Depth 0.1 * Total Depth 0.1 * Material: 0.1 * Total Depth 0.1 * Total Depth 0.1 * Material: 0.1 * Material: 0.1 * <		Subsurface	Concrete Cap (Y) Depth to Top of		te Time	Water Level	Elevatio	
Type #5 Silica Sand Well Length: 5.0 ' G.0 ' Depth to Bottom of Well Screen Screen Slot/Type: 10 - Slot Material: Schedule 40 PVC N/A Borehole Backfill Material N/A Borehole Backfill Material Protective well casing Ground: Flush	Type #5 Silica Sand Well Length: 5.0 ' 6.0 ' Depth to Bottom of Well Screen Screen Slot/Type: 10 - Slot Material: Schedule 40 PVC Schedule 40 PVC Schedule 40 PVC N/A Backfill Material Protective well casing Material: Cast Iron Dia. 7.0 " 6.0 ' Total Depth of Borehole Total Depth of Borehole Screen Material: Material: Screen Screen <t< td=""><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>Well</td><td>Diameter: Total Length: Material:</td><td>2.0 " 1.0 ' Schedule 40 PVC</td><td></td></t<>			· · · · · · · · · · · · · · · · · · ·	Well	Diameter: Total Length: Material:	2.0 " 1.0 ' Schedule 40 PVC		
6.0 ' Total Depth	of Borehole			Type #5 Silica Sand Type #5 Silica Sand Depth to Bottom of Well Screen Borehole Backfill Material	Screen	Length: Slot/Type: Material: Height Above Ground:	5.0' 10 - Slot Schedule 40 PVC Cast Iron Dia. Flush	7.0 "	

WW Engineering & Science Environmental Services							Clie	ll/Bori	ing No. Jage Pr		13 s Co.				•
Well/Boring Log						ng Sheat	Dat	e:	Starte	d: <u>10</u>	/13/93	3_ Fi	nishe	d: 10	/1:
State		•		City		raction	Tin	sec	Starte tion	a: <u>10</u> T	:00 an	n Fi	nishe R	d: 10	:4(
MI Oakland				Ferndale	S	E 1/4 NW 1/4			35		1N			111	3
Contr Addre	actor:		nd River Ave	Location	n: Approxima	utely 10 feet northe	ast of col	llection	sump						
Novi, MI 48374 Equipment: CME 45 Crew Chief: D. Arquette WW Supervisor: M. Nederveld			Drilling M 4 1/4 " Holl	lethod(s) low Stem Auger	Dep 6.0				und S vation			6	36		
Grouting/Seal Depth/To Material/Method 0.0-0.5' Concrete			rial/Method	Remark	s: ·	÷	······································				• ••••••••••••••••••••••••••••••••••••			·	
<u>0.5-1.(</u> 1.0-6.(Bentonite #5 Silica S	and												
Water	Level:	: ft.	Below Grad		······		···								
								nts –	· .	PID				7	
Thick- ness (feet)	to base (feet)	USCS *		Litholo	gic Descriptio	90		S Blow Counts	ole Depth] 12"	18"	24*	Headspace	
ness	to base (feet) 0.6	USCS * Other	Concrete FILL:SAND an		· · · ·	n		Mola Sami 1.0-	ole Depth 3.0'] <u>6</u> "] 4	<u>12"</u> 9	11	24"	59.4	-
ness (feet) 0.6	to base (feet)	USCS *	FILL:SAND an	Litholo d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola Sami 1.0-	ole Depth	<u>] 6"</u>		1	1		-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola Sami 1.0-	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De	bris, Black, Moist			Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist			Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-
ness (feet) 0.6 2.7	to base (feet) 0.6 3.3	USCS * Other Other CL	FILL:SAND an CLAY, Some S	d CLAY, Fine, Trace De ilt, Trace Fine Gravel, Gr	bris, Black, Moist	Moist		Mola Sami 1.0-	ole Depth 3.0'] <u>6</u> "] 4	9	11	10	59.4	-

.

.*

ww Engineering & Science Environmental Services

W W Engineering & Science Environmental Services	Project 1	Name: Gage Prod	ucts Co.	
	Projec	ct No: 83575.00		
Log of Well Installation				
Well Number: P-13			Top of Elevation	Casing (feet): 636.07
Generalized Subsurface Flush Length of Casing Above Ground Surface Profile Concrete Cap (Y) Depth to Top of O.5 ' Grout or Backfill		Wa te Time	ter Level Data Water Level Mater Level Water el Elevation	
Material (Grout or Backfill) Bentonite	Su	urvey Reference:	USGS	
	Well Casing	Diameter: Total Length: Material: Cap Type:	2.0 " 1.0 ' Schedule 40 PV Compression	/C
1.0 ' Depth to Top of Filter Pack Type #5 Silica Sand 6.0 ' Depth to Bottom of Well Screen	Well Screen	Diameter: Length: Slot/Type: Material:	2.0 * 5.0 ' 10 - Slot Schedule 40 PV	C
6.0 ' Total Depth of Borekiole	Protective well casing	Material: _ Height Above Ground: _ Lock Type: _	Cast Iron Flush Master P506	_Dia7.0 "
General Notes:			,	
				· · · · · · · · · · · · · · · · · · ·
	5			
· · · · · ·		······································		

·				······

	W	W Eng Envir	gineering onmental Se	& Science ervices			Page Wel	× <u>1</u> VBoring No.		1			
								at: <u>Gage Pr</u>				······	
									83575.0	the second second second second second second second second second second second second second second second s			
							Date		d: 10/1	····			
				Well/	Boring	Log Sheet	Tim				Finish	ed: 10	/15/9
Stat	te Cou	inty		City					d: <u>11:1(</u>	am]	Finish	ed: 11	:40 ai
МІ		Dakland		Ferndale		Fraction		Section	T		R		
L						SE 1/4 NW 1/4		35		IN		111	3
Con	tractor	: <u>WWES</u>		Location	: Approx	imately 60 feet west of o	مالمد						
Add	ress: _		heldon Rd.				conectio	n sump					
Emi	pment:	Plymout Power A	h, MI 48170							······			
	Chief:	TOWCI M	uger	·		Method(s)	Dept						
WW	Superv	isor: <u>M. N</u>	lederveld		Power A	Auger	3.0'	-8.5'		d Surfa		_	
									Elevat	ion (fee	et):	6	36.8
	uting/S th/To					*		J					
0.0-0		Concrete	terial/Method	Remarks	: Area ex	cavated to 3 feet belo	w grade	e. Piezomet	er locate	i in noi	them		
0.5-1		Bentonite			ground	water collection trenc	b. Wat	er in trench	prohibite	d gathe	ering s	oil	
1.0-3	.0'	Sand			samples	for headspace analys	is.					·	
3.0-8	.5'	Cave In -	Pea Gravel		······································								
Wata	r T arial						1	······································					
male	I LOVEI	: <u>3.0</u> 1	t. Below Grad	<u>le</u>		-						·······	
				-									
								2	PID				
	[1	1								ר.	0	
Thick- ness	Depth to base											pac	
(fcet)	(feet)	USCS *		ľ ithologi	- D •							Headspace	Background
0.7	0.7	Other	Concrete	L'HUOIDĂ	ic Descrip	tion	╾┥┝	Sample Depth	6* 1	2" 18"	24"	н	m
2.3	3.0	Other	FILL:CLAY and	SAND, Some Debris, Bl	ck. Moist						<u> </u>		
5.0	8.0	Other	TRENCH FILL:	PEA GRAVEL				·····]
0.5	8.5	<u> </u>	CLAY, Some Sil	lt, Gray, Moist]
	[-11-			_			{
			EOB @	8.5 '						_	<u> </u>		[
			1									~	
						٢							
		·····				•							
				······			_ _						-
										1]			
				······································									
						· · · · · · · · · · · · · · · · · · ·				- <u> </u>			
							╡┠─						
			······	·			コト						
					· · · · · · · · · · · · · · · · · · ·	-						\neg	
			Para - Para				_						
/TT	riaga -							I [,]	1		T		

ļ

1.1

	WW Engineering & Science Environmental Services	Project 1	Name: Gage Prod	ucts Co.	
		Projec	xt No: 83575.00		
Γ	Log of Well Installation				
	Well Number: P-14			Top of Casi Elevation (fee	ng t): <u>636.46</u>
	Generalized		Wa	ter Level Data	
	Subsurface Flush Length of Casing Above Ground Surface	Da	te Time	Water Level	Elevation
	Profile Above Ground Surface		·		
	Concrete Cap (Y)		÷		
	Depth to Top of				
	0.5 Grout or Backfill	Developn	nent: <u>Polyethyle</u>	ne Bailer	
	Material (Grout or Backfill) Bentonite	, Su	uvey Reference:	USGS	
				4	
			Diameter:	2.0 "	
		Well	Total Length:	3.0 '	
		Casing	Material:	Schedule 40 PVC	
			Cap Type:	Compression	
			l		
	1.0 ' Depth to Top of Filter Pack		Diameter:	0.0.1	
	Type #5 Silica Sand	Well	Length:	2.0 "	
		Screen	Slot/Type:	10 - Slot	
	8.0 ' Depth to Bottom of Well Screen		Material:	Schedule 40 PVC	
					······
	Borchole		Material:	Cast Iron D	ia. 7.0 *
	Pea Gravel Backfill Material	Protective	Height Above		
	8.5 ' Total Depth	well casing		Flush	
	of Borchole		Lock Type:	Master P506	
	General Notes:				~
				· · · · · · · · · · · · · · · · · · ·	
			-		
		<u> </u>			
				······	
,					-
· .					
, 		1			
			<u> </u>		
. L		·····		······································	

· .		W Eng Envir	gineering onmental S	& Science ervices		Clie	3e: 1 Il/Boring No ent: <u>Gage I</u> ject No.:	of p. P- Product 83575	ts Co.	-		
Sta M		inty Dakland		City	Boring Log Sheet	Dat Tin		ted: 10	/15/93 :40 pm	Finis		0/15/ 2:50
L				Ferndale	SE 1/4 NW 1/4		35		1N	ľ	R 11	F
Add Equi Crew WW Gro Dep	Contractor: WWES Address: 14496 Sheldon Rd. Plymouth, MI 48170 Equipment: Power Auger Crew Chief: WW Supervisor: M. Nederveld Grouting/Seal Depth/To Material/Method 0.0-0.2' Concrete 0.2-4.3' #5 Silica Sand				n: Approximately 50 feet east Drilling Method(s) ' Power Auger S: Area excavated to 3.0 fee collection trench. Water i and prohibited collection	Dept 3.0 t below gr	th 5.5' ade. Piezom	Elev		et): feet n		535.9 f
Wate Thick- ness (fect) 0.7 2.8	Depth to base (feet) 0.7 3.5	USCS *	Concrete	-	ic Description		st D D D D D D D D D D D D D D D D	PID	12" 18		Headspace	Background
	5.5		CLAY, Some Sil	t, Gray, Moist								

WW Engineering & Science Environmental Services

٦

ţ

WW Engineering & Science Environmental Services	Project N	Name: Gage Prod	ucts Co.	
	Projec	t No: 83575.00		
Log of Well Installation	1			
Well Number: P-15			Top of (Elevation	Casing (feet): 635.60
Generalized Subsurface Flush Length of Casing Above Ground Surface	Da	Wai te Time	er Level Data Water Leve	Elevation
Concrete Cap (Y) Depth to Top of 0.2 ' Grout or Backfill	Developm	nent: Polyethyle	ne Bailer	
Material (Grout or Backfill)	, .	rvey Reference:	·····	
	Well Casing	Diameter: Total Length: Material:	2.0 " 0.2 ' Schedule 40 PV	
		Cap Type:	Compression	<u> </u>
0.2 ' Depth to Top of Filter Pack Type #5 Silica Sand 0.2 ' Depth to Bottom of Well Screen	Well Screen	Diameter: Length: Slot/Type: Material:	2.0 " 4.3 ' 10 - Slot Schedule 40 PV	
Cave In 5.5 ' Total Depth	Protective well casing	Ground:	Cast Iron Flush	_Dia7.0 "
5.5 ' Total Depth of Borehole	Į	Lock Type:	Master P506	
General Notes:				
	<u> </u>			
		-	· · · · · · · · · · · · · · · · · · ·	
		······		·
	······			
·				

		EIIVIIO	nmental Se	EIVICES			Cli Pro	ell/Boring N ent: <u>Gage 1</u> ject No.:	Produc 8357	ts Co. 5.00			
State	Cou				Boring	Log Sheet	Da Tin		ted: 10			⁷ inisho ⁷ inisho	ed:_1 ed:_0
MI		akland		Township Ferndale		Fraction SE 1/4 NW 1/4		Section 35	T			R	
Addı Equip	ment:	WWES 14496 She Plymouth, Power Au	MI 48170	Location		imately 50 feet east of	f collecti Dep	·····]				
WW : Grou Dept 0.0-0. 0.5-1. 1.0-3.	uting/S h/To 5' 0' 5'		erial/Method	Remarks	ground	Auger ccavated to 3.0 feet 1 water collection tree ig soil samples for h	<u>3.</u>	rade. Piezon	Ele neter lo	ound S evation ocated ench 1	n (fee	t):	n.
3.5-8. Wate		<u>Cave In - I</u>	.Below Grad						PID				
Thick-	1 .	ţ						W Counts			 ר	7	Dace
ness (feet)	to base (feet)	USCS *	Concerts	Litholog	ic Descrit	otion		B C M C	th 6'	· 12*	18"	24"	Headsnace
ness	to base		Concrete FILL:CLAY and			otion		Blow	th 6'	12"	18"	24"	Headsnace
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other	FILL:CLAY and	Lithologi I SAND, Some Debris, Bl: PEA GRAVEL, Wet		otion		Blow	th 6"	12"	18"	24"	Headsnace
ness (feet) 0.7 2.8	to base (feet) 0.7 3.5	USCS * Other Other	FILL:CLAY and	l SAND, Some Debris, Bla PEA GRAVEL, Wet		otion		Blow	th 6"	12"	18*	24"	Headsnace
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet		otion		Blow	th <u>6</u> "	<u> </u> 12"	18"	24*	Headsnace
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét	otion		Blow	th 6"	12"	18"	24"	2 Headspace
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét	biion		Blow	th 6"	12"	18*	24*	
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét	offion		Blow	th	<u>12</u> "	18*	24*	
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét	>tion		Blow	th 6"	" <u>12</u> "	18*	24"	
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow	th 6"	· 12"			
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow	th 6'	" <u>12</u> "	18*		
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow		· 12"			
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow	th	<u>12</u> "			
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow	th 6'				
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow	th 6"				
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow	th 6'				
ness (feet) 0.7 2.8 4.5	to base (feet) 0.7 3.5 8.0	USCS * Other Other Other	FILL:CLAY and TRENCH FILL: CLAY, Some Sil	l SAND, Some Debris, Bla PEA GRAVEL, Wet It, Gray, Moist	ack, Wét			Blow					

] -

. ..

	WW Engineering & Science Environmental Services	Project	Name: <u>Gage Prod</u>	lucts Co.	
	X	Proje	ct No: 83575.00		
	Log of Well Installation Well Number: P-16			Top of Casin Elevation (feet)	g : 635.81
	Generalized Subsurface Fluch Length of Casing	Da	te Time	ter Level Data	
	Subsurface Flush Length of Casing Profile	»		Water Level	Elevation
	Concrete Cap (Y)	I			
	Depth to Top of 0.5 ' Groat or Backfill	L Developn	nent: Polyethyle		
	Material (Grout or Backfill) Bentonite	, St	irvey Reference:	USGS	
			Diameter:	2.0 "	
		Well	Total Length:	2.3 '	
		Casing	Material:	Schedule 40 PVC	
			Cap Type:	Compression	
	1.0 ' Depth to Top of Filter Pack Type #5 Silica Sand 7.3 ' Depth to Bottom 0 Well Screen Borehole Pea Gravel Backfill Material 8.2 ' Total Depth of Borehole	Well Screen Protective well casing	Diameter: _ Length: _ Slot/Type: _ Material: _ Height Above Ground: _ Lock Type: _	2.0 " 5.0 ' 10 - Slot Schedule 40 PVC Cast Iron Dia. Flush Master P506	7.0 "
-	General Notes:				
┢		<u>x</u>	······································		
		•			

-					
` 		<u> </u>			
-					

.

.

	W	W Eng Enviro	ineering onmental So	& Science ervices			Clie Proje	l/Boring No. nt: <u>Gage Pr</u> ect No.:	oducts 33575.	s Co. .00				
Stat		inty		Well/	Boring	Log Sheet	Date Time		1: <u>03:</u>			the second second	i: <u>10/</u> i: <u>04:</u>	'15/93 30 pr
MI		Dakland		Ferndale		SE 1/4 NW 1/4		35 35	T	1N		R	11E	
Add	ractor ress:	Plymouth	ueldon Rd. 1, MI 48170	Location		mately 20 feet east of						<u> </u>		
Crew WW	Chief:	isor: <u>M. N</u>		 	Power A	Method(s) uger	Dept 3.0'	h - <u>5.5'</u>			uface (feet)		63	5.3
Dept 0.0-0. 0.3-5.	b/To _3' _3'	Mat Concrete #5 Silica \$	erial/Method Sand . Below <u>Grad</u>	Remarka	trench f	cavated to 3.0 feet b looded bore hole and ce analysis.	elow gra	de. Water fi ted collection	owing 1 of so	from il san	colle aples	ction for		
Thick- ness	Depth to base							Diow Counts	PID				Headspace	Background
(feet) 0.7	(feet) 0.7	USCS *	Concrete	Litholog	<u>ic Descrip</u>	tion]	Sample Depth	6"	12"	18"	24"	Hea	Bac
2.8 2.0	3.5 5.5	Other	FILL:CLAY and	ISAND, Some Debris, B	lack, Moist							<u>. </u>		
	2.2	<u> </u>	CLAY, Some Sil	lt, Gray, Moist										
			EOB @	<u>۶.5 '</u>										
													~-	
						•								
					· · · · · · · · · · · · · · · · · · ·]]-						+	
			·····			\$		• 2-						
										ľ				
				······································		······································					<u> </u>]
·														
				······							-	+		-
<u>-</u>	L	1				· · ·								

ç

 \cdot

ş,

1. S. S.

.

.

L arran	WW Engineering & Science Environmental Services	Project Name: Gage Products Co.
		Project No: 83575.00
e e e e e e e e e e e e e e e e e e e	Log of Well Installation Well Number: P-17	Top of Casing Elevation (feet): 634.83
	Generalized Subsurface Flush Length of Casing Above Ground Surface Profile Concrete Cap (Y) Depth to Top of 0.3 ' Grout or Backfill Material (Grout or Backfill) <u>N/A</u>	Water Level Data Date Time Water Level Elevation Development: Polyethylene Bailer Development: Survey Reference: USGS
2 *	0.3 ' Depth to Top of Filter Pack Type <u>#5 Silica Sand</u> 5.3 ' Depth to Bottom of Well Screen N/A Borehole Backfill Material	Well Diameter: 2.0 " Total Length: 0.3 ' Material: Schedule 40 PVC Cap Type: Compression Well Diameter: 2.0 " Well Length: 5.0 ' Screen Slot/Type: 10 - Slot Material: Schedule 40 PVC Material: Schedule 40 PVC
	5.5 ' Total Depth of Borehole	Protective Height Above well casing Ground: Flush Lock Type: Master P506
	General Notes:	
·		

	w	W Eng Enviro	ineering on mental Se	& Science ervices				ll/Bori	ng No.	P-:					
								ent: <u>G</u> ject No		33575					
							Da	-	Starte			3 1			
<u></u>				Well	/Boring	Log Sheet	Tin		Starte				mishe	xa: 10	/15/93
State		-		City		Fraction		Secti	ion		.20 p	<u> </u>	the second second second second second second second second second second second second second second second s	2:03	:50 pr
MI	0	akland		Ferndale		SE 1/4 NW 1/4		1	35		1N		R		-
Cont	ractor:	WWES		¥	_			<u> </u>				-		111	3
Addı		14496 Sh	eldon Rd.	Locatio	n: Approx	imately 20 feet east of	truck ca	пору							
¥"1 - 1		Plymouth	, MI 48170						·····						
	oment: Chief:	Power Au	Iger			Method(s)	Dep	th]						
		sor: <u>M. Ne</u>	ederveld		Power A	uger		<u>' - 6.2'</u>	-		und S				
									-	Elev	vation	(fee	t):	6	35.3
Dept	iting/S		antal D. C. et a. 1			······································			لـــــ						
0.0-0.		Concrete	erial/Method	Remark		cavated to 3.0 feet b	elow gi	rade. Pi	ezome	ter lo	cated	in no	rthern	L	
0.3-5.		#5 Silica S	Sand		conech	on trench. Water in c	ollectio	on trenc	h proh	ibited	l gath	ering	soil	······	
5.3-6.	2'	Cave In -]	Pea Gravel		samples	for head space anal	ysis.								
	··					······		L.							
Water	Level:	3.0 ft	Below Grad												
															
								20		PID					
								Counts]	
Thick-	Depth	ļ										7]	ace	Page
ness	to base				۰.	÷		Blow			1			Headspace	Background
(feet) 0.7	(feet) 0.7	USCS *		Litholo	gic Descrip	tion			Depth	6"	12"	18*	24"	Hea	Bac
2.3	3.0	Other	Concrete FILL:CLAY and	SAND, Some Debris, H	/	······································]								
3.0	6.0	Other	TRENCH FILL:	EA GRAVEL	slack, Moist										
0.2	6.2	CL	CLAY, Some Silt												
							╶──┤┠]		
			EOB @	6.2 '											
							[~-	
								······							
						······································	-		<u>, i</u>						
					······		─┤┠								
					·	······									
	†														
					······	······································								[
	·					······································									
		. 	······································	, 										\neg	[
				·····			[[
			· · · · · · · · · · · · · · · · · · ·			······]
											-+				
				· · · · · · · · · · · · · · · · · · ·		-								÷	
- The I	1	[ionad is harad												

.

WW Engineering & Science Environmental Services	Project Name: Gage Products Co.
	Project No: 83575.00
Log of Well Installation	
Well Number: P-18	Top of Casing Elevation (feet): 634.84
	Water Level Data
Generalized Subsurface Flush Length of Casing Above Ground Si	Data Mt has
Profile Above Ground S	urface
Concrete Cap (Y)	
Depth to Top of	
0.3 ' Grout or Backfill	Development: Polyethylene Bailer
Material (Grout or Backfill)	
N/A	Survey Reference: USGS
	Diameter: 2.0 " Well Total Length: 0.3 '
	Well Total Length: 0.3 ' Casing Material: Schedule 40 PVC
	Cap Type: Compression
0.3 ' Depth to Top of Filter P	
Type #5 Silica Sand	Well Length: 5.0'
5.3 ' Depth to Bottom	Screen Slot/Type: 10 - Slot
5.3 of Well Screen	Material: Schedule 40 PVC
Borehole	Material: Cast Iron Dia, 7.0 "
Pea Gravel Backfill Material	Protective Height Above
	well casing Ground: Flush
6.2 , Total Depth of Borehole	Lock Type: Master P506
General Notes:	
1	

:

.

•

WW Engineering & Science Environmental Services						We	Page: 1 of 1 Well/Boring No. P-19 Client: Gage Products Co.						
									8357				·
		•					Dat			0/15/9	3 12		
	÷			Well/	Boring	Log Sheet	Tim			5:00 pi		inishe	x1:]
State	Cour	ity		City		Fraction		Section			<u> </u>		хд: (
MI	0	kland		Ferndale		SE 1/4 NW 1/4		35 Section	T	1N		R	1
Contr Addr	ractor:	WWES 14496 Sho	liter Dit	Location	1: Approxi	imately 30 feet north of	f office/l	laboratory					*****
- ALLON	·····		, MI 48170			•							
	ment:	Power Au			Drilling	Method(s)	Dept	th 1					
	Chief:		• • • •		Power A		_	'-5.2'	Gr	ound S	lurfac	A	
11 11 2	supervis	sor: <u>M. Ne</u>	derveld			······				evation			С
Grou	ting/Se	al			1	-							L
Depth		Mate	erial/Method	Remarks	s: Area ex	cavated to 3.0 feet b	elow or	ade Diezom	atar la	nanta d	*		
0.0-0.2		Concrete			and the second se	water collection tren	ch. Wa	ter in collect	tion tr	caled rench r	<u>in noi</u>	rthern	L
0.2-2.5		#5 Silica S			gatherin	ig soil samples for he	adspac	e analysis.	4044	<u>onon p</u>	<u></u>	neu	
<u></u> -3.2	<u> </u>	Cave In - H	rea Gravel	- -							•		
Water	Level:	<u>2.5</u> ft.	Below Grade							- 1			
								2	PID) ·			***
								Counts	••••]
Thick-	Depth										ר		Uandanaaa
ness	to base	***				•		Blow		٦			1
(fcet) 0.7	(feet) 0.7	USCS *		Litholog	tic Descrip	tion		Sample Dept	7 6'	<u> 12"</u>	18"	24"	E I
1.8	2.5	Other Other	Concrete	AT 177 -								<u> </u>	Ť
2.5	5.0	Other	TRENCH FILL:P	CLAY, Some Debris, E	lack, Moist	····] [
0.2	5.2	CL	CLAY, Some Silt	the second second second second second second second second second second second second second second second s		······································				<u> </u>			
							{ -					ļ	ļ
			EOB @	5.2 *									
 						******						┢───┤	-
										+-+			~
							1 F	۰.,	1	+ +	<u> </u>		
								•	<u>†</u>	1			
						· ·							
									ļ	ļ[
				·······			[]]			┞──┤		[
										┣──┦			
			······································							╞──┤			
										╞──┤		-+	
·						•				┝━━╋	ŀ		
						······				┢╼╼╾╊	-+		
		<u> </u>				· · · · · · · · · · · · · · · · · · ·	-11-						
						,					$\neg \uparrow$	$\neg \uparrow$	
						,					—	-+	

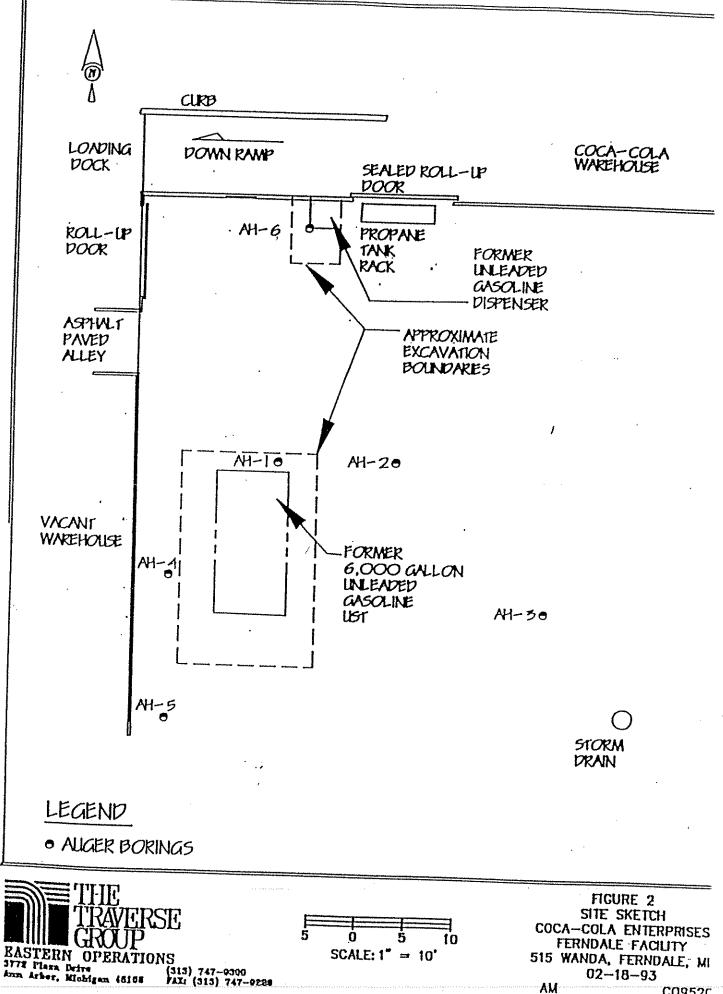
.

WW Engineering & Science Project Name: Gage Products Co. Environmental Services Project No: 83575.00 Log of Well Installation Top of Casing Elevation (feet): 634.62 Well Number: P-19 Water Level Data Generalized Date Time Water Level Elevation Length of Casing Above Ground Surface Subsurface Flush Profile Concrete Cap (Y) Depth to Top of 0.2' Grout or Backfill Development: None Material (Grout or Backfill) Survey Reference: USGS Diameter: 2.0 " Well Total Length: 0.2 ' Casing Material: Schedule 40 PVC Cap Type: Compression 0.2 ' Depth to Top of Filter Pack Diameter: 2.0 " Type #5 Silica Sand Well Length: 4.5 ' Screen Slot/Type: 10 - Slot Depth to Bottom of Well Screen 47' Material: Schedule 40 PVC Borchole Material: Cast Iron Dia. 7.0 " Pea Gravel Backfill Material Protective Height Above well casing Ground: Flush 5.2' Total Depth Lock Type: Master P506 of Borehole ···· General Notes: .

