

STATE OF MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

LANSING



DIRECTOR

GRETCHEN WHITMER GOVERNOR

September 30, 2021

## VIA U.S. CERTIFIED MAIL – RETURN RECEIPT REQUESTED

Mr. Michael Dressler, Manager Hazardous Materials Program Occupational Safety & Environmental Health University of Michigan North Campus Transfer Facility 1655 Dean Road Ann Arbor, Michigan 48109-2159

Dear Mr. Dressler:

SUBJECT: Hazardous Waste Management Facility Renewal Operating License (License); The University of Michigan (U of M) Beck Road Facility, Belleville, Michigan; MIR 000 001 834, Waste Data System Number 409472

The Michigan Department of Environment, Great Lakes, and Energy (EGLE), Materials Management Division (MMD), has issued the U of M License for the above-referenced facility.

The License application review and public participation procedures were conducted in accordance with Part 111, Hazardous Waste Management, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, and the administrative rules. The License is based on this review, and the results of the public comment period held between August 12, 2021, and September 30, 2021. A copy of the License and the Notice of Final Decision are enclosed.

If you have any questions, please contact Ms. Ronda L. Blayer, Environmental Engineer Specialist, Materials and Tracking Unit, Hazardous Waste Section, MMD at 517-614-2630; <u>BlayerR@Michigan.gov</u>; or EGLE, MMD, PO Box 30241, Lansing, Michigan, 48909-7741

Sincerely,

Kimberly M. Super

Kimberly M. Tyson, Manager Hazardous Waste Section Materials Management Division 517-388-2797

Enclosures

cc/enc: Mr. Mark Nord, U of M

Mr. James Blough, United States Environmental Protection Agency, Region 5 Ms. Kimberly Tyson, EGLE Mr. Rich Conforti, EGLE Ms. Ronda L. Blayer, EGLE Mr. John McCabe, EGLE Ms. Nicole Sanabria, EGLE Ms. Jill Coulter, EGLE Operating License File



# State of Michigan Department of Environment, Great Lakes, and Energy HAZARDOUS WASTE MANAGEMENT FACILITY OPERATING LICENSE

NAME OF LICENSEE: The Regents of the University of Michigan

NAME OF FACILITY OWNER: The Regents of the University of Michigan

NAME OF FACILITY OPERATOR: The Regents of the University of Michigan

NAME OF TITLEHOLDER OF LAND: The Regents of the University of Michigan

FACILITY NAME: The University of Michigan Beck Road Facility

FACILITY LOCATION: 8501 Beck Road, Belleville, Michigan 48111

SITE IDENTIFICATION (ID) NUMBER: MIR 000 001 834 EFFECTIVE DATE: September 30, 2021

REAPPLICATION DATE: March 30, 2031

EXPIRATION DATE: September 30, 2031

# **AUTHORIZED ACTIVITIES**

Pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), being §§324.11101 to 324.11153 of the Michigan Compiled Laws, and the hazardous waste management administrative rules (hereafter called the "rules") promulgated there under, being R 299.9101 *et. seq.* of the Michigan Administrative Code, by the Michigan Department of Environment, Great Lakes, and Energy (EGLE), an operating license (hereafter called the "license") is issued to The Regents of the University of Michigan (hereafter called the "licensee") to operate a hazardous waste management facility (hereafter called the "facility") located at latitude 42°14'30" and longitude 83°30'00". The licensee is authorized to conduct the following hazardous waste management activities:

| 🖂 STORAGE           |                    | DISPOSAL                | POSTCLOSURE         |
|---------------------|--------------------|-------------------------|---------------------|
| 🖂 Container         | Container          | Landfill                | 🗌 Tank              |
| 🗌 Tank              | 🗌 Tank             | Land Application        | Surface Impoundment |
| Waste Pile          | Surface Impoundmer | t 🗌 Surface Impoundment | Landfill            |
| Surface Impoundment | Incinerator        |                         | Waste Pile          |
| Drip Pad            |                    |                         |                     |

# APPLICABLE REGULATIONS AND LICENSE APPROVAL

The conditions of this license were developed in accordance with the applicable provisions of the rules, effective August 3, 2020. The licensee shall comply with all terms and conditions of this license, Part 111, and its rules. This license consists of the 11pages of conditions attached hereto as well as those in Attachments 1 through 11, and the applicable rules contained in R 299.9101 through R 299.11008, as specified in the license. For purposes of compliance with this license, applicable rules are those that are in effect on the date of issuance of this license in accordance with R 299.9521(3)(a).

This license is based on the information in the license application submitted on August 29, 2019, and any subsequent amendments (hereafter referred to as the "application"). Pursuant to R 299.9519(11) (c), the license may be revoked if the licensee fails, in the application or during the license issuance process, to disclose fully all relevant facts or, at any time, misrepresents any relevant facts. As specified in R 299.9519(1), the facility shall be constructed, operated, and maintained in accordance with Part 111 of Act 451, the rules, and this license.

This license is effective on the date of issuance and shall remain in effect for 10 years from the date of issuance, unless revoked pursuant to R 299.9519 or continued in effect as provided by the Michigan Administrative Procedures Act, 1969 PA 306, as amended (Act 306).

Issued this 30th day of September 2021.

By: Kimberly M. Super

Kimberly M. Tyson, Manager Hazardous Waste Section Materials Management Division

#### HAZARDOUS WASTE MANAGEMENT FACILITY OPERATING LICENSE FOR THE UNIVERSITY OF MICHIGAN BECK ROAD FACILITY MIR 000 001 834

## TABLE OF CONTENTS

## PART I: STANDARD CONDITIONS

| Α. | Terminology and References | .1  |
|----|----------------------------|-----|
| В. | Effect of License          | . 1 |
| C. | Severability               | .1  |
| D. | Responsibilities           | .1  |
| E. | Submittal Deadlines        | .2  |
|    |                            |     |

## PART II: GENERAL OPERATING CONDITIONS

| A. | General Waste Analysis                     | .3 |
|----|--------------------------------------------|----|
| B. | Security                                   | .3 |
| C. | General Inspection Requirements            | .3 |
| D. | Personnel Training                         | .3 |
| E. | Preparedness and Prevention                | .3 |
| F. | Contingency Plan                           | .3 |
| G. | Duty to Mitigate                           | .3 |
| Н. | Manifest System                            | .4 |
| Ι. | Record Keeping and Reporting               | .4 |
| J. | Closure                                    | .5 |
| K. | Waste Minimization                         | .5 |
| L. | Land Disposal Restrictions                 | .5 |
| M. | Air Emission Standards                     | .5 |
| N. | Documents to be Maintained at the Facility | .6 |
| О. | Engineering Plans                          | .6 |
|    |                                            |    |

#### PART III: CONTAINER STORAGE CONDITIONS

| Α. | Coverage of License                                       | 7 |
|----|-----------------------------------------------------------|---|
| В. | Waste Identification and Quantity                         | 7 |
| C. | Use and Management of Containers                          | 7 |
| D. | Special Requirements for Ignitable or Reactive Wastes     | 8 |
| E. | Special Requirements for Incompatible Wastes or Materials | 8 |
| F. | Disposition of Accumulated Liquids                        | 8 |

#### PART IV: CORRECTIVE ACTION CONDITIONS

| Corrective Action at the Facility                                 | 9                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Corrective Action Beyond the Facility Boundary                    | 9                                                                                                                                                                                                                                                                                    |
| Identification of Waste Management Units                          | 9                                                                                                                                                                                                                                                                                    |
| Operation and Maintenance Plan for Waste Management Units 3 and 4 | 11                                                                                                                                                                                                                                                                                   |
| Determination of No Further Action                                | 11                                                                                                                                                                                                                                                                                   |
| Corrective Action Documents Retention                             | 11                                                                                                                                                                                                                                                                                   |
|                                                                   | Corrective Action at the Facility<br>Corrective Action Beyond the Facility Boundary<br>Identification of Waste Management Units<br>Operation and Maintenance Plan for Waste Management Units 3 and 4<br>Determination of No Further Action<br>Corrective Action Documents Retention. |

## LIST OF ATTACHMENTS

- Attachment 1 Chemical and Physical Analyses
- Attachment 2 Waste Analysis Plan
- Attachment 3 Inspection Schedule
- Attachment 4 Personnel Training Program
- Attachment 5 Preparedness and Prevention
- Attachment 6 Contingency Plan
- Attachment 7 Closure Plan
- Attachment 8 Subpart CC Air Emissions from Tanks, Containers, and Surface Impoundments
- Attachment 9 Engineering Plans and Specifications
- Attachment 10 List of Acceptable Hazardous Wastes
- Attachment 11 Operation and Maintenance Plan for Units 3 and 4

# PART I STANDARD CONDITIONS

# A. TERMINOLOGY AND REFERENCES

Throughout this license, the term "Division" means the Materials Management Division, and any successor organization, within EGLE responsible for administering Part 111 of Act 451 and the rules. Throughout this license, "Director" means the Director of EGLE or the Director's duly authorized designee such as the Division Director. All the provisions of Title 40 of the Code of Federal Regulations (CFR) referenced in this license are adopted by reference in Rule (R) 299.11003.

# B. EFFECT OF LICENSE

Except as otherwise provided by law, any treatment, storage, or disposal of hazardous waste not specifically authorized in this license is prohibited. Issuance of this license does not authorize any injury to persons or property, any invasion of other private rights, or any infringement of federal, state, or local law or regulations {R 299.9516(8)}; nor does it obviate the necessity of obtaining such permits or approvals from other units of government as may be required by law. Compliance with the terms of this license does not constitute a warranty or representation of any kind by EGLE, nor does EGLE intend that compliance with this license constitutes a defense to any order issued or any action brought under Act 451 or any other applicable state statute or §106(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) {42 U.S.C. 9606(a)}, the Resource Conservation and Recovery Act of 1976, as amended (RCRA), and its rules, or any other applicable federal statute. The licensee, however, does not represent that it will not argue that compliance with the terms of this license is a part of, and is incorporated into, this license and is deemed an enforceable part of the license.

# C. SEVERABILITY

The provisions of this license are severable, and if any provision of this license, or the application of any provision of this license to any circumstance, is held invalid, the application of such provision to other circumstances and the remainder of this license shall not be affected thereby.

# D. **RESPONSIBILITIES**

The licensee shall comply with Part 111 of Act 451, the rules, and all conditions of this license, except to the extent authorized by EGLE pursuant to the terms of an emergency operating license. Any license noncompliance, except to the extent authorized by EGLE pursuant to the terms of an emergency operating license, constitutes a violation of Part 111 of Act 451 and is grounds for enforcement action, license revocation, license modification, or denial of a license renewal application. {§§11148, 11150, and 11151 of Act 451; R 299.9521(1)(a) and (c) and (3)(a) and (b); and 40 CFR §270.30(a)}

- 2. If the licensee wishes to continue an activity regulated by this license after the expiration date of this license, the licensee shall submit a complete application for a new license to the Division Director at least 180 days before this license expires, March **30**, 2031, unless an extension is granted pursuant to R 299.9510(5). To the extent the licensee makes a timely and sufficient application for renewal of this license, this license and all conditions herein will remain in effect beyond the license expiration date and shall not expire until a decision on the application is finally made by EGLE, and if the application is denied or the terms of the new license are limited, until the last day for applying for judicial review of the new license or a later date fixed by order of the reviewing court consistent with §91(2) of Act 306. {R 299.9521(1)(a) and (c) and (3)(a) and 40 CFR §270.30(b)}
- The licensee shall comply with the conditions specified in R 299.9521(1)(b)(i) to (iii) and 40 CFR §270.30(c) through (k), (l)(2), (3), (5), (7), and (11), and (m). {§§11123(3), 11146(1) and (2), and 11148(1) of Act 451 and R 299.9501(1), R 299.9516, R 299.9519, R 299.9521(1)(a) and (b) and (3)(a) and (b), R 299.9522, and R 299.9525}
- 4. The licensee shall give notice to the Division as soon as possible prior to any planned physical alterations or additions to the licensed facility. {R 299.9501, R 299.9519(1), and Part 6 of the Part 111 Rules}

# E. SUBMITTAL DEADLINES

When the deadline for submittals required under this license falls on a weekend or legal state holiday, the deadline shall be extended to the next regular business day. This extension does not apply to the deadline for financial mechanisms and associated renewals, replacements, and extensions of financial mechanisms required under this license. The licensee may request extension of the deadlines for submittals required under this license. The licensee shall submit such requests at least five business days prior to the existing deadline for review and approval by the Division Director. Written extension requests shall include justification for each extension. {R 299.9519 and R 299.9521(3)(a)}

#### PART II GENERAL OPERATING CONDITIONS

## A. GENERAL WASTE ANALYSIS

- The licensee shall ensure that any waste managed at the facility has been properly characterized pursuant to R 299.9302 and comply with the procedures described in the attached Chemical and Physical Analyses document and the Waste Analysis Plan, Attachments 1 and 2, respectively, of this license. {R 299.9605(1), and 40 CFR §264.13}
- 2. The waste profile form shall contain all the information listed in Figure A3.A.1 of the Waste Analysis Plan, Attachment 2, of the license, even if it means expansion of the waste profile form to include specific entries for each item listed to ensure each item has been considered and affirmative statements provided.

## B. SECURITY

The licensee shall comply with the barrier, surveillance, and signage requirements of R 299.9605(1) and 40 CFR §264.14.

#### C. GENERAL INSPECTION REQUIREMENTS

- 1. The licensee shall inspect the facility in accordance with the Inspection Schedule, Attachment 3 of this license, and comply with the inspection requirements of R 299.9605(1) and 40 CFR §264.15.
- 2. The licensee shall develop and implement a procedure to ensure compliance with the requirements of R 299.9605(2) regarding transport vehicles and other containers leaving the facility.

#### D. PERSONNEL TRAINING

The licensee shall comply with the personnel training requirements of R 299.9605 and 40 CFR §264.16. The Personnel Training Program, Attachment 4 of this license, shall, at a minimum, cover all items in R 299.9605 and 40 CFR §264.16.

#### E. **PREPAREDNESS AND PREVENTION**

The licensee shall comply with the preparedness and prevention requirements of Preparedness and Prevention, Attachment 5 of this license, R 299.9606, and 40 CFR Part 264, Subpart C.

#### F. CONTINGENCY PLAN

The licensee shall comply with the contingency plan requirements of R 299.9607 and 40 CFR Part 264, Subpart D. The Contingency Plan, Attachment 6 of this license, and the prescribed emergency procedures shall be immediately implemented by the licensee whenever there is a fire, explosion, or other release of hazardous waste or hazardous waste

## Part II General Operating Conditions

constituents that threatens or could threaten human health or the environment, or if the licensee has knowledge that a spill has reached surface water or groundwater.

#### G. DUTY TO MITIGATE

Upon notification from the Division Director or his or her designee that an activity at the facility may present an imminent and substantial endangerment to human health or the environment, the licensee shall immediately comply with an order issued by the Division Director pursuant to §11148(1) of Act 451 to halt such activity and conduct other activities as required by the Division Director to 6eliminate the said endangerment. The licensee shall not resume the halted activity without the prior written approval from the Division Director. {§11148 of Act 451 and R 299.9521(3)(b)}

#### H. MANIFEST SYSTEM

The licensee shall comply with the manifest requirements of R 299.9304, R 299.9305, and R 299.9608.

### I. RECORD KEEPING AND REPORTING

- 1. The licensee shall comply with the written operating record requirements of R 299.9609 and 40 CFR §264.73 and Part 264, Appendix I.
- 2. The licensee shall comply with the biennial report requirements of R 299.9610. {R 299.9521(1)(a) and 40 CFR §270.30(I)(9)}
- 3. The licensee shall submit the results of all environmental monitoring required by this license and any additional environmental sampling or analysis conducted beyond that required by this license to the Division Director within 60 days after any sample collection. The information shall be provided in the form of an Environmental Monitoring Report, using a format approved by the Division Director. The Report shall include, at a minimum, the laboratory report in pdf format and the data in an electronic spreadsheet format. {R 299.9521(1)(a) and R 299.9521(3)(b) and 40 CFR §270.30(l)(4)}
- 4. The licensee shall provide environmental monitoring information or data that is required pursuant to this license, to an authorized representative of an environmental or emergency response department of the city of Belleville or county of Wayne, who requests such information or data and that has jurisdiction over the facility. Such information or data shall be made available on the same day the licensee forwards this information to the Division Director. {R 299.9521(3)(b)}
- 5. The licensee shall immediately report to the Division Director any noncompliance with the license that may endanger human health or the environment by doing both of the following:
  - (a) The licensee shall immediately notify the Hazardous Waste Section at 517-284-6838, if the noncompliance occurs Monday through Friday during the period of 8:00 a.m. to 5:00 p.m., except state holidays, or by calling EGLE's Pollution

Emergency Alerting System (PEAS) at 1-800-292-4706 during all other times. This notice shall include the following:

- Information concerning the fire, explosion, release, or discharge of any hazardous waste or hazardous waste constituent that could threaten human health or the environment, that has reached surface water or groundwater, or that may endanger public drinking water supplies or the environment; and
- (ii) A description of the occurrence and its cause, including all the information outlined in R 299.9607(2)(a)-(i).
- (b) The licensee shall also follow up the verbal notice by providing a written report to the Division Director within five days of the time the licensee becomes aware of the circumstances. The written report shall contain all of the information in Condition II.I.5.(a)(i)-(ii) of this license along with a description of the noncompliance and its cause; the periods of noncompliance (including exact dates and times); whether the noncompliance has been corrected and, if not, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance and when those activities occurred or will occur. The Division Director may waive the 5-day written notice requirement in favor of submittal of a written report within 15 days of the time the licensee becomes aware of the circumstances.

{R 299.9521(1)(a) and R 299.9607 and 40 CFR §270.30(I)(6)}

- 6. The licensee shall report all other instances of noncompliance with this license, Part 111 of Act 451, the rules, and any other applicable environmental laws or rules that apply to the licensed facility, at the time monitoring reports required by this license are submitted or within 30 days, whichever is sooner. The reports shall contain the information listed in Condition II.I.5. of this license. {R 299.9521(1)(a) and 40 CFR §270.30(l)(10)}
- 7. The licensee may make minor modifications to the forms contained in the attachments to this license. The modifications may include changing the format, updating existing references and information, adding necessary information, and changing certification and notification information in accordance with Part 111 of Act 451 and its rules and RCRA and its regulations. The licensee shall submit the modifications to the Division Director prior to implementing the use of the modified form(s). If the Division Director does not reject or require revision of the modified form(s) within 14 days of receipt, the licensee shall implement use of the modified form(s) and the form(s) shall be incorporated into this license as a replacement for the existing form(s).

# J. CLOSURE

The licensee shall comply with the closure requirements of R 299.9613. The licensee shall close the facility in accordance with the Closure Plan, Attachment 7 of this license, all other applicable requirements of this license, and all other applicable laws. {R 299.9613 and 40 CFR Part 264, Subpart G, except 40 CFR §§264.112(d)(1), 264.115, and 264.120}

#### K. WASTE MINIMIZATION

The licensee shall certify, at least annually, that the licensee has a hazardous waste minimization program in place. {R 299.9609(1)(a) and 40 CFR §264.73(b)(9)}

#### L. LAND DISPOSAL RESTRICTIONS

The licensee shall comply with all the requirements of 40 CFR Part 268. {R 299.9627 and 40 CFR Part 268}

#### M. AIR EMISSION STANDARDS

- 1. The licensee shall comply with the requirements of 40 CFR Part 264, Subpart CC and Subpart CC Air Emissions from Tanks, Containers, and Surface Impoundments, Attachment 8 of this license.
- 2. The licensee shall notify the Division Director of any hazardous waste management unit or equipment that becomes subject to the requirements of 40 CFR Part 264, Subparts AA, BB, and/or CC within 30 days of the start of the regulated activity. If any hazardous waste management unit or equipment becomes subject to the requirements of 40 CFR, Part 264, Subparts AA, BB, and/or CC, the licensee shall request modification of this license, as appropriate.

{R 299.9630, R 299.9631, and R 299.9634, and 40 CFR Part 264, Subparts AA, BB, and CC}

#### N. DOCUMENTS TO BE MAINTAINED AT THE FACILITY

The licensee shall maintain at the facility the following documents and amendments required by this license, until closure/postclosure is completed, certified by an independent registered professional engineer, and the facility is released from financial assurance requirements for closure/postclosure by the Director:

- 1. Waste Analysis Plan, including Quality Assurance/Quality Control (QA/QC) Plans.
- 2. Inspection Schedules and records.
- 3. Personnel Training Program documents and records.
- 4. Contingency Plan.
- 5. Closure Plan.
- 6. Operating record.
- 7. Site Security Plan.
- 8. Facility engineering plans and specifications.
- 9. Record keeping procedures.
- 10. Environmental monitoring plans, including Sampling and Analysis Plans and QA/QC Plans.
- 11. Environmental monitoring data and statistical records.

# Part II General Operating Conditions

- 12. Preventative procedures (Personnel Protection Plan).
- 13. Hazardous waste minimization program certification

{R 299.9521(3)(a)}

## O. ENGINEERING PLANS

The licensee shall construct, operate, and maintain the facility in accordance with the Engineering Plans and Specifications, Attachment 9 of this license, and any modifications to those plans shall be made in accordance with this license.

#### PART III CONTAINER STORAGE CONDITIONS

## A. COVERAGE OF LICENSE

The hazardous waste container storage areas at the facility, denoted as Rooms 109A, 109B, 111, 113, 116, and 117, as shown in Engineering Plans and Specifications, Attachment 9 of this license are covered by this license. Any expansion or enlargement beyond the facility boundary shown in Engineering Plans and Specifications, Attachment 9 of this license or beyond the 13,200-gallon storage design capacity requires a new operating license for the expansion, enlargement, or alteration of an existing facility from the Director.  $\{R 299.9521(1)(b)\}$ 

## B. WASTE IDENTIFICATION AND QUANTITY

- 1. The licensee shall store only hazardous wastes that are generated by persons performing work for the licensee at its campuses or at properties that the licensee owns or leases.
- 2. The licensee may store no more than a total volume of 13,200 gallons of the hazardous wastes listed in List of Acceptable Hazardous Wastes, Attachment 10 of this license in containers at the facility, subject to the terms of this license. The maximum number of containers of hazardous waste that may be stored at the facility is 240 55-gallon containers, or an equivalent volume in other size containers. {R 299.9521(2)(d)}
- 3. The type of hazardous wastes that may be stored in the individual container storage areas at the facility shall be restricted to those identified below. {R 299.9521(2)(d)}

| Container Storage | Hazardous Wastes Managed            |
|-------------------|-------------------------------------|
| Area Room Number  |                                     |
| 109A              | Corrosive bases and reactive wastes |
| 109B              | Toxic wastes                        |
| 111               | Corrosive acids                     |
| 113               | Toxic and oxidizer wastes           |
| 116               | Toxic wastes                        |
| 117               | Ignitable and toxic wastes          |

4. The maximum volume and number of 55-gallon containers, or an equivalent volume in other size containers, of hazardous waste that may be stored in the individual container storage areas at the facility shall be restricted as follows: {R 299.9521(2)(d)}

| Container Storage | Hazardous Waste Container | Number of            |  |
|-------------------|---------------------------|----------------------|--|
| Area Room Number  | Storage Design Capacity   | 55-Gallon Containers |  |
| 109A              | 880 gallons               | 16                   |  |
| 109B              | 2,530 gallons             | 46                   |  |
| 111               | 880 gallons               | 16                   |  |
| 113               | 2,310 gallons             | 42                   |  |

| 116 | 4,730 gallons | 86 |
|-----|---------------|----|
| 117 | 1,870 gallons | 34 |

#### C. USE AND MANAGEMENT OF CONTAINERS

- 1. The licensee shall manage all containers in compliance with R 299.9521(3)(b), R 299.9614, and R 299.9627 and 40 CFR §§264.171, 264.172, 264.173, and 268.50(a)(2)(i).
- 2. The licensee shall only place containers, stacked no greater than two high, into the hazardous waste container storage area referenced in Condition III.A. of this license in accordance with the configuration shown in Drawing Sheet No. A2.0 in Engineering Plans and Specifications, Attachment 9 of this license, or an alternate configuration approved by the Division Director. {R 299.9521(3)(b)}
- 3. The licensee shall operate and maintain the containment system in accordance with the requirements of R 299.9614 and 40 CFR §264.175, and the attached plans and specifications in Engineering Plans and Specifications, Attachment 9 of this license.

#### D. SPECIAL REQUIREMENTS FOR IGNITABLE OR REACTIVE WASTES

- 1. The licensee shall locate containers holding ignitable or reactive wastes in accordance with R 299.9614 and 40 CFR §264.176.
- 2. The licensee shall take precautions to prevent the accidental ignition or reaction of ignitable or reactive wastes by following the procedures specified in Waste Analysis Plan and Preparedness and Prevention, Attachments 1 and 4, respectively, of this license. The licensee shall document compliance with this condition and place this documentation in the operating record. {R 299.9605 and 40 CFR §264.17(a) and (c)}

#### E. SPECIAL REQUIREMENTS FOR INCOMPATIBLE WASTES OR MATERIALS

- 1. The licensee is prohibited from placing incompatible wastes or incompatible wastes and materials in the same container. {R 299.9521(2)(d) and (3)(b)}
- 2. The licensee shall prevent the placement of hazardous waste in an unwashed container that previously held an incompatible waste or material. {R 299.9614 and 40 CFR §264.177(b)}
- The licensee shall document compliance with Conditions III.E.1. and III.E.2. of this license and place this documentation in the operating record. {R 299.9605 and 40 CFR §264.17(c)}
- 4. The licensee shall separate containers of incompatible wastes as indicated in the procedures contained in Waste Analyses Plan and Preparedness and Prevention, Attachments 1 and 4, respectively, of this license. {R 299.9614 and 40 CFR §264.177(c)}

## F. DISPOSITION OF ACCUMULATED LIQUIDS

The licensee shall remove all liquids accumulated in the containment system within 24 hours of detection and manage the liquids in accordance with the requirements of Part 111 of Act 451 and the rules, as specified in Preparedness and Prevention and Contingency Plan, Attachment 5 and 6, respectively, of this license. {R 299.9521(3)(b) and R 299.9614(1)(a) and 40 CFR §264.175(b)(5)}

#### PART IV CORRECTIVE ACTION CONDITIONS

## A. CORRECTIVE ACTION AT THE FACILITY

- 1. The licensee shall implement corrective action for all releases of a contaminant from any waste management unit (WMU) at the facility, regardless of when the contaminant may have been placed in or released from the WMU. For the purposes of this license, the term "corrective action" means an action determined by the Division Director to be necessary to protect the public health, safety, welfare, or the environment, and includes, but is not limited to, investigation, evaluation, cleanup, removal, remediation, monitoring, containment, isolation, treatment, storage, management, the temporary relocation of people, and the provision of alternative water supplies, or any corrective action allowed under Title II of the federal Solid Waste Disposal Act, PL 89-272, as amended, or regulations promulgated pursuant to that act. For the purposes of this license, the process outlined in Part 111 of Act 451 and the environmental protection standards adopted in R 299.9629 shall be used to satisfy the corrective action obligations under this license. {§§11102 and 11115a of Act 451 and R 299.9629}
- 2. To the extent that a release of a hazardous substance, as defined in §20101(x) of Act 451, that is not also a contaminant, as defined in §11102(2) of Act 451, is discovered while performing corrective action under this license, the licensee shall take concurrent actions as necessary to address the Part 201, Environmental Remediation, of Act 451 remedial obligations for that release. {R 299.9521(3)(b)}

#### B. CORRECTIVE ACTION BEYOND THE FACILITY BOUNDARY

The licensee shall implement corrective action beyond the facility in accordance with §11115a of Act 451 and R 299.9629(2).

#### C. IDENTIFICATION OF WASTE MANAGEMENT UNITS [AND AREAS OF CONCERN]

The WMUs at the facility are identified below:

- WMU-1 Beck Road Storage Facility Building 2201 is a two-story, multiple-room building at the facility that is used to store both low level radioactive waste and mixed waste.
- WMU-2 Area of Concern A Former fuel oil underground storage tank farm consisting of two 9,000-gallon, steel underground storage tanks that were in operation from 1949 to 1960.
- WMU-3 Area of Concern B One 3,000-gallon, steel underground storage tank formerly used to store gasoline from 1949 to 1960.
- WMU-4 Area of Concern C Area near the northeast corner of the automotive maintenance building at the facility that contains low concentrations of polynuclear aromatic hydrocarbons at a depth of approximately four-to-six feet.

### Part IV Corrective Action Conditions

- 1. The following WMUs do not require corrective action at this time:
  - (a) The following WMU, identified in the Preliminary Assessment/Visual Site Inspection Report for the University of Michigan Beck Road Storage Facility, dated April 16, 1998 (PA/VSI), that is currently operating pursuant to the act and its rules with no evidence of a release of any contaminants. Corrective action may be required when the unit undergoes final closure.
    - (i) WMU-1 Beck Road Storage Facility
  - (b) The following WMU, identified in the PA/VSI, based on the design of the unit and available information that indicates that no known or suspected releases of contaminants from the unit have occurred.
    - (i) WMU-2 Area of Concern A
  - (c) The following WMUs, identified in the PA/VSI; Corrective Measures Implementation Final Report, dated April 18, 2003 (CMI Final Report); Operation and Maintenance Plan for Waste Management Units 3 and 4 Inspection, Planned Excavation and Maintenance Protocol, dated August 17, 2004 (O&M Plan); and subsequent corrective action related documents approved by the Division Director on May 16, 2005, because the WMUs have undergone corrective action pursuant to the act and its rules and met the criteria for limited residential cleanups, provided the licensee complies with all of the requirements necessary to maintain this level of cleanup.
    - (i) WMU-3 Area of Concern B
    - (ii) WMU-4 Area of Concern C

{§§11102 and 11115a of Act 451 and R 299.9521(3)(b) and R 299.9629}

- 2. Within 30 days of discovery of a new WMU or a release of a contaminant from a new WMU, the licensee shall provide written notification to the Division Director. The written notification shall include all the following information:
  - (a) The location of the unit on the facility topographic map.
  - (b) The designation of the type of unit.
  - (c) The general dimensions and structural description, including any available drawings of the unit.
  - (d) The date the unit was operated.
  - (e) Specification of all waste(s) that have been managed in the unit.
  - (f) All available information pertaining to any release of a contaminant from the unit.

### Part IV Corrective Action Conditions

3. Based on a review of all the information provided in Condition IV.C.2 of this license, the Division Director may require corrective action for the newly identified WMU. The licensee shall submit a written Investigation Work Plan to the Division Director within 60 days of written notification by the Division Director that corrective action for the unit is required. {§§11102 and 11115a of Act 451 and R 299.9504(1), R 299.9508(1)(b), and R 299.9629 and 40 CFR §270.14(d)}

## D. OPERATION AND MAINTENANCE PLAN FOR WASTE MANAGEMENT UNITS 3 AND 4

The licensee shall comply with the O&M Plan for Units 3 and 4 that is incorporated into this license as Attachment 11. {Sections 11102 and 11115a of Act 451 and R 299.9521(3)(b) and R 299.9629}.

## E. DETERMINATION OF NO FURTHER ACTION

- 1. The licensee shall continue corrective action measures to the extent necessary to ensure that the applicable environmental protection standards adopted in Part 111 of Act 451 are met if the limits are not less stringent than allowed pursuant to the provisions of RCRA.
- 2. Based on the results of the Corrective Action Investigation and other relevant information, the licensee shall submit a written request for a license minor modification to the Division Director if the licensee wishes to terminate corrective action for a specific WMU identified in Condition IV.C of this license. The licensee must demonstrate that there have been no releases of a contaminant(s) from the WMU and that the WMU does not pose a threat to public health, safety, welfare, or the environment.
- 3. Based on the results of the Corrective Action Investigation and other relevant information, the licensee shall submit a written request for a license major modification to the Division Director if the licensee wishes to terminate facility-wide corrective action. The licensee must conclusively demonstrate that there have been no releases of a contaminant(s) from any of the WMU at the facility and that none of the WMUs pose a threat to public health, safety, welfare, or the environment.
- 4. If, based upon a review of the licensee's request for a license modification pursuant to Condition IV.E.2 or IV.E.3 of this license, the results of the completed Corrective Action Investigation, and other relevant information, the Division Director determines that the releases or suspected releases of a contaminant(s) do not exist and that the WMU(s) do not pose a threat to public health, safety, welfare, or the environment, the Division Director will approve the requested modification, as appropriate.
- 5. A determination of no further action shall not preclude the Division Director from requiring continued or periodic monitoring of air, soil, groundwater, or surface water, if necessary, to protect public health, safety, welfare, or the environment, when facility-specific circumstances indicate that potential or actual releases of a contaminant(s) may occur.

# Part IV Corrective Action Conditions

6. A determination of no further action shall not preclude the Division Director from requiring further corrective action in the future if new information or subsequent analysis indicates that a release or potential release of a contaminant(s) from a WMU at the facility may pose a threat to public health, safety, welfare, or the environment. The Division Director will initiate the necessary license modifications if further corrective action is required in the future.

{§§11102 and 11115a of Act 451 and R 299.9629(2)}

## F. CORRECTIVE ACTION DOCUMENTS RETENTION

The licensee shall maintain all corrective action documents required by this license at the facility. The documents shall be maintained for the operating life of the facility or until the facility is released from financial assurance requirements for corrective action by the Director, whichever is longer. The licensee shall offer such documents to the Division Director prior to discarding those documents. {§§11102 and 11115a of Act 451 and R 299.9629}

Attachment 1

Chemical and Physical Analyses

# FORM EQP 5111 ATTACHMENT TEMPLATE A2 CHEMICAL AND PHYSICAL ANALYSES

This document is an attachment to the Michigan Department of Environmental Quality's *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), being R 299.9504, R 299.9508, and R 299.9605, and Title 40 of the Code of Federal Regulations (CFR) §§264.13(a) and 270.14(b)(2), establish requirements for chemical and physical analyses at hazardous waste management facilities. All references to the 40 CFR citations specified herein are adopted by reference in R 299.11003

This license application template addresses requirements for chemical and physical analyses at the hazardous waste management facility for the Beck Road Facility in Belleville, Michigan. The information included in the template demonstrates how the facility meets the chemical and physical analyses requirements for hazardous waste management facilities.

## Type of applicant: (Check as appropriate)

- Applicant for Operating License for Existing Facility
- Applicant for Operating License for New, Altered, Enlarged, or Expanded Facility

# Type of Facility: (Check as appropriate)

- On-site Facility (generates hazardous waste)
- Off-site Facility (accepts hazardous waste from other generators)

# Type of Units to be Constructed or Operated at the Facility: (Check as appropriate)

- Containers
   Tank(s)
   Waste Pile(s)
   Landfilled Waste
  - □ Waste Incineration
  - Land Treatment
  - Miscellaneous Unit(s)
  - Boilers and Industrial Furnaces

This template is organized as follows:

- A2.A WASTE DESCRIPTION
  - A2.A.1 Waste Description (generate on-site wastes)
  - A2.A.2 Waste Description (receive wastes from off-site generators)
    - A2.A.2(a) Procedures for Obtaining Chemical and Physical Analyses from Off-Site Generators
  - Table A2.A.2 Hazardous Wastes Accepted at the Facility
- A2.B CONTAINERIZED WASTE
  - A2.B.1 Wastes Compatible with Container
  - A2.B.2 Containers without Secondary Containment System
- Attachment A2-1 Fingerprinting Documentation Sheet
- Attachment A2-2 Beck Road Facility Operation's Log
- Attachment A2-3 Chemical Compatibility Chart
- Attachment A2-4 Low Level Radioactive Waste (LLRW) Manifest
- Attachment A2-5 Hazardous / Chemical Waste Manifest
- Attachment A2-6 Precedence of Hazard Table
- Attachment A2-7 Chemical Compatibility Chart (for Containers)

# A2.A WASTE DESCRIPTION

[R 299.9504(1)(c) and 40 CFR §270.14(b)(2)]

# A2.A.1 Waste Description (generate on-site wastes)

[R 299.9504(1)(c) and 40 CFR §270.14(b)(2)]

Waste generated on-site will be incidental to the operation of the storage facility. See Table A2.A.2 for hazardous waste accepted at the facility.

# A2.A.2 Waste Description (receive wastes from off-site generators) [R 299.9504(1)(c) and 40 CFR §270.14(b)(2)]

The wastes stored at Beck Road Facility are generated during teaching, research and support operations conducted at the authorized U-M facilities shown on Table A1-1 of Section A1, General Facility Description. Hazardous and mixed waste is stored in the RCRA licensed waste management units in compatible containers, which may include 5-, 15-, 30- and 55-gallon plastic, metal or fiber drums; or metal, and carton fiber boxes. Low level radioactive waste (LLRW) is stored in non- RCRA licensed areas in compatible containers, which may include 5-, 15-, 30- and 55-gallon plastic, metal or fiber drums; or metal or fiber drums; or metal and carton fiber boxes.

The following is a summary of hazardous and mixed waste and LLRW that may be stored at the facility.

- Liquids and solids containing RCRA and Michigan Act 451 regulated constituents.
- Liquids and solids containing short-lived or long-lived radioisotopes mixed with RCRA and Michigan Act 451 regulated constituents.
- Aqueous liquids and solids containing RCRA, and Michigan Act 451 regulated constituents being held for Nuclear Regulatory Commission (NRC) decay to background or deregulation.
- Aqueous liquids containing short-lived or long-lived radioisotopes in scintillation vials.
- Liquid and solid LLRW containing short-lived or long-lived radioisotopes.
- Sealed and plated sources, stock vials.

# A2.A.2(a) Procedures for Obtaining Chemical and Physical Analyses from Off-Site Generators

U-M Hazmat personnel have extensive involvement with the hazardous and mixed waste destined for the Beck Road Facility. Hazardous and mixed waste is transported from the North Campus Transfer Facility (NCTF) or other U-M generator sites to the Beck Road Facility. Hazmat personnel perform specific activities at the site of generation, at the transfer facility and at the storage facility, and act as transporter from facility to facility. Activities are often duplicated at each step in the process to ensure proper and safe handling of the waste. A discussion of the activities performed at the generator site, the transfer facility and the storage facility follows.

At the site of generation, Hazmat personnel provide consultation on collection, labeling, manifesting and packaging of hazardous and mixed waste. The generator labels the waste and completes the U-M internal manifests. At the time of collection, Hazmat personnel perform visual inspection/fingerprinting, label and manifest reviews and completion of the Uniform Hazardous Waste Manifest and LDR notifications. Hazmat personnel perform all record keeping activities. Hazmat personnel act as the transporter from the site of generation to the transfer facility and to the Beck Road Facility. Hazmat personnel verify compatibility and commingle the accepted waste at the Beck Road Facility.

Prior to pick up, the Hazmat staff obtains a waste profile form, prepared by the generating laboratory, for each container of waste collected. The waste profile form consists of either the U-M Low Level Radioactive Waste (LLRW) Manifest (Attachment A2-4) or the U-M Hazardous / Chemical Waste Manifest (Attachment A2-5), as appropriate.

Re-characterization occurs with each collection of waste. A completed U-M internal manifest (waste profile form) will provide complete characterization of the waste prepared for collection.

Attachment Template A2, Chemical and Physical Analyses Form EQP 5111 (8-2-2021) Page 3 of 33 This documentation provides specific waste stream characterization by knowledge of the raw material and the waste generation process. Proper procedures for segregation will be in accordance with the "Precedence of Hazard Table" in 49 CFR §173.2a (Attachment A2-6), and the "Chemical Compatibility Chart, EPA-600/2-80-076 April 1980, A Method for Determining the Compatibility of Chemical Mixtures" (Attachment A2-3).

Additional testing, if indicated, and testing of unknowns is conducted through a commercial contract laboratory.

The hazardous characteristics and the basis for the hazardous waste designation for the hazardous and mixed waste generated at the U-M facilities and stored at the Beck Road Facility are described in Table A2.A.2.

The following describes in greater detail which activities are performed at the site of generation, at the transfer facility and at the storage facility.

# GENERATOR SITE

- U-M manifest check: Check for EPA ID number, proper shipping name, waste codes, isotope and activity, volume, room location, generator's signature on manifest.
- Discussion with the generator, as necessary, for validation/confirmation of the waste generation process and the waste constituents.
- Label check: Ensure both radioactive label and RCRA/MI Act 451 labels are complete and accurate.
- Review of waste code suitability: Verify that the transfer facility (when applicable) and storage facility can accept waste codes generated. Each facility's permit is used as guidance in this review.
- Fingerprinting: U-M conducts visual inspection of each container and a visual observation of the waste, each time, at the time of collection. Inspection of the container assesses the condition of the waste container for safe transport to the storage facility. Observation of the waste includes the container type, the color, the presence of phasing, and the volume and the waste code(s) assigned.
- If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with the generator and may require analytical testing through a commercial contract laboratory.
- Complete the generator section of the Waste Fingerprinting Documentation Sheet (Attachment A2-1) for each of the containers (jug, box, pail, etc.) referenced on the manifest. For each container of waste, indicate in columns provided, the BRSF (Beck Road Facility) storage area designation; the container type; the color of the waste; if a phase is observed in the waste (yes or no); the volume of waste; and the waste code(s) assigned. Initial and date the sheet.
- Completion of the Uniform Hazardous Waste Manifest and LDR notifications.
- Prepare waste for transport.

Attachment Template A2, Chemical and Physical Analyses Form EQP 5111 (8-2-2021) Page 4 of 33 TRANSFER FACILITY

- Visual inspection of container for integrity.
- Enter waste onto the Operation's Log.
- Move to appropriate room in transfer facility.
- Manifest activities: Make appropriate copies of U-M internal manifest, Uniform Hazardous Waste Manifest and LDR notifications for transfer facility and storage facility records. File originals and copies in appropriate locations.
- Perform radiological evaluation, as appropriate.
- Prior to shipping to storage facility, sign waste off Operation's Log, prepare waste for transport, sign appropriate transporter box on Uniform Hazardous Waste Manifest, make appropriate copy of Uniform Hazardous Waste Manifest transporter sheet, if required. File transporter copy in appropriate location, if required.

STORAGE FACILITY

- Evaluation of U-M internal manifest, Uniform Hazardous Waste Manifest and LDR notifications to ensure accuracy and completeness.
- Evaluation of radioactive label and RCRA/MI Act 451 label to ensure that both are complete and accurate.
- Visual observation of waste, fingerprinting: Complete the BRSF (Beck Road Facility) section of the Waste Fingerprinting Documentation Sheet (Attachment A2-1) for each of the containers (jug, box, pail, etc.) referenced on the manifest. For each container of waste, indicate in columns provided, the BRSF (Beck Road Facility) storage area designation; the container type; the color of the waste; if a phase is observed in the waste (yes or no); the volume of waste; and the waste code(s) assigned. Initial and date the sheet.
- If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with the generator and may require analytical testing through a commercial contract laboratory.
- Accept or deny waste, note discrepancies, sign manifest.
- Sign waste onto Operation's Log (Attachment A2-2).
- Move waste to designated room, or area.
- Evaluation of isotope compatibility: Segregate short-lived and long-lived isotopes, as appropriate.
- Evaluation of compatibility of chemical constituents and waste codes for drum assignment: Each waste drum has a chemical constituent sheet associated with it that lists the chemicals contained in that drum. This sheet is updated prior to new waste being commingled into a drum. The constituent sheet and the constituents of the new waste are evaluated for compatibility using the "Chemical Compatibility Chart, EPA-600/2-80-076 April 1980, A Method for Determining the Compatibility of Chemical Mixtures" (Attachment A2-3). Commingle like waste codes as possible.
- Ensure receiving drum is updated and properly marked and labeled: drum number, isotopes contained in drum, EPA ID number, proper shipping name, waste codes, accumulation start date for specific drum (will be date drum first receives waste).

Attachment Template A2, Chemical and Physical Analyses Form EQP 5111 (8-2-2021) Page 5 of 33

- Update Operation's Log to indicate receiving drum. 
  □ Update receiving drum worksheet.
- Commingle waste.
- Ensure drum is closed.
- Ensure waste profile sheet, and all other associated documents, are filed at the storage facility and/or returned to North Campus Transfer Facility, as appropriate.
- Return appropriate copies of Uniform Hazardous Waste Manifest to NCTF.

Characterization occurs with each collection of waste. The completed waste profile forms (U-M LLRW Manifest or U-M Hazardous / Chemical Waste Manifest and Fingerprinting Documentation Sheet) will provide complete characterization and profiling of the waste prepared for collection.

# TABLE A2.A.2 HAZARDOUS WASTES ACCEPTED AT THE FACILITY

| Hazardous<br>Waste<br>Code | Waste Description                                                         | Hazardous<br>Waste<br>Characteristics | Basis for Hazardous<br>Designation                    | Hazardous<br>Waste<br>Management<br>Unit |
|----------------------------|---------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------------|
| F002                       | Spent solvents generated by teaching, research and supporting operations  | Toxicity                              | Listed wastes; toxic waste hazard code                | Rooms 109B,<br>113, or 116               |
| F003                       | Spent solvents generated by teaching, research and supporting operations  | Ignitability                          | Listed wastes; ignitable waste hazard code            | Room 117                                 |
| F004                       | Spent solvents generated by teaching, research and supporting operations  | Toxicity                              | Listed wastes; toxic waste hazard code                | Rooms 109B,<br>113, or 116               |
| F005                       | Spent solvents generated by teaching, research and supporting operations  | Ignitability,<br>toxicity             | Listed wastes; ignitable and toxic waste hazard codes | Room 117                                 |
| D001                       | Ignitables generated by teaching, research and supporting operations      | Ignitability                          | Ignitable waste hazard code                           | Room 117                                 |
| D001                       | Oxidizers generated by teaching, research and supporting operations       | Ignitability                          | Ignitable waste hazard code                           | Room 113                                 |
| D002                       | Corrosive acids generated by teaching, research and supporting operations | Corrosivity                           | Corrosive waste hazard code                           | Room 111                                 |
| D002                       | Corrosive bases generated by teaching, research and supporting operations | Corrosivity                           | Corrosive waste hazard code                           | Room 109A                                |

| D003 | Reactives generated by teaching, research and supporting operations                       | Reactivity | Reactive waste hazard code                    | Room 109A                  |
|------|-------------------------------------------------------------------------------------------|------------|-----------------------------------------------|----------------------------|
| D004 | Waste containing arsenic generated<br>by teaching, research and<br>supporting operations  | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D005 | Waste containing barium generated<br>by teaching, research and<br>supporting operations   | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D006 | Waste containing cadmium<br>generated by teaching, research<br>and supporting operations  | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D007 | Waste containing chromium<br>generated by teaching, research<br>and supporting operations | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D008 | Waste containing lead generated by teaching, research and supporting operations           | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D009 | Waste containing mercury generated<br>by teaching, research and<br>supporting operations  | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D010 | Waste containing selenium<br>generated by teaching, research<br>and supporting operations | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D011 | Waste containing silver generated by teaching, research and supporting operations         | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D018 | Waste containing benzene<br>generated by teaching, research and<br>supporting operations  | Toxicity   | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |

| D019 | Waste containing carbon<br>tetrachloride generated by teaching,<br>research and supporting operations  | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
|------|--------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|----------------------------|
| D021 | Waste containing chlorobenzene<br>generated by teaching, research and<br>supporting operations         | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D022 | Waste containing chloroform generated by teaching, research and supporting operations                  | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D023 | Waste containing o-cresol generated<br>by teaching, research and supporting<br>operations              | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D024 | Waste containing m-cresol<br>generated by teaching, research and<br>supporting operations              | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D025 | Waste containing p-cresol generated<br>by teaching, research and supporting<br>operations              | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D026 | Waste containing cresol generated<br>by teaching, research and supporting<br>operations                | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D027 | Waste containing<br>1,4dichlorobenzene generated by<br>teaching, research and supporting<br>operations | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D028 | Waste containing 1,2dichloroethane<br>generated by teaching, research and<br>supporting operations     | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |

| D029 | Waste containing<br>1,1dichloroethylene generated by<br>teaching, research and supporting<br>operations | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
|------|---------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|----------------------------|
| D030 | Waste containing 2,4dinitrotoluene<br>generated by teaching, research and<br>supporting operations      | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D032 | Waste containing<br>hexachlorobenzene generated by<br>teaching, research and supporting<br>operations   | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B, 113,<br>or 116 |
| D033 | Waste containing<br>hexachlorobutadiene generated by<br>teaching, research and supporting<br>operations | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D034 | Waste containing hexachloroethane<br>generated by teaching, research and<br>supporting operations       | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D035 | Waste containing methyl ethyl ketone generated by teaching, research and supporting operations          | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D036 | Waste containing nitrobenzene<br>generated by teaching, research and<br>supporting operations           | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D038 | Waste containing pyridine generated<br>by teaching, research and<br>supporting operations               | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |

| D039 | Waste containing tetrachloroethylene generated by teaching, research and supporting operations           | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
|------|----------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|----------------------------|
| D040 | Waste containing trichloroethylene generated by teaching, research and supporting operations             | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D041 | Waste containing<br>2,4,5trichlorophenol generated by<br>teaching, research and supporting<br>operations | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D042 | Waste containing<br>2,4,6trichlorophenol generated by<br>teaching, research and supporting<br>operations | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| D043 | Waste containing vinyl chloride<br>generated by teaching, research and<br>supporting operations          | Toxicity | Hazard code for toxicity characteristic waste | Rooms 109B,<br>113, or 116 |
| U138 | Waste containing methyl iodide<br>generated by teaching, research and<br>supporting operations           | Toxicity | Listed waste; hazard code for toxic waste     | Rooms 109B,<br>113, or 116 |
| U151 | Waste containing mercury generated<br>by teaching, research and<br>supporting operations                 | Toxicity | Listed waste; hazard code for toxic waste     | Rooms 109B,<br>113, or 116 |

# A2.B CONTAINERIZED WASTE

[R 299.9504(1)(c) and 40 CFR §264.172]

# A2.B.1 Wastes Compatible with Container

Hazardous and mixed wastes are commingled into new US DOT UN rated performance oriented packagings constructed of HDPE, or other compatible material. Hazardous and mixed waste may remain in the original container and not be commingled; waste and container compatibility is evaluated. Waste containers are kept closed, except when adding or removing waste. Waste containers holding flammable liquids are grounded to a grounding strip, while commingling is occurring. Hazardous and mixed wastes are segregated on site based on hazard characteristics. Waste containers are inspected at least weekly to evaluate their condition. A chemical compatibility chart (for containers) is available for reference (Attachment A2-7).

# A2.B.2 Containers without Secondary Containment System

Hazardous and mixed waste is stored within the permitted area, which is designed as a secondary containment system. The secondary containment system is described in Template C1, Use and Management of Containers.

If a spill occurs, the spilled material is contained in the secondary containment area and retrieved using sorbent material. Checking the labels or markings on the leaking container identifies the spilled material. In the unlikely event that the specific spill source cannot be identified, representative samples are taken in conformance with *Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (EPA Publication No. SW-846).* The sample is then analyzed for the suspected hazardous waste constituents based on the spill location (potential sources) and visual observations of the materials' characteristics. The analytical procedures used are those recommended by EPA Publication SW-846. If no applicable methods are provided in SW-846, an American Society for Testing and Materials (ASTM) method will be used.