	YV .	W Eng Envire	ineering onmental Se		/Boring	Log Sheet	We Cli Pro Da	ient: Dject I te:	Star	Produc 8357 ted: 1	ots Co. 5.00 0/15/9	3 F	inishe	ed: 1()/15/93
Stat				City	, sormg	Fraction	Tin		Star			m F	inishe	zd: <u>12</u>	2:20 рп
М	C	akland		Ferndale		SE 1/4 NW 1/4		Se	ction 35	Т	1N		R	111	R
Cont Addi	ractor		eldon Rd. 1, MI 48170	Locatio	n: Souther	n property boundary 2	5 feet w	est and	l 6 feet	south o			ink fa		
Crew WW;	iting/S h/To	Power Au isor: <u>M. N</u>	Iger	Remark	Power A Hand Au		Dep 5.5 5.5 soils at	5' 5'		Ele	ound sevation	ı (feet):		35.1
0.2-5.		#5 Silica S	Sand . Below <u>Grad</u>												
Thick- ness (feet)	Depth to base (feet)	USCS *		Litholog	gic Descrip	tion		Blow Counts		PID	7			Headspace	Background ·
0.2 0.3	0.2	Other Other	ASPHALT						ole Dept 1.0'	<u>h 6"</u>	12"	18"	24"	王 7.8	2.1
3.0	3.5	ML	SAND and GRAY SAND, Some Cla		· · · · · · · · · · · · · · · · · · ·	·····			2.0*	-	-	-		9.4	1.7
2.0	5.5	CL	CLAY, Trace Silt]]	2.0-		<u> </u>	-	-	-	6.8	2.0
			EOB @					3.0- 4.0- 5.0-	5.0"	•	-	-	-	7.4 6.6 5.8	2.0 1.9 1.8
						<u> </u>									
						· · · · · · · · · · · · · · · · · · ·									
	•														
										<u> </u>					

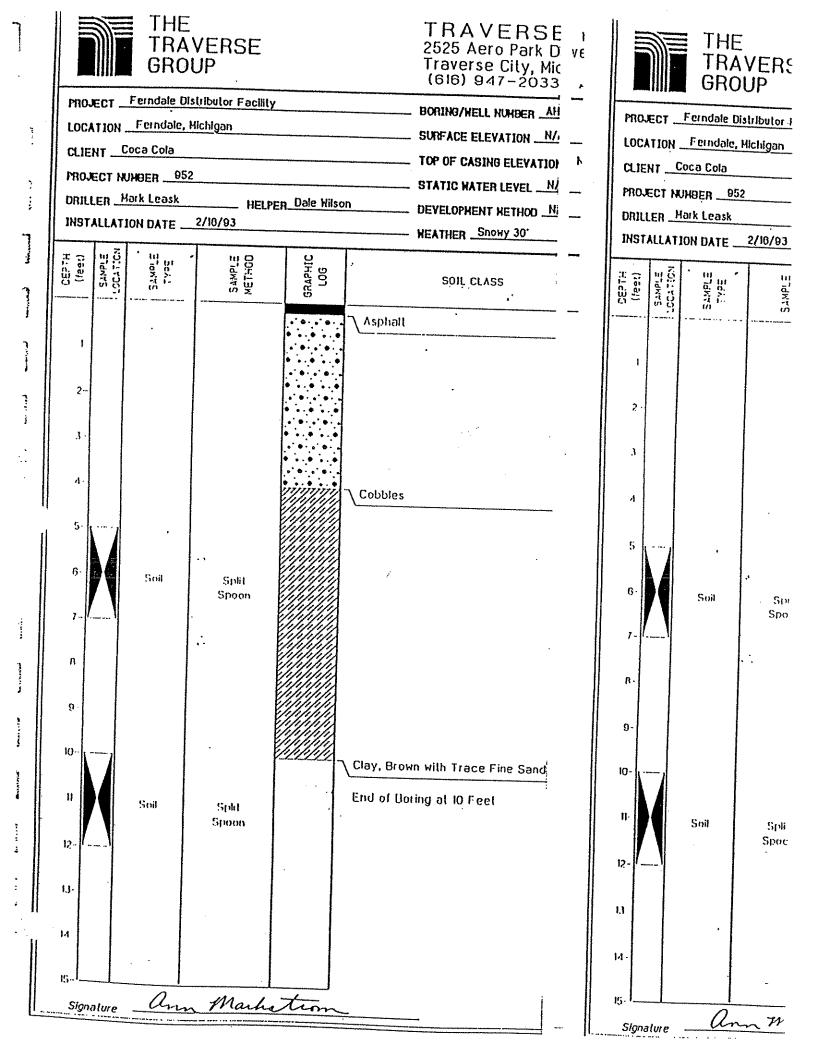
ſ

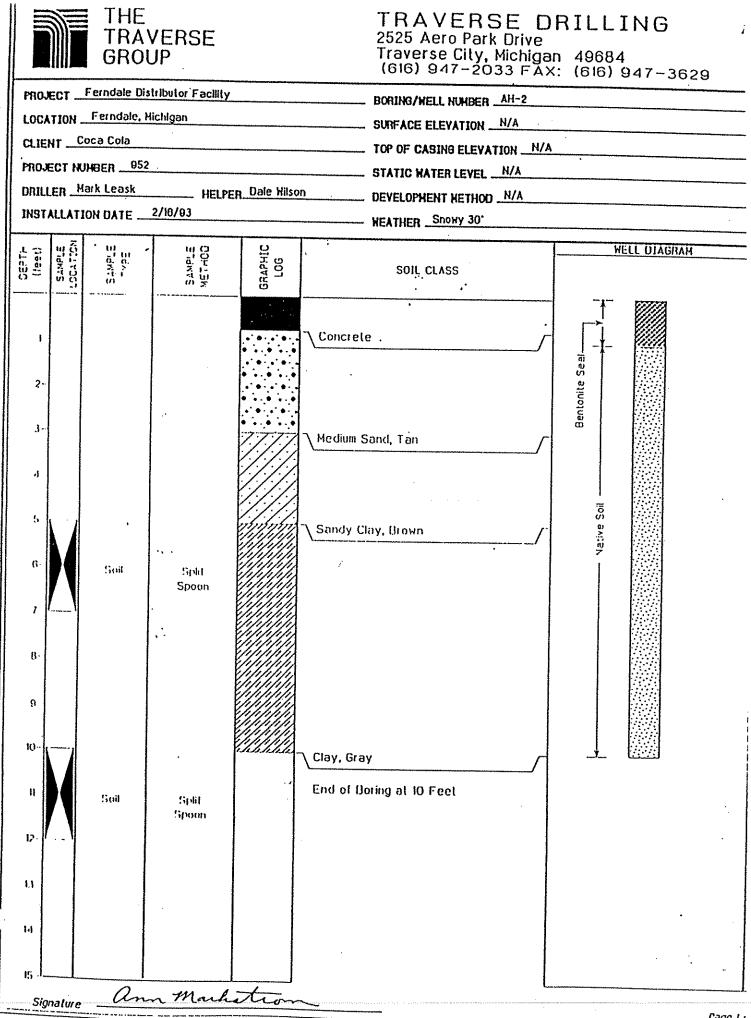
.

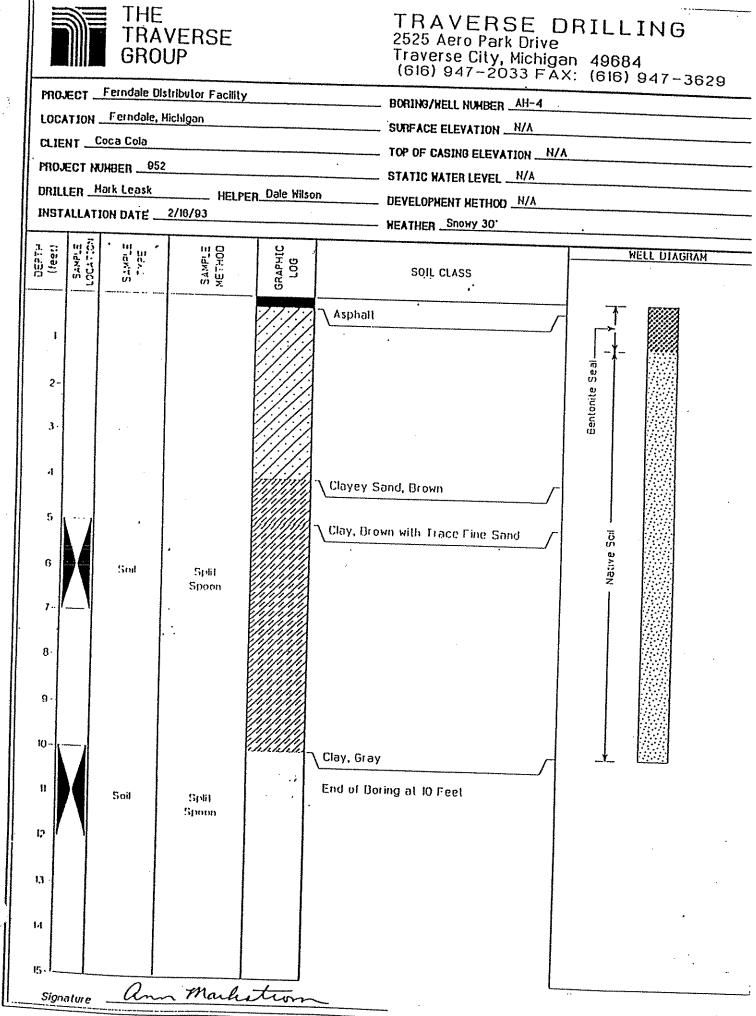

•

2

* = The USCS symbol assigned is based on visual and manual observations and not on tests performed in the laboratory.


WW Engineering & Science Project Name: Gage Products Co. **Environmental Services** Project No: 83575.00 Log of Well Installation Top of Casing Elevation (feet): Well Number: P-20 634.70 Water Level Data Generalized Date Time Length of Casing Above Ground Surface Water Level Subsurface Elevation Flush Profile Concrete Cap (Y) Depth to Top of 0.2 Development: Polyethylene Bailer Grout or Backfill Material (Grout or Backfill) Survey Reference: USGS Diameter: 2.0 " Well Total Length: 0.2 ' Casing Material: Schedule 40 PVC Cap Type: Compression 0.2 ' Depth to Top of Filter Pack Diameter: 2.0 " Type #5 Silica Sand Well Length: 5.0' Screen Slot/Type: 10 - Slot Depth to Bottom 5.2 ' of Well Screen Material: Schedule 40 PVC Borchole Material: Cast Iron Dia. 7.0 " N/A Backfill Material Protective Height Above well casing Ground: Flush 5.5 ' Total Depth Lock Type: Master P506 of Borchole ~?** General Notes: . .

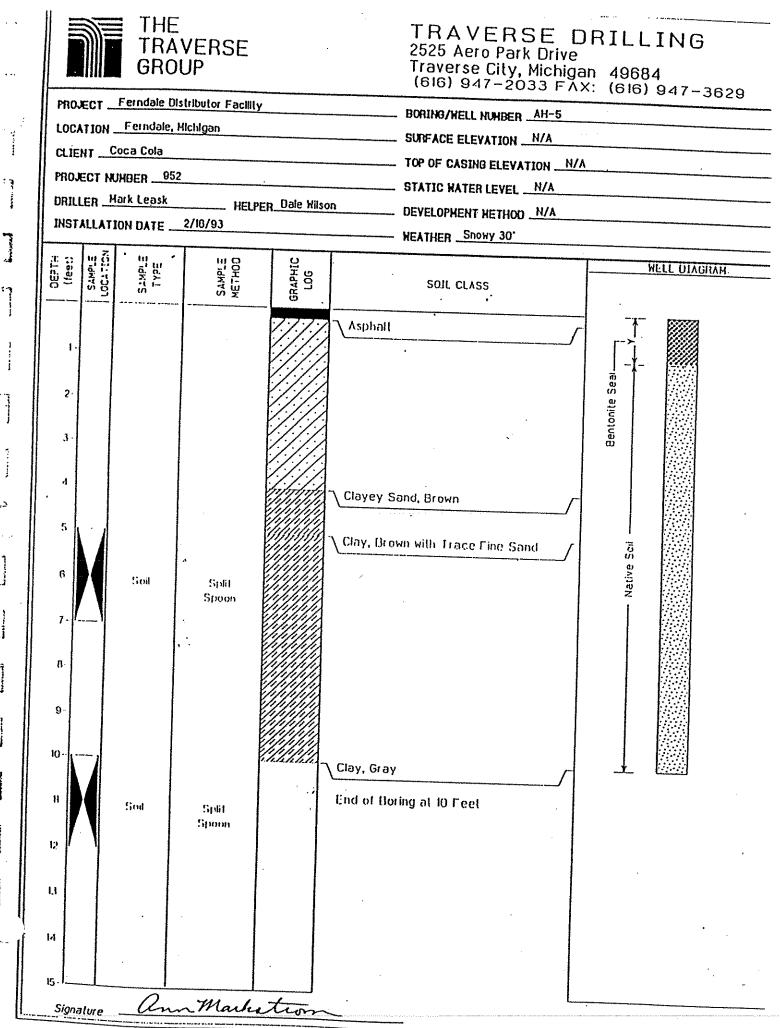

5


CO952C

Contraction of the second

Page L L

- 4

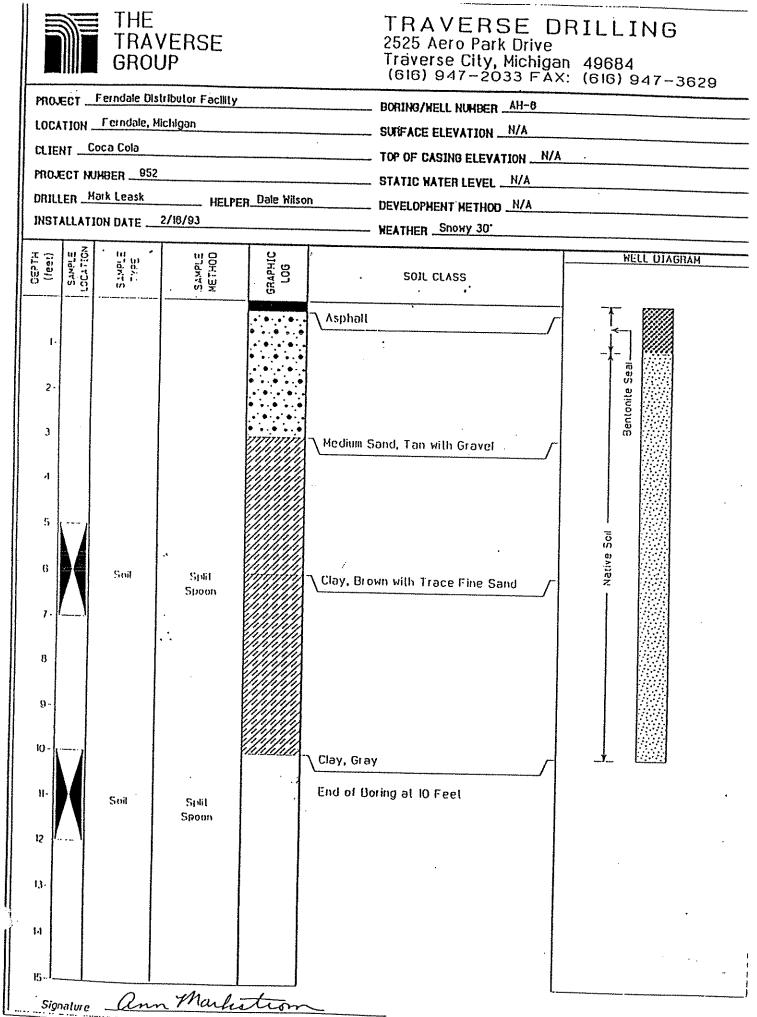

9

η

į

Ĵ

ŝ


1

د.

Ĵ

. i

. i

. 1

-]

i

. .

; :

Paon I

Appendix B2-2

Soil Test Data

FALLING-HEAD FERMEABILITY TEST

				P		DATE 8/	1678	9	
ROJECTGage						-			
ORING NO									
Sechnician <u>R. Vorugant</u>		Сотр	uted By	R. Vorugan	<u>+1</u> Ehec	ked By _{lame}	s H	Tella	m P F
ple or Specimen No.	•								
Tare plus dry soil	•	223.	0	Diameter o	f specimen,	, CZ	D	3	.429
Tare		119.	0	Area of spe	ecimen, sq	CE	A	9	.2347
Dry Soil	Ч _Б	•104	0	Initial he	lght of spe	cimen, cm	L	7	.62
cific gravity assume	· c	2.	70	Initial vol	of spec,	cc = AL	v		.368
1. of solids, cc = W ₅ + G	Y _S	385.	18	Initial voi	d ratio =($(v - v_g) + v_g$	ė		.826
es of standpipe, sq cm	a	0.9	915	Constant =	2.303 x a)	+ A	С		.22819
Test No.				1		2			
ight of specimen, cm	45	L		7.62					
atio = $(AL - V_{E}) + V_{E}$		e		0.826	•				
·			1a	/ 1b	2a	25	3	a ·	3р
itial time 8/15/89		to	5:45						
al time 8/15/89		tr		n					
ipsed time, sec = tr - t	0	t	90000						
tial head, cm		ho	124						
el head, cm		bf	121				-		· · · ·
$(h_0 + h_f)$.010636	53					
er temperature, ^o C		T	20						
cosity correction factor	(1)	R _T	1						
fficient of permeability	, ⁽²⁾	¥20	2.055x1	0-7					
	•	Avg	'						
Correction factor for $20 = 2.303 \frac{a}{A} \frac{L}{t} \log \frac{b}{A}$	vis <u> o</u> x 1	$\begin{array}{l} \text{cosity} \\ \text{R}_{\text{T}} = \frac{\text{C}}{\text{t}} \end{array}$	of vater $\frac{h}{\log \frac{h}{h_{r}}}$	at 20 C ob × R _T .	tained fro	= table VII	-1.	•	
$20 = \frac{2.303 \times 0.915 \times 0.2347 \times 9}{9.2347 \times 9}$	7.62	[log			55×10^{-7}			•	

FALLING-HEAD FERMEABILITY TEST

		-	٠	1	8-9-89 DATE 8-10-8		8-11-	89
PROJECTGage								
BORING NO. GMW 6	. 8	' to 9.	5					
Technician <u>R. Voruganti</u>		uted By	R. Vorugantl	Ehec	ked By Jam	es H	. Tel	lam. P.E.
emple or Specimen No.								
Tare plus dry soil	264	.60	Diameter of	specimen,	CZ	D		3.429
g Tere	114	. 8	Area of spe	cimen, sq	CE	A		9.2347
Dry Soil Ws	, , ,	149.8	Initial hei	sht of spe	cimen, cm	L	1	7.62
ecific gravity G		2.70	Initial vol	of spec,	cc = AL	v		70.368
ol of solids, $cc = W_{g} + G V_{g}$	0	5.48	Initial void	i ratio =($(V - V_s) + V_s$	ė		.02683
es of standpipe, sq cm a		0.915	Constant = (2	2.303 × a).	+ A	.c	0 22	81877
Test No.			1		2			3
ight of specimen, cm	L		7.62					
$Tatio = (AL - V_{S}) + V_{S}$	e		0,2683				<u></u>	
		la	1b	2a	20	3	a •	3Ъ
itial time 8/9/89	to	9:20am						
nal time 8/10/89	tr	4:30pm						
apsed time, sec = $t_f - t_0$	t	108600						
itial head, cm	ho	123						
bal head, cm	bf	110						· ·
$s(h_{0} + h_{f})$.0485124	+					·
er temperature, ^o C	т	200						
cosity correction factor ⁽¹⁾	R _T	1						
fficient of permeability, (2)	*20	7.76x10	-7		i			
m/sec	Avg				ĺ			
) Correction factor for visco 20 = 2.303 $\frac{a}{A} \frac{L}{t} \log \frac{b_o}{b_f} \times R_T$	sity c = $\frac{C}{t}$	of vater $\frac{h}{\log \frac{h}{h_{f}}}$	at 20 C obt	ained fro	n table VI	[-1.		
$K20 = 2.303 \times 0.915 \times 762$		-		6×10^{-7}			•	
9.2347 x 108600			····					

9-0889

FALLING-HEAD FERMEABILITY TEST

ROJECT Gage BORING NO. GMW -5 8' - 9.5'		
Technician <u>R. Voruganti</u> Computed Br. Voruganti Ehecked By Lan	nes H	Tellam, P.F.
zple or Specimen No.		
Tare plus dry soil 271.28 Diameter of specimen, cm	D	3.429
Three 120.21 Area of specimen, sq cm	A	
Dry Soil ^W s 151.07 Initial height of specimen, cm	L	9.2347
cific gravityassume G 124.0 Initial vol of spec, cc = AL	İ., İ	7.62
1 of solids, cc = $\frac{W_s}{s}$ + G $\frac{V_s}{s}$ 55.952 Initial void ratio = $(V - V_s)$ + V_s		70.368
en of standpipe, sq cm a 0.915 Constant = $(2.303 \times a) + A$		0.2576
Test No. 1 2	C 	0.22818
ight of specimen. cm		3
$\frac{1}{2 \times 10} = (AL - Y_E) + Y_E e$		
	<u>3a</u>	· 3b
al time 0.0000 t.		
psed time, sec = tr = t_ +		
tial head, cm ho 12/ 0		·
- 124.0		· · ·
²¹ 115.2		
.03130/2		
r temperature, °C T 20		
cosity correction factor ⁽¹⁾ R _T 1		
ficient of permeability, (2) k ₂₀ 3.65 x 10 ⁻⁷		
Correction factor for viscosity of unter at 20 0 and 1		

Connection factor for viscosity of vater at 20 C obtained from table VII-1. $\frac{h}{20} = 2.303 \frac{a}{A} \frac{L}{t} \log \frac{h}{h_f} \times R_T = \frac{C}{t} \log \frac{h}{h_f} \times R_T .$

 $2.303 \times 0.915 \times 7.62$ [log 124.0/115.2] x 1 3.655 x 10⁻⁷

9.2347 x 152100

sample 3

FALLING-HEAD FERMEABILITY TEST

			•	<u>.</u>	DAT8/10/89	8,	/14/89	
'ROJECTGage								1000 million -
BORING NO. Test hole 2		**	58.5 to	60.0				
Technician _{R Voruganti}	Comp	uted By_F	. Vorugant	i Ehec	ked By <u>Jam</u>	es H.	. Tella	m, P.E.
mple or Specimen No.								
Tare plus dry soil	235.3	2	Diameter of	specimen.	, CE	D	3.	249
Tare	115.6	5 /	trea of spe	cinen, sq	ca	A	9.	2347
x Dry Soil assume	119.67		Initial hei			L	7.	62
cific gravity G	2.70	r c	nitial vol	of spec,	cc = AL	v	70.	368
1 of solids, $cc = W_{g} + G V_{g}$	44.32	2 1	nitial void	l ratio ={	$(V - V_s) + V_s$	ė	0.	587
es of standpipe, sq cm a	0.9	15. C	onstant = (2	2.303 x a)	+ A	с	0.	22818
Test No.			1		2		3	
ight of specimen, cm	L		7.62					
$tio = (AL - \gamma_{g}) + \gamma_{g}$	e		0.587			<u></u>	•	
		<u>la</u>	15	2a	2ъ	3	a ·	3Ъ
itial time 8/10/89	to	the second second second second second second second second second second second second second second second s						
ual time 8/14/89	ťr	8:45pm						
speed time, sec = tr - to	t	316800						
tial head, cm	Þ _o	124						
bal head, cm	hſ	118						
$(h_0 + h_f)$.0215397						
er temperature, ^o C	T	20						
cosity correction factor ⁽¹⁾	R _T	1						
fficient of permeability, (2)	k 20	1.18 x	0 ⁻⁷				·	
	Avg		ľ					
) · Correction factor for visc	cosity (of water	at 20 C obt	ained fro	m table VI	r-1.		

 $\frac{1}{10} = 2.303 \frac{a}{A} \frac{L}{t} \log \frac{o}{h_{f}} \times R_{T} = \frac{C}{t} \log \frac{h}{h_{f}} \times R_{T} = \frac{C}{t} \log \frac{h}{h_{f}} \times R_{T} = \frac{2303 \times 0.915 \times 7.62 \times [124/118] \times 1 = 1.18 \times 10^{-7}$

9.2347 x 316800

<u>јоБ # 90-088</u>9

FALLING-HEAD FERMEABILITY TEST

	LING NO. test ho chnician _{R Voruganti}				5' to 30.0 / <u>R. Vorugani</u>		ked By Inc.		Talle	
	le or Specimen No.	•							<u> </u>	-
grama	Tare plus dry soil	•	247.	68	Diameter o	f specimen	, CE	D	3.429	<u></u>
The second secon	Tare	1	120.	34	Area of sp	ecimen, sq	CE	A	9.2347	 7
ž	Dry Soil	Ψ _s	127.	34	Initial he:	ight of spe	ecimen, cm	L	7.62	
	fic gravity assu		2.	70	Initial vol	l of spec,	cc = AL	v	70.368	
<u></u>	I solids, $cc = W_{g} + G$	۳ _s	47.		Initial voi	ld ratio =($(V - V_{s}) + V_{s}$	è		
rea	of standpipe, sq cm	a	0.9	15	Constant =			c	0.4920	
-	Test No.				1	1	2		<u>0.2281</u> 3	9
eich	t of specimen, cm	4	L	· ·	7 (2	· ·				
	ratio = $(AL - V_{5}) + V_{5}$		e		7.62 0.4920 ·					
		*******		la	1, 15					*****
uiti:	1 time 8/14/89		to			<u>2a</u>	25	3ª	<u>. · 3</u> Ъ	
	time 8/15/89		tr							-
	d time, sec = $t_f - t$	~		<u>5.30p</u>	m					
·	l head, cm	<u> </u>	ho	117000						
 nel	bead, cm	······································		124			·			
	+ br)		br	119						
	temperature, °C			01787	47					
		(1)		200						
	ity correction factor		R _T	1						
:::::: :::::::::::::::::::::::::::::::	cient of permeability	r, (2.656×10	o1/					
) (Correction factor for $L_{20} = 2.303 \frac{a}{A} \frac{L}{t} \log \frac{b}{B}$	visc o x F	osity c	$\frac{2.656 \times 10^{10} \times 10^{$	at 20 C obt	tained from	a table VII.	-1.		

9.2347 × 117000

•

GENERAL SOIL SAMPLE NOTES

Unless noted, all terms utilized herein refer to the "Standard Definitions" presented in ASTM D 653.

Standard Penetration Test (ASTM D 1586) - A 2.0-inch outside-diameter, 1 ³/g-inch inside-diameter split barrel sampler is driven into undisturbed soil by means of a 140-pound weight falling freely through a vertical distance of 30 inches. The sampler is normally driven three successive 6-inch increments. The total number of blows required for the final 12 inches of penetration is the Standard Penetration Resistance (N).

COHESIONLESS SOILS COHESIVE SOILS * APPROXIMATE DENSITY APPROXIMATE RANGE OF (N) CLASSIFICATION RANGE OF (N) CONSISTENCY 0-4 Very Loose 0-2 Very Soft 5-10 Loose 3-4 Soft 11-30 Medium Compact 5-8 Medium 31-50 Compact 9-15 Suff Over 50 Very Compact 16-30 Very Stiff 31-50 Hard Over 50 Very Hard

If clay content is sufficient so that clay dominates soil properties, clay becomes the principal noun with the other major soil constituent as modifier, i.e., silty clay. Other minor soil constituents may be included in accordance with the classification breakdown for cohesionless soils, i.e., silty clay, trace of sand, little gravel.

PARTICLE SIZES

The major soil constituent is the i.e., sand, silt, gravel. The secon	d major soil		- Greater than 12 inches (305 mm) - 3 inches (76.2mm) to 12 inches (305mm)
constituent and other minor cons reported as follows:	uluents are	Gravel-Coarse	- ³ / ₄ inches (19.05mm) to 3 inches (76.2mm)
Second Major Constituent (percent by weight)	Minor Constituents (percent by weight)	Gravel-Fine	- No. 4, ³ / ₁₆ inches (4.75mm) to ³ / ₄ inches (19.05mm)
Trace - 1 to 11 percent	Trace - 1 to 11 percent	Sand-Coarse Sand-Medium	- No. 10 (2.00mm) to No. 4 (4.75mm) - No. 40 (0.425mm) to No. 10 (2.00mm)
	Little - 12 to 22 percent	Sand-Fine	- No. 200 (0.074mm) to No. 40 (0.425mm)
Adjective - 12 to 35 percent (clayey, silty, etc.)	Some - 23 to 33 percent	Silt Clay	- 0.005mm to 0.074mm - Less than 0.005mm

And - Over 35 percent

SAMPLE AND TESTING DESIGNATIONS

 AS - Auger Sample - Directly from Auger Flight. SS - Split Spoon Sample LS - Split Spoon Sample (S) with Liner Insert 3 Inches in Length. ST - Shelby Tube Sample - 3-Inch Diameter Unless Otherwise Noted. PS - Piston Sample - 3-Inch Diameter Unless Otherwise Noted. S - Miscellaneous Samples (Bottle or Bag). RC - Rock Core - NX Core Unless Otherwise Noted. 	SB- Soil BoringTB- Test BoringHAB- Hand Auger BoringTP- Test PitMW- Monitoring WellOW- Observation WellP- Piezometer
--	--

SSW - Soil Sample Collected from an Excavation Wall

SSF - Soil Sample Collected from an Excavation Floor

WS - Water Sample

SUMMARY GRAIN SIZE ANALYSIS

1

 \odot

14

.