University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Chemical and Physical Analyses, Revision 0

Attachment A2-1 Fingerprinting Documentation Sheet

# University of Michigan Beck Road Storage Facility Fingerprinting Documentation Sheet

|           |              |           |                   | U-M Manifest No. |                   |             |             |
|-----------|--------------|-----------|-------------------|------------------|-------------------|-------------|-------------|
| BRSF Area | Cont.<br>No. |           | Container<br>Type | Color            | Phase<br>Observed | Vol.<br>(L) | Waste Codes |
|           | 1            | Generator |                   |                  |                   |             |             |
|           | 1            | BRSF      |                   |                  |                   |             |             |
|           | 2            | Generator |                   |                  |                   |             |             |
|           | 2            | BRSF      |                   |                  |                   |             |             |
|           | 3            | Generator |                   |                  |                   |             |             |
|           | 3            | BRSF      |                   |                  |                   |             |             |
|           | 4            | Generator |                   |                  |                   |             |             |
|           | 4            | BRSF      |                   |                  |                   |             |             |
|           | 5            | Generator |                   |                  |                   |             |             |
|           | 5            | BRSF      |                   |                  |                   |             |             |
|           | 6            | Generator |                   |                  |                   |             |             |
|           | 6            | BRSF      |                   |                  |                   |             |             |
|           | 7            | Generator |                   |                  |                   |             |             |
|           | 7            | BRSF      |                   |                  |                   |             |             |
|           | 8            | Generator |                   |                  |                   |             |             |
|           | 8            | BRSF      |                   |                  |                   |             |             |

Comments:

|           | Initials | Date |
|-----------|----------|------|
| Generator |          |      |
| BRSF      |          |      |

University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Chemical and Physical Analyses, Revision 0

Attachment A2-2 Beck Road Facility Operation's Log
# **Operations Log**

EPA ID: MIR 000 001 834 University of Michigan Environment, Health and Safety (EHS) Beck Road Facility 8501 Beck Road Belleville, Michigan 48111

# Authorized Handling Code S01

Month / Year \_\_\_\_\_/\_\_\_\_

| Date<br>In | Manifest<br>Number | Generator<br>Name | Number<br>of<br>Containers | Total #<br>of<br>Liters | Waste<br>Codes(s) | Drum<br>MW # | Off Site<br>Ship. Date | Initials |
|------------|--------------------|-------------------|----------------------------|-------------------------|-------------------|--------------|------------------------|----------|
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |
|            |                    |                   |                            |                         |                   |              |                        |          |

Attachment A2-2, Beck Road Facility, Operation's Log Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 16 of 33

Attachment A2-3 Chemical Compatibility Chart



Attachment A2-3, Chemical Compatibility Chart

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 18 of 33

Attachment A2-4 Low Level Radioactive Waste (LLRW) Manifest

|             |                                                                                                                                                                                                                                                                                                       |                |                | Norti                    | LC<br>Un<br>h Car        | W-L<br>iversit     | EVEL<br>JN3321<br>y of Mid<br>ransfer | RA<br>Rad<br>chiga<br>Facili | DIOA<br>ioactive<br>n, Occur<br>ity, 165: | mate<br>patio<br>5 Dea | IVE<br>erial,<br>nal Sa<br>in Ro | WA<br>low s<br>afety<br>ad, A | STE<br>and E<br>and Ar | (LI<br>c acti<br>nviro<br>bor, | RW)<br>wity (L<br>mmenta<br>MI 481 | MANI<br>SA-II), 7<br>al Health<br>09-2159 | (OSEI<br>, (734)                         | r<br>H)<br>763-45 | 568     |         | R 33      | NIFE<br>970      | ST #              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------------------|--------------------------|--------------------|---------------------------------------|------------------------------|-------------------------------------------|------------------------|----------------------------------|-------------------------------|------------------------|--------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|-------------------|---------|---------|-----------|------------------|-------------------|
|             |                                                                                                                                                                                                                                                                                                       |                |                | [SD -                    | - 7.5 g                  | al, LD             | = 28 gal.                             | 1                            |                                           |                        |                                  | S                             | OLIDS                  | i (Atta                        | ch Con                             | tainer Lab                                | el to der                                | cal on t          | he sid  | e of th | e drum)   |                  | 2                 |
| S           |                                                                                                                                                                                                                                                                                                       |                |                |                          | Size                     | gallon             |                                       |                              | D.                                        | Activ                  | ity                              |                               |                        |                                |                                    | Activ                                     | Activity                                 |                   |         |         |           | Activity         |                   |
| E           | RQ                                                                                                                                                                                                                                                                                                    | No             | a Dru          | m                        | (Ci                      | rele)              | Isotop                                | c                            | (kBq                                      |                        | (uC                              | (i)                           | Iso                    | tope                           |                                    | (kBa)                                     | (uCi)                                    |                   | Isotope |         | (kBa      |                  | (aCi)             |
| С           | . T                                                                                                                                                                                                                                                                                                   |                |                | 1                        | 7.5                      | 28                 |                                       |                              |                                           |                        | (                                | )                             |                        |                                |                                    |                                           | (                                        | )                 |         |         |           | C                | )                 |
|             |                                                                                                                                                                                                                                                                                                       |                |                |                          | 7.5                      | 28                 |                                       |                              | 24                                        |                        | (                                | )                             |                        |                                | 100                                |                                           | (                                        | )                 |         |         | C         |                  | )                 |
| A           |                                                                                                                                                                                                                                                                                                       |                |                |                          | 7.5                      | 28                 | -                                     |                              |                                           |                        | (                                | )                             |                        |                                |                                    |                                           | (                                        | )                 |         | _       | 10        | (                | )                 |
|             | RQ                                                                                                                                                                                                                                                                                                    | Jug<br>1       | Vol<br>(L)     | Isote                    | pe _                     | (kBe)              | Activity                              |                              | Isotop                                    | ×                      | ///8                             | Acti                          | vity                   | DS (F                          | lace lab<br>If chem<br>Code        | el around<br>ical(s) pre                  | handle)<br>sent ent                      | er num            | ber co  | ode fro | om back ð | k concer<br>Code | itration          |
| S           |                                                                                                                                                                                                                                                                                                       | 1              |                | 1                        |                          | Trong              | (                                     | )                            | 1                                         |                        | (40)                             |                               | (                      | )                              |                                    |                                           |                                          |                   |         | -       |           | Code             |                   |
| E           |                                                                                                                                                                                                                                                                                                       | 2              |                |                          |                          |                    | (                                     | )                            |                                           |                        |                                  |                               | (                      | )                              |                                    |                                           |                                          |                   |         |         |           |                  |                   |
| C           |                                                                                                                                                                                                                                                                                                       | 3              |                | _                        |                          |                    | (                                     | )                            | -                                         |                        |                                  |                               | (                      | )                              |                                    |                                           |                                          |                   |         |         |           |                  |                   |
| в           |                                                                                                                                                                                                                                                                                                       | 4              | -              | -                        | -                        | _                  | (                                     | )                            | -                                         | -                      | -                                | _                             | (                      | )                              | -                                  | -                                         | _                                        | -                 | +       | _       | -         | _                |                   |
|             | H                                                                                                                                                                                                                                                                                                     | 6              |                | -                        | -                        | -                  | C                                     | )                            | -                                         |                        | -                                | -                             | (                      | )                              | -                                  |                                           | -                                        | -                 | +       | -       |           |                  |                   |
|             |                                                                                                                                                                                                                                                                                                       | 7              |                |                          |                          |                    | (                                     | )                            |                                           |                        |                                  |                               | Ċ                      | )                              |                                    |                                           |                                          |                   | +       |         |           |                  |                   |
|             |                                                                                                                                                                                                                                                                                                       | 8              |                |                          |                          |                    | (                                     | )                            |                                           |                        |                                  |                               | (                      | )                              |                                    |                                           |                                          |                   |         | _       |           |                  |                   |
| s           | SCINILLATION VIALS (Indicate on the box whether the vials are plastic or glass)       RQ     Box     Activity     Activity     Activity     Plastic     Identify Scintillation Cocknall       S     #     (kBq)     (uCi)     (kBq)     (uCi)     (kBq)     (uCi)     Identify Scintillation Cocknall |                |                |                          |                          |                    |                                       |                              |                                           |                        | Cocktaal                         |                               |                        |                                |                                    |                                           |                                          |                   |         |         |           |                  |                   |
| E           |                                                                                                                                                                                                                                                                                                       | 2              | -              |                          |                          | -                  | (                                     | <u>,</u>                     | -                                         |                        | -                                | C                             | - )                    | +                              | -                                  |                                           | C                                        | )                 | P       | G       |           |                  |                   |
| C           |                                                                                                                                                                                                                                                                                                       | 3              | -              | -                        |                          |                    | (                                     | )                            |                                           | -                      |                                  | (                             | )                      |                                |                                    | -                                         | (                                        | )                 | p       | G       | -         |                  |                   |
| C           |                                                                                                                                                                                                                                                                                                       | 4              | -              |                          |                          |                    | (                                     | )                            |                                           |                        |                                  | (                             | )                      | -                              | -                                  |                                           | t                                        | )                 | P       | G       |           | -                |                   |
|             |                                                                                                                                                                                                                                                                                                       | 5              |                | -                        |                          |                    | (                                     | )                            |                                           |                        |                                  | (                             | )                      |                                | -                                  |                                           | (                                        | )                 | p       | 6       |           | _                | -                 |
|             | _                                                                                                                                                                                                                                                                                                     | _              |                | _                        | -                        |                    |                                       | -                            |                                           |                        |                                  |                               | _                      | _                              |                                    | _                                         |                                          |                   |         |         |           |                  |                   |
| S           | RQ                                                                                                                                                                                                                                                                                                    | Pkg.           | Sharp          | es Sto                   | kis (                    | Dther              | Isotope                               | 0                            | Activities (Bq)                           | ity<br>(uC             | ij                               | Iso                           | tope                   | (kB                            | Activity                           | (uCi)                                     | Isotop                                   | e                 | (kBq)   | ctivity | (uCi)     | PIC              | BARRIN            |
| E           |                                                                                                                                                                                                                                                                                                       | 1              |                |                          |                          |                    |                                       |                              |                                           | (                      | )                                |                               |                        |                                | (                                  | )                                         |                                          |                   |         |         |           |                  |                   |
| С           |                                                                                                                                                                                                                                                                                                       | 2              | _              | +                        | -                        | _                  |                                       | -                            |                                           | (                      | )                                |                               | -                      |                                | (                                  | )                                         |                                          | -                 | -       |         |           |                  |                   |
| D           |                                                                                                                                                                                                                                                                                                       | 3              | -              | +                        | +                        | -                  |                                       | -                            | -                                         | 6                      | )                                | -                             | -                      | -                              | (                                  | L<br>L                                    | -                                        | -                 |         |         | _         |                  | -                 |
| -           | -                                                                                                                                                                                                                                                                                                     |                | -              | -                        | -                        | -                  |                                       | -                            |                                           | Reta                   | in pho                           | otocop                        | y for y                | our fi                         | les                                |                                           |                                          |                   | -       | -       | -         |                  |                   |
| PL<br>PR    | EAS<br>INT                                                                                                                                                                                                                                                                                            | <u>SE</u><br>C | Au<br>Roo<br>C | thoriz<br>om#/I<br>Compl | ted U<br>Buildi<br>leted | ser<br>ing:<br>By: | b contain                             | er ha                        | s been sv                                 | viped                  | for es                           | stern                         | il conti               | min                            | D<br>tion (st                      | )<br>ate(mo/d<br>*Sign<br>aple a cop      | Phone:<br>ay/yr):<br>nature:<br>oy of su | rvey re           | esults  | to ma   | mifest).  |                  | _                 |
| IN (<br>PUI | CASI                                                                                                                                                                                                                                                                                                  | E OF<br>SAF    | EMI            | ERGE                     | HOU                      | CON<br>RS) A       | TACT<br>F (734) 7                     | 763-1                        | 131                                       | [                      |                                  | D                             | OSE                    | H Use                          | nR/hr<br>: Only                    |                                           | Initial                                  |                   |         | Exc     | lusive    | L<br>Use Sh      | .SA-11<br>iipment |

Attachment A2-4 Low Level Radioactive Waste (LLRW) Manifest

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 20 of 33

90 - sodium citrate

73 - sodium hydroxide 74 - sodium hypochlorite

124 - sodium lauryl sulfate

92 · sodium phosphate

125 sodium thiosulfate

76 · tetrachiorobenzene

77 · tetrachloroethene

79 - trichloroacetic acid

128 · tetrahydrofuran

(TCA)

87 · TRIS buffer

83 · urea

85 · xylene

99 · OTHER

81 · uranyl acetate

82 - uranyl oltrate

84 - vinyl chloride

130 · xylene cyanol

86 · zinc compounds

ABOVE)

(specify below)

**(SEE INSTRUCTIONS** 

80 - trichloroethylene

129 - trifluoracetic acid

78 · toluene

123 · sodium lodide

(SLS)

75 · sulfuric acid

126 · sucrose

127 · taurine

(SDS)

93 · sodium docecyl sulfate

# INSTRUCTIONS TO IDENTIFY CHEMICALS IN LIQUIDS

If chemical is listed below, please enter corresponding number code and approximate chemical concentration in % by volume in Section B on the front side of the manifest.

If chemical constituents are not listed below, please enter number code 99 and approximate concentration in % by volume in Section B on the front side of manifest, and list chemicals name(s) and concentrations(s) in Section E below.

00 - aqueous

2

- (water based with no added chemicals)
- 01 acetamide
- 02 · acetic acid
- 100 acetic anhydride
- 03 + acetone
- 04 + acetonitrile
- 05 · acrylamide 07 · ammonium compounds
- (specify below) 08 · arsenic compounds
- (specify below) 09 · barium compounds
- (specify below)
- 10 · benzene
- 11 · benzo(a)pyrene
- 95 blood
- 88 · boric acid
- 101 bovine albumin 102 - bromophenol blue dye
- 12 butanol
- 13 cadmium compounds
- (specify below)
- 103 · calcium chloride
- 104 · calcium sulfate
- 14 · carbon tetrachloride 16 chlorobenzene
- 17 chloroform
- 18 chlorophenol
- 105 choline chloride
- 19 · chromium compounds
- (specily below)
- 106 · citric acid
- 107 · coomassie blue dye 20 · copper compounds
- (specify below)
- 96 · culture medium

Jug # 1 2

3

4

5

6 7 8

S

E

C

E

22 + cyclohexane 23 - DOD/DOT 108 · dextran sulfate 24 · dichlorobenzene

21 - cvanide compounds

(specify below)

- 25 · dimethylsulfoxide
- (DMSO) 109 · DMEM media
- 26 · epinephrine 27 · ethanol
- 28 · ether 29 + ethidium bromide
  - (EtBr)
- 30 · ethyl acetate
  - 31 · ethylbenzene
  - 32 · ethylene diamine tetraacetic acid (EDTA)
  - tetraaceto ato teorem 33 ethylene glycol-bis(8-amino ethyl ether)- 64 phosphoric acid
- tetraacetic acid (EGTA) 34 - ethyl ether
  - 35 ethylphenol
- 38 formamide
- 39 formic acid 40 glutaraldehyde
- 110 glycine 111 - hams F12 media
- 112 HEPES buffer 41 - heptane
- 113 hexane

- 114 · isoamyl alcohol
- 46 isobutanol
- 47 Isopropanol

- 48 lead compounds (specify below) 115 · magnesium chloride 97 - magnesium phosphate
- 116 · magnesium suifate
- 49 mercaptoethanol 50 · mercury compounds
- (specify below) 51 - methanol
- 117 · methoxyethanol
  - 54 methyl benzene
- 52 · methylene chloride
- 53 methyl ethyl ketone 58 naphthalene
- 59 · nitric acid 60 · nitrobenzene
- 118 · perchloric acid

- 65 · phthalates
- 91 · potassium chloride
- 66 · potassium permanganate
- 35 Ethyphenov 36 formaldehyde 119 potastium phosphate

  - 67 propanoic acid 68 pyridine 94 saline sodium citrate (SSC)
  - 69 + scintillation fluid (specify below)
  - 70 selenium compounds
    - (specify below)
  - 71 · silver compounds (specify below)
  - 43 hydrochloric acid (HCI)
     (specify below)

     44 hydroxybenzene
     120 sodium acetate
    - 72 · sodium azide
    - 121 sodium bicarbonate
    - 122 · sodium carbonate
      - 89 · sodium chloride
- CODE 99 CHEMICAL NAMES(S), % BY VOL.

Attachment A2-4 Low Level Radioactive Waste (LLRW) Manifest

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 21 of 33

Attachment A2-5 Hazardous / Chemical Waste Manifest

| SIC      |                                                                       | _                | 1.48                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NATURE   | GENERATOR'S CERTH<br>and labeled, and are in proper                   | BUILDING         | NAME                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mercury:                                            | Antifreeze:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Batteries:                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                      | Additional Descriptions / Sa                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŝ                                                                                                                                                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHEMICAL DE                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (24 HOURS): (734)76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N CASE OF ENERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | ECATION: This is to certify<br>condition for transportation at        |                  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thermostat(s)                                       | Boxes Pails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Boxes Pails                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | fety Procautions for materials                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCRIPTION (Do Not                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-(13):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENCY:<br>AFE TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | that the above named materials<br>cording to the applicable regul     |                  |                                                                                                                                                                                                                                                                                                                     | GENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thermometer(s)                                      | Drums                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drums                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                      | listed above:                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Abbreviate or Use Fo                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1655 DEAN R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INVERSITY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DATE     | s are property classified, descri-<br>lations of the Department of Ti |                  |                                                                                                                                                                                                                                                                                                                     | RATOR INFORMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Switch(es)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto/Industrial                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIVERSAL WAST                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormulas)                                           | HAZARDOUS / CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OAD, ANN ARBOR, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WASTE MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | bed, packaged,<br>ransportation.                                      |                  |                                                                                                                                                                                                                                                                                                                     | TION & CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Device                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 'ES (Enter                                                                                                                                                                                                                                                                                                                                                                                                           | EHS ONLY                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qy. Ty                                             | EMICAL<br>Continuer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 48109-215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NIFES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | marked                                                                | -                |                                                                                                                                                                                                                                                                                                                     | RTIFICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s (describe                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      | quantity)                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | binpi.d<br>bibo2<br>8                              | WASTES<br>Physical F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 (734)763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HMM ORDE |                                                                       | MOOM             | DEPARTMEN                                                                                                                                                                                                                                                                                                           | VTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SE Volume                                          | orm Wearla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAFETY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R#       |                                                                       |                  | -                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | levels Wa                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | -FOR EHS (                                                            | PHON             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ste Codes                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | USE ONLY-                                                             | £.               |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Manifest Tracking Number                           | EHS ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 164116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | DATE HMM ORDER #                                                      | DATE HMM ORDER # | CERTIFICATION: This is to certify that the above named materials are properly dassified, described, packaged, marked     ROOM     FIONE       is proper condition for transportation according to the applicable regulations of the Department of Transportation.     FOR EHS USE ONLY ~       DATE     HMM ORDER # | DEPARTMENT DEPARTMENT ENT DEPARTMENT FILONE FILONE FILONE FILONE DATE DATE DATE DATE DEPARTMENT DEPARTMENTMENT DEPARTMENT DEPARTMENT DEPARTMENT | CERTIFICATION & CERTIFICATION       DATE       DATE | Thermostat(s)       Thermometer(s)       Switch(es)       Devices (describe)         IERATION & CERTIFICATION         IERATION & CERTIFICATION         DEPARTMENT         DEPARTMENT         IERATION: This is to certify that the above named materials are properly dasified, described, packaged, marked       FOR EHS USE ONLY-         IERATION: This is to certify that the above named materials are properly dasified, described, packaged, marked       FOR EHS USE ONLY-         IDATE       IMM ORDER # | Boxes     Pails     Drums_       Thermostat(s)     Thermometer(s)     Switch(es)     Devices (describe)       GENERATOR INFORMATION & CERTIFICATION       DEPARTMENT       DEPARTMENT       ROOM       FIONE       CERTIFICATION: This is to certify that the above named materials are properly dualified, described, metaged, minked       is properly dualified, described, netaged, minked       FOR Etist USE ONLY*       IBATE | Boxes       Pails       Drums         Boxes       Pails       Drums         Themostat(s)       Themometer(s)       Switch(es)       Devices (describe)         CENERATOR INFORMATION & CERTIFICATION         DEPARTMENT         DEPARTMENT         DEPARTMENT         ROOM       PIONE         CERTIFICATION         CERTIFICATION & CERTIFICATION         DATE       NOM       PIONE         IDATE       HMM ORDER# | UNIVERSAL WASTES (Enter quantity)         Boxes       Pails       Drums       Auto/Industrial         Boxes       Pails       Drums       Auto/Industrial         Boxes       Pails       Drums       Control       Devices (describe)         Thermostat(s)       Thermometer(s)       Switch(es)       Devices (describe)       DEPARTMENT         IDATE       IDATE         IDATE       IDATE         IDATE       IMM ORDER # | UNIVERSAL WASTES (Enter quantity)       Boxes     Pails     Drums     Auto/Industrial       Boxes     Pails     Drums     Devices (describe)       Thermostat(s)     Thermoneter(s)     Switch(es)     Devices (describe)       Internostat(s)     Thermoneter(s)     Natter(s)     Devices (describe)       Internostat(s)     Internostate statestation are property distatifies, described, protaged, market     FrionE       Import roundition for transportations of the paperty distatifies, described, protaged, market     FrionE       Import roundition for transportations     FrionE     HMM ORDER# | INVERSAL WASTES (Enfor quantity)       UNIVERSAL WASTES (Enfor quantity)       Boxes     Pails     Drums     Auto/Industrial       Boxes     Pails     Drums     Nuto/Industrial       Boxes     Pails     Drums     Octored (describe)       Thermostat(s)     Thermoneter(s)     Switch(es)     Devices (describe)       DEPARTMENT       OCENTRATION & CENTIFICATION       OCENTRATION & CENTIFICATION       DEPARTMENT       DEPARTMENT       IDEPARTMENT       Pails     Drums       IDEPARTMENT       OCENTRATION & CENTIFICATION       CENTRATION & CENTIFICATION       IDEPARTMENT       IDEPART       IDEPART </td <td>Intermeterinal lated above:       INTVERSAL WASTES (Enter quantity)       Boxes     Pails     Drums       Boxes     Pails     Drums       Thermostat(s)     Thermoneter(s)     Switch(es)     Devices (describe)       INTE</td> <td>In program outputs for materials allow:     Image: ENV Proculations for materials are property classified, described, proclass.       Image: State     Pails     Drums       Auto/Inclustrial     Boxes     Pails       Boxes     Pails     Drums       Thermometer(s)     Switch(es)     Devices (describe)       Thermometer(s)     Switch(es)     Devices (describe)       Image: CERTIFICATION     Image: From the above anneed materials are property classified, described, procession.       Boxes     Image: From the above anneed materials are property classified, described, procession.</td> <td>Image: Safety Procurations for materials failed abov:     ENS ONLY     ENS ONLY       Image: Safety Procurations for materials failed abov:     ENS ONLY     ENS ONLY       Image: Safety Pails     Drums     Auto/Industrial       Boxes     Pails     Drums     Devices (describe)       Thermostat(s)     Thermoneter(s)     Devices (describe)       Import of safety, described, matcride, described, matcride     FOR ENS USE OUX**       CRUTINCATION:     FOR ENS USE OUX**       Import out above and materials are property distatified, described, matcride     FOR ENS USE OUX**</td> <td>ann Falley Procussors for materials listed abov:     bits ONLY       until Falley Procussors for materials listed abov:     bits ONLY       UNIVERSAL WASTES (Enter quantity)       Boxes     Pails       Drums     Auto/Industrial       Boxes     Pails       Drums     National       Boxes     Pails       Drums     National       Boxes     Pails       Drums     NoteRest (describe)       Dreviess (describe)     Intermostatis       Dreviess (describe)     Intermostatis       Dreviess     NoteRest Networks       Intermostatis     Switch(est)       Note Extremented     FOR Etits USE COUV-       Intermostation of the Paperintics of the Paperintense of Transportations     FOR Etits USE COUV-</td> <td>Image: Solution of the manerality listed above:     Image: Solution of the manerality listed above:     Image: Solution of the manerality listed above:     Image: Solution of the solution of the</td> <td>anni / Saloy Preparators for materials liked abov:</td> <td>AL DESCRIPTION (Ibs Not Abbreviate or Use Formulas)     Image: Transmed Formulas)     Image: Transme</td> <td>HAZARDOUS/ CHEMICAL WASTES         AL DESCRIPTION (Do Nor Abbreviate or Fue Formulia)       Communication       Total from formation       Total from formation         AL DESCRIPTION (Do Nor Abbreviate or Fue Formulia)       Communication       Communication       Total formation       Total formation         AL DESCRIPTION (Do Nor Abbreviate or Fue Formulia)       Communication       Communication       Total formation       Total formation         Image: State       Pails       Drans_       Elst ONLY       Elst ONLY       Elst ONLY         Image: Pails       Drans_       Auto/Induitrial       Elst ONLY       Elst NITE       Elst NITE         Boxes       Pails       Drans_       Auto/Induitrial       Elst NITE       Elst NITE         Image: Pails       Drans_       Auto/Induitrial       Elst NITE       Elst NITE         Boxes       Pails       Drans_       NITE       NON       Formestation of the property families, decrete, strateging and the prope</td> <td>EPA DB       EPA DB       EPA DB       EPA DB       CRUENCOUS / CHEMICAL WASTES:       PADD       COUNT WOULD WASTES:       Pails     Drums       AUD/ESCRUPTION (Db Noi Abbreviale or Use Formulas)     Or Top Regarding Multi-<br/>Top Regarding Multi-<br/>Noi Abbreviale or Use Formulas)       VINTERSAL WASTES (Enter quality)       Bits     Drums     Auto/Industrial       Bits     Drums     Enter quality       Internonate(r)     NURDERAL WASTES (Enter quality)       Thermostat(r)     Devices (describ)       Internonate(r)       INTE       INTE       INTE</td> | Intermeterinal lated above:       INTVERSAL WASTES (Enter quantity)       Boxes     Pails     Drums       Boxes     Pails     Drums       Thermostat(s)     Thermoneter(s)     Switch(es)     Devices (describe)       INTE | In program outputs for materials allow:     Image: ENV Proculations for materials are property classified, described, proclass.       Image: State     Pails     Drums       Auto/Inclustrial     Boxes     Pails       Boxes     Pails     Drums       Thermometer(s)     Switch(es)     Devices (describe)       Thermometer(s)     Switch(es)     Devices (describe)       Image: CERTIFICATION     Image: From the above anneed materials are property classified, described, procession.       Boxes     Image: From the above anneed materials are property classified, described, procession. | Image: Safety Procurations for materials failed abov:     ENS ONLY     ENS ONLY       Image: Safety Procurations for materials failed abov:     ENS ONLY     ENS ONLY       Image: Safety Pails     Drums     Auto/Industrial       Boxes     Pails     Drums     Devices (describe)       Thermostat(s)     Thermoneter(s)     Devices (describe)       Import of safety, described, matcride, described, matcride     FOR ENS USE OUX**       CRUTINCATION:     FOR ENS USE OUX**       Import out above and materials are property distatified, described, matcride     FOR ENS USE OUX** | ann Falley Procussors for materials listed abov:     bits ONLY       until Falley Procussors for materials listed abov:     bits ONLY       UNIVERSAL WASTES (Enter quantity)       Boxes     Pails       Drums     Auto/Industrial       Boxes     Pails       Drums     National       Boxes     Pails       Drums     National       Boxes     Pails       Drums     NoteRest (describe)       Dreviess (describe)     Intermostatis       Dreviess (describe)     Intermostatis       Dreviess     NoteRest Networks       Intermostatis     Switch(est)       Note Extremented     FOR Etits USE COUV-       Intermostation of the Paperintics of the Paperintense of Transportations     FOR Etits USE COUV- | Image: Solution of the manerality listed above:     Image: Solution of the manerality listed above:     Image: Solution of the manerality listed above:     Image: Solution of the | anni / Saloy Preparators for materials liked abov: | AL DESCRIPTION (Ibs Not Abbreviate or Use Formulas)     Image: Transmed Formulas)     Image: Transme | HAZARDOUS/ CHEMICAL WASTES         AL DESCRIPTION (Do Nor Abbreviate or Fue Formulia)       Communication       Total from formation       Total from formation         AL DESCRIPTION (Do Nor Abbreviate or Fue Formulia)       Communication       Communication       Total formation       Total formation         AL DESCRIPTION (Do Nor Abbreviate or Fue Formulia)       Communication       Communication       Total formation       Total formation         Image: State       Pails       Drans_       Elst ONLY       Elst ONLY       Elst ONLY         Image: Pails       Drans_       Auto/Induitrial       Elst ONLY       Elst NITE       Elst NITE         Boxes       Pails       Drans_       Auto/Induitrial       Elst NITE       Elst NITE         Image: Pails       Drans_       Auto/Induitrial       Elst NITE       Elst NITE         Boxes       Pails       Drans_       NITE       NON       Formestation of the property families, decrete, strateging and the prope | EPA DB       EPA DB       EPA DB       EPA DB       CRUENCOUS / CHEMICAL WASTES:       PADD       COUNT WOULD WASTES:       Pails     Drums       AUD/ESCRUPTION (Db Noi Abbreviale or Use Formulas)     Or Top Regarding Multi-<br>Top Regarding Multi-<br>Noi Abbreviale or Use Formulas)       VINTERSAL WASTES (Enter quality)       Bits     Drums     Auto/Industrial       Bits     Drums     Enter quality       Internonate(r)     NURDERAL WASTES (Enter quality)       Thermostat(r)     Devices (describ)       Internonate(r)       INTE       INTE       INTE |

Attachment A2-5 Hazardous / Chemical Waste Manifest

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 23 of 33

# COMPLETING THE WASTE MANIFEST

1. Enter the EPA Identification Number of the building in which the waste was generated.

### HAZARDOUS / CHEMICAL WASTES

#### CHEMICAL DESCRIPTION:

- 2. Use one row for each unique waste. List all of the chemicals present in the container AND their approximate concentrations
  - (%). Do not abbreviate or use chemical formulas. Example:

| -  | INVESTIGATION IN POSTAL AND | Can  | 151121 | Phys  | ncai (  | form | Weight | 1.0   |
|----|-----------------------------------------------------------------|------|--------|-------|---------|------|--------|-------|
| C. | REMICAL DESCRIPTION (Do Not Abbreviate or Lise Formulas)        | Qiy. | Туре   | Solid | , squed | Gas  | Volume | Unies |
| 5  | 15% Acetone and 85% Methanol                                    | 4    | bhp    | 1     | x       |      | 4      | G     |

#### CONTAINER:

- 3. Enter the total number of containers for each row.
- 4. Enter the appropriate abbreviation (see table.1) for the type of container used for each waste described on the manifest. (If the same waste is shipped in different containers, each type of container must be identified).

#### PHYSICAL FORM:

5. Mark the appropriate form(s) (Solid, Liquid, Gas) for each row. Check all that apply.

#### WEIGHT OR VOLUME:

- 6. Enter the total numerical weight or volume for each row.
- 7. Enter the appropriate abbreviation (see table 2) for the unit of measure for each row.

#### ADDITIONAL DESCRIPTIONS / SAFETY PRECAUTIONS:

 Enter any additional description / safety precaution, special handling, transportation, treatment, storage, or disposal information or specific properties that may be unique to the waste or pose additional concerns (i.e. acutely toxic, water reactive, etc.).

#### UNIVERSAL WASTE

9. Enter the total number of containers for each Universal waste category listed.

## GENERATOR INFORMATION & CERTIFICATION

- 10. Enter the name of the waste generator.
- 11. Enter the name of the Department where the waste was generated.
- 12. Enter the name of the building in which the waste was generated.
- 13. Enter the building room number in which the waste was generated.
- 14. Enter the phone number at which the generator, or staff knowledgeable about the waste can be contacted.
- 15. The generator must read and sign (by hand), the certification statement, or the waste will not be picked up for disposal
- 16. Enter the date the certification statement was signed.

#### ADDITIONAL DESCRIPTIONS / SAFETY PRECAUTIONS:

- 17. Package waste bottles into a labeled box
  - Package only compatible chemicals together
  - · Cushion bottles to prevent breakage.
- 18. Place the Waste Manifest(s) with the shipment.





## MANIFEST ABBREVIATION TABLES

| Abbreviation | Container Type                                    |
|--------------|---------------------------------------------------|
| DM           | Metal drums, barrels, kegs                        |
| DF-F         | Fiberboard drums, barrels, kegs                   |
| DF-P         | Plastic drums, barrels, kegs                      |
| BOT-G        | Glass bottles, jugs, tubes, containers            |
| BOT-P        | Plastic bottles, jugs, tubes, containers          |
| CY           | Cylinders                                         |
| CM           | Metal boxes, cartons, cases (including roll-offs) |
| 105          | Fiber or plastic boxes, cartons, cases            |
| 0            | Other (Please specify)                            |
|              | TABLE I                                           |



Attachment A2-5 Hazardous / Chemical Waste Manifest

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 24 of 33

Attachment A2-6 Precedence of Hazard Table

# PRECEDENCE OF HAZARD TABLE

# §173.2a Classification of a material having more than one hazard.

(a) *Classification of a material having more than one hazard.* Except as provided in paragraph (c) of this section, a material not specifically listed in the §172.101 table that meets the definition of more than one hazard class or division as defined in this part, shall be classed according to the highest applicable hazard class of the following hazard classes, which are listed in descending order of hazard:

(1) Class 7 (radioactive materials, other than limited quantities; and shipments of UN 3507, Uranium hexafluoride, radioactive material, excepted package)

- (2) Division 2.3 (poisonous gases).
- (3) Division 2.1 (flammable gases).
- (4) Division 2.2 (nonflammable gases).

(5) Division 6.1 (poisonous liquids), Packing Group I, poisonous-by-inhalation only.

(6) A material that meets the definition of a pyrophoric material in 173.124(b)(1) of this subchapter (Division 4.2).

(7) A material that meets the definition of a self-reactive material in 173.124(a)(2) of this subchapter (Division 4.1).

(8) Class 3 (flammable liquids), Class 8 (corrosive materials), Division 4.1 (flammable solids),

Division 4.2 (spontaneously combustible materials), Division 4.3 (dangerous when wet materials), Division 5.1 (oxidizers) or Division 6.1 (poisonous liquids or solids other than Packing Group I, poisonous-by-inhalation). The hazard class and packing group for a material meeting more than one of these hazards shall be determined using the precedence table in paragraph (b) of this section.

- (9) Combustible liquids.
- (10) Class 9 (miscellaneous hazardous materials).

(b) *Precedence of hazard table for Classes 3 and 8 and Divisions 4.1, 4.2, 4.3, 5.1 and 6.1.* The following table ranks those materials that meet the definition of Classes 3 and 8 and Divisions 4.1, 4.2, 4.3, 5.1 and 6.1:

# PRECEDENCE OF HAZARD TABLE

|                       | 4.2 | 4.3 | 5.1<br>I <sup>1</sup> | 5.1<br>II <sup>1</sup> | 5.1<br>III <sup>1</sup> | 6.1, I<br>dermal | 6.1, I<br>oral | 6.1<br>II | 6.1<br>III | 8, I<br>liquid | 8, I<br>solid | 8, II<br>liquid | 8, II<br>solid   | 8, III<br>liquid | 8, III<br>solid  |
|-----------------------|-----|-----|-----------------------|------------------------|-------------------------|------------------|----------------|-----------|------------|----------------|---------------|-----------------|------------------|------------------|------------------|
| 3 I <sup>2</sup>      |     | 4.3 |                       |                        |                         | 3                | 3              | 3         | 3          | 3              | (3)           | 3               | (3)              | 3                | ( <sup>3</sup> ) |
| $3 \text{ II}^2$      |     | 4.3 |                       |                        |                         | 3                | 3              | 3         | 3          | 8              | (3)           | 3               | (3)              | 3                | ( <sup>3</sup> ) |
| $3 \text{ III}^2$     |     | 4.3 |                       |                        |                         | 6.1              | 6.1            | 6.1       | 34         | 8              | (3)           | 8               | ( <sup>3</sup> ) | 3                | ( <sup>3</sup> ) |
| 4.1 $II^2$            | 4.2 | 4.3 | 5.1                   | 4.1                    | 4.1                     | 6.1              | 6.1            | 4.1       | 4.1        | (3)            | 8             | (3)             | 4.1              | ( <sup>3</sup> ) | 4.1              |
| 4.1 $III^2$           | 4.2 | 4.3 | 5.1                   | 4.1                    | 4.1                     | 6.1              | 6.1            | 6.1       | 4.1        | (3)            | 8             | (3)             | 8                | (3)              | 4.1              |
| 4.2 II                |     | 4.3 | 5.1                   | 4.2                    | 4.2                     | 6.1              | 6.1            | 4.2       | 4.2        | 8              | 8             | 4.2             | 4.2              | 4.2              | 4.2              |
| 4.2 III               |     | 4.3 | 5.1                   | 5.1                    | 4.2                     | 6.1              | 6.1            | 6.1       | 4.2        | 8              | 8             | 8               | 8                | 4.2              | 4.2              |
| 4.3 I                 |     |     | 5.1                   | 4.3                    | 4.3                     | 6.1              | 4.3            | 4.3       | 4.3        | 4.3            | 4.3           | 4.3             | 4.3              | 4.3              | 4.3              |
| 4.3 II                |     |     | 5.1                   | 4.3                    | 4.3                     | 6.1              | 4.3            | 4.3       | 4.3        | 8              | 8             | 4.3             | 4.3              | 4.3              | 4.3              |
| 4.3 III               |     |     | 5.1                   | 5.1                    | 4.3                     | 6.1              | 6.1            | 6.1       | 4.3        | 8              | 8             | 8               | 8                | 4.3              | 4.3              |
| 5.1 I <sup>1</sup>    |     |     |                       |                        |                         | 5.1              | 5.1            | 5.1       | 5.1        | 5.1            | 5.1           | 5.1             | 5.1              | 5.1              | 5.1              |
| 5.1 $II^1$            |     |     |                       |                        |                         | 6.1              | 5.1            | 5.1       | 5.1        | 8              | 8             | 5.1             | 5.1              | 5.1              | 5.1              |
| 5.1 $III^1$           |     |     |                       |                        |                         | 6.1              | 6.1            | 6.1       | 5.1        | 8              | 8             | 8               | 8                | 5.1              | 5.1              |
| 6.1 I,<br>Dermal      |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1              | 6.1              | 6.1              |
| 6.1 I,<br>Oral        |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1              | 6.1              | 6.1              |
| 6.1 II,<br>Inhalation |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1              | 6.1              | 6.1              |
| 6.1 II,<br>Dermal     |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 8               | 6.1              | 6.1              | 6.1              |
| 6.1 II,<br>Oral       |     |     |                       |                        |                         |                  |                |           |            | 8              | 8             | 8               | 6.1              | 6.1              | 6.1              |
| 6.1 III               |     |     |                       |                        |                         |                  |                |           |            | 8              | 8             | 8               | 8                | 8                | 8                |

[Hazard class or division and packing group]

Attachment A2-6 Precedence of Hazard Table

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 28 of 33

# PRECEDENCE OF HAZARD TABLE

<sup>1</sup>See §173.127.

<sup>2</sup>Materials of Division 4.1 other than self-reactive substances and solid desensitized explosives, and materials of Class 3 other than liquid desensitized explosives.

<sup>3</sup>Denotes an impossible combination.

<sup>4</sup>For pesticides only, where a material has the hazards of Class 3, Packing Group III, and Division

6.1, Packing Group III, the primary hazard is Division 6.1, Packing Group III.

**NOTE** 1: The most stringent packing group assigned to a hazard of the material takes precedence over other packing groups; for example, a material meeting Class 3 PG II and Division 6.1 PG I (oral toxicity) is classified as Class 3 PG I.

**NOTE** 2: A material which meets the definition of Class 8 and has an inhalation toxicity by dusts and mists which meets criteria for Packing Group I specified in §173.133(a)(1) must be classed as Division 6.1 if the oral or dermal toxicity meets criteria for Packing Group I or II. If the oral or dermal toxicity meets criteria for Packing Group III or less, the material must be classed as Class 8.

(c) The following materials are not subject to the provisions of paragraph (a) of this section because of their unique properties:

(1) A Class 1 (explosive) material that meets any other hazard class or division as defined in this part shall be assigned a division in Class 1. Class 1 materials shall be classed and approved in accordance with §173.56 of this part;

(2) A Division 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as defined in this part, shall be classed as Division 5.2;

(3) A Division 6.2 (infectious substance) material that also meets the definition of another hazard class or division, other than Class 7, or that also is a limited quantity Class 7 material, shall be classed as Division 6.2;

(4) A material that meets the definition of a wetted explosive in §173.124(a)(1) of this subchapter (Division 4.1). Wetted explosives are either specifically listed in the §172.101 table or are approved by the Associate Administrator (see §173.124(a)(1) of this subchapter); and

(5) A limited quantity of a Class 7 (radioactive) material that meets the definition for more than one hazard class or division shall be classed in accordance with §173.423.

Attachment A2-6 Precedence of Hazard Table Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 29 of 33 [Amdt. 173-224, 55 FR 52606, Dec. 21, 1990, as amended at 56 FR 66264, Dec. 20, 1991; Amdt. 173-241, 59 FR

67490, Dec. 29, 1994; Amdt. 173-247, 60 FR 48787, Sept. 20, 1995; Amdt. 173-244, 60 FR 50307, Sept. 28, 1995; 64

FR 10776, Mar. 5, 1999; 66 FR 33426, June 21, 2001; 66 FR 45182, 45379, Aug. 28, 2001; 68 FR 45032, July 31, 2003; 80 FR 1151, Jan. 8, 2015]

Attachment A2-7 Chemical Compatibility Chart (for Containers)

# **Chemical Compatibility Chart**

#### **RATING SYSTEM\***

The following codes are used to rate chemical resistance:

- G = Good
- F = Fair
- P = Poor
- N = Not Recommended (some swelling or degradation will probably occur)

 Unless otherwise sgreed upon in viriting, Porec products are sold without a chemical resistance warranty. Buyer/user should perform appropriate tests to determine performance under specific operating conditions.

| SUBSTANCE AT 21°C (70°F)    | HDPE<br>UHMWPE | PP  | PVDF | PTFE |
|-----------------------------|----------------|-----|------|------|
| Acetaldehvde                | G              | E.  | Ň    | G    |
| Acetic acid, 10%            | 6              | G   | G    | G    |
| Acetic acid, 100% (glacial) | G              | G   | 6    | G    |
| Acetic anhydride            | G              | G   | F    | G    |
| Acetone                     | G              | G   | P    | G    |
| Acide aromatic              | G              | G.  |      | G    |
| Acrylonitrile               | G              | Ġ.  | F    | Ğ    |
| Aallyl alcohol, 96%         | G              | G   | G    | Ğ.   |
| Aluminum chlorida           | G              | G.  | G    | G    |
| Alum                        | G              | G   | G    | G    |
| Âmano                       | 5              | G   | N    | 6    |
| Amonia aseaour              | G              | G   | N    | G    |
| Ammonia, gaseous            | C              | c   | G    | C    |
| Annuonum sans               | C              | C   | E    | 6    |
| Annyl declate               | E              | c   | F    | G    |
| Antenanu kuchlanda          | 2              | 2   | T    | C    |
| Antimony trichloride        | G              | C C | 1    | G    |
| Adua regia                  | N              | 5   | -    | 0    |
| Beer                        | 6              | 0   | 13   | 6    |
| beeswax                     | 6              | 6   |      | 6    |
| Benzaldehyde                | U              | 6   | F    | 6    |
| Benzene                     | E.             | 1   | 15   | G    |
| Bensenesulphonic acid       | 6              | G   | +    | G    |
| Benzoic acid                | G              | R   | G    | G    |
| Benzol chloride             | F              | F   | F    | G    |
| Borax                       | G              | G   | 6    | G    |
| Boric acid                  | G              | G   | G    | G    |
| Brine (saturated)           | G              | G   | G    | G    |
| Bromine (liquid)            | N              | N.  | F    | G    |
| Bromochloromethane          | N              | N   |      |      |
| Butanol                     | G              | G   | G    | G    |
| Butylacetate                | G              | F   | G    | G    |
| Butylene glycol             | G              | G   | G    | G    |
| Butyric acid                | G              | G   | G    | G    |
| Calcium chloride            | G              | G   | G    | G    |
| Calcium hupochlorite        | G              | G   | G    | G    |
| Calcium nitrate, 50%        | G              | G   | G    | G    |
| Camphor                     | G              | G   |      |      |
| Carbon disulphide           | F.             | G   | Æ    | G    |
| Carbon tetrachloride        | P              | Ň   | 6    | G    |
| Carbonic acid               | 6              | G   | G    | G    |
| Castol oil                  | G              | G   | G    | G    |
| Caustic potash              | G              | G   | G    | G    |
| Caustic soda                | G              | G   | N    | G    |
| Chloral hydrate             | G              | F   | 6    | G    |
| Chlorine (liquid)           | N              | N   | G    | G    |
| Chlorine mas (div)          | F              | N   | G    | G    |
| Chlorine gas (wat)          | F              | P   | R    | G    |
| Chloloracetic acid (mono)   | G              | G   | G    | R    |
| Chlorohenzone               | E              | G   | G    | G    |
| Chlorethanol                | E              | G   | Q.   | G    |

| SUBSTANCE AT 21°C (70°F)             | HDPE<br>UHMWPE | PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PVDF | PTFE  |
|--------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| Chlochtom                            | Ď.             | É                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ê    | ô     |
| Chlomsulphonic and                   | N              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M    | G     |
| Chromic acid, 80%                    | R              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Citric sold                          | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Clophon A50 and A6                   | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9    | 0     |
| Coconit oil                          | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Common call (anucous, catulated)     | C              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C    | G     |
| Connot calle                         | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Corp oil                             | G              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Croopato                             | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | C C   |
| Greek                                | C              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C C  | C     |
| Chelebourne                          | 0              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 0     |
| Ovelehevened                         | 0              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C C  | 0     |
| Cyclonexanor                         | 0              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | 0     |
| Cyclunexhole                         | Li I           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | La . | 0     |
| Dibutyrether                         | F              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | ä     |
| Dibutyl phthalate                    | G              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | G     |
| Dichloracetic acid, 50%              | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Dichloracetic acid, 100%             | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Dichloracetic acid methyl ester      | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8    | G     |
| Dichlorobenzene-o                    | F              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Dichlorobenzene-p                    | -F             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Dichloroethylene                     | N              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Diesel oil                           | G              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Diethyl ether                        | F              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F    | G     |
| Dilsobutyl ketone                    | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Dimethylamine                        | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | G     |
| Dimethyl formamide                   | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | 6     |
| Dimethyl sulnboxide                  | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F    | G     |
| Diceano                              | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | G     |
| Emulsitions                          | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14   | G     |
| Enichlorhydran                       | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | G     |
| Letare alightic                      | G              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13   | G     |
| Ethanol 06%                          | 6              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | C     |
| Ethila 101 30%                       | 0              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 0     |
| Ethul as stats                       | F              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | 0     |
| Ethyl acetate                        | 0              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    | 4     |
| Ethylene chloride (Dichloroethane)   | F              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 0     |
| Ethylenediaminetetraacetic acid      | 6              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | 11    |
| Ethylene gylcol                      | G              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | 6     |
| Fatty acids (C)                      | G              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6    | la la |
| Ferric chloride                      | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Fluonne                              | N              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F    | 1     |
| Fluosificic acid                     | G              | - P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G    | G     |
| Formaldehyde (40% aqueous)           | Ģ              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Formic acid                          | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Frigen®                              | F              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |
| Fruit juices                         | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | G     |
| Fruit pulp                           | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | G     |
| Fuel oil                             | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | 6     |
| Furfuryl alcohol                     | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F    | G     |
| Gelatine                             | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | G     |
| Glycerine                            | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | G     |
| Givcol (concentrated)                | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | G     |
| Glycolic acid, 55%                   | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F    | G     |
| Glycolic acid. 70%                   | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F    | 6     |
| Glycolic acid hetyl ester            | G              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | G     |
| Hylothana                            | F              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | -     |
| Hydraulic fluid                      | 5              | ß                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 3  | G     |
| Hydrazine hydrate                    | Ġ              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | G     |
| Hydrohromic acid, EDV                | F              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.   | G     |
| Hydrochlalanc acid, all conc         | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C    | C     |
| Hydrochlane sold ass blac and watt   | C              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 0     |
| Hydrocunuing acid gas (dity and Wet) | 0              | in the second se | 1    | 0     |
| Hydrocyanic acid                     | 6              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | 0     |
| myuloijuofic acid, 40%               | 6              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | 6     |
| Hydroffudric acid, 70%               | 6              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | 6     |
| Hydrogen peroxide, 30%               | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Hydrogen peroxide, 90%               | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Hydrogene sulphide                   | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G     |
| Hydrosulphine (10%, adueous)         | G              | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | G     |



Attachment A2-7, Chemical Compatibility Chart (for Containers) Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 32 of 33

# Chemical Compatibility Chart

| SUBSTANCE AT 21°C (70°F) UI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HMWPE  | PP  | PVDF  | PTFE | SUBSTANCE A              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------|------|--------------------------|
| lodine tinture. DAB 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |     |       |      | Potassium hydroxii       |
| (German Phamaconneia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G      | G.  | Ğ     | Ğ    | Potassium nitrate        |
| Isoncatane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G      | G   |       | G    | Potassium perman         |
| Isopropanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G      | G   | ~     | G    | Propionic acid, 50       |
| Isonronyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F      | Ē   |       | G    | Propionic acid, 100      |
| Ketones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G      | G.  | 100   | G    | Propylene glycol         |
| Lantic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G      | G   | G     | G    | Pseudocumene             |
| Inseed nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G      | G   | G     | G    | Pyridine                 |
| Liquid paraffin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G      | G   |       | G    | Sea water                |
| Liquid paraffin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G      | G   |       | G    | Silicie acid             |
| Magnesum chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G      | G   | G     | G    | Silicone oil             |
| Maleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G      | G   | G     | 6    | Silver nitrate           |
| Malic acid 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G      | Ğ   | G     | G    | Sodium benzoate          |
| Menthol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G      | G   | 2     | G    | Sodium borate            |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G      | G   | G     | G    | Sodium carbonate         |
| Mercuric chlorine (corrosive sublimate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G      | G   | G     | G    | Sodium chloride          |
| Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G      | G   | -     | G    | Sodium chloride, F       |
| Methorybutanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G      | G   |       | G    | Sodium chloride h        |
| Methovybutylacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G      | G   |       | G    | Dodum dodecylbe          |
| Mathylovclohavana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F      | E   |       | G    | Sodium hydrovido         |
| Methylene chlonne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E      | F   | N     | G    | Sodium hypochlon         |
| Mathyl othyl katona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G      | G   | N.    | G    | Sodium nitrate           |
| Methyl alveol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G      | G   | 14    | G    | Sodium narovide          |
| Manachloracatic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G      | G   | C     | C    | Sodium peroxide,         |
| Monochloracetic acid athul actor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C.     | C   | 0     | C    | Sodium culphido          |
| Monochloradetic acid entry ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G      | C   | 1     | C C  | Sodium sulphue           |
| Morobolino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C      | C   | Ē     | C    | Sparmacati               |
| Mater oil /HD oill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | C   |       | C    | Spindlo oil              |
| Model bit (HD bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C      | E   | 12    | C    | Storeb                   |
| Nephtheleng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0      | 6   | G     | C    | Storace and              |
| Napitinalene<br>Niskol solta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C      | G   | 6     | G    | Steand actu              |
| Nitrie paid 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G      | G   | 6     | G    | Succinic acid, 507       |
| NITHE delu, 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C C    | U E | C C   | C    | Sulphotos                |
| Nitribartana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r<br>c | 6   | G     | G    | Sulphates                |
| Nitoteluese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C      | 0   | 1     | 0    | Sulphur diavido la       |
| Nitrous asian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | 0   |       | G    | Sulphur dioxide (u       |
| Nicious yases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6      | 6   | G     | 0    | Sulphur dioxide (W       |
| Oils (effeted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C.     | E C | C C   | C    | Sulphuric acid, 10       |
| Olors (vegetable and annual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0      | G   | G     | G    | Sulphuric acid, 00       |
| Olever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | D.  | bi bi | C    | Sulphumus acid           |
| Ovelie and EOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C .    | C   | is .  | G    | Sulphund chlorido        |
| Otono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E      | G   | G     | G    | Surphary chloride        |
| Dombleric cord, 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5      | G   | 0     | C    | Tollow                   |
| Perchioric acia, 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0      | 0   | 6     | 6    | Tanow<br>Tanoic acid 10% |
| Perchloric acid, 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0      | 0   | 6     | C    | Tarterio poid            |
| Petchionic acid, 707e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0      | C C | 0     | 0    | Totrobrem oothorn        |
| Petro Persona entre entr | 6      | 5   | 0     | G    | Tetraphonoethane         |
| Petro/benzene mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0      | 6   | 6     | G    | Tetrabudiation           |
| Petroleum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6      | 0   | 6     | b    | Tetranyutorutan          |
| Petroleum etner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6      | 0   | 6     | 6    | Toluene                  |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | 6   | 6     | Li C | Iransformer off          |
| Phosphates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G      | 6   | -     | ti i | Inbutyi phosphate        |
| Phosphoric acid, 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6      | 6   | 6     | 6    | Trichloraecettic aci     |
| Phosphoric acid, 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6      | G   | 6     | G    | Trichloroacetic aci      |
| Phosphoric acid, 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G      | 6   | 6     | 6    | Trichloroethylene        |
| Phosphorus oxychloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | G   | G     | G    | Tricresyl phosphat       |
| rnosphorus pentoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6      | G   | G     | G    | Triethanolamine          |
| Phosphorus trichloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | G   | G     | G    | Iurpentine oil           |
| Photographic developers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6      | G   | G     | G    | Urea, 33%                |
| Phthalic acid, 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G      | G   | G     | G    | Vaseline®                |
| Polyglycois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G      | G   | G     | G    | White spirit             |
| Potassium bichromate, 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G      | G   | -     | G    | P-Xylene                 |
| Potassium chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6      | G   | G     | G    | Yeast                    |
| Potassium evanide (anuenus, saturated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G      | G   | G     | G    | Zinc chloride            |

| SUBSTANCE AT 21°C (70°F)               | UHMWPE | PP | PVDF | PTFE   |
|----------------------------------------|--------|----|------|--------|
| Potassium hydroxide (30% aqueous)      | G      | G  | G    | G      |
| Potassium nitrate (aqueous, saturated) | G      | G  | G    | G      |
| Potassium permanganate                 | G      | G  | G    | G      |
| Propionic acid. 50%                    | G      | G  |      | G      |
| Propionic acid, 100%                   | Ğ      | G. |      | G      |
| Pronylone nivrol                       | G      | G  |      | G      |
| Provideoumona                          | C      | 0  | 1    | G      |
| Paridice                               | G      | -  | ĥ    | 0      |
| ryndine                                | u.     | r  | N.   | u<br>o |
| Sea water                              | F      | h  | G    | 6      |
| Silicic acid                           | G      | 6  |      | G      |
| Silicone oil                           | G      | G  |      | G      |
| Silver nitrate                         | G      | G  | G    | G      |
| Sodium benzoate                        | G      | G  | G    | G      |
| Sodium borate                          | G      | G  | G    | G      |
| Sodium carbonate                       | G      | G  | G    | G      |
| Sodium chloride                        | G      | 6  | G    | G      |
| Sodium chloride, 50%                   | Ğ      | G  | G    | G      |
| Sodium chlorida blooch                 | E      | G  | G    | G      |
| Dedum dedeaubertane Sulemete           | C      | C  | 6    | 0      |
| Codum budecyrpenzene-Surponate         | 6      | 0  | 0    | 0      |
| Socium nyoroxide-30% aqueous           | 6      | 6  | 6    | 6      |
| Sodium hypochlorite, all concs         | G      | G  | G    | G      |
| Sodium nitrate                         | G      | G  | G    | G      |
| Sodium peroxide, 10%                   | G      | 6  | G    | G      |
| Sodium peroxide, 10% saturated         | F      | F  | G    | G      |
| Sodium sulphide                        | G      | 6  |      | G      |
| Sodium thiosulphate                    | G      | G  | G    | G      |
| Spermageti                             | G      | G  |      | G      |
| Spindle oil                            | F      | 6  |      | G      |
| Starch                                 | G      | 6  |      | G      |
| Starci acid                            | c      | C  | G    | G      |
| Sussaint actu                          | E .    | C  | C    | C      |
| Succinic acid, 50 %                    | G      | 0  | 0    | 0      |
| sugar syrup                            | G      | 0  |      | 0      |
| Sulphates                              | 6      | 4  |      | 6      |
| Sulphur                                | Li .   | 6  |      | 6      |
| Suiphur dioxide (dry)                  | G      | 6  | G    | G      |
| Sulphur dioxide (wet)                  | G      | G  | G    | G      |
| Sulphunc acid, 10%                     | G      | G  | G    | G      |
| Sulphuric acid, 50%                    | G      | G  | G    | G      |
| Sulphuric acid, 98%                    | F      | E  | G    | G      |
| Sulphumus acid                         | G      | G  |      | G      |
| Sutphuryt chloride                     | Ň      | N  |      | G      |
| Synthetic detergents                   | G      | G  |      | Ġ      |
| Tallow                                 | G      | G  | G    | G      |
| Toppic peid 100                        | G      | C  | 6    | G      |
| Tartana and                            | G      | 0  | 0    | 0      |
| lanane acid                            | 15     | 0  | 6    | 6      |
| letrapromoethane                       | P      | P  | G    | 6      |
| letrachloroethane                      | P      | F  |      | G      |
| Tetrahydrófuran                        | P      | F  | 3    | G      |
| Toluene                                | P      | 6  | G    | G      |
| Transformer oil                        | G      | G  | F    | G      |
| Tributyl phosphate                     | G      | G  | F    | G      |
| Trichloraecetic acid, 50%              | G      | G  | G    | G      |
| Trichlomacetic acid. 100%              | G      | G  | G    | G      |
| Trichloroothylena                      | R      | F  | G    | G      |
| Tricrosyl phoenhato                    | G      | n  | N    | 6      |
| Tristbanolom una                       | C      | C  | R    | G      |
| Thenanciantine                         | G      | 0  | 0    | 0      |
| iurpentine oli                         | E      | N  | 6    | 6      |
| Urea, 33%                              | G      | G  | G    | G      |
| Vaseline®                              | E      | G  | G    | G      |
| White spirit                           | E      | 6  | 4    | G      |
| P-Xylene                               | F      | N  | G    | G      |
| Veast                                  | E      | G  | 1    | G      |
| Zincichloride                          | G      | G  | G    | G      |
| any analysis                           |        |    | N    | 100    |

| PORE                                     | ×            | Porex Technologies            | Porex Technologies GmbH | Porex Technologies Sdn Bhd |
|------------------------------------------|--------------|-------------------------------|-------------------------|----------------------------|
| Cold Street and Street and Street        |              | 1 provis info@= (0.000)       | a post a day            | SOUTH THE AMERICAN         |
| 10-10-10-10-10-10-10-10-10-10-10-10-10-1 |              | 2101 (a. 2. a.<br>2010 - 2010 | Figure or sufficient    | Liter production in        |
| www.porex.com                            | 800.241.0195 |                               | 2AU 010                 | L ACTO DOLL AND            |

Attachment A2-7, Chemical Compatibility Chart (for Containers)

Form EQP 5111 Attachment Template A2, Chemical and Physical Analyses (8-2-2021) Page 33 of 33 Attachment 2

Waste Analysis Plan

## FORM EQP 5111 ATTACHMENT TEMPLATE A3 WASTE ANALYSIS PLAN (WAP)

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), being R 299.9504, R 299.9508, and R 299.9605, and Title 40 of the Code of Federal Regulations (CFR) §§270.14(b)(3) and 264.13(b) and (c), establish requirements for WAPs for hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003.

This license application template addresses requirements for a WAP for the hazardous waste management units and the hazardous waste management facility for the Beck Road Facility. All activities associated with the WAP will be conducted at the Beck Road Facility, 8501 Beck Road, Belleville, MI 48111 facility.

Ensure that all samples collected for the purposes of waste characterization are collected, transported, analyzed, stored, and disposed by trained and qualified individuals in accordance with the Quality Assurance/Quality Control (QA/QC) Plan. The QA/QC Plan should, at a minimum, include the written procedures outlined in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," U.S. Environmental Protection Agency (EPA) Publication No. SW-846, Third Edition, Chapter 1 (November 1986), and its updates.

This template is organized as follows:

| A3.A.1          | Initial Waste<br>A3.A.1(a) | e Characterization Requirements for Generators<br>Generator Waste Characterization Discrepancies |
|-----------------|----------------------------|--------------------------------------------------------------------------------------------------|
|                 | A3.A.1(b)                  | Subsequent Waste Shipment Procedures                                                             |
|                 | A3.A.1(c)                  | Additional Waste Analysis Requirements                                                           |
| Figure A3.A.1   | Information                | to be on Each Generator's Waste Profile Form                                                     |
| Figure A3.A.1-1 | U-M Low Le                 | evel Radioactive Waste Manifest (Waste Profile Form)                                             |
| Figure A3.A.1-2 | U-M Hazard                 | lous / Chemical Waste Manifest (Waste Profile Form)                                              |
| A3.A.2          | Waste Acce                 | ptance Procedures                                                                                |
|                 | A3.A.2(a)                  | Review Paperwork                                                                                 |
|                 | A3.A.2(b)                  | Visual Inspection of Waste                                                                       |
|                 | A3.A.2(c)                  | Waste Screening/Fingerprinting                                                                   |
| Figure A3.A.2   | Fingerprintir              | ng Documentation Sheet                                                                           |
| Table A3.A.1    | Waste Analy                | ysis Procedures                                                                                  |
| Table A3.A.2    | Representat                | tive Sampling Procedures                                                                         |
| A3.A.3          | Procedures                 | to Ensure Compliance with Land Disposal Restrictions (LDR)                                       |
|                 | Requiremen                 | its                                                                                              |
|                 | A3.A.3(a)                  | Spent Solvent Wastes A3.A.3(b)                                                                   |
|                 |                            | Listed Wastes                                                                                    |
|                 | A3.A.3(c)                  | Characteristic Wastes                                                                            |
|                 | A3.A.3(d)                  | Radioactive Mixed Waste                                                                          |
|                 |                            |                                                                                                  |

- A3.A.3(e) Leachates
- A3.A.3(f) Laboratory Packs
- A3.A.3(g) **Contaminated Debris**
- Waste Mixtures and Wastes with Overlapping Requirements A3.A.3(h)
- A3.A.3(i) Dilution and Aggregation of Wastes
- A3.B CAPTIVE FACILITY

A3.C NOTIFICATION, CERTIFICATION, AND RECORD KEEPING REQUIREMENTS

- A3.C.1 Retention of Generator Notices and Certifications
- A3.C.2 Notification and Certification Requirements for Treatment Facilities
- Waste Shipped to Subtitle C Facilities A3.C.3
- Waste Shipped to Subtitle D Facilities A3.C.4
- **Recyclable Materials** A3.C.5
- A3.C.6 Record Keeping
- A3.C.7 **Required Notice**
- Attachment A3-1 Precedence of Hazard Table
- Chemical Compatibility Chart Attachment A3-2
- Attachment A3-3 Chemical Constituent Sheet
- Attachment A3-4 Beck Road Facility Operation's Log
- Attachment A3-5 LDR Notifications
- Attachment A3-6
- Table A2.A.2, Hazardous Waste Accepted at the Facility

# A3.A COMMERCIAL FACILITY

Beck Road Facility is a commercial facility that receives wastes generated off site. Beck Road Facility has developed a WAP to ensure that its facility at 8501 Beck Road, Belleville, MI 48111 will accept only wastes that it is authorized to accept. The hazardous wastes stored at Beck Road Facility will be properly characterized prior to waste acceptance. All generators will be required to provide a complete waste characterization, including chemical analysis when appropriate. Waste screening will be conducted on every shipment of waste to ensure that the waste conforms to the waste profile for the generator and information on incoming manifests and to ensure that the waste is properly managed within the facility.

All analysis performed pursuant to this application will be consistent with the QA/QC Plan included in Attachment A11-3. All samples for the purpose of waste characterization will be collected, transported, stored, and disposed by trained and qualified individuals in accordance with the QA/QC Plan.

In accordance with R 299.9609 and 40 CFR §264.73 and Part 264, Appendix I, Beck Road Facility will retain all records and results of waste determinations performed as specified in 40 CFR §§264.13, 264.17, 264.314, 264.1034, 24.1063, 264.1083, 268.4(a), and 268.7 in the facility operating record until closure of the facility.

The University of Michigan does not transship waste.

## A3.A.1 Initial Waste Characterization Requirements for Generators [R 299.9605(1) and R 299.9504(1)(c) and 40 CFR §264.13(b)(5)]

Beck Road Facility will require the following waste profile information for initial waste shipments from all off-site generators prior to shipment.

Generators of waste at the U-M must provide all information required by the U-M standard turn-in requirements (described in the following text) before any waste is picked up at the point of generation. Hazardous and mixed waste is picked up from the generator at the generator's request. At the time of pickup, there is verification that the waste profile forms, U-M Low Level Radioactive Waste (LLRW) Manifest (Figure A3.A.1-1) or the U-M Hazardous / Chemical Waste Manifest (Figure A3.A.1-2), and labels are properly filled out. The information on the labels is compared with the following information on the manifest(s) for verification: the container number, volume of the waste, isotope, activity, chemical constituents as indicated on the back of manifest for specified chemicals, and concentration of the chemical constituents. Each laboratory has a reference document that includes the instructions for proper labeling and internal manifesting of hazardous and mixed waste. The U-M LLRW Manifest or the U-M Hazardous / Chemical Waste Manifest documents the total volume of the waste, the hazardous waste constituents, and the percent concentrations. The EPA Uniform Hazardous Waste Manifest is completed utilizing this information provided by the generator.

The characteristics of the initial hazardous waste constituents used are identified through generator knowledge, or as necessary, by analysis of the waste streams and are recorded on U-M internal manifests. Additional testing, if indicated, and testing of unknowns is conducted through a commercial contract laboratory. Table A2.A.2 lists the hazardous waste codes of the hazardous and mixed waste stored at the Beck Road Facility. Table A2.A.2 is included in this section as Attachment A3-6.

The waste generation and profiling processes yield wastes of known characteristics. From the characteristics of the initial products and the waste production process, the ignitable, corrosive, reactive or toxic characteristics are identified. Waste analyses for these characteristic parameters are usually unnecessary. A pH test may be conducted to verify whether a waste is corrosive. The waste generation and profiling processes also yield wastes which contain known RCRA listed hazardous waste constituents. Waste analyses for these RCRA listed constituents are usually unnecessary.

The U-M has specific manifest requirements for transporting hazardous wastes. The generator of hazardous and mixed waste is required to properly identify the hazardous characteristics (by constituent) of the waste on the waste profile forms so that they are immediately apparent to the receiving personnel. Prior to transport to the Beck Road Facility, the hazardous and mixed waste is evaluated for isotope(s) and activity, and as necessary, is sampled and analyzed to verify isotope(s) and activity. The hazardous and mixed waste transported to the storage facility are properly manifested in accordance with state and federal regulations on an EPA Uniform Hazardous Waste Manifest, accompanied by appropriate LDR Notifications (Attachment A3-5).

In addition to the waste profile information submitted by the generator, Beck Road Facility will:

Require submittal of a representative waste sample

Conduct an audit of the generator facility

Review industry literature to identify typical waste streams

Other:

A U-M LLRW Manifest or a U-M Hazardous / Chemical Waste Manifest and a U-M Fingerprinting Documentation Sheet (Figure A3.A.2) are completed for every hazardous and mixed waste shipment to Beck Road Facility. The information on the waste profile forms is verified and evaluated at the time of collection and verified and evaluated at arrival at Beck Road Facility to ensure accuracy and completeness.

# Figure A3.A.1-1 U-M Low Level Radioactive Waste Manifest

|             |      | Nor                      | LOW-I<br>Universi<br>th Campus | UN3321, Rac<br>ty of Michiga<br>Transfer Facil | ADIOAC<br>dioactive m<br>an, Occupa<br>lity, 1655 I | TIVE<br>aterial, I<br>tional Sa<br>Dean Roa | WAST<br>ow speci<br>fety and<br>id, Ann / | E (LL<br>fic activ<br>Enviro<br>Arbor, N | RW)<br>vity (L!<br>nmenta<br>MI 4810 | MANI<br>SA-II), 7<br>Il Health<br>09-2159, | FEST<br>(OSEH<br>(734)70    | )<br>63-456 | .8                              | R 33                           | NIFE<br>970 | ST #            |
|-------------|------|--------------------------|--------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------|-------------|---------------------------------|--------------------------------|-------------|-----------------|
|             |      | [SD                      | = 7.5 gal., LD                 | = 28 gal.]                                     | 1                                                   |                                             | SOLI                                      | DS (Atta                                 | ch Cont                              | ainer Labe                                 | to deca                     | d on the    | side of                         | the drum)                      | -           | 1               |
| S           |      |                          | Size gallon                    |                                                | Ad                                                  | tivity                                      |                                           |                                          |                                      | Activ                                      | ity                         |             |                                 |                                | Activity    |                 |
| E           | RQ   | # on Drum                | (Circle)                       | Isotope                                        | (kBq)                                               | (uCi                                        | ) 1                                       | sotope                                   |                                      | (kBq)                                      | (uCi)                       | b           | otope                           | (kBa                           | 0           | (wCi)           |
| С           |      |                          | 7.5 28                         |                                                |                                                     | (                                           | )                                         |                                          |                                      |                                            | (                           | )           |                                 |                                | C           | )               |
| A           |      |                          | 7.5 28                         |                                                | 2.15                                                | (                                           | )                                         |                                          |                                      |                                            | (                           | )           |                                 | 1993                           | (           | )               |
| -           |      |                          | 7.5 28                         |                                                |                                                     | (                                           | )                                         |                                          |                                      |                                            | (                           | )           | _                               | 1052                           | 0           | )               |
|             | RQ   | Jug Vol Isol             | ope                            | Activity                                       | Isotope                                             |                                             | LIQU                                      | ADS (P                                   | lace labo                            | el around i<br>ical(s) pres                | handle)<br>sent ente        | r nomb      | er code i                       | from back a                    | k concen    | tration         |
| S           |      | 1                        | (kBo                           | (uCi)                                          |                                                     | (kB4                                        | ) (u                                      | 3)<br>)                                  | Code                                 | % by vol                                   | Code                        | % by vo     | Code                            | % by vol                       | Code        | % by vol        |
| E           |      | 2                        |                                | ( )                                            |                                                     |                                             | C                                         | )                                        |                                      |                                            |                             |             |                                 |                                | -           |                 |
| С           |      | 3                        | 1                              | ()                                             | )                                                   |                                             | ( (                                       | )                                        |                                      |                                            |                             |             |                                 |                                |             |                 |
| B           |      | 4                        | 1                              | ( )                                            | )                                                   | 1000                                        | (                                         | - )                                      | -                                    |                                            |                             |             | -                               | -                              |             |                 |
| -           |      | 6                        | -                              | ( )                                            |                                                     | -                                           | (<br>(                                    | - )                                      | -                                    |                                            | _                           |             | +                               | -                              | -           |                 |
|             |      | 7                        |                                | ( )                                            |                                                     | 1                                           | Ċ                                         | )                                        | -                                    |                                            |                             |             |                                 | -                              |             |                 |
|             |      | 8                        | 122                            | ( )                                            |                                                     | 1200                                        | (                                         | ).                                       | -                                    |                                            |                             |             |                                 |                                |             |                 |
| s           | RQ   | Box Isotop               | (kBq)                          | vity<br>(uCi)                                  | Isotope                                             | SCINI<br>Acti<br>(kBq)                      | ILLATIC<br>vity<br>(uCl)                  | DN VIA                                   | LS (In<br>otope                      | dicate on (<br>Ad<br>(kBq)                 | the box w<br>ctivity<br>(uC | i) c        | the vial<br>Plastic<br>or Glass | s are plastic<br>Identify Scin | or glass    | )<br>Cocktail   |
| E           |      | 1                        |                                | ()                                             | _                                                   |                                             | (                                         | )                                        | _                                    | -                                          | (                           | ) ]         | PG                              |                                | _           | _               |
| С           |      | 3                        |                                |                                                | 0                                                   | -                                           | (                                         | <u>'</u>                                 | -                                    |                                            | C                           | 1           | r G                             | -                              | _           | -               |
| C           |      | 4                        |                                | ( )                                            | -                                                   | -                                           |                                           | <u>,</u>                                 | -                                    |                                            | t                           | 1           | PG                              |                                |             | -               |
| ~           |      | 5                        |                                | ( )                                            |                                                     | -                                           |                                           | <u>,</u>                                 | -                                    |                                            | 6                           | )           | PG                              | -                              |             | -               |
|             |      |                          |                                |                                                |                                                     |                                             |                                           |                                          |                                      | -                                          |                             |             | - u                             |                                | -           |                 |
| S<br>E      | RQ   | Pkg. Sharps V<br># (%) ( | iais Other                     | Isotope                                        | Activity<br>(kBq)                                   | (uCi)<br>)                                  | Isotope                                   | (kBc                                     | Activity                             | (uCl)<br>)                                 | Isotope                     | 0           | Activ<br>(Bq)                   | (uCi)                          | PIG         | S(Y)            |
| С           |      | 2                        | _                              |                                                | (                                                   | )                                           |                                           |                                          | (                                    | )                                          |                             |             |                                 |                                |             |                 |
| D           |      | 4                        | -                              |                                                | (                                                   | )                                           |                                           |                                          | (                                    | )                                          | -                           | -           |                                 | _                              |             |                 |
| -           | -    |                          |                                | -                                              | R                                                   | etain pho                                   | locopy for                                | your fil                                 | es                                   |                                            |                             | -           |                                 | _                              |             |                 |
| PL          | EAS  | SE Authori               | zed User                       |                                                |                                                     |                                             |                                           |                                          | D                                    | P                                          | hone:                       | _           |                                 |                                | _           | -               |
| PR          | INI  | Comp                     | pleted By:                     |                                                |                                                     |                                             |                                           |                                          |                                      | *Sign                                      | ature:                      |             |                                 |                                |             |                 |
|             | *    | Signature indi           | cates that eac                 | h container he                                 | as been swip                                        | ed for ex                                   | ternal con                                | temine                                   | tion (str                            | sple a cop                                 | y of sur                    | vey resi    | ults to n                       | nanifest).                     |             |                 |
| IN O<br>PUI | CASE | OF EMERG<br>SAFETY (24   | ENCY CON<br>HOURS) A           | TACT<br>T (734) 763-1                          | 1131                                                | _                                           | Doc                                       | EH Use                                   | nR/fr<br>Only                        | 1                                          | nitial                      |             | Ex                              | clusive                        | L<br>Use Sh | SA-II<br>ipment |

90 - sodium citrate

73 - sodium hydroxide

124 - sodium lauryl sulfate

92 · sodium phosphate

125 · sodium thiosulfate

76 · tetrachiorobenzene

77 · tetrachloroethene

79 - trichioroacetic acid

80 - trichloroethylens

129 - trifluoracetic acid

128 · tetrahydrofuran

74 - sodium hypochlorite

(SDS)

123 - sodium lodide

(SLS)

75 · sulfuric acid

126 · sucrose

127 · taurine

78 · toluene

(TCA)

87 · TRIS buffer

83 - urea

85 · xylene

99 · OTHER

81 · uranyl acetate

82 · uranyl nitrate

84 - vinyl chloride

130 · xylene cyanol

86 + zinc compounds

ABOVE)

(specify below)

(SEE INSTRUCTIONS

(8-2-2021)

93 · sodium docecyl sulfate

# INSTRUCTIONS TO IDENTIFY CHEMICALS IN LIQUIDS

If chemical is listed below, please enter corresponding number code and approximate chemical concentration in % by volume in Section B on the front side of the manifest.

If chemical constituents are not listed below, please enter number code 99 and approximate concentration in % by volume in Section B on the front side of manifest, and list chemicals name(s) and concentrations(s) in Section E below.

00 · aqueous

ì

2

- (water based with no added
- chemicals) 01 · acetamide
- 02 · acetic acid
- 100 acetic anhydride
- 03 · acetone
- 04 + acetonitrile
- 05 · acrylamide
- 07 · ammonium compounds
- (specify below)
- 08 · arsenic compounds
- (specify below)
- 09 · barium compounds (specify below)
- 10 · benzene 11 · benzolalowene
- 95 blood
- 88 · boric acid
- 101 bovine albumin
- 102 bromophenol blue dye
- 17 butanol
- 13 cadmium compounds
- (specify below)
- 103 · calcium chloride
- 104 · calcium sulfate
- 14 · carbon tetrachloride
- 16 chlorobenzene
- 17 · chloroform
- 18 chlorophenol
- 105 choline chloride
- 19 chromium compounds (specify below)
- 106 · citric acid
- 107

Jug # 1 2

3

4

5

6 7 8

Page 7 of 56

S

E

C

E

- coomassie blue dve 20
- copper compounds (specify below)
- 3.0
- culture medium

- 21 cyanide compounds (specify below)
- 22 · cyclohexane
- 23 DOD/DOT
- 108 · dextran sulfate
- 24 dichlorobenzene
- 25 · dimethylsulfaxide (DMSO)
- 109 DMEM media
- 25 · epinephrine
- 27 · ethanol
- 28 ether
- 29 + ethidium bromide
  - (EtBr)
- 30 · ethyl acetate
  - 31 · ethylbenzene
  - 32 · ethylene diamine
  - tetraacetic acid (EDTA) 33 · ethylene glycol-bis(B-
  - amino ethyl ether)-
  - tetraacetic acid (EGTA) 34 + ethyl ether
  - 35 ethylohenol
  - 36 formaldehvde
  - 37 formalin
  - 38 formamide
  - 39 formic acid
- 40 glutaraldehyde

- 41 heptane

- 119 potassium phosphate

- 110 stycine
- 111 hams F12 media
- 112 HEPES buffer
- 113 hexane
- 43 hydrochloric acid (HCI)
- 44 hydroxybenzene
- 114 · isoamyl alcohol
- 46 isobutanol
- 47 · Isopropanol

(specify below) 115 + magnesium chloride 97 - magnesium phosphate 116 · magnesium suifate 49 - mercaptoethanol

48 - lead compounds

- 50 · mercury compounds (specify below)
- 51 methanol
- 117 · methoxyethanol
- 54 methyl benzene
- 52 methylene chloride
- 53 methyl ethyl ketone
- 58 naphthalene
- 59 · nitric acid
- 60 · nitrobenzene
- 118 perchloric acid

65 - phthalates

67 · propanoic acid

69 · scintillation fluid

70 - selenium compounds

71 silver compounds

120 · sodium acetate

72 · sodium azide

121 · sodium bicarbonate

122 · sodium carbonate

89 · sodium chloride

CODE 99 CHEMICAL NAMES(S), % BY VOL.

Figure A3.A.1-1, U-M Low Level Radioactive Waste Manifest

Form EQP 5111 Attachment Template A3, Waste Analysis Plan

(specify below)

(specify below)

(specify below)

68 · pyridine

91 · potassium chloride

66 - potassium permanganate

94 - saline sodium citrate (SSC)

- 62 · perificur
- 63 phenol 64 · phosphoric acid

Figure A3.A.1-2 U-M Hazardous / Chemical Waste Manifest

| 24 HOURS);                       | UNIVERSITY OF MICHICAN - ENVIR                                                                                                                                                                                                                                                     | MI 48109-215                           | (134)    | 63-4568   |           | EPA ID#     |                          |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|-----------|-----------|-------------|--------------------------|
|                                  | HAZARDOUS/CI                                                                                                                                                                                                                                                                       | CHEMICAL V                             | VASTI    | S         |           |             |                          |
| CHEMIC                           | AL DESCRIPTION (Do Not Abbreviate or Use Formulas)                                                                                                                                                                                                                                 | Qiy. Typ                               | Solid    | Gas Liqui | The Units | Waste Codes | Manifest Tracking Number |
|                                  |                                                                                                                                                                                                                                                                                    |                                        |          |           |           |             |                          |
|                                  |                                                                                                                                                                                                                                                                                    |                                        | -        |           |           |             |                          |
|                                  |                                                                                                                                                                                                                                                                                    |                                        | -        |           |           |             |                          |
| -                                |                                                                                                                                                                                                                                                                                    |                                        |          | _         |           |             |                          |
|                                  |                                                                                                                                                                                                                                                                                    |                                        | -        |           |           |             |                          |
|                                  |                                                                                                                                                                                                                                                                                    |                                        |          | _         |           |             |                          |
|                                  |                                                                                                                                                                                                                                                                                    |                                        | _        |           |           |             |                          |
| dditional Descrip                | tions? Safety Proceations for materials listed above:                                                                                                                                                                                                                              | EHS ONLY                               |          |           |           |             |                          |
|                                  | UNIVERSAL WAS                                                                                                                                                                                                                                                                      | STES (Enter-                           | quantit  | ()        |           |             |                          |
| atteries:                        | Boxes Pails Drums Auto/Industrial                                                                                                                                                                                                                                                  |                                        |          |           |           |             |                          |
| Aercury:                         | Thermostat(s) Thermometer(s) Switch(es)                                                                                                                                                                                                                                            | Device:                                | s (descr | ibe)      |           |             |                          |
|                                  | GENERATOR INFORMA                                                                                                                                                                                                                                                                  | ATION & CE                             | RTIFI    | CATION    |           |             |                          |
| AME                              |                                                                                                                                                                                                                                                                                    |                                        |          | DEPART    | MENT      |             |                          |
| DUITDING                         |                                                                                                                                                                                                                                                                                    |                                        |          | ROOM      |           | PHONE       |                          |
| ENERATOR'S<br>ad labeled, and an | CERTIFICATION: The is to certify that the above named materials are properly classified, decerting to the applicable regulations of the Department of 1 is proper condition for transpartation according to the applicable regulations of the Department of 1 is proper condition. | cribed, packaged, r<br>Transportation, | marked   |           |           | -FOR EHS US | E ONLY-                  |
| IGNATURE                         | DATE                                                                                                                                                                                                                                                                               |                                        |          | HMM       | RDER#     |             |                          |

Figure A3.A.1-2, U-M Hazardous / Chemical Waste Manifest Form EQP 5111 Attachment Template A3, Waste Analysis Plan Page 9 of 56

# COMPLETING THE WASTE MANIFEST

1. Enter the EPA Identification Number of the building in which the waste was generated.

#### HAZARDOUS / CHEMICAL WASTES

#### CHEMICAL DESCRIPTION:

 Use one row for each unique waste. List all of the chemicals present in the container AND their approximate concentrations (%). Do not abbreviate or use chemical formulas. Example:

| 0  | IFINCAL DESCRIPTION IN FAILURE AND A                       | Cen  | Physical Form  |       |        | Weight | 1      |        |
|----|------------------------------------------------------------|------|----------------|-------|--------|--------|--------|--------|
| -  | TE SUCAL DESCRIPTION (Do Not Adureviate or Lise Portuulas) | Qıy. | Type           | Solid | Inquid | Gas    | Volume | Linies |
| ł. | 15% Acetone and 85% Methanol                               | 4    | 0 <i>1-1</i> ° |       | x      |        | 4      | G      |

#### CONTAINER:

- 3. Enter the total number of containers for each row.
- 4. Enter the appropriate abbreviation (see table 1) for the type of container used for each waste described on the manifest. (If the same waste is shipped in different containers, each type of container must be identified).

#### PHYSICAL FORM:

5. Mark the appropriate form(s) (Solid, Liquid, Gas) for each row. Check all that apply.

#### WEIGHT OR VOLUME:

- 6. Enter the total numerical weight or volume for each row.
- 7. Enter the appropriate abbreviation (see table 2) for the unit of measure for each row,

### ADDITIONAL DESCRIPTIONS / SAFETY PRECAUTIONS:

 Enter any additional description / safety precaution, special handling, transportation, treatment, storage, or disposal information or specific properties that may be unique to the waste or pose additional concerns (i.e. acutely toxic, water reactive, etc.).

#### UNIVERSAL WASTE

9. Enter the total number of containers for each Universal waste category listed.

#### GENERATOR INFORMATION & CERTIFICATION

- 10. Enter the name of the waste generator.
- 11. Enter the name of the Department where the waste was generated.
- 12. Enter the name of the building in which the waste was generated.
- 13. Enter the building room number in which the waste was generated.
- 14. Enter the phone number at which the generator, or staff knowledgeable about the waste can be contacted.
- 15. The generator must read and sign (by hand), the certification statement, or the waste will not be picked up for disposal
- 16. Enter the date the certification statement was signed.

#### ADDITIONAL DESCRIPTIONS / SAFETY PRECAUTIONS:

17. Package waste bottles into a labeled box

- Package only compatible chemicals together
- Cushion bottles to prevent breakage.
- 18. Place the Waste Manifest(s) with the shipment.

19. Call (734)763-4568 to request a collection, or request a waste collection online using the QR code:



## MANIFEST ABBREVIATION TABLES

| Abbreviation | Container Type                                    |
|--------------|---------------------------------------------------|
| DM           | Metal dronts, barrels, kegs                       |
| DF-F         | Fiberboard drums, barrels, kegs                   |
| DF-P         | Plastic drums, barrels, kegs                      |
| BOT-G        | Glass bottles, jugs, tubes, containers            |
| BOT-P        | Plastic bottles, jugs, tubes, containers          |
| CY           | Cylinders                                         |
| CM           | Metai boxes, cartons, cases (including roll-offs) |
| OF           | Fiber or plastic boxes, cartons, cases            |
| 0            | Other (Please specify)                            |



# A3.A.1(a) Generator Waste Characterization Discrepancies

 $[R\ 299.9605(1)\ and\ R\ 299.9504(1)(c)\ and\ 40\ CFR\ \S\&264.13(a)(3)\ and\ (4),\ 264.13(b)(c),\ and\ 264.72]$ 

If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with discussions with the generator and may require analytical testing through a commercial contract laboratory. All discrepancies will be resolved before accepting the waste.

# A3.A.1(b) Subsequent Waste Shipment Procedures

[R 299.9605(1) and R 299.9504(1)(c) and 40 CFR §§264.13(a)(3) and 264.13(b)(4)]

The initial analysis of waste from each generator will be reviewed or repeated at the time of each collection to ensure that the analysis is accurate and up-to-date.

The profiling process described in Section A3.A.1, Initial Waste Characterization Requirements for Generators, is repeated for each collection of waste. Recharacterization occurs with each collection of waste. A completed waste profile form, either the U-M LLRW Manifest or the U-M Hazardous / Chemical Waste Manifest, will provide complete characterization of the waste prepared for collection. This documentation provides specific waste stream characterization, precluding the need for annual analytical profiling. Additional testing, if indicated, and testing of unknowns is conducted through a commercial contract laboratory.

# A3.A.1(c) Additional Waste Analysis Requirements

[R 299.9605(1) and R 299.9504(1)(c) and 40 CFR §§264.13(b)(6) and 264.13(c(3)]

Beck Road Facility will review the waste profile information to ensure that the facility is authorized to receive the waste, and can manage the waste in compliance with the following:

| R 299.9605 and 40 CFR §264.17      | General requirements for ignitable, reactive, or incompatible wastes |
|------------------------------------|----------------------------------------------------------------------|
| R 299.9605 and 40 CFR §264.314     | Special requirements for bulk and containerized liquids              |
| R 299.9630 and 40 CFR §264.1034(d) | Test methods and procedures (Subpart AA)                             |
| R 299.9631 and 40 CFR §264.1063(d) | Test methods and procedures (Subpart BB)                             |
| 40 CFR §264.1083                   | Waste determination procedures (Subpart CC)                          |
| R 299.9627 and 40 CFR §268.7       | Waste analysis and record keeping LDR requirements                   |
| 🗌 R 299.9228                       | Universal waste requirements                                         |

# FIGURE A3.A.1

# INFORMATION THAT MUST BE SHOWN ON A GENERATOR'S WASTE PROFILE FORM

The U-M waste profile form completed by the generator for each waste shipment is a LLRW Manifest or a U-M Hazardous / Chemical Waste Manifest ).

## Waste Generator Information:

Generator Name Street Address City, State/Province Zip Code County Customer Contact Billing Address Telephone Number Site ID #

## Waste Stream Information:

Name of Waste **Process Generating Waste** Color Strong Odor [describe] Physical State at 70° F Lavers Free Liquid Range pH Range (pH values that differ by > two standard units, switch between acidic and alkaline conditions, or are < 2.0 or >12.5 should be evaluated as discrepancies) Liquid Flash Point Physical and Chemical Composition Constituents **Concentration Range** Oxidizer Carcinogen Pyrophoric Infectious\Biological Explosive Shock Sensitive Radioactive Water Reactive Poison - Inhalation Hazard

Does the waste represented by this profile contain dioxins? Does the waste represented by this profile contain asbestos? Is the waste subject to RCRA Subpart CC controls? Does the waste contain debris? Are all containers included in this waste stream empty and as defined in R 299.9207 and/or 40 CFR §761.79?

# Quantity of Waste: (Including units)

## Shipping Information:

Packaging Shipping Frequency Personal Protective Equipment Requirements

## Generator Certification:

Is this a Part 111 of Act 451 hazardous waste (R 299.9201 to R 299.9229)?Does the waste represented by this Waste Profile Form contain any of the following pesticides or herbicides: Endrin, Lindane, Methoxychlor, Toxaphene, 2,4-D, 2,4,5-TP (silvex), chlordane, Heptachlor (and its epoxide)?

Is the waste from a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (40 CFR, Part 300, Appendix B) or EGLE mandated cleanup?

Does the waste represented by this Waste Profile Form contain concentrations of radioactive elements regulated by the Nuclear Regulatory Commission?

Does the waste represented by this Waste Profile Form contain concentrations of PCBs regulated under 40 CFR, Part 147, PCB Compounds, of Act 451 or 40 CFR, Part 761?

Do the Waste Profile Form and all attachments contain true and accurate descriptions of the waste material and has all the relevant information within the possession of the generator regarding known or suspected hazards pertaining to the waste been disclosed to the generator?

## Notes:

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

- EGLE Michigan Department of Environment, Great Lakes, and Energy
- EPA U.S. Environmental Protection Agency
- PCB Polychlorinated biphenyl
- RCRA Resource Conservation and Recovery Act of 1976, as amended
- TSDF Treat, Store, Disposal Facilities

### A3.A.2 Waste Acceptance Procedures

[R 299.9605(1) and R 299.9504(1)(c), and 40 CFR §§264.13(c), 264.72(a) and (b), and 264.73(b)]

Waste shipments arrive at the facility in the following containers:

| $\ge$       | Drums   |
|-------------|---------|
| $\boxtimes$ | Carboys |

| ☐ Totes        |
|----------------|
| U Wrangler box |
|                |

| Tanker trucks |
|---------------|
| Filter bags   |

Roll-off boxes

Vacuum trucks

Other: labpacks, overpacks, boxes, bags

Upon receipt of wastes from an off-site generator, Beck Road Facility will perform all the following tasks:

- Review paperwork
- Visually inspect the waste
- Perform waste screening/fingerprint analysis of waste

These tasks are discussed below.

# A3.A.2(a) Review Paperwork

[R 299.9605(1) and R 299.9504(1)(c), and 40 CFR §§264.13(c), 264.72(a) and (b), and 264.73(b)]

Beck Road Facility will review all paperwork, including manifests and LDR notifications, before any wastes are accepted by the facility. Beck Road Facility will review all paperwork for completeness. In addition, the manifest and LDR notification will be compared for consistency. The manifest will also be compared to the waste profile and analytical information provided by the generator and to the waste shipment to ensure the accuracy of information provided on shipment paperwork. The manifest will also be compared to the number of containers, the volume, and/or the weight of the waste in the shipment. All discrepancies will be resolved before processing the waste.

Once the hazardous and mixed waste is received at the Beck Road Facility, a visual inspection is performed, prior to conducting a review of the paperwork, to ensure that the containers have not leaked during transport. Beck Road Facility will review all paperwork, including manifests and LDR notifications, before any wastes are accepted by the facility. Beck Road Facility will review all paperwork for completeness. In addition, the manifest and LDR notifications will be compared for consistency. The manifest will also be compared to the waste profile and analytical information provided by the generator and to the waste shipment to ensure the accuracy of information provided on shipment paperwork. The waste codes listed on both the EPA Uniform Hazardous Waste Manifest and RCRA/MI Act 451 labels are reviewed to verify that the chemicals and percent concentration of the chemicals listed are consistent with those listed on the U-M waste profile forms. The manifest will also be compared to the waste profile forms. The manifest will also be compared to the use profile forms. The manifest will also be compared to the U-M waste profile forms. The manifest will also be compared to the number of containers, the volume, and/or the weight of the waste in the shipment. All discrepancies will be resolved before accepting the waste.

U-M Hazmat personnel have extensive involvement with the hazardous and mixed waste destined for the Beck Road Facility. Hazardous and mixed waste is transported from the NCTF or other U-M generator sites to the Beck Road Facility. Hazmat personnel perform specific activities at the site of generation, at the transfer facility and at the storage facility, and act as transporter from facility to facility. Activities are often duplicated at each step in the process to ensure proper and safe handling of the waste. A discussion of the activities performed at the generator site, the transfer facility and the storage facility follows.

At the site of generation, Hazmat personnel provide consultation on collection, labeling, manifesting and packaging of hazardous and mixed waste. The generator labels the waste and completes the U-M internal manifests. At the time of collection, Hazmat personnel perform visual inspection/fingerprinting, label and manifest reviews and completion of the EPA Uniform Hazardous Waste Manifest and LDR notifications. Hazmat personnel perform all recordkeeping activities. Hazmat personnel act as the transporter from the site of generation to the transfer facility and to the Beck Road Facility. Hazmat personnel review and accept waste transported to the Beck Road Facility. Hazmat personnel verify compatibility and commingle the accepted waste at the Beck Road Facility.

Prior to pick up, the Hazmat personnel obtain a waste profile form, prepared by the generating laboratory, for each container of waste collected. The waste profile form consists of either the U-M LLRW Manifest or the U-M Hazardous / Chemical Waste Manifest, as appropriate.

Re-characterization occurs with each collection of waste. A completed U-M internal manifest will provide complete characterization of the waste prepared for collection. This documentation provides specific waste stream characterization by knowledge of the raw material and the waste generation process. Proper procedures for segregation will be in accordance with the "Precedence of Hazard Table" in 49 CFR §173.2a (Attachment A3-1), and the "Chemical Compatibility Chart, EPA-600/2-80-076 April 1980, A Method for Determining the Compatibility of Chemical Mixtures" (Attachment A3-2).

# GENERATOR SITE

- U-M manifest check: Check for EPA ID number, proper shipping name, waste codes, isotope and activity, volume, room location, generator's signature on manifest. Discussion with the generator, as necessary, for validation/confirmation of the waste generation process and the waste constituents.
- Label check: Ensure both radioactive label and RCRA/MI Act 451 labels are complete and accurate.
- Review waste code suitability: Verify that the transfer facility (when applicable) and storage facility can accept waste codes generated. Each facility's permit is used as guidance in review.
- Fingerprinting: U-M conducts visual inspection of each container and a visual observation of the waste, each time, at the time of collection. Inspection of the container assesses the condition of the waste container for safe transport to the storage facility. Observation of the waste includes the container type, the color, the presence of phasing, and the volume and the waste code(s) assigned.
- If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with the generator and may require analytical testing through a commercial contract laboratory.
- Complete the generator section of the U-M Fingerprinting Documentation Sheet for each of the containers (jug, box, pail, etc.) referenced on the manifest. For each container of waste, indicate in columns provided, the BRSF (Beck Road Facility) storage area designation; the container type; the color of the waste; if a phase is observed in the waste (yes or no); the volume of waste; and the waste code(s) assigned. Initial and date the sheet.
- Completion of the Uniform Hazardous Waste Manifest and LDR notifications.
- Prepare waste for transport.

# TRANSFER FACILITY

- Visual inspection of container for integrity.
- Enter waste onto the transfer facility's operation's log.
- Move to appropriate room in transfer facility.
- Manifest activities: Make appropriate copies of U-M internal manifest, EPA Uniform Hazardous Waste Manifest and LDR notifications for transfer facility and storage facility records. File originals and copies in appropriate locations.
- Perform radiological evaluation, as appropriate.
- Prior to shipping to storage facility, sign waste off transfer facility's operation's log, prepare

waste for transport, sign appropriate transporter box on EPA Uniform Hazardous Waste Manifest, make appropriate copy of EPA Uniform Hazardous Waste Manifest transporter sheet, if required. File transporter copy in appropriate location, if required.

# STORAGE FACILITY

- Evaluation of U-M internal manifest, EPA Uniform Hazardous Waste Manifest and LDR notifications to ensure accuracy and completeness.
- Evaluation of radioactive label and RCRA/MI Act 451 label to ensure that both are complete and accurate.
- Visual observation of waste, fingerprinting: Complete the BRSF (Beck Road Facility) section of the U-M Fingerprinting Documentation Sheet for each of the containers (jug, box, pail, etc.) referenced on the manifest. For each container of waste, indicate in columns provided, the BRSF (Beck Road Facility) storage area designation; the container type; the color of the waste; if a phase is observed in the waste (yes or no); the volume of waste; and the waste code(s) assigned. Initial and date the sheet.
- If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with the generator and may require analytical testing through a commercial contract laboratory.
- Accept or deny waste, note discrepancies, sign manifest.
- Sign waste onto Operation's Log (Attachment A3-4).
- Move waste to designated waste management unit.
- Evaluation of isotope compatibility: Segregate short-lived and long-lived isotopes, as appropriate.
- Evaluation of compatibility of chemical constituents and waste codes for drum assignment: Each waste drum has a Chemical Constituent Sheet (Attachment A3-3) associated with it that lists the chemicals contained in that drum. This sheet is updated prior to new waste being commingled into a drum. The constituent sheet and the constituents of the new waste are evaluated for compatibility using the "Chemical Compatibility Chart, EPA-600/2-80-076 April 1980, A Method for Determining the Compatibility of Chemical Mixtures". Commingle like waste codes as possible.
- Ensure receiving drum is updated and properly marked and labeled: drum number, isotopes contained in drum, EPA ID number, proper shipping name, waste codes, accumulation start date for specific drum (will be date drum first receives waste).
- Update Operation's Log to indicate receiving drum.
- Update receiving drum worksheet.
- Commingle waste.
- Ensure drum is closed.
- Ensure waste profile form, and all other associated documents, are filed at the storage facility and/or returned to NCTF, as appropriate.
- Return appropriate copies of EPA Uniform Hazardous Waste Manifest to NCTF.

# A3.A.2(b) Visual Inspection of Waste

[R 299.9605(1) and R 299.9504(1)(c) and 40 CFR §264.13(c)]

Beck Road Facility will visually inspect a minimum of one container and up to a maximum of 100 percent of the containers per waste code per generator. The contents of the container will be visually inspected for the following:

 $\boxtimes$  Color  $\boxtimes$  pH (pH if generator knowledge identifies acids or bases.)

Physical State (Presence of phasing.)

Page 16 of 56 Form EQP 5111 Attachment Template A3, Waste Analysis Plan

Other: U-M manifest and container ID numbers, container type, physical phasing observed, volume, and waste codes.

Visual observations will be recorded and compared to the waste profile information. All discrepancies will be resolved before processing the waste. The applicant should describe how the information gathered would help identify each movement of hazardous waste managed at the facility.

All containers of hazardous and mixed waste arriving at Beck Road Facility will be visually inspected to determine consistency with recorded information. Visual observations will be recorded and compared to the waste profile information. If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with discussions with the generator and may require analytical testing through a commercial contract laboratory. All discrepancies will be resolved before accepting the waste.

# A3.A.2(c) Waste Screening/Fingerprinting

[R 299.9605(1) and R 299.9504(1)(c) and 40 CFR §§264.13(b)(14) and 264.13(c)(2)]

Table A3.A.1 lists the waste analysis procedures, including screening parameters for each hazardous waste, the rationale for the selection of these parameters, test methods that will be used to test for these parameters, the appropriate reference, whether the waste is specified in R 299.9216, the frequency of waste screening, and the rationale for the frequency. The sampling methods that will be used to obtain a representative sample of the waste to be analyzed and the sampling equipment and rationale are summarized in Table A3.A.2. The results of the waste screening/fingerprint analysis will be compared to the waste profile information and analytical results provided by the generator during the initial waste characterization process. The outside container of inner laboratory pack containers will be 100 percent visually inspected. Containers of personal protective equipment (PPE) or debris will undergo visual inspection. All discrepancies will be resolved before processing the waste.

The appropriate waste profiling documents, the U-M Fingerprinting Documentation Sheet, and the EPA Uniform Hazardous Waste Manifest, will be used for fingerprinting. The BRSF (Beck Road Facility) section of the U-M Fingerprinting Documentation Sheet will be completed. This will include a comparison of U-M internal manifest and container number, the BRSF (Beck Road Facility) area assignment, the container type, the color, if a phase is observed, the volume, and the waste codes assigned to the waste. The U-M Fingerprinting Documentation Sheet will then be initialed and dated.

If observed conditions are inconsistent with the waste profile provided by the generator, discrepancy resolution begins with discussions with the generator and may require analytical testing through a commercial contract laboratory. All discrepancies will be resolved before accepting the waste.

Sampling of waste, as necessary, will be in accordance with Table A3.A.2, Sampling Procedures.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (SW-846), Update III plus variations. December 1996. EPA.