JOB: GAGE PRODUCTS CONPANY Project No: 83284.00 Wermons. Astw D422, D4318, D2487, D5084 and D2216

		NOISTURE	- - - - -	15)			14.1	15.2	10.6	13.4	1 4 1	r r • •		5. 4 1 - 4		11.V	20.0	14.4	
		PERNEABILITY MOISTURE	:4	(Cm / 26C)		ŧ		2.05-02					1.25-08						
****		ATTEREDC LIMITS CLASSIFICATION		UMIFIED		NS	10	i.		Ĵ	נו	บ	10	CL	ť	<u>с</u>	10	าว	
		LIMITS		ΡΙ			1 2 5				12.5	15.5	12.3	12.3	16.5	13.8	10.7	9.91 1 1 1	
		LTTEREEG		LL PL		NONPLASTIC			24.1 14.1	23.2 14.1	25.5 13.0	30.2 14.7	75.9 13.7	25.4 12.6	1.5 15.0	76 9 13.1	1	5. 13. 2 5. 5 13. 2	
			HIDRUMELER	0.125 0.075 0.050 U.UOS U.VOZ		0 0 0 0	4 0 4 4 7 0 4 4 7 0 4 4	60.1 36.U 20.5	62.2 35.5 21.2	58.2 32.5 25.3	61.5 36.8 28.2					•	001 1 10 1 10 10 10 10 10 10 10 10 10 10	46.5 25.5 12.0	
0 1777A	TEXTORE (PERCENT SINER	رق ا	460 H120 H200				3.8 32.3	2.4 71.3	5.1	82.3 71.1 62.1				5.1 75.7	5.2 75.1	4.5 75.4	5.1 75.9 6	3.5 67.0	82.8 73.3 6
ns Pbucd	TEXT		#10 #35	0	un nu		0.2 73.8	14.1 89.0	6 0 91 0	20 20 4		14.U 88.Y	1.4 84.3	5.3 90.7	95.9 91.1	94.3 90.0	94.9 90.7	95.8 91.4 8	93.0 88.5
D2487.			5 H	4.75 2	EE			07.1 9				96.4 5	96.4	97.6	0.26	96.7	97.2	97.8	95.7
METHODS: ASTW D422, D4318, D2487, D5084 and U241	Ĺ	-		LAB	NUMBER		9202089	000000	0000000	1000000	TANZOZA	9202092	9202093	9202100		9202095	9202096	9202097	9202098
YSTW D4				DEPTH	(ft)		1 0 - 0 5 2 C - 0 5			5.75-0.65	13.5-15.0	26.0-27.5	6.0-7.5	17.5-20.0	28.5-30.0	11.0-12.5	11 5-25.0	3.5-5.0	16.0-17.5
METHODS:				SANPLE	NUMBER											c1-13			

39209 West Six Mile Road Suite 110 • Livonia, Michigan 48152-2681 • PH (313) 591-0522 • FX (313) 591-0549

. . SUMMARY O.

1

JOB: GAGE PRODUCTS COMPANY Project No: 83284.00 METHODS: ASTM D2216, D2927, and D854

SAMPLE	DEPTH /f+)	LAB NIIMBER	MOISTURE (%)	WET DENSITY (1bs/ft3)	DRY DENSITY (lbs/ft3)	SPECIFIC GRAVITY (G at 20C)
VEGMON	,, <u>,</u> ,					
	u c t	07070	1 1 1	Disturbed Sample		2.03
SB-9	C.2-0.7	2102025	4			2,08
SB-9	3.5-5.0	9202080	19.2	DISCURDED SAMPLE	1	
	6 0-7 5	9202081	19.9	122.9	102.5	5 · 7
		000000	1 C 7 t	139.6	120.6	2.22
2-22	0.01-0.8	2002026	•			50 0
2B-9	11.0-12.5	9202083	26.1	137.3	C.01	
2		100000	U 77	146.5	131.4	2.28
SB-9	C. 11-0.01	7402054				06.6
9-82	18.5-20.0	9202085	12.1	148.6	C . 2 C T	2
		200000	A CT	142.5	126.8	2.29
SB-9	C.22-U.12	0002026	F . V F			7C C
6-85	23.5-25.0	9202087	13.1	143.9	7 . 1 7 7	- 1
	28 5-30 0	9202088	13.6	137.0	120.6	c7.7

Ċ

39209 West Six Mile Road Suite 110 • Livonia, Michigan 48152-2681 • PH (313) 591-0522 • FX (313) 591-0549

SS

1

þ

GRAIN SIZE DATA

Ę

•

A.S.T.M. D-422

Project: GAGE PRODUCTS CO. 132.90 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis.

131.71 = Dry wt. of total sample selected for analysis.

49.50 = Dry wt. of sample selected for hydrometer analysis. ...

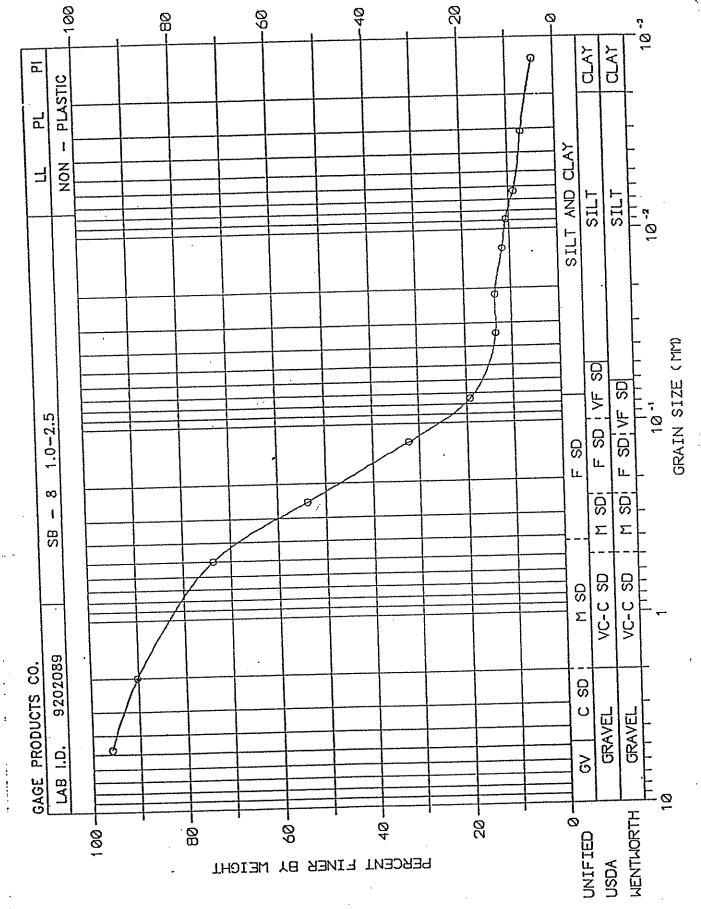
HYGROSCOPIC MOISTURE

16.69 = wt. of wet soil + container 16.54 = wt. of dry soil + container 1.60 = wt. of container 1.0 = % hygroscopic moisture 0.99006= moisture factor

SIEVE ANALYSIS (cumulative weights)

GRAVEL (greater than 2 MM) SAND (from hydrometer sediment)

Sieve Size 4.75 2.00	Weight Retained 5.34 12.93	% Passing 95.9 90.2	Sieve Size 0.500 0.250 0.125 0.075	Weight Retained 9.02 .19.97 31.80 38.90	Ttl. Sample % Passing 73.8 53.8 32.3 19.3
-------------------------------	-------------------------------------	------------------------------	---	--	--


HYDROMETER ANALYSIS

ElapsedInitialTimeTemp.Hydro.Zero(min.)(deg.C)ReadingCorntRa223.512.5523.512.55.01523.511.55.03023.511.05.06023.510.05.025023.59.05.0144023.57.55.0	nan Demont
---	------------

A.S.T.M D-4318

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

This sample is NONPLASTIC

:

A.S.T.M. D-422

ومحاصرة البراهيرة بالارتفارة والمراجع المورارين

Identification: SB - 8 8.5-10.0 Project: GAGE PRODUCTS CO. Lab No. 9202090

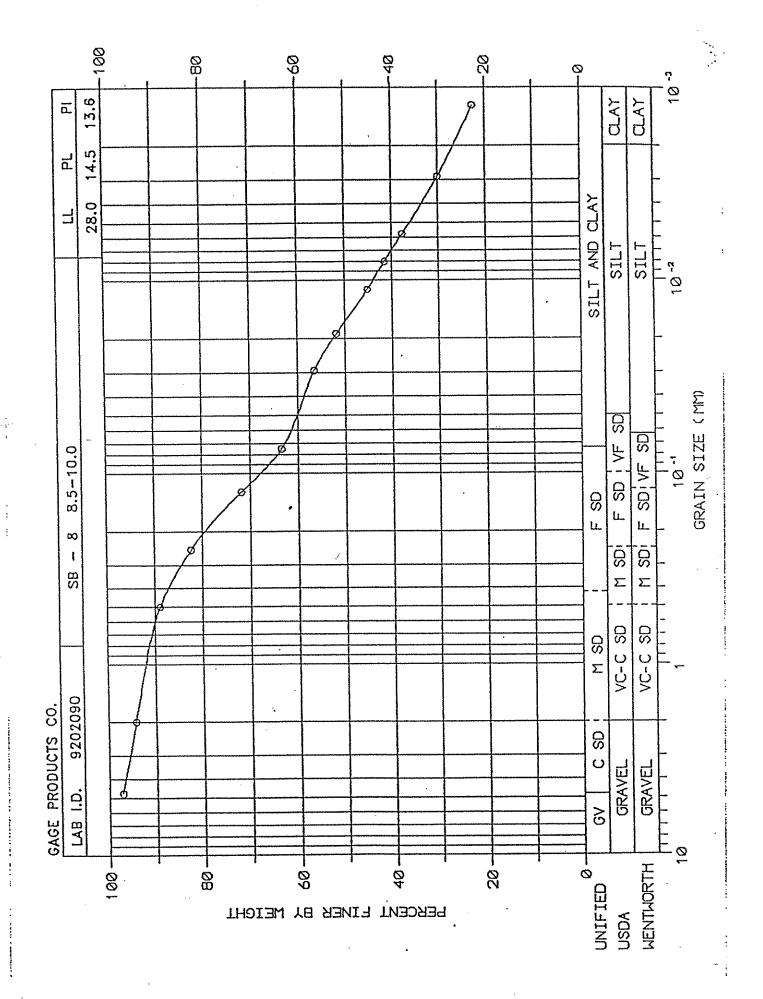
226.60 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis. 224.57 = Dry wt. of total sample selected for analysis. 49.52 = Dry wt. of sample selected for hydrometer analysis.

HYGROSCOPIC MOISTURE

20.50 = wt. of wet soil + container 20.32 = wt. of dry soil + container 1.60 = wt. of container 1.0 = % hygroscopic moisture 0.99048= moisture factor

SIEVE ANALYSIS (cumulative weights) GRAVEL (greater than 2 MM) SAND (from hydrometer sediment)

Sieve Size 4.75 2.00	Weight Retained 6.51 13.24	% Passing 97.1 94.1		2.71 6.16 11.75	Ttl. Sample & Passing 89.0 82.4 71.8 (2.2)
			0.075	16.20	63.3


HYDROMETER ANALYSIS

	Time sedimer	tation begins	Men	iscus correction	n = 1 Total
Elapsed	II.emo	Initial Hydro.	Zero	Dia.	Sample
Time (min.)	Temp. (deg.C)	Reading	Corr.	(MM)	Percent
t	(Ra 🗸		D	Passing
2	23.5	35.0	5.0	0.02933 0.01891	56.4° 51.7
5 15	23.5 23.5	32.5 29.0	5.0 5.0	0.01121	45.1
30	23.5	27.0	5.0	0.00804	41.4
60	23.5	25.0	5.0	0.00576	37.6 30.1
250 1440	23.5 23.5	21.0 17.0	5.0 5.0	0.00290 0.00124	22.6

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index A.S.T.H D-4318

wet soil + container wt. dry soil + container wt. container wt. percent moisture	PL 19.76 19.26 15.81 14.5	34 blows 25.05 23.07 15.73 27.0	24 blows 25.86 23.64 15.73 28.1	15 blows 28.14 25.27 15.71 30.0
---	---------------------------------------	---	---	---

Liquid Limit = 28.0 Plastic Limit = 14.5 Plasticity Index = 13.6

A.S.T.H. D-422

Identification: SB - 8 35.0-37.5 Project: GAGE PRODUCTS CO. Lab No. 9202099

378.50 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis. 376.27 = Dry wt. of total sample selected for analysis. 49.69 = Dry wt. of sample selected for hydrometer analysis.

HYGROSCOPIC MOISTURE

30.85 = wt. of wet soil + container 30.67 = wt. of dry soil + container 1.58 = wt. of container

= % hygroscopic moisture 0.99385= moisture factor

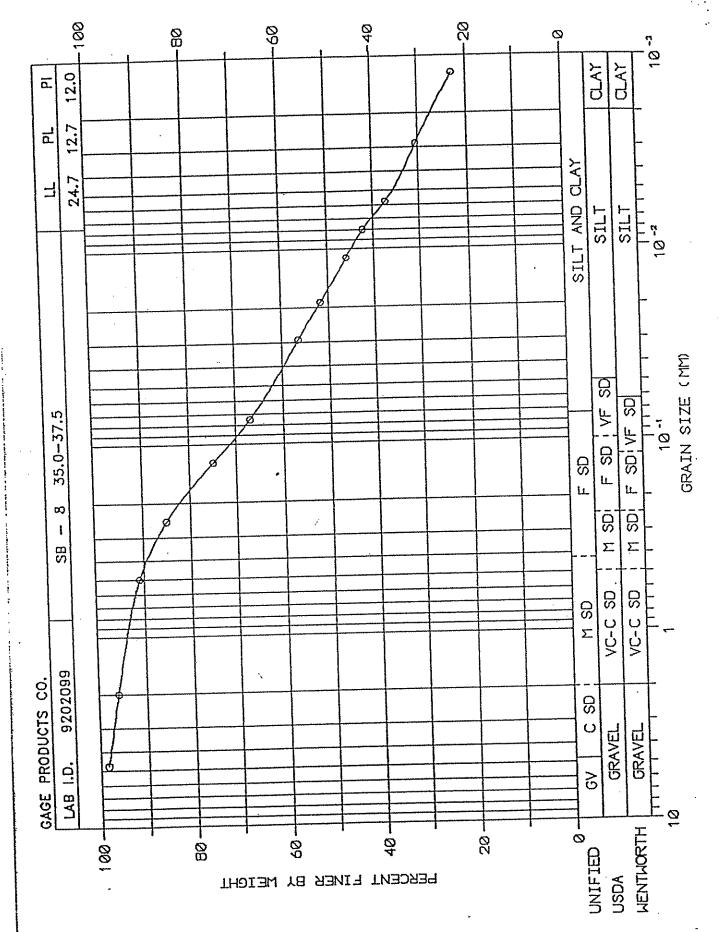
SIEVE ANALYSIS (cumulative weights) SAND (from hydrometer sediment) GRAVEL (greater than 2 MM)

Sieve Weight & Size Retained Passing 4.75 6.04 98.4 2.00 15.18 96.0	Sieve Size 0.500 0.250 0.125 0.075	Weight Retained 2.59 5.63 10.92 15.12	Ttl. Sample % Passing 91.0 85.1 74.9 66.8
--	---	--	--

HYDROMETER ANALYSIS

12:00PM =	Time sedime	ntation begins		Meniscus correction	
Elapsed Time (min.) t 2	Temp. (deg.C) 24.0	Initial Hydro, Reading Ra 34.5	Zero Corr. 5.0	Dia. (MM) D 0.02928 0.01888	Total Sample Percent Passing 56.4 51.6
5 15	24.0 24.0	32.0 29.0	5.0 5.0	0.01114	45.9
30	24.0 24.0 24.0	27.0 24.5	5.0	0.00799 0.00575	42.1 37.3
60 250 1440	24.0 24.0 24.0	21.0 17.0	5.0	0.00288 0.00123	30.6 22.9

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index


.18 24.21 25.15 .62 22.52 23.92 .12 15.88 15.83 4.0 25.5 27.6	
. 6 . 1	2 22.52 23.92 2 15.88 15.83

0.6

Liquid Limit = 24.7 Plastic Limit = 12.7 Plasticity Index = 12.0

...

A.S.T.M D-4318

' . •

A.S.T.M. D-422

Identification: SB - 9 13.5-15.0 Lab No. 9202091

254.00 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis. 252.75 = Dry wt. of total sample selected for analysis. 49.74 = Dry wt. of sample selected for hydrometer analysis.

HYGROSCOPIC MOISTURE

22.91 = wt. of wet soil + container 22.80 = wt. of dry soil + container 1.58 = wt. of container

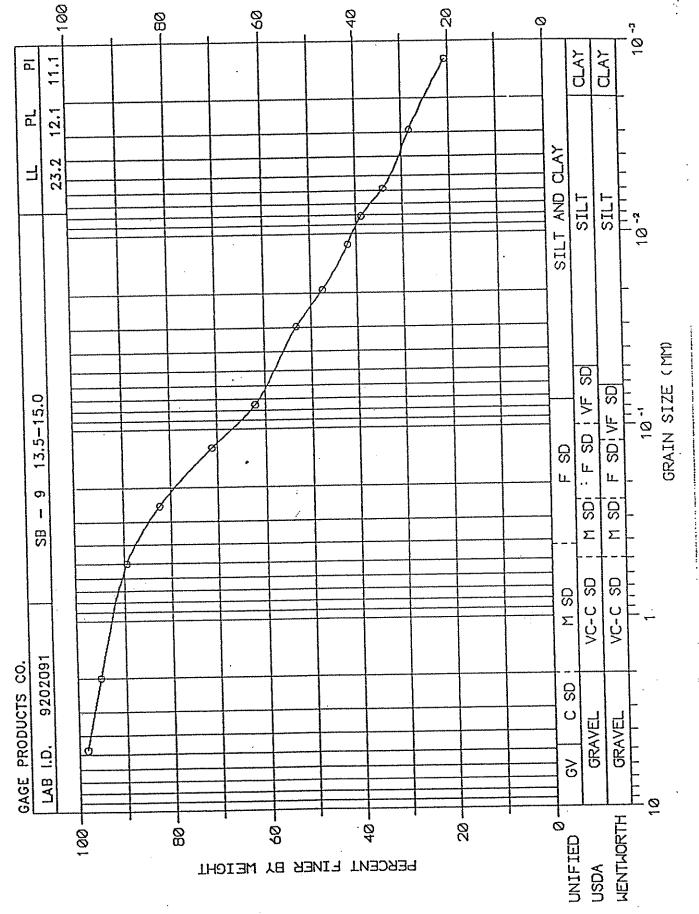
0.5

Project: GAGE PRODUCTS CO.

= % hygroscopic moisture 0.99484= moisture factor

SIEVE ANALYSIS (cumulative weights) SAND (from hydrometer sediment) GRAVEL (greater than 2 MM)

Sieve Size 4.75 2.00	Weight Retained 4.40 12.11	¥ Passing 98.3 95.2	. S 0 0	ize .500 .250	Retained 3.02 6.74	Ttl. Sample % Passing 89.4 82.3 71.1	
				0.125	12.62 17.32	62.1	


HYDROMETER ANALYSIS

9:34AM = Time sedimentation begins			Mer	niscus correctio	n = 1
Elapsed		Initial			Total
Time	Temp.	Hydro.	Zero	Dia.	Sample
(min.)	(deg.C)	Reading	Corr.	(MM)	Percent
t	•	Ra 📝		D	Passing
2	23.5	33.0	5.0	0.02979	53.1
5	23.5	30.0	5.0	0.01927	47.4
15	23.5	27.0	5.0	0.01137	41.7
30	23.5	25.5	5.0 ·	0.00812	38.8
60	23.5	23.0	5.0	0.00584	34.1
250	23.5	20.0	5.0	0.00292	28.4
1440	23.5	16.0	5.0	0.00125	20.8

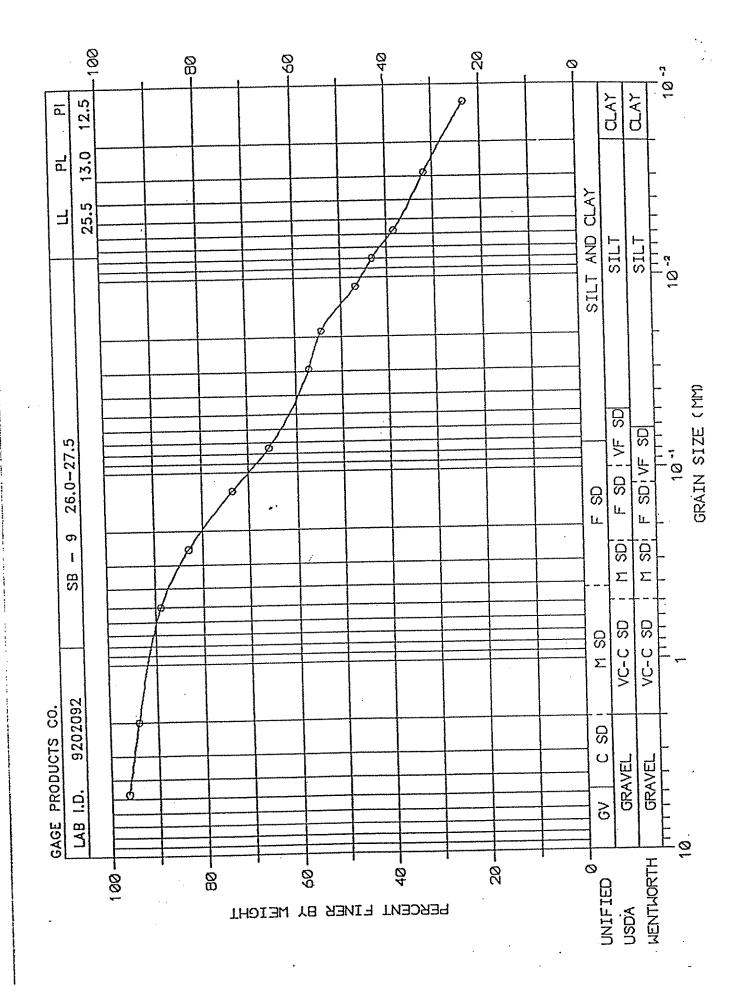
ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index A.S.T.M D-4318

wet soil + container wt. dry soil + container wt. container wt.	PL 21.08 20.54 16.07	30 blows 26.57 24.61 15.83	18 blows 25.42 23.51 15.55	10 blows 26.50 24.22 15.63
percent moisture	12.1	22.3	24.0	26.5

Liquid Limit = 23.2 Plastic Limit = 12.1 Plasticity Index = 11.1

A.S.T.H. D-422

Identification: SB - 9 26.0-27.5 Project: GAGE PRODUCTS CO. Lab No. 9202092 211.00 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis. 209.76 = Dry wt. of total sample selected for analysis. 49.69 = Dry wt. of sample selected for hydrometer analysis. HYGROSCOPIC MOISTURE 22.47 = wt. of wet soil + container 22.34 = wt. of dry soil + container 1.62 = wt. of container 0.99377= moisture factor = % hygroscopic moisture 0.6 SIEVE ANALYSIS (cumulative weights) SAND (from hydrometer sediment) GRAVEL (greater than 2 MM) Ttl. Sample Weight Sieve ¢. Weight Sieve Retained % Passing Size Retained Passing Size 2.74 88.9 0.500 96.4 7.50 4.75 82.9 5.88 0.250 94.0 12.50 2.00 73.3 0.125 10.96 65.8 14.94 0.075 HYDROMETER ANALYSIS 9:36AM = Time sedimentation begins Meniscus correction = 1 Total Initial Elapsed Sample Dia. Zero Hydro. Time Temp. Percent (MM) Corr. (deg.C) Reading (min.) Passing Ð Ra 🖉 t 0.02922 57.1 5.0 35.5 2 23.5 54.3 0.01870 5.0 34.0 23.5 5 46.8 0,01113 5.0 30.0 23.5 15 43.1 0.00798 5.0 28.0 23.5 30 38.4 0.00574 5.0 25.5 23.5 60 0.00288 31.9 5.0 22.0 23.5 250 23.4 0.00123 5.0 17.5 23.5 1440


> ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

wet soil + container wt. dry soil + container wt. container wt. percent moisture	PL 19.39 18.98 15.82 13.0	40 blows 25.01 23.28 16.06 24.0	26 blows 25.48 23.53 15.82 25.3	11 blows 25.54 23.46 16.12 28.3
---	---------------------------------------	---	---	---

Liquid Limit = 25.5 Plastic Limit = 13.0 Plasticity Index = .12.5

1

A.S.T.M D-4318

A.S.T.M. D-422

Project:	GAGE PRODUCTS	со.	Identific L	ation: SB - 10 ab No. 9202093	6.0-7.5	
50.00 =	Air dry wt.	of sample sel otal sample s	lected for n elected for	for analysis. ydrometer analy analysis. meter analysis.		
HYGROSCOPIC MOISTURE 21.27 = wt. of wet soil + container 21.09 = wt. of dry soil + container 1.63 = wt. of container 0.9 = % hygroscopic moisture 0.99084= moisture factor						
GRAVEL (9	SI greater than 2	EVE ANALYSIS MM)	(cumulative SAND (fro	e weights) om hydrometer se	ediment)	
Size Re	Weight % etained Passi 8.25 96.4 19.86 91.4	ng	0.500 0.250 0.125	Weight Ttl. Sa etained % Pass 3.86 84. 7.11 78. 12.07 69. 15.99 61.	3 3 1	
			man INITVAT	o		
		HYDROME	TER ANALYSI	a Secue correctio	n = 1	
9:38AM =	Time sediment	rnitial	17611	iscus correctio	Total	
Elapsed	T • • • •	Hydro.	Zero	Dia.	Sample	
Time	Temp. (deg.C)			(MM)	Percent	
	(deg.c)	Ra /	00111	D	Passing	
.t 2	23.5	34.0	5.0	0.02956	53.0	
5	23.5		5.0	0.01906	48.4	
15	23.5	29.0	5.0	0.01121	43.8	
30	23.5	27.0	5.0	0.00804	40.2	
50 60	23.5	25.0	5.0	0.00576	36.5	
00	23.5	23.0	5.0	0 00290	29.2	

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

5.0

5.0

21.0

17.5

wet soil + container wt. dry soil + container wt. container wt. percent moisture	PL 19.78 19.28 15.88 14.7	35 blows 24.95 22.90 15.73 28.6	23 blows 24.91 22.77 15.68 30.2	10 blows 23.05 21.15 15.68 34.7
---	---------------------------------------	---	---	---

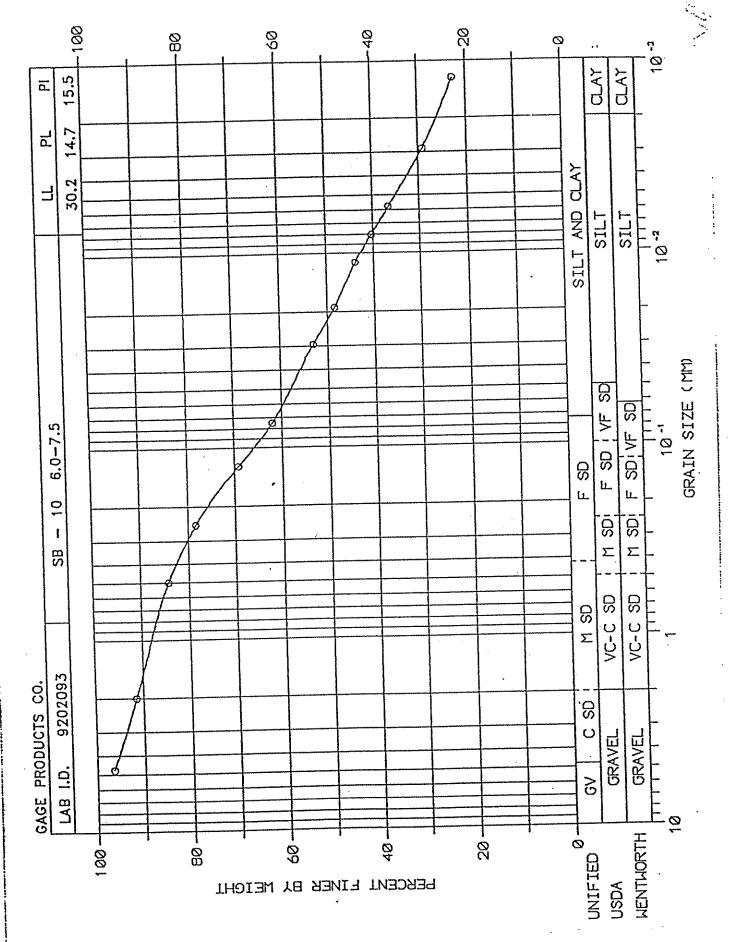
23.5

23.5

250

1440

Liquid Limit = 30.2 Plastic Limit = 14.7 Plasticity Index = 15.5


0.00290

0.00123

29.2

22.8

A.S.T.M D-4318

••

:

•

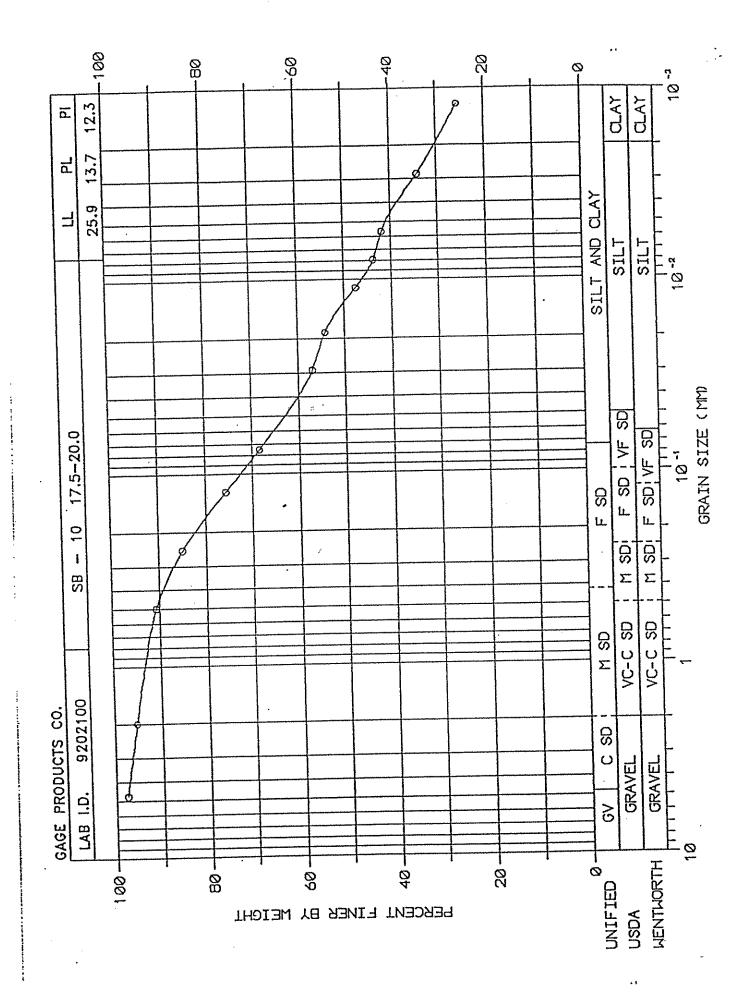
-

5

		WW ENGINEERIN GRAIN SI	G & SCIE ZE ANALY		Α.9	S.T.M.	D-422
Project: G	AGE PRODUCTS	со.	Identif	ication: SB Lab No. 920	- 10 1 [°] 2100	7.5-20.	0
50.00 =	Air dry wt. o Air dry wt. o Dry wt. of to Dry wt. of sa	t sample sele	lected f	or analysis.		5.	
		HYGROSCO	PIC MOIST	URE			
22.26 = 1	wt. of wet so	il + containe:	r 22.13 =	= wt. of dry	soil +	contai	ner
1.59 = 1	wt. of contain	ner					
0.6 =	<pre>% hygroscopic</pre>	moisture	0.99371	L= moisture b	Cactor		
GRAVEL (g	SI reater than 2	EVE ANALYSIS MM)	(cumulat) SAND (ive weights) from hydrome	ter sedi	iment)	
Sieve W	eight %		Sieve		tl. Samp		
Ciza RA	tained Passi	nq			Passing	3	
	9.46 97.6	2		2.41	90.7		
****	18.66 95.3	i i	0.250	5.33	85.1		
1.00		à		10.23	75.7		
			0.075	14.08	68.3		
		11100 OVD	TER ANALY	010			
	mi andimo.			Meniscus cor	rection	= 1	
12:04PM =	= Time sedimer	Initial				Total	
Elapsed Time	Temp.	Hydro.	Zero	Dia.		Sample	
(min.)	(deg.C)	Reading	Corr.	(MM)		Percei	
t t	(409.0)	Ra		D		Passi	ng
2	24.0	35.0	5.0	0.0291		57.0	
5	24.0	33.5	5.0	0.0186		54.1	
15	24.0	30.0	5.0	0.0110		47.5 43.7	
30	24.0	28.0	5.0	0.0079		43.7	
60	24.0	27.0	5.0	0.005		34.2	
250	24.0	23.0	5.0	0.002		25.6	
1440	24,0	18.5	5.0	0.001	4 L	2.2.0	

.

والمرام الحاد ومنهو الرواح مراميني والارد الرميد والانتخاص والارام الم

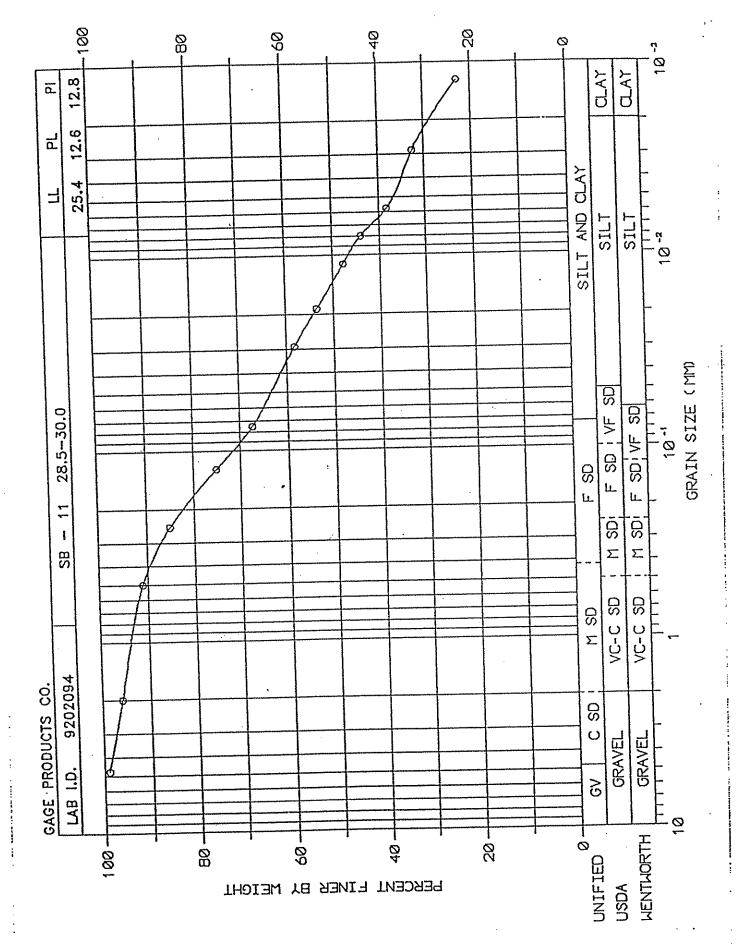

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

A.S.T.M D-4318

81 15.55 15.63	5
18	6 22.40 22.15 1 15.55 15.63

1

Liquid Limit = 25.9 Plastic Limit = 13.7 Plasticity Index = 12.3


			WW ENGINEERI GRAIN S	NG & SCIENC IZE ANALYSI	E INC. S	A.S.T.H. D-422
	Project: G	AGE PRODUCTS	со.	Identific I	cation: SB - Jab No. 92020	11 28.5-30.0 94
	50.00 =	Air dry wt. Air dry wt. Dry wt. of t Dry wt. of s	of sample ser stal sample s	ected for a	r analysis.	iarje ·
			HYGROSCO	OPIC MOISTU	RE	
	23.43 =	wt. of wet so	il + containe	er 23.30 =	wt. of dry so	oil + container
	0.6 =	wt. of contai % hygroscopic	: moisture	0.55405-	morscare ra	
		SI	EVE ANALYSIS	(cumulativ	e weights)	
	GRAVEL (9	reater than 2	2 MM)	SAND (fr	om hydromete	r sediment)
					Weight Ttl	
	Sieve W	eight %	•	Sleve Size F	vergine icr	assing
	Size Re	tained Pass	ing	0 500	tetained % P 2.48	91.1
	4.75	2.33 99.0 9.22 95.	0 U	0 250	5 54	85.2
	2.00	9.22 55.	5	11 1 / 5		1.2.1.2
				0.075	14.86	67.2
					T ()	•
		Time sedimen	HYDROME	TER ANALYS	niscus correc	tion = 1
	9:40AM =	Time seaimen	Initial	,		• • • • • • • • • • • • • • • • • • • •
	Elapsed Time		Hydro.	Zero	Dia.	Sample
	(min)	(deg.C)	Reading	Corr.	(MM)	Percent
	4mru+1 +	(029.0)	Ra	e.		ni-
	t 2 5	23.5	35.5	5.0	D 0.02922	58.3
	5	23.5 23.5	33.0	5.0	0.01004	2010
		23.5	30.0	5.0	0.01112	11.1
	30	23.5	28.0	5.0	0.00798 0.00576	38.2
•	60	23.5	25.0	5.0	0.00288	·
	250	23.5	22.0	5.0 5.0	0.00124	.
	1440	23.5	17.0	5.0	0.00221	
). 171-17	ERBERG LIM	T TT S	A.S.T.M D-43
			H H H	مقلماته المتحدد بمالية		

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

A.S.T.M D-4318

wet soil + container wt. dry soil + container wt. container wt. percent moisture	PL 20.20 19.73 16.01 12.6	28 blows 26.48 24.39 15.95 24.8	16 blows 30.20 27.21 16.07 26.8	12 blows 24.73 22.82 16.01 28.0
---	---------------------------------------	---	---	---

Liquid Limit = 25.4 Plastic Limit = 12.6 Plasticity Index = 12.8

WW ENGINEERING & SCIENCE INC. A.S.T.M. D-422 GRAIN SIZE ANALYSIS Identification: SB - 12 11.0-12.5 Project: GAGE PRODUCTS CO. Lab No. 9202095

190.80 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis. 189.22 = Dry wt. of total sample selected for analysis. 49.56 = Dry wt. of sample selected for hydrometer analysis.

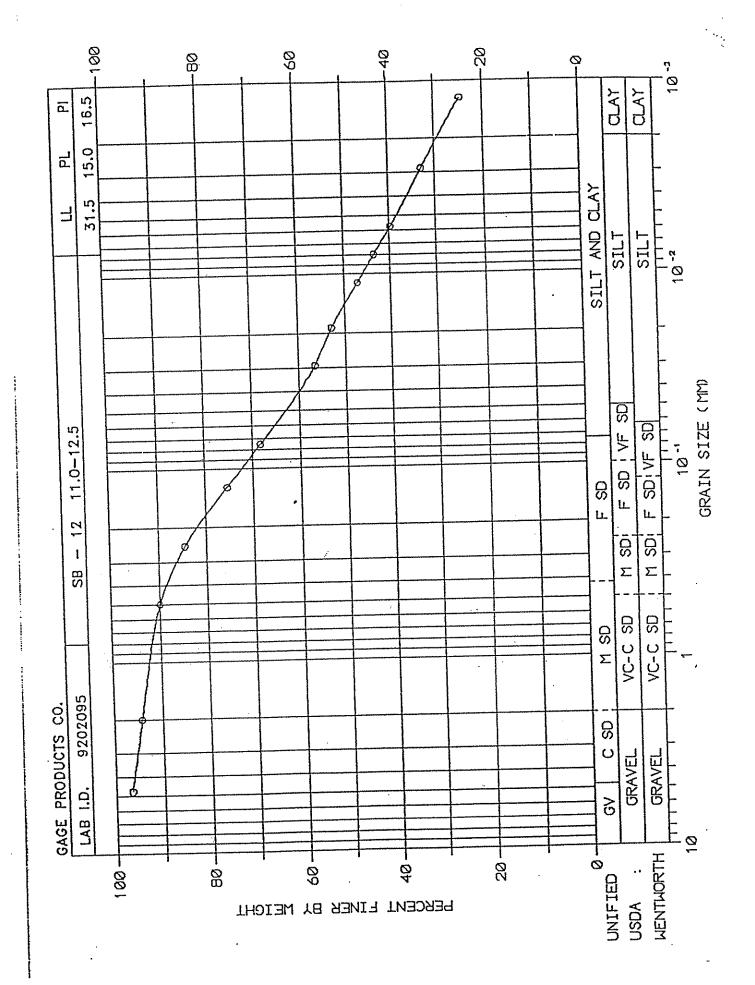
HYGROSCOPIC MOISTURE

22.15 = wt. of wet soil + container 21.97 = wt. of dry soil + container 1.59 = wt. of container 0.99125= moisture factor 0.9 = % hygroscopic moisture

SIEVE ANALYSIS (cumulative weights) SAND (from hydrometer sediment) GRAVEL (greater than 2 MM)

Sieve Size 4.75 2.00	Weight Retained 6.26 10.73	<pre>% Passing 96.7 94.3</pre>		Sieve Size 0.500 0.250 0.125 0.075	Weight Retained 2.29 5.18 9.93 13.71	Ttl. Sample % Passing 90.0 84.5 75.4 68.2
-------------------------------	-------------------------------------	--------------------------------	--	---	---	--

HYDROMETER ANALYSIS


HYDROMETER	101100 1 + = -	-
9:42AM = Time sedimentation begins	Meniscus correction	= 1 Total
ElapsedInitialTimeTemp.Hydro.Z(min.)(deg.C)ReadingCtRaZ223.535.05523.533.051523.530.053023.528.056023.526.0525023.522.55	ZeroDia.Corr.(MM)D5.00.029335.00.018845.00.011135.00.007985.00.005725.00.002875.00.00123	Sample Percent Passing 56.5 52.8 47.1 43.3 39.6 33.0 24.5

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

dry soil + container wt.	PL	40 blows	17 blows	11 blows
	20.21	22.76	25.08	24.18
	19.67	21.15	22.77	21.98
	16.07	15.73	15.77	15.64
	15.0	29.7	33.0	34.7

Liquid Limit = 31.5 Plastic Limit = 15.0 Plasticity Index = 16.5

A.S.T.M D-4318

	v	W ENGINEERIN GRAIN SI	IG & SCIEN	NCE INC. SIS	A.S.T.M. D-422
Project: G	AGE PRODUCTS (20.	Identif	ication: SB - Lab No. 9202	12 23.5-25.0 096
50.00 =	Air dry wt. o Air dry wt. o Dry wt. of to Dry wt. of sa	f sample sel tal cample s	ected for elected f	or analysis.	indijolo.
		UVCDAGCA	PIC MOIST	URE	
			~ 23 35 =	wt. of dry :	soil + container
23.48 = 1	WE. OF WET SOL	T + CONCAINE	L, 23135		
1.58 = 9 0.6 = 9	wt. of contain % hygroscopic	moisture	0.99406	= moisture f	actor
		VE ANALYSIS	(cumulati	ve weights)	
			COMUTECT	rom hydromet	er sediment)
GRAVEL (g	reater than 2	mm)	SWID (1	Low njuromet	· · · · · ·
		·	Sieve	Weight Tt	1. Sample
Sieve W					Passing
Size Re	tained Passir	ng	0 500	2.19	90.7
4.75	6.21 97.2		0,000	5.11	
2.00	11.19 94.9		0.200	9.97	75.9
					68.4
			0.075	13.07	0014
		HYDROME	TER ANALY	SIS	
0 . A & M =	Time sediment			eniscus corre	ection = 1
Elapsed	Time Decement	Initial			Total
Time	Temp.	Hydro.	Zero	Dia.	Sample
(min.)	(deg.C)	Reading	Corr.	(MM)	Percent
•	(acg.o)	Ra		D	Passing
. t 2	23.5	37.5	5.0	0.0287	
2	23.5	34.5	5.0	0.0186	2 55.8
5	23.5	32.0	5.0	0.0109	6 51.0
	23.5	30.0	5.0	0.0078	7 47.3
30	23.5	27 0	5.0	0.0056	

		ATTERBI	ERG LIM	ITS		A.5
Liquić	i limit,	Plastic	Limit,	Plasticity	Index	

5.0

5.0

5.0

27.0

23.5

19.0

S.T.M D-4318

35.0

26.5

11 blows 21 blows 39 blows \mathbf{PL} 25.93 24.80 25.19 19.98 wet soil + container wt. 22.92 23.66 23.31 dry soil + container wt. 19.52 16.01 16.07 15.95 16.01 container wt. 29.7 27.4 25.5 13.1 percent moisture

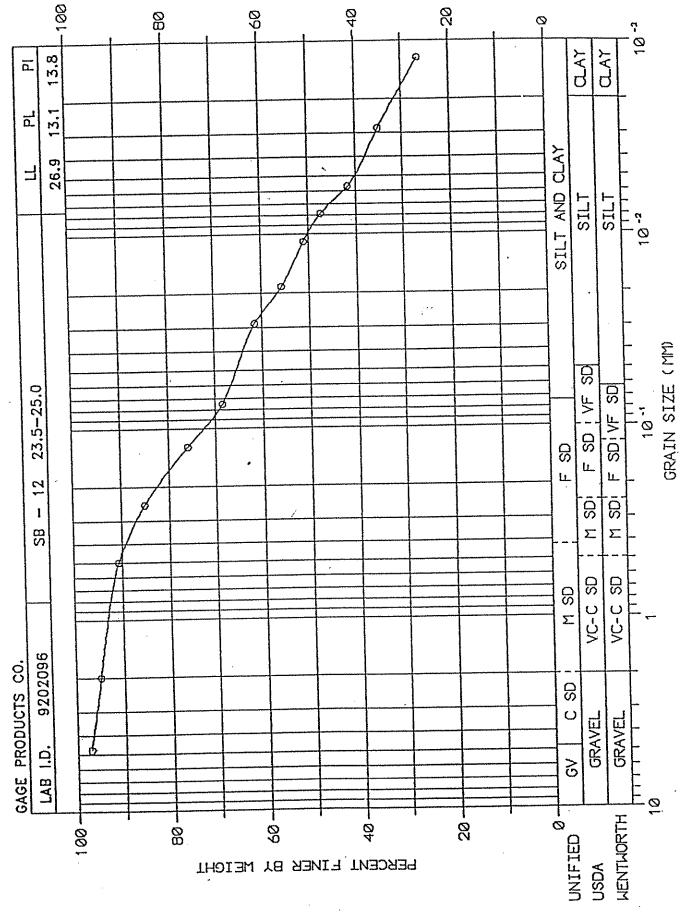
.

60

250

1440

23.5


23.5

23.5

Liquid Limit = 26.9 Plastic Limit = 13.1 Plasticity Index = 13.8

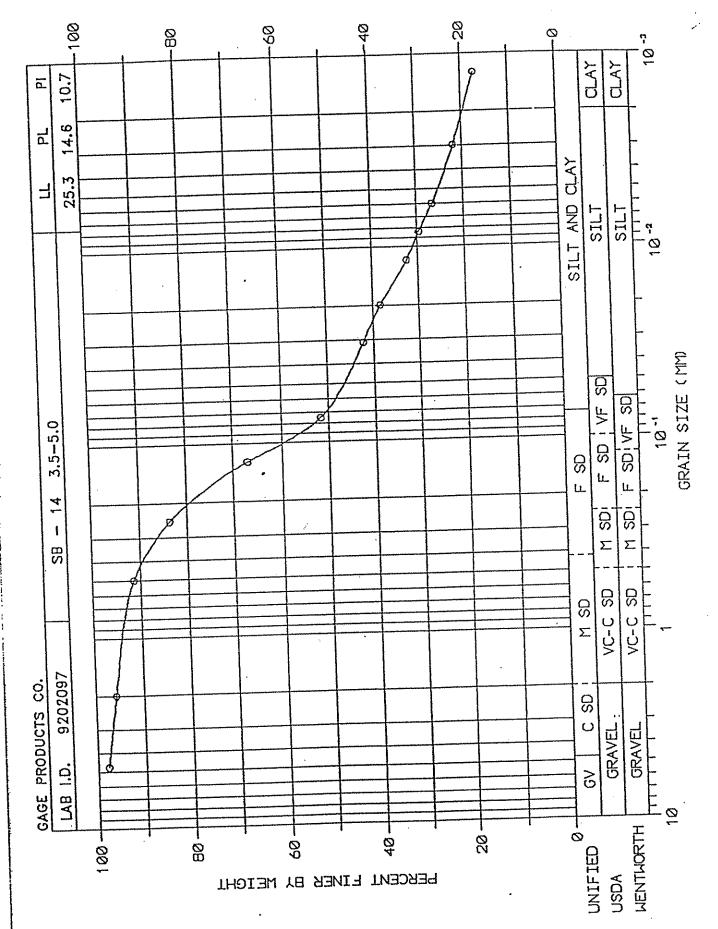
0.00285

0.00122

ļ.

	ى بىلى يەر بىلەت ئۆرمىلىيىدە تەر بىلىمەت مەر بىلىمەت يەر يەر يەر يەر يەر يەر يەر يەر يەر يەر	یہ ای کو ایک کار او <u>کے اور اور اور اور اور اور اور اور اور اور</u>			
,	Ŵ	Ø ENGINEERING GRAIN SIZ	3 & SCIE LE ANALY	NCE INC. SIS	A.S.T.M. D-422
Project:	GAGE PRODUCTS C	0.	Identif	ication: SB - 1 Lab No. 920209	4 3.5-5.0 7
50.00	<pre>= Air dry wt. of = Air dry wt. of = Dry wt. of tot = Dry wt. of sam</pre>	sample sele	locted f	or analysis.	-
		HYGROSCOP	TC MOIST	TURE	
	= wt. of wet soil	+ container	23.82	= wt. of dry soi	l + container
24.01 1.32 0.8	<pre>= wt. of wet sold = wt. of containe = % hygroscopic n</pre>	r noisture	0.9916	3= moisture fact	or
GRAVEL	SIEV (greater than 2)	VE ANALYSIS (MM)	cumulat SAND (ive weights) from hydrometer	sediment)
Size 4.75	Weight % Retained Passin 4.74 97.8 9.04 95.8	đ	Size 0.500 0.250	Weight Ttl. Retained % Pas 2.26 93 6.35 8 14.89 6 22.89 5	551ng 1.4 3.5
		HYDROMET		1010	· ·
		HYDROMET	ы какта К	Amiscus correct	ion = 1
9:46AM	= Time sedimenta	Initial	ł.	Initenene oostaate	Total
Elapse		Hydro.	Zero	Dia.	Sample
Time		Reading	Corr.	(MM)	Percent
(min.)	(deg.c)	Ra		D	Passing
t 2	23.5	27.0 25.0	5.0	0.03113	42.1
2 5	33 E	25.0	5.0	0.01996	38.3
15	23.5	22.11	5.0	0.01176	32.5
30	23.5	20.5	5.0	0.00840	23.1
50 60	23.5	19.0	5.0	0.00599	
250	23.5	16.5		0.00298	17.2.
1440	23.5	14.0	5.0	0.00126	11.4.

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index


۰.

wet soil + container wt. dry soil + container wt. container wt. percent moisture	PL 20.16 19.64 16.07 14.6	37 blows 24.69 22.96 15.73 23.9	26 blows 24.10 22.41 15.76 25.4	12 blows 23.59 21.87 15.64 27.6
---	---------------------------------------	---	---	---

:

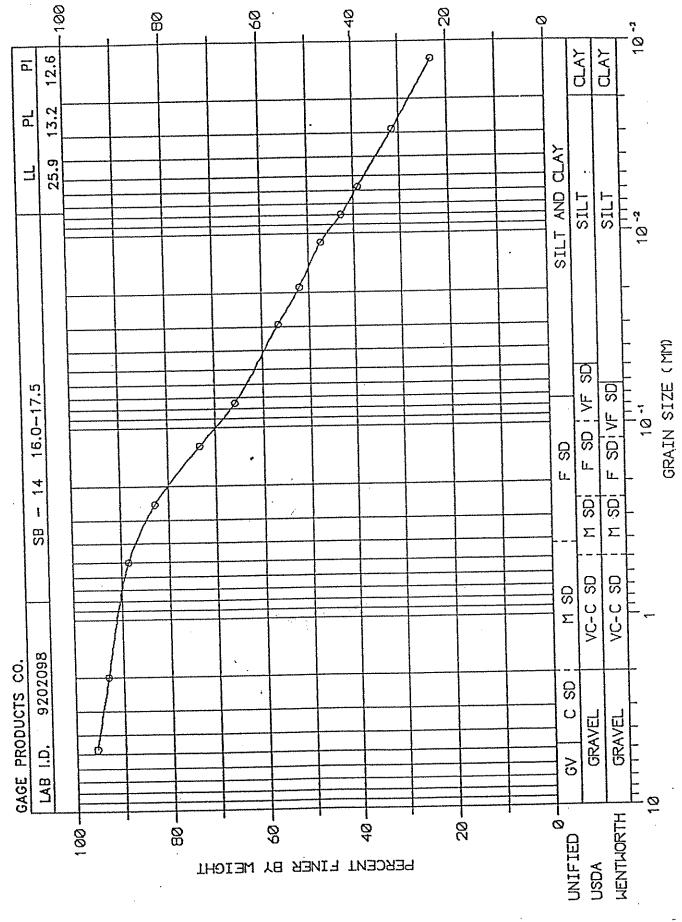
Liquid Limit = 25.3 Plastic Limit = 14.6 Plasticity Index = 10.7

A.S.T.M D-4318

WW ENGINEERING & SCIENCE INC. GRAIN SIZE ANALYSIS

A.S.T.M. D-422

Identification: SB - 14 16.0-17.5 Project: GAGE PRODUCTS CO. Lab No. 9202098 216.10 = Air dry wt. of total sample selected for analysis. 50.00 = Air dry wt. of sample selected for hydrometer analysis. 214.90 = Dry wt. of total sample selected for analysis. 49.70 = Dry wt. of sample selected for hydrometer analysis. HYGROSCOPIC HOISTURE 23.42 = wt. of wet soil + container 23.29 = wt. of dry soil + container 1.64 = wt. of container 0.99403= moisture factor 0.6 = % hygroscopic moisture SIEVE ANALYSIS (cumulative weights) SAND (from hydrometer sediment) GRAVEL (greater than 2 MM) Ttl. Sample Sieve Weight ф. Weight Retained % Passing Sieve Size Retained Passing Size 88.5 2.41 0.500 95.7 9.18 4.75 82.8 5.46 0.250 93.0 15.00 2.00 73.3 10.52 0.125 65.8 14.56 0.075 HYDROMETER ANALYSIS +ion = 1


0 · 18 2 M =	Time sedimen	tation begins	Men	iscus correction	ı = L Tofal
9:48AM = Elapsed Time (min.) t 2 5 15 30 60 250 1440	Time sedimen Temp. (deg.C) 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	Initial Hydro. Reading Ra 35.5 33.0 30.5 28.0 26.0 22.0 17.5	Zero Corr. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dia. (MM) D 0.02922 0.01884 0.01108 0.00798 0.00572 0.00288 0.00123	Total Sample Percent Passing 56.5 51.9 47.2 42.6 38.9 31.5 23.2
T330					

ATTERBERG LIMITS Liquid limit, Plastic Limit, Plasticity Index

wet soil + container wt. dry soil + container wt. container wt. percent moisture	PL 19.32 18.94 16.07 13.2	40 blows 23.48 21.96 15.73 24.4	23 blows 23.34 21.76 15.68 26.0	15 blows 22.83 21.29 15.73 27.7
---	---------------------------------------	---	---	---

Liquid Limit = 25.9 Plastic Limit = 13.2 Plasticity Index = 12.6

A.S.T.M D-4318

PERMEABILITY DATA

5010 Stories Mill Reard • 13[corning[tent, frelinger, 47408-1914[8412] (TR60972 Fax [8412) (TS) (194 WW Engineering & Science t - Time from initial to final measurements Reported 1.98-08 2.08-08 [secs] [cm/sec] [cm/sec] . H S hf - Pinal standplpe level difference ho - Initial standpipe difference 2.02-08 581.2 168420 2.0E-03 pf - Final pressure difference No - Initial head difference Hf - Pinal head difference 90480 78420 K - Permeability 607.9 598.5 PORNULA: (EB) H DATE: 198 452 385 hlf-h2f (22) ų, 593.6 614.0 605.2 (ca) 0 APPROVED BY:__ TEST COMDITIONS: Back pressure 40 and 30 psi; Confining pressure 45 psi; Gradient 66.7 to 63.2; h20 - Initial standpipe level, right side P2f - Pinal manometer reading, right side 322 513 hlo - Initial standpipe level, left side plf - Final manometer reading, left side P20-Plo P2E-P1E hlo-h20 (22) h2f - Pinal standpipe level, right side hlf - Final standpipe level, left side ę (11b/ft) (ma lig) (ma lig) Po - Initial pressure difference 11 915 110 128.2 PERNEABILITY TEST REPORT Density X&THOD: ASTN D5084 - Palling head utilizing back pressure and confining pressure. 5 Dry 114 114 115 D d Xolsture (1) 215 163 196 15.2 Katural hZĽ (am H20) 374.6 413 615 581 LAB NO. 9202099 (CEJ) μĹ 582 583 10.71 А (св2) P2£ (na 11g) p20 - Initial manometer reading, right side plo - Initial manometer reading, left side 7.20 167 157 (CE) PIE Tap water permeant. 151 112 9.20 (CX) hIo h2o (mm H2O) --- Project Number 83284.00 615 615 SB-8 35.0-37.5 0.70 JOB: GAGE PRODUCTS COMPANY a (cz2)) - Sample diameter a - Standpipe area L - Sample length 582 582 583 Depth A - Sample area P20 [11] -------(2H ##) * • • • • • • • • • • • • EXPLANATION: SAXPLE DATA: TEST DATA: 168 167 p10 Boring -----