Waste Analysis at Facilities that Generate, Treat, Store, and Dispose Hazardous Waste; A Guidance Manual .EPA 530-R-94-024, OSWER Directive No. 9938.4-03. April 1994. EPA.
Figure A3.A.2 U-M Fingerprinting Documentation Sheet

Τ

LI-M Manifest No

## University of Michigan Beck Road Storage Facility Fingerprinting Documentation Sheet

| BRSF Area | Cont.<br>No. |           | Container<br>Type | Color | Phase<br>Observed | Vol. (L) | Waste Codes |
|-----------|--------------|-----------|-------------------|-------|-------------------|----------|-------------|
|           | 1            | Generator |                   |       |                   |          |             |
|           | 1            | BRSF      |                   |       |                   |          |             |
|           | 2            | Generator |                   |       |                   |          |             |
|           | 2            | BRSF      |                   |       |                   |          |             |
|           | 3            | Generator |                   |       |                   |          |             |
|           | 3            | BRSF      |                   |       |                   |          |             |
|           | 4            | Generator |                   |       |                   |          |             |
|           | 4            | BRSF      |                   |       |                   |          |             |
|           | 5            | Generator |                   |       |                   |          |             |
|           | 5            | BRSF      |                   |       |                   |          |             |
|           | 6            | Generator |                   |       |                   |          |             |
|           | 6            | BRSF      |                   |       |                   |          |             |
|           | 7            | Generator |                   |       |                   |          |             |
|           | 7            | BRSF      |                   |       |                   |          |             |
|           | 8            | Generator |                   |       |                   |          |             |
|           | 8            | BRSF      |                   |       |                   |          |             |

Comments:

|           | Initials | Date |
|-----------|----------|------|
| Generator |          |      |
| BRSF      |          |      |

| Table A3.A.1 Was | te Analysis Procedures |
|------------------|------------------------|
|------------------|------------------------|

| Screening Parameter<br>(Check as appropriate) | Rationale for<br>Parameter           | Test Method                                                                                | Reference                      | Frequency                            | Rationale for Frequency                                                         |
|-----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------------------------------------------------|
| Waste Code                                    |                                      |                                                                                            |                                |                                      |                                                                                 |
| Ignitability                                  | Characteristic                       | Generator                                                                                  | 40 CFR                         | Verified at                          | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D001                               | Hazardous<br>Waste                   | Knowledge; SW- 846<br>1020<br>(liquids); SW- 846<br>1030<br>(solids)                       | 261.21                         | Collection                           | Determination                                                                   |
| Corrosivity                                   | Characteristic                       | Generator                                                                                  | Regulated                      | Verified at                          | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D002                               | Hazardous<br>Waste                   | Knowledge; SW-846<br>9040C                                                                 | Level: pH<br><2 or <a>12.5</a> | Collection                           | Determination                                                                   |
| Reactivity                                    | Characteristic                       | Generator                                                                                  | 40 CFR                         | Verified at                          | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D003                               | Hazardous<br>Waste                   | SW-846 9010C<br>(Total and amendable<br>cyanide)                                           | 261.23                         | Collection                           | Determination                                                                   |
| Characteristics D004 to D043                  | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; Test<br>Method SW-846 1311<br>Then the Test<br>Methods Cited Below |                                |                                      |                                                                                 |
| Toxicity—Arsenic                              | Characteristic                       | Generator                                                                                  | Regulated                      | Verified at                          | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D004                               | Hazardous<br>Waste                   | Knowledge; SW- 846<br>6010D or<br>6020D                                                    | Levei:<br>5.0 mg/L             | Cllection                            | Determination                                                                   |
| Toxicity—Barium                               | Characteristic                       | Generator                                                                                  | Regulated                      | Verified at                          | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D005                               | Hazardous<br>Waste                   | Knowledge; SVV- 846<br>6010D or<br>6020D                                                   | Level:<br>100.0 mg/L           | Collection                           | Determination                                                                   |
| Toxicity—Cadmium                              | Characteristic<br>Hazardous          | Generator<br>Knowledge; SW-                                                                | Regulated<br>Level:            | Verified at<br>Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste |

|                                                      |                                      | 1                                                    |                                   |                                   |                                                                                                  |
|------------------------------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| EPA HW No. D006                                      | Waste                                | 846 6010D or<br>6020D                                | 1.0 mg/L                          |                                   | Determination                                                                                    |
| Toxicity—Chromium<br>EPA HW No. D007                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>5.0 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Lead<br>EPA HW No. D008                     | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>5.0 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Mercury<br>EPA HW No. D009                  | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 7470A or<br>7471B | Regulated<br>Level:<br>0.2 mg/L   | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Selenium<br>EPA HW No. D010                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>1.0 mg/L   | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Silver<br>EPA HW No. D011                   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>5.0 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| ToxicityBenzene<br>EPA HW No. D018                   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>0.5 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Carbon Tetrachloride<br>EPA HW No. D019 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>0.5 mg/L   | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Chlorobenzene<br>EPA HW No. D021            | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>100.0 mg/L | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Chloroform                                  | Characteristic                       | Generator                                            | Regulated                         | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |

| EPA HW No. D022                                      | Hazardous<br>Waste                   | Knowledge; SW-<br>846 8260D              | Level:<br>6.0 mg/L                | Collection                        | Profile to Comply with Hazardous Waste Determination                                             |
|------------------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Toxicity—o-Cresol<br>EPA HW No. D023                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E | Regulated<br>Level:<br>200.0 mg/L | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—m-Cresol<br>EPA HW No. D024                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E | Regulated<br>Level:<br>200.0 mg/L | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—p-Cresol<br>EPA HW No. D025                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E | Regulated<br>Level:<br>200.0 mg/L | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Cresol<br>EPA HW No. D026                   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E | Regulated<br>Level:<br>200.0 mg/L | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>1,4-Dichlorobenzene<br>EPA HW No. D027  | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D | Regulated<br>Level:<br>7.5 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>1,2-Dichloroethane<br>EPA HW No. D028   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D | Regulated<br>Level:<br>0.5 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>1,1-Dichloroethylene<br>EPA HW No. D029 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D | Regulated<br>Level:<br>0.7 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>2,4-Dinitrotoluene<br>EPA HW No. D030   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E | Regulated<br>Level:<br>0.13 mg/L  | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—                                            | Characteristic                       | Generator                                | Regulated                         | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |

| Hexachlorobenzene     | Hazardous<br>Waste | Knowledge; SW-<br>846 8270E  | Level:     | Collection          | Profile to Comply with Hazardous Waste<br>Determination |
|-----------------------|--------------------|------------------------------|------------|---------------------|---------------------------------------------------------|
| EPA HW No. D032       |                    |                              | 0.13 mg/L  |                     |                                                         |
| Toxicity—             | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| Hexachlorobutadiene   | Hazardous<br>Waste | Knowledge; SVV-<br>846 8270E | Level:     | Collection          | Profile to Comply with Hazardous Waste                  |
| EPA HW No. D033       |                    |                              | 0.5 mg/L   |                     |                                                         |
| Toxicity—             | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| Hexachloroethane      | Hazardous<br>Waste | Knowledge; SW-<br>846 8270E  | Level:     | Collection          | Profile to Comply with Hazardous Waste                  |
| EPA HW No. D034       |                    |                              | 3.0 mg/L   |                     |                                                         |
| Toxicity—             | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| Methyl Ethyl Ketone   | Hazardous<br>Waste | Knowledge; SW-<br>846 8260D  | Level:     | Collection          | Profile to Comply with Hazardous Waste<br>Determination |
| EPA HW No. D035       |                    |                              | 200.0 mg/L |                     |                                                         |
| Toxicity—Nitrobenzene | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| EPA HW No. D036       | Hazardous<br>Waste | Knowledge; SW-<br>846 8270E  | Level:     | Collection          | Profile to Comply with Hazardous Waste<br>Determination |
|                       |                    |                              | 2.0 mg/L   |                     |                                                         |
| Toxicity—Pyridine     | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| EPA HW No. D038       | Waste              | 846 8270E                    | Level:     | Collection          | Determination                                           |
|                       |                    |                              | 5.0 mg/L   |                     |                                                         |
| Toxicity—             | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| Tetrachloroethylene   | Waste              | 846 8260D                    |            | Collection          | Determination                                           |
| EPA HW No. D039       |                    |                              | 0.7 mg/L   |                     |                                                         |
| Toxicity—             | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| Trichloroethylene     | Hazardous          | Knowledge; SW-<br>846 8260D  | Level:     | Collection          | Profile to Comply with Hazardous Waste                  |
| EPA HW No. D040       |                    |                              | 0.5 mg/L   |                     |                                                         |
| Toxicity—             | Characteristic     | Generator                    | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                   |
| 2,4,5-Trichlorophenol | Hazardous<br>Waste | Knowledge; SW-<br>846 8270E  | Level:     | Collection          | Profile to Comply with Hazardous Waste                  |
| EPA HW No. D041       |                    |                              | 400.0 mg/L |                     |                                                         |

| Toxicity—<br>2,4,6-Trichlorophenol<br>EPA HW No. D042             | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E | Regulated<br>Level:<br>2.0 mg/L          | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
|-------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Toxicity—Vinyl Chloride<br>EPA HW No. D043                        | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D | Regulated<br>Level:<br>0.2 mg/L          | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Chlorobenzene<br>EPA HW No. F002<br>(See D021)           | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Methylene Chloride<br>EPA HW No. F002                | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Ortho-Dichlorobenzene<br>EPA HW No. F002             | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Tetrachloroethylene<br>EPA HW No. F002<br>(See D039) | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Trichloroethylene<br>EPA HW No. F002<br>(See D040)   | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>1,1,1-Trichloroethane<br>EPA HW No. F002             | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

| Toxicity—<br>1,1,2-Trichloro-1,2,2-<br>Trifluoroethane | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
|--------------------------------------------------------|------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| EPA HW No. F002                                        |                              |                                          |                                          |                                   |                                                                                                  |
| Toxicity—                                              | Listed                       | Generator                                | Spent Solvent                            | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| Trichlorofluoromethane                                 | Waste                        | 846 8260D                                | 261.31(a)                                | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| EPA HW No. F002                                        |                              |                                          |                                          |                                   |                                                                                                  |
| Toxicity—                                              | Listed                       | Generator                                | Spent Solvent                            | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| 1,1,2-Trichloroethane                                  | Hazardous<br>Waste           | Knowledge; SW-<br>846 8260D              | per 40 CFR<br>261.31(a)                  | Collection                        | Profile to Comply with Hazardous Waste                                                           |
| EPA HW No. F002                                        |                              |                                          | (                                        |                                   |                                                                                                  |
| Ignitability— Acetone                                  | Listed                       | Generator                                | Spent Solvent                            | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| EPA HW No. F003                                        | Hazardous<br>Waste           | Knowledge; SW-<br>846 8260D              | per 40 CFR<br>261.31(a)                  | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| Ignitability—                                          | Listed                       | Generator                                | Spent Solvent                            | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| Cyclohexanone                                          | Hazardous<br>Waste           | Knowledge; SW-<br>846 8260D              | per 40 CFR<br>261.31(a)                  | Collection                        | Profile to Comply with Hazardous Waste                                                           |
| EPA HW No. F003                                        |                              | 0.0002002                                | (a)                                      |                                   |                                                                                                  |
| Ignitability— Ethyl<br>Acetate                         | Listed<br>Hazardous          | Generator<br>Knowledge; SW-              | Spent Solvent per 40 CFR                 | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste                  |
| EPA HW No. F003                                        | Waste                        | 846 8260D                                | 261.31(a)                                |                                   | Determination                                                                                    |
| Ignitability— Ethyl<br>Benzene                         | Listed<br>Hazardous          | Generator<br>Knowledge; SW-              | Spent Solvent per 40 CFR                 | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste                  |
| EPA HW No. F003                                        | Waste                        | 846 8260D                                | 261.31(a)                                |                                   | Determination                                                                                    |
| Ignitability— Ethyl Ether                              | Listed                       | Generator                                | Spent Solvent                            | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| EPA HW No. F003                                        | Hazardous<br>Waste           | Knowledge; SW-<br>846 8260D              | per 40 CFR<br>261.31(a)                  | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| Ignitability— Methanol                                 | Listed                       | Generator                                | Spent Solvent                            | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| EPA HW No. F003                                        | Hazardous<br>Waste           | Knowledge; SW-<br>846 8260D &<br>8015C   | per 40 CFR<br>261.31(a)                  | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |

| Ignitability—<br>Methyl Isobutyl Ketone<br>EPA HW No. F003     | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D            | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
|----------------------------------------------------------------|------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Ignitability—<br>n-Butyl Alcohol<br>EPA HW No. F003            | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D &<br>8015C | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Ignitability— Xylene<br>EPA HW No. F003                        | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D            | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Cresols and Cresylic<br>Acid<br>EPA HW No. F004   | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E            | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| (See D026)                                                     |                              |                                                     |                                          |                                   |                                                                                                  |
| Toxicity— Nitrobenzene<br>EPA HW No. F004<br>(See D036)        | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8270E            | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Benzene<br>EPA HW No. F005<br>(See D018)              | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D            | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Ignitability, Toxicity—<br>Carbon Disulfide<br>EPA HW No. F005 | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D            | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Ignitability, Toxicity—<br>2-Ethoxyethanol<br>EPA HW No. F005  | Listed<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D &<br>8015C | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

| Ignitability, Toxicity—<br>Isobutanol<br>EPA HW No. F005                        | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 8015C                 | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
|---------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Ignitability, Toxicity—<br>Methyl Ethyl Ketone<br>EPA HW No. F005<br>(See D035) | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 8260D                 | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Ignitability, Toxicity—<br>2-Nitropropane<br>EPA HW No. F005                    | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 8260D                 | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Ignitability, Toxicity—<br>Pyridine<br>EPA HW No. F005<br>(See D038)            | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 8270E                 | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Ignitability, Toxicity—<br>Toluene<br>EPA HW No. F005                           | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 8260D                 | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Methyl Iodide<br>EPA HW No. U138                                       | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 8260D                 | Listed per 40<br>CFR 261.31(f)           | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Mercury<br>EPA HW No. U151                                             | Listed<br>Hazardous<br>Waste                      | Generator<br>Knowledge; SW-<br>846 7470A or<br>7471B     | Listed per 40<br>CFR 261.31(f)           | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Free Liquids                                                                    | Determine if<br>Waste<br>Contains Free<br>Liquids | Generator<br>Knowledge;<br>Paint Filter<br>Liquids Test: | Liquid or Solid                          | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

|                                                   |                                                                                | SW-846 9095B                                                          |                   |                                   |                                                                    |
|---------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|-----------------------------------|--------------------------------------------------------------------|
| Compatibility                                     | Occupational<br>and Process<br>Safety; Waste<br>and Container<br>Compatibility | EPA Chemical<br>Compatibility<br>Chart                                | 40 CFR<br>264.17  | Verified at Time of<br>Collection | Occupational and Process Safety; Waste and Container Compatibility |
| Land Disposal Restrictions                        | 40 CFR 268                                                                     | 40 CFR 268                                                            | 40 CFR 268        | Verified at Time of<br>Collection | Required by Regulation                                             |
| Volatile Organic<br>Compound Content <sup>1</sup> |                                                                                |                                                                       |                   |                                   |                                                                    |
| Radioactivity                                     | Check for<br>Radioactive<br>Materials                                          | Generator<br>Knowledge;<br>Scintillation<br>Counting;<br>Survey Meter | 10 CFR<br>20.1003 | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile                   |
| Other: [describe]                                 |                                                                                |                                                                       |                   |                                   |                                                                    |

<sup>1</sup> According to R 299.9630 and 40 CFR §264.1034(d), TSDFs must identify and meet specific technical requirements for all process vents associated with distillation, fractionation, thin-film evaporation, solvent extraction, or air/stream stripping processes that manage wastes with 1 part per million by weight (ppmw) or greater total organics concentration on a time-weighted annual average basis. Total organic concentrations in the waste can be measured using SW-846 Method 8260B. According to R 299.9631 and 40 CFR §264.1050, TSDFs must also determine if its equipment contains or contacts organic wastes with10 percent or greater total organic content. The total organic content can be determined using (1) American Society of Testing and Materials Methods D2267-88, E169-87, or E260-85, (2) SW-846 Method 8260B, or (3) knowledge of the nature of the wastes stream or the waste generating process.

Table A3.A.2 Representative Sampling Procedures

| Container Type or Material | Sampling Method <sup>1</sup> | Sampling Equipment          | Rationale               |
|----------------------------|------------------------------|-----------------------------|-------------------------|
| Aqueous                    | Grab                         | Coliwasa                    | Representative Sampling |
| Oil or Organic Liquid      | Grab                         | Coliwasa                    | Representative Sampling |
| Sludge                     | Grab                         | Trier                       | Representative Sampling |
| Solids                     | Grab                         | Auger or scoops and shovels | Representative Sampling |

<sup>1</sup> The sampling method should demonstrate equivalence with the sampling methods described in 40 CFR, Part 261, Appendix I.

# A3.A.3 Procedures to Ensure Compliance with Land Disposal Restrictions (LDR) Requirements [R 299.9627 and 40 CFR, Part 268]

All shipments of wastes subject to LDR received at the facility will be accompanied by appropriate generator notification and LDR notification in accordance with R 299.9627 and 40 CFR §268.7. The LDR notification accompanying generator wastes will be reviewed, and any discrepancies in the LDR notification and the associated manifest, analytical records, or Waste Profile Form will require shipment rejection unless additional, satisfactory, clarifying information is provided by the generator. All information obtained to document LDR compliance will be maintained in the facility operating record until closure of the facility.

If the facility receives a shipment of waste without LDR notification, or a notification with incorrect or incomplete information, the following actions will be conducted: LDR discrepancy resolution begins with discussions with the generator. If the LDR discrepancy can be resolved, corrections will be made to the LDR notification and the waste acceptance procedures will continue. If the LDR discrepancy cannot be resolved, the waste in question will be returned to the generator along with a copy of the completed discrepancy section of the EPA Uniform Hazardous Waste Manifest. Appropriate documentation will be made and maintained at the facility.

In accordance with the LDR regulations, all wastes shipped off site will be analyzed, or generator knowledge will be used when appropriate, to determine whether the waste meets the applicable LDR treatment standards specified in R 299.9627 and 40 CFR §§268.41-43. All analytical results will be maintained in the facility operating record until closure of the facility. Wastes that are determined through analysis to meet treatment standards as specified in R 299.9627 and 40 CFR §268.41-43 will be shipped off site in accordance with all other disposal regulations that may apply.

Beck Road Facility will supply LDR notifications and certification, including appropriate analytical records to support the certification, to the receiving facility with each shipment of waste. The notifications and certifications will contain the information required under R 299.9627 and 40 CFR §268.7. Any additional data obtained from the generators (e.g., Waste Profile Forms, original LDR notifications, analysis provided by generators) will be provided to the licensed TSDF where the waste will be sent.

# A3.A.3(a) Spent Solvent Wastes

[R 299.9627 and 40 CFR §§264.13(a)(1), 268.7, 268.30, 268.31, 268.40, 268.41, 268.42, and 268.43]

Spent solvent wastes (F002-F005) are accepted at the facility. Generator process knowledge will be used to determine the presence of spent solvent wastes (F002-F005). Generator process knowledge will be documented on the waste material profile report and LDR notification. The LDR notification will provide additional information regarding the appropriate treatment standards for the waste and whether it has already been treated to the appropriate standards.

# A3.A.3(b) Listed Wastes

[R 299.9627, R 299.9213, and R 299.9214 and 40 CFR §§264.13(a)(1), 268.7, 268.33, 268.34, 268.35, 268.36, 268.39, 268.40, 268.41, 268.42, and 268.43]

Generator process knowledge will be used to determine whether listed waste meets the

applicable treatment standards or to demonstrate that the waste has been treated by the appropriate specified treatment technology. In accordance with R 299.9627 and

40 CFR §268.41, where treatment standards are based on concentrations in the waste extract, the facility will use toxicity characteristic leaching procedures (TCLP) to determine if wastes meet treatment standards. Generator process knowledge will be documented on the waste material profile report and LDR notification.

# A3.A.3(c) Characteristic Wastes

[R 299.9627, R 299.9208, and R 299.9212 and 40 CFR §§261.3(d)(1), 264.13(a)(1), 268.7, 268.9, 268.37, 268.40, 268.41, 268.42, 268.43 and Part 268, Appendix I and Appendix IX]

Generator process knowledge will be used to determine whether characteristic waste meets the applicable treatment standards or to demonstrate that the waste has been treated by the appropriate specified treatment technology. In accordance with R 299.9627 and 40 CFR §268.41, where treatment standards are based on concentrations in the waste extract, generators shipping waste to the facility will determine if their wastes meet treatment standards.

Characteristic D008 lead nonwastewaters and D004 arsenic nonwastewaters will be analyzed using TCLP to determine compliance with treatment standards of 40 CFR §§268.40 and 268.48. If after treatment, a hazardous waste displays a characteristic for the first time, the characteristic waste code will be added to the LDR notification and facility records. Wastes will be retreated, as appropriate, to meet the characteristic treatment standards of 40 CFR §§268.40 and 268.48 prior to land disposal. In addition, the Generator process knowledge will be used to identify the underlying hazardous constituents that are expected to be present in the waste. Generator process knowledge will be documented on the waste material profile report and LDR notification.

# A3.A.3(d) Radioactive Mixed Waste

[R 299.9627 and 40 CFR §§268.7, 268.35(c), 268.35(d), 268.36, and 268.42(d)]

Generator process knowledge will be used to determine whether a radioactive mixed waste meets the applicable treatment standard. If necessary, in accordance with R 299.9627 and 40 CFR §268.41, where treatment standards are based on concentrations in the waste extract, the facility will use toxicity characteristic leaching procedures (TCLP) to determine if wastes meet treatment standards. Generator process knowledge will be documented on the waste material profile report and LDR notification.

A3.A.3(e) Leachates [R 299.9627 and 40 CFR §260.10 and 40 CFR §§268.35(a) and 268.40]

The facility does not accept single-source or multi-source F039 leachates.

# A3.A.3(f) Laboratory Packs

[R 299.9627 and 40 CFR §§268.7and 268.42(c) and Part 268, Appendix IV and Appendix V]

The laboratory packs accepted at the facility are not land disposed.

Generator process knowledge, or analytical testing, will be used to determine whether laboratory pack waste meets the applicable treatment standards. Generator process knowledge, or analytical testing, will be documented on the waste material profile form and LDR notification. No waste is treated on site.

# A3.A.3(g) Contaminated Debris

[R 299.9627 and 40 CFR §§268.2(g), 268.7, 268.9, 268.36, 268.45, and 270.13(n)]

Contaminated debris is not accepted at the facility.

# A3.A.3(h) Waste Mixtures and Wastes with Overlapping Requirements

[R 299.9627 and 40 CFR §§264.13(a), 268.7, 268.41(b), 268.43(b), and 268.45(a)]

Generator process information and analytical data will be used to demonstrate that those waste mixtures and wastes with multiple codes are properly characterized. Each waste that has more than one characteristic will be identified with a number for each characteristic. Waste identified as meeting a listing and exhibiting a characteristic will be primarily identified with the listed waste code for the purpose of manifesting, etc.

# A3.A.3(i) Dilution and Aggregation of Wastes

[R 299.9627 and 40 CFR §268.3]

Listed wastes, if destined for land disposal, may not be diluted from the point of generation to the point of land disposal. Characteristic wastes may only be diluted if, (1) the waste is managed in a Clean Water Act (CWA)/CWA-equivalent surface unit or a Class I Safe Drinking Water Act injection well, (2) the waste has a concentration-based treatment standard or is treated using the DEACT technology-based treatment standard, and (3) the waste is not a D003 reactive waste.

The facility may not dilute or partially treat a listed waste to change its treatability category (i.e., from nonwastewater to wastewater), in order to comply with different treatment standards. If the wastes are all legitimately amenable to the same type of treatment to be performed, the facility may aggregate wastes for treatment.

# A3.B CAPTIVE FACILITY

The U-M Beck Road Facility is not a Captive Facility. This section does not apply.

A3.C NOTIFICATION, CERTIFICATION, AND RECORDKEEPING REQUIREMENTS [R 299.9627 and R 299.9609 and 40 CFR §§264.73, 268.7, and 268.9(d)]

Beck Road Facility will perform the following procedures for preparing and/or maintaining applicable notifications and certifications to comply with LDRs:

All hazardous and mixed waste accepted at the Beck Road Facility will be accompanied by the appropriate LDR notifications. Beck Road Facility personnel will review all paperwork, including waste profile documents, EPA Uniform Hazardous Waste Manifests and LDR notifications, before any hazardous waste is accepted by the facility. Beck Road Facility personnel will review all paperwork for accuracy and completeness.

## A3.C.1 Retention of Generator Notices and Certifications [R 299.9627 and 40 CFR §268.7(a)(7)]

Beck Road Facility will retain a copy of all notices, certifications, demonstrations, data, and other documentation associated with compliance to LDRs.

- Notices of restricted wastes not meeting treatment standards or exceeding levels specified in RCRA §3004(d), including the information listed in R 299.9627 and 40 CFR §268.7(a)(1).
- Notices of restricted wastes meeting applicable treatment standards and prohibition levels, including the information in R 299.9627 and 40 CFR §268.7(a)(2).

# A3.C.2 Notification and Certification Requirements for Treatment Facilities [R 299.9627 and 40 CFR §268.7(b)]

No waste is treated on site.

If the waste will be further managed at a different treatment or storage facility, the facility will comply with the notice and certification requirements applicable to generators as specified in R 299.9627 and 40 CFR §268.7(b)(6).

# A3.C.3 Waste Shipped to Subtitle C Facilities

[R 299.9627 and 40 CFR §§268.7(a) and 268.7(b)(6)]

For restricted waste or waste treatment residues that will be further managed at a Subtitle C (hazardous waste management) facility, the facility will submit notifications and certifications in compliance with the notice and certification requirements applicable to generators under R 299.9627 and 40 CFR §268.7(a) and (b)(6).

## A3.C.4 Waste Shipped to Subtitle D Facilities

[R 299.9627 and 40 CFR §§268.7(d) and 268.9(d)]

The facility does not ship waste to Subtitle D facilities.

# A3.C.5 Recyclable Materials

[R 299.9627 and 40 CFR §268.7(b)(7)]

The facility does not accept\_recyclable materials used in a manner constituting disposal.

## A3C.6 Record Keeping

[R 299.9608(4), R 299.9609, R 299.9610(3), and R 299.9627 and 40 CFR §§264.72, 264.73, 268.7(a)(5), 268.7(a)(6), 268(a)(7), and 268.7(d)]

Beck Road Facility maintains a facility operating log in accordance with R 299.9609 and 40 CFR §264.73. The operating log consists of the following:

- A description of each hazardous waste received, to include:
  - Date received and date disposed
  - o Quantity received
  - Method of storage
  - Location of storage within the facility
  - A cross reference to manifest document numbers
  - o Results of waste determinations and analyses.
- A summary of results and details of incidents that require implementation of the contingency plan.
- Records and results of facility inspections.
- Records and results of required corrective actions.
- 2 Page 33 of 56 Form EQP 5111 Attachment Template A3, Waste Analysis Plan

- Certification that a waste minimization program is in place.
- Appropriate copies of the EPA Uniform Hazardous Waste Manifest, Fingerprinting Documentation Sheets, and LDR notifications.

Copies of all necessary notifications and certifications, as well as relevant inspection forms and monitoring data, are also maintained on file at the facility. Files will be maintained for a minimum of three years (for inspection records and LDR notification), or until facility closure (for inventory records).

If a significant manifest discrepancy is discovered (such as variation in one-piece count or misrepresentation of the type of waste or corrosive rather than flammable) that cannot be resolved with the generator or transporter within 15 days of receipt, facility personnel will submit to the Director and Regional Administrator a letter describing the discrepancy and all attempts to reconcile the discrepancy. The letter will include a copy of the discrepant manifest or shipping document.

# A3.C.7 Required Notice

[R 299.9605(1) and 40 CFR §264.12(a) and (b))]

The Beck Road Facility does not receive hazardous or mixed waste from foreign sources.

When the facility is to receive hazardous waste from an off-site source, the facility will inform the generator in writing that the facility has the appropriate license for and will accept the waste the generator is shipping. The facility will keep a copy of this written notice in the operating record.

Attachment A3-1 Precedence of Hazard Table

# PRECEDENCE OF HAZARD TABLE

### §173.2a Classification of a material having more than one hazard.

(a) Classification of a material having more than one hazard. Except as provided in paragraph (c) of this section, a material not specifically listed in the §172.101 table that meets the definition of more than one hazard class or division as defined in this part, shall be classed according to the highest applicable hazard class of the following hazard classes, which are listed in descending order of hazard:

(1) Class 7 (radioactive materials, other than limited quantities; and shipments of UN 3507, Uranium hexafluoride, radioactive material, excepted package)

(2) Division 2.3 (poisonous gases).

(3) Division 2.1 (flammable gases).

(4) Division 2.2 (nonflammable gases).

(5) Division 6.1 (poisonous liquids), Packing Group I, poisonous-by-inhalation only.

(6) A material that meets the definition of a pyrophoric material in §173.124(b)(1) of this subchapter (Division 4.2).

(7) A material that meets the definition of a self-reactive material in 173.124(a)(2) of this subchapter (Division 4.1).

(8) Class 3 (flammable liquids), Class 8 (corrosive materials), Division 4.1 (flammable solids), Division 4.2 (spontaneously combustible materials), Division 4.3 (dangerous when wet materials), Division 5.1 (oxidizers) or Division 6.1 (poisonous liquids or solids other than Packing Group I, poisonous-by-inhalation). The hazard class and packing group for a material meeting more than one of these hazards shall be determined using the precedence table in paragraph (b) of this section.

(9) Combustible liquids.

(10) Class 9 (miscellaneous hazardous materials).

(b) Precedence of hazard table for Classes 3 and 8 and Divisions 4.1, 4.2, 4.3, 5.1 and 6.1. The following table ranks those materials that meet the definition of Classes 3 and 8 and Divisions 4.1, 4.2, 4.3, 5.1 and 6.1:

## PRECEDENCE OF HAZARD TABLE

| [Hazard class o | r division and | packing group ] |
|-----------------|----------------|-----------------|
|-----------------|----------------|-----------------|

|                       | 4.2 | 4.3 | 5.1<br>I <sup>1</sup> | 5.1<br>II <sup>1</sup> | 5.1<br>III <sup>1</sup> | 6.1, I<br>dermal | 6.1, I<br>oral | 6.1<br>II | 6.1<br>III | 8, I<br>liquid | 8, I<br>solid | 8, II<br>liquid | 8, II<br>solid | 8, III<br>liquid | 8, III<br>solid |
|-----------------------|-----|-----|-----------------------|------------------------|-------------------------|------------------|----------------|-----------|------------|----------------|---------------|-----------------|----------------|------------------|-----------------|
| 3 I <sup>2</sup>      |     | 4.3 |                       |                        |                         | 3                | 3              | 3         | 3          | 3              | (3)           | 3               | (3)            | 3                | (3)             |
| 3 II <sup>2</sup>     |     | 4.3 |                       |                        |                         | 3                | 3              | 3         | 3          | 8              | (3)           | 3               | (3)            | 3                | (3)             |
| 3 III <sup>2</sup>    |     | 4.3 |                       |                        |                         | 6.1              | 6.1            | 6.1       | 34         | 8              | (3)           | 8               | (3)            | 3                | (3)             |
| $4.1 \text{ II}^2$    | 4.2 | 4.3 | 5.1                   | 4.1                    | 4.1                     | 6.1              | 6.1            | 4.1       | 4.1        | (3)            | 8             | (3)             | 4.1            | (3)              | 4.1             |
| $4.1 \text{ III}^2$   | 4.2 | 4.3 | 5.1                   | 4.1                    | 4.1                     | 6.1              | 6.1            | 6.1       | 4.1        | (3)            | 8             | (3)             | 8              | (3)              | 4.1             |
| 4.2 II                |     | 4.3 | 5.1                   | 4.2                    | 4.2                     | 6.1              | 6.1            | 4.2       | 4.2        | 8              | 8             | 4.2             | 4.2            | 4.2              | 4.2             |
| 4.2 III               |     | 4.3 | 5.1                   | 5.1                    | 4.2                     | 6.1              | 6.1            | 6.1       | 4.2        | 8              | 8             | 8               | 8              | 4.2              | 4.2             |
| 4.3 I                 |     |     | 5.1                   | 4.3                    | 4.3                     | 6.1              | 4.3            | 4.3       | 4.3        | 4.3            | 4.3           | 4.3             | 4.3            | 4.3              | 4.3             |
| 4.3 II                |     |     | 5.1                   | 4.3                    | 4.3                     | 6.1              | 4.3            | 4.3       | 4.3        | 8              | 8             | 4.3             | 4.3            | 4.3              | 4.3             |
| 4.3 III               |     |     | 5.1                   | 5.1                    | 4.3                     | 6.1              | 6.1            | 6.1       | 4.3        | 8              | 8             | 8               | 8              | 4.3              | 4.3             |
| 5.1 I <sup>1</sup>    |     |     |                       |                        |                         | 5.1              | 5.1            | 5.1       | 5.1        | 5.1            | 5.1           | 5.1             | 5.1            | 5.1              | 5.1             |
| $5.1 \text{ II}^1$    |     |     |                       |                        |                         | 6.1              | 5.1            | 5.1       | 5.1        | 8              | 8             | 5.1             | 5.1            | 5.1              | 5.1             |
| $5.1 	ext{ III}^1$    |     |     |                       |                        |                         | 6.1              | 6.1            | 6.1       | 5.1        | 8              | 8             | 8               | 8              | 5.1              | 5.1             |
| 6.1 I,<br>Dermal      |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1            | 6.1              | 6.1             |
| 6.1 I, Oral           |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1            | 6.1              | 6.1             |
| 6.1 II,<br>Inhalation |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1            | 6.1              | 6.1             |
| 6.1 II,<br>Dermal     |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 8               | 6.1            | 6.1              | 6.1             |
| 6.1 II, Oral          |     |     |                       |                        |                         |                  |                |           |            | 8              | 8             | 8               | 6.1            | 6.1              | 6.1             |
| 6.1 III               |     |     |                       |                        |                         |                  |                |           |            | 8              | 8             | 8               | 8              | 8                | 8               |

## PRECEDENCE OF HAZARD TABLE

<sup>1</sup>See §173.127.

<sup>2</sup>Materials of Division 4.1 other than self-reactive substances and solid desensitized explosives, and materials of Class 3 other than liquid desensitized explosives.

<sup>3</sup>Denotes an impossible combination.

<sup>4</sup>For pesticides only, where a material has the hazards of Class 3, Packing Group III, and Division 6.1, Packing Group III, the primary hazard is Division 6.1, Packing Group III.

NOTE 1: The most stringent packing group assigned to a hazard of the material takes precedence over other packing groups; for example, a material meeting Class 3 PG II and Division 6.1 PG I (oral toxicity) is classified as Class 3 PG I.

NOTE 2: A material which meets the definition of Class 8 and has an inhalation toxicity by dusts and mists which meets criteria for Packing Group I specified in §173.133(a)(1) must be classed as Division 6.1 if the oral or dermal toxicity meets criteria for Packing Group I or II. If the oral or dermal toxicity meets criteria for Packing Group I or II. If the oral or dermal toxicity meets criteria for Packing Group I or II. If the oral or dermal toxicity meets criteria for Packing Group III or less, the material must be classed as Class 8.

(c) The following materials are not subject to the provisions of paragraph (a) of this section because of their unique properties:

(1) A Class 1 (explosive) material that meets any other hazard class or division as defined in this part shall be assigned a division in Class 1. Class 1 materials shall be classed and approved in accordance with §173.56 of this part;

(2) A Division 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as defined in this part, shall be classed as Division 5.2;

(3) A Division 6.2 (infectious substance) material that also meets the definition of another hazard class or division, other than Class 7, or that also is a limited quantity Class 7 material, shall be classed as Division 6.2;

(4) A material that meets the definition of a wetted explosive in §173.124(a)(1) of this subchapter (Division 4.1). Wetted explosives are either specifically listed in the §172.101 table or are approved by the Associate Administrator (see §173.124(a)(1) of this subchapter); and

(5) A limited quantity of a Class 7 (radioactive) material that meets the definition for more than one hazard class or division shall be classed in accordance with §173.423.

[Amdt. 173-224, 55 FR 52606, Dec. 21, 1990, as amended at 56 FR 66264, Dec. 20, 1991; Amdt. 173-241, 59 FR 67490, Dec. 29, 1994; Amdt. 173-247, 60 FR 48787, Sept. 20, 1995; Amdt. 173-244, 60 FR 50307, Sept. 28, 1995; 64 FR 10776, Mar. 5, 1999; 66 FR 33426, June 21, 2001; 66 FR 45182, 45379, Aug. 28, 2001; 68 FR 45032, July 31, 2003; 80 FR 1151, Jan. 8, 2015]

# Attachment A3-2 Chemical Compatibility Chart

# Chemical Compatibility Chart

EPA-600/2-80-076 April 1980

A METHOD FOR DETERMINING THE COMPATIBILITY OF CHEMICAL MIXTURES

Municipal Environmental Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268

Caution: This Chart is intended as an indication of some of the hazards that can be expected on mixing chemical wastes. Because of the differing activities of the thousands of compounds that may be encountered, it is not possible to make any chart definitive and all inclusive. It cannot be assumed to ensure compatibility of wastes because wastes are not solassified as hazardous on the chart, nor do any blanks necessarily mean that the mixture cannot result in a hazard occurring. Detailed instructions as to hazards involved in handling and disposing of any given waste should be obtained from the originator of the waste.



# Attachment A3-3 Chemical Constituent Sheet

## **Chemical Constituent Sheet**

# Mixed Waste Drum Number

01 · acetamide 02 · acetic acid 100 · acetic anhydride 03 · acetone 04 · acetonitrile 05 · acrylamide 07 · ammonium compounds (specify below) 08 · arsenic compounds (specify below) 09 · barium compounds (specify below) 10 · benzene 11 · benzo(a)pyrene 95 · blood 88 · boric acid 101 · bovine albumin 102 · bromophenol blue dye 12 · butanol 13 · cadmium compounds (specify below) 103 · calcium chloride 104 · calcium sulfate 14 · carbon tetrachloride 16 · chlorobenzene 17 · chloroform 18 · chlorophenol 105 · choline chloride 19 · chromium compounds (specify below) 106 • citric acid 107 · coomassie blue dye 20 · copper compounds (specify below) 96 · culture medium 21 · cyanide compounds (specify below) 22 · cyclohexane

23 · DDD/DDT 108 · dextran sulfate 24 · dichlorobenzene 49 · mercaptoethanol 25 · dimethylsulfoxide (DMSO) 109 · DMEM media 51 · methanol 26 · epinephrine 117 · methoxyethanol 27 · ethanol 54 · methyl benzene 28 • ether 29 · ethidium bromide (EtBr) 58 • naphthalene 30 · ethyl acetate 59 • nitric acid 31 • ethylbenzene 60 · nitrobenzene 32 · ethylene diamine 118 · perchloric acid tetraacetic acid (EDTA) 62 · periflour 33 • ethylene glycol-bis 63 · phenol  $(\beta$ -amino ethyl ether)-64 · phosphoric acid tetraacetic acid (EGTA) 65 · phthalates 34 • ethyl ether 35 · ethylphenol 36 · formaldehyde 67 · propanoic acid 37 · formalin 38 · formamide 68 · pyridine 39 · formic acid 40 · glutaraldehyde 69 · scintillation fluid 110 · glycine 111 · hams F12 media 112 · HEPES buffer 41 · heptane 71 · silver compounds 113 · hexane 43 · hydrochloric acid (HCl) 120 · sodium acetate 44 • hydroxybenzene 72 · sodium azide 114 · isoamyl alcohol 46 · isobutanol 122 · sodium carbonate 47 · isopropanol 89 · sodium chloride 48 · lead compounds 90 · sodium citrate (specify below) 93 · sodium dodecyl sulfate 115 · magnesium chloride (SDS)

97 · magnesium phosphate 116 · magnesium sulfate 50 · mercury compounds (specify below) 52 • methylene chloride 53 · methyl ethyl ketone 91 · potassium chloride 66 · potassium permanganate 119 · potassium phosphate 94 · saline sodium citrate (SSC) (specify below) 70 · selenium compounds (specify below) (specify below) ABOVE) 121 · sodium bicarbonate

73 · sodium hydroxide 74 · sodium hypochlorite 123 · sodium iodide 124 · sodium lauryl sulfate (SLS) 92 · sodium phosphate 125 · sodium thiosulfate 126 · sucrose 75 · sulfuric acid 127 · taurine 76 · tetrachlorobenzene 77 · tetrachloroethylene 128 • tetrahydrofuran 78 · toluene 79 · trichloroacetic acid (TCA) 80 · trichloroethylene 129 · trifluoroacetic acid 87 • TRIS buffer 81 · uranyl acetate 82 · uranyl nitrate 83 · urea 84 • vinyl chloride 85 · xylene 130 · xylene cyanol 86 · zinc compounds (specify below) 99 · OTHER (SEE INSTRUCTIONS

Other Chemical Names



Attachment A3-4 Beck Road Facility Operation's Log

# **Operation's Log**

EPA ID: MIR 000 001 834 University of Michigan Environment, Health and Safety (EHS) Beck Road Facility 8501 Beck Road Belleville, Michigan 48111

Month / Year\_\_\_\_/

Authorized Handling Code S01

| Date     | Manifest | Generator | Number of  | Total #   | Waste    | Drum | Off Site   | Initials |
|----------|----------|-----------|------------|-----------|----------|------|------------|----------|
| In       | Number   | Name      | Containers | of Liters | Codes(s) | MW # | Ship. Date |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
| <u> </u> |          |           |            | <u></u>   |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |
|          |          |           |            |           |          |      |            |          |

Attachment A3-5 LDR Notifications

### LAND DISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM

| Generator Name: _ | U of M / |                        |       |        |    |
|-------------------|----------|------------------------|-------|--------|----|
| Manifest Number:  |          | LDR Continuation Page? | No No | ∐Yes . | of |

А

Applicable Certification/Notification Statement (found on reverse side):

#### F001 - F005 SPENT SOLVENTS

| CONSTITUENT                        | ww | NWW                | CONSTITUENT                                | ww         | NWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------|----|--------------------|--------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acetone - F003                     |    |                    | Methylene chloride - F002                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Benzene - F005 (D018)              |    |                    | Methyl ethyl ketone - F005 (D035)          | incest the | State of the second state |
| n-Butyl alcohol - F003             |    | 000000000          | Methyl isobutyl ketone - F003              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Carbon disulfide - F005            |    |                    | Nitrobenzene - F004 (D036)                 |            | Street Street Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Carbon tetrachloride - F001 (D019) |    |                    | 2-Nitropropane - F005                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chlorobenzene - F002 (D021)        | S  | Sold in the second | Pyridine - F005 (D038)                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| m- & p-Cresol - F004 (D024 & D025) |    |                    | Tetrachloroethylene - F001 (D039)          |            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o-Cresol - F004 (D023)             |    |                    | Tetrachloroethylene - F002 (D039)          |            | and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cyclohexanone - F003               |    |                    | Toluene - F005                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,2-Dichlorobenzene - F002         |    |                    | 1,1,1-Trichloroethane - F001               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2-Ethoxyethanol - F005             |    | 25.545 - 144       | 1,1,1-Trichloroethane - F002               | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ethyl acetate - F003               |    |                    | 1.1.2-Trichloroethane - F002               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ethyl benzene - F003               |    |                    | 1,1,2-Trichloro-1,2,2-trifluoroethane-F002 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ethyl ether - F003                 |    |                    | Trichloroethylene - F001 (D040)            |            | 1. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Isobutanol - F005                  |    |                    | Trichloroethylene - F002 (D040)            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Methanol - F003                    |    |                    | Trichlorofluoromethane - F002              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Methylene chloride - F001          |    |                    | Xylene - F003                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Shaded areas indicate waste that can carry D waste numbers also. D waste numbers shown in parenthesis are for reference only.

### OTHER RESTRICTED WASTES

| EPA<br>Hazardous<br>Waste No. | ww | NWW             | Subcategory of Waste                  | EPA<br>Hazardous<br>Waste No. | ww | NWW     | Subcategory of Waste | None |
|-------------------------------|----|-----------------|---------------------------------------|-------------------------------|----|---------|----------------------|------|
| D001                          |    | 1005            | High TOC-Ignitable Liquid (≥10%)      |                               |    |         |                      | T    |
| D001                          |    |                 | Ignitable Waste in non-CWA/SDWA       |                               |    |         |                      | 1    |
| D002                          |    | 1.1             | Corrosive Waste in non-CWA/SDWA       |                               |    |         |                      | 1    |
| D003                          |    | 121             | Reactive Cyanides                     |                               |    |         |                      | 1    |
| D003                          |    |                 | Reactive Sulfides                     |                               |    |         |                      | 1    |
| D003                          |    | 2020            | Water Reactive                        |                               |    |         | 2                    | 1    |
| D003                          |    |                 | Other Reactive                        |                               |    |         |                      |      |
| D009                          |    |                 | High Mercury – Inorganic (≥260 mg/kg) |                               |    |         |                      | T    |
| D009                          |    |                 | High Mercury - Organic (≥260 mg/kg)   |                               |    | - 12 12 |                      | :    |
| D009                          |    |                 | Low Mercury (<260 mg/kg)              |                               |    |         |                      | 1    |
|                               |    | 1965 100 Kito M |                                       |                               |    |         |                      |      |
|                               |    |                 |                                       |                               |    |         |                      | +    |
|                               |    |                 |                                       |                               |    |         |                      |      |
|                               |    |                 |                                       |                               |    |         |                      | -    |

#### LRD:111706

#### HAZARDOUS DEBRIS

This hazardous debris is subject to the alternative treatment standards of 40 CFR 268.45.

The contaminants subject to treatment are indicated on the attached Underlying Hazardous Constituent form

#### UNDERLYING HAZARDOUS CONSTITUENTS (UHCs)

For D001 (except High (>10%) TOC Subcategory), D002 - D043, and F039 wastes; UHCs, which can reasonably be expected to be present at the point of generation at a concentration above the constituent-specific Universal Treatment Standard, must be indicated on the Underlying Hazardous Constituents Form. UHCs need not be determined for tab packs managed under the alternative treatment standards for tab packs.

No UHCs

UHCs identified on attached Underlying Hazardous Constituents Form

### CERTIFICATION STATEMENTS

#### A. RESTRICTED WASTE REQUIRING TREATMENT

I am the initial generator of the restricted waste(s) listed on the reverse side which must be treated to the applicable treatment standard prior to land disposal.

#### B. RESTRICTED WASTE MEETING TREATMENT STANDARDS AT THE POINT OF GENERATION

I am the initial generator of the EPA hazardous waste number(s) listed on the reverse side. I have determined that the waste meets all applicable treatment standards set forth in 40 CFR Part 268 and therefore, can be land disposed without further treatment.

"I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR part 268 subpart D. I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment."

### C. LAB PACKS MANAGED UNDER ALTERNATIVE TREATMENT STANDARDS

The lab packs identified on the reverse side do not contain any of the wastes specified in Appendix IV and are managed under the alternative treatment standards in 40 CFR 268.42(c).

"I certify under penalty of law that I personally have examined and am familiar with the waste and that the lab pack contains only wastes that have not been excluded under appendix IV to 40 CFR part 268 and that this lab pack will be sent to a combustion facility in compliance with the alternative treatment standards for lab packs at 40 CFR 268.42(c). I am aware that there are significant penalties for submitting a false certification, including the possibility of fine or imprisonment."

#### D. RESTRICTED WASTE CONSISTING OF CONTAMINATED SOIL NOT MEETING TREATMENT STANDARDS The contaminated soil identified on the reverse side does not meet the soil treatment standard in 40 CFR

268.49(c). "I certify under penalty of law that I personally have examined this contaminated soil and it [does/does not] contain listed hazardous waste and [does/does not] exhibit a characteristic of hazardous waste and requires treatment to meet the soil treatment standards as provided by 268.49(c)."

#### E. DECHARACTERIZED WASTE CONTAINING UNDERLYING HAZARDOUS CONSTITUENTS REQUIRING FURTHER TREATMENT

The decharacterized hazardous waste listed on the reverse side contain underlying hazardous constituents requiring further treatment.

"I certify under penalty of law that the waste has been treated in accordance with the requirements of 40 CFR 268.40 to remove the hazardous characteristic. This decharacterized waste contains underlying hazardous constituents that require further treatment to meet universal treatment standards. I am aware that there are significant penalties for submitting a false certification, including the possibility of fine and imprisonment."

#### F. RESTRICTED WASTE SUBJECT TO A VARIANCE OR EXEMPTION

The waste identified on the reverse side is exempt from LDR standards and subject to a nationwide variance which expires on

I hereby certify that all information submitted in this and all associated documents is complete and accurate, to the best of my knowledge and information.