WW Engineering & Science t - Time from initial to final measurements Reported 1.25-08 [secs] [cm/sec] [cm/sec] Ho 38 hf - Pinal standpipe level difference ho - Initial standpipe difference 1.28-08 90420 1.28-08 99000 1.28-08 pf - Pinal pressure difference Ho - Initial head difference Hf - Pinal head difference 82260 X - Permeability 1 633.9 621.5 FORKULA: (**ca**) 618.1 DATE: 365 hlf-h2f (ar) 2 637.8 625.7 621.5 (ca) Ho. APPROVED BY: TEST COMDITIONS: Back pressure 40 and 30 psi; Confining pressure 45 psi; Gradient 60.2 to 58.3; h2o - Initial standpipe level, right side p2f - Pinal manometer reading, right side plf - Pinal manometer reading, left side 385 hlo - Initial standpipe level, left side P20-Plo P2f-P1f hlo-h20 h2f - Pinal standpipe level, right side hlf - Pinal standpipe level, left side (an lig) (an lig) (an) ЧQ Po - Initial pressure difference (1b/ft3) 436 436 436 119.1 Denslty PERKEABILITY TEST REPORT XXXXOD: ASTM D5084 - Palling head utilizing back pressure and confining pressure. 14 Dry 116 116 116 0d Kolsture 132 13.7 Katural Ę h2f (RR [[20] 131.6 111 151 110 (ca)) hlf 9202100 E LAB NO. 40.71 (cn2) p2f ~ (ma Hg) P20 - Initial manometer reading, right side Plo - Initial manometer reading, left side 7.20 (ca) PIL fap water permeant. 10.60 112 (ca) h20 (mm H20) --- Project Number 83284.00 SB-10 17.5-20.0 0.70 2118 JOB: CAGE PRODUCTS COKPANY hlo م (۲۳2) D - Sample diameter a - Standpipe area (## Hg) . - Sample length 111 Depth (ft) A - Sample area EXPLANATION: SAXPLE DATA: TEST DATA: 305 II P10 Boring

-

HIDLURG. R. LOUNCE LLON COMMITTEE COM

Appendix B2-3

Material Stored

P.I.P.P Rev. 18 Revision Date: 1/9/12

Fuels and	I Fuel Additives
HR0001	Alkylate
HR0002	Benzene
HR0003	Ethylbenzene
HR0004	Natural Gasoline
HR0005	Heavy Straight Run
HR0006	Catcracked
HR0007	MSo Peerless
HR0008 HR0009	Valero Diesel Solvent 200
HR0010	Ofa 77000
HR0011	Blue Dye
HR0012	Oga 293A
HR0013	40 Pale Oil
HR0014	Isopentane
HR0015	Cyclohexane
HR0016	FRN / Pre Flash
HR0017 HR0018	Diisobutylene Shellsol B Ht
HR0018	Shellsol D38
HR0020	Shellsol D60
HR0021	Hexene
HR0022	EEE, EPA Tier II /
HR0023	SME 100 Biodiesel
HR0024	Nalco 5403
HR0025	Hitec 4733
HR0026 HR0027	Hitec 4705 Oil Green M2
HR0028	Dci-4A
HR0029	100 Pale Oil/Nytex
HR0030	Age 400 / FRS / #1
HR0031	2007 Diesel Cert
HR0032	Valero High Sulfur
HR0033	F-173 Diesel (0.05% S) Aromatic 200
HR0034 HR0035	MTBE
HR0036	Euro V E5 Gasoline (HF0773)
HR0037	MSo Calumet
HR0038	Isopar G
HR0039	Infineum R696
HR0040	Purple Dye
HR0041 HR0042	Orange Dye Ditert-Butyl Disulfide
HR0042	XE-M4CX322-M Summer (HF0075)
HR0045	Oga 402
HR0046	Yellow Dye
HR0047	Nalco 5375
HR0048	Diethylene Glycol
HR0049	Red Dye
HR0051 HR0052	RME Exxsol D80
HR0053	Isopar H
HR0054	Isopar M
HR0055	LPA Solvent
HR0056	Isooctane
HR0057	Isopar E
HR0058 HR0059	Unadditized Ethanol N-Hexane
HR0060	Cda-20 Ethanol
HR0061	Xylene
HR0062	Toluene
HR0063	Aromatic 100
HR0064	Aromatic 150
HR0065	N-Butane
HR0066 HR0067	Isobutane Isopar C
HR0067	Fuel Grade Ethanol
HR0069	Stadis 450
HR0070	M-Pyrol
HR0071	Isopar L
HR0072	70% T-Butyl Hydroperoxide
HR0073	Isoprene 99%
HR0074 HR0079	DMA 54 Tetramer M

Fragrances

Fragran	663
CO0023	Rain Fresh Fg#0126
CO0024	Orange Fragrance
CO0025	Vanilla Fragrance
CO0027	Apple Lemon Exp
Dura	
Dyes	D45000 Ohmenselist Dhar
DY0002	D15003 Chromatint Blue
DY0003	L84020 Liquitint Violet
DY0010	15870 Oil Violet
DY0011	D12005/40 Fiber Orange
DY0007	Liquitint Green
DY0027	Luconyl 1252 Yellow
DY0029	M93020 Chromatint Red
DY0087 DY0098	Oil Orange M2 Oil Blue B
210000	
Esters	
ES0001	Ektapro EEP
ES0001	Ethyl Acetate 99%
ES0002 ES0003	Isopropyl Acetate
ES0005	Isobutyl Acetate
ES0007	Normal Butyl Acetate
ES0010	Polysolv Ee Acetate
ES0011	Polysolv Eb Acetate
ES0013	Polysolv Db Acetate
ES0015	Isobutyl Isobutyrate
ES0016	2-Ethyl Hexyl Acetate
ES0017	Ektasolv Pm Acetate
ES0018	Dibasic Esters
ES0025	N-Pentyl Propionate
ES0031	Tert Butyl Acetate
ES0034	Propyl Propionate
ES0036	Stepan SBO-ME
ES0038	N-Butyl Propionate
ES0045	Dimethyl Carbonate
ES0098	Primary Amyl Acetate
Fuel Add	ditives
Fuel Add FA0001	ditives Methyl Tert-Butyl Ether
FA0001	Methyl Tert-Butyl Ether
FA0001 FA0002	Methyl Tert-Butyl Ether Lauroyl Peroxide
FA0001 FA0002 FA0005	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide
FA0001 FA0002 FA0005 FA0007	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran
FA0001 FA0002 FA0005 FA0007 FA0016	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc.
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0021 FA0023	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0021	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0021 FA0023 FA0030 FA0032	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99%
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99%
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers
FA0001 FA0002 FA0005 FA0007 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base
FA0001 FA0002 FA0005 FA0007 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0033 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted
FA0001 FA0002 FA0005 FA0007 FA0017 FA0019 FA0020 FA0020 FA0021 FA0032 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted <i>ADC Diesel Fuel Additive Conc.</i>
FA0001 FA0002 FA0005 FA0007 FA0017 FA0019 FA0020 FA0020 FA0021 FA0032 FA0033 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted <i>ADC Diesel Fuel Additive Conc.</i> Ethanol, Denatured, Cda-20
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99%
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99%
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043 FA0044	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99%
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust
FA0001 FA0002 FA0005 FA0007 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0033 FA0034 FA0035 FA0036 FA0036 FA0039 FA0040 FA0041 FA0042 FA0043 FA0045 FA0046	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0033 FA0032 FA0033 FA0034 FA0035 FA0036 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045 FA0046 FA0047	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate Stadis 450 Conductivity Improv
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0021 FA0023 FA0032 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043 FA0045 FA0046 FA0047 FA0048	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate Stadis 450 Conductivity Improv AO-37 Fuel Antioxidant
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0032 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045 FA0046 FA0047 FA0048 FA0049	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate Stadis 450 Conductivity Improv AO-37 Fuel Antioxidant DCI-4A Fuel Corrosion Inhibitor
FA0001 FA0002 FA0005 FA0007 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0032 FA0033 FA0032 FA0033 FA0034 FA0035 FA0038 FA0040 FA0041 FA0042 FA0043 FA0045 FA0045 FA0046 FA0047 FA0048 FA0049 FA0041	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted <i>ADC Diesel Fuel Additive Conc.</i> Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate <i>Stadis 450 Conductivity Improv</i> AO-37 Fuel Antioxidant DCI-4A Fuel Corrosion Inhibitor Octane Supreme 130 W/TEL
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0032 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045 FA0046 FA0047 FA0048 FA0049	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate Stadis 450 Conductivity Improv AO-37 Fuel Antioxidant DCI-4A Fuel Corrosion Inhibitor
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0020 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045 FA0046 FA0047 FA0048 FA0049 FA0051 FA0052	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted <i>ADC Diesel Fuel Additive Conc.</i> Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate <i>Stadis 450 Conductivity Improv</i> AO-37 Fuel Antioxidant DCI-4A Fuel Corrosion Inhibitor Octane Supreme 130 W/TEL N-Butyl Mercaptan
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045 FA0046 FA0047 FA0048 FA0049 FA0051 FA0052 FA0053	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate Stadis 450 Conductivity Improv AO-37 Fuel Antioxidant DCI-4A Fuel Corrosion Inhibitor Octane Supreme 130 W/TEL N-Butyl Mercaptan Quicksilver TC-W3 Premium Oil
FA0001 FA0002 FA0005 FA0007 FA0016 FA0017 FA0019 FA0020 FA0020 FA0021 FA0023 FA0030 FA0032 FA0033 FA0034 FA0035 FA0036 FA0037 FA0038 FA0039 FA0040 FA0041 FA0042 FA0043 FA0044 FA0045 FA0046 FA0047 FA0048 FA0049 FA0051 FA0052 FA0053 FA0054	Methyl Tert-Butyl Ether Lauroyl Peroxide Thiophene 902 Methyl Tetrahydrofuran 70% T-Butyl Hydroperoxide Copper Naphthenate Conc. Sulfur, Elemental Cumene Hydroperoxide, 80-90% Acetaldehyde Tert-Butyl Disulfide Techron Concentrate Cda-21 Alcohol, No DCI Thianaphthene, 95-99% 1-Hexene 1-Octene Isoprene, 99% Piperylene Tech, 90% Isomers EthyleneDiamine Free Base Aromatic 150, Naphthalene Depleted ADC Diesel Fuel Additive Conc. Ethanol, Denatured, Cda-20 4-Ethyl Phenol 99% Styrene, 99% 2,5-Dimethylaniline, 99% Iso 12103-1, A2 Fine Test Dust Copper Stearate Stadis 450 Conductivity Improv AO-37 Fuel Antioxidant DCI-4A Fuel Corrosion Inhibitor Octane Supreme 130 W/TEL N-Butyl Mercaptan Quicksilver TC-W3 Premium Oil DMA-580 Gasoline Additive

Fuels and	d Fuel Additives
HR0081	Exsol D60
HR0084	Methanol
HR0085	60 Pale Oil
HR0086	HF 648 Xe-M4Cx727-A
HR0087	Tolad 9308
HR0088	n-Mercaptan Sulfur Elemental Sulfur
<i>HR0089</i> HR0090	Dimethyl Hexadiene
HR0091	Pyrrole
HR0092	Dma-4
HR0093	EEE Lube Cert Gasoline
HR0094	N-Heptane
HR0095	MSo Sterling
HR0097	Cyclopentane 70 %
HR0098	SVGM2 ZDDP, OS#29802AF, 1
HR0100 HR0101	Dry Ethanol
HR0102	Eastman Bioextend
HR0103	Keropur 3131
HR0104	Marathon #2 Diesel
HR0105	Exxon Aromatic 100
HR0106	Exxon Aromatic 150
HR0107	Iso-Hexane
HR0108	n-Pentane HiTEC 4103 Cetane
HR0109 HR0110	Tenox 21 Additive
HR0111	Magiesol 62 Oil
HR0112	ECD-LS
HR0113	Cupric Acetate
HR0114	Marathon #2 ULSD - Red
HR0115	Super Dry FG Ethanol, 0.05% Water
HR0116	Piperylene
HR0117	Dimethyl Disulfide
HR0118	Thiophene
HR0119 HR0120	Thianaphthene 95-99% Sodium Chloride
HR0120	Sulfuric Acid 93%
HR0122	Acetic Acid
HR0123	Sodium Sulfate
HR0124	Lauroyl Peroxide
HR0125	Isododecane
HR0126	STIHL HP Ultra 2 Cycle Oil
HR0127	Iso-Butanol
HR0128	n-Butanol
HR0129 HR0130	Iso-Hexane HITEC 3000 Octane Booster
HR0131	Sodium Bicarbonate
HR0132	Formic Acid
HR0133	HITEC 3000 24.4% MMT Conc.
HR0134	Suncoast ULSD
HR0135	Afton Fuel Base
HR0136	n-Butyl Mercaptan
HR0137 HR0138	Undenatured Ethanol IVD Polymer Solution
HR0139	Acetaldehyde
HR0140	Ethyl Acetate
HR0141	INEOS Iso-octane
HR0142	HF0523 2 ppm Sulfur Diesel MS
HR0143	Nalco EC5407A
HR0144	EU Ultra Low Sulfur, NE590
HR0150	BP IBE20 Fuel BASE Invigorate 1
HR0151 HR0152	BASF Invigerate 1 Bio-Based Butanol
HR0152 HR0153	Tri-Isobutylene Concentrate
HR0154	M-Xylene
HR0155	HF0088 XE-M4CX610-85C Gasoline
HR0156	HF0476, 10.5 RVP Gasoline
HR0157	HF1213 TF-1 + 20% Ethanol
HR0158	HF0036 Brazillian E-22 Replica Fuel
HR0159	HF0770 Baseline 87 Octane Summer

FA0058	CD20 Ethanol No DCI
FA0059	Dimethyl Sulfide, >99%
FA0062	Full Range Reformate
FA0063	Heavy Reformate
FA0064	FCC 1
FA0065	FCC 2
FA0066	Cvec Fuel Ethanol W/CARBOB
FA0067	Propionic Acid, 99.5%
FA0068	1-Hexanethiol(Hexyl Mercaptan)
FA0072	OLI-9070.x Additive
FA0073	Dimethyl Sulfide
FA0074	OGA 72003
FA0075	Bio Stable ® 401
FA0076	Infineum Additive IDN 6709
FA0077	DTDM 4,4-Dithiodimorpholine
FA0078	Copper (II) Acetate
FA0079	Reagent Grade Alcohol 200 Proof
FA0080	Undenatured Ethanol
FA0081	Butyric Acid
FA0082	1-Chloronaphthalene 90%
FA0083	MMT (Hitec 3000)
FA0084	PPD 2151 ie1
FA0085	Afton R10012020 PIB CDA Additive
FA0086	Decanoic Acid
FA0087	ASTM D87 Paraffin Wax MP58-62 C
-	Ether and Glycol
GE0003	Polysolv EB
GE0004	Propyl Proposal
GE0006	Polysolv DB
GE0007	Polysolv PM
GE0008	Polysolv DPM
GE0009	Ektasol EP
GE0013	Hexyl Cellosolve
GE0015	Glycol Ether TPM
GL0001	Ethylene Glycol
GL0003	Propylene Glycol
GL0012	1,3-Butylene Glycol
Inorgon	ia
Inorgan	
IN0002	Deionized Water
IN0002 IN0003	Deionized Water Sodium Metasilicate
IN0002 IN0003 IN0004	Deionized Water Sodium Metasilicate Caustic Soda Flake
IN0002 IN0003 IN0004 IN0006	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate
IN0002 IN0003 IN0004 IN0006 IN0007	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93%
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 <i>IN0019</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid 68%</i>
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 <i>IN0019</i> IN0021	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid 68%</i> Sodium Gluconate
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 <i>IN0019</i> IN0021 IN0022	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 <i>IN0019</i> IN0021 IN0022 IN0023	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45%
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 IN0021 IN0022 IN0023 IN0024	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 IN0019 IN0021 IN0022 IN0023 IN0024 IN0025	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50%
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 IN0021 IN0021 IN0022 IN0023 IN0024 IN0025 IN0026	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 IN0021 IN0021 IN0022 IN0023 IN0024 IN0025 IN0026 IN0030	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid 68%</i> Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite
IN0002 IN0003 IN0004 IN0006 IN0007 IN0010 IN0011 IN0021 IN0021 IN0022 IN0022 IN0023 IN0024 IN0025 IN0026 IN0030 IN0031	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid 68%</i> Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100%
IN0002 IN0003 IN0004 IN0007 IN0010 IN0010 IN0011 IN0021 IN0022 IN0023 IN0023 IN0025 IN0025 IN0026 IN0030 IN0031 <i>IN0032</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100% <i>Hydrogen Peroxide</i> 35%
IN0002 IN0003 IN0004 IN0006 IN0010 IN0010 IN0011 IN0021 IN0022 IN0023 IN0024 IN0025 IN0026 IN0030 IN0031 <i>IN0032</i> <i>IN0035</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid 68%</i> Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100% <i>Hydrogen Peroxide 35%</i> <i>Hydrochloric Acid 20 Deg Baum</i>
IN0002 IN0003 IN0004 IN0006 IN0010 IN0010 IN0011 IN0021 IN0022 IN0023 IN0024 IN0025 IN0030 IN0031 <i>IN0032</i> <i>IN0035</i> <i>IN0039</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100% <i>Hydrogen Peroxide</i> 35% <i>Hydrochloric Acid 20 Deg Baum</i> <i>Sodium Nitrate</i> 98.6-100%
IN0002 IN0003 IN0004 IN0006 IN0010 IN0010 IN0011 IN0021 IN0022 IN0023 IN0024 IN0025 IN0026 IN0030 IN0031 <i>IN0032</i> <i>IN0035</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid 93%</i> <i>Nitric Acid 68%</i> Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100% <i>Hydrogen Peroxide 35%</i> <i>Hydrochloric Acid 20 Deg Baum</i>
IN0002 IN0003 IN0004 IN0006 IN0010 IN0010 IN0011 IN0021 IN0022 IN0023 IN0024 IN0025 IN0030 IN0031 <i>IN0032</i> <i>IN0035</i> <i>IN0039</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100% <i>Hydrogen Peroxide</i> 35% <i>Hydrochloric Acid 20 Deg Baum</i> <i>Sodium Nitrate</i> 98.6-100% <i>Phosphoric Acid</i> 75%
IN0002 IN0003 IN0004 IN0007 IN0010 IN0011 IN0021 IN0022 IN0023 IN0024 IN0025 IN0030 IN0031 <i>IN0032</i> <i>IN0035</i> <i>IN0039</i> <i>IN0050</i>	Deionized Water Sodium Metasilicate Caustic Soda Flake Trisodium Phosphate City Water Dipotassium Phosphate, Anhydrous Sulfuric Acid 93% <i>Nitric Acid</i> 68% Sodium Gluconate Dissolvine 120 Caustic Potash 45% Sodium Metaborate Caustic Soda 50% Na4-Edta Salt Soda Ash Lite Caustic Potash 100% <i>Hydrogen Peroxide</i> 35% <i>Hydrochloric Acid 20 Deg Baum</i> <i>Sodium Nitrate</i> 98.6-100% <i>Phosphoric Acid</i> 75%

Fuel Additives

KE0002	Methyl Ethyl Ketone
KE0004	Methyl Isobutyl Ketone
KE0006	Methyl N-Amyl Ketone
KE0007	Diisobutyl Ketone
KE0008	Diacetone Alcohol

HR0160	JP-4 MIL-DTL 5624
HR0161	Caron BOB
HR0162	Cherry BOB

Fuels and HR0163 HR0164 HR0165 HR0166 HR0167 HR0168 HR0169	d Fuel Additives Drakesol 205 Formic Acid Reagent Grade RON 98 Winter Gasoline HF0762 XE-M4CX735-B10-B High Altitude Emission Fuel Carb Phase II Regular Summer XE-M4CX354-A Cat Dyno Aging
HR0170	XE-M4CX580-A
HR7771	TOP Cut, Processed Alkylate
HR7772	BOTTOM Cut, Processed Alkylate
HH0001	JP-4 Mil-T-5624
HH0004	JP-5 Mil-T-5624
HH0005	JP-8 Mil-T-83133
HH0010	California Phase II Fuel
HH0011	California Phase III Fuel
TX0000	Premium Unleaded
TX0002	Regular Unleaded
TX0003	Indolene Clear
TX0012	Diesel Fuel #2, Low
TX0013	Diesel Fuel #2, Off
TX0014	Diesel Fuel #1, Low Sulfur
TX0016	Diesel Fuel #2,
TX0023	Biodiesel Fuel B100
TX0042	UTG-91 91 Ron Test Gasoline
TX0043	Chevron 7# RVP Test
TX0044	Premium Unleaded Gasoline
TX0045	91 RON Test Fuel, 8 En 590 Diesel
TX0052 TX0053	Diesel Euro Iv
TX0053	Diesel 2007
TX0054	Diesel 0.05 Ls
TX0055	En 14214 RME
TX0058	Sunoco GT 100 Unleaded
TX0061	CEC RF 08-A-85 Prem. Gasoline
TX0062	VP Streetblaze 100 Racing Fuel
TX0063	CARBOB Gasoline
TX0064	Natural Gasoline
TX0065	HF 523 2PPM Sulfur
TX0066	Soygold Biodiesel
TX0069	Premium Unleaded Gas w/Ethanol
TX0070	Alkylate
TX0071	Light CC Naphtha
TX0075	Customer Supplied Infineum Biodiesels
TX0076	Swedish MK-1 Diesel
TX0077	PBOB Premium Blend Stock
TX0079	RBOB 85 Octane Gasoline

Additives

AD0008	Troykyd D-999
AD0015	Phosphoric Acid 85%
AD0018	Cobratec 99
AD0037	Formic Acid
AD0040	Tinuvin292 Hals Lt
AD0043	Tributoxyethyl Phosphate
AD0053	Sodium Benzoate
AD0054	Sodium Citrate
AD0060	Armohib 31
AD0062	Solvent Mask
AD0075	Release Agent

Salts

Jans	
NA0001	Sodium Chloride
NA0002	Sodium Sulfate
NA0003	Sodium Bicarbonate
NA0004	Sodium Carbonate
NA0011	Sodium Acetate
NA0012	Potassium Sulfate
NA0013	Potassium Acetate
NA0014	Magnesium Sulfate Heptahydrate
NA0015	Zinc Acetate Dihydrate
NA0026	Silver Nitrate

Organic

Organic	
OC0012	Glacial Acetic Acid
OC0014	M-Pyrol (N-Methyl Pyrrolidone)
OC0017	Heptanoic Acid
OC0019	Oleic Acid
OC0022	Glycolic Acid
OC0024	Lactic Acid 88%
OC0025	Gluconic Acid 50%
OC0034	50% Citric Acid

Resins

RB0010	Paraloid B-66 100%
RB0013	Asphalt A-260
RB0014	Select 300
RB0015	GP Pulverized
RB0018	Indopol H-8
RB0020	14402 Penreco Snow
RB0021	DW 19 S 55 Cutback
RB0053	Parapol 1300
RW0026	Flexbond 149 PSA
RW0030	D Solution
RW0039	Carboset 515
RW0040	Acusol 505N Polymer
RW0041	Carboset 527
RW0042	Carbowax Polyethylene
RW0044	Binder Agent
RW0045	Airflex 410
RW0048	Air Flex 809
RW0060	Carboset PL-958
RW0062	Flexbond 150 Psa
RW0064	Boothcoat 5201

Surfactants

Junacianis	
SDI0001	Surfactant/Blue Dye/Water
SW0005	Miranol Fbs
SW0010	R & R 551 Lecithin
SW0016	Victawet 12
SW0017	Tritron X-100
SW0020	Polytergent SI-62
SW0027	Igepal Co-210
SW0029	Tergitol Tmn-3
SW0030	Tergitol Tmn-6
SW0031	Pluronic L62D
SW0032	Strodex Pk-90
SW0033	Ucon Lubricant
SW0037	Igepal
SW0045	Mackazoline Cy
SW0047	Surfonic Lf-17
SW0049	Berol 840
SW0050	Ag 6202 Glucoside
SW0055	Mackamide S
SW0049	Berol 840
SW0050	Ag 6202 Glucoside
SW0055	Mackamide S
SW0057	Berol 226

Aromatic/Aliphatic Hydrocarbons

AH0002	Gagesol B,
AH0003	Shellsol Heptane
AH0005	VM&P Naphtha
AH0006	Mineral Spirits,
AH0007	135 Mineral Spirits
AH0009	#142 Solvent
AH0010	Odorless Mineral Oil
AH0010	Isopar M/Sol Trol
AH0012	Draketex 50 White Mineral Oil
AH0012 AH0013	MFO 24 White Mineral Oil
AH0015 AH0016	Mineral Seal Oil
AH0017	Exxsol D80
AH0020	Diisobutylene
AH0022	Isopar G (Exxon)
AH0023	Isopar C
AH0024	n-Heptane
AH0025	Isooctane
AH0026	Drakeol 19
AH0029	Isopar E
AH0031	Varsol 110 Fluid
AH0032	Normal Butane, Dip
AH0033	Solvent Degreaser & Cleaner
AH0034	n-Pentane
AH0035	Isopentane
AH0036	Cyclopentane 70%
AH0037	Isobutane
AH0038	n-Octane
AH0039	Cyclohexane
AH0040	Shellsol D40
AH0041	Hygold
AH0045	Benzene
AH0050	Ethylbenzene
AH0051	Toluene
AH0052	Xylene
AH0053	Aromatic 100 Solvent
AH0055	Aromatic 150 Solvent
AH0055	#10 Solvent/Aromatic 200
AH0055	Naphthalene 98%
	Citgo Vm&P Naphtha
AH0058 AH0059	Calumet 360 Mineral Spirits
AH0060	Mil-C-7024 Type II
AH0061	Hynap N60HT Naphthenic Oil
AH0062	Isopentane (Bulk)
AH0070	D-Limonene
AH0090	Shellwax 100
Alcohols	
AL 0001	Methanol

Thickeners

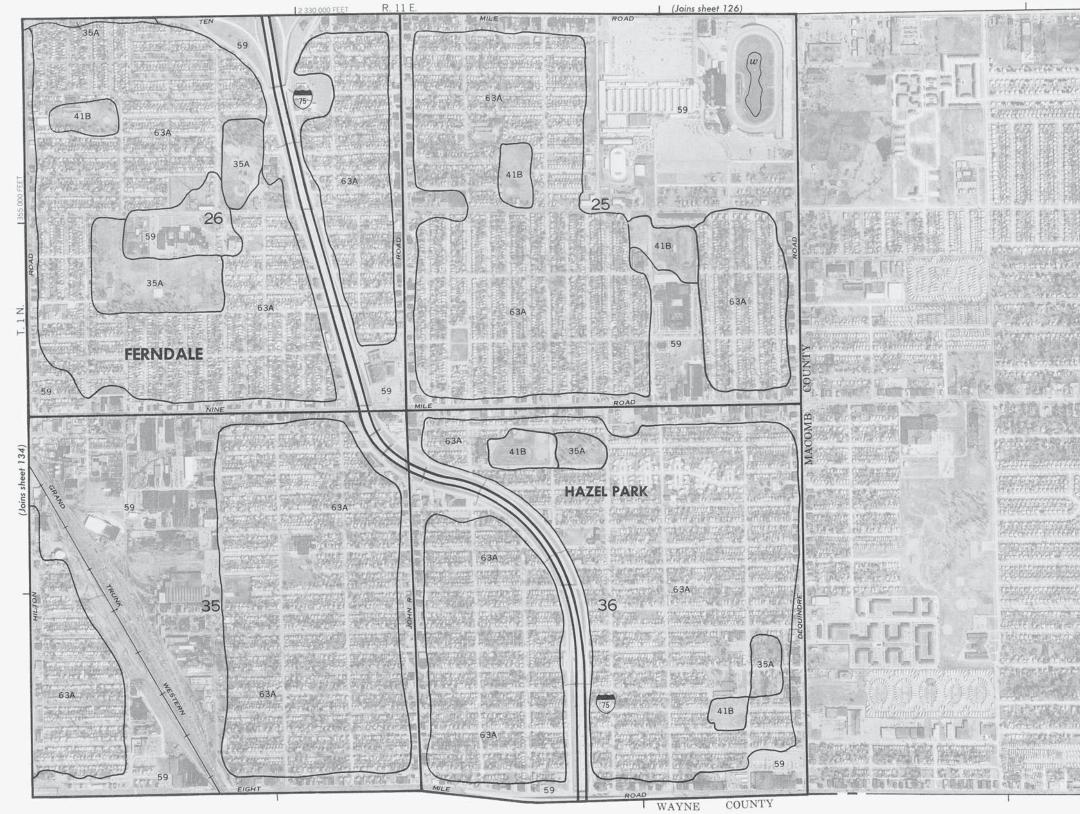
TH0005 Acrysol Ase-60 Bentone Ew Acrysol Tt-615 TH0009 TH0011 Bentone Lt Hydroxyethylcellulose TH0012 TH0015 TH0019 Nisso Hpc-H Jaguar Hp-120 Methocel K15M TH0020 TH0023 TH0028 Polyphobe 107 TH0030 Bentone Sd-3