Generator Signature

Date

\*Concentration in mg1 TCLP

| Carent evolution         Warring (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UNDERLVING HAZARDOUS CONSTITUENTS FORM |          |            |                                          |          |             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|------------|------------------------------------------|----------|-------------|--|--|
| $\begin{aligned} \begin{array}{c} \text{recruption} \\ rec$ | Generator Name: U of M /               | 1101//   | 1000000    | Manafest Number:                         |          |             |  |  |
| Construction         0.019         1.1         0.027         0.0031         0.019         0.033           Actors of a construction         0.01         7.1         2.1         Direct (Approxem         0.051         T.1           Actor infe         0.01         7.1         2.1         Direct (Approxem         0.011         T.1           Actor infe         0.01         7.1         2.1         Direct (Approxem         0.012         T.1           Actor infe         0.02         HA         Direct (Approxem         0.012         T.1         T.1           Actor infer         0.02         HA         Direct (Approxem         0.012         T.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ORGANIC CONSTITUTINTS                  | WW(mg/l) | NWW(mg/kg) | ORGANIC CONSTITUTINTS                    | WW(mg/l) | NWW(mg/kg)  |  |  |
| Actionation         0.224         160         Distruct, Appendence         0.635         0.973           Accination         0.01         7.6         12-Ditrone-3-Enteropopate         0.061         NM.           Accination         0.09         160         12-Ditrone-3-Enteropopate         0.011         NM.           Accination         0.09         160         12-Ditrone-3-Enteropopate         0.011         NM.           Accination         0.09         160         12-Ditrone-3-Enteropopate         0.011         NM.           Accination         0.02         MA         Dickhorebacrate         0.031         15           Accination         0.021         0.064         Dickhorebacrate         0.032         6           Addrin         0.011         0.06         Dickhorebacrate         0.031         7:2           Advansation         0.011         1.04         Dickhorebacrate         0.032         7:2           Advansation         0.011         1.06         Dickhorebacrate         0.034         6           Advansation         0.012         1.04         Dickhorebacrate         0.034         10           Advansation         0.013         0.06         Dickhorebacrate         0.034         10 </td <td>Acensphiliprene</td> <td>0.059</td> <td>3.4</td> <td>n n'-DDT</td> <td>0.0039</td> <td>0.087</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acensphiliprene                        | 0.059    | 3.4        | n n'-DDT                                 | 0.0039   | 0.087       |  |  |
| Acctoning         5.6         18         Discription         0.601         PTA           Acctophenose         0.01         9.7         140         12-Discons-Discrete alboration         0.111         15           Accolan         0.23         PAA         Discrete alboration         0.111         15           Accolan         0.23         PAA         Discrete alboration         0.111         15           Accolan         0.24         PAA         Discrete alboration         0.011         15           Accolan         0.24         PAA         Discrete alboration         0.011         15           Activation alboration         0.021         0.66         Discrete alboration         0.021         6           Activation         0.021         0.66         Discrete alboration         0.031         7.2           Aninge         0.31         14         1.2.Discrete alboration         0.031         6           Activation         0.030         14         0.2.Discrete alboration         0.044         14           State alboration         0.041         0.666         2.Discrete alboration         0.044         14           State alboration         0.031         0.666         2.Discliscrete alboratiobacobacob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acetone                                | 0.28     | 160        | Dibenz(a h)anthracene                    | 0.055    | 82          |  |  |
| Aceteghenoos         0.01         9.7         12-Dimens-J-ableopropues         0.11         13           Acrosian         0.29         140         L'abbonemethane d'hourside         0.12         15           Acrosian         0.29         140         Dimense-Interaction         0.11         15           Acrosian         0.23         2.1         Bachelinobearne         0.055         6           Adres         0.055         0.23         Dichlorobearne         0.037         6           Adres         0.055         0.23         Dichlorobearne         0.23         7.2           Adres         0.13         NA         L'abcherobearne         0.23         6           Adres         0.010         0.66         L'abcherobearne         0.21         6           Adres         0.0014         0.064         L'abcherobearne         0.23         6           Adres         0.0024         0.064         L'abcherobearne         0.24         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acetonitrile                           | 5.6      | 38         | Dibenz(a,e)pyrene                        | 0.061    | NA          |  |  |
| 2-AcytamagRizeres         0.059         140         12-Deconson-financeThylese altornaise         0.073         11           Acrylannic         0.59         NA         Disconsentance         0.011         15           Acrylannic         0.54         0.2         an-Dichlorobenzane         0.055         6.5           Advian         0.021         0.024         PLDRAbornane         0.033         72           Advian         0.021         0.04         0.045         PLDRAbornane         0.033         72           Advian         0.031         NA         1.1D-Dichlorobenze         0.033         76           Animote         0.31         NA         1.4D-Dichlorobenze         0.021         6           Animote         0.31         TA         1.2D-Dichlorobenze         0.023         6           Animote         0.36         TA         1.2D-Dichlorobenze         0.023         6           Animote         0.36         TA         1.4D-Dichlorobenze         0.021         6           Animote         0.36         TA         1.2D-Dichlorobenze         0.035         1.4           Barban         0.055         TA         1.2D-Dichlorobenze         0.036         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acetophenone                           | 0.01     | 9.7        | 1,2-Dibromo-3-chloropropane              | 0.11     | 15          |  |  |
| Acrolania         0.29         NA         Disconsentance         0.11         15           Acrylania         0.9         2.3         P.Disknownerse         0.055         6           Adlera         0.056         0.23         P.Disknownerse         0.057         6           Adlera         0.056         0.23         P.Disknownerse         0.037         72           4-Amrohyberyl         0.13         NA         1, 2-Disknownershare         0.021         6           Admine         0.61         14         1, 2-Disknownershare         0.021         6           Admine         0.61         1, 2-Disknownershare         0.023         6           Admine         0.01         0.66         1, 2-Disknownershare         0.024         7           Admine         0.0014         0.066         2-Disknownershare         0.024         7           Admine         0.0014         0.066         1, 2-Disknownershare         0.035         18           Barban         0.0036         1.4         trans. 3-Disknownershare         0.036         18           Bardoard*         0.035         1.4         trans. 3-Disknownershare         0.017         0.72           Bardoard*         0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Acetylaminofluorene                  | 0.059    | 140        | 1,2-Dibromoethane/Ethylene dibromide     | 0.028    | 15          |  |  |
| Acytantic         D         2.4         m-bicknowszere         0.036         6           Acytantic         0.055         6.4         Dicknowszere         0.037         0.037         0.038         6           Advin         0.011         0.046         Dicknowszere         0.031         7.2           Advin         0.012         0.046         Dicknowszere         0.032         7.2           Aninto         0.01         0.66         I.1D-Dicknowszere         0.023         6           Aninto         0.01         0.66         I.1D-Dicknowszere         0.034         30           Aninto         0.059         3.4         run-1.2 Dicknowszere         0.034         30           Aninto         0.051         4.6         0.022         Dicknowszere         0.034         30           Aninto         0.055         1.4         Dicknowszere         0.037         0.066         1.2 Dicknowszere         0.036         18           Barban         0.055         1.4         Dichdrin         0.017         0.13         Bicknowszere         0.017         0.13         Bicknowszere         0.016         18         Barban         0.017         0.13         Bicknowszere         0.017         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acrolein                               | 0,29     | NA         | Dibromomethane                           | 0.11     | 15          |  |  |
| Activation         0.03         0.03         0.03         0.03         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033 <th0.033< th=""> <th< td=""><td>Acrylamide</td><td>19</td><td>23</td><td>m-Dichlorobenzene</td><td>0.036</td><td>6</td></th<></th0.033<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acrylamide                             | 19       | 23         | m-Dichlorobenzene                        | 0.036    | 6           |  |  |
| Adam         0.021         0.046         Dickhage/finanzanos         0.237         0           Animobio-program         0.031         PKA         1.1-Dechtoresthate         0.037         6           Animobio-program         0.01         0.66         1.1-Dechtoresthate         0.021         6           Animite         0.036         N.4         1.1-Dechtoresthate         0.037         6           Animite         0.35         N.4         rus-1_2-Dichtoresthytee         0.034         30           Animite         0.35         N.4         2.4-Dichtoresthytee         0.034         14           alphe BKC         0.00014         0.066         2.4-Dichtorestherest end/2.4-D         0.72         10           deta_BHC         0.0014         0.066         2.4-Dichtorestherest end/2.4-D         0.72         10           deta_BHC         0.0037         0.066         2.4-Dichtorestherest end/2.4-D         0.13         10           Bendorff         0.055         1.4         Dichtrin thintorestrytee         0.017         0.18           Bendorff         0.055         1.4         Dichtrin thintait         0.2         78           Bendorff         0.055         1.4         Dichtrin thintait         0.017 <td>Advised sulfage</td> <td>0,24</td> <td>0.28</td> <td>o-Dichlorobenzene</td> <td>0,088</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advised sulfage                        | 0,24     | 0.28       | o-Dichlorobenzene                        | 0,088    |             |  |  |
| 4-Amino-bytenyl         0.13         NA         11-Dechtrosethase         0.059         1           0-Antasidne         0.01         0.66         1,2-Dechtrosethase         0.025         6           Antinacene         0.025         0.64         1,2-Dechtrosethylene         0.025         6           Antinacene         0.025         0.64         1,2-Dechtrosethylene         0.034         30           Antinacene         0.026         1,2-Dechtrosethylene         0.034         30           Antinacene         0.026         1,2-Dechtrosethene         0.034         14           Antinacene         0.026         1,2-Dechtrosethene         0.034         14           Antinacene         0.026         1,4 <dechtrosethene< td="">         0.016         16           Barban         0.056         1,4<dechtrosethene< td="">         0.016         18           Barban         0.055         1,4<dechtrosethylene< td="">         0.016         18           Barban         0.056         1,4<dechtrosethylene< td="">         0.016         10           Barban         0.056         1,4<dechtrosethylene< td="">         0.016         10           Barban         0.056         1,4<dechtrosethylene< td="">         0.017         0.18           Baro</dechtrosethylene<></dechtrosethylene<></dechtrosethylene<></dechtrosethylene<></dechtrosethene<></dechtrosethene<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aldrin                                 | 0.000    | 0.066      | Dichlorodifluoromethane                  | 0.09     | - 77        |  |  |
| Aniline         0.81         14         1.2-Dichlorentlylene         0.21         6           Antmarte         0.05         3.4         Turus-1,2-Dichlorentlylene         0.054         3.6           Antmarte         0.36         N.A. & 24-Dicklorentlylene         0.054         3.6           Antmarte         0.36         N.A. & 24-Dicklorentlylene         0.054         3.6           Antmarte         0.36         N.A. & 24-Dicklorentlylene         0.054         3.6           Algeba BIC         0.00014         0.066         2.4-Dicklorentlylene         0.056         1.6           Anta BIC         0.0017         0.066         2.4-Dicklorentlylene         0.016         1.6           Bendioust <sup>M</sup> 0.055         1.4         Dicklylethalte         0.017         6           Bendioust <sup>M</sup> 0.056         1.4         Dicklylethalte         0.017         7           Benzag Mantracece         0.057         6         2.4-Dimethylethalte         0.017         7           Benzag Mantracece         0.055         6         2.4-Dimethylethalte         0.017         2.8           Benzag Mantracece         0.055         6         2.4-Dimethylethalte         0.017         2.8           Ben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Aminobiphenyl                        | 0.13     | NA         | 1,1-Dichloroethane                       | 0.059    | 6           |  |  |
| o-Anstaine         0.01         0.66         [1,1-DicKloreshylene         0.025         §.5           Anstancer         0.059         3.4         trues, 1_2-Dickloreshylene         0.054         3.0           Anstancer         0.059         3.4         trues, 1_2-Dickloreshylene         0.044         144           Babe BHC         0.0014         0.066         2.4-Dickloreshylene         0.051         1.0           Barnan BHC         0.0017         0.066         1.2-Dicklorespreame         0.85         1.8           Barnan BHC         0.0017         0.066         1.2-Dicklorespreame         0.056         1.8           Barnan BHC         0.055         1.4         Ortes, 1_Dicklorespreame         0.056         1.8           Benzare         0.14         Ortes, 1_Dicklorespreame         0.057         0.8           Benzare         0.14         0.55         1.4         Dickloreshylene         0.056         1.4           Benzare         0.14         0.55         1.4         Dickloreshylene         0.057         2.8           Benzare         0.055         1.5         2.4-Dimetrylenitive messare         0.031         0.64           Branzare         0.11         6.5         Dickloreshylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aniline                                | 0.81     | 14         | 1,2-Dichloroethane                       | 0.21     | 6           |  |  |
| Authancene         0.059         3.4         Turus-1_2-Dichlorothylene         0.054         30           Antmaine         0.36         N.A. 24-Dicklorophronal         0.044         14           alpha-BHC         0.00014         0.066         24-Dicklorophronal         0.044         14           alpha-BHC         0.0014         0.066         24-Dicklorophronal/cell exid2,4-D         0.72         10           defa_BHC         0.0017         0.066         (1.2-Dicklorophronycell exid2,4-D         0.72         10           defa_BHC         0.017         0.066         (1.2-Dicklorophronycell exid2,4-D         0.72         10           Barban         0.055         1.4         Diddim         0.017         0.11           Barban         0.056         1.4         Diddim         0.017         0.13           Berazd hubride         0.057         6         2.4-Dimetry lenent         0.036         14           Berazd hubride         0.057         1.8         1.4         Diddim         0.057         2.8           Berazd hubride         0.057         1.8         1.4         Dicklorothylene         0.057         2.8           Berazd hubride         0.011         6.8         Dich-acyl phylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o-Anisidine                            | 0.01     | 0.66       | 1,1-Dichloroethylene                     | 0.025    | 6           |  |  |
| Aramite         0.36         NA         2.4-Decklerophenol         0.044         14           Dathe BHC         0.0014         0.062         2.5-Decklorophenol         0.044         14           Deta-BHC         0.0014         0.062         2.5-Decklorophenol         0.072         10           Deta-BHC         0.031         0.066         1.2-Decklorophenosyncetic acid/2.4-D         0.035         18           Deta-BHC         0.031         0.066         1.2-Decklorophenosyncetic         0.035         18           Bendicary <sup>17</sup> 0.055         1.4         Delehyl phthalate         0.017         10           Benzale         0.14         10         p-Dicehyl-synchree         0.036         14           Benzale Alberde         0.055         1.4         Delehyl phthalate         0.017         13           Benzale Alberde         0.055         1.4         Delehyl phthalate         0.036         14           Benzale Alberde         0.055         1.8         1.4-Denitrobylenoid         0.031         14           Benzale Alberde         0.055         1.8         1.4-Denitrobylenoid         0.012         128           Benzale Alberde         0.011         5.8         1.4-Denitrobylenoid <t< td=""><td>Anthracene</td><td>0.059</td><td>3.4</td><td>trans-1,2-Dichloroethylene</td><td>0.054</td><td>30</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Anthracene                             | 0.059    | 3.4        | trans-1,2-Dichloroethylene               | 0.054    | 30          |  |  |
| alphe BHC         0.00014         0.000         24-bichicorphenolynetic isid/2,4-D         0.044         14           data BHC         0.00014         0.066         2,4-bichicorphenolynetic isid/2,4-D         0.072         10           data BHC         0.00014         0.066         1,2-bichicorpeopase         0.035         18           gamma BHC         0.0017         0.066         1,3-bichicorpeopase         0.035         18           Bandaront*         0.056         1,4         International State         0.035         18           Bandaront*         0.055         1,4         Derivery International State         0.01         0.036         14           Benzaly Illouranthene         0.011         6,5         Derivery International State         0.037         28           Benzaly Illouranthene         0.111         6,5         Derivery International State         0.037         28           Benzaly Illouranthene         0.011         6,5         Derivery International State         0.037         28           Benzaly Illouranthene         0.035         18         14,4-Dintrobuence         0.32         12,3           Benzaly Illouranthene         0.035         18         14,4-Dintrobuence         0.32         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aramite                                | 0.36     | NA         | 2,4-Dichlorophenol                       | 0.044    | 14          |  |  |
| Outson         Outson<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alpha-BHC                              | 0.00014  | 0.066      | 2,6-Dichlorophenol                       | 0.044    | 14          |  |  |
| Order DFLC         O 0001         O 0005         I = 0005         I = 0005           Bardin Carl         0 0056         14         Trents J, 3-Dichloropropylene         0 0056         18           Bardin Carl         0 0056         14         Trents J, 3-Dichloropropylene         0 0056         18           Bardin Carl         0 0056         14         Dick J, and Andream         0 017         013           Bardin Carl         0 0159         14         Dick J, and Andream         0 017         018           Barado Muranchese         0 011         6.8         Dick Jy Immeshanilia         0 017         018           Barado Muranchese         0 011         6.8         Dick Jy Immeshanilia         0 0057         18           Barado Muranchese         0 011         6.8         Dick Jy Immeshanilia         0 0057         28           Barado Muranchese         0 011         3.4         4.4-Dinitroberane         0 032         10           Barado Muranchese         0 011         3.4         4.4-Dinitroberane         0 032         10           Barado Muranchese         0 011         3.4         4.4-Dinitroberane         0 032         10           Barado Muranchese         0 0.11         1.4         4.4-Dinitroberan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | delta BHC                              | 0,00014  | 0.000      | 2,4-Dichlorophenoxyacelic acid/2,4-D     | 0.72     | 10          |  |  |
| Backan         0.035         0.035         0.035         0.035         0.035         0.035         0.035         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.036         1.4         Dimetry phonol         0.036         1.4         Dimetry phonol         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         2.8         0.037         0.037         0.037         0.037         0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gamma-BHC                              | 0.023    | 0.066      | cis-1 3-Dichloropropulene                | 0.65     | 18          |  |  |
| Bendiscant <sup>a</sup> 0.035         1.4         Delafrin         0.017         0.13           Benzen         0.14         1.0         p-Dinedry phatase         0.2         28           Benzen         0.14         1.0         p-Dinedry phatase         0.2         28           Benzen         0.059         3.4         2.4-Dimethy phatase         0.01         0.65           Benzaly Divaranhene         0.011         6.8         Divershy phatase         0.039         1.4           Benzaly Divaranhene         0.11         6.8         Divershy phatase         0.032         2.1           Benzaly Divaranhene         0.11         6.8         Divershy phatase         0.032         2.1           Benzaly Divaranhene         0.11         1.5         2.4-Dimetry phatase         0.032         2.1           Benzaly Divaranhene         0.051         1.8         1.4-Divarane         0.12         1.6           Benzaly Divaranhene         0.051         1.5         2.4-Dimetry Divarane         0.12         1.6           Benzaly Divaranhene         0.055         1.5         2.5         Divarane         0.33         1.4           Benzaly Divaranhene         0.056         1.5         2.4-Dimatry Divarane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Barban                                 | 0.056    | 1.4        | trans-1.3-Dichloropropylene              | 0.036    | 18          |  |  |
| Benory <sup>1</sup> 0.055         1.4         Dethyl phrhaine         0.21         28           Benzen         0.14         10         p-binedtylamineazoberzene         0.13         NA           Benzal chorica         0.059         3.4         2.4-Dimethylephenol         0.015         164           Benzal chorica         0.055         6         2.4-Dimethylephenol         0.017         164           Benzol chorizanthene         0.11         6.8         Dimethyle phrhalate         0.067         28           Benzol chorizanthene         0.055         1.8         1.4-Dinitrobenzene         0.032         2.3           Benzol chorizanthene         0.051         1.8         1.4-Dinitrobenzene         0.032         1.6           Bromonethane/Medwhyl bennick         0.11         15         2.4-Dinitrophenol         0.12         1.60           Bromonethane/Medwhyl bennick         0.055         1.5         2.4-Dinitrobhene         0.051         2.8           Bayd benzyl phrayl ether         0.055         1.5         2.4-Dinitrobhene         0.051         2.8           Bayd benzyl phralate         0.042         1.4         De-recorphranitrobhene         0.051         2.8           Bayd benzyl phralate         0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bendiocarb                             | 0.056    | 1.4        | Dieldrin                                 | 0.017    | 0.13        |  |  |
| Benzene         0.14         10         p-Dimetry laminozobenzene         0.13         NA           Benzal choride         0.059         3.4         2.4-Dimetry lphanol         0.016         0.65           Benzal Choride         0.055         6         2.4-Dimetry lphanol         0.036         14           Benzal Choride         0.011         6.8         Din-hury lphanolate         0.037         28           Benzal Churanthene         0.11         6.8         Din-hury lphanolate         0.032         2.3           Benzal Churanthene         0.055         1.8         1.4-Dinitobenzene         0.032         1.60           Bronodichloromethane         0.055         1.5         2.4-Dinitrotoblene         0.32         1.60           Bronodichloromethane         0.055         1.5         2.5-Dinitrotoblene         0.33         1.40           Bronodichloromethane         0.055         1.5         2.5-Dinitrotoblene         0.35         2.8           Bruylats*         0.042         1.6         Din-necyti phihalate         0.017         2.8           Burylats*         0.042         1.4         L-Discontintrosamine         0.4         1.4           Barylats*         0.0056         1.4         L-Diphinrylat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benomyl*                               | 0,056    | 1.4        | Diethyl phthalate                        | 0.2      | 28          |  |  |
| Bezal charther         0.059         1.4         2,4-Dimethylphenol         0.01         0.65           Bezal charther         0.11         6.8         Dractifyl phthalate         0.047         28           Bezal charther         0.11         6.8         Dractifyl phthalate         0.057         28           Bezal charther         0.055         1.8         1,4-Dinitrobenzene         0.32         23           Bezal charther         0.055         1.8         1,4-Dinitrobenzene         0.32         24           Bernoncharther         0.051         1.8         1,4-Dinitroblenzene         0.32         160           Bronnentharther         0.055         1.5         2,4-Dinitroblene         0.32         160           Bronnentharther         0.055         1.5         2,4-Dinitroblene         0.32         140           Hayd textr         0.042         1.4         Dir-ncetyl phthalate         0.017         28           Bayd benzyl phthalate         0.017         28         1,4-Dioxane         12         170           2-see-Enzyl phthalate         0.017         28         1,4-Dioxane         12         170           2-see-Enzyl phthalate         0.017         28         1,4-Dioxane         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene                                | 0.14     | 10         | p-Dimethylaminoazobenzene                | 0.13     | NA          |  |  |
| Benza (horide         0.055         6         2,4-Dimethyl phenol         0.036         14           Benzo(f)/luorarthene         0.11         6.5         Directivi phthalate         0.047         28           Benzo(f)/luorarthene         0.11         6.5         Directivi phthalate         0.057         28           Benzo(f)/luorarthene         0.0055         18         1,4-Dinitrobearcen         0.32         2.3           Benzo(f)/luorarthene         0.051         18         4,4-Dinitrobearcen         0.32         2.3           Benzo(f)/luorarthene         0.055         15         2,4-Dinitrobleane         0.32         160           Bromodichboranethane/Methyl brom ide         0.11         15         2,4-Dinitrobleane         0.32         180           Bromodichboranethane/Methyl brom ide         0.11         15         2,4-Dinitrobleane         0.32         180           Benzyl alcohol         5.6         2.6         Dir-propylnitrosamine         0.042         180           Burylate*         0.042         1.4         Dirbenzylamine         0.057         137           Carbonarn         0.056         1.4         Dirbenzylamine         0.057         137           Carbonarn         0.056         1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benz(a)anthracene                      | 0.059    | 3.4        | 2,4-Dimethylaniline                      | 0.01     | 0.66        |  |  |
| Bertol (Divoranthene         0.11         6.8         Directivy phthalate         0.047         28           Bertol (Linversithene         0.055         1.8         1,4-Dinitrobergene         0.32         23           Bertol (Linversithene         0.33         1.5         2,4-Dinitrobergene         0.32         160           Brononethane/Methyl Even         0.33         1.5         2,4-Dinitroblene         0.32         160           Brononethane/Methyl Even         0.35         1.5         2,4-Dinitroblene         0.32         140           4-Bronophenyl phenyl Ether         0.055         1.5         2,4-Dinitroblene         0.35         28           Buryl Lag'         0.042         1.4         Dir-neoryl phthalate         0.017         28           Buryl Lag'         0.042         1.4         Dir-neoryl phthalate         0.017         28           Buryl Lag'         0.044         1,4-Dironartonamine         0.92         13           Carbonartif         0.056         1.4         1,2-Diphenylhydrazine         0.047         NA           Carbonartif         0.056         1.4         1,2-Diphenylhydrazine         0.047         NA           Carbonartif         0.056         1.4         1,2-Diphenylhydrazine <td>Benzal chloride</td> <td>0.055</td> <td>6</td> <td>2,4-Dimethyl phenol</td> <td>0.036</td> <td>14</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzal chloride                        | 0.055    | 6          | 2,4-Dimethyl phenol                      | 0.036    | 14          |  |  |
| Dericod publication         0.11         0.6         Data publication         0.057         28           Bernod publication         0.0051         1.8         1.4-Dimitroberance         0.32         23           Bernod publication         0.011         3.4         4.6-Dimitroberance         0.32         123           Bernod publication         0.012         166         0.12         166           Bromodichloromethane/Methyl brownide         0.11         15         2,4-Dimitrobluene         0.32         140           Bernod publication         5.6         2.6         Dimitrobluene         0.33         140           Bernod publication         5.6         2.6         Dimitrobluene         0.35         28           Berlylate         0.042         1.4         Dimitrobluene         0.017         28           Berlylate         0.0417         28         1.4-Disconne         0.92         13           Carboraryf         0.005         0.14         Disconne         0.92         13           Carboraryf         0.005         1.44         Disconne         0.92         13           Carboraryf         0.005         1.44         Disconne         0.92         13           Carborara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(b)fluoranthene                   | 0.11     | 6.8        | Dimethyl phthalate                       | 0.047    | 28          |  |  |
| Discrete         0.022         10         10         10         0.032         14           Bronocliphres         0.031         3.4         4.6         Dintrophenol         0.128         160           Bronocliphres         0.035         15         2.4         Dintrophenol         0.112         160           Bronocliphres         0.035         15         2.4         Dintrobluene         0.33         140           4-Bronophenyl phenyl ether         0.035         15         2.6         Dintrobluene         0.33         140           4-Bronophenyl phenyl ether         0.042         1.4         Din-nocyl phthalate         0.017         28           Bayl benzyl phthalate         0.042         1.4         Din-nocyl phthalate         0.017         28           Carborum*         0.056         1.4         12-Diphenylamine         0.92         13           Carborum*         0.056         1.4         Diphenylamines         0.017         62           Carbon disulfishe         3.8         8.8         Bronocliphyne         0.028         28           Carbon disulfishe         3.8         8.8         Bronocliphyne         0.029         0.13           Carbon disulfishe         3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(g h i)nervlene                   | 0.0055   | 0.8        | 1 4-Dinitrobenzene                       | 0.057    | 28          |  |  |
| Bromodichteromethane         0.35         1.5         2.4 Dinitrophenol         0.12         100           Bromonethane/Methyl bromide         0.11         15         2.4 Dinitrophenol         0.12         160           Bromonethane/Methyl bromide         0.11         15         2.4 Dinitrophenol         0.32         140           Bromonethane/Methyl bromide         0.55         15         2.6 Dinitrophenol         0.35         28           Hardmonthyl phenyl elber         0.057         15         2.6 Dinitrophenol         0.017         28           Baryl face         0.042         1.4         Dh-n-prophylminitrosamine         0.4         14           Baryl face         0.045         2.5         Diphenylminitrosamine         0.92         13           Carbeardin*         0.056         1.4         Di-Diphenylminitrosamine         0.92         13           Carbonitarn*         0.055         1.4         Dithiocramatis (total)*         0.052         28           Carbonitarn phenof*         0.055         1.4         Dithiocramatis (total)*         0.023         0.626           Carbon disulfide         3.8         4.8*         Endosulfan 1         0.023         0.626           Carbonitarn*         0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo(a)pytene                         | 0.061    | 34         | 4 6-Dinitro-o-cresol                     | 0.32     | 2.3         |  |  |
| Bromonsthane/Methyl bromide         0.11         15         2 4-Dimitrational intervaluence         0.33         140           ABromonhewyl phenyl betwi         0.55         15         2.6         Din-octyl phthalate         0.017         28           h-Butyl alcohol         5.6         2.6         Din-octyl phthalate         0.017         28           Batylate*         0.042         1.4         Din-propylnitrosamine         0.4         14           Batylate*         0.042         1.4         Din-propylnitrosamine         0.92         13           Carboruta*         0.066         0.14         Diphenylmitrosamine         0.92         13           Carboruta*         0.056         1.4         Diphenylmitrosamine         0.087         NA           Carboruta*         0.056         1.4         Diphenylmitrosamine         0.087         NA           Carborufa*         0.056         1.4         Diphenylmitrosamine         0.087         NA           Carborufa*         0.056         1.4         Diphenylmitrosamine         0.087         NA           Carborufa*         0.056         1.4         Edotsufa*         0.028         28           Carborufa*         0.057         6         Endotsufa*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromodichloromethane                   | 0,35     | 15         | 2.4-Dinitrophenol                        | 0.12     | 160         |  |  |
| 4-Bromophenyl phenyl ether         0.055         15         25-Dinitrotoluene         0.55         28           Butyl fate <sup>1</sup> 0.042         1.4         Din-epropyl nitrosamine         0.017         28           Butyl fate <sup>1</sup> 0.042         1.4         Din-epropyl nitrosamine         0.04         14           Butyl fate <sup>1</sup> 0.046         2.5         Diphenyl phinalate         0.02         13           Carboaryl 4-5-dintrophenol/Duoseb         0.066         2.5         Diphenyl phinitrosamine         0.92         13           Carboaryl 4-5-dintrophenol/Duoseb         0.066         0.14         Diphenyl hydrazine         0.077         NA           Carboartan pheno <sup>1</sup> 0.055         1.4         Diphenyl hydrazine         0.087         NA           Carboartan pheno <sup>1</sup> 0.056         1.4         Diphenyl hydrazine         0.087         NA           Carboartan pheno <sup>1</sup> 0.056         1.4         Dithioaramates (total) <sup>1</sup> 0.023         0.28         28           Carboartan disalifide         3.8         4.8*         Endosuffan 11         0.073         0.028         0.13           Chrobartan (adg isomers)         0.023         0.26         Endrin         0.0023         0.16 <td< td=""><td>Bromomethane/Methyl bromide</td><td>0.11</td><td>15</td><td>2,4-Dinitrotoluene</td><td>0.32</td><td>140</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromomethane/Methyl bromide            | 0.11     | 15         | 2,4-Dinitrotoluene                       | 0.32     | 140         |  |  |
| n-Buty lacohol         5.6         2.6         Din-octyl phthalate         0.017         28           Buty late         0.042         1.4         Din-propylnitrosamine         0.4         14           Buty late         0.017         28         14.4         Din-propylnitrosamine         0.2         13           2-sec-Buty l.4.6-dinitrophenol/Dinosch         0.066         2.5         Diphenylnitrosamine         0.92         13           Carborum         0.0066         0.14         Diphenylnitrosamine         0.027         13           Carborum         0.0066         0.14         Diphenylnitrosamine         0.017         6.2           Carborum         0.0056         1.4         12-Diphenylnitrosamine         0.017         6.2           Carborum         0.0056         1.4         Dithicorabaratistic (tal)*         0.028         28           Carborum         0.057         6         Endosulfan         1         0.023         0.026           Carborum         0.028         1.4         Endosulfan sulfate         0.028         0.13           Carborum         0.028         0.14         Endosulfan sulfate         0.028         0.023           Carborume         0.027         6         Endosu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Bromophenyl phenyl ether             | 0.055    | 15         | 2,6-Dinitrotoluene                       | 0.55     | 28          |  |  |
| Butylas"         0.042         1.4         Dim-programmine         0.4         14           Bordy Deszy phrihate         0.017         2.8         1.4         Dim-programmine         0.92         13           Carbary"         0.066         0.14         Dipherylamine         0.92         13           Carbary"         0.056         1.4         I.2-Dipherylhydrazine         0.087         NA           Carbordian         0.056         1.4         I.2-Dipherylhydrazine         0.087         NA           Carbordian phenol"         0.056         1.4         I.2-Dipherylhydrazine         0.087         NA           Carbordian phenol"         0.056         1.4         Disulfoton         0.017         6.2           Carbon tarberkleride         0.057         6         Endosulfan II         0.023         0.062           Carbon tarberkleride         0.057         6         Endosulfan sulfate         0.023         0.13           Chlorobarzene         0.057         6         EPTC"         0.042         1.4           Chlorobarzene         0.057         15         Ethyl acetate         0.34         33           2-Chiero-1,3-butadiene         0.057         15         Ethyl acetate         0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n-Butyl alcohol                        | 5.6      | 2.6        | Di-n-octyl phthalate                     | 0.017    | 28          |  |  |
| Budy benzyi phthalate         0.017         28         1/4-Doxane         12         170           Sace-Bujl/4, 6-dintrophenol/Dimoseb         0.066         0.14         Diphenylamine         0.92         13           Carbonzadim*         0.006         0.14         Diphenylamine         0.087         NA           Carbonzadim*         0.006         0.14         Diphenylamine         0.087         NA           Carbon disulfide         3.8         4.8*         Endosulfan I         0.028         28           Carbon disulfide         3.8         4.8*         Endosulfan I         0.023         0.066           Carbon disulfide         0.057         6         Endosulfan I         0.028         0.13           Chiorobane (akg isomers)         0.0033         0.26         Endrin         0.0028         0.13           P-Chiorobanzene         0.057         6         Eproc*         0.042         1.4           Chiorobanzene         0.057         6         Eproc*         0.042         1.4           Chiorobanzene         0.057         15         Ebrlyl acetate         0.34         33           Chiorochanzene         0.057         15         Ebrlyl canidePropanenitrite         0.24         360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Butylate                               | 0.042    | 1.4        | Di-n-propyInitrosamine                   | 0.4      | 14          |  |  |
| 2-sec-staty:-4, s-dimicopheno/Dimoseb         0.066         2.5         Diphery/antine         0.92         13           Carbaryif         0.056         1.4         12-Diphery/introsamine         0.92         13           Carbaryif         0.056         1.4         12-Diphery/introsamine         0.087         NA           Carbofuran         0.0066         0.14         Diuniforn         0.017         6.2           Carbofuran         0.056         1.4         Dithiocarbamates (total)*         0.028         28           Carbon tarachioride         0.057         6         Endosulfan I         0.029         0.13           Carbon tarachioride         0.057         6         Endosulfan II         0.029         0.13           Carbon tarachioride         0.057         6         EPTC*         0.0421         0.14           Chioroberzcee         0.057         6         EPTC*         0.042         1.4           Chioroberzitate         0.14         NA         Ethyl actate         0.34         33           2-Chicroenhare         0.057         15         Ethyl expined/Propanentirule         0.24         360           Chioroberzone         0.036         7.2         Ethyl enter         0.12         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Butyl benzyl phthalate                 | 0.017    | 28         | 1,4-Dioxane                              | . 12     | 170         |  |  |
| Carbonzadim         0.005         0.14         Dipheny introduction         0.92         13           Carbonzan         0.035         1.4         12Dipheny lhydrazine         0.987         NA           Carbonzan phenol*         0.035         1.4         Divisocrbannates (total)*         0.017         6.2           Carbonzan phenol*         0.056         1.4         Divisocrbannates (total)*         0.028         28           Carbon intrachloride         0.057         6         Endosulfan II         0.029         0.13           Carbon intrachloride         0.058         1.4         Endosulfan II         0.029         0.13           Chrothane (akg isomers)         0.0033         0.26         Endrin         0.0028         0.13           Chloroberzene         0.057         6         EPTC*         0.042         1.4           Chloroberzene         0.057         10         NA         Ethyl benzene         0.042         1.4           Chloroberzene         0.057         15         Ethyl cyanide/Propanenitrile         0.24         360           Chloroethane         0.27         6         Ethyl entrile         0.24         360           Chloroethane         0.033         6         Ethyl entrether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-sec-Buty1-4,6-dinitrophenol/Dinoseb  | 0.000    | 2.5        | Diphenylamine                            | 0.92     | 13          |  |  |
| Carbodiana         0.005         1.4         1.2         1.2         0.017         6.2           Carbodiana         phenof*         0.036         1.4         Disulfoton         0.017         6.2           Carbodiana         phenof*         0.035         1.4         Disulfoton         0.023         0.066           Carbon disulfide         3.8         4.8*         Endosulfan II         0.029         0.13           Carbon disulfide         0.033         0.26         Endosulfan II         0.029         0.13           Chordane (a&g isomers)         0.0033         0.26         Endrin         0.0028         0.14           Chloroberzilate         0.057         6         EPTC*         0.0422         1.4           Chloroberzilate         0.057         0.28         Eibyl caetate         0.34         33           2-Chloroborzonmethane         0.057         0.28         Eibyl caetate         0.34         33           2-Chloroborzonmethane         0.057         15         Eibyl caetate         0.12         160           Dis2-Chlorochorzonymethane         0.033         6         Eibyl endretate         0.12         160           Dis2-Chlorochorzonymethane         0.035         7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbenzadim                            | 0.006    | 0.14       | Diphenyinitrosamine                      | 0.92     | - 13        |  |  |
| Carbofuran pleenof*         0.056         1.4         Dithiocarbamates (total)*         0.028         28           Carbon disulfide         3.8         4.8*         Endosulfan 1         0.023         0.066           Carbon terschloride         0.037         6         Endosulfan 1         0.023         0.066           Carbon terschloride         0.037         6         Endosulfan sulfate         0.029         0.13           Chloroaniline         0.046         1.4         Endosulfan sulfate         0.028         0.13           Chlorobenzene         0.057         6         Endrin aldehyde         0.028         0.13           2-Chlorobenzilate         0.1         NA         Ebbyl acetate         0.042         1,4           Chlorobenzilate         0.1         NA         Ebbyl acetate         0.043         33           2-Chloroethane         0.057         15         Ebbyl canife/Propanenitrile         0.24         360           Chloroethane         0.27         6         Ebbyl canife/Propanenitrile         0.12         NA           big2-Chloroethylmethane         0.033         6         Ebbyl canife/Propanenitrile         0.12         NA           big2-Chloroethylwinyl ether         0.033         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carbofuran                             | 0.006    | 0.14       | Disulfoton                               | 0.067    | - NA<br>6.2 |  |  |
| Carbon disulfide         3.8         4.8*         Endosulfan I         0.023         0.062           Carbon tetrachloride         0.057         6         Endosulfan II         0.023         0.13           Carbon tetrachloride         0.028         1.4         Endosulfan sulfate         0.029         0.13           Chorotane (a&g isomers)         0.0033         0.26         Endra         0.0028         0.13           Chloroberzizne         0.057         6         EPTC         0.042         1.4           Chloroberzizne         0.057         6         EPTC         0.042         1.4           Chloroberzizne         0.057         0.28         Eithyl acetate         0.34         33           2-Chloro-1, J-butadiene         0.057         0.28         Eithyl exaide/Propanenitrile         0.057         10           Disig2-Chloroethxylmethane         0.036         7.2         Eithyl methacrylate         0.12         MA           Disig2-Chloroethylpether         0.033         6         Eithylene oxide         0.12         MA           Chlorodbroromylpether         0.035         7.2         Famphur         0.017         15           Disig2-Chloroethylpether         0.055         7.2         Famphur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Carbofuran phenol®                     | 0.056    | 1.4        | Dithiocarbamates (total)                 | 0.028    | 28          |  |  |
| Carbon tetrachloride         0.057         6         Endosulfan II         0.029         0.13           Carbonalfan <sup>a</sup> 0.028         1.4         Endosulfan sulfate         0.029         0.13           Chordnane (a&g isomers)         0.0033         0.26         Endrin         0.0028         0.13           p-Chloroannine         0.46         16         Endrin aldehyde         0.025         0.13           Chloroberizene         0.057         6         EPTC*         0.042         1.4           Chloroberiziate         0.1         NA         Ethyl bezzene         0.34         33           2-Chlorobinomenthane         0.057         15         Ethyl bezzene         0.042         1.4           Chloroberiziate         0.357         0.28         Ethyl bezzene         0.357         10           Chloroboromonethane         0.057         15         Ethyl envide/Propanenitrile         0.24         360           Chloroborosthylether         0.033         6         Ethyl envide/Propanenitrile         0.12         NA           Chloroborosthylether         0.035         7.2         Ethyl nethacrylate         0.12         NA           Chloroborosthylether         0.035         7.2         Ethyl nethacrylate<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carbon disulfide                       | 3.8      | 4.8*       | Endosulfan I                             | 0.023    | 0.066       |  |  |
| Carbosulfan*         0.028         1.4         Endosulfan sulfate         0.029         0.13           Chlordane (akg isomers)         0.0033         0.26         Endrin         0.0028         0.13           p-Chlordane (akg isomers)         0.0033         0.26         Endrin         0.0028         0.13           Chlordoberzene         0.057         6         EPTC*         0.042         1.4           Chloroberzillate         0.1         NA         Ethyl acetate         0.34         33           2-Chloro-1,3-butadiene         0.057         0.28         Ethyl quaride/Propanenitrile         0.27         10           Chlorobhorzenthane         0.057         15         Ethyl quaride/Propanenitrile         0.12         160           big2-Chloroethxy/methane         0.036         7.2         Ethyl methacrylate         0.14         160           big2-Chloroethxy/methane         0.046         6         big2-chloroethylphtalate         0.28         28           big2-Chloroethylphter         0.055         7.2         Famphur         0.017         15           D-Chloroisopropylphter         0.055         7.2         Famphur         0.017         15           p-Chloroendul         0.044         5.7         He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon tetrachloride                   | 0.057    | 6          | Endosulfan II                            | 0.029    | 0.13        |  |  |
| Chlorodane (a&g isomers)         0.0033         0.26 Endrin         Endrin         0.0028         0.13           p-Chloroaniline         0.46         16 Endrin aldehyde         0.025         0.13           Chloroberzene         0.057         6 EPTC         0.042         1,4           Chloroberzalate         0.1         NA         Ethyl acetate         0.34         33           2-Chlorodbromomethane         0.057         0.28 Ethyl cyanide/Propanenitrile         0.24         360           Chlorodbromomethane         0.057         15 Ethyl cyanide/Propanenitrile         0.12         160           Dig2-Chloroethoxymethane         0.036         7.2 Ethyl methacrylate         0.14         160           Dig2-Chloroethylether         0.033         6 Ethylene exide         0.12         NA           Chlorodbrowtylether         0.035         7.2 Feanphur         0.017         15           Dig2-Chloroesthylether         0.035         7.2 Famphur         0.017         15           Dig2-Chloroesthylether         0.035         7.2 Famphur         0.017         15           Dig2-Chloroesthylether         0.055         5.6 Heptachlor         0.058         3.4           2-Chloroesthyl vinyl ether         0.062         NA         Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbosulfan®                           | 0.028    | 1.4        | Endosulfan sulfate                       | 0.029    | 0.13        |  |  |
| p-Chioronanime         0.46         16         Leftman addetyde         0.025         0 13           Chloroberzzane         0.057         6         EPTC*         0.042         1,4           Chloroberzzlate         0.1         NA         Ethyl acetate         0.34         33           2-Chloroboromethane         0.057         15         Ethyl senzene         0.057         16           Chloroboromethane         0.057         15         Ethyl enzene         0.14         160           big2-Chloroethoxy)methane         0.036         7.2         Ethyl nethacrylate         0.14         160           big2-Chloroethoxy)methane         0.036         7.2         Ethyl nethacrylate         0.14         160           big2-Chloroethylyether         0.035         7.2         Fully methacrylate         0.12         NA           big2-Chlorosiooropylether         0.035         7.2         Funphur         0.017         15           p-Chlorosiooropylether         0.035         7.2         Funphur         0.017         15           p-Chloromethyl vinyl ether         0.062         NA         Fluoranthene         0.058         3.4           2-Chlorophthalene         0.055         5.6         Heptachlor <td< td=""><td>Chlordane (a&amp;g isomers)</td><td>0.0033</td><td>0.26</td><td>Endrin</td><td>0.0028</td><td>0.13</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlordane (a&g isomers)                | 0.0033   | 0.26       | Endrin                                   | 0.0028   | 0.13        |  |  |
| Chlorobelizerie         0.037         0         DEPTC         0.042         1,4           Chlorobelizerie         0.1         NA         Ethyl acetate         0.34         33           2-Chloro-1,3-butadiene         0.057         0.28         Ethyl acetate         0.057         10           Chlorobinomenthane         0.057         15         Ethyl cyanide/Propanenitrile         0.24         360           Chlorobethane         0.27         6         Ethyl cyanide/Propanenitrile         0.12         160           big(2-Chlorosthoxy)methane         0.036         7.2         Ethyl methacrylate         0.14         160           big(2-Chlorosthoxy)methane         0.036         7.2         Ethyl methacrylate         0.14         160           big(2-Chlorostopropyl)ether         0.035         7.2         Ethyl methacrylate         0.14         160           big(2-Chlorostopropyl)ether         0.055         7.2         Fumphur         0.017         15           p-Chlorostopropylether         0.055         7.2         Fumphur         0.017         15           p-Chlorosthyl vinyl ether         0.055         5.6         Heptachlor         0.059         3.4           2-Chlorosphylethe         0.055         5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p-Chioroannine<br>Chiorobennene        | 0.46     | 10         | Endrin aldehyde                          | 0.025    | 0.13        |  |  |
| Chloroditative         0.1         10.1         10.1         10.1         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.2         10.0         10.1         10.0         10.1         10.0         10.1         10.0         10.1         10.0         10.1         10.0         10.1         10.0         10.1         10.0         10.1         10.0         10.0         10.1         10.0         10.1         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <th10.0< th="">         10.0         10.0</th10.0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorobenzilate                        | 0.057    | NA NA      | EFIC<br>Ethyl ansiste                    | 0.042    | 1,4         |  |  |
| Chlorodibromomethane         0.057         15         Ethyl cyanide/Propanenitrile         0.024         360           Chloroethane         0.27         6         Ethyl cyanide/Propanenitrile         0.12         160           bis(2-Chloroethoxy)methane         0.036         7.2         Ethyl endstacrylate         0.14         160           bis(2-Chloroethy)methane         0.036         7.2         Ethyl methacrylate         0.14         160           bis(2-Chloroethy)methane         0.036         6         Ethyl methacrylate         0.12         NA           Chloroothy)methane         0.046         6         bis(2-chloromorethylphthalate         0.28         28           bis(2-Chloromorethyl vinyl ether         0.055         7.2         Famphur         0.017         15           p-Chlorom-meresol         0.018         14         Fluorenne         0.058         3.4           Chloromethane/Methyl inler         0.062         NA         Fluorenne         0.059         3.4           2-Chloroethalaethalene         0.055         5.6         Heptachlor         0.0012         0.066           2-Chloroethalaethalene         0.036         30         1.2,3.4,5,7.8-HpCDD         0.000035         0.0022           2-Chloroephenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Chloro-1.3-butadiene                 | 0.057    | 0.28       | Ethyl henzene                            | 0.057    | 33          |  |  |
| Chloroethane         0.27         6         Ehyl ether         0.12         160           big(2-Chloroethoxy)methane         0.036         7.2         Ethyl methacrylate         0.14         160           big(2-Chloroethoxy)methane         0.033         6         Ethyl methacrylate         0.12         NA           Chlorootorm         0.046         6         bis(2-chlorostopropyl)ether         0.28         28           p-Chloron-m-cresol         0.018         14         Fluoranthene         0.068         3.4           2-Chloronsphthalene         0.055         7.2         Famphur         0.017         15           p-Chloron-m-cresol         0.018         14         Fluoranthene         0.068         3.4           2-Chloronsphthalene         0.055         5.6         Heptachlor         0.0012         0.066           2-Chlorophyl vightene         0.035         5.6         Heptachlor         0.0012         0.066           2-Chlorophylene         0.036         30         1,2,3,4,6,7,8-HpCDD         0.000035         0.002           2-Chlorophylene         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           p-Cresol         0.01         0.66         Heptachlor epoxide </td <td>Chlorodibromomethane</td> <td>0.057</td> <td>15</td> <td>Ethyl cyanide/Propanenitrile</td> <td>0.24</td> <td>360</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chlorodibromomethane                   | 0.057    | 15         | Ethyl cyanide/Propanenitrile             | 0.24     | 360         |  |  |
| big(2-Chloroethoxy)methane         0.036         7.2         Ethyl methacrylate         0.14         160           big(2-Chloroethyl)ether         0.033         6         Ethylene oxide         0.12         NA           Chloroform         0.046         6         bis(2-chloroisopropyl)ether         0.28         28           bis(2-Chloroisopropyl)ether         0.055         7.2         Famphur         0.017         15           p-Chloro-m-cresol         0.018         14         Fluorenthene         0.068         3.4           2-Chloroosphthalene         0.055         5.6         Heptachlor         0.056         1.4           2-Chloroomphthalene         0.055         5.6         Heptachlor         0.0012         0.066           2-Chlorophthalene         0.036         30         1.2,3.4,6,7.8-HpCDD         0.000035         0.002           2-Chlorophthalene         0.036         30         1.2,3.4,6,7.8-HpCDF         0.000035         0.002           3-Chlorophthalene         0.059         3.4         1.2,3.4,6,7.8-HpCDF         0.000035         0.002           0.011         0.66         Heptachlor epoxide         0.016         0.066         0.055         10           p-Cresidine         0.11         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroethane                           | 0.27     | 6          | Ethyl ether                              | 0.12     | 160         |  |  |
| bis(2-Chloroethyl)ether         0.033         6         Ethylene oxide         0.12         NA           Chloroform         0.046         6         bis(2-chloroisopropyl)ethatate         0.28         28           bis(2-Chloroisopropyl)ether         0.055         7.2         Famphur         0.017         15           p-Chloro-m-cresol         0.018         14         Fluoranthere         0.068         3.4           2-Chloroethyl vinyl ether         0.062         NA         Fluorene         0.059         3.4           2-Chloroephralethane/Methyl chloride         0.19         30         Formetanate hydrochloride*         0.0668         1.4           2-Chlorophthalene         0.055         5.6         Heptachlor         0.0012         0.0662           2-Chlorophthalene         0.036         30         1,2,3,4,6,7,8-HpCDD         0.000035         0.002           2-Chlorophthalene         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           2-Chlorophthalene         0.011         0.66         Heptachlor opoxide         0.016         0.066           0-Cresol         0.11         5.6         Hexachlorobetazene         0.055         1.6           m-Cresol         0.77         5.6 </td <td>bis(2-Chloroethoxy)methane</td> <td>0.036</td> <td>7.2</td> <td>Ethyl methacrylate</td> <td>0.14</td> <td>160</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bis(2-Chloroethoxy)methane             | 0.036    | 7.2        | Ethyl methacrylate                       | 0.14     | 160         |  |  |
| Chicrotorm         0.046         6         bis(2-ethylhexyl)phthalate         0.28         28           bis(2-Chloroisopropyl)ether         0.055         7.2         Famphur         0.017         15           p-Chloro-m-cresol         0.018         14         Fluorenthene         0.068         3.4           2-Chloroethyl vinyl ether         0.062         NA         Fluorene         0.059         3.4           Chloromethane/Methyl chloride         0.19         30         Formetanate hydrochloride*         0.056         1.4           2-Chlorophthol         0.055         5.6         Heptachlor         0.0012         0.066           2-Chlorophthol         0.044         5.7         1,2,3,4,6,7,8-HpCDD         0.000035         0.002           3-Chlorophthol         0.044         5.7         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           2-Chlorophthol         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           3-Chlorophylene         0.036         3.4         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           p-Cresol         0.11         5.6         Hexachlorobenzene         0.055         10           m-Cresol         0.11         5.6         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bis(2-Chloroethyl)ether                | 0.033    | 6          | Ethylene oxide                           | 0.12     | NA          |  |  |
| Dist_ct-Chloromsproprysether         0.035         7.2         Famphar         0.017         15           p-Chlorom-cresol         0.018         14         Fluorenthene         0.068         3.4           2-Chlorodethyl vinyl ether         0.062         NA         Fluorene         0.059         3.4           Chloromethane/Methyl chloride         0.19         30         Formethanate hydrochloride*         0.056         1.4           2-Chlorophenol         0.044         5.7         1.2.3.4.6.7.8-HpCDD         0.000035         0.002           2-Chlorophenol         0.059         3.4         1.2.3.4.6.7.8-HpCDF         0.000035         0.002           3-Chlorophylene         0.036         30         1.2.3.4.6.7.8-HpCDF         0.000035         0.002           3-Chlorophylene         0.059         3.4         1.2.3.4.7.8.9-HpCDF         0.000035         0.002           Chrysene         0.059         3.4         1.2.3.4.7.8.9-HpCDF         0.000035         0.002           p-Cresidine         0.01         0.66         Heptachlor epoxide         0.016         0.06           o-Cresol         0.11         5.6         Hexachlorobenzene         0.055         5.6           p-Cresol         0.77         5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloroferm                             | 0.046    | 6          | bis(2-ethylhexyl)phthalate               | 0.28     | 28          |  |  |
| Description         0.018         14         Processing         0.068         3.4           2-Chloromethane/Methyl vinyl ether         0.062         NA         Fluorene         0.059         3.4           2-Chloromethane/Methyl vinyl ether         0.052         NA         Fluorene         0.059         3.4           2-Chloromethane/Methyl vinyl ether         0.055         5.6         Heptachlor         0.0012         0.066         1.4           2-Chloropphenol         0.044         5.7         1.2.3.4.6,7.8-HpCDD         0.000035         0.002           3-Chloroppylene         0.036         30         1.2.3.4.6,7.8-HpCDF         0.000035         0.002           Chrysene         0.059         3.4         1.2.3.4,7.8_9-HpCDF         0.000035         0.002           p-Cressiline         0.01         0.66         Heptachlor epoxide         0.016         0.065           o-Cresol         0.11         5.6         Hexachlorobenzene         0.055         5.6           p-Cressiline         0.77         5.6         Hexachlorobenzene         0.057         2.4           m-Curenyl methylcarbamate <sup>P</sup> 0.056         1.4         HxCDbs (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           o,p'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dis(2-Chloroisopropyl)ether            | 0.055    | 7.2        | Famphur                                  | 0.017    | 15          |  |  |
| Chloromethane/Methyl chloride         0.009         14A         Purderice         0.059         3.4           Chloromethane/Methyl chloride         0.19         30         Formetanate hydrochloride*         0.056         1.4           2-Chloronghthalene         0.055         5.6         Heptachlor         0.0012         0.066           2-Chloropchenol         0.044         5.7         1.2,3,4,6,7,8-HpCDD         0.000035         0.002           3-Chloropropylene         0.036         30         1.2,3,4,6,7,8-HpCDF         0.000035         0.002           Chrysene         0.059         3.4         1,2,3,4,7,8,9-HpCDF         0.000035         0.002           p-Cressiline         0.01         0.66         Heptachlorobenzene         0.055         10           m-Cresol         0.11         5.6         Hexachlorobenzene         0.055         5.6           p-Cresol         0.77         5.6         Hexachlorobenzene         0.057         2.4           m-Cumenyl methylcarbamate*         0.056         1.4         HsCDDa (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachloropethane         0.055         30           o,p'-DDE         0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Chloroethyl vinyl ether              | 0.018    | 14<br>NA   | Fluoranthene                             | 0.068    | 3.4         |  |  |
| 2-Chloronaphthalene         0.055         5.6         Heptachlor         0.000         1.7           2-Chloropchenol         0.044         5.7         1,2,3,4,6,7,8-HpCDD         0.000035         0.002           2-Chloropchenol         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           2-Chloropchenol         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           2-Chloropropylene         0.059         3.4         1,2,3,4,7,8,9-HpCDF         0.000035         0.002           Chrysene         0.01         0.66         Heptachlor epoxide         0.016         0.066           0-Cressiline         0.01         0.66         Heptachlor opoxide         0.016         0.066           m-Cressol         0.11         5.6         Hexachlorobenzene         0.055         5.6           p-Cressol         0.77         5.6         Hexachlorobenzene         0.057         2.4           m-Cumenyl methylcarbamate <sup>6</sup> 0.056         1.4         HscDDs (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachloropthane         0.055         30           o,p'-DDE         0.031         0.087 <td>Chloromethane/Methyl chloride</td> <td>0.002</td> <td>30</td> <td>Formetanate hydrochloride</td> <td>0.059</td> <td>3.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chloromethane/Methyl chloride          | 0.002    | 30         | Formetanate hydrochloride                | 0.059    | 3.4         |  |  |
| 2-Chloropchenol         0.044         5.7         1,2,3,4,6,7,8-HpCDD         0.00012         0.0002           3-Chloropropylene         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           3-Chloropropylene         0.059         3.4         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           p-Cresidine         0.01         0.66         Heptachlor epoxide         0.016         0.066           o-Cresol         0.11         5.6         Hexachlorobenzene         0.055         10           m-Cresol         0.77         5.6         Hexachlorobenzene         0.055         5.6           p-Cresol         0.77         5.6         Hexachlorobenzene         0.055         5.6           p-Cresol         0.77         5.6         Hexachlorobenzene         0.00063         0.000           cyclohexanone         0.36         0.75         HxCDF (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachlorophene         0.035         30           o,p'-DDE         0.031         0.037         Idexachlorophene         0.035         30           o,p'-DDE         0.031         0.037         Idexachlorophene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Chloronaphthalene                    | 0.055    | 5.6        | Hentachlor                               | 0.035    | 1,4         |  |  |
| 3-Chloropropylene         0.036         30         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           Chrysene         0.059         3.4         1,2,3,4,6,7,8-HpCDF         0.000035         0.002           p-Cresidine         0.01         0.66         Heptachlor epoxide         0.016         0.066           o-Cresol         0.11         5.6         Hexachlorobenzene         0.055         10           m-Cresol         0.77         5.6         Hexachlorobutadiene         0.057         2.4           m-Cumenyl methylcarbamate <sup>a</sup> 0.056         1.4         HxCDD (All Hexachlorodbenzo-p-dioxins)         0.000063         0.001           Cyclohexanone         0.36         0.77         5.6         Hexachlorodbenzo-p-dioxins)         0.000063         0.001           o.p <sup>2</sup> -DDD         0.023         0.087         Hexachlorodbenzo-futans)         0.000063         0.001           o.p <sup>2</sup> -DDE         0.031         0.087         Hexachlorophylene         0.035         30           o.p <sup>2</sup> -DDE         0.031         0.087         Itexachlorophylene         0.035         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Chloropchenol                        | 0.044    | 5.7        | 1.2.3.4.6.7.8-HpCDD                      | 0.000035 | 0.0025      |  |  |
| Chrysene         0.059         3.4         1,2,3,4,7,8,9-HpCDF         0.000035         0.002           p-Cresidine         0.01         0.66         Heptachlor epoxide         0.016         0.066           o-Cresol         0.11         5.6         Hexachlorobenzene         0.055         10           m-Cresol         0.77         5.6         Hexachlorobutadiene         0.055         5.6           p-Cresol         0.77         5.6         Hexachlorobutadiene         0.057         2.4           m-Cumenyl methylcarbamate <sup>0</sup> 0.056         1.4         HsCDDe (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           Cyclohexanone         0.36         0.75*         HxCDFs (All Hexachlorodibenzo-furans)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachlorodibenzo-furans)         0.000063         0.001           o,p'-DDE         0.031         0.087         Hexachlorodibenzo-furans)         0.0055         30           o,p'-DDE         0.031         0.087         Hexachlorodibenzo-furans)         0.0055         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3-Chloropropylene                      | 0.036    | 30         | 1,2,3,4,6,7,8-HpCDF                      | 0.000035 | 0.0025      |  |  |
| p-Cressidine         0.01         0.66         Heptachlor epoxide         0.016         0.066           o-Cressol         0.11         5.6         Hexachlorobenzene         0.055         10           m-Cressol         0.77         5.6         Hexachlorobutadiene         0.055         5.6           p-Cressol         0.77         5.6         Hexachlorobutadiene         0.057         2.4           m-Curenyl methylcarbarnate <sup>a</sup> 0.056         1.4         HsCDD (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           Cyclohexanone         0.36         0.75*         HxCDFs (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachloropylene         0.035         30           o,p'-DDE         0.031         0.087         Hexachloropylene         0.035         30           o,p'-DDE         0.031         0.087         Indeno(1,2,3-c,d) pyrene         0.0055         3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chrysene                               | 0.059    | 3.4        | 1,2,3,4,7,8,9-HpCDF                      | 0.000035 | 0.0025      |  |  |
| In-Cresol         0.11         5.6         Hexachlorobenzene         0.055         10           m-Cresol         0.77         5.6         Hexachlorobutadiene         0.055         5.6           p-Cresol         0.77         5.6         Hexachlorobutadiene         0.057         2.4           m-Cumenyl methylcarbamate <sup>0</sup> 0.056         1.4         HxCDDs (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           Cyclohexanone         0.36         0.75*         HxCDFs (All Hexachlorodibenzo-p-dioxins)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachlorodibenzo-furans)         0.000063         0.001           o,p'-DDE         0.031         0.087         Hexachlorodibenzo-furans)         0.0055         30           o,p'-DDE         0.031         0.087         Hexachlorodibenzo-furans)         0.0055         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p-Cresidine                            | 0.01     | 0.66       | Heptachlor epoxide                       | 0.016    | 0.066       |  |  |
| Im-Cresol         0.77         5.6         Hexachlorobutadiene         0.055         5.6           p-Cresol         0.77         5.6         Hexachlorobutadiene         0.057         2.4           m-Curenyl methylcarbamate <sup>0</sup> 0.056         i.4         HxCDbs (All Hexachlorodibetazo-p-dioxins)         0.000063         0.001           Cyclohexanone         0.36         0.75*         HxCDbs (All Hexachlorodibetazo-p-dioxins)         0.000063         0.001           o,p'-DDD         0.023         0.087         Hexachlorodibetazo-p-dioxins)         0.0055         30           o,p'-DDE         0.031         0.087         Hexachlorophylene         0.035         30           o,p'-DDE         0.031         0.087         Indenso(1,2,3-c,d) pyrene         0.0055         3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o-Cresol                               | 0.11     | 5.6        | Hexachlorobenzene                        | 0.055    | 10          |  |  |
| DP-Creation         0.77         5.6         Hexachlorocyclopentadtene         0.057         2.4           m-Cumenyl methylcarbamate <sup>6</sup> 0.056         1.4         HxCDDa (All Hexachlorodibeazo-p-dioxins)         0.000063         0.001           Cyclobexanone         0.36         0.75*         HxCDFs (All Hexachlorodibeazo-p-dioxins)         0.000063         0.001           o.p'-DDD         0.023         0.087         Hexachloroethane         0.055         30           o.p'-DDE         0.031         0.087         Interschloropthene         0.035         30           o.p'-DDE         0.031         0.087         Indeno(1,2,3-c,d) pyrene         0.0055         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m-Cresol                               | 0.77     | 5.6        | Hexachlorobutadiene                      | 0.055    | 5.6         |  |  |
| Decomption         0.030         1.4         HNCDDB (All Hexachlorodibenzo-p-discans)         0.000063         0.001           Cyclohexanone         0.36         0.75         HxCDFs (All Hexachlorodibenzofurans)         0.000063         0.001           o.p'-DDD         0.023         0.087         Hexachlorodibenzofurans)         0.0055         30           o.p'-DDE         0.031         0.087         Interaction oppopulate         0.035         30           o.p'-DDE         0.031         0.087         Indenso(1,2,3-c,d) pyrene         0.0055         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m-Cumenul methylcarbamate              | 0.77     | 5.6        | Hexachlorocyclopentadiene                | 0.057    | 2.4         |  |  |
| o.p'-DDD         0.023         0.087         Hexachlorodination of the control of the contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyclohexanone                          | 0.050    | 0.75*      | HyCDFs (All Heyschlorodibetzo-p-dioxins) | 0.000063 | 0.001       |  |  |
| p.p'-DDD         0.023         0.087         Hexachioropropylene         0.035         30           o.p'-DDE         0.031         0.087         Indeno(1,2,3-c,d) pyrene         0.035         30           o.p'-DDE         0.031         0.087         Indeno(1,2,3-c,d) pyrene         0.0055         3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o,p'-DDD                               | 0.023    | 0.087      | Hexachloroethane                         | 0.00003  | 0.001       |  |  |
| 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p,p'-DDD                               | 0.023    | 0.087      | Hexachioropropylene                      | 0.035    | 30          |  |  |
| 0.031 0.087 Hodowethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o,p'-DDE                               | 0.031    | 0.087      | Indeno(1,2,3-c,d) pyrene                 | 0.0055   | 34          |  |  |
| 0.09 0.00 0.19 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p,p'-DDE                               | 0.031    | 0.087      | lodomethane                              | 0.19     | 65          |  |  |

|                                                | UNDERLYING HA | ARDOUS   | S CONSTITUENTS FORM                         | WW(mp/l) | NWW(mg/kg) |
|------------------------------------------------|---------------|----------|---------------------------------------------|----------|------------|
| ORGANIC CONSTITUENTS                           | WW(mg/l) NWV  | W(mg/kg) | Thiodicarb <sup>2</sup>                     | 0.019    | 1.4        |
| Isobutyl alconol                               | 0.021         | 0.066    | Thiophanate-methyl <sup>®</sup>             | 0.056    | 1.4        |
| Isodrin                                        | 0.021         | 2.6      | Toluene                                     | 0.08     | 10         |
| Isosairoie                                     | 0.0011        | 0.13     | Toxaphene                                   | 0.0095   | 2.6        |
| Kepone                                         | 0.24          | 84       | Triallate                                   | 0.042    | 1.4        |
| Methacryionitrile                              | 5.6           | 0.75*    | Tribromomethane/Bromoform                   | 0.63     | 15         |
| Methanol                                       | 0.081         | 15       | 1.2.4-Trichlorobenzene                      | 0.055    | 19         |
| Methapyriene                                   | 0.056         | 1.4      | 1.1.1-Trichloroethane                       | 0.054    | 6          |
| Methodarb                                      | 0.030         | 0.14     | 1.1.2-Trichloroethane                       | 0.054    | 6          |
| Methomyt                                       | 0.25          | 0.18     | Trichloroethylene                           | 0.054    | 6          |
| Methoxychior                                   | 0.0055        | 15       | Trichlorofluoromethane                      | 0.02     | 30         |
| 4 Medulane his() shlaronniline)                | 0.5           | 30       | 2.4.5-Trichlorophenol                       | 0.18     | 7.4        |
| 4,4-Methylene bis(2-chioroaniline)             | 0.080         | 30       | 2.4.6-Trichlorophenol                       | 0.035    | 7.4        |
| Methylene chloride                             | 0.082         | 36       | 24.5-Trichlorophenosyacetic acid/2.4.5-T    | 0.72     | 7.9        |
| Methyl chyl kelone                             | 0.26          | 33       | 1.2.3-Trichloropropage                      | 0.85     | 30         |
| Methyl isoburyl ketone                         | 0.14          | 160      | 1.1.2.Trichloro-1.2.2-trifluoroethane       | 0.057    | 30         |
| Methyl methacrylate                            | 0.14          | NA       | Triethylamine                               | 0.081    | 1.5        |
| Methyl methanesultonate                        | 0.016         | 46       | tris.(2 3-Dibromonropy)) phosphate          | 0.11     | 0,1        |
| Methyl parathion                               | 0.014         | 1.0      | Vernolate <sup>9</sup>                      | 0.042    | 1.4        |
| Metolcarb                                      | 0.036         | 14       | Vinul chloride                              | 0.27     | 6          |
| Mexacarbate                                    | 0.050         | 14       | Valence mixed isomers (sum of a. m. and a   | 0.32     | 30         |
| Molinate                                       | 0.042         | 64       | Whenessenteen montees (som or or, my, and p | 0.52     |            |
| Naphthalene                                    | 0.039         | 3.0      | INDRGAND CONSTITUTINTS                      | WW(mg/l) | NWW(mg/kg) |
| 2-Naphthylamine                                | 0.32          | 14       | Antimony                                    | 1 9      | 1115*      |
| o-Nitroaniline                                 | 0.27          | 14       | Amenia                                      | 14       | 5.0*       |
| p-Nitroaniline                                 | 0.028         | 28       | Arsenic                                     | 17       | 21*        |
| Nitrobenzene                                   | 0.068         | 14       | Banum                                       | 0.82     | 1 220      |
| 5-Nitro-o-toluidine                            | 0.32          | 28       | Beryllium                                   | 0.62     | 0.11*      |
| o-Nitrophenol                                  | 0.028         | 13       | Cadmium                                     | 0.07     | 0.11       |
| p-Nitrophenol                                  | 0.12          | 29       | Chromium (Iotal)                            | 4.11     | 0.00       |
| N-Nitrosodiethylamine                          | 0.4           | 28       | Cyanides (Total)                            | 1.2      | 390        |
| N-Nitrosodimethylamine                         | 0.4           | 2.3      | Cyanides (Amenable)                         | 0.86     | 30         |
| N-Nitroso-di-n-butylamine                      | 0.4           | 17       | Fluoride                                    | 55       | NA 0.374   |
| N-Nitrosomethylethylamine                      | 0.4           | 2.3      | Lead                                        | 0.69     | 0.75*      |
| N-Nitrosomorpholine                            | 0.4           | 2.3      | Mercury-Nonwastewater from Retort           | NA       | 0.20*      |
| N-Nitrosopiperidine                            | 0.013         | 35       | Mercury-All Others                          | 0.15     | 0.025*     |
| N-Nitrosopyrrolidine                           | 0.013         | 35       | Nickel                                      | 3.98     | 11*        |
| 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin     | 0.000063      | 0.005    | Selenium                                    | 0.82     | 5.7*       |
| 1,2,3,4,6,7,8,9-Octachlorodibenzofluran (OCDF) | 0.000063      | 0.005    | Silver                                      | 0.43     | 0.14*      |
| Oxamyl                                         | 0.056         | 0.28     | Sulfide'                                    | . 14     | NA         |
| Parathion                                      | 0.014         | 4.6      | Thallium                                    | 1.4      | 0.20*      |
| Total PCBs (sum of all PCB isomers, or all     | 0.1           | 10       | Vanadium                                    | 4.3      | 1.6*       |
| Pebulate                                       | 0.042         | 1.4      | Zinc'                                       | 2.61     | 4.3*       |
| Pentachlorobenzene                             | 0.055         | 10       | *Concentration in mg/l TCLP                 |          |            |
| PeCDDs (All Pentachlorodibenzo-p-dioxins)      | 0.000063      | 0.001    |                                             |          |            |
| PeCDFs (All Pentachlorodibenzofurans)          | 0.000035      | 0.001    | ]                                           |          |            |
| Pentachloroethane                              | 0.055         | 6        |                                             |          |            |
| Pentachloronitrobenzene                        | 0.055         | 4.8      |                                             |          |            |
| Pentachlorophenoi                              | 0.089         | 7.4      | ]                                           |          |            |
| Phenacetin                                     | 0.081         | 16       | ]                                           |          |            |
| Phenanthrene                                   | 0.059         | 5.6      | 1                                           |          |            |
| Phenol                                         | 0.039         | 6.2      | ]                                           |          |            |
| 1.3-Phenylenediamine                           | 0.01          | 0.66     | ]                                           |          |            |
| Phorate                                        | 0.021         | 4.6      | ]                                           |          |            |
| Phthalic acid                                  | 0.055         | 28       | ]                                           |          |            |
| Phthalic anhydride                             | 0,055         | 28       | 1                                           |          |            |
| Physostiemine <sup>6</sup>                     | 0,056         | 1.4      | 1                                           |          |            |
| Physostiamine salicylate <sup>8</sup>          | 0.056         | 1.4      | 1                                           |          |            |
| Promecarh <sup>0</sup>                         | 0.056         | 1.4      | 1                                           |          |            |
| Promemide                                      | 0.093         | 1.5      | 1                                           |          |            |
| Prontanioc                                     | 0.056         | 1.4      | 1                                           |          |            |
| Propaan                                        | 0.056         | 14       | 1                                           |          |            |
| Proposur                                       | 0.042         | 14       | 1                                           |          |            |
| Prosuriocaro                                   | 0.067         | 82       | 1                                           |          |            |
| Pytene                                         | 0.007         | 16       | 1                                           |          |            |
| Pyrigine                                       | 0.014         | 22       | 1                                           |          |            |
| Sairoie                                        | 0.081         | 70       | -                                           |          |            |
| Silvex/2,4,5-TP                                | 0.72          | 1.9      | -                                           |          |            |
| 1,2,4,5-Tetrachlorobenzene                     | 0.055         | 0.001    | -                                           |          |            |
| TCDDs (All Tetrachiorodibenzo-p-dioxins)       | 0.000063      | 0.001    | -                                           |          |            |
| TCDFs (All Tetrachlorodibenzofurans)           | 0.000063      | 0.001    | 4                                           |          |            |
| 1,1,1,2-Tetrachloroethane                      | 0.057         | 6        | -                                           |          |            |
| 1.1.2.2-Tetrachl oroethanc                     | 0.057         | - 6      |                                             |          |            |
| Tetrachloroethylene                            | 0.056         | 6        | -                                           |          |            |
| 2,3,4,6-Tetrachlorophenol                      | 0.03          | 7.4      | 1                                           |          |            |
|                                                |               |          |                                             |          |            |

# Attachment A3-6 Table A2.A.2 Hazardous Waste Accepted at the Facility

(8-2-2021)

# TABLE A2.A.2 HAZARDOUS WASTES ACCEPTED AT THE FACILITY

| Hazardous<br>Waste Code | Waste Description                                                                  | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation                    | Hazardous<br>Waste<br>Management<br>Unit |
|-------------------------|------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|------------------------------------------|
| F002                    | Spent solvents generated<br>by teaching, research and<br>supporting operations     | Toxicity                           | Listed wastes; toxic waste hazard code                | Rooms 109B, 113, or<br>116               |
| F003                    | Spent solvents generated<br>by teaching, research and<br>supporting operations     | Ignitability                       | Listed wastes; ignitable<br>waste hazard code         | Room 117                                 |
| F004                    | Spent solvents generated<br>by teaching, research and<br>supporting operations     | Toxicity                           | Listed wastes; toxic waste hazard code                | Rooms 109B, 113, or<br>116               |
| F005                    | Spent solvents generated<br>by teaching, research and<br>supporting operations     | Ignitability, toxicity             | Listed wastes; ignitable and toxic waste hazard codes | Room 117                                 |
| D001                    | Ignitables generated by teaching, research and supporting operations               | Ignitability                       | Ignitable waste hazard code                           | Room 117                                 |
| D001                    | Oxidizers generated by teaching, research and supporting operations                | Ignitability                       | Ignitable waste hazard code                           | Room 113                                 |
| D002                    | Corrosive acids<br>generated by teaching,<br>research and supporting<br>operations | Corrosivity                        | Corrosive waste hazard code                           | Room 111                                 |

| Hazardous<br>Waste Code | Waste Description                                                                            | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation            | Hazardous<br>Waste<br>Management<br>Unit |
|-------------------------|----------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------|
| D002                    | Corrosive bases<br>generated by teaching,<br>research and supporting<br>operations           | Corrosivity                        | Corrosive waste hazard code                   | Room 109A                                |
| D003                    | Reactives generated by teaching, research and supporting operations                          | Reactivity                         | Reactive waste hazard code                    | Room 109A                                |
| D004                    | Waste containing arsenic<br>generated by teaching,<br>research and supporting<br>operations  | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D005                    | Waste containing barium<br>generated by teaching,<br>research and supporting<br>operations   | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D006                    | Waste containing<br>cadmium generated by<br>teaching, research and<br>supporting operations  | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D007                    | Waste containing<br>chromium generated by<br>teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D008                    | Waste containing lead<br>generated by teaching,<br>research and supporting<br>operations     | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D009                    | Waste containing<br>mercury generated by<br>teaching, research and<br>supporting operations  | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |

| Hazardous<br>Waste Code | Waste Description                                                                                        | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation            | Hazardous<br>Waste<br>Management<br>Unit |
|-------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------|
| D010                    | Waste containing<br>selenium generated by<br>teaching, research and<br>supporting operations             | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D011                    | Waste containing silver<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D018                    | Waste containing<br>benzene generated by<br>teaching, research and<br>supporting operations              | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D019                    | Waste containing carbon<br>tetrachloride generated by<br>teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D021                    | Waste containing<br>chlorobenzene generated<br>by teaching, research and<br>supporting operations        | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D022                    | Waste containing<br>chloroform generated by<br>teaching, research and<br>supporting operations           | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D023                    | Waste containing o-cresol<br>generated by teaching,<br>research and supporting<br>operations             | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D024                    | Waste containing m-<br>cresol generated by<br>teaching, research and<br>supporting operations            | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| Hazardous<br>Waste Code | Waste Description                                                                                            | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation            | Hazardous<br>Waste<br>Management<br>Unit |
|-------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------|
| D025                    | Waste containing p-cresol<br>generated by teaching,<br>research and supporting<br>operations                 | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D026                    | Waste containing cresol<br>generated by teaching,<br>research and supporting<br>operations                   | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D027                    | Waste containing 1,4-<br>dichlorobenzene<br>generated by teaching,<br>research and supporting<br>operations  | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D028                    | Waste containing 1,2-<br>dichloroethane generated<br>by teaching, research and<br>supporting operations      | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D029                    | Waste containing 1,1-<br>dichloroethylene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D030                    | Waste containing 2,4-<br>dinitrotoluene generated<br>by teaching, research and<br>supporting operations      | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D032                    | Waste containing<br>hexachlorobenzene<br>generated by teaching,<br>research and supporting<br>operations     | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |

(8-2-2021)

| Hazardous<br>Waste Code | Waste Description                                                                                          | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation            | Hazardous<br>Waste<br>Management<br>Unit |
|-------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------|
| D033                    | Waste containing<br>hexachlorobutadiene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D034                    | Waste containing<br>hexachloroethane<br>generated by teaching,<br>research and supporting<br>operations    | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D035                    | Waste containing methyl<br>ethyl ketone generated by<br>teaching, research and<br>supporting operations    | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D036                    | Waste containing<br>nitrobenzene generated<br>by teaching, research and<br>supporting operations           | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D038                    | Waste containing pyridine<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |

| Hazardous<br>Waste Code | Waste Description                                                                                          | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation            | Hazardous<br>Waste<br>Management<br>Unit |
|-------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------|
| D039                    | Waste containing<br>tetrachloroethylene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D040                    | Waste containing<br>trichloroethylene<br>generated by teaching,<br>research and supporting<br>operations   | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D041                    | Waste containing 2,4,5-<br>trichlorophenol generated<br>by teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D042                    | Waste containing 2,4,6-<br>trichlorophenol generated<br>by teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| D043                    | Waste containing vinyl<br>chloride generated by<br>teaching, research and<br>supporting operations         | Toxicity                           | Hazard code for toxicity characteristic waste | Rooms 109B, 113, or<br>116               |
| U138                    | Waste containing methyl<br>iodide generated by<br>teaching, research and<br>supporting operations          | Toxicity                           | Listed waste; hazard code<br>for toxic waste  | Rooms 109B, 113, or<br>116               |
| U151                    | Waste containing<br>mercury generated by<br>teaching, research and<br>supporting operations                | Toxicity                           | Listed waste; hazard code<br>for toxic waste  | Rooms 109B, 113, or<br>116               |

Attachment 3

Inspection Schedule

#### FORM EQP 5111 ATTACHMENT TEMPLATE A5 INSPECTION REQUIREMENTS

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), being R 299.9504, R 299.9508, R 299.9605 and Title 40 of the Code of Federal Regulations (CFR) §§264.15 and 270.14(b)(5), establish requirements for inspections at hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003

This license application template addresses requirements for inspections at the following hazardous waste management facility: Beck Road Facility in Belleville, Michigan.

(Check as appropriate)

Applicant for Operating License for Existing Facility

Applicant for Operating License for New, Altered, Enlarged, or Expanded Facility

This template is organized as follows:

#### INTRODUCTION

- A5.A WRITTEN SCHEDULE
  - A5.A.1 Types of Problems
  - A5.A.2 Frequency of Inspection
- A5.B REMEDY SCHEDULE
- A5.C INSPECTION LOG OR SUMMARY

## INTRODUCTION

The storage facility is inspected for malfunctions, deterioration, discharges, operator errors, and other parameters that may cause or indicate a release of hazardous waste constituents. The inspections are conducted according to a regular schedule designed to minimize threats to human health or the environment. Scheduled inspections of the storage facility address areas where a release may occur from equipment malfunction or deterioration of equipment. In addition, equipment used for managing accidental occurrences and for monitoring will be inspected regularly according to an established schedule.

The inspection results are recorded on an inspection log maintained at the facility for at least three (3) years from the date of inspection. Information recorded on the inspection log includes the date and time of inspection, the name of the inspector, and all relevant observations. The results of all repairs or other remedial actions are systematically recorded on the inspection log to respond to any observations made by the inspector. The Inspection Log is shown in Section A5.C.

(

## A5.A WRITTEN SCHEDULE

[R 299.9605 and 40 CFR §264.15(b)(1)]

The inspection schedule outlined in Table A5.A.1 identifies the inspection items, the frequency, and the types of problems that the inspector routinely investigates. This written inspection schedule will be kept at the storage facility.

## A5.A.1 Types of Problems

[R 299.9605 and 40 CFR §264.15(b)(3)]

The areas designated for container storage are inspected weekly for leaks, corrosion, and deterioration. The inspection indicates if there is container failure. In addition to container inspections, the secondary containment system, protective equipment, loading/unloading area are inspected for deterioration, and the general facility, the site compound and grounds are inspected and evaluated as outlined in Table A5.A.1.

#### A5.A.2 Frequency of Inspection

[R 299.9605 and 40 CFR §§264.15(b)(4), 264.174, 264.193, 264.195, 264.226, 264.254, 264.278, 264.303, 264.347, 264.602, 264.1033, 264.1052, 264.1053, 264.1058, and 264.1083 through 264.1089, where applicable]

The frequencies of inspection shown in Table A5.A.1 follow the requirements of 40 CFR 264.15(b)(4) and are based on the rate of probable deterioration of equipment and on the probability of an environmental or human health incident.

| Table A5.A.1 Inspection Schedule                                                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Item                                                                                 | Frequency <sup>1</sup>        | Types of Problems                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Containers                                                                           | Weekly                        | Visually inspect the containers to verify they are closed. Visually inspect for leaking containers, deterioration of containers, rust, corrosion, or trends that indicate possible decline of structural integrity; check container for labels identifying the chemical(s) or chemical class in the drum, the EPA hazardous waste code(s), the date the container was placed in storage, and the generator's name and location. |  |
| Containment System                                                                   | Weekly                        | Inspect the floor and curbing of the storage area for cracking, flaking, chipping, or gouging, and for excessive wear or deterioration. Inspect secondary containment for liquids, weekly, when waste is brought to the facility.                                                                                                                                                                                               |  |
| Communication<br>Devices – Telephone                                                 | Weekly                        | Check for dial tone. Determine if outgoing calls can be made.                                                                                                                                                                                                                                                                                                                                                                   |  |
| General Area:<br>Warning signs<br>"No Smoking" signs<br>Doors<br>Windows<br>Building | Weekly                        | Check that warning signs are posted; check that doors and windows are secured. Inspect container placement and stacking to determine if the required aisle space for inspection and use of emergency equipment exists. Check labels to determine if the waste indicated is stored in the proper/designated area. Annually inspect roof, walls, and entrances for settling, cracks, and spalling in concrete.                    |  |
| Concrete Slab<br>Loading/Unloading Area                                              | Weekly (Daily<br>when in use) | Visually inspect for cracking, flaking, chipping, gouging, and excessive wear or<br>deterioration. Inspect the loading area for heavy stains.                                                                                                                                                                                                                                                                                   |  |
| Safety Equipment:<br>Eye Wash<br>Shower                                              | Monthly                       | Check for operability.                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Fence around the Unit                                                                | Bi-Annually                   | Check for integrity.                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Water                                                                                | Annually                      | Verify inspection of fire hydrants for pressure, volume, and operability.                                                                                                                                                                                                                                                                                                                                                       |  |
| Building                                                                             | Weekly (Daily<br>when in use) | Visually inspect building to ensure that it is secure.                                                                                                                                                                                                                                                                                                                                                                          |  |
| Area between<br>Loading/Unloading Dock<br>and Container Storage<br>Area              | Weekly                        | Visually inspect for stains and excessive wear or deterioration.                                                                                                                                                                                                                                                                                                                                                                |  |



(

(

| Item                                                                                                                                                                                    | Frequency <sup>1</sup>                                                                                       | Types of Problems                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Radiation Monitoring<br>Equipment                                                                                                                                                       | Weekly (Daily<br>when in use)                                                                                | Check for operability.                                                                                                                                                                             |  |
| SPILL CLEANUP AND PERSONAL PROTECTION EQUIPMENT                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                    |  |
| Goggles<br>Protective Booties<br>Protective Gloves<br>Protective Coveralls<br>Air Purifying<br>Respirators<br>Absorbents and<br>Neutralizers<br>Recovery Drums<br>Air Monitoring Meters | Monthly and<br>after each<br>incident<br>response<br>requiring use of<br>personal<br>protection<br>equipment | Check for sufficient inventory; verify that expiration dates have not lapsed. Check condition of protective equipment and gear. Safety Supply Inventory form shall be used to guide the inventory. |  |
| 1<br>Deile sefere te werk deue wie er energiene in selvier bezendeue werte e energi                                                                                                     |                                                                                                              |                                                                                                                                                                                                    |  |

<sup>1</sup>Daily refers to work days when operations involving hazardous waste occur

## A5.B REMEDY SCHEDULE

[R 299.9605 and 40 CFR §264.15(c)]

If inspections reveal that non-emergency maintenance is needed, U-M will respond in a timely manner to preclude damage and to reduce the need for emergency repairs. If a hazardous waste constituent release is imminent, or has already occurred, remedial action will begin upon discovery. Appropriate authorities will be notified according to the U-M Emergency Response Contingency Plan (Template A7). In the unlikely event of an emergency involving the release of hazardous waste constituents to the environment, efforts will be directed towards containing the hazard, removing it, and subsequently decontaminating the affected area, as discussed in greater detail in the U-M Emergency Response Contingency Plan (Template A7).

## A5.C INSPECTION LOG OR SUMMARY

[R 299.9605 and 40 CFR §264.15(d)]

#### **INSPECTION LOG**

University of Michigan

Occupational Safety & Environment Health and Safety (EHS)

Beck Road Storage Facility, EPA ID: MIR 000 001 834

8501 Beck Road, Belleville, MI 48111

#### (734) 487-3259

Instructions: Perform inspection of facility if conditions are satisfactory write "SAT" in the conditions

observed column. If there are any discrepancies, list them in the conditions observed column also.

| A. General Facility                                                  | Conditions Observed on Date: |
|----------------------------------------------------------------------|------------------------------|
| 1. All door entrances and windows properly secured                   |                              |
| 2. No signs of unauthorized entry                                    |                              |
| 3. No signs of vandalism or theft                                    |                              |
| 4. No signs of flooding or fire                                      |                              |
| 5. No electrical hazards identified                                  |                              |
| 6. Fire extinguishers in designated locations, and charged           |                              |
| 7. Ventilation and lighting system operating properly                |                              |
| 8. No evidence of eating, drinking, smoking                          |                              |
| 9. Aisle space adequate for emergency equipment                      |                              |
| 10. Emergency supplies, monitoring equipment & PPE available         |                              |
| 11. Emergency supplies storage cabinet inspected (needs noted below) |                              |
| 12. Fire exits are clear and unobstructed                            |                              |
| 13. Storage and work areas organized and uncluttered                 |                              |
| 14. Emergency eyewash and shower station tested (1st week of month)  |                              |
| 15. Annual water availability inspection conducted on                |                              |
| 16. Biannual inspection of perimeter fences conducted on             |                              |
| 17. Operation's log up to date                                       |                              |
| 18. Forklift inspected and operational                               |                              |
| 19. Verify telephones are operational - check for dial tone          |                              |
| B. Appropriate Postings Throughout the Facility                      | Conditions Observed          |
| 1. NRC "Notice to Employee"                                          |                              |
| 2. EGLE "Notice to Employee" (Form EQC 1627)                         |                              |
| 3. EGLE Radioactive Material Registration (Form EQP 1614)            |                              |
| 4. Radioactive Materials Restricted Area (entrances)                 |                              |
| 5. No smoking signs (2+ entrances)                                   |                              |
| 6. Emergency phone numbers                                           |                              |
| 7. Radiological Emergency Procedures                                 |                              |
| 8. MSDS location poster                                              |                              |
| RCRA Waste Storage Areas Properly Ider                               | ntified and Segregated       |
| C. Corrosive Base and Reactive Area 109A                             | Conditions Observed          |
| 1. Waste containers identified and labeled properly                  |                              |

(5-28-2021)

| 2. No signs of leakage from waste containers        |                     |
|-----------------------------------------------------|---------------------|
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| D. Toxics Area 109B                                 | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| E. Corrosive Acid Room 111                          | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| F. Toxic and Oxidizer Area 113                      | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| G. Toxic Room 116                                   | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| H. Ignitable and Toxic Room 117                     | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. Ventilation system operating properly            |                     |
| 5. No evidence of odors                             |                     |
| 6. Containment system in good condition             |                     |
| I. Loading / Unloading Area 125                     | Conditions Observed |
| Trenches clear of debris                            |                     |
| Containment system in good condition                |                     |

(

#### University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Inspection Schedules, Revision 0

(

| Comments:                                                                                                                                     |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                               |   |
|                                                                                                                                               |   |
|                                                                                                                                               |   |
|                                                                                                                                               | _ |
|                                                                                                                                               |   |
| <b>Note:</b> For any discrepancies noted in the conditions observed column list the corrective action taken to remedy each discrepancy below. | I |
| Corrective Actions:                                                                                                                           |   |
|                                                                                                                                               |   |
|                                                                                                                                               |   |
|                                                                                                                                               |   |
|                                                                                                                                               |   |
|                                                                                                                                               |   |
| Corrective Actions performed by:                                                                                                              |   |
|                                                                                                                                               |   |
| Date corrective actions performed:                                                                                                            |   |
|                                                                                                                                               |   |
| Supplies needed:                                                                                                                              |   |
| Cuppiloo noodod                                                                                                                               |   |
|                                                                                                                                               |   |
|                                                                                                                                               |   |
| Increation performed by:                                                                                                                      |   |
| Inspection performed by.                                                                                                                      |   |
| Defe                                                                                                                                          |   |
| Date:                                                                                                                                         |   |
|                                                                                                                                               |   |
| Time:                                                                                                                                         |   |
|                                                                                                                                               |   |
| Reviewed by:                                                                                                                                  |   |
|                                                                                                                                               |   |
| Hazardous Materials Manager:                                                                                                                  |   |
|                                                                                                                                               |   |
| Date:                                                                                                                                         |   |
|                                                                                                                                               |   |
| Radiation Safety Officer:                                                                                                                     |   |
|                                                                                                                                               |   |
| Date:                                                                                                                                         |   |
|                                                                                                                                               |   |

Attachment 4

Personnel Training Program

## FORM EQP 5111 ATTACHMENT TEMPLATE A10 PERSONNEL TRAINING

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of the Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), R 299.9501, R 299.9605 and Title 40 Code of Federal Regulations (CFR) §§264.16 and 270.14(b)(12), establish requirements for personnel training programs at hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003.

This license application template addresses requirements for a personnel training program at the hazardous waste management facility for the Beck Road Facility in Belleville, Michigan. The information included in the template demonstrates how the facility meets the personnel training requirements for hazardous waste management facilities.

This template is organized as follows:

- A10.A CONTENT OF INTRODUCTORY AND CONTINUING EDUCATION PROGRAMS A10.A.1 Outline for Introductory Training Program
  - A10.A.2 Outline for Continuing Education
- A10.B PERSONNEL SUBJECT TO TRAINING REQUIREMENTS
  - A10.B.1 Job Titles and Job Descriptions
  - A10.B.2 Description of How Training is Designed to Meet Actual Job Tasks

Table A10.B.1 Training Programs for Personnel Involved in Managing and Handling Hazardous and Mixed Waste

- A10.C FREQUENCY OF REQUIRED TRAINING
  - A10.C.1 Initial Training
  - A10.C.2 Continuing Education
- A10.D TRAINING DIRECTOR
- A10.E DOCUMENTATION AND RECORD KEEPING
  - A10.E.1 Documentation
    - A10.E.1(a) Job Titles
    - A10.E.1(b) Written Job Descriptions
    - A10.E.1(c) Written Description of Type and Amount of Training Given to Each Position
    - A10.E.1(d) Documentation That Training Has Been Given to and Completed by Facility Personnel

A10.E.2 Record Keeping

Attachment A10-1 Job Titles and Descriptions

# A10.A CONTENT OF INTRODUCTORY AND CONTINUING EDUCATION TRAINING PROGRAMS

[R 299.9605 and 40 CFR §264.16(a)]

- A10.A.1 Outline for Introductory Training Program [R 299.9605 and 40 CFR §§264.16(a)(1) and 264.16(d)(3)]
- Page 1 of 19 Form EQP 5111 Attachment Template A10, Personnel Training

The information contained in this section outlines training programs for personnel handling hazardous and mixed waste at the Beck Road Facility.

Personnel who handle hazardous and mixed waste must successfully complete a program of classroom training and on the job training in order to work safely at the facility. The U-M EHS training program consists of formal classroom and supervised on the job training.

No individual works unsupervised until he or she has completed the formal training courses and on the job training requirements and demonstrates proficiency. New employees will complete the training requirements within 6 months of their employment or assignment to the facility; or to a new position at the facility, whichever is later.

An outline of the introductory waste management training program is provided below. A detailed description of each training course is provided in Section A10.C.1.

- (a) RCRA Generator
- (b) Commercial Driver's License (CDL)
- (c) Department of Transportation (DOT)
- (d) Emergency Response (HAZWOPER)
- (e) Hazard Communication (HAZCOM)
- (f) Blood Borne Pathogens (BBP)
- (g) Radiation Safety

## A10.A.2 Outline for Continuing Education

[R 299.9605 and 40 CFR §§264.16(a)(1) and 264.16(d)(3)]

Continuing education includes refresher courses and the updating of credentials for the introductory training components outlined in Section A10.A.1. Additionally, EHS staff members are expected to participate in professional development.

#### A10.B PERSONNEL SUBJECT TO TRAINING REQUIREMENTS [R 299.9605 and 40 CFR §§264.16(a) and (d)]

#### A10.B.1 Job Titles and Job Descriptions

[R 299.9605 and 40 CFR §§264.16(d)(1) and (2)]

The job titles of personnel subject to training requirements are described in Table A10.B.1, along with the training course, the frequency of training, and which staff members are required to receive the training. A detailed description of each training course is provided in Section A10.C.1. Job descriptions are detailed in Attachment A10-1.

|                                                                                                   |                                                                        | Table   | e A10.B.1   |             |         |        |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|-------------|-------------|---------|--------|
| Training Programs for Personnel Involved in Managing and Handling of Hazardous and<br>Mixed Waste |                                                                        |         |             |             |         |        |
| Training                                                                                          | Frequency                                                              | EHS     | EHS         | EHS         | EHS     | EHS    |
| Program                                                                                           | of Training                                                            | Manager | Coordinator | Senior Rep. | Rep. II | Rep. I |
| On-the-Job                                                                                        | Continuous                                                             | Х       | Х           | Х           | Х       | Х      |
| RCRA<br>Generator                                                                                 | Initial, annual refresher.                                             | Х       | Х           | Х           | Х       | Х      |
| CDL                                                                                               | Every four<br>years if<br>required.                                    | Х       | X           | X           | X       | X      |
| DOT                                                                                               | Initial,<br>refresher<br>every three<br>years.                         | Х       | Х           | Х           | X       | X      |
| HAZWOPER                                                                                          | Initial, annual refresher.                                             | Х       | Х           | Х           | Х       | Х      |
| HAZCOM                                                                                            | Initial,<br>additional<br>training if new<br>waste stream<br>is added. | Х       | X           | X           | X       | X      |
| BBP                                                                                               | Initial, annual refresher.                                             | Х       | Х           | Х           | Х       | Х      |
| Radiation<br>Safety                                                                               | Initial, annual refresher.                                             | Х       | Х           | Х           | Х       | Х      |

#### A10.B.2 Description of How Training is Designed to Meet Actual Job Tasks [R 299.9605 and 40 CFR §§264.16(a)(1) and (d)(3)]

The formal classroom and supervised on-the-job training are designed to ensure that relevant regulatory citations and safety procedures are covered. Completion of formal classroom training is documented by a training record summary to ensure that all required trainings are conducted. On-the-job training is conducted to ensure that all aspects of the actual job tasks are covered.

# A10.C FREQUENCY OF REQUIRED TRAINING

[R 299.9605 and 40 CFR §§264.16(b) and (c)]

# A10.C.1 Initial Training

[R 299.9605 and 40 CFR §264.16(b)]

Personnel who handle hazardous and mixed waste must successfully complete a program of Page 3 of 19 Form EQP 5111 Attachment Template A10, Personnel Training (6-1-2021) classroom training and on the job training in order to work safely at the facility. The U-M EHS training program consists of formal classroom and supervised on-the-job training. The RCRA generator, HAZWOPER, BBP, and radiation safety training courses consist of an initial course with an annual refresher. The HAZCOM training course consists of an initial course with periodic updates. The DOT training is an initial course with an update every 3 years. The CDL with a hazmat endorsement is issued by the State of Michigan, with renewals every 4 years.

No individual works unsupervised until he or she has completed the formal training courses and on the job training requirements and demonstrates proficiency. New employees will complete the training requirements within 6 months of their employment or assignment to the facility; or to a new position at the facility, whichever is later. EHS staff members are expected to participate in professional development. A description and outline of the waste management training programs are provided below.

## (a) RCRA Generator

The U-M employees who handle hazardous waste are trained in aspects of hazardous waste from the point of generation through disposal. The training complies with standards promulgated under 40 CFR 262 for hazardous waste generators. Training is conducted using in-house resources and commercially available programs. An outline of the training is provided below:

- The Manifest and LDR Notifications
- Accumulation Time
- Container Management
- Characteristic and Listed Wastes
- Transport Requirements
- Storage Facility Requirements
- Contingency Plan

# (b) CDL

The CDL with a hazmat endorsement is issued by the state in accordance with the standards issued by the Federal Motor Carrier Safety Administration in 49 CFR Parts 325-399. The CDL authorizes an individual to operate a class of commercial vehicles, including a vehicle of a defined size used to transport hazardous materials. Employees who are involved in the handling and transportation of hazardous materials as defined by the Hazardous Materials Transportation Act (HMTA) receive appropriate training and testing for the CDL. The training includes a knowledge test, a driving test and annual DOT physical examinations.

## (c) DOT

Employees who are involved in the handling and transportation of hazardous materials receive training in accordance with DOT's hazardous materials transportation regulations as set forth in 49 CFR 172 Subpart H. The training is conducted by in-house staff and commercially available programs. An outline of the training is provided below:

- Hazardous Materials Table, 49 CFR 172.101
- Shipping Papers
- Marking
- Labeling
- Placarding

- Emergency Response Information
- Training Requirements
- Security Awareness and Procedures

## (d) HAZWOPER

Employees who respond to these emergencies are trained in accordance with the Occupational Safety and Health Administration (OSHA) HAZWOPER standard under 29 CFR 1910.120, and the Michigan standards. Initial training and annual refresher training is conducted by in-house staff and commercially available programs. Emergency response training includes field exercises and training on U-M emergency response plans, activities, equipment, and procedures. An outline of the training is provided below:

- Regulatory Overview
- Hazardous Chemicals/Potential Hazards at Incidents
- Contingency Plan/Emergency Response Plan U-M Implementation
- Monitoring at Emergency Response Incidents
- Personal Protective Equipment
- Emergency Response Techniques Spill Control
- Decontamination Procedures
- Termination of the Incident

## (e) HAZCOM

HAZCOM training involves the safety precautions necessary to ensure that the hazards of chemicals stored or used by the U-M are evaluated and that information on the hazards associated with these chemicals is transmitted to the employers and employees. This training is conducted by U-M EHS department in accordance with the OSHA HAZCOM standards set forth in 29 CFR 1910.1200 and the Michigan OSHA (MIOSHA) Act 154 of 1974 as amended. An outline of the training is provided below:

- Written Hazard Communication
- Hazard Identification and Determination
- Labeling, Marking and Other Forms of Warning
- Material Safety Data Sheets
- Physical and Health Hazards
- Work Practices and Emergency Procedures
- Personal Protective Equipment
- Workplace Evaluation and Medical Monitoring
- Recordkeeping

## (f) BBP

BBP training involves safety precautions necessary to reduce or eliminate the risk of occupational exposure to infectious agents carried in human and animal blood tissues. The content of the training is conducted by the U-M EHS department in accordance with the standards set forth in the OSHA BBP Standard, 29 CFR 1910.1030 and Michigan Act 154 of 1974 as amended. An outline of the training is provided below:

• Universal Precautions

- Exposure Determination
- Written Exposure Control Plan
- Hepatitis B Immunization Program
- Post-Exposure Evaluation and Follow-up
- Housekeeping
- Recordkeeping
- (g) Radiation Safety

This course is conducted by the U-M EHS Radiation Safety Service for students, staff, and faculty who handle radioactive materials. It is designed to provide safety precautions and controls necessary to reduce exposure to radioactive materials during handling to meet the As Low As Reasonably Achievable (ALARA) requirements of the Nuclear Regulatory Commission (NRC). Specialized on-the-job training is provided to those individuals that routinely handle radioactive materials. This training covers spill procedures, proper handling, and disposal. An outline of the training is provided below:

- Radioactive Decay
- ALARA Monitoring Equipment
- Contamination and Exposure Control
- Radioactive Spill Clean Up
- Notifications to RSS

# A10.C.2 Continuing Education

[R 299.9605 and 40 CFR §264.16(c)]

The U-M EHS training program consists of formal classroom and supervised on-the-job training. Classroom training varies depending on the course. The RCRA generator, HAZWOPER, BBP, and radiation safety training courses consist of an initial course with an annual refresher. The HAZCOM training course consists of an initial course with periodic updates. The DOT training is an initial course with an update every 3 years. The CDL with a hazmat endorsement is issued by the State of Michigan, with renewals every 4 years. EHS staff members are expected to participate in professional development.

# A10.D TRAINING DIRECTOR

[R 299.9605 and 40 CFR §264.16(a)(2)]

The EHS Manager will act as training director and is responsible for procuring qualified instructors for training personnel handling hazardous and mixed waste at the Beck Road Facility. Under the direction of the EHS Manager, an EHS Coordinator, EHS Senior Rep, or EHS Rep II may assist the EHS Manager with training. Instructors must be knowledgeable on the subject matter being presented. To be qualified as an instructor, an individual must demonstrate competency or have appropriate academic credentials and instructional experience. Training may be conducted, in part, by the use of U-M qualified instructors, qualified consultants, or available training programs. The EHS Manager is responsible for ensuring that employees receive necessary training for safe handling of hazardous and mixed waste.

# A10.E DOCUMENTATION AND RECORD KEEPING REQUIREMENTS

[R 299.9605 and 40 CFR §§264.16(d) and (e)]

# A10.E.1 Documentation

Page 6 of 19 Form EQP 5111 Attachment Template A10, Personnel Training

[R 299.9605 and 40 CFR §264.16(d)]

Training documentation is kept at the U-M EHS office for all current employees and for employees who have managed hazardous and mixed waste within the past 3 years. Copies of training records will be kept at the Beck Road Facility.

## A10.E.1(a) Job Titles and Names of Employees Filling Each Job [R 299.9605 and 40 CFR §264.16(d)(1)]

Written job titles and job descriptions are listed in Attachment A10-1. The names of employees filling each job are listed below.

Michael Dressler – EHS Manager Mark Nord – EHS Senior Rep Stuart Berry – EHS Senior Rep Greg Marquis – EHS Rep II Timothy Forbush – EHS Rep II Christopher Clements – EHS Rep II Daniel Maue – EHS Rep I Kyle Roberts – EHS Rep I Matthew Beer – EHS Rep I Pat Bostain – EHS Secretary III Currently Vacant – EHS Coordinator

A10.E.1(b) Written Job Descriptions [R 299.9605 and 40 CFR §264.16(d)(2)]

Written job titles and job descriptions are listed in Attachment A10-1.

A10.E.1(c) Written Description of Type and Amount of Training Given to Each Position [R 299.9605 and 40 CFR §264.16(d)(3)]

The description of the type and the amount of training given to each position are listed in Sections A10.A.1 and A10.A.2.

A10.E.1(d) Documentation That Training Has Been Given to and Completed by Facility Personnel [R 299.9605 and 40 CFR §264.16(d)(4)]

Training documentation is kept at the U-M EHS office for all current employees and for employees who have managed hazardous and mixed waste within the past 5 years.

# A10.E.2 Record Keeping

[R 299.9605 and 40 CFR §264.16(e)]

Training documentation is kept at the U-M EHS office for all current employees and for employees who have managed hazardous and mixed waste within the past 3 years. Copies of training records will be kept at the Beck Road Facility.

## Attachment A10-1 Job Titles and Job Descriptions

## EHS MANAGER

#### **Basic Function and Responsibility**

To coordinate and manage the planning, development, implementation and administration of one or more University-wide occupational health, safety, radiological or environmental programs within the Department of Environment, Health and Safety.

#### **Characteristic Duties and Responsibilities**

• Coordinate and manage the planning, development, implementation and administration of one or more University-wide occupational health, safety, radiological, or environmental programs, policies, and procedures. Participate in the development and administration of departmental policies and procedures.

• Plan and manage administrative and operational activities, including budget, for program areas. Supervise, hire, train, and evaluate professional and support staff. Assure compliance with affirmative action programs.

• Represent and negotiate for the Department with University administrators and regulatory officials under direction of the Director. Ensure University compliance with federal, state, and local health, safety, radiological, and environmental rules and regulations, and University policies/procedures. Evaluate the impact of new or proposed regulations and modify existing services or procedures as necessary.

• Supervise the investigation of complaints and grievances and coordinate the development and implementation of effective corrective action. Supervise and conduct comprehensive inspections, studies, and on-site surveys for evaluation and correction of health, safety, radiological, or environmental hazards.

• Develop, coordinate, and conduct occupational health, safety, radiological, and environmental education and training programs. Train and coordinate the work of new staff members.

• Oversee or prepare special and periodic technical papers and reports for use in University planning or for distribution to external regulatory agencies. Prepare special and periodic guidelines, manuals, newsletters, summaries, and bulletins.

• Manage the purchase of equipment and supervise the routine maintenance and calibration of instruments and devices.

• Review plans for construction and renovation of University facilities for occupational health, safety, radiological, and environmental concerns, and evaluate designed effectiveness.