Miscellaneous

Alox 2028
Glycerine 96-100%
Wilklay Rp 80
Vicron 15-15 (Calcium Carbonate)
Tecture 1200
Filler
T1200G
Texture 1200N
Texture 1200A
Propyltex 30
Monarch 120
Santicizer 160
Di-Butyl Phthalate
Benzoflex 9-88
Rhd6X Or R-Cr40 (Titanium Dioxide)
Ucar 441 Acrylic Latex
Ucar 441 Acrylic Latex Ucar 441 Acrylic Latex
-
Ucar 441 Acrylic Latex

Amines

AM0006	Di-Methyl-Ethanol
AM0007	Aqua Ammonia 28%
AM0010	Triethanolamine
AM0013	Monoethanolamine
AM0014	Amine Cs-1135
AM0015	AMP 95
AM0016	Isopropylaminoethane
AM0018	Ethoxylated Amine


1

AL0001	Methanol
AL0003	Denatured Ethanol, 95%
AL0004	Isopropyl Alcohol, 99%
AL0005	Normal Propyl Alcohol
AL0007	Isobutyl Alcohol
AL0009	Isopropyl Alcohol, 91%
AL0010	2-Ethyl Hexanol
AL0011	Normal Butyl Alcohol
AL0013	Tertiary Butyl Alcohol
AL0014	Tecsol #3 Anhydrous
AL0015	Benzyl Alcohol
AL0016	Furfuryl Alcohol
AL0017	Primary Amyl Alcohol
AL0021	Fuel Grade Ethanol

Appendix B2-4

Soil Survey Data

INCOMPANY. - 1- 2 ne de mainte destacto della -The file Chine and in Restauring at a Martine Concentration of the State ं शिलारी Daniel Color TST ALC: N 2 345 000 FEET

(135)

OAKLAND COUNTY, MICHIGAN

MICHIGAN AGRICULTURAL EXPERIMENT STATION

SIAL	
SPEC	9
AND	EGEN
NAL	J S J
INTIO	MBC
CONVEI	S

National, state or province

BOUNDARIES

Minor civil division County or parish

NAME

Aquents, sandy and loamy, undulating Udorthents, loamy, undulating Udorthents, loamy, rolling

Sloan-Marlette association

Pits

Leoni gravelly sandy loam, 6 to 12 percent slopes Arkport loamy fine sand. 2 to 6 percent slopes Arkport loamy fine sand. 6 to 12 percent slopes Arkport loamy fine sand. 12 to 25 percent slopes Fox-Riddles sandy loams, 6 to 12 percent slopes coni gravelly sandy loam. 1 to 6 percent slopes Dixboro loamy fine sand, 0 to 3 percent slopes Fox-Riddles sandy loams, 1 to 6 percent slopes Matherton sandy loam, 0 to 3 percent slopes Riddles sandy loam. 12 to 18 percent slopes Selfridge loamy sand, 0 to 3 percent slopes Riddles sandy loam. 6 to 12 percent slopes Riddles sandy loam, 1 to 6 percent slopes Tedrow loamy sand, 0 to 3 percent slopes Udipsamments, rolling to steep Cohoctah fine sandy loam Udipsamments, undulating Gilford sandy loam

Urban land-Blount-Lenawee complex, 0 to 3 percent slopes Urban land-Marlette complex, 15 to 25 percent slopes Urban land-Mariette complex, 0 to 8 percent slopes Urban land-Mariette complex, 8 to 15 percent slopes Urban land-Spinks complex, 8 to 15 percent slopes Urban land-Thetford complex, 0 to 3 percent slopes Ormas loamy sand, 0 to 6 percent slopes Urban land-Spinks complex, 0 to 8 percent slopes Urban land-Capac complex, 0 to 3 percent slopes Ormas loamy sand, 6 to 12 percent slopes Cohoctah-Fox association Urban land

Thomas muck

Reservation (national forest or p state forest or park, ROAD EMBLEMS & DESIGNATION Small airport, airfield, park, oilfi cemetery, or flood pool STATE COORDINATE TICK POWER TRANSMISSION LINE (normally not shown) PIPE LINE (normally not shown) FENCE (normally not shown) Field sheet matchline & neatlin Limit of soil survey (label) AD HOC BOUNDARY (label) LAND DIVISION CORNERS (sections and land grants) Divided (median shown if scale permits) County, farm or ranch and large airport) Medium or small Large (to scale) With railroad Without road Other roads Gravel pit Land grant With road Interstate RAILROAD Federal LEVEES State Trail DAMS ROADS PITS

CULTURAL FEATURES	URES			
VDARIES		MISCELLANEOUS CULTURAL FEATURES	RES	SOIL
tional, state or province		Farmstead, house (cmit in urban areas)	•	ESCA
unty or parish		Church	4	Be
nor civil division	 	School	L Indian	ot
servation (national forest or park,	3	Indian mound (label)	Mound	SHOI
state forest or park, and large airport)	 	Located object (label)	O	GULI
nd grant		Tank (label)	GAS	DEPF
nit of soil survey (label)		Wells, oil or gas	åå	SOIL
eld sheet matchline & neatline		Windmill	ж	MISC
OC BOUNDARY (label)		Kitchen midden	Ľ	8
aall airport, airfield, park, oilfield, cemetery, or flood pool E COORDINATE TICK	Plavis Airstrip			0 0
o DIVISION CORNERS ctions and land grants) DS	-+++	WATER FEATURES	RES	9 O
vided (median shown		DRAINAGE		đ
if scale permits) ther roads		Perennial, double line		æ
ail		Perennial, single line		Ű
D EMBLEMS & DESIGNATIONS		Intermittent		ŝ
terstate	BK	Drainage end	1	Š
deral	(III)	Canals or ditches		S
ate	(3)	Double-line (label)	CANAL	S
ounty, farm or ranch	378	Drainage and/or irrigation	À	٩.
ROAD		LAKES, PONDS AND RESERVOIRS		S
ER TRANSMISSION LINE ormally not shown) LINE	I I I I I	Perennial Intermittent	water water	0 [
ormally not shown) CE ormally not shown)	x	MISCELLANEOUS WATER FEATURES		
EES		Marsh or swamp	測	
rithout road		Spring	δ	
/ith road		Well, artesian	+	
/ith railroad		Well, irrigation	¢	
rs arge (to scale)	\bigcirc	Wet spot	÷	
ledium or small	mater			
sravel pit	×			

SOIL SURVEY SOIL DELINEATIONS AND SYMBOLS	108 620
ESCARPMENTS	
Bedrock (points down slope) Other than bedrock (points down slope) SHORT STEEP SLOPE	
GULLY	
DEPRESSION OR SINK	\$
SOIL SAMPLE SITE (normally not shown) MISCELLANEOUS	Ø
Blowout	Э
Clay spot	*
Gravelly spot	00
Gumbo, slick or scabby spot (sodic)	10.
Dumps and other similar non soil areas	555
Prominent hill or peak	***
Rock outcrop (includes sandstone and shale)	*
Saline spot	+
Sandy spot	×
Severely eroded spot	Ψ,
Slide or slip (tips point upslope)	5
Stony spot, very stony spot	0
Pond area	¤
Sanitary Landfill up to 40 acres in size	Θ
Loamy spot up to 3 acres in size	*
Organic soil up to 3 acres in size	#

W

×

Mine or quarry

SPECIAL SYMBOLS FOR

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL LEGEND

Map symbols consist of numbers or a combination of numbers and letters. The initial numbers represent the kind of soil. A capital letter following these numbers indicates the class of slope. Symbols without a slope letter are for nearly level soils or miscellaneous areas.

SYMBOL	NAME	SYMBO
108	Marlette sandy loam, 1 to 6 percent slopes	408
100	Marlette sandy loam, 6 to 12 percent slopes	40C
100	Marlette loam, 12 to 18 percent slopes	418
10E	Marlette loam, 18 to 35 percent slopes	42
118	Capac sandy loam, 0 to 4 percent slopes	43
12	Brookston and Colwood loams	448
138	Oshtemo-Boyer loamy sands, 0 to 6 percent slopes	44C
13C	Oshtemo-Boyer loamy sands, 6 to 12 percent slopes	44D
13E	Oshtemo-Boyer loamy sands, 12 to 40 percent slopes	458
148	Dakville fine sand, 0 to 6 percent slopes	45C
14C	Dakville fine sand, 6 to 18 percent slopes	45D
158	Spinks loamy sand, 0 to 6 percent slopes	46A
150	Spinks loamy sand, 6 to 12 percent slopes	478
15E	Spinks loamy sand, 12 to 35 percent slopes	47C
17A	Wasepi sandy loam, 0 to 3 percent slopes	48
188	Fox sandy loam, 1 to 6 percent slopes	49
180	Fox sandy loam, 6 to 12 percent slopes	508
180	Fox sandy loam, 12 to 25 percent slopes	500
19	Sebewa loam	518
208	Glynwood loam, 2 to 6 percent slopes	51C
200	Glynwood loam, 6 to 12 percent slopes	52A
238	Sisson fine sandy loam, 1 to 6 percent slopes	53A
23C	Sisson fine sandy loam, 6 to 12 percent slopes	54A
258	Owosso sandy loam, 1 to 6 percent slopes	56A
25C	Owosso sandy loam, 6 to 12 percent slopes	59
26	Sloan silt loam	608
27	Houghton and Adrian mucks	60C
318	Metea loamy sand, 0 to 6 percent slopes	60D
31C	Metea loamy sand, 6 to 12 percent slopes	61A
328	Blount loam, 0 to 4 percent slopes	628
33	Lenawee silty clay loam	62C
348	Kibble fine sandy loam, 0 to 4 percent slopes	63A
35A	Thetford loamy fine sand, 0 to 3 percent slopes	678
36A	Metamora sandy loam, 0 to 3 percent slopes	67C
38	Napoleon muck	68
39	Granby loamy sand	69

Appendix B2-5

Community Relations Plan

COMMUNITY RELATIONS PLAN

RCRA Facility Investigation

at

GAGE PRODUCTS COMPANY FERNDALE, MICHIGAN U.S. EPA ID Number MID 055-338-801

Prepared for:

Gage Products Company 625 Wanda Avenue Ferndale, Michigan 48220

Prepared by:

Horizon Environmental 4771 – 50th Street, Suite One Grand Rapids, Michigan 49512

Revision 2: January 1999 Revision 2 - Update: February 2012

TABLE OF CONTENTS

PAGE

COMMUNITY RELATIONS PLAN

1.0	COM	1	
	1.1	Purpose and Scope	1
	1.2	Locations of Available Information	1
	1.3	Contact Persons	2
	1.4	Public Participation	2
		-	

· · · · ·

CRP for the RFI Gage Products Company Revision: 2 Update Date: February 2012 Community Relations Plan Page 1 of 2

1.0 COMMUNITY RELATIONS PLAN

1.1 PURPOSE AND SCOPE

The purpose of this Community Relations Plan (CRP) is to establish a mechanism by which members of the interested public may obtain information concerning the RCRA Corrective Action Program being implemented at the Gage Products Company in Ferndale, Michigan. The CRP identifies facility and regulatory agency representatives who may be contacted with questions or concerns and describes the creation and location of repositories for relevant documents. Relevant documents will include any of the work plans or written reports submitted to the Michigan Department of (Environmental Quality (MDEQ) pursuant to the terms and conditions of the RCRA Corrective Action Plan provisions (Attachment I) of the facility's Limited Storage Facility License.

1.2 LOCATIONS OF AVAILABLE INFORMATION

Documents pertaining to the corrective action program being implemented at the facility can be reviewed and copied for a fee at the following locations:

Michigan Department of Environmental Quality Waste Management Division 525 West Allegan Street Lansing, Michigan 48909 Hours: 8:00AM-5:00 PM, Monday-Friday, except legal holidays Contact: Mr. Dan Dailey (517) 335-6610

The local public repository of the corrective action documents is:

Ferndale Public Library 222 East Nine Mile Road Ferndale, Michigan

Documents will also be available for review, by appointment, at the facility.

Gage Products Company 625 Wanda Avenue Ferndale, Michigan 48220 Hours: By appointment Contact: Ms. Sharon Stahl (248) 541-3824

V:\GAGE\RFI_WP_2012\CRP_Doc\CRP_2update_Feb_2012.doc

CRP for the RFI Gage Products Company Revision: 2 Update Date: February 2012 Community Relations Plan Page 2 of 2

1.3 CONTACT PERSONS

Comments and requests relating to the implementation of the Corrective Action Program at the facility may be directed to the following representatives:

 Mr. Dan Dailey Waste Management Division Michigan Department of Environmental Quality P.O. Box 30473 Lansing, Michigan 48909-7973 (517) 335-6610

1.4 PUBLIC PARTICIPATION

In addition to making documents generally available to the public for review, the RCRA Corrective Action Program also provides for formal public participation at the time a final corrective measure, if necessary, is being considered at a facility. The public will be notified in a local paper as to the time and place of a public hearing:

Appendix B2-6

Health and Safety Plan

HEALTH AND SAFETY PLAN

RCRA Facility Investigation

at

GAGE PRODUCTS COMPANY FERNDALE, MICHIGAN U.S. EPA ID Number MID 005-388-801

Prepared for:

Gage Products Company 625 Wanda Avenue Ferndale, Michigan 48220

Prepared by:

Horizon Environmental 4771 – 50th Street, Suite One Grand Rapids, Michigan 49512

Revision 2: January 1999 Revision 2 - Update: February 2012

HORIZON ENVIRONMENTAL CORPORATION SITE HEALTH & SAFETY PLAN

INTRODUCTION

This document describes the health and safety guidelines and procedures developed for The field activities associated with a RCRA Facility Investigation - Release Assessment at the Gage Products Company facility in Ferndale, MI. Soil and/or groundwater samples will be collected around solid waste management units (SWMUs) and other areas of concern to determine the absence or presence of a release to the environment. Gage Products Company is a solvent blending and paint production facility. Gage's facility is located within the City of Ferndale in a light industrial/residential area served by municipal water and sewer, and with natural gas and electrical utility lines. The guidelines and procedures contained herein are based on the best available information at the time of this plan's preparation. Specific requirements will be revised when and if new information is received or conditions change significantly from original indications. All work will be coordinated through the Horizon Project Manager and will be performed in accordance with the provisions, guidelines, and procedures of this Site Health & Safety Plan (SHSP), and the requirements of OSHA's Hazardous Waste Operations and Emergency Response (HAZWOPER) standard (29 CFR 1910.120).

A. GENERAL INFORMATION

lient: Gage Products Company						
Project Number: GAG-0101						
Site/Property Identification:	625 Wanda Avenue, Ferndale, Michigan 48220					
Address:						
Plan Prepared by/Date:	Karen Hathaway, February 2012					
Plan Reviewed by/Date:	Charlene McGue, February 2012					
Planned Tasks (attach additional sheets, if necessary): Install borings and wells using hand						
and mobile augering equipment						
Expected Start Date and Duration of Project: <u>3 weeks in spring/summer 2012</u>						
Expected Hours of Operation:	8:00AM - 5:00 PM					
Will Subcontractors Be Used (if yes, for which tasks)? Drilling						

B. SAFETY, MANAGEMENT & OTHER PERSONNEL

Indicate name, company/agency affiliation, address and telephone number.

Project Manager:	Charlene McGue Horizon Environmental 4771 – 50 th Street SE, Suite One				
	Grand Rapids, Michigan 49512				
	(616)544-3210 (office)				
	(616)893-0304 (mobile)				
Site Health and Safety Officer:	Eric Kimber				
	Horizon Environmental				
	(See above address)				
	(616)446-8522 (mobile)				
	· · ·				
Director of Corporate Health and Safety:	Bill Farrell				
•	Horizon Environmental				
	4771 – 50 th Street SE, Suite One				
	Grand Rapids, Michigan 49512				
	(616) 554-3210 (office)				
	(616) 246-6552 (home)				

Other Contacts (please indicate):

C. MATERIAL CHARACTERIZATION

Hazardous Material Types:	Liquid [X] Solid [X] Sludge [] Gas []							
	Corrosive [] Ignitable [] Radioactive [] Volatile [X] Toxic [X] Reactive [] Unknown []							
Source and kind of release:	UST, pipeline, and other operational releases	-						
		-						
Unusual Features (terrain, power lines, underground utilities, other): Terrain uneven and ground may be wet: slip, trip, and fall potential								

D. CHEMICAL DATA

Table D.1 - Known/Suspected Site Chemicals Present: Neither soils nor groundwater should be contacted without the personal protective equipment mandated in this site health and safety plan. Representative chemicals are listed in Table D.1

	Concentration* (include units)				
Chemicals	Soil	Ground Water	Other		
B-T-E-X, MDNR Scan 1					
compounds, 2-butanone					
(methyl ethyl ketone), methyl					
t-butyl ether, methyl isobutyl					
ketone, acetone, 2-hexanone,					
carbon disulfide.					

Table D.2 - Known/Estimated Site Chemical Exposure Guidelines: This table lists standards for compounds not included in the attached chemical summaries.

	OS	HA Air Stand	lards	Other	Known or Suspected		
Chemical	PEL	STEL	Skin	(TLV, REL)	Carcinogen?		
Carbon disulfide	10	-	x				
2-hexanone	5	75					
Methyl t-butyl ether	40				yes		

Table D.3 - Acute Exposure. Chemical summaries attached list exposure symptoms and first aid measures for nearly all compounds included.

Chemical:	Carbon disulfide	• • • • • • • • • • • • • • • • • • •
Exposure Route	Acute Exposure Symptoms	First Aid
Inhalation	dizziness, headache, sleeplessness	Give respiratory support
Skin Contact	Parkinson-like syndrome; ocular changes; coronary heart disease; gastritis; kidney, liver damage; eye, skin burns, dermatitis	Wash with soap and water immediately
Eye Contact	burning sensation	Irrigate immediately
Ingestion	psychosis; polyneuropathy	Provide immediate medical attention.

E. SECURITY/SAFETY SPECIFICATIONS

Identify Site Security (e.g. perimeter fences, guard shacks): Grounds are fenced.

Established Work Zones:

N.A. Refer to site location and site plan maps

Anticipated Level of Personal Protective Equipment Required:

Level D [X] with potential upgrde to level C: If level C, don full-face respirator with HEPA/organic vapor cartridges if airborne VOC's persist at 5 ppm or higher above background using a PID. Evacuate site at persistent PID readings above 50 ppm. Level C [] Level B []

Personal Protective Equipment (PPE) Specifications: Level D: hard hat, steel-toed shoes, protective eyewear including side shields, silver shield overgloves (nitrile overgloves may be substituted but watch for any sign of chemical deterioration potentially due to ketone or ketone-fuel mixtures; ketones-fuels are not expected to be present as free-phase organics or in sufficiently high aqueous concentrations to cause such deterioration).

Will Level B PPE Be Available at the Site?

Yes

Table E.1 - Monitoring Requirements:

Instrument	Location/Zone to be Monitored (e.g. Breathing Zone, Ambient Air)	Frequency
PID	Breathing Zone	5-minute intervals

Identify Anticipated Safe Work Procedures Used On Site:

Confined Space Entry*	[]	Hot Work [*]	*	[]		
Excavation/Trenching	Ľ]	Drill Rig Operation		[X]		
Other (please identify)	Ľ]				 	
*permit required							
Special Client Work Proced	ure	s:	None			 	
Is Site Map Attached?		Y	<u>.</u>			 	
· · · · · · · · ·							

Table E.2 - Project Team:

Team Member	Responsibility	Training Required	Fit Tested
Horizon Field Staff	Field Coordinator	40-hour Hazwoper	
	· ·		

F. EMERGENCY RESPONSE

On-Site Resources (if yes, please indicate location or source):

Water Supply	[X]	Eyewash station or bottles with field vehicle
Telephone	[X]	With field vehicle
Radio	[]	
Other	[X]	First aid kit with field vehicle

Emergency Contacts (location, telephone number):

Police Department:	Ferndale Police Department 310 E. Nine Mile Road Ferndale, Michigan 48220 Emergency Phone: 911 Non-Emergency Phone: (248) 541-3650	
Hospital:	Beaumont Hospital 3601 W. 13 Mile Road Royal Oak, MI 48073 Phone: (248) 898-5000	
Ambulance:	911	
Fire Department:	Ferndale Fire Department 1635 Livernois Ferndale, Michigan 48220 Emergency Phone: 911 Non-Emergency Phone: (248) 546-2510	
Poison Control Center:	(800) POISON 1 [(800) 764-7661]	

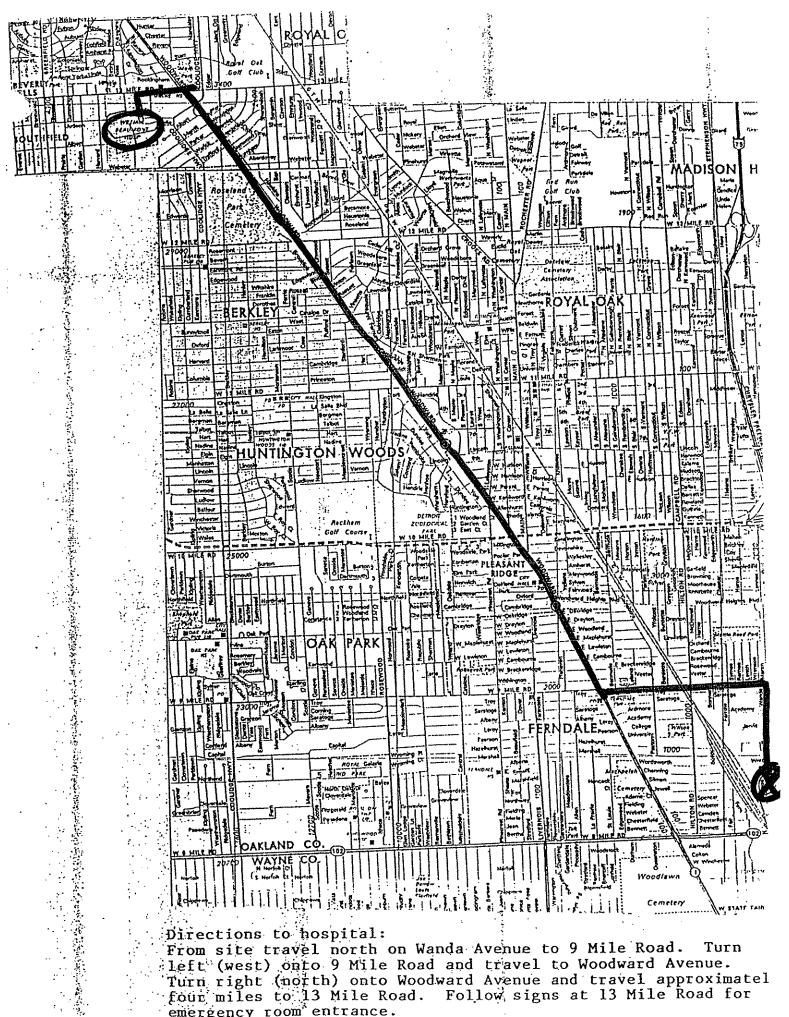
 Emergency response should be conducted by the responding emergency service.

 Employees trained in first aid and CPR may render the same as Good Samaritans.

 Hospital Route:
 From site travel north on Wanda Avenue to 9 Mile Road. Turn left

 (west) onto 9 Mile Road and travel to Woodward Avenue. Turn right (north) onto Woodward

 Avenue and travel approximately four miles to 13 Mile Road. Follow signs at 13 Mile Road


 for emergency room entrance.

See Attached

SHSP Review Acknowledgment Form

I have been informed, understand and will abide by the procedures set forth in the Site Health and Safety Plan and any Amendments for the <u>Gage Products RCRA Facility Investigation</u>.

Printed Name	Signature	Representing	Date
		······································	

emergency room entrance.

Volatile and Semi-Volatile Compounds

<u>Acetone</u>

Acetone is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce cardiac arrhythmias, visual disturbances, or narcosis. Chronic overexposure can lead to liver and/or kidney damage.

Prolonged or repeated skin contact with acetone can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Acetone is not absorbed through intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. Acetone that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eve Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 1000 ppm ACGIH: TLV = 750, STEL = 1000 ppm

<u>Benzene</u>

Exposure to moderate to high levels of benzene causes CNS depression. Typical signs of benzene intoxication include drowsiness, dizziness, headache, vertigo, anorexia, visual disturbances, and delirium and may proceed to loss of consciousness. Moderate exposures can also cause eye and respiratory irritation. High levels of exposure can cause dyspnea and inebriation with euphoria and tinnitus (ringing in the ears) and can rapidly lead to a deep anesthesia. Without treatment, respiratory arrest rapidly ensues, often with muscular twitching and convulsions. Extremely high levels of benzene can also cause cardiac sensitization and arrhythmia.

The health effect of greatest concern associated with benzene is irreversible damage to the hematopoietic (blood forming) system. Chronic benzene exposure has been identified as causing leukemia and aplastic anemia. The bone marrow stops producing red blood cells. The immune system is also compromised due to reduced bone marrow function.

Benzene can be absorbed through the skin in significant amounts. Skin contact can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Cracking of the skin can result and lead to increased systemic uptake. Benzene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

Ingestion - Induce vomiting immediately as directed by medical personnel. Seek prompt medical attention.

OSHA: PEL = 1 ppm, STEL = 5 ppm, cancer hazard ACGIH: TLV = 0.1 ppm, "skin" notation, confirmed human carcinogen (A1) Other: NTP, IARC human carcinogen

<u>2-Butanone</u> (Methyl Ethyl Ketone)

MEK is a colorless, volatile liquid with a characteristic acetone-like odor. Odor thresholds have been reported as low as 2 ppm. High concentrations (>100 ppm) are irritating to the eyes, nose and throat. Prolonged exposure to vapors may produce CNS depression and narcosis.

Prolonged or repeated skin contact may defat skin and produce dermatitis. MEK is readily absorbed by all routes of exposure. Studies have reported outbreaks of peripheral neuropathy in workers exposed to MEK and methyl n-butyl ketone. It is also suggested that MEK may predispose the liver to injury from hepatotoxins.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 200 ppm ACGIH: TLV = 200 ppm,STEL = 300 ppm

· · · ·

.....

Calcium Hydroxide

Calcium hydroxide is a caustic solid, often found in solution, which causes burns to the eyes and skin upon contact. Inhalation of excessive amounts of the dust or mist of calcium hydroxide may cause respiratory tract irritation or pulmonary edema. Symptoms of overexposure include coughing, congestion, wheezing and difficulty breathing, and fluid in the lungs. Ingestion may cause damage to gastrointestinal, esophageal, and oral tissues, blood disorders, or adverse effects on the liver and kidneys.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Immediately flush skin with large amounts of water while removing contaminated clothing. Seek immediate medical attention.
- Eye Contact Immediately irrigate eyes with large amounts of water. Seek immediate medical attention.
- Ingestion Seek prompt medical attention. Do not induce vomiting. Drink 2 glasses of water.

OSHA: PEL = none established ACGIH: TLV = 5 mg/m^3

Carbon tetrachloride

Carbon tetrachloride, also known as tetrachloromethane," is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce narcosis, cardiac arrhythmias, visual disturbances, chemical pneumonitis, and pulmonary edema.

Chronic overexposure to carbon tetrachloride can lead to kidney damage, liver damage, lung damage, and blood changes. Carbon tetrachloride is also listed as a suspected human carcinogen causing liver tumors in laboratory animal studies.

Skin contact with carbon tetrachloride can cause mild irritation. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. Carbon tetrachloride can also be absorbed through intact skin in significant amounts. Drying and cracking of the skin can lead to further systemic uptake.. Carbon tetrachloride that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. Call a physician.

Ingestion - Do not indice vomiting. Drink 2 glases of water. Call a physician.

OSHA: PEL = 10 ppm, 25 ppm ceiling, 200 ppm maximum peak ACGIH: TLV = 5 ppm, STEL = 10 ppm, "skin" notation, animal carcinogen (A3) Other: NTP anticipated human carcinogen, IARC possible human carcinogen

Chlorobenzene

Chlorobenzene, also known a phenyl chloride, is a CNS depressant with symptoms including dizziness, drowsiness, muscular weakness, incoordination, fatigue, blurred vision, emotional changes, psychosis, trouble speaking, headache, giddiness, heart rhythm disturbances, tremors and convulsions. It is irritating to the eyes and respiratory tract. Symptoms may include coughing, congestion, irritation of throat, tightness of chest, wheezing and difficulty breathing.

Chlorobenzene is toxic by inhalation and ingestion with bone marrow depression, kidney and liver damage possible. Symptoms of kidney damage may include reduced urine volume, loss of appetite, weight gain, red urine, back pain, painful urination and lethargy. Symptoms of liver damage may include yellow skin, tenderness of abdomen, abdominal distention, lethargy, fever and death.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 75 ppm ACGIH: TLV = 10 ppm

Chloroform

Trichloromethane, more commonly known as chloroform, is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce narcosis, cardiac arrhythmias, visual disturbances, chemical pneumonitis, and pulmonary edema.

Chronic overexposure to chloroform can lead to liver damage, kidney damage, lung damage, and blood changes. It has also been associated with cardiac sensitization and is a suspect carcinogen, believed to cause liver, kidney, and thyroid cancer.