• Coordinate the procurement, review, and project management of contracts and service agreements with outside vendors. Assist Director with budget and re-billing activities.

• Participate in emergency response activities and assume role of on-scene emergency response director during major incidents.

• Comply with all occupational health, safety, and environmental rules and regulations, and University policies and guidelines. EHS HMM Program emphasis on hazardous and mixed waste, and EGLE regulated waste.

• Manage the department on interim basis in absence of the Director.

• Have authority to authorize shut down of operations representing immediate danger to the University community, following department guidelines/policies.

#### **Supervision Received**

Administrative and functional direction is received from the Director. Manager is expected to be self-directed in administrative and functional activities.

#### Supervision Exercised

Functional and administrative supervision will be exercised over professional, office, technical, and temporary staff.

#### Qualifications

• A Master's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is necessary.

• Ten years of experience in managing occupational health, safety, radiological, or environmental programs, and ten years experience in administering occupational health, safety, radiological, or environmental projects is necessary.

• Considerable knowledge of modern occupational health, safety, environmental, or engineering principles and practices, and rules/regulations is necessary.

• Reasonable knowledge of multiple program area activities is highly desirable.

• Appropriate professional certification such as a Certified Hazardous Materials Manager, Certified Health Physicist, Certified Industrial Hygienist, Certified Safety Professional, Registered Sanitarian or licensing as a Professional Engineer is necessary. Professional affiliations and participation in professional conferences, including presentations and committee work, is necessary.

• Moderate computer experience and familiarity with software programs is necessary.

• Must be able to pass physical examination to allow for emergency response and wearing of personal protective equipment (PPE).

Must have a valid driver's license

## EHS COORDINATOR

#### **Basic Function and Responsibility**

To coordinate and manage the planning, development, implementation and administration of a University-wide occupational health, safety, radiological, or environmental program within the Department of Environment, Health and Safety.

#### **Characteristic Duties And Responsibilities**

• Coordinate and manage the planning, development, implementation and administration of a University-wide occupational health, safety, radiological, or environmental program, policies, and procedures. Participate in the development and administration of departmental policies and procedures.

• Plan and manage administrative and operational activities, including budget, for a specific program area. Supervise, hire, train, and evaluate professional and support staff. Assure compliance with affirmative action programs.

• Represent the Department to University administrators and regulatory officials under direction of the Director. Ensure University compliance with federal, state, and local health, safety, radiological, and environmental rules and regulations, and University policies/procedures. Evaluate the impact of new or proposed regulations and modify existing services or procedures as necessary.

• Supervise the investigation of complaints and grievances and coordinate the development and implementation of effective corrective action. Supervise and conduct comprehensive inspections, studies, and on-site surveys for evaluation and correction of health, safety, radiological, or environmental hazards.

• Develop, coordinate, and conduct occupational health, safety, radiological, and environmental education and training programs. Assist in training and coordination of work of new staff members.

• Oversee or prepare special and periodic technical papers and reports for use in University planning or for distribution to external regulatory agencies. Prepare special and periodic guidelines, manuals, newsletters, summaries and bulletins.

• Manage the purchase of equipment, and supervise the routine maintenance and calibration of instruments and devices.

• Review plans for construction and renovation of University facilities for occupational health, safety, radiological, and environmental concerns, and evaluate designed effectiveness.

• Coordinate the procurement, review, and project management of contracts and service agreements with outside vendors. Assist Director with budget and re-billing activities.

• Participate in emergency response activities.

• Comply with all occupational health, safety, and environmental rules and regulations, and University policies and guidelines. EHS HMM Program emphasis on hazardous and mixed waste, and EGLE regulated waste.

Attachment A10-1, Job Titles and Descriptions

Page 11 of 19 Form EQP 5111 Attachment Template A10, Personnel Training

## **Supervision Received**

Administrative and functional direction is received from the Director. Coordinator is expected to be very self directed in functional activities.

#### **Supervision Exercised**

Functional and administrative supervision will be exercised over professional, office, technical, and temporary staff.

#### Qualifications

• A Master's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is necessary.

• Three years of experience in managing occupational health, safety, radiological, or environmental programs, and six years of experience in administering occupational health, safety, radiological, or environmental projects is necessary.

• Considerable knowledge of modern occupational health, safety, environmental, or engineering principles and practices, and rules/regulations is necessary.

• Appropriate professional certification such as a Certified Hazardous Materials Manager, Certified Health Physicist, Certified Industrial Hygienist, Certified Safety Professional, Registered Sanitarian or licensing as a Professional Engineer is necessary. Professional affiliations and participation in professional conferences, including presentations and committee work, is highly desirable.

• Moderate computer experience and familiarity with software programs is necessary.

• Must be able to pass physical examination to allow for emergency response and wearing of personal protective equipment (PPE).

• Must have a valid driver's license.

## EHS SENIOR REP

#### **Basic Function and Responsibility**

Assist the program manager/coordinator or Director in developing, supervising and coordinating EHS programs to assure compliance with applicable federal, state, and local occupational and environmental laws and regulations. Participate in developing and implementing policies and procedures designed to ensure the health and safety of the University community and environmental compliance.

## **Characteristic Duties and Responsibilities**

• Assist in planning, developing and implementing departmental policies and procedures, and with maintenance of licensing and permitting. Review existing and proposed federal and state legislation, rules, or regulatory interpretations of external agencies, analyze potential impacts on University policies and procedures, and develop and update programs to meet new and existing standards and regulations. Advise EHS management, faculty and staff on recommended course of action.

• Plan, design, coordinate and maintain procedures and systems to investigate, evaluate, monitor, detect and record occupational health, safety, radiological, and environmental conditions, liabilities, and exposures.

• Respond to inquiries from staff and faculty regarding occupational health, safety, and environmental concerns. Conduct comprehensive studies and on-site surveys for recognition and evaluation of various occupational health, safety, radiological, and environmental conditions, including studies of environmental quality and exposures. Provide quality assurance/quality control of record keeping and oversee projects of special significance or importance.

• Participate in collecting, sampling, transporting, and disposal of biological, hazardous, and radioactive wastes, including manifesting, packaging, transporting and other duties related to waste management.

• Survey, inspect, and evaluate laboratories, shops, food facilities, housing units and other physical properties to identify occupational health, safety, radiological, and environmental concerns.

• Develop, coordinate, and conduct occupational health, safety, radiological, and environmental education and training programs. Assist in training and coordination of work of new staff members.

• Oversee or prepare special and periodic technical papers and reports for use in University planning or for distribution to external regulatory agencies. Prepare special and periodic guidelines, manuals, newsletters, summaries and bulletins.

• Advise on the purchase of equipment, and oversee the routine maintenance and calibration of instruments and devices.

• Review plans for construction and renovation of University facilities for occupational health, safety, radiological, and environmental concerns, and evaluate designed effectiveness.

• Coordinate the procurement, review, and project management of contracts and service agreements with outside vendors. Assist manager/coordinator with budget and re-billing activities.

• Participate in emergency response activities.

• Comply with all occupational health, safety, and environmental rules and regulations, and University policies and guidelines. EHS HMM Program emphasis on hazardous and mixed waste, and EGLE regulated waste.

#### **Supervision Received**

Administrative and functional supervision is received from the program manager/coordinator or Director.

#### **Supervision Exercised**

Functional and administrative supervision may be exercised over professional, office, technical, and temporary staff.

#### Qualifications

• A Bachelor's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is necessary. A Master's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is highly desirable.

• Six years of experience in administering occupational health, safety, radiological, or environmental projects, and some experience in managing occupational health, safety, radiological, or environmental programs is necessary.

• Considerable knowledge of modern occupational health, safety, environmental, or engineering principles and practices, and rules/regulations is necessary.

• Appropriate professional certification such as a Certified Hazardous Materials Manager, Certified Health Physicist, Certified Industrial Hygienist, Certified Safety Professional, Registered Sanitarian or licensing as a Professional Engineer is necessary. Professional affiliations and participation in professional conferences, including presentations and committee work, is desirable.

• Moderate computer experience and familiarity with software programs is necessary.

• Must be able to pass physical examination to allow for emergency response and wearing of personal protective equipment (PPE).

• Must have a valid driver's license

# <u>EHS REP II</u>

#### **Basic Function and Responsibility**

Develop, implement, promote, and maintain occupational health, safety, radiological, and environmental programs and projects. Identify occupational and environmental health and safety conditions, and recommend corrective measures.

#### **Characteristic Duties and Responsibilities**

• Plan, design, coordinate and maintain procedures and systems to investigate, evaluate, monitor, detect and record occupational health, safety, radiological, and environmental conditions, liabilities, and exposures.

• Respond to inquiries from staff and faculty regarding occupational health, safety, and environmental concerns. Conduct comprehensive studies and on-site surveys for recognition and evaluation of various occupational health, safety, radiological, and environmental conditions, including studies of environmental quality and exposures.

• Participate in collecting, sampling, transporting, and disposal of biological, hazardous, and radioactive wastes, including manifesting, packaging, transporting and other duties related to waste management.

• Survey, inspect, and evaluate laboratories, shops, food facilities, housing units and other physical properties to identify occupational health, safety, radiological, and environmental concerns.

• Develop, coordinate, and conduct occupational health, safety, radiological, and environmental education and training programs. Assist in training and coordination of work of new staff members.

• Prepare special and periodic reports, guidelines, manuals, newsletters, summaries and bulletins.

• Advise on the purchase of equipment and oversee the routine maintenance and calibration of instruments and devices.

• Review plans for construction and renovation of University facilities for occupational health, safety, radiological, and environmental concerns, and evaluate designed effectiveness.

• Assist in the procurement, review, and project management of contracts and service agreements with outside vendors.

• Participate in emergency response activities.

• Comply with all occupational health, safety, and environmental rules and regulations, and University policies and guidelines. EHS HMM Program emphasis on hazardous and mixed waste, and EGLE regulated waste.

## **Supervision Received**

Administrative and functional supervision is received from the program manager/coordinator or other designee.

Attachment A10-1, Job Titles and Descriptions

## **Supervision Exercised**

Functional supervision may be exercised over professional, office, technical, and temporary staff.

#### Qualifications

• A Bachelor's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is necessary. A Master's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is desirable.

• Three years of experience in administering occupational health, safety, radiological, or environmental projects is necessary. Some experience in program development is desirable.

• Considerable knowledge of modern occupational health, safety, environmental, or engineering principles and practices, and rules/regulations is necessary.

• Appropriate professional certification such as a Certified Hazardous Materials Manager, Certified Health Physicist, Certified Industrial Hygienist, Certified Safety Professional, Registered Sanitarian or licensing as a Professional Engineer is highly desirable. Professional affiliations and participation in professional conferences, including presentations and committee work, is desirable.

• Moderate computer experience and familiarity with software programs is necessary.

• Must be able to pass physical examination to allow for emergency response and wearing of personal protective equipment (PPE).

• Must have a valid driver's license, and ability to obtain a commercial driver's license may be necessary, depending on specific program area within EHS.

# <u>EHS REP I</u>

#### **Basic Function and Responsibility**

Review, analyze and evaluate procedures and programs, and perform activities to assure compliance with occupational health, safety, radiological, and environmental standards. Survey, inspect and evaluate health, safety, and environmental issues.

#### **Characteristic Duties and Responsibilities**

• Evaluate health, safety, radiological, and environmental procedures, practices, and plans against federal, state and local regulations and established department policies/guidelines, and recommend/assist in modifications or changes.

• Respond to inquiries from staff and faculty regarding occupational health, safety, radiological, and environmental concerns. Investigate grievances and complaints and make recommendations for corrective action. Conduct investigations of occupationally related accidents and diseases.

• Participate in collecting, sampling, transporting, and disposal of biological, hazardous, and radioactive wastes, including manifesting, packaging, transporting and other duties related to waste management.

• Survey, inspect, and evaluate laboratories, shops, food facilities, housing units and other physical properties to identify occupational health, safety, radiological, and environmental concerns.

• Conduct and assist in developing occupational health, safety, radiological, and environmental education and training programs.

• Assist in preparing periodic or special guidelines, manuals, newsletters, summaries and bulletins.

• Assist in the review of plans for construction and renovation of University facilities for occupational health, safety, radiological, and environmental concerns, and evaluate designed effectiveness.

• Assist in procurement, review, and project management of contracts and service agreements with outside vendors.

- Calibrate and maintain equipment.
- Participate in emergency response activities.

• Comply with all occupational health, safety, and environmental rules and regulations, and University policies and guidelines. EHS HMM Program emphasis on hazardous and mixed waste, and EGLE regulated waste.

#### **Supervision Received**

Administrative and functional supervision is received from the program area manager/coordinator or other designee.

#### Supervision Exercised

Functional supervision may be exercised over office, technical, and temporary staff.

#### Qualifications

• A Bachelor's degree in occupational health, safety, radiological, environmental, engineering, chemical sciences, or a related field or equivalent combination of education and experience is necessary.

• Reasonable knowledge of modern occupational health, safety, environmental, or engineering principles and practices, and rules/regulations is necessary.

• Some experience in program development and EHS project management is desirable.

• Appropriate professional certification such as a Certified Hazardous Materials Manager, Certified Health Physicist, Certified Industrial Hygienist, Certified Safety Professional, Registered Sanitarian, or licensing as a Professional Engineer is desirable.

• Some computer experience and familiarity with software programs is necessary.

• Must be able to pass physical examination to allow for emergency response and wearing of personal protective equipment (PPE).

• Must have a valid driver's license, and ability to obtain a commercial driver's license may be necessary, depending on specific program area within EHS.

## EHS SECRETARY

#### **Basic Function and Responsibility**

Provide secretarial and administrative support to the program managers/coordinators and professional staff, and the Department as a whole.

#### **Characteristic Duties and Responsibilities**

• Assist in the resolution of program operating concerns.

• Initiate, compose, and edit correspondence regarding matters of a sensitive or confidential nature. Provide typing, filing, word processing and copying support to departmental staff.

- Compile special and periodic reports, charts, graphs and membership files.
- Respond to inquiries and complaints regarding matters of a sensitive or confidential nature.
- Maintain program manager/coordinator calendars and prioritize effective use of time.
- Receive, route, and respond to incoming departmental phone calls and walk-ins.

• Maintain timekeeping and payroll records. Provide assistance with financial record keeping for the program area. Provide support for scheduling and arranging travel plans for program area staff.

• Provide support for meetings and training programs including scheduling, preparing agendas, and attending to provide support in taking minutes.

- Participate in training programs applicable to the area of responsibility.
- Assist with other program areas and general EHS office functions on an as needed basis.

• Comply with all occupational health, safety, and environmental rules and regulations, and University policies and guidelines. EHS HMM Program emphasis on hazardous and mixed waste, and EGLE regulated waste.

#### Supervision Received

Administrative and functional supervision is received from the program manager/coordinator or other designee. Functional supervision for support of the EHS department as a whole may be received from Administrative Associate.

#### **Supervision Exercised**

No administrative or functional supervision is exercised.

#### Qualifications

• A high school diploma is required. A bachelor's degree is desirable.

• Two years secretarial experience with demonstrated excellent clerical skills including grammar and proofreading; moderate computer skills and experience with Windows, Word, and Excel is required.

• Excellent organizational and interpersonal skills with demonstrated ability to exercise professional judgment, set priorities and work against deadlines, and to work with extreme accuracy and careful attention to detail are required.

- The ability to work as a member of a team as well as independently is required.
- Reasonable knowledge of U-M policies, procedures and regulations is desirable.

Attachment A10-1, Job Titles and Descriptions

Attachment 5

Preparedness and Prevention

## FORM EQP 5111 ATTACHMENT TEMPLATE A7 CONTINGENCY PLAN

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), R 299.9501, R 299.9508(1)(b), R 299.9504(1)(c), R 299.9521(3)(b), R 299.9607, and Title 40 of the Code of Federal Regulations (CFR) §§264.50 through 264.56, and 270.14(b)(7), establish requirements for contingency plans at hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003.

This license application template addresses requirements for a contingency plan at the hazardous waste management facility for the Beck Road Facility in Belleville, Michigan. It is recommended that Beck Road Facility perform annual drill exercises with the local fire department and emergency responders using the contingency plan to make sure all staff are familiar with the plan and determine whether the plan needs any updating.

(Check as appropriate)

- Applicant for Operating License for Existing Facility
- Applicant for Operating License for New, Altered, Enlarged, or Expanded Facility

This template is organized as follows:

## INTRODUCTION

- A7.A BACKGROUND INFORMATION
  - A7.A.1 Purpose of the Contingency Plan
  - A7.A.2 Description of Facility Operations
  - A7.A.3 Identification of Potential Situations
- A7.B EMERGENCY COORDINATORS
  - A7.B.1 Identification of Primary and Alternate Emergency Coordinators
  - A7.B.2 Qualifications of the Emergency Coordinators

Table A7.B.1 Identification of Primary and alternate Emergency Coordinators

- A7.B.3 Authority to Commit Resources
- A7.C IMPLEMENTATION OF THE CONTINGENCY PLAN
- A7.D EMERGENCY PROCEDURES
  - A7.D.1 Immediate Notification Procedures for Facility Personnel and State and Local Agencies with Designated Response Roles
  - A7.D.2 Procedures to Be Used for Identification of Releases
  - A7.D.3 Procedures to Be Used to Assess Potential Hazards to Human Health and the Environment
  - A7.D.4 Procedures to Determine if Evacuation is Necessary and Immediate Notification of Michigan Pollution Emergency Alerting System and National Response Center
  - A7.D.5 Procedures to Be Used to Ensure That Fires, Explosions, and Releases Do Not Occur, Reoccur, or Spread During the Emergency
- Page 1 of 51Form EQP 5111 Attachment Template A7, Contingency Plan(6-1-2021)

Table A7.D.1 Federal, State, and Local Response Contacts

- A7.D.6 Procedures to Be Used to Monitor Equipment Should Facility Operations Cease
- A7.D.7 Procedures to Provide Proper Treatment, Storage, and Disposal for Any Released Materials
- A7.D.8 Procedures for Cleanup and Decontamination
- A7.E RESUMPTION OF OPERATIONS AND RECORD KEEPING REQUIREMENTS
  - A7.E.1 Procedures to Be Used Prior to Resuming Operations
    - A7.E.2 Record Keeping Requirements
    - A7.E.2(a) Operating Record
    - A7.E.2(b) Written Incident Report
- A7.F PROCEDURE FOR ASSESSING OFFSITE RISK DURING AND AFTER A FIRE/EXPLOSION INCIDENT OR SIGNIFICANT RELEASE
- A7.G PROCEDURES FOR REVIEWING AND AMENDING THE CONTINGENCY PLAN
- Attachment A7.1 Documentation of Arrangements with Local Authorities
- Attachment A7.2 Evacuation Plan and Routes

Attachment A7.3 Emergency Equipment Description

Attachment A7.4 Checklist for Tracking Facility Response Actions During and After a Fire/Explosion Incident

Attachment A7.5 Building Emergency Response Plan

Attachment A7.6 Location of Waste Management Units

Attachment A7.7 Hazardous Waste Accepted at the Facility

Attachment A7.8 U.S. DOT Precedence of Hazard Table

Attachment A7.9 U.S. EPA Chemical Compatibility Chart

Attachment A7.10 Emergency Response Incident Report

## **GUIDANCE/REFERENCES**

EGLE, Policy and Procedure MMD-111-22: "Hazardous Waste Contingency Plan Implementation and Reporting Obligations," November 5, 2012.

## INTRODUCTION

## A7.A BACKGROUND INFORMATION

## A7.A.1 Purpose of the Contingency Plan

[R 299.9607 and 40 CFR §§264.51 and 264.53]

This Contingency Plan has been prepared in accordance with the requirements of 40 CFR, Part 264, Subpart D, and R 299.9607. It is designed to establish the necessary planned procedures to be followed in the event of an emergency situation at the Beck Road Facility in Belleville, Michigan, such as a fire, explosion, or any unplanned sudden or nonsudden release of hazardous waste or hazardous waste constituents to the air, soil, or water.

The provisions of this plan will be carried out immediately whenever there is a fire, explosion, or release of hazardous waste or hazardous waste constituents that could threaten human health or the environment.

Copies of the Contingency Plan have been provided to emergency response agencies in order to familiarize them with the facility layout, the properties of the material handled, locations of the working areas, access routes into and within the facility, possible evacuation routes from the facility, and types of injuries or illness that could result from releases of materials at the facility. This information has been Page 2 of 51 Form EQP 5111 Attachment Template A7, Contingency Plan (6-1-2021)

submitted to:

| <ol> <li>U-M EHS Director</li> <li>U-M EPPP Manager</li> <li>U-M HMM Manager</li> <li>U-M RSS RSO</li> <li>U-M Police Dept. (U-M DPSS)</li> <li>U-M Strategic Space Planning</li> <li>U-M HMM Sr. Hazmat Rep.</li> <li>U-M BRSF Office</li> </ol> | Danielle Sheen<br>Steve O'Rielly<br>Michael Dressler<br>Mark Driscoll<br>Eddie L. Washington, Jr.<br>Jennifer Magoon-Judge<br>Mark Nord<br>Office Copy | CSSB<br>CSSB<br>NCTF<br>CSSB<br>CSSB<br>AEC<br>NCTF<br>BRSF |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 9. Jill Coulter, Environmental Quali EGLE, MMD                                                                                                                                                                                                    | ity Analyst                                                                                                                                            | Jackson, MI                                                 |
| 10. Ronda Blayer, Environmental Er<br>EGLE, MMD                                                                                                                                                                                                   | ngineering Specialist                                                                                                                                  | Lansing, MI                                                 |
| 1. Larry Bean, Environmental Manager<br>EGLE, MMD                                                                                                                                                                                                 |                                                                                                                                                        | Jackson, MI                                                 |
| 12. Kevin McNamara, Township Su<br>Van Buren Township                                                                                                                                                                                             | Belleville, MI                                                                                                                                         |                                                             |
| 13. Daniel Besson, Fire Chief<br>Van Buren Township Fire Depar                                                                                                                                                                                    | rtment                                                                                                                                                 | Belleville, MI                                              |
| 4. Greg Laurain, Director of Public Safety<br>Van Buren Township Police                                                                                                                                                                           |                                                                                                                                                        | Belleville, MI                                              |
| 15. Andy Savage, Vice President of<br>Huron Valley Ambulance                                                                                                                                                                                      | 5. Andy Savage, Vice President of Eastern Operations<br>Huron Valley Ambulance                                                                         |                                                             |
| 16. Denise Bechard, Emergency Ma<br>St. Joseph Mercy Hospital                                                                                                                                                                                     | nagement Coordinator                                                                                                                                   | Ann Arbor, MI                                               |

Attachment A7.1 includes documentation that each of these agencies has received a copy of the Contingency Plan. Whenever the Contingency Plan is modified, the facility will provide the agencies with a copy of the modified plan.

# A7.A.2 Description of Facility Operations

#### Facility Processes

The wastes stored at Beck Road Facility are generated during teaching, research and support operations conducted at authorized U-M facilities. Waste received at the facility may be stored in the original container or may be comingled with like, compatible waste. The facility stores hazardous and mixed waste in the licensed area in compatible containers, which may include 5, 15, 30 and 55-gallon plastic, metal or fiber drums; or metal, and carton fiber boxes. The facility stores non-RCRA-hazardous low level radioactive waste (LLRW) in the non-licensed areas in compatible containers, which may include 5, 15, 30 and 55-gallon plastic, metal or fiber drums; or metal or fiber drums; or metal and carton fiber boxes.

Facility Operations and Waste Management Practices

The hazardous waste code, description, characteristic and waste management unit for the hazardous and mixed waste generated from U-M facilities and stored at the BRSF (Beck Road Facility) are described in Attachment A7.7, which is Table A2.A.2, Hazardous Wastes Accepted at the Facility. The location of the waste management units in the facility are include in Attachment A7.6. Hazardous and mixed waste shall be stored in the appropriate licensed area. Low level radioactive wastes shall be stored within the facility, or the activity in each room, is described below in Table A7-1, Facility Operations Table.

| Room<br>Number        | Authorized Activity        | Waste Description (1)                           |  |
|-----------------------|----------------------------|-------------------------------------------------|--|
| 100                   | Mechanical room            | None                                            |  |
| 100J                  | Janitor storage or vacant  | None                                            |  |
| 101                   | Office                     | None                                            |  |
| 102                   | File storage               | None                                            |  |
| 102A                  | File storage               | None                                            |  |
| 104                   | Supply storage             | None                                            |  |
| 105                   | Supply storage             | None                                            |  |
| 106                   | Supply storage             | None                                            |  |
| 107                   | Supply or document storage | None                                            |  |
| 108                   | Waste storage              | Low-level radioactive                           |  |
| 109                   | Waste storage              | Low-level radioactive                           |  |
| 109A                  | Waste storage              | Hazardous and mixed—corrosive base and reactive |  |
| 109B                  | Waste storage              | Hazardous and mixed—toxic                       |  |
| 110                   | Supply storage             | None                                            |  |
| 110A                  | Supply storage             | None                                            |  |
| 111                   | Waste storage              | Hazardous and mixed—corrosive acid              |  |
| 112T                  | Toilet facilities          | None                                            |  |
| 113                   | Waste storage              | Hazardous and mixed—toxic and oxidizer          |  |
| 113J                  | Supply storage             | None                                            |  |
| 115                   | Telephone controls         | None                                            |  |
| 116                   | Waste storage              | Hazardous and mixed—toxic                       |  |
| 117                   | Waste storage              | Hazardous and mixed—ignitable and toxic         |  |
| 117A                  | Mechanical room            | None                                            |  |
| 120                   | Mechanical room            | None                                            |  |
| 120A                  | Mechanical room            | None                                            |  |
| 120B                  | Mechanical room            | None                                            |  |
| 121                   | Vacant                     | None                                            |  |
| 125                   | Loading / unloading area   | None                                            |  |
| 2 <sup>nd</sup> Floor | Document storage or vacant | None                                            |  |

| Table A7-1                |
|---------------------------|
| Facility Operations Table |

<sup>(1)</sup>Various mixtures of hazardous and mixed, and low level radioactive waste, may be encountered. Waste assignment and storage will be guided by the U.S. DOT Precedence or Hazard Table, Attachment A7.8.
- 1. The following is a summary of hazardous and mixed waste and LLRW that may be stored at the facility.
  - Liquids and solids containing RCRA and Michigan Act 451 regulated constituents.
  - Liquids and solids containing short-lived or long-lived radioisotopes mixed with RCRA and Michigan Act 451 regulated constituents.
  - Aqueous liquids and solids containing RCRA and Michigan Act 451 regulated constituents being held for Nuclear Regulatory Commission (NRC) decay to background or deregulation.
  - Aqueous liquids containing short-lived or long-lived radioisotopes in scintillation vials.
  - Liquid and solid LLRW containing short-lived or long-lived radioisotopes.
  - Sealed and plated sources, stock vials.
- 2. Secondary Containment: Secondary containment structures/devices are used at the Beck Road Facility to capture and contain spills or leaks from liquid containers to avoid releases of these materials into the environment. The secondary containment structures presently being used to accomplish the above objectives are maintained in an operational condition at all times and include:
  - a. Floor Seal and Berming: The rooms designed and used for liquid material storage are bermed at the doors to contain leaks and spills. The floors of rooms designed and used for liquid storage are sealed with a chemical resistant finish to prevent seepage through the floor in the event of a spill. The floor of the loading and unloading area is sealed with a chemical resistant finish. Loading and unloading of waste occurs between two containment trenches that are also sealed with a chemical resistant finish.
  - b. Spill Pallets: The bulk liquid drums may be stored on spill pallets designed to contain 110% of the largest container stored on the pallet. These spill pallets serve as supplemental secondary containment.
  - c. Overpacks: The bulk liquid drums may be placed in overpacks. The overpacks serve as supplemental secondary containment.
- 3. Routine Visual Inspections: An inspection of the facility and containers stored at the facility is performed on a weekly basis by Hazmat personnel. The inspection follows a checklist format and looks at containment structures, housekeeping, security, and checks to determine if leaks are occurring from the containers. The inspection is performed by a member of the Hazmat personnel and is documented on the facility inspection log. Completed inspection logs are maintained at the North Campus Transfer Facility (NCTF), with copies on file at the Beck Road Facility.
- 4. Preventive Maintenance: The weekly inspection also includes a walk-through of the entire facility. The containers are visually checked for their integrity. If found necessary, containers are replaced to avoid potential leaks or spills. Secondary containment is also checked to see if any preventive maintenance is necessary.
- 5. Housekeeping: The facility is maintained in a clean and orderly condition; the floor is swept and Attachment A7.1, Documentation of Arrangements with Local Authorities Page 5 of 51 Form EQP 5111 Attachment Template A7, Contingency Plan (6-1-2021)

mopped on a regular basis. During routine inspections, hard copies of waste records at the facility are cross checked with the computer records, and hard copies are updated as necessary. Other efforts such as updating the emergency supplies, tools, spill response supplies, also are a part of the housekeeping activities performed by the Hazmat personnel. Efforts are made on a continuous basis to implement innovative methods and controls for effective waste management.

- 6. Security: The Beck Road Facility is protected from unauthorized entry by locked doors, and entry is provided by EHS staff or other authorized U-M personnel. The facility is within a compound, bordered by a security fence that is kept locked after daily operational activities are completed. Access to the compound is limited to approved individuals or companies.
- 7. Monitoring: Periodic air monitoring during routine operations is performed by Hazmat personnel. Surface radioactive contamination on the containers, the floors and other surfaces is checked weekly with swipes during routine facility inspections. The containers are also checked weekly for any obvious signs of vapor pressure buildup inside the headspace of the bulk liquid drums. In addition, exposure monitoring is performed by Hazmat personnel periodically to determine the occupational exposure to the Hazmat personnel handling waste materials. All Hazmat personnel working in the facility are part of a radiation personnel dosimetry program to monitor occupational exposure.
- 8. Evacuation: The building evacuation plans and emergency response plans for the facility are included in the attachments. Attachment A7.2 includes the Building Evacuation Plan—First Floor and Second Floor. Attachment A7.5 includes the Building Emergency Response Plan—First Floor and Second Floor. The evacuation routes of egress are marked on the Evacuation Plans, and are posted inside the facility. The need for an evacuation will be communicated to other personnel in the facility verbally and over two-way radios. The Beck Road Facility is not normally occupied other than by Hazmat personnel performing routine duties.

## Work Areas

Work areas are described in Table A7-1, Facility Operations Table. Waste will be assigned to a waste management unit by its waste code and characteristics. Waste with multiple waste codes or characteristics will be assigned to a waste management unit based on the U.S. DOT Precedence of Hazard Table, 49 CFR 173.2a (see Attachment A7.8).

## A7.A.3 Identification of Potential Situations

Refer to Sections A7.C and A7.D below.

A7.B EMERGENCY COORDINATORS

[R 299.9607 and 40 CFR §§264.52 and 264.55]

A7.B.1 Identification of Primary and Alternate Emergency Coordinators [R 299.9607 and 40 CFR §§264.52 and 264.55]

At all times there is at least one employee, either on the facility premises or on call and within reasonable travel distance of the facility, with the responsibility for coordinating all emergency response measures. The list of employees designated as emergency coordinators is contained in Table A7.B.1. The coordinators are listed in the order in which they will assume responsibility.

## Table A7.B.1 Identification of Primary and Alternate Emergency Coordinators

|              | Attachment A7.1, Documentation of Arrangements with Local Authorities |
|--------------|-----------------------------------------------------------------------|
| Page 6 of 51 | Form EQP 5111 Attachment Template A7, Contingency Plan                |

| Priority                           | Name             | Work Phone                     | Work Address                     | Home Phone                         | Home Address                    |
|------------------------------------|------------------|--------------------------------|----------------------------------|------------------------------------|---------------------------------|
| Primary                            | Michael          | 734-763-4619                   | 1655 Dean Rd.,                   | 734-434-4959                       | 3401 Merritt Road               |
| Coordinator                        | Dressler         | (734-763-4568)                 | Ann Arbor, MI                    | Cell: 734-678-1494                 | Ypsilanti, MI                   |
| First Alternate                    | Mark             | 734-763-9123                   | 1655 Dean Rd.,                   | 517-917-3355                       | 426 Adrian St.                  |
| Coordinator                        | Nord             | (734-763-4568)                 | Ann Arbor, MI                    | Cell: 517-917-3355                 | Manchester, MI                  |
| Second<br>Alternate<br>Coordinator | Mark<br>Driscoll | 734-647-2251<br>(734-764-6200) | 1239 Kipke Dr.,<br>Ann Arbor, MI | 734-834-9333<br>Cell: 734-834-9333 | 11403 Mart<br>Whitmore Lake, MI |
| Third Alternate                    | Danielle         | 734-763-9132                   | 1239 Kipke Dr.,                  | 248-875-1328                       | 2786 Arrowwood Ct.              |
| Coordinator                        | Sheen            | (734-647-1143)                 | Ann Arbor, MI                    | Cell: 248-875-1328                 | Sterling Heights, MI            |

#### A7.B.2 Qualifications of the Emergency Coordinators [R 299.9607 and 40 CFR §264.55]

Each emergency coordinator is trained in the operation of the storage facility. This training includes RCRA Operations (40 CFR 264.16 and 262.34), Emergency Response/Incident Command (29 CFR 1910.120) and may include U.S. DOT training (49 CFR 172 Subpart H) as appropriate. Recurrent training is provided.

The professional credentials of each emergency coordinator are listed below:

Michael Dressler, CHMM Mark Nord, BS Mark Driscoll, HP, RSO Danielle Sheen, CIH, CSP

## A7.B.3 Authority to Commit Resources

[R 299.9607 and 40 CFR §264.55]

The emergency coordinator or his designee will be available to coordinate all emergency response measures. This individual will be familiar with the facility's contingency plan, activities, location and characteristics of waste handled, location of records, and site layout. The emergency coordinator also has the authority to commit the resources needed to complete the response actions in the contingency plan.

## A7.C IMPLEMENTATION OF THE CONTINGENCY PLAN

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56]

The emergency coordinator must be contacted immediately in the occurrence of any situation that may result in potential or actual threats to human health or the environment. The emergency coordinator must implement this plan whenever there is a fire, explosion, or release of hazardous waste or hazardous waste constituents that could threaten human health or the environment.

The provisions of the plan will be carried out immediately whenever there is a fire, explosion, or release of hazardous waste or hazardous waste constituents that could threaten human health or the environment.

Guidance is provided below in Emergency Procedures (A7.D) that defines the conditions or circumstances of potential incidents and initial actions for responders, including instructions for contacting additional personnel.

The U-M Ann Arbor Campus Emergency Procedures flip chart guides are posted in the facility, and site-specific emergency telephone numbers are posted by telephones and exits for ready accessibility in the event of an emergency. The emergency coordinator may be reached by cell phone, home phone or office phone. The U-M Police Department (U-M DPSS) may also contact the emergency coordinator or his designee and may contact additional EHS staff as necessary.

## A7.D EMERGENCY PROCEDURES

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56]

The following general procedures have been established for implementation by facility personnel and the emergency coordinator to efficiently respond to the release of hazardous waste or hazardous waste constituents that could threaten human health or the environment. The facility's procedure for assessing offsite risk during and after a significant release is provided in Attachment A7.4.

The emergency procedures at the Beck Road Facility are written for the following anticipated conditions or circumstances: a high hazard emergency, a fire/explosion or fire-related emergency, an emergency response, an incidental spill, or a personal injury, which are further discussed below, including full descriptions of the actions to be taken for each situation. Each condition or circumstance will be monitored carefully and the response modified as conditions develop.

General guidance is also given, as well as guidance for decontamination procedures and communications.

## General Guidance

- The U-M Ann Arbor Campus Emergency Procedures flip chart guides are posted in the facility, and site-specific telephone emergency numbers are posted by telephones and exits, for ready accessibility.
- Never respond to an emergency alone. Always use the buddy system.
- If an incident occurs, the person(s) finding the incident shall notify everyone in the immediate area of the situation. The type of situation (high hazard emergency, fire/explosion or fire-related emergency, emergency response, incidental spill or personal injury) will dictate the next step. Entry into a hazardous situation is contingent upon having the proper training.

Immediately notify the emergency coordinator, his designee, or local response agency, or as defined in the Emergency Procedures:

- Any Medical Emergency or Fire call 911. Request assistance and instruct Van Buren Township Emergency Response to notify U-M Police Department (U-M DPSS) at 734-763-1131.
- Chemical Spill during work hours call EHS at 734-763-4568. After hours call U-M DPSS at 734-763- 1131.
- Radioactive Spill during work hours call RSS at 734-764-6200. After hours call U-M DPSS at 734-763-1131
- Biological Spill during work hours call Biological Safety at 734-763-6973. After hours call U-M DPSS at 734-763-1131.

Describe the emergency, and request appropriate assistance. Provide the following:

- Your name, affiliation, and telephone number.
- The name, address, telephone number, and site identification number of the facility.
- Your exact location and the location of the emergency.
- A detailed description of the type of emergency, injuries to personnel, chemicals involved and quantities, radioactive material involved, and actions taken to contain the situation.
- An assessment of the potential or actual hazards.
- Use of the Emergency Response Incident Report is required (Attachment A7-10).

#### High Hazard Emergency

A high hazard emergency is an emergency of unknown nature; a situation which may be immediately dangerous to life and health; is a threat to personnel and/or the public; threatens the surrounding area or facility; and/or involves a reactive hazardous material. In the case of a high hazard emergency:

- Evacuate the immediate area and take actions to protect health and safety.
- Call 911 from a phone located out of the immediate area of danger. Request assistance and instruct Van Buren Township Emergency Response to notify U-M Police Department (U-M DPSS) at 734-763- 1131.
- For radioactive material spills, contact RSS immediately at 734-764-6200 or (after hours) U-M DPSS at 734-763-1131. Do not spread radioactive contamination beyond the immediate area. If other hazards exist (fire, explosion, chemical exposure, personal injury), move to the nearest area of safety.
- Isolate the area if possible.
- Do not attempt to rescue someone unless you know what caused the situation and you can properly protect yourself from the hazard.
- Do not move an injured person, unless the person is in harm's way.
- Provide first aid only if you are properly trained.
- For chemical splashes to the eyes and skin, immediately flush the exposed areas with water for 15 minutes. Remove all contaminated clothing and jewelry. Seek medical assistance.
- If time and the situation permits, have the MSDS readily available for emergency response personnel.

#### Fire/Explosion or Fire-Related Emergency

- Call 911 and request assistance. The Van Buren Township Emergency Response should be instructed to notify U-M Police Department (U-M DPSS) at 734-763-1131.
- Evacuate the area.
- Shut off equipment and other fuel sources to the fire only if it can be done without risk to health and safety.
- If the appropriate fire extinguisher is available and personnel have been trained on its usage, attempt to put out the fire only if it can be done without risk to health and safety.
- Isolate the fire, if possible, by closing doors to the area.

## Emergency Response

An emergency response is a response effort by employees from outside the immediate release area or by other designated responders to an occurrence of a known nature, which is likely to result in an uncontrolled release of a hazardous material outside the immediate release area. Responses to releases of hazardous waste constituents where there is no potential safety or health hazard (i.e., fire, explosion, or chemical exposure) are not considered emergency responses). In the case of emergency response:

• Evacuate the immediate area and take action to protect health and safety.

- Call EHS at 734-763-4568, or (after hours) U-M DPSS at 734-763-1131 from a phone located out of the immediate area of danger.
- For radioactive material spills, if safe to do so, isolate and contain the spill to a localized area. Contact RSS immediately at 734-764-6200, or (after hours) U-M DPSS at 734-763-1131. Do not spread radioactive contamination beyond the immediate area. If other hazards exist (fire, explosion, chemical exposure, personal injury), move to the nearest area of safety.
- Isolate the area if possible.
- Do not attempt to rescue someone unless you know what caused the situation and you can properly protect yourself from the hazard.
- Do not move an injured person, unless the person is in harm's way.
- Provide first aid only if you are properly trained.
- For chemical splashes to the eyes and skin, immediately flush the exposed areas with water for 15 minutes. Remove all contaminated clothing and jewelry. Seek medical assistance.
- If time and the situation permits, have the MSDS readily available for emergency response personnel.

#### Incidental Spill

An incidental spill is a spill in which there is no fire hazard, of a known nature, in small amounts, which can be absorbed, neutralized, contained or otherwise controlled by employees in the immediate release area. In the case of an incidental spill:

- For chemical spills, isolate and contain the spill to a localized area. Do not spread chemical contamination beyond the immediate area. Follow procedures outlined in the standard operating procedures manual. If personnel do not have the appropriate protective equipment, training, or spill cleanup materials, call EHS at 734-763-4568, or (after hours) U-M DPSS at 734-763-1131 for assistance.
- For radioactive material spills, isolate and contain the spill to a localized area. Do not spread radioactive contamination beyond the immediate area. Contact RSS immediately at 734-764-6200, or (after hours) U-M DPSS at 734-763-1131.

## Personal Injury

- For major injuries, call 911 and request medical assistance. The Van Buren Township Emergency Response should be instructed to notify U-M Police Department (U-M DPSS) at 734-763-1131. Do not move the injured person, unless the person is in harm's way. Begin providing first aid only if you are trained. Persons with life threatening injuries should be transported to the St. Joseph Mercy Hospital Emergency Room.
- For minor injuries, provide first aid if trained. All injuries, even those considered minor, should be checked by a physician. For medical evaluation and treatment employees should report to U-M Occupational Health Services (OHS).
- If the nature of the illness or injury allows, the supervisor will fax a completed Illness or Injury Report Form to the number on the form. This form may also be sent with the employee as authorization for treatment. If not completed and sent with the employee for treatment, the form will be completed and submitted as required by U-M policy. The Illness or Injury Report Form can be obtained at
- http://www.workconnections.umich.edu/wp-content/uploads/2017/02/IllnessOrInjuryReport.pdf .
- The receiving medical facility will be contacted and briefed on the potential exposure situation.

## **Decontamination Procedures**

• Personnel responding to incidental spills shall decontaminate and/or properly dispose any equipment used in the cleanup process. All supplies and equipment used in the cleanup procedure must be replenished and such replenishment documented in the facility's operating record. All contaminated materials generated from a spill cleanup shall be properly packaged and given to HMM for disposal. Attachment A7.1, Documentation of Arrangements with Local Authorities

- For emergency response spill response, all suits, boots, and equipment used in the response shall be decontaminated prior to storage for reuse. If cleaning is not possible, the item shall be properly packaged and given to HMM for disposal. All supplies and equipment used in the cleanup procedure must be replenished.
- For high hazard emergency spill response, all suits, boots, and equipment used in the response shall be decontaminated prior to storage for reuse. If cleaning is not possible, the item shall be properly packaged and given to HMM for disposal. All supplies and equipment used in the cleanup procedure must be replenished.
- U-M DPSS or an EHS representative or their designee shall deem the site safe for re-entry.
- Upon termination of the incident, all barricade tape and posted signs shall be removed.
- All decontamination activities shall be conducted in a manner that protects human health and the environment and prevents the release of decontamination wastewaters and related wastes.

## **Communication**

.

• Coordinate with the responding teams, as necessary, to provide an update on the situation such as actions taken to contain the problem, injuries, evacuation areas, mitigation, conclusion of response, etc.

#### A7.D.1 Immediate Notification Procedures for Facility Personnel and State and Local Agencies with Designated Response Roles [R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56]

The list of emergency contacts in Table A7.D.1 identifies local emergency response agencies, and state and federal authorities that must be notified in the event of an imminent or actual emergency situation requiring response.

The emergency coordinator will be responsible for ensuring that all appropriate authorities are notified as necessary.

## Table A7.D.1 Federal, State, and Local Response Contacts

| <u>Local</u><br>Van Buren Twp Police and Fire Departments<br>Huron Valley Ambulance<br>St. Joseph Mercy Hospital ER                                  | Phone: 734-699-8930<br>Phone: 734-971-4420<br>Phone: 734-712-3000                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| State<br>Michigan State Police—Brighton Post<br>Michigan State Police—Lansing<br>EGLE MMD—Lansing<br>PEAS (EGLE Pollution Emergency Alerting System) | Phone: 810-227-1051<br>Phone: 517-241-8000<br>Phone: 517-284-6562<br>Phone: 800-292-4706 |
| Emergency Management                                                                                                                                 | Phone: 734-728-3711                                                                      |
| <u>Federal</u><br>National Response Center<br>EPA Region 5—Chicago                                                                                   | Phone: 800-424-8802N<br>Phone: 312-886-3000                                              |
| Nuclear Regulatory Commission Region III—Lisle, IL                                                                                                   | Phone: 800-522-3025                                                                      |

The U-M Ann Arbor Campus Emergency Procedures flip chart guides are posted in the facility, and<br/>Attachment A7.1, Documentation of Arrangements with Local Authorities<br/>Page 11 of 51Form EQP 5111 Attachment Template A7, Contingency Plan(6-1-2021)

site- specific emergency telephone numbers are posted by telephones and exits for ready accessibility in the event of an emergency. The emergency coordinator may be reached by cell phone, home phone or office phone. The U-M Police Department (U-M DPSS) may also contact the emergency coordinator or his designee and may contact additional EHS staff as necessary.

Immediate emergency instructions will be physically communicated directly to all individuals in the facility by voice. This is possible due to the limited number of personnel having access to the facility and to the compact footprint of the regulated part of the facility, with all waste management units being contiguous to one another.

# A7.D.2 Procedures to Be Used for Identification of Releases

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56]

Maps and room numbers are posted in the contingency plan and throughout the facility and are readily accessible by emergency coordinators to identify waste management unit locations. Hazardous waste accepted at the facility is assigned to specific waste management units based on characteristic and compatibility. Each container accepted at the facility is logged onto the operation's log and assigned to a waste management unit based on waste type and characteristic. The comingled waste is recorded on a mixed waste drum worksheet and the facility drum list. This information is stored in the office adjacent to the waste management units, and is remotely available on the U-M EHS network. In the event of a spill, the emergency coordinator can use this reference information to identify the location, container, contents, characteristic, and amount. Each waste management unit is equipped with a sloped floor designed to contain any release and a spill will be readily visible upon inspection.

# A7.D.3 Procedures to Be Used to Assess Potential Hazards to Human Health and the Environment

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56]

The emergency coordinator will assess possible hazards, both direct and indirect, to human health or the environment that may result from the release, fire, or explosion.

The assessment will consider the effects of any gases that may be generated, surface runoff from water or chemical reagents used to control fires, and any chemical or physical reactions with equipment or structures.

Potential hazards to human health and the environment shall be assessed by evaluation of a release based on the hazardous waste characteristics for each waste management unit. Evaluation of the hazardous and mixed waste assigned to a waste management unit shall include potential incompatibilities using the EPA chemical compatibility chart (see Attachment A7.9). Hazardous and mixed waste assigned to a waste management unit shall be compatible with the waste in waste management unit. Each waste management unit is designed as secondary containment to prevent the migration of a release outside of the waste management unit. All waste is stored in closed containers. All waste is stored within the enclosed facility. No surface runoff is expected.

The floors of the licensed area are sealed with the Stonkote HT4 system from Stonhard, a manufacturer of floor systems and high performance lining systems. The Stonkote HT4 system is a two-component, 100% solids, epoxy coating specifically formulated to provide outstanding protection from a wide range of chemicals while increasing abrasion resistance and cleanability.

Waste management unit Room 117 is designed for storage of ignitable waste. Engineering controls in

place include a grounding strip to ground waste containers to an outside earth-ground, intrinsically safe electrical fixtures and the west wall is an explosion relief panel.

#### A7.D.4 Procedures to Determine if Evacuation Is Necessary and Immediate Notification of Michigan Pollution Emergency Alerting System and the National Response Center [R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56]

If the emergency coordinator's assessment indicates that evacuation of facility areas may be advisable, he will implement the evacuation plan for the facility. If the emergency coordinator's assessment indicates that evacuation of the surrounding local areas is also advisable, the appropriate local authorities will be immediately notified (see Table A7.D.1). The National Response Center will also be notified (see Table A7.D.1), and the following information will be provided:

- 1. Name and telephone number of the reporting individual
- 2. Name and address of the facility
- 3. Time and type of incident
- 4. Type and quantity of materials involved
- 5. Possible hazards to human health or the environment
- 6. Extent of injuries, if applicable

The facility's evacuation plan is included in this Contingency Plan as Attachment A7.2.

Evacuation routes are posted in the building. Site specific safety training shall include evacuation procedures and evacuation routes. Means of egress shall not be blocked and shall be maintained from each waste management unit.

Procedures for evacuation are based upon the type of hazard:

- For high hazard emergencies immediate evacuation is required. Call 911 from a phone located out of the immediate area of danger. Request assistance and instruct Van Buren Township Emergency Response to notify U-M Police Department (U-M DPSS) at 734-763-1131.
- For fire/explosion or fire-related emergencies, call 911, request additional support, and instruct Van Buren Township Emergency Response to notify U-M Police Department (U-M DPSS) at 734-763-1131; all building occupants shall be notified and shall evacuate the building.
- For emergency response or an incidental spill, personnel in the immediate area need to be notified of the situation and be ready to evacuate if the situation changes from an emergency response or incidental spill to a high hazard emergency or fire/explosion or fire-related emergency. Call EHS at 734-763-4568, or (after hours) U-M DPSS at 734-763-1131 from a phone located out of the immediate area of danger.

#### A7.D.5 Procedures to Be Used to Ensure that Fires, Explosions, and Releases Do Not Occur, Reoccur, or Spread During the Emergency [R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(e), 264.227, and 264.200]

Whenever there is an imminent or actual emergency situation where the potential or actual release of hazardous waste or hazardous waste constituents may threaten human health or the environment, the facility will implement the following procedures:

All hazardous and mixed waste is stored indoors in tightly closed containers. All waste is segregated by characteristic and stored in appropriate waste management units. All waste management units

incorporate secondary containment in the design to control the migration of released waste to adjacent waste management units. Ignitable waste is stored in Room 117 which has engineering controls in place to minimize the likelihood of fire or explosion. Containers are opened only when necessary to add or remove waste and air monitoring is conducted during commingling activities, when appropriate.

The procedures outlined in Sections A2, Chemical and Physical Analyses, and A3, Waste Analysis Plan, are designed to ensure that waste is accurately profiled and that the handling of waste from collection to comingling within the facility occurs without incident.

During an emergency, the emergency coordinator must take all reasonable measures necessary to ensure that fires, explosions, or releases do not recur or spread to other areas of the facility, or off site. Actions that may be employed include:

Hazardous and mixed waste is stored in closed containers only. There are no processes or operations at the storage facility. The engineering controls in place in the ignitable storage room, Room 117, are designed to prevent the initiation and spread of fire or explosion. Each waste management unit is designed as secondary containment to control the migration of released waste to adjacent waste management units.

Attachment A7.3 is a detailed description of the type, amount, and location of all emergency equipment at the Beck Road Facility.

# A7.D.6 Procedures to Be Used to Monitor Equipment Should Facility Operations Cease [R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(f)]

Hazardous and mixed waste is stored in closed containers. General facility equipment and structures will be monitored during normal operations and inspections. Container integrity will be evaluated during normal operations and inspections. Stoppage of facility operations will not affect the operation of the facility.

# A7.D.7 Procedures to Provide Proper Treatment, Storage, and Disposal for Any Released Materials

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(g)]

The following is a summary of hazardous and mixed waste and LLRW that may be stored at the facility:

- Liquids and solids containing RCRA and Michigan Act 451 regulated constituents.
- Liquids and solids containing short-lived or long-lived radioisotopes mixed with RCRA and Michigan Act 451 regulated constituents.
- Aqueous liquids and solids containing RCRA and Michigan Act 451 regulated constituents being held for Nuclear Regulatory Commission (NRC) decay to background or deregulation.
- Aqueous liquids containing short-lived or long-lived radioisotopes in scintillation vials.
- Liquid and solid LLRW containing short-lived or long-lived radioisotopes.
- Sealed and plated sources, stock vials.