Skin contact with chloroform can cause moderate irritation. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. Chloroform is not absorbed through intact skin in significant amounts. However, drying and cracking of the skin can result and lead to further systemic uptake. Chloroform that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

First Aid Procedures:

Inhalation - Remove person to fresh air. If breathing is difficult, seek immediate medical attention.

Skin Contact - Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink 2 glasses of water. Call a physician.

OSHA: PEL = 50 ppm ceiling

ACGIH: TLV = 10 ppm, suspected human carcinogen

Other: NTP anticipated human carcinogen, IARC possible human carcinogen

Chloromethane

Chloromethane, also known as methyl chloride, is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce cardiac arrhythmias, visual disturbances, narcosis, chemical pneumonitis, and pulmonary edema. Chronic overexposure can lead to damage to the gastrointestinal tract, liver damage, kidney damage, lung damage, and destruction of red blood cells with bone marrow depression. Methyl chloride has also been associated with testicular atrophy and decreased fertility.

Skin contact with methyl chloride can cause severe irritation and chemical burns to the skin. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis an further irritation. Methyl chloride can also be absorbed through intact skin in significant amounts. Drying and cracking of the skin lead to further systemic uptake. Methyl chloride that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

Contact with liquid methyl chloride is not anticipated because it generally is found in its gaseous form (b.p.=-12F) at the temperatures expected. Methyl chloride that is exposed to air during the excavation work would also be expected to evaporate and dissipate very quickly during typical wind conditions.

First Aid Procedures:

Sec. 1

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - No anticipated first aid required.

OSHA: PEL = 100 ppm, 200 ppm ceiling, 300 ppm maximum peak ACGIH: TLV = 50 ppm, STEL = 100 ppm, "skin" notation.

1.1-Dichloroethane

1,1-Dichloroethane is believed to have very limited toxic properties. At high enough concentrations, it is a CNS depressant, having been formerly used as an anesthetic. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. Extremely high concentrations can produce cardiac arrhythmias, visual disturbances, narcosis, chemical pneumonitis, and pulmonary edema.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 100 ppm ACGIH: TLV = 100 ppm

1,2-Dichloroethane

1,2-Dichloroethane, also known as ethylene dichloride, is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce cardiac arrhythmias, visual disturbances, narcosis, chemical pneumonitis, and pulmonary edema. Chronic overexposure can lead to damage to the gastrointestinal tract, liver damage, kidney damage, lung damage, and destruction of red blood cells with bone marrow depression. 1,2-Dichloroethane is also suspected by some of the advising agencies of causing cancer in a number of target organs in laboratory animals.

Skin contact with 1,2-dichloroethane can cause moderate irritation. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. 1,2-Dichloroethane can also be absorbed through intact skin in significant amounts. Drying and cracking of the skin lead to further systemic uptake. 1,2-Dichloroethane that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. Seek immediate medical attention.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 50 ppm, 100 ppm ceiling, 200 ppm maximum peak ACGIH: TLV = 10 ppm

Other: NTP anticipated human carcinogen, IARC possible human carcinogen

1.1-Dichloroethylene

1,1-Dichloroethylene, also known as vinylidene chloride, is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce decreasing respiration rate, a marked decrease in blood pressure, muscle relaxation, an absence of eye reflexes, or narcosis. Chronic overexposure can lead to liver and/or kidney damage.

Prolonged or repeated skin contact with 1,1-dichloroethylene can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. 1,1-Dichloroethylene is not absorbed through intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. 1,1-Dichloroethylene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink 2 glasses of water. Call a physician.

OSHA: No PEL established for compound ACGIH: TLV = 5 ppm, STEL = 20 ppm

<u>1,2-Dichloroethylene</u> (cis and Trans Isomers)

1,2-Dichloroethylene is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbress of the extremities. High enough concentrations can produce decreasing respiration rate, a marked decrease in blood pressure, muscle relaxation, an absence of eye reflexes, or narcosis. Chronic overexposure may lead to liver and/or kidney damage, but this is not believed to be a common occurrence.

Prolonged or repeated skin contact with 1,2-dichloroethylene can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. 1,2-Dichloroethylene is not absorbed through intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. 1,2-Dichloroethylene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink two glasses of water. Call a physician.

OSHA: PEL = 200 ppm ACGIH: TLV = 200 ppm

3

Dicyclopentadiene

Dicyclopentadiene, also known as DCPD, is a respiratory tract irritant and a skin irritant. High enough concentrations can cause loss of coordination. Chronic overexposure can lead to kidney damage and lung damage. Skin contact with DCPD can cause mild irritation.

First Aid Procedures:

Inhalation - Remove person to fresh air. Seek immediate medical attention.

Skin Contact - Flush skin with large amounts of water. Seek immediate medical attention.

Eye Contact - Irrigate with water for 15 minutes. Seek immediate medical attention.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = none established ACGIH: TLV = 5 ppm

Ethylbenzene

Exposure to moderate to high levels of ethylbenzene causes CNS depression. Typical signs of ethylbenzene intoxication include drowsiness, dizziness, headache, vertigo, anorexia, visual disturbances, and delirium and may proceed to loss of consciousness. Moderate exposures can also cause eye and respiratory irritation. High levels of exposure can cause dyspnea and inebriation with euphoria and can rapidly lead to a deep anesthesia. Chronic overexposure can result in liver or kidney damage, and possible blood disorders.

Skin contact can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Ethylbenzene is not absorbed through the intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. Ethylbenzene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

Ingestion - Do not induce vomiting. Drink two glasses of water. Call a physician immediately.

OSHA: PEL = 100 ppm ACGIH: TLV = 100 ppm, STEL = 125 ppm

Formamide

Formamide is an upper respiratory tract and skin irritant. Chronic overexposure can lead to adverse effects on the liver and kidneys. It has also been associated with embryo toxicity and fetotoxicity by the oral, topical and inhalation routes of exposure.

Skin contact with formamide can cause mild irritation. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. Formamide can also be absorbed through intact skin in significant amounts. Drying and cracking of the skin can lead to further systemic uptake.. Formamide that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Do not induce vomiting. Drink two glasses of water. Call a physician immediately.

OSHA: PEL = none established ACGIH: TLV = 10 ppm, "skin" notation

Hexachlorobenzene

Hexachlorobenzene is toxic to humans upon acute exposure with health effects characteristic of porphyria (porphyrin in the blood). Symptoms include excessive excretion of porphyrins, abdominal pain and neurological disturbances. An acute attack may be precipitated by excessive use of alcohol or barbiturates. No serious illnesses or changes of liver function were reported in manufacturing plant workers exposed to vapors of hexachlorobenzene over a 40-year period.

First Aid Procedures:

201

Inhalation - Remove person to fresh air. Seek immediate medical attention.

- Skin Contact Flush skin with large amounts of water. Seek immediate medical attention.
- Eye Contact Irrigate with water for 15 minutes. Seek immediate medical attention.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = none established

ACGIH: TLV = none established

Other: NTP anticipated human carcinogen, IARC possible human carcinogen

Hexachlorobutadiene

Hexachlorobutadiene, also known as HCBD, is a respiratory tract irritant. Chronic overexposure can lead to kidney and liver damage. Hexachlorobutadiene is also listed as a suspected human carcinogen causing kidney tumors in laboratory animal studies.

First Aid Procedures:

Inhalation - Remove person to fresh air. Seek immediate medical attention.

Skin Contact - Flush skin with large amounts of water. Seek immediate medical attention.

Eye Contact - Irrigate with water for 15 minutes. Seek immediate medical attention.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

Ļ,

OSHA: PEL = none established

ACGIH: TLV = 0.02 ppm, "skin" notation, suspected human carcinogen.

Hexachlorocyclopentadiene

Hexachlorocyclopentadiene is a lacrimator and severe respiratory irritant. High enough concentrations can produce severe pulmonary edema. Chronic overexposure can lead to changes in the brain, heart, liver, adrenal glands and kidneys.

Skin contact with hexachlorocyclopentadiene can cause severe irritation. It has also been reported that hexachlorocyclopentadiene can be absorbed through intact skin.

First Aid Procedures:

Inhalation - Remove person to fresh air. Seek immediate medical attention.

Skin Contact - Flush skin with large amounts of water. Seek immediate medical attention.

Eye Contact - Irrigate with water for 15 minutes. Seek immediate medical attention.

Ingestion - Induce vomiting immediately as directed by medical personnel. Seek immediate medical attention.

OSHA: PEL = none established ACGIH: TLV = 0.01 ppm

Petroleum Distillates - Low Boiling Fraction

This class of compounds are complex hydrocarbon mixtures which can be obtained from the petroleum light distillate or low boiling fraction of crude oil. They include gasolines, petroleum ether, rubber solvent, VM & P naphtha, petroleum spirits, Stoddard solvent, 140_ flash naptha, aromatic petroleum napthas, thinners and naphthenic aromatic solvents. They are generally flammable, and present inhalation and skin contact hazards upon exposure.

Acute effects include CNS depression and mucous membrane irritation. Typical symptoms include headaches, blurred vision, dizziness and nausea. Reported responses to selected concentrations of gasoline vapor are: 160-270 ppm causes eye and throat irritation in several hours; 500-900 ppm causes eye, nose and throat irritation, and dizziness in 1 hour; and 2000 ppm produces mild anesthesia in 30 minutes. There are reports of toxic neuritis (nerve inflammation) after exposures to gasoline. Chronic exposure to Stoddard solvent has been associated with kidney damage in laboratory animals. Minimal evidence of serious health effects has been reported in industrial and domestic workers exposed to Stoddard solvent, other than its defatting and irritating effects on the skin. VM & P naphtha is reported to be a mild eye and nose irritant.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Do not induce vomiting. Drink two glasses of water. Call a physician immediately.

4

	<u>OSHA</u>	ACGIH
Gasoline	NE	TLV = 300 ppm, STEL 500 ppm
Rubber Solvent	NE	TLV = 400 ppm
VM & P Naphtha	NE	TLV = 300 ppm
Stoddard Solvent	PEL = 500 ppm	TLV = 100 ppm

Petroleum Hydrocarbons - Lubricating Stock Distillates

This class of compounds includes paraffins, lubricating motor and aviation oils, hydraulic fluids, and cutting oils. The petroleum waxes are physiologically inert, although wax fumes are mild eye, nose and throat irritants. Lubricating oils present minimal oral and dermal toxicities with the oral LD50 in rodents above 10 g/kg and dermal LD50 greater than 15 g/kg. Inhalation of lubricating oils is not a problem, unless misting occurs. Frequent and prolonged direct skin contact may produce skin irritation and dermatitis, probably due to the presence of certain additives.

Cutting oils, including the water-insoluble, water-soluble and synthetic fluids are generally of low-order toxicity. Additives found in cutting oils have caused common dermal problems, such as contact dermatitis. Approximately one percent of the population may be affected.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Do not induce vomiting. Drink two glasses of water. Call a physician immediately.

÷

OSHA: PEL = 5 mg/m^3 (as oil mist) ACGIH: TLV = 5 mg/m^3 (as oil mist)

Phenol

The health effects from phenol exposure are characterized by potential acute illness. It is readily absorbed through the skin which represents the primary route of entry. Fatalities have occurred in workers after gross skin contact. Phenol is also toxic upon ingestion. An oral dose of 1 gram may be fatal to man. Ingestion causes intense burning of the mouth and throat followed by abdominal pain.

Chronic phenol poisoning is characterized by digestive disturbances, nervous disorders, and possible skin eruptions. Extensive damage to the liver and kidneys follows and is usually fatal.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water for at least 15 minutes. Seek immediate medical attention.
- Eye Contact Irrigate with water for 15 minutes. Seek immediate medical attention.
- Ingestion Induce vomiting immediately as directed by medical personnel. Seek immediate medical attention.

÷

OSHA: PEL = 5 ppm, "skin" notation ACGIH: TLV = 5 ppm, "skin" notation **Phthalates**

This class of chemicals generally occur in liquid form with high boiling ranges and very low vapor pressures. The later characteristic contributes to its high stability. The phthalates do not present a dermal hazard, are not absorbed through the skin, and are not appreciable toxic by inhalation. Eye irritation may occur in certain phthalates (dimethyl phthalate) upon contact. Accidental ingestion has caused nausea, vomiting, dizziness and headaches.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. Seek immediate medical attention.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

Di-sec Octyl Phthalate (Di-2-ethylhexyl phthalate)	<u>OSHA</u> PEL = 5mg/m ³	ACGIH TLV = 5 mg/m ³ STEL = 10mg/m ³	<u>Other</u> NTP anticipated human carcinogen, IARC possible human carcinogen
Dibutyl Phthalate	$PEL = 5 \text{ mg/m}^3$	$TLV = 5 \text{ mg/m}^3$	
Diethyl Phthalate	NE	$TLV = 5 \text{ mg/m}^3$	
Dimethyl Phthalate	$PEL = 5 mg/m^3$	$TLV = 5 \text{ mg/m}^3$	

4

Polyarylhydrocarbons (PAH's)

Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)Anthracene, Benzo(a)Pyrene, Benzo(b)Fluoranthene, Benzo(g,h,i)Perylene, Benzo(k)Fluoranthene, Chrysene, Dibenz(a,h)Anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)Pyrene, Naphthalene, Phenanthrene, Pyrene, and derivatives.

The PAH's are characterized by their polycyclic ring structures and varying molecular weights. Low molecular weight PAH's (anthracene, fluorene, naphthalene, phenanthrene) are generally considered to present less of a health risk than those of greater molecular weight (benz(a)anthracene, chrysene, benzo(a)pyrene, benzo(e)pyrene). Many of these higher molecular weight compounds and their derivatives are known to be carcinogenic.

Human exposures usually involve complex mixtures, rather than a single PAH compound. Typical exposures occur as polluted air due to cigarette smoke, vehicle exhaust, and domestic energy emissions.

A majority of PAH studies have involved benzo(a)pyrene (BAP) due to its wide distribution and high biological activity. Results have indicated BAP to be a positive animal and suspect human carcinogen. It has also been shown to be both teratogenic and mutagenic in laboratory animals.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. Seek immediate medical attention.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

No specific workplace standards have been established for PAH's. It is generally accepted to use the coal tar pitch volatiles-benzene soluble fraction standard of 0.2 mg/m3 when evaluating air samples. It is reported that approximately 10% of coal tar pitch volatiles consist of polycyclic hydrocarbons. The ACGIH recognizes coal tar pitch volatiles as a confirmed human carcinogen (A1 designation).

Sodium Hydroxide

Sodium hydroxide is a caustic solid which causes burns and ulceration to eyes and skin upon contact. Inhalation of excessive amounts of sodium hydroxide may cause irritation, chemical pneumonitis, pulmonary edema, and lung damage. Symptoms can include difficulty breathing, coughing, tightness of chest, and coughing up blood. Ingestion may cause damage to gastrointestinal, esophageal, and oral tissues.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Immediately flush skin with large amounts of water while removing contaminated clothing. Seek immediate medical attention.
- Eye Contact Immediately irrigate eyes with large amounts of water. Seek immediate medical attention.

Ingestion - Seek prompt medical attention. Do not induce vomiting. Drink two glasses of water.

÷

OSHA: PEL = 2 mg/m^3 ACGIH: TLV = 2 mg/m^3

Sulfuric Acid

Sulfuric acid is a corrosion liquid causing burns and destruction to the eyes and skin upon contact. Inhalation of low to moderate concentrations of sulfuric acid mist can cause irritation, chemical pneumonitis, pulmonary edema, and lung damage. Symptoms of overexposure include tightness of the chest, congestion, difficulty breathing, fluid in lungs, and coughing up blood. Ingestion of sulfuric acid can cause damage to gastrointestinal, esophageal, and oral tissues.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Immediately flush skin with large amounts of water while removing contaminated clothing. Seek immediate medical attention.
- Eye Contact Immediately irrigate eyes with large amounts of water. Seek immediate medical attention.
- Ingestion Seek prompt medical attention. Do not induce vomiting. Drink two glasses of water.

÷

OSHA: PEL = 1 mg/m^3 ACGIH: TLV = 1 mg/m^3

1,1,1-Trichloroethane

Methyl chloroform (1,1,1-trichloroethane), like may of the chlorinated hydrocarbon solvents, is a CNS depressant. At high levels of exposure it is reported to cause sensitization of the heart to epinephrine. The vapors are irritating to the eye and respiratory tract at high levels. A number of studies have been performed looking for organ damage or other long term effects, but to date none have been documented.

Skin contact does not cause significant irritation, but, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Cracking of the skin can result and lead to systemic uptake. Methyl chloroform that enters the body in this way can then cause systemic effects, such as CNS depression, similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

÷

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink 2 glasses of water. Call a physician.

OSHA: PEL = 350 ppm ACGIH: TLV = 350 ppm, STEL = 450 ppm

Trichloroethylene

Trichloroethylene is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce cardiac arrhythmias, visual disturbances, or narcosis. Chronic overexposure can lead to peripheral neuropathy, damage to the lungs, liver, and/or kidneys, low blood pressure, and possibly blood disorders.

Prolonged or repeated skin contact with trichloroethylene can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Trichloroethylene is not absorbed through intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. Trichloroethylene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink 2 glasses of water. Call a physician.

OSHA: PEL = 100 ppm, 200 ppm ceiling, 300 ppm maximum peak ACGIH: TLV = 50 ppm, STEL = 100 ppm, not suspected as a human carcinogen (A5)

÷

Tetrachloroethylene

Tetrachloroethylene, also known as perchloroethylene, or "perc," is a respiratory tract irritant and CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbness of the extremities. High enough concentrations can produce narcosis, cardiac arrhythmias, visual disturbances, chemical pneumonitis, and pulmonary edema. Chronic overexposure to tetrachloroethylene can cause damage to the liver, kidney, and lungs. In addition, some authorities list tetrachloroethylene as a suspect cancer causing agent. This has not yet been confirmed, however, and is not universally accepted as true.

Skin contact with tetrachloroethylene can cause moderate irritation. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. Tetrachloroethylene is not absorbed through intact skin in significant amounts; however, drying and cracking of the skin can result and lead to further systemic uptake. Tetrachloroethylene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

First Aid Procedures:

المندني والمالم

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 100 ppm, 200 ppm ceiling, 300 ppm maximum peak ACGIH: TLV = 25 ppm, STEL = 100 ppm, animal carcinogen (A3) Other: IARC possible human carcinogen

Toluene

Exposure to moderate to high levels of toluene causes CNS depression. Typical signs of toluene intoxication include drowsiness, dizziness, headache, vertigo, anorexia, visual disturbances, and delirium and may proceed to loss of consciousness. Moderate exposures can also cause eye and respiratory irritation. High levels of exposure can cause dyspnea and inebriation with euphoria and can rapidly lead to a deep anesthesia. Without treatment, respiratory arrest rapidly ensues, often with muscular twitching and convulsions. Extremely high levels of toluene can also cause cardiac sensitization and arrhythmia.

Skin contact can cause moderate irritation, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Toluene is not absorbed through the intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. Toluene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Do not induce vomiting. Drink two glasses of water. Call a physician immediately.

OSHA: PEL = 200 ppm, 300 ppm ceiling, 500 ppm maximum peak ACGIH: TLV = 50 ppm, "skin" notation

Vinyl Chloride

Vinyl chloride is a respiratory irritant that causes CNS and respiratory depression. It can cause cardiac sensitization with subsequent ventricular fibrillation. Pulmonary abnormalities have included dyspnea (shortness of breath), asthma, pneumoconiosis (fibrotic lung disease), and pulmonary edema. It is also believed to cause respiratory sensitization.

Chronic exposures have been associated with damage to the heart, lungs, liver, kidneys, gastrointestinal tract, reproductive system, and blood and blood-forming organs. A peculiarity of vinyl chloride monomer is the degenerative damage it causes to bones and connective tissues.

Vinyl chloride is listed by the ACGIH as a "confirmed human carcinogen." It has been associated with cancers of the liver, lungs, brain, and lymphatic system.

Skin contact with vinyl chloride can cause severe irritation and contact sensitization. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. Vinyl chloride is not absorbed through intact skin in significant amounts; however, drying and cracking of the skin can result and lead to further systemic uptake. Vinyl chloride that enters the body through the skin can then cause systemic effects similar to those seen from inhalation.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

÷

Eye Contact - Irrigate with water for 15 minutes. Call physician immediately. Ingestion - No anticipated first aid required.

OSHA: PEL = 1 ppm, STEL = 5 ppm, cancer suspect agent ACGIH: TLV = 5 ppm, confirmed human carcinogen (A1) Other: NTP, IARC human carcinogen

<u>Xylene</u>

Inhalation of xylene in high concentrations can cause a flushing or reddening of the face, a feeling of increased body heat, and CNS excitation followed by depression, confusion, and coma. Other symptoms of overexposure include disturbed vision, dizziness, headache, tremors, salivation, cardiac stress, impaired memory, flatulence, loss of appetite, extreme fatigue, and respiratory distress. Inhalation of extremely high concentrations has caused sudden deaths, believed to be due to cardiac sensitization to epinephrine and resultant ventricular fibrillation and respiratory arrest.

Other potential health effects of acute high concentration exposures have included severe respiratory irritation, lung congestion, pulmonary edema, g.i. tract disturbances, and liver, kidney, and nervous system damage.

Xylene can be absorbed through the skin in significant amounts. Skin contact does not cause significant irritation, but, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Cracking of the skin can result and lead to increased systemic uptake. Xylene that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

2

OSHA: PEL = 100 ppm ACGIH: TLV = 100 ppm, STEL = 150 ppm

METALS

Chromium

The toxicity of chromium is dependent on the valence state of the compound. Exposure to hexavalent chromium causes dermatitis, skin ulcers, perforation of the nasal septum and inflammation of the larynx and liver. The dermatitis is a sensitization reaction. Ulcers and nasal septum perforation are due to chromate ion and chromic acid. Bronchogenic tumors have been reported in individuals exposed to chromates.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Wash skin with soap and large amounts of water. Remove contaminated clothing. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink two glasses of water. Call a physician.

	<u>OSHA</u>	ACGIH	Other
Chromium Chromium (II) Compounds Chromium (III) Compounds Chromium (VI) Compounds	1 mg/m ³ 0.5 mg/m ³ 0.5 mg/m ³	0.5 mg/m ³ 0.5 mg/m ³ 0.5 mg/m ³ 0.5 mg/m ³ , confirmed human carcinogen (A1) - certain water insoluble compounds	

÷

Copper

Copper is absorbed by ingestion and inhalation. Symptoms of acute poisoning include salivation, nausea, vomiting, gastric pain, and "metal fume fever" characterized by dryness and irritation of the throat, coughing, a feeling of general malaise and fatique, chills, and pains in the muscles and joints.

Chronic over exposure to copper can lead to nasal ulcerations and bleeding, and blood disorders. Skin contact may cause an allergic skin reaction in sensitive individuals.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 0.1 mg/m^3 fume, 1.0 mg/m^3 as dust/mist ACGIH: TLV = 1 mg/m^3

Lead

Lead is absorbed into the body by inhalation and ingestion. Generally, it is not absorbed through the skin. Once absorbed into the blood stream, lead is distributed to various organs and body tissues throughout the body. A certain amount will be excreted out of the body.

Lead is a potent, systemic poison which serves no known bodily function. In large enough doses, it is fatal within a matter of days. Acute lead poisoning is characterized by encephalopathy which can develop to seizures, coma and death. Chronic poisoning from lower doses may take a similar path, although an extended period of time is required to develop the effects.

Chronic overexposures may damage blood-forming, nervous, urinary, and reproductive systems. Common symptoms include loss of appetite, metallic taste in the mouth, anxiety, constipation, nausea, pallor, excessive fatigue, weakness, insomnia, headache, nervous irritability, muscle and joint pain, fine tremors, numbness, dizziness, hyperactivity and colic. Kidney disease may also develop upon excessive lead exposure, with few symptoms prior to permanent damage.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 0.05 mg/m^3 . Action Level = 0.03 mg/m^3 . ACGIH: TLV = 0.15 mg/m^3

Other: IARC possible human carcinogen (Group 2B). NTP anticipated human carcinogen.

Nickel

Dermatitis, also called "nickel itch", is the most frequent health effect due to nickel. It occurs from direct contact with metals containing nickel. Inhalation of nickel dust or fume can cause irritation of the respiratory tract, pulmonary edema, and allergic respiratory reaction. Symptoms of acute exposure include difficulty breathing, coughing, tightness of the chest and fluid in the lungs. Repeated or prolonged over exposure can lead to damage of the nasal cavity, pneumoconiosis, fibrosis, and immune system impairment. Nickel has also been shown to cause tumors in animal studies.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Wash skin with soap and large amounts of water. Remove contaminated clothing. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = 1.0 mg/m³ ACGIH: TLV = 1.0 mg/m³ Other: NTP anticipated human carcinogen. IARC human carcinogen (Group 1)

OTHER HAZARDOUS MATERIALS

Asbestos

Asbestos is a generic term that applies to a group of naturally occurring, hydrated minerals that are separable into fibers.

Chronic exposure to asbestos fibers has been shown to cause cancer of the lungs and mesothelioma, or thickening of the lining of the lungs. Inhalation of asbestos fibers can cause respiratory irritation. Symptoms include coughing, tightness of the chest, and difficulty breathing. Chronic effects however, may not manifest themselves for up to 30 years after exposure.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Wash skin with soap and large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - No need for first aid is anticipated.

OSHA: PEL = 0.2 fibers/cc. Confirmed cancer and lung disease hazard. ACGIH: TLV = 0.2 fibers/cc. Confirmed human carcinogen. Other: NTP human carcinogen. <u>Brine</u>

Brine is a sodium chloride and water solution, usually containing other salts also. Most natural brines are found in subterranean wells, desert lakes, and the ocean. Sodium chloride concentrations generally range from 3 to 20%.

Contact with the eyes or skin may cause mild to moderate irritation. Inhalation may cause irritation of the respiratory system. Ingestion of brine may cause irritation of gastrointestinal tissues and high blood pressure, which is characterized by dizziness, red skin coloration, and unconsciousness.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

OSHA: PEL = none established. ACGIH: TLV = none established.

Hydrochloric Acid

Hydrochloric acid (HCL), also known as muriatic acid, is a corrosive liquid causing burns to the eyes and skin upon contact. Inhalation of high levels of concentrated HCL can cause irritation, pulmonary edema and lung damage with symptoms of tightness in the chest, difficulty breathing, and fluid in the lungs. Chronic overexposure may cause anemia, liver effects, or emphysema. Ingestion of HCL can cause corrosion and damage to gastrointestinal tissues.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Immediately flush skin with large amounts of water while removing contaminated clothing. Seek immediate medical attention.
- Eye Contact Immediately irrigate eyes with large amounts of water. Seek immediate medical attention.
- Ingestion Seek prompt medical attention. Do not induce vomiting. Drink two glasses of water.

4

OSHA: PEL = 5 ppm (7 mg/m³) as a ceiling limit ACGIH: TLV = 1 mg/m³

Isopropyl Benzene

Isopropyl Benzene, also known as cumene, is very irritating to the respiratory tract. Symptoms include coughing, congestion, irritation of throat, tightness of chest, wheezing and difficulty breathing. It is also a CNS depressant with symptoms including dizziness, drowsiness, muscular weakness, incoordination, fatigue, blurred vision, emotional changes, psychosis, trouble speaking, headache, giddiness, heart rhythm disturbances, tremors and convulsions. Isopropyl benzene is both an eye and skin irritant with symptoms including redness, swelling, pain and tearing of the eye; and redness, swelling, itching and dryness of the skin.. It is also absorbed through the skin.

Chronic exposures may produce liver and kidney damage. Symptoms may include reduced urine volume, loss of appetite, weight gain, red urine, back pain, painful urination, lethargy, yellow skin, tenderness of abdomen, fever and death.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Induce vomiting IMMEDIATELY as directed by medical personnel. Seek immediate medical attention.

OSHA: PEL = 50 PPM, "skin" notation ACGIH: TLV = 50 ppm, "skin" notation

1. 3

Methylene Chloride

Exposure to moderate to high levels of methylene chloride, also called dichloromethane or methylene dichloride, causes CNS depression. Typical signs of methylene chloride intoxication include drowsiness, dizziness, headache, vertigo, visual disturbances, and delirium and may proceed to loss of consciousness. Moderate exposures can also cause severe eye irritation and respiratory irritation. High levels of exposure can cause dyspnea and inebriation with euphoria and can rapidly lead to a deep anesthesia. Without treatment, respiratory arrest rapidly ensues, often with muscular twitching and convulsions.

Skin contact can cause severe irritation or burns, and, as with other organic solvents, can cause defatting and drying of the skin. This can lead to dermatitis and subsequent irritation. Methylene chloride is not absorbed through the intact skin in significant amounts; however, cracking of the skin can result and lead to increased systemic uptake. Methylene chloride that enters the body through the skin can then cause systemic effects similar to those seen from inhalation or ingestion.

Chronic or long term effects from methylene chloride may include blood disorders and heart effects, along with liver and kidney damage. Methylene chloride has been listed as a potential cancer hazard by the NTP and IARC causing lung, liver, and mammary tumors by the inhalation route of exposure in laboratory animals.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink two glasses of water. Call a physician.

OSHA: PEL = 500 ppm (25 ppm proposed), 1000 ppm ceiling, 2000 ppm maximum peak

ACGIH: TLV = 50 ppm, suspected human carcinogen (A2) Other: IARC possible human carcinogen

4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)

MIBK is a clear liquid with a characteristic sweet, sharp odor. The odor threshold has been reported to be approximately 0.10 ppm. Exposure to high vapor concentrations irritate the eyes, nose and throat. Prolonged exposure may produce symptoms of weakness, headache, nausea, light headedness, vomiting, dizziness, and incoordination.

Repeated skin contact may produce dermatitis due to defatting properties. Eye contact may produce painful irritation. Chronic exposure may lead to kidney and/or liver damage.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician. Ingestion - Do not induce vomiting. Drink 2 glasses of water. Call a physician.

OSHA: PEL = 100 ppm ACGIH: TLV = 50 ppm, STEL = 75 ppm

Naphthalene

Naphthalene commonly occurs as white, crystalline flakes which has a strong coal tar odor. The flakes volatilize appreciable at room temperature. Inhalation may cause headache, loss of appetite and nausea. Optical neuritis, injuries to the cornea and liver damage have also been reported. Naphthalene vapors may also be irritating to the eyes.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.
- Eye Contact Irrigate with water for 15 minutes. If irritation persists, call a physician.
- Ingestion Induce vomiting immediately as directed by medical personnel. Seek immediate medical attention.

4

OSHA: PEL = 10 ppm ACGIH: TLV = 10 ppm, STEL = 15 ppm

PCB's

Exposure may result in acne, respiratory irritation, and liver injury. The characteristic chloracne condition has been reported in workers exposed at concentrations of 0.1 mg/m². Accidental ingestion studies have reported acne form eruptions, eye discharges, swelling of the upper eyelids, hyperpigmentation of the skin and nails, chloracne, and distinctive hair follicles in victims. Fever, hearing difficulties, muscle spasms, headache, vomiting and diarrhea were also reported. Studies have also suggested PCB's to be potential carcinogens.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with water for 15 minutes. If irritation persists, call a physician.

- Ingestion Seek prompt medical attention. Induce vomiting only at the instruction of a physician.
- OSHA: PEL = 1 mg/m³ (42% chlorine)/PEL = 0.5 mg/m³ (54% chlorine), "skin" notation
- ACGIH: TLV = 1 mg/m³ (42% chlorine)/PEL = 0.5 mg/m³ (54% chlorine), "skin" notation

Other: NTP anticipated human carcinogen

Pentane

Pentane is a respiratory tract irritant and a CNS depressant. Symptoms that are typically seen with CNS depressants include disturbed vision, dizziness, headache, loss of appetite, vomiting, drowsiness, fatigue, and numbress of the extremities. High enough concentrations can produce visual disturbances and narcosis.

Skin contact with pentane can cause moderate irritation. As with other organic solvents, it can cause defatting and drying of the skin. This can lead to dermatitis and further irritation. Pentane is not absorbed through intact skin in significant amounts; however, drying and cracking of the skin can result and lead to further systemic uptake.

First Aid Procedures:

- Inhalation Remove person to fresh air. If breathing is difficult, seek immediate medical attention.
- Skin Contact Flush skin with large amounts of water. If irritation persists, call a physician.

Eye Contact - Irrigate with large amounts of water. If irritation persists, call a physician.

Ingestion - Seek prompt medical attention. Induce vomiting only at the instruction of a physician.

÷

OSHA: PEL = 1000 ppm

ACGIH: TLV = 600 ppm, STEL = 750 ppm

Appendix B2-7

Environmental Indicator Forms

DOCUMENTATION OF ENVIRONMENTAL INDICATOR DETERMINATION

RCRA Corrective Action Environmental Indicator (EI) RCRAInfo Code (CA725) Current Human Exposures Under Control

Facility Name:Gage Products CompanyFacility Address:625 Wanda AvenueFacility EPA ID #:MID 005-388-801

- 1. Has **all** available relevant/significant information on known and reasonably suspected releases to soil, ground water, surface water/sediments, and air, subject to Resource Conservation Recovery Act of 1976 (RCRA) Corrective Action (e.g., waste management unit [WMU], regulated unit [RU], and area of concern [AOC]), been **considered** in this EI determination?
 - If yes check here and continue with #2 below.
 - If no reevaluate existing data, or
 - If data are not available, skip to #6 and enter "IN" (more information needed) status code.

BACKGROUND

Definition of Environmental Indicators (for the RCRA Corrective Action)

Els are measures being used by the RCRA Corrective Action Program to go beyond programmatic activity measures (reports received and approved, etc.) to track changes in the quality of the environment. The two Els developed to date indicate the quality of the environment in relation to current human exposures to contamination and the migration of contaminated ground water. An El for nonhuman (ecological) receptors is intended to be developed in the future.

Definition of "Current Human Exposures Under Control" El

A positive "Current Human Exposures Under Control" El determination ("YE" status code) indicates that there are no "unacceptable" human exposures to "contamination" (i.e., contaminants in concentrations in excess of appropriate risk-based levels) that can be reasonably expected under current land- and ground water-use conditions (for all "contamination" subject to RCRA Corrective Action at or from the identified facility [i.e., site-wide]).

Relationship of El to Final Remedies

While final remedies remain the long-term objective of the RCRA Corrective Action Program the Els are near-term objectives that are currently being used as program measures for the Government Performance and Results Act of 1993 (GPRA). The "Current Human Exposures Under Control" Els are for reasonably expected human exposures under current land- and ground water-use conditions ONLY and do not consider potential future land- or ground water-use conditions or ecological receptors. The RCRA Corrective Action Program's overall mission to protect human health and the environment requires that final remedies address these issues (i.e., potential future human exposure scenarios, future land and ground water uses, and ecological receptors).

Duration/Applicability of El Determinations

El determinations status codes should remain in the RCRAInfo national database ONLY as long as they remain true (i.e., RCRAInfo status codes must be changed when the regulatory authorities become aware of contrary information).

2. Are ground water, soil, surface water, sediments, or air **media** known or reasonably suspected to be "**contaminated**"1 above appropriately protective risk-based "levels" (applicable promulgated standards, as well as other appropriate standards, guidelines, guidance, or criteria) from releases subject to RCRA Corrective Action (from WMUs, RUs or AOCs)?

	<u>Yes</u>	<u>No</u>	?	<u>Rationale/Key Contaminants</u>
Ground water	\boxtimes			Ground water is not in an aquifer, however
				ground water concentrations exceed GCC
Air (indoors)2	\bowtie			Ground water and soil concentrations
				exceed GVIIC and SVIIC, respectively.
Surface Soil (e.g., <2ft)	\bowtie			Surface soil concentrations exceed DCC.
Surface Water		\boxtimes		Surface water not present.
Sediment		\boxtimes		Sediment not present.
Subsurf. Soil (e.g., >2ft)	\boxtimes			Subsurface Soil concentrations exceed
				DCC.
Air (outdoors)		\boxtimes		Soil or ground water concentrations do not
				exceed VSIC.

- ☐ If no (for all media) skip to #6, and enter "YE", status code after providing or citing appropriate "levels" and referencing sufficient supporting documentation demonstrating that these "levels" are not exceeded.
- If yes (for any media) continue after identifying key contaminants in each "contaminated" medium, citing appropriate "levels" (or provide an explanation for the determination that the medium could pose an unacceptable risk), and referencing supporting documentation.

If unknown (for any media) – skip to #6 and enter "IN" status code.

Rationale and Reference(s):

The facilities assessment of known nature and extent of contaminations is discussed in Section O-B of this attachment. A summary of analytical results is presented in Table O-1 and Table O-2. Key contaminants (those exceeding applicable criteria) include VOCs as listed on Tables O-A and O-2A.

3. Are there **complete pathways** between "contamination" and human receptors such that exposures can be reasonably expected under the current (land- and ground water-use) conditions?

Summary Exposure Pathway Evaluation Table

^{1&}quot;Contamination" and "contaminated" describes media containing contaminants (in any form, NAPL and/or dissolved, vapors, or solids, that are subject to RCRA) in concentrations in excess of appropriately protective risk-based "levels" (for the media, that identify risks within the acceptable risk range).

²Recent evidence (from the Colorado Department of Public Health and Environment, and others) suggests that unacceptable indoor air concentrations are more common in structures above ground water with volatile contaminants than previously believed. This is a rapidly developing field and reviewers are encouraged to look to the latest guidance for the appropriate methods and scale of demonstration necessary to be reasonably certain that indoor air (in structures located above [and adjacent to] ground water with volatile contaminants) does not present unacceptable risks.

Potential Human Receptors (Under Current Conditions)

Contaminated Media	Residents	Workers	Day-Care	Construction	Trespassers	Recreation	Food3
Ground water	NO	NO	NO	NO			NO
Air (indoors)	NO	NO	NO				
Soil (surface, e.g., <2 ft)	NO	NO	NO	NO	NO	NO	NO
Surface Water							
Sediment							
Soil (subsurface e.g., >2 ft)				NO			
Air (outdoors)	NO	NO	NO	NO	NO		

Instructions for Summary Exposure Pathway Evaluation Table:

- A. Strike-out specific Media including Human Receptors' spaces for Media which are not "contaminated" as identified in #2 above.
- B. Enter "yes" or "no" for potential "completeness" under each "Contaminated" Media Human Receptor Combination (Pathway).

Note: In order to focus the evaluation to the most probable combinations some potential "Contaminated" Media – Human Receptor combinations (Pathways) do not have check spaces ("___"). While these combinations may not be probable in most situations they may be possible in some settings and should be added as necessary.

- If no (Pathways are not complete for any contaminated media-receptor combination) skip to #6, and enter "YE" status code, after explaining and/or referencing conditions(s) in-place, whether natural or man-made, preventing a complete exposure pathway from each contaminated medium (e.g., use optional <u>Pathway Evaluation Work Sheet</u> to analyze major pathways).
- ☐ If yes (Pathways are complete for any "Contaminated" Media Human Receptor combination) continue after providing supporting explanation.
- If unknown (for any "Contaminated" Media Human Receptor combination) skip to #6 and enter "IN" status code.

Rationale and Reference(s)

Potential exposure pathways are not complete due to facility controls and operational procedures designed to limit human exposure to environmental media and are conditions of the facility operating license.

4. Can the **exposures** from any of the complete Pathways identified in #3 be reasonably expected to be "**significant**"⁴ (i.e., potentially "unacceptable" because exposures can be reasonably expected to be: (1) greater in magnitude [intensity, frequency and/or duration] than assumed in the derivation of the acceptable "levels" [used to identify the "contamination"]; or (2) the combination of exposure magnitude [perhaps even though low] and contaminant concentrations [that may be substantially above the acceptable "levels"] could result in greater

³Indirect Pathway/Receptor (vegetables, fruits, crops, meat and dairy products, fish, shellfish, etc.).

⁴If there is any question on whether the identified exposures are "significant" (i.e., potentially "unacceptable") consult a human health Risk Assessment specialist with appropriate education, training and experience. Gage\1-2013\Section O

than acceptable risks)? NOT APPLICABLE

- ☐ If no (exposures can not be reasonably expected to be significant [i.e., potentially "unacceptable"] for any complete exposure pathway) skip to #6 and enter "YE" status code after explaining and/or referencing documentation justifying why the exposures (from each of the complete pathways) to "contamination" (identified in #3) are not expected to be "significant".
- ☐ If yes (exposures could be reasonably expected to be "significant" [i.e., potentially "unacceptable"] for any complete exposure pathway) continue after providing a description (of each potentially "unacceptable" exposure pathway) and explaining and/or referencing documentation justifying why the exposures (from each of the remaining complete pathways) to "contamination" (identified in #3) are not expected to be "significant."

If unknown (for any complete pathway) - skip to #6 and enter "IN" status code.

Rationale and Reference(s):

- 5. Can the "significant" **exposures** (identified in #4) be shown to be within **acceptable** limits? NOT APPLICABLE
 - ☐ If yes (all "significant" exposures have been shown to be within acceptable limits) continue and enter "YE" after summarizing <u>and</u> referencing documentation justifying why all "significant" exposures to "contamination" are within acceptable limits (e.g., a site-specific Human Health Risk Assessment).

☐ If no (there are current exposures that can be reasonably expected to be "unacceptable") – continue and enter "NO" status code after providing a description of each potentially "unacceptable" exposure.

☐ If unknown (for any potentially "unacceptable" exposure) – continue and enter "IN" status code.

Rationale and Reference(s):

- 6. Check the appropriate RCRAInfo status codes for the Current Human Exposures Under Control EI Code (CA725), obtain supervisory signature and date on the EI determination below, and attach appropriate supporting documentation as well as a map of the facility.
 - ☐ YE Yes, "Current Human Exposures Under Control" has been verified. Based on a review of the information contained in this EI Determination, "Current Human Exposures" are expected to be "Under Control" at the _____ facility, EPA ID # _____, located at _____ under current and reasonably expected conditions. This determination will be reevaluated when the agency/state becomes aware of significant changes at the facility.

□ IN – More information is needed to make a determination.

(type name)
(type title)
Office of Waste Management and Radiological Protection
Michigan Department of Environmental Quality
517- -

Supervisor:

Date: (type date)

(type name) (type title) Office of Waste Management and Radiological Protection Michigan Department of Environmental Quality 517- -

Locations where references may be found:

Hazardous Waste Section facility files at: Office of Waste Management and Radiological Protection Michigan Department of Environmental Quality 525 West Allegan Street Lansing, Michigan 48933

Contact e-mail addresses:

(type name) <u>- (type e-mail)</u> (type name) - (type e-mail)

Final Note: The human exposures EI is a qualitative screening of exposures and the determinations within this document should not be used as the sole basis for restricting the scope of more detailed (e.g., site-specific) assessments of risk.

DOCUMENTATION OF ENVIRONMENTAL INDICATOR DETERMINATION

RCRA Corrective Action Environmental Indicator (EI) RCRAInfo Code (CA750) Migration of Contaminated Ground Water Under Control

Facility Name:	Gage Products Company
Facility Address:	625 Wanda Avenue
Facility EPA ID #:	MID 005-388-801

- 1. Has **all** available relevant/significant information on known and reasonably suspected releases to the ground water media, subject to RCRA Corrective Action (e.g., from waste management units (WMU), regulated units (RU), and areas of concern (AOC)), been **considered** in this EI determination?
 - If yes check here and continue with #2 below.
 - If no reevaluate existing data, or
 - If data are not available, skip to #8 and enter "IN" (more information needed) status code.

BACKGROUND

Definition of Environmental Indicators (for the RCRA Corrective Action)

Els are measures being used by the RCRA Corrective Action Program to go beyond programmatic activity measures (e.g., reports received and approved, etc.) to track changes in the quality of the environment. The two Els developed to-date indicate the quality of the environment in relation to current human exposures to contamination and the migration of contaminated ground water. An El for nonhuman (ecological) receptors is intended to be developed in the future.

Definition of "Migration of Contaminated Ground water Under Control" EI

A positive "Migration of Contaminated Ground Water Under Control" EI determination ("YE" status code) indicates that the migration of "contaminated" ground water has stabilized and that monitoring will be conducted to confirm that contaminated ground water remains within the original "area of contaminated ground water" (for all ground water "contamination" subject to RCRA Corrective Action at or from the identified facility [i.e., site-wide]).

Relationship of El to Final Remedies

While final remedies remain the long-term objective of the RCRA Corrective Action Program the Els are near-term objectives that are currently being used as program measures for the Government Performance and Results Act of 1993, (GPRA). The "Migration of Contaminated Ground Water Under Control" El pertains ONLY to the physical migration (i.e., further spread) of contaminated ground water and contaminants within ground water (e.g., nonaqueous phase liquids or NAPLs). Achieving this El does not substitute for achieving other stabilization or final remedy requirements and expectations associated with sources of contamination and the need to restore, wherever practicable, contaminated ground water to be suitable for its designated current and future uses.

Duration/Applicability of El Determinations

El determinations status codes should remain in the RCRAInfo national database ONLY as long as they remain true (i.e., RCRAInfo status codes must be changed when the regulatory authorities become aware of contrary information).

2. Is **ground water** known or reasonably suspected to be "**contaminated**"¹ above appropriately Gage\1-2013\Section O

protective "levels" (i.e., applicable promulgated standards, as well as other appropriate standards, guidelines, guidance, or criteria) from releases subject to RCRA Corrective Action, anywhere at, or from, the facility?

If yes - continue after identifying key contaminants, citing appropriate "levels," and referencing supporting documentation.

If no - skip to #8 and enter "YE" status code, after citing appropriate "levels," and referencing supporting documentation to demonstrate that ground water is not "contaminated."

If unknown - skip to #8 and enter "IN" status code.

Rationale and Reference(s):

Historical analytical data for facility ground water were compared to cleanup criteria developed by the MDEQ for non-residential properties pursuant to Part 201 of Act 451. A summary of the historical analytical data for the facility's ground water is provided on Tables O-3. A summary of analytical data for the "effluent" (i.e., ground water) collected from the ground water collection trench is provided on Table O-5. Sample locations are shown on Figure O-2 (effluent samples were collected from the center catch basin of the ground water collection trench).

The analytical data for the facility's ground water were compared to ground water contact criteria and ground water volatilization to indoor air criteria because the facility's ground water is perched (i.e., not in an aquifer), occurs in isolated low spots (i.e., is not laterally continuous) and Rule 299.5709(4) of the Michigan Administrative Code allows ground water not in an aguifer to be addressed by the application of soil cleanup criteria.

As shown on Tables 6 through 8, results for the water samples collected from monitoring wells GMW-4 and GMW-7, located in the western portion of Parcel C, and the effluent from the collection trench contained volatile organic compounds above the residential and non-residential risk-based criteria (drinking water, ground water volatilization to indoor air and ground water contact criteria). These areas are delineated to the west by the results of the soil and ground water sampling on the Grand Trunk Switching Yard including the temporary monitoring wells (TMW-01 through TMW-03). No other ground water samples from the site contained chemical concentrations above these criteria. Most notably, results for the temporary and permanent monitoring wells located along the eastern property line at Wanda Avenue were below residential and non-residential risk-based criteria including residential drinking water criteria.

- 3. Has the **migration** of contaminated ground water **stabilized** (such that contaminated ground water is expected to remain within "existing area of contaminated ground water"² as defined by the monitoring locations designated at the time of this determination)?
 - If yes - continue, after presenting or referencing the physical evidence (e.g., ground water sampling/measurement/migration barrier data) and rationale why contaminated ground water is expected to remain within the (horizontal or vertical) dimensions of the "existing area of ground water contamination"².
 - If no (contaminated ground water is observed or expected to migrate beyond the designated locations defining the "existing area of ground water contamination"²) – skip to #8 and enter "NO" status code, after providing an explanation.
 - If unknown skip to #8 and enter "IN" status code.

Rationale and Reference(s):

- 4. Does "contaminated" ground water discharge into surface water bodies?
 - If yes continue after identifying potentially affected surface water bodies.
 - If no skip to #7 (and enter a "YE" status code in #8, if #7 = yes) after providing an explanation and/or referencing documentation supporting that ground ater "contamination" does not enter surface water bodies.

If unknown - skip to #8 and enter "IN" status code.

Rationale and Reference(s):

- 5. Is the discharge of "contaminated" ground water into surface water likely to be "insignificant" (i.e., the maximum concentration³ of each contaminant discharging into surface water is less than 10 times their appropriate ground water "level," and there are no other conditions [e.g., the nature, and number, of discharging contaminants, or environmental setting], that significantly increase the potential for unacceptable impacts to surface water, sediments, or eco-systems at these concentrations)?
 - \Box If yes - skip to #7 (and enter "YE" status code in #8 if #7 = yes), after documenting: (1) the maximum known or reasonably suspected concentration³ of key contaminants discharged above their ground water "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and (2) provide a statement of professional judgment/explanation (or reference documentation) supporting that the discharge of ground water contaminants into the surface water is not anticipated to have unacceptable impacts to the receiving surface water, sediments, or eco-system.
 - If no (the discharge of "contaminated" ground water into surface water is potentially significant) - continue after documenting: (1) the maximum known or reasonably suspected concentration³ of each contaminant discharged above its ground water "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and (2) for any contaminants discharging into surface water in concentrations³ greater than 100 times their appropriate ground water "levels," the estimated total amount (mass in kg/vr) of each of these contaminants that are being discharged (loaded) into the surface water body (at the time of the determination), and identify if there is evidence that the amount of discharging contaminants is increasing.
 - If unknown enter "IN" status code in #8.

Rationale and Reference(s):

- 6. Can the discharge of "contaminated" ground water into surface water be shown to be "currently acceptable" (i.e., not cause impacts to surface water, sediments or eco-systems that should not be allowed to continue until a final remedy decision can be made and implemented⁴)?
 - If yes continue after either: (1) identifying the final remedy decision incorporating these conditions, or other site-specific criteria (developed for the protection of the site's surface water, sediments, and eco-systems), and referencing supporting documentation demonstrating that these criteria are not exceeded by the discharging ground water; OR (2) providing or referencing an interim-assessment,⁵ appropriate to the potential for impact, that shows the discharge of ground water contaminants into the surface water is

(in the opinion of a trained specialists, including ecologist) adequately protective of receiving surface water, sediments, and eco-systems, until such time when a full assessment and final remedy decision can be made. Factors that should be considered in the interim-assessment (where appropriate to help identify the impact associated with discharging ground water) include: surface water body size, flow, use/classification/habitats and contaminant loading limits, other sources of surface water/sediment contamination, surface water and sediment sample results and comparisons to available and appropriate surface water and sediment "levels," as well as any other factors, such as effects on ecological receptors (e.g., via bio-assays/benthic surveys or site-specific ecological Risk Assessments), that the overseeing regulatory agency would deem appropriate for making the EI determination.

- If no (the discharge of "contaminated" ground water can not be shown to be "currently acceptable") - skip to #8 and enter "NO" status code, after documenting the currently unacceptable impacts to the surface water body, sediments, and/or eco-systems.
- If unknown skip to 8 and enter "IN" status code.

Rationale and Reference(s):

- 7. Will ground water **monitoring**/measurement data (and surface water/sediment/ecological data, as necessary) be collected in the future to verify that contaminated ground water has remained within the horizontal (or vertical, as necessary) dimensions of the "existing area of contaminated ground water?"
 - \Box If yes - continue after providing or citing documentation for planned activities or future sampling/measurement events. Specifically identify the well/measurement locations which will be tested in the future to verify the expectation (identified in #3) that ground water contamination will not be migrating horizontally (or vertically, as necessary) beyond the "existing area of ground water contamination."

If no - enter "NO" status code in #8.

If unknown - enter "IN" status code in #8.

Rationale and Reference(s):

- 8. Check the appropriate RCRAInfo status codes for the Migration of Contaminated Ground Water Under Control EI (event code CA750), obtain supervisor signature and date on the EI determination below, and (attach appropriate supporting documentation as well as a map of the facility.
 - YE Yes, "Migration of Contaminated Ground Water Under Control" has been verified. Based on a review of the information contained in this EI determination, it has been determined that the "Migration of Contaminated Ground water" is "Under Control" at the facility, EPA ID # , located at . Specifically, this determination indicates that the migration of "contaminated" ground water is under control, and that monitoring will be conducted to confirm that contaminated ground water remains within the "existing area of contaminated ground water." This determination will be reevaluated when the agency/state becomes aware of significant changes at the facility.
 - NO Unacceptable migration of contaminated ground water is observed or expected.
 - \boxtimes IN More information is needed to make a determination.

Gage\1-2013\Section O

Completed by:

Date (type date)

(type name)
(type title)
Office of Waste Management and Radiological Protection
Michigan Department of Environmental Quality
517- -

Supervisor:

_____ Date (type date)

(type name) (type title) Office of Waste Management and Radiological Protection Michigan Department of Environmental Quality

Locations where references may be found: Hazardous Waste Section facility files at: Office of Waste Management and Radiological Protection Michigan Department of Environmental Quality 525 West Allegan Street Lansing, Michigan 48933

Contact e-mail addresses:

(type name) <u>- (type e-mail)</u> (type name) - (type e-mail)

Appendix B2-8 Property Notice

DAWDA, MANN, MULCAHY & SADLER, PLC

COUNSELORS AT LAW

39533 WOODWARD AVENUE, SUITE 200 BLOOMFIELD HILLS, MICHIGAN 48304-2815 (248) 642-3700 FAX (248) 642-7791 email@dmms.com

MICHAEL D. MULCAHY EDWARD C. DAWDA* CURTIS J. MANN PAUL A. BRINGER SUANNE TIBERIO TRIMMER SUANN TIBERIO TRIMMER SUSAN J. SADLER TYLER D. TENNENT GLENN G. ROSS SHERWIN E. ZAMLER JOHN MUCHA, III WILLIAM L. ROSIN KETTH JAMES***

PATRICK J. ENNIS DANIEL M. HALPRIN DANIEL M. ISRAEL** WAYNE S. SEGAL NICOLE S. LEVEQUE VINCENT J. WILK ROBERT A. WRIGHT, III* RICHARD S. BALLEY CARRIE HARNISH FEFDERIC P. MAINKA

TODD A. SCHAFER*

November 9, 2000

OF COUNSEL SIDNEY W. SMITH, JR.

*ALSO MEMBER OF ILLINOIS BAR **ALSO MEMBER OF OHIO BAR ***ALSO MEMBER OF WISCONSIN BAR

WRITER'S DIRECT DIAL NUMBER

(248) 642-8699 E-MAIL: SZAMLER@DMMS.COM

VIA UPS OVERNIGHT MAIL

Mr. Clay Spencer Michigan Department of Environmental Quality WMD - Hazardous Waste Program Section 608 West Allegan Lansing, Michigan 48933

Re: <u>Gage Corporation/Gage Products</u>

Dear Mr. Spencer:

I have enclosed a copy of the recorded Notice Regarding Statutory Obligations Applicable to Property for Gage Products Company and The Gage Corporation of Delaware.

Should you have any questions or comments, please do not hesitate to contact me.

Very truly yours,

DAWDA, MANN, MULCAHY & SADLER, P.L.C.

12

in E.

SEZ/ker

Encl.

cc: Mr. Thomas Randazzo (w/ encl.)

O:\SEZ\GAGE\110900.LTR

COPY

LIBER 22001 PAGE 79 \$9.00 AISC RECORDING \$2.00 REMONUMENTATION 11/09/2000 11:37:34 A.M. RECEIPT# 79246 PAID RECORDED - ORXLAND COUNTY G. WILLIAM CADDELL, CLERK/REGISTER OF DEEDS

283768

NOTICE REGARDING STATUTORY OBLIGATIONS APPLICABLE TO PROPERTY

The Gage Corporation of Delaware, the owner of the property described in Exhibit A hereto (the "Property"), is filing this notice with the Register of Deeds for Oakland County, Michigan, pursuant to State of Michigan Administration Rule R299.9525 entitled Notice Requirements.

The Property has been used to manage hazardous waste and is subject to the corrective action requirements of Part 111 of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451) and the Resource Conservation and Recovery Act, 42 USC, Section 6901 et seq., amended by the 1984 Hazardous And Solid Waste Amendments.

IN WITNESS HEREOF, The Gage Corporation of Delaware, has caused these presents to be executed this $\underline{\mathcal{I}}^{\mathcal{A}}_{\mathcal{A}}$ day of November, 2000.

WITNESSES: (Print name below signatures)

Payking na

THE GAGE CORPORATION OF DELAWARE

By:

Thomas Randazzo

Vice Pres./General Counsel

STATE OF MICHIGAN)) COUNTY OF OAKLAND)

On this 944 day of November, 2000, before me appeared Thomas Randazzo, to me personally known, who, being by me duly sworn, did state that he is a the Vice President and General Counsel of The Gage Corporation of Delaware, a Delaware corporation, and that the seal affixed to the foregoing instrument is the corporate seal of the corporation and the instrument was signed and sealed on behalf of the corporation by authority of its Board of Directors and that said Thomas Randazzo acknowledged the instrument to be the free act and deed of the corporation.

Notary Public

K SHEY CTARY FUELIC CARLAND CO. KON EXPIRES Jun 9, 200

This Notice drafted by: Patrick Ennis, Esq. 39533 Woodward, Suite 200 Bloomfield Hills, Michigan 48304

Return Notice to: Patrick Ennis, Esq. 39533 Woodward, Suite 200 Bloomfield Hills, Michigan 48304

Exhibit A

Legal Description:

O:SEZIGAGEIGAGECO.NOT

24

T1N, R11E, Section 35, Somerset Subdivision, part or all of Lots 257 to 282 inclusive, part of vacated Spencer Avenue and all of vacated alleys adjacent to same, all being described as beginning at the Northeast corner of Lot 266, thence South 01 degrees 12 minutes 00 seconds West 254.80 feet, thence North 89 degrees 59 minutes 00 seconds West 120.35 feet, thence North 00 degrees 01 minutes 00 seconds East 77.65 feet, thence North 89 degrees 59 minutes 00 seconds West 169.89 feet, to easterly right of way line of Grand Trunk Western Railroad, thence North 29 degrees 11 minutes 00 seconds West 202.87 feet, thence South 89 degrees 59 minutes 00 seconds Last 383.80 feet to point of beginning, also ½ of vacated Jewell Avenue adjacent to same. Commonly known as 515 Wanda, City of Ferndale, Oakland County, Michigan. Sidwell number 25-35-329-001.