Maps and room numbers are posted in the contingency plan and throughout the facility and are readily accessible by emergency coordinators to identify waste management unit locations. Hazardous waste accepted at the facility is assigned to specific waste management units based on characteristic and compatibility. Each container accepted at the facility is logged onto the operation's log and assigned to a waste management unit based on waste type and characteristic. The comingled waste is recorded on a

(6-1-2021)

mixed waste drum worksheet and the facility drum list. This information is stored in the office adjacent to the waste management units, and is remotely available on the U-M EHS network. In the event of a spill, the emergency coordinator can use this reference information to identify the location, container, contents, characteristic, and amount. Each waste management unit is equipped with a sloped floor designed to contain any release and a spill will be readily visible upon inspection. Disposal of released material will be in accordance with the material's contents and characteristics.

## A7.D.8 Procedures for Cleanup and Decontamination

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(h)]

The following activities are required following emergency response actions to ensure the capability is maintained and improved, if necessary, to respond to future emergencies. The actions are also necessary to maintain compliance with environmental regulations.

## <u>Clean-Up</u>

Upon completion of the response actions, all recovered waste, contaminated soil or surface water (if applicable), debris, or other material resulting from releases, fire, or explosion at the facility will be removed from the site by the EHS employees as designated by the emergency coordinator. All waste will be evaluated and profiled, as necessary, for proper disposal. Waste analysis will be consistent with the test methods indicated in Table A3.A.1, Waste Analysis Procedures. The waste will then be properly packaged, labeled, and either stored at the site, or collected directly at the site by a contracted waste hauler for disposal. No waste that may be incompatible with the released material will be handled at the facility until clean up is completed.

Upon return to the office, Hazmat personnel responding to the incident are required to fill out an Emergency Response Incident Report (Attachment A7.10) for documentation purposes. This form is maintained in the EHS files. EHS management reviews the form to determine if procedural improvements or modifications may be necessary.

Following the completion of the response actions, response equipment will be decontaminated for future use, if appropriate. If the equipment cannot be properly decontaminated, it will be disposed with the waste/debris disposal operation. Equipment that cannot be reused will be replaced before hazardous waste operations at the facility resume.

## Personnel Exposure Concerns

For medical evaluation and treatment of minor injuries, employees should report to U-M Occupational Health Services (OHS). For serious injuries, dial 911 and request medical assistance. Do not move an injured person unless they are in further danger from the situation. Persons with life threatening injuries should be transported to the St. Joseph Mercy Hospital Emergency Room. The receiving medical facility will be contacted and briefed on the potential exposure situation.

If the nature of the illness or injury allows, the supervisor will fax a completed Illness or Injury Report Form to the number on the form. This form may also be sent with the employee as authorization for treatment. If not completed and sent with the employee for treatment, the form will be completed and submitted as required by U-M policy. The Illness or Injury Report Form can be obtained at

http://www.workconnections.umich.edu/wp-content/uploads/2017/02/IllnessOrInjuryReport.pdf .

## Decontamination Procedures

• Personnel responding to incidental spills shall decontaminate and/or properly dispose any equipment

used in the cleanup process. All supplies and equipment used in the cleanup procedure must be replenished. All contaminated materials generated from a spill cleanup shall be properly packaged and given to Hazmat personnel for disposal.

- For emergency response spill response, all suits, boots, and equipment used in the response shall be decontaminated prior to storage for reuse. If cleaning is not possible, the item shall be properly packaged and given to Hazmat personnel for disposal. All supplies and equipment used in the cleanup procedure must be replenished.
- For high hazard emergency spill response, all suits, boots, and equipment used in the response shall be decontaminated prior to storage for reuse. If cleaning is not possible, the item shall be properly packaged and given to Hazmat personnel for disposal. All supplies and equipment used in the cleanup procedure must be replenished.
- U-M DPSS or an EHS representative or their designee shall deem the site safe for re-entry.
- Upon termination of the incident, all barricade tape and posted signs shall be removed.

## A7.E RESUMPTION OF OPERATIONS AND RECORD KEEPING REQUIREMENTS

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(h) and (i)]

The following subsections identify procedures that must be followed to meet the notification and record keeping requirements.

## A7.E.1 Procedures to Be Used Prior to Resuming Operations

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(h)]

Prior to resuming operations in the affected area(s), Beck Road Facility will inspect all emergency equipment to ensure that the proper cleanup procedures have been implemented and all equipment has been cleaned and is fit for its intended use.

Prior to resuming operations, the regional, state, and local authorities will be notified that no waste that may be incompatible with the released materials will be handled until cleanup is complete, and that all emergency equipment has been inspected for re-use.

Within 15 days after the incident, a report will be submitted by the U-M EHS Director, or his designee, to the Director of the MMD, as detailed in Section A7.E.2(b).

## A7.E.2 Record Keeping Requirements

[R 299.9607 and 40 CFR §§264.51, 264.52, and 264.56(i)]

## A7.E.2(a) Operating Record

In the event of an emergency situation that requires implementation of the Contingency Plan, the emergency coordinator will record in the operating record the time, date, and description of the event. The operating record is maintained by Beck Road Facility and can be found at the following location: 8501 Beck Road, Belleville, MI.

## A7.E(2)(b) Written Incident Report

Within 15 days of an incident requiring implementation of the Contingency Plan, the Beck Road Facility will submit a written incident report to the EGLE at the following address:

Director of MMD EGLE P.O. Box 30241 Lansing, MI 48909

The report will contain the following information:

- 1. Name, address, telephone number, and site identification number of the facility and the owner/operator.
- 2. Date, time, and type of incident.
- 3. Type and quantity of materials involved.
- 4. Assessment of actual or potential hazards to human health and the environment.
- 5. Extent of injuries, if applicable.
- 6. Estimated quantity and disposition of recovered materials that resulted from the incident.

# A7.F PROCEDURE FOR ASSESSING OFFSITE RISK DURING AND AFTER A FIRE/EXPLOSION INCIDENT OR SIGNIFICANT RELEASE

[R 299.9521(3)(b) and R 299.9607 and 40 CFR §264.56(d)]

A checklist is presented in Attachment A7.4 (Checklist for Tracking Facility Response Actions During and After a Fire/Explosion Incident).

Any of the actions incorporated into this procedure are to be performed by Beck Road Facility personnel to the extent possible. However, much of the offsite sampling and monitoring will, in all likelihood, have to be performed by a duly authorized governmental agency as such activities can present legal barriers to Beck Road Facility.

## A7.G PROCEDURES FOR REVIEWING AND AMENDING THE CONTINGENCY PLAN [R 299.9607 and 40 CFR §264.54]

This contingency plan will be periodically reviewed and amended as appropriate. The frequency of the review will be determined as follows:

- A review will be completed on an annual basis to determine if changes to the facility, personnel, or operations require change and amendment of the plan.
- A review will be completed whenever the facility operating license is revised under Part 111 of the Natural Resource and Environmental Protection Act, 1994 PA 451 as amended.
- The Contingency Plan will be reviewed after implementation, and immediately amended if necessary, if the plan fails in an emergency.
- An amendment will be completed if the list of emergency coordinators changes.
- An amendment will be completed if the list of emergency response equipment changes.
- A review will be completed if changes occur to the facilities design, construction, operation, maintenance, or other circumstances in a way that materially increases the potential for fires, explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency.

Whenever the Contingency Plan is modified, the facility will provide the agencies with a copy of the modified plan.

Attachment A7.1 Documentation of Arrangements with Local Authorities

University of Michigan--Beck Road Facility Site ID No.: MIR 000 001 1834 Contingency Plan, Revision 0

University of Michigan--Beck Road Facility Site ID No.: MIR 000 001 1834 Contingency Plan, Revision 0

Attachment A7.2 Evacuation Plan and Routes

#### Attachment A7.2 Evacuation Plan and Evacuation Plan Maps

## Evacuation Plan

Procedures for evacuation are based upon the type of hazard:

- For high hazard emergencies immediate evacuation is required. Call 911 from a phone located out of the immediate area of danger. Request assistance and instruct Van Buren Township (VBTW) Emergency Response to notify U-M Police Department (U-M DPSS) at 734-763-1131.
- For fire/explosion or fire-related emergencies, call 911, request additional support, and instruct Van Buren Township Emergency Response to notify U-M Police Department (U-M DPSS) at 734-763-1131; all building occupants shall be notified and shall evacuate the building.
- For emergency response or an incidental spill, personnel in the immediate area need to be notified of the situation and be ready to evacuate if the situation changes from an emergency response or incidental spill to a high hazard emergency or fire/explosion or fire-related emergency. Call EHS at 734-763-4568, or (after hours) U-M DPSS at 734-763-1131 from a phone located out of the immediate area of danger.
- The verbal signal will be "evacuation required, proceed to the nearest unobstructed exit."

If the emergency coordinator determines that the area surrounding the facility should be evacuated, then the VBTFD will be notified.

When necessary, notification will be made to the National Response Center with the following information:

- 1. Name and telephone number of the reporting individual
- 2. Name and address of the facility
- 3. Time and type of incident
- 4. Type and quantity of materials involved
- 5. Possible hazards to human health or the environment
- 6. Extent of injuries, if applicable

The facility's evacuation maps are included below. The evacuation maps are posted in the building. Site specific safety training shall include evacuation procedures and evacuation routes. Means of egress shall not be blocked and shall be maintained from each waste management unit.





Attachment A7.3 Emergency Equipment Description

## Emergency Equipment Description Safety Supply Inventory

Date / / (Check if items are stocked)

#### Room 101

| Documents               | Purpose or Capability | Minimum Quantity | Quantity Needed |
|-------------------------|-----------------------|------------------|-----------------|
| Contingency Plan        | Response Protocols    | 1 Copy           |                 |
| Phone Numbers           | Contact Information   | 1 Copy           |                 |
| Tools and Equipment     | Purpose or Capability | Minimum Quantity | Quantity Needed |
| Flashlights             | Portable Illumination | 2 Triple D Cell  |                 |
| Flashlight—Rechargeable | Portable Illumination | 1                |                 |

#### Room 109

| PPE                            | Purpose or Capability         | Minimum Quantity                | Quantity Needed |
|--------------------------------|-------------------------------|---------------------------------|-----------------|
| Personal Protection            | Personal Protection           | 1 Copy Located in Safety        |                 |
| Equipment (PPE) Selection      | Equipment (PPE) Selection     | Supply Cabinet                  |                 |
| Guides                         | Guides                        |                                 |                 |
| North Air Purifying Respirator | Respiratory Protection—       | 4 pair Organic Vapor/           |                 |
| Cartridges                     | See PPE Selection Guide       | HEPA/Acid Gas                   |                 |
| North Air Purifying            | Respiratory Protection—       | 2 Large                         | Large           |
| Respirator—1/2 face            | See PPE Selection Guide       | 2 Medium                        | Medium          |
| Madh Air Durifair a            | Desciratory Destantion        | 2 Small                         | Small           |
| North Air Puritying            | Respiratory Protection—       | 2 Med / Large                   | Med / Large     |
| Nitrile Olavas, Hassa Duty     | See PPE Selection Guide       | 2 Small                         | Smail           |
| Nithle Gloves, Heavy Duty      | Find Protection—              | 12 Pairs, Size 10 (13           |                 |
| Nitrile Clause, Single Lles    | Hand Distostion               | 2 Bayas VI                      | XI.             |
| Nithle Gloves, Single Use      | See DDE Selection Cuide       | 2 Boyes La                      |                 |
| Butyl Gloves                   | Hand Protection               | 6 Daire Size 10 (17 mil)        |                 |
| Dulyi Gloves                   | See PPE Selection Guide       | 0 Pans, 5126 10 (17 mil)        |                 |
| Silver Shield / 4H Gloves      | Hand Protection—              | 6 Pairs, Large                  |                 |
|                                | See PPE Selection Guide       | . 2                             |                 |
| Leather Palm Gloves            | Hand Protection               | 12 Pairs                        |                 |
| Shoe Covers (Booties)-         | Splash Protection—            | 12 Pairs                        |                 |
| Saranex / Polycoat             | See PPE Selection Guide       |                                 |                 |
| Shoe Covers (Booties)-         | Splash Protection—            | 12 Pairs                        |                 |
| Latex Response Boots           | See PPE Selection Guide       |                                 |                 |
| Coverall Protective Suits      | Splash Protection—            | 2 CPF3, XXL                     | XXL             |
|                                | See PPE Selection Guide       | 2 CPF3, XL                      | XL              |
|                                |                               | 6 Proshield 2/NexGen, XXL       | XXL             |
|                                |                               | 6 Proshield 2/NexGen, XL        |                 |
| Cafaty Oceanian                | Eve Salash Distantion         | 6 Proshield 2/NexGen, Lq        | Lq              |
| Salety Goggles                 | Eye Splash Protection         | 6 Cente (sizes: 40 to 46)       |                 |
| Lab Coals                      | Splash Protection             | 6 Coals (sizes: 40 to 46)       | Quantity Needed |
| Diagtia Showal                 | Purpose or Capability         | Minimum Quantity                | Quantity Needed |
| Flastic Shover                 | Liquid Movement               | 1                               |                 |
| Vermiculte                     | Liquid Absorption (5 gal/93)  | 4 Page (4 ft <sup>3</sup> each) |                 |
| Floor Dri                      | Oil Absorption (5 gal/IC)     | 4 Days (4 it each)              |                 |
| Floor Dfl<br>Salvant Adaashant | Cill Absorption (4 gal/bag)   | 4 Dags (40 pounds each)         |                 |
| Solvent Adsorbent              | Solvent Absorb (Up to 15 gal) | 160 Pounds                      |                 |
| Aciu Neutralizer               | gal)                          | Soo Pounds                      |                 |

## Emergency Equipment Description Safety Supply Inventory

Date: \_\_/\_\_/\_\_\_

| Room 109 (Cont.)       |                                                 |                                     |                 |
|------------------------|-------------------------------------------------|-------------------------------------|-----------------|
| Spill Supplies         | Purpose or Capability                           | Minimum Quantity                    | Quantity Needed |
| Caustic Neutralizer    | Neutralize Bases (Up to 4 gal)                  | 50 Pounds                           |                 |
| Blue Pads              | Liquid Absorption                               | 1 Packet (new bundle)               |                 |
| Paper Towels           | Liquid Absorption                               | 4 Packets                           |                 |
| Heavy Duty Wipes       | Liquid Absorption                               | 4 Packets                           |                 |
| Litmus (pH) Paper      | pH Testing of Liquids                           | 1 Roll ( range 1 to 12)             |                 |
| Radiation Safety Kit   | Radioactive Clean Up                            | 1                                   |                 |
| Sorbent Booms P-200    | Spill Containment (12<br>Gallons per Box of 12) | 8 (3 inch x 4 feet)                 |                 |
| Sorbent Pillows P-300  | Spill Containment (8<br>Gallons per Box of 16)  | 8 (7 x 15 inch)                     |                 |
| Broom                  | Debris Collection                               | 1                                   |                 |
| Dust Pan               | Debris Collection                               | 1                                   |                 |
| Tools and Equipment    | Purpose or Capability                           | Minimum Quantity                    | Quantity Needed |
| First Aid Kit          | Minor Injuries up to 25<br>People               | 1 Johnson & Johnson<br>Kit No. 8161 |                 |
| Rotary Drum Pump       | Liquid Transfer                                 | 1 (1 inch ID hose)                  |                 |
| Flashlight Batteries   | Replacement Batteries                           | 6 D Cell                            |                 |
| 9 Volt Batteries       | Replacement Batteries                           | 2                                   |                 |
| GM Meter               | Radiation Detection                             | 1 (uses 2 D cell batteries)         |                 |
| Ion Chamber            | Radiation Exposure<br>Measurement               | 1 (uses 2 x 9 volt batteries)       |                 |
| Drum Truck             | Drum Movement                                   | 1                                   |                 |
| Floor Mop with Wringer | Floor Cleaning                                  | 1                                   |                 |
| Containers             | Purpose or Capability                           | Minimum Quantity                    | Quantity Needed |
| Plastic Pails          | Material Collection                             | 12 x 5 gal, HDPE                    |                 |
| Plastic Bags           | Material Collection                             | 10 (4 mil, 38 x 72") (55 gal)       |                 |
| Empty Drums            | Material Collection                             | 2 x 30 gal Poly Closed Head         |                 |
| Empty Drums            | Material Collection                             | 2 x 55 gal Poly Closed Head         |                 |
| Empty Drums            | Material Collection                             | 1 x 30 gal DM Closed Head           |                 |
| Empty Drums            | Material Collection                             | 1 x 55 gal DM Closed Head           |                 |
| Empty Drums            | Material Collection                             | 2 x 15 gal Poly Closed Head         |                 |
| Empty Drums            | Material Collection                             | 2 x 30 gal Poly Open Head           |                 |
| Empty Drums            | Material Collection                             | 2 x 55 gal Poly Open Head           |                 |
| Empty Drums            | Material Collection                             | 2 x 30 gal DM Open Head             |                 |
| Empty Drums            | Material Collection                             | 2 x 55 gal DM Open Head             |                 |
| Bung Gaskets           | Replacement Gaskets                             | 20 x 2"<br>20 x ¾"                  | 2"<br>3⁄4"      |
| Drum Lid Gaskets       | Replacement Gaskets                             | 8 (55 DM open head)                 |                 |
| 4 Gallon Boxes         | Material Collection                             | 12 (holds 4 x 1 gallon each)        |                 |

#### Storage and Waste Areas

| Tools and Equipment      | Purpose or Capability   | Minimum Quantity           | Quantity Needed |
|--------------------------|-------------------------|----------------------------|-----------------|
| Non-Sparking Bung Wrench | Open/Close Drum Bungs   | 1 Beryllium Copper         |                 |
| Speed Wrench             | Open/Close Drum Bolts   | 1 With 15/16 Inch Socket   |                 |
| Organic Vapor Detector   | Organic Vapor Detection | 1 (From NCTF As Necessary) |                 |

## Emergency Equipment Description Fire Extinguisher Monthly Inventory

Date: \_\_/\_\_/ By \_\_\_\_

| No. | Location                                    | Туре | Size   | Seal | Gauge | Mount | Visible | Cylinder |
|-----|---------------------------------------------|------|--------|------|-------|-------|---------|----------|
| 1   | Outside Room<br>218                         | ABC  | 5 Lbs  |      |       |       |         |          |
| 2   | 2 <sup>nd</sup> Floor Hall<br>Near Room 200 | ABC  | 10 Lbs |      |       |       |         |          |
| 3   | Outside Room<br>207                         | ABC  | 10 Lbs |      |       |       |         |          |
| 4   | Outside Room<br>105                         | ABC  | 10 Lbs |      |       |       |         |          |
| 5   | Room 109 (S.E.<br>Door)                     | ABC  | 10 Lbs |      |       |       |         |          |
| 9   | Outside Rooms<br>115/125                    | CO2  | 10 Lbs |      |       |       |         |          |
| 6   | Room 109B                                   | ABC  | 10 Lbs |      |       |       |         |          |
| 7   | Room 113                                    | ABC  | 10 Lbs |      |       |       |         |          |
| 8   | Outside Room<br>117                         | ABC  | 20 Lbs |      |       |       |         |          |
| 10  | 1 <sup>st</sup> Floor North<br>Exit         | ABC  | 10 Lbs |      |       |       |         |          |
| 13  | Room 120                                    | CO2  | 10 Lbs |      |       |       |         |          |
| 14  | Room 120                                    | ABC  | 10 Lbs |      |       |       |         |          |
| 12  | Room 100                                    | ABC  | 10 Lbs |      |       |       |         |          |
| 11  | Outside Room<br>101                         | ABC  | 10 Lbs |      |       |       |         |          |

Comments:

A check mark ( $\sqrt{}$ ) indicates that the conditions observed are satisfactory. Unsatisfactory conditions are noted in the comments.

#### Attachment A7.4 Checklist for Tracking Facility Response Actions During and After a Fire / Explosion Incident

## Checklist for Tracking Facility Response Actions During and After a Fire / Explosion Incident

| 1. Air Monitoring During Incident |                                                                                          |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| University of Michigan EHS st     | University of Michigan EHS staff in combination with Van Buren Township hazmat response. |  |  |  |
| mutual aid agencies, and stat     | e and federal officials—as soon as can be mobilized.                                     |  |  |  |
| Status Date                       | Action                                                                                   |  |  |  |
| Completed                         |                                                                                          |  |  |  |
|                                   | 1.a If possible, model dispersion and deposition of the                                  |  |  |  |
|                                   | release with real time parameters to determine likely                                    |  |  |  |
|                                   | extent of plume and assist local authorities making                                      |  |  |  |
|                                   | shelter-in-place or evacuation recommendations.                                          |  |  |  |
|                                   | 1.b Establish air monitoring equipment in locations upwind                               |  |  |  |
|                                   | and downwind of the incident using                                                       |  |  |  |
|                                   | visual/meteorological data, and update, as needed, with                                  |  |  |  |
|                                   | modeling results. Monitoring should continue until                                       |  |  |  |
|                                   | downwind data is consistent with upwind values.                                          |  |  |  |
|                                   | 1.c Conduct air monitoring utilizing approved methods and                                |  |  |  |
|                                   | include as many of the identified substances as                                          |  |  |  |
|                                   | possible. Using a multi gas meter, the main parameters                                   |  |  |  |
|                                   | may include VOC, O <sub>2</sub> , CO, H <sub>2</sub> S and LEL. In the event of          |  |  |  |
|                                   | a fire/explosion, continuous particulate matter less than                                |  |  |  |
|                                   | 2.5 microns in diameter ( $PM_{2.5}$ ) should be monitored as                            |  |  |  |
|                                   | well. Drager tubes may be used to monitor specific                                       |  |  |  |
|                                   | substances beyond the capability of a multi gas meter.                                   |  |  |  |
| Comments or notes:                | Comments or notes:                                                                       |  |  |  |

| 2. Record Incident Parameters<br>U-M Beck Road Facility and FHS staff—as soon as access is available to employees or |                   |     |                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------|-------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| witnesses                                                                                                            |                   |     |                                                                                                                                                                                                                  |
| Status                                                                                                               | Date<br>Completed |     | Action                                                                                                                                                                                                           |
|                                                                                                                      |                   | 2.a | Document the time line. Include the time incident<br>began, the duration of the incident (end point), and the<br>specific location of the incident and all other locations<br>and equipment involved.            |
|                                                                                                                      |                   | 2.b | Identify employees/witnesses having direct involvement or direct knowledge of the incident.                                                                                                                      |
|                                                                                                                      |                   | 2.c | Identify any relevant witnesses to the incident                                                                                                                                                                  |
|                                                                                                                      |                   | 2.d | Gather local meteorological data. <u>www.weather.gov/dtx/</u><br>Detroit, Willow Run Airport (KYIP)<br>Record relevant information and note observations by<br>personnel with direct involvement of the incident |
| Comments or                                                                                                          | notes:            |     |                                                                                                                                                                                                                  |

| 3. Develop a Narrative<br>U-M Beck Road Facility and EHS staff—develop a narrative of the incident. |           |                                                                                                                                                                                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Status                                                                                              | Date      | Action                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                     | Completed |                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                     |           | 3.a Sequence of events and time line leading up to and<br>throughout the incident. Review the incident with employees<br>directly involved and other on-site witnesses. Include all staff<br>and truck drivers as appropriate. Access all manifests, drum<br>worksheets and Excel files, as appropriate. |  |
|                                                                                                     |           | 3.b Identify specific event locations, materials, substances,<br>and equipment involved in incident. Include drum numbers or<br>manifest information as appropriate.                                                                                                                                     |  |
|                                                                                                     |           | 3.c Identify and characterize, to the extent possible, the size<br>and scope of incident. Include estimated drum volumes or<br>manifest container volumes.                                                                                                                                               |  |
| Comments or                                                                                         | notes:    |                                                                                                                                                                                                                                                                                                          |  |

| 4. Comprehensive List of Wastes, Materials or Substances Involved |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| U-M Beck Ro                                                       | U-M Beck Road Facility and EHS staff—characterize or profile the involved material. |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Status                                                            | Date                                                                                | Action                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Claide                                                            | Completed                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                   | Completed                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                   |                                                                                     | 4.a Identify all of the constituents and waste codes from the drum worksheets, chemical constituent sheets or waste manifests that may have been involved in the incident. Use a generic list initially, and then develop a final list as specifics become available. Verify that the most up-to-date records are used.                                           |  |  |
|                                                                   |                                                                                     | 4.b Determine the volume, concentration, and weight of<br>substances identified above, and determine how they<br>may have been altered by the incident (e.g., pyrolysis<br>products, decomposition, degradation, and both known<br>and potential mixture reactions). Based on this<br>information, begin developing a list of substances of<br>potential concern. |  |  |
|                                                                   |                                                                                     | 4.c Ensure that information critical to the response activity is kept in the information repository identified by the EGLE.                                                                                                                                                                                                                                       |  |  |
| Comments or                                                       | notes:                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                          |  |  |

| 5. Post In  | cident Sample C                                                                             | ollection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| U-M Beck Ro | U-M Beck Road Facility and EHS staff—to characterize or profile the post incident material. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Status      | Date                                                                                        | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|             | Completed                                                                                   | 5.a Develop a sampling plan, as appropriate, for the collection of waste, groundwater, soil, ash, airborne dust, debris, surface water, and/or wipe samples. The plan may take into account fallout density, air monitoring data, visual observation, or air modeling. A statistical sampling design may not be necessary for the screening evaluation. Post-incident, off-site sampling may not be necessary based on air monitoring data and lack of off-site migration or deposition. |  |  |  |
|             |                                                                                             | 5.b Collect a sufficient number of samples to identify and characterize concentrations of substances involved in the incident. Include sampling for background concentrations.                                                                                                                                                                                                                                                                                                           |  |  |  |
|             |                                                                                             | 5.c Complete the analysis of collected samples and review<br>by comparison to relevant environmental protection<br>standards. Environmental protection standards may<br>have to be developed for some chemicals or<br>environmental media.                                                                                                                                                                                                                                               |  |  |  |
|             |                                                                                             | 5.d Identify and document any substances found to be present in levels that exceed environmental protection standards.                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Comments or | notes:                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |

| <ol> <li>Evaluate Data for Screening Potential Risk</li> <li>U-M Beck Road Facility and EHS staff—to evaluate risk and guide additional action.</li> </ol> |                   |                                                                                                                                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Status                                                                                                                                                     | Date<br>Completed | Action                                                                                                                                                        |  |  |
|                                                                                                                                                            |                   | 6.a Compare existing data to relevant environmental protection standards.                                                                                     |  |  |
|                                                                                                                                                            |                   | 6.b Prepare risk assessment report and submit it to the EGLE, Office of Waste Management and Radiological Protection (MMD) within 90 days after the incident. |  |  |
|                                                                                                                                                            |                   | 6.c If less than environmental protection standards, no<br>further action is needed for off-site potential releases<br>upon approval of the MMD.              |  |  |
| 6.d If the data is greater than the environmental protection                                                                                               |                   |                                                                                                                                                               |  |  |

|                    |  | standards, proceed with corrective action after notification from the EGLE. |  |  |
|--------------------|--|-----------------------------------------------------------------------------|--|--|
| Comments or notes: |  |                                                                             |  |  |
|                    |  |                                                                             |  |  |

## Attachment A7.5 Building Emergency Response Plan



# Figure 4 Beck Road Storage Facility Emergency Response Plan - First Floor

Attachment A7.5, Building Emergency Response Plan Form EQP 5111 Attachment Template A7, Contingency Plan

#### Figure 5 Beck Road Storage Facility Emergency Response Plan - Second Floor MIR 000 001 834 - 8501 Beck Rd. Belleville, MI 48111 734-763-4568



(6-1-2021)

## Attachment A7.6 Location of Waste Management Units



# **Beck Road Storage Facility**

## Attachment A7.7 Hazardous Waste Accepted at the Facility

## TABLE A2.A.2 HAZARDOUS WASTES ACCEPTED AT THE FACILITY

| Hazardous<br>Waste<br>Code | Waste Description                                                                           | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation                    | Hazardous Waste<br>Management Unit |
|----------------------------|---------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|------------------------------------|
| F002                       | Spent solvents generated<br>by teaching, research and<br>supporting operations              | Toxicity                           | Listed wastes; toxic waste hazard code                | Rooms 109B, 113, or<br>116         |
| F003                       | Spent solvents generated<br>by teaching, research and<br>supporting operations              | Ignitability                       | Listed wastes; ignitable waste hazard code            | Room 117                           |
| F004                       | Spent solvents generated by teaching, research and supporting operations                    | Toxicity                           | Listed wastes; toxic waste hazard code                | Rooms 109B, 113, or<br>116         |
| F005                       | Spent solvents generated<br>by teaching, research and<br>supporting operations              | Ignitability, toxicity             | Listed wastes; ignitable and toxic waste hazard codes | Room 117                           |
| D001                       | Ignitables generated by teaching, research and supporting operations                        | Ignitability                       | Ignitable waste hazard code                           | Room 117                           |
| D001                       | Oxidizers generated by<br>teaching, research and<br>supporting operations                   | Ignitability                       | Ignitable waste hazard code                           | Room 113                           |
| D002                       | Corrosive acids generated<br>by teaching, research and<br>supporting operations             | Corrosivity                        | Corrosive waste hazard code                           | Room 111                           |
| D002                       | Corrosive bases generated<br>by teaching, research and<br>supporting operations             | Corrosivity                        | Corrosive waste hazard code                           | Room 109A                          |
| D003                       | Reactives generated by<br>teaching, research and<br>supporting operations                   | Reactivity                         | Reactive waste hazard code                            | Room 109A                          |
| D004                       | Waste containing arsenic<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste         | Rooms 109B, 113, or<br>116         |

| Hazardous<br>Waste<br>Code | Waste Description                                                                                        | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation               | Hazardous Waste<br>Management Unit |
|----------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------|
| D005                       | Waste containing barium<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D006                       | Waste containing cadmium<br>generated by teaching,<br>research and supporting<br>operations              | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D007                       | Waste containing chromium<br>generated by teaching,<br>research and supporting<br>operations             | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D008                       | Waste containing lead<br>generated by teaching,<br>research and supporting<br>operations                 | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D009                       | Waste containing mercury generated by teaching, research and supporting operations                       | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D010                       | Waste containing selenium<br>generated by teaching,<br>research and supporting<br>operations             | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D011                       | Waste containing silver<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D018                       | Waste containing benzene<br>generated by teaching,<br>research and supporting<br>operations              | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D019                       | Waste containing carbon<br>tetrachloride generated by<br>teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |

5
| Hazardous<br>Waste<br>Code | Waste Description                                                                                            | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation               | Hazardous Waste<br>Management Unit |
|----------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------|
| D021                       | Waste containing<br>chlorobenzene generated<br>by teaching, research and<br>supporting operations            | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D022                       | Waste containing chloroform<br>generated by teaching,<br>research and<br>supporting operations               | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D023                       | Waste containing o-cresol<br>generated by teaching,<br>research and supporting<br>operations                 | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D024                       | Waste containing m-cresol<br>generated by teaching,<br>research and supporting<br>operations                 | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D025                       | Waste containing p-cresol<br>generated by teaching,<br>research and supporting<br>operations                 | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D026                       | Waste containing cresol<br>generated by teaching,<br>research and supporting<br>operations                   | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D027                       | Waste containing 1,4-<br>dichlorobenzene generated<br>by teaching, research and<br>supporting operations     | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D028                       | Waste containing 1,2-<br>dichloroethane generated by<br>teaching, research and<br>supporting operations      | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D029                       | Waste containing 1,1-<br>dichloroethylene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |

Attachment A7.7, Hazardous Waste Accepted at the Facility

5

| Hazardous<br>Waste<br>Code | Waste Description                                                                                          | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation               | Hazardous Waste<br>Management Unit |
|----------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------|
| D030                       | Waste containing 2,4-<br>dinitrotoluene generated by<br>teaching, research and<br>supporting operations    | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D032                       | Waste containing<br>hexachlorobenzene<br>generated by teaching,<br>research and supporting<br>operations   | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D033                       | Waste containing<br>hexachlorobutadiene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D034                       | Waste containing<br>hexachloroethane<br>generated by teaching,<br>research and supporting<br>operations    | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D035                       | Waste containing methyl<br>ethyl ketone generated by<br>teaching, research and<br>supporting operations    | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D036                       | Waste containing<br>nitrobenzene generated<br>by teaching, research and<br>supporting operations           | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D038                       | Waste containing pyridine<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |

5

| Hazardous<br>Waste<br>Code | Waste Description                                                                                          | Hazardous Waste<br>Characteristics | Basis for Hazardous<br>Designation               | Hazardous Waste<br>Management Unit |
|----------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------|
| D039                       | Waste containing<br>tetrachloroethylene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D040                       | Waste containing<br>trichloroethylene<br>generated by teaching,<br>research and supporting<br>operations   | Toxicity                           | Hazard code for toxicity characteristic waste    | Rooms 109B, 113, or<br>116         |
| D041                       | Waste containing 2,4,5-<br>trichlorophenol generated<br>by teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D042                       | Waste containing 2,4,6-<br>trichlorophenol generated<br>by teaching, research and<br>supporting operations | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| D043                       | Waste containing vinyl<br>chloride generated by<br>teaching, research and<br>supporting operations         | Toxicity                           | Hazard code for toxicity<br>characteristic waste | Rooms 109B, 113, or<br>116         |
| U138                       | Waste containing methyl<br>iodide generated by<br>teaching, research and<br>supporting operations          | Toxicity                           | Listed waste; hazard code<br>for toxic waste     | Rooms 109B, 113, or<br>116         |
| U151                       | Waste containing<br>mercury generated by<br>teaching, research and<br>supporting operations                | Toxicity                           | Listed waste; hazard code<br>for toxic waste     | Rooms 109B, 113, or<br>116         |

### Attachment A7.8 U.S. DOT Precedence of Hazard Table

#### PRECEDENCE OF HAZARD TABLE

#### §173.2a Classification of a material having more than one hazard.

(a) *Classification of a material having more than one hazard.* Except as provided in paragraph (c) of this section, a material not specifically listed in the §172.101 table that meets the definition of more than one hazard class or division as defined in this part, shall be classed according to the highest applicable hazard class of the following hazard classes, which are listed in descending order of hazard:

(1) Class 7 (radioactive materials, other than limited quantities; and shipments of UN 3507, Uranium hexafluoride, radioactive material, excepted package)

(2) Division 2.3 (poisonous gases).

- (3) Division 2.1 (flammable gases).
- (4) Division 2.2 (nonflammable gases).

(5) Division 6.1 (poisonous liquids), Packing Group I, poisonous-by-inhalation only.

(6) A material that meets the definition of a pyrophoric material in §173.124(b)(1) of this subchapter (Division 4.2).

(7) A material that meets the definition of a self-reactive material in 173.124(a)(2) of this subchapter (Division 4.1).

(8) Class 3 (flammable liquids), Class 8 (corrosive materials), Division 4.1 (flammable solids), Division 4.2 (spontaneously combustible materials), Division 4.3 (dangerous when wet materials), Division 5.1 (oxidizers) or Division 6.1 (poisonous liquids or solids other than Packing Group I, poisonous-by-inhalation). The hazard class and packing group for a material meeting more than one of these hazards shall be determined using the precedence table in paragraph (b) of this section.

(9) Combustible liquids.

(10) Class 9 (miscellaneous hazardous materials).

(b) *Precedence of hazard table for Classes 3 and 8 and Divisions 4.1, 4.2, 4.3, 5.1 and 6.1.* The following table ranks those materials that meet the definition of Classes 3 and 8 and Divisions 4.1, 4.2, 4.3, 5.1 and 6.1:

#### PRECEDENCE OF HAZARD TABLE

| [Hazard class or divisio | n and packing group ] |
|--------------------------|-----------------------|
|--------------------------|-----------------------|

|                       | 4.2 | 4.3 | 5.1<br>I <sup>1</sup> | 5.1<br>II <sup>1</sup> | 5.1<br>III <sup>1</sup> | 6.1, I<br>dermal | 6.1, I<br>oral | 6.1<br>II | 6.1<br>III | 8, I<br>liquid | 8, I<br>solid | 8, II<br>liquid | 8, II<br>solid | 8, III<br>liquid | 8, III<br>solid |
|-----------------------|-----|-----|-----------------------|------------------------|-------------------------|------------------|----------------|-----------|------------|----------------|---------------|-----------------|----------------|------------------|-----------------|
| 3 I <sup>2</sup>      |     | 4.3 |                       |                        |                         | 3                | 3              | 3         | 3          | 3              | (3)           | 3               | (3)            | 3                | (3)             |
| $3 \text{ II}^2$      |     | 4.3 |                       |                        |                         | 3                | 3              | 3         | 3          | 8              | (3)           | 3               | (3)            | 3                | (3)             |
| 3 III <sup>2</sup>    |     | 4.3 |                       |                        |                         | 6.1              | 6.1            | 6.1       | 34         | 8              | (3)           | 8               | (3)            | 3                | (3)             |
| 4.1 II <sup>2</sup>   | 4.2 | 4.3 | 5.1                   | 4.1                    | 4.1                     | 6.1              | 6.1            | 4.1       | 4.1        | (3)            | 8             | (3)             | 4.1            | (3)              | 4.1             |
| 4.1 III <sup>2</sup>  | 4.2 | 4.3 | 5.1                   | 4.1                    | 4.1                     | 6.1              | 6.1            | 6.1       | 4.1        | (3)            | 8             | (3)             | 8              | (3)              | 4.1             |
| 4.2 II                |     | 4.3 | 5.1                   | 4.2                    | 4.2                     | 6.1              | 6.1            | 4.2       | 4.2        | 8              | 8             | 4.2             | 4.2            | 4.2              | 4.2             |
| 4.2 III               |     | 4.3 | 5.1                   | 5.1                    | 4.2                     | 6.1              | 6.1            | 6.1       | 4.2        | 8              | 8             | 8               | 8              | 4.2              | 4.2             |
| 4.3 I                 |     |     | 5.1                   | 4.3                    | 4.3                     | 6.1              | 4.3            | 4.3       | 4.3        | 4.3            | 4.3           | 4.3             | 4.3            | 4.3              | 4.3             |
| 4.3 II                |     |     | 5.1                   | 4.3                    | 4.3                     | 6.1              | 4.3            | 4.3       | 4.3        | 8              | 8             | 4.3             | 4.3            | 4.3              | 4.3             |
| 4.3 III               |     |     | 5.1                   | 5.1                    | 4.3                     | 6.1              | 6.1            | 6.1       | 4.3        | 8              | 8             | 8               | 8              | 4.3              | 4.3             |
| 5.1 I <sup>1</sup>    |     |     |                       |                        |                         | 5.1              | 5.1            | 5.1       | 5.1        | 5.1            | 5.1           | 5.1             | 5.1            | 5.1              | 5.1             |
| $5.1 \text{ II}^1$    |     |     |                       |                        |                         | 6.1              | 5.1            | 5.1       | 5.1        | 8              | 8             | 5.1             | 5.1            | 5.1              | 5.1             |
| $5.1 	ext{ III}^1$    |     |     |                       |                        |                         | 6.1              | 6.1            | 6.1       | 5.1        | 8              | 8             | 8               | 8              | 5.1              | 5.1             |
| 6.1 I,<br>Dermal      |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1            | 6.1              | 6.1             |
| 6.1 I, Oral           |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1            | 6.1              | 6.1             |
| 6.1 II,<br>Inhalation |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 6.1             | 6.1            | 6.1              | 6.1             |
| 6.1 II,<br>Dermal     |     |     |                       |                        |                         |                  |                |           |            | 8              | 6.1           | 8               | 6.1            | 6.1              | 6.1             |
| 6.1 II,<br>Oral       |     |     |                       |                        |                         |                  |                |           |            | 8              | 8             | 8               | 6.1            | 6.1              | 6.1             |
| 6.1 III               |     |     |                       |                        |                         |                  |                |           |            | 8              | 8             | 8               | 8              | 8                | 8               |

#### PRECEDENCE OF HAZARD TABLE

<sup>1</sup>See §173.127.

<sup>2</sup>Materials of Division 4.1 other than self-reactive substances and solid desensitized explosives, and materials of Class 3 other than liquid desensitized explosives.

<sup>3</sup>Denotes an impossible combination.

<sup>4</sup>For pesticides only, where a material has the hazards of Class 3, Packing Group III, and Division 6.1, Packing Group III, the primary hazard is Division 6.1, Packing Group III.

NOTE 1: The most stringent packing group assigned to a hazard of the material takes precedence over other packing groups; for example, a material meeting Class 3 PG II and Division 6.1 PG I (oral toxicity) is classified as Class 3 PG I.

NOTE 2: A material which meets the definition of Class 8 and has an inhalation toxicity by dusts and mists which meets criteria for Packing Group I specified in §173.133(a)(1) must be classed as Division 6.1 if the oral or dermal toxicity meets criteria for Packing Group I or II. If the oral or dermal toxicity meets criteria for Packing Group III or less, the material must be classed as Class 8.

(c) The following materials are not subject to the provisions of paragraph (a) of this section because of their unique properties:

(1) A Class 1 (explosive) material that meets any other hazard class or division as defined in this part shall be assigned a division in Class 1. Class 1 materials shall be classed and approved in accordance with §173.56 of this part;

(2) A Division 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as defined in this part, shall be classed as Division 5.2;

(3) A Division 6.2 (infectious substance) material that also meets the definition of another hazard class or division, other than Class 7, or that also is a limited quantity Class 7 material, shall be classed as Division 6.2;

(4) A material that meets the definition of a wetted explosive in 173.124(a)(1) of this subchapter (Division 4.1). Wetted explosives are either specifically listed in the 172.101 table or are approved by the Associate Administrator (see 173.124(a)(1) of this subchapter); and

(5) A limited quantity of a Class 7 (radioactive) material that meets the definition for more than one hazard class or division shall be classed in accordance with §173.423.

[Amdt. 173-224, 55 FR 52606, Dec. 21, 1990, as amended at 56 FR 66264, Dec. 20, 1991; Amdt. 173-241, 59 FR 67490, Dec. 29, 1994; Amdt. 173-247, 60 FR 48787, Sept. 20, 1995; Amdt. 173-244, 60 FR 50307, Sept. 28, 1995; 64 FR 10776, Mar. 5, 1999; 66 FR 33426, June 21, 2001; 66 FR 45182, 45379, Aug. 28, 2001; 68 FR 45032, July 31, 2003; 80 FR 1151, Jan. 8, 2015]

(e-CFR data is current as of December 20, 2018)

#### Attachment A7.9 U.S. EPA Chemical Compatibility Chart

### Chemical Compatibility Chart

EPA-600/2-80-076 April 1980 A METHOD FOR DETERMINING THE COMPATIBILITY OF CHEMICAL MIXTURES

Municipal Environmental Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268

Caution: This Chart is intended as an indication of some of the hazards that can be expected on mixing chemical wastes. Because of the differing activities of the thousands of compounds that may be encountered, it is not possible to make any chart definitive and all inclusive. It cannot be assumed to ensure compatibility of wastes because wastes are not sclassified as hazardous on the chart, nor do any blanks necessarily mean that the mixture cannot result in a hazard occurring. Detailed instructions as to hazards involved in handling and disposing of any given waste should be obtained from the originator of the waste.



# Attachment A7.10 Emergency Response Incident Report

# University of Michigan Emergency Response Incident Report for Spill, Odor or Smoke

Include the following in your report of the incident.

| Date:                                                                                        |
|----------------------------------------------------------------------------------------------|
| Time:                                                                                        |
| Location:                                                                                    |
| Material:                                                                                    |
| Quantity:                                                                                    |
| EHS Responder:                                                                               |
| Personal Injuries/Exposures:                                                                 |
| Time Complete:                                                                               |
| Response Actions (provide a detailed account of the response actions taken to the incident): |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |
|                                                                                              |

Attachment 6

Contingency Plan

#### FORM EQP 5111 ATTACHMENT TEMPLATE A6 PREPAREDNESS AND PREVENTION

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), R 299.9504, R 299.9508, and R 299.9606 and Title 40 of the Code of Federal Regulations (CFR) §§264.30 through 264.37 establish requirements for preparedness for and prevention of releases of hazardous wastes or constituents at hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003.

This license application template addresses requirements for preparedness for and prevention of releases of hazardous wastes or constituents at the following hazardous waste management facility for the Beck Road Facility in Belleville, Michigan.

(Check as appropriate)

Applicant for Operating License for Existing Facility:

- No waiver requested
- Waiver requested for one or more units for required equipment
  - Waiver requested for one or more units for required aisle space

Applicant for Operating License for New, Altered, Enlarged, or Expanded Facility:

No waiver requested



Waiver requested for one or more units for required equipment

Waiver requested for one or more units for required aisle space

This template is organized as follows:

#### INTRODUCTION

- A6.A REQUIRED EQUIPMENT
  - A6.A.1 Internal Communication System
  - A6.A.2 Emergency Response Communication System
  - A6.A.3 Fire, Spill, and Decontamination Equipment
  - A6.A.4 Adequate Water Volume
- A6.B TESTING AND MAINTENANCE OF EQUIPMENT
- A6.C ACCESS TO COMMUNICATIONS OR ALARM SYSTEM
  - A6.C.1 Multiple Employees Present
  - A6.C.2 Single Employee Present

- A6.D REQUIRED AISLE SPACE
- A6.E STATE OR LOCAL AUTHORITIES
  - A6.E.1 Arrangements with State or Local Authorities
  - A6.E.2 Refusal of State or Local Authorities to Enter into Emergency Response Agreements

| Attachment A6-1 | Inspection Schedule             |
|-----------------|---------------------------------|
|                 |                                 |
| Attachment A6-2 | Emergency Equipment Description |
| Attachment A6-3 | Fire Hydrant Locations          |
| Attachment A6-4 | Inspection Log                  |

# INTRODUCTION

To meet the preparedness and prevention standards, facilities must be operated and maintained in a manner that minimizes the possibility of a fire, explosion, or any unplanned sudden or nonsudden release of hazardous waste or hazardous waste constituents. The regulations require maintenance of equipment, alarms, minimum aisle space, and provisions for contacting local authorities (R 299.9606 and 40 CFR §264.31).

# A6.A REQUIRED EQUIPMENT

[R 299.9606 and 40 CFR §264.32]

The Beck Road Facility is equipped for an efficient response to a release of hazardous and mixed waste and to minimize its effect on the environment. The resources used in this process include an internal communication system, an external emergency response communication system, emergency equipment to contain and decontaminate a release, and fire-control procedures.

# A6.A.1 Internal Communication System

[R 299.9606 and 40 CFR §264.32(a)]

Immediate emergency instructions will be physically communicated directly to all individuals in the facility by voice. This is possible due to the limited number of personnel having access to the facility and to the compact footprint of the regulated part of the facility, with all waste management units being contiguous to one another.

# A6.A.2 Emergency Response Communication System

[R 299.9606 and 40 CFR §264.32(b)]

U-M Beck Road Facility operators carry hand-held two-way radios which are capable of communication with U-M emergency responders and the U-M Police Department (DPS). No voice communication is required to trigger a response from DPS. Each radio is equipped with an emergency button (coded directly to the individual assigned to the radio) that alerts DPS when pressed. Telephones are located near the licensed area (Room 115) and in the office (Room 101). Emergency contact telephone numbers are posted at each phone and at each building exit. Facility operators also carry personal mobile telephones.

# A6.A.3 Fire, Spill, and Decontamination Equipment

[R 299.9606 and 40 CFR §264.32(c)]

Fire extinguishers and an emergency eyewash unit and shower are located at the storage facility. The facility is also equipped with decontamination materials for on-site cleanup operations. The equipment used for decontamination is listed in Table A5.A.1 (Attachment A6-1) under Spill Cleanup and Personal Protection Equipment. Details of the emergency equipment available at the facility are presented in the Safety Supply Inventory (Attachment A6-2), which is Figure 3 of the U-M Emergency Response Contingency Plan.

# A6.A.4 Adequate Water Volume

[R 299.9606 and 40 CFR §264.32(d)]

Water for fire control is provided by fire hydrants located near the facility as shown in Attachment A6-3. Fire hydrants are inspected annually, as coordinated by U-M Environment, Health and Safety (EHS) department, to determine adequate flow rates.

# A6.B TESTING AND MAINTENANCE OF EQUIPMENT

[R 299.9606 and 40 CFR §264.33]

The schedule for testing and maintenance of equipment is detailed in Table A5.A.1 (Attachment A6-1) in Section A5.A, Written Schedule, of this document and is recorded in the facility inspection log (Attachment A6-4).

# A6.C ACCESS TO COMMUNICATIONS OR ALARM SYSTEM

[R 299.9606 and 40 CFR §264.34]

A6.C(1) Multiple Employees Present [R 299.9606 and 40 CFR §264.34(a)]

Immediate emergency instructions will be physically communicated directly to all individuals in the facility by voice. This is possible due to the limited number of personnel having access to the storage facility and to the compact footprint of the regulated part of the facility, with all waste management units being contiguous to one another.

# A6.C(2) Single Employee Present

[R 299.9606 and 40 CFR §264.34(b)]

U-M Beck Road Facility operators carry hand-held two-way radios which are capable of communication with U-M emergency responders and the U-M Police Department (DPS). No voice communication is required to trigger a response from DPS. Each radio is equipped with an emergency button (coded directly to the individual assigned to the radio) that alerts DPS when pressed. Telephones are located near the licensed area (Room 115) and in the office (Room 101). Emergency contact telephone numbers are posted at each phone and at each building exit. Facility operators also carry personal mobile telephones.

# A6.D REQUIRED AISLE SPACE

[R 299.9606 and 40 CFR §264.35]

Aisle space will be maintained at the storage facility by appropriate placement of containers, equipment and supplies to allow unobstructed movement of personnel, fire protection equipment, and spill containment equipment throughout the facility.

Containers of hazardous and mixed waste at the facility may be stored two tiers high on the floors of Rooms 109A, 109B, 111, 113, 116, and 117. The floors in these rooms are sloped to low areas in the centers of the rooms and have secondary containment.

# A6.E STATE AND LOCAL AUTHORITIES

[R 299.9606 and 40 CFR §264.37]

#### A6.E.1 Arrangements with State and Local Authorities [R 299.9606 and 40 CFR §264.37(a)(1)]

The Van Buren Township Police and Fire Departments, the Huron Valley Ambulance and St. Joseph Mercy Hospital staff are invited to tour the Beck Road Facility and the surrounding buildings on the property. The tour of the facility will familiarize them with the floor plan of the facility, and the nature and characteristics of the waste stored in the facility. A review of the engineering controls in place at the facility designed to facilitate management of hazardous wastes will also be provided. A record of attendance at the facility tour will be kept on file at the Beck Road Facility. Copies of the contingency plan have been submitted to each of the organizations listed above.

# A6.E.2 Refusal of State or Local Authorities to Enter into Emergency Response Agreements

[R 299.9606 and 40 CFR §264.37(b)]

No state or local authority has declined to enter into emergency response arrangements.

Attachment A6-1 Inspection Schedule (Table A5.A.1)

|                                                                                                                                                                                         | Attachment A6-1 Table A5.A.1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Item                                                                                                                                                                                    | Frequency <sup>1</sup>                                                                                 | Types of Problems                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Containers                                                                                                                                                                              | Weekly                                                                                                 | Visually inspect the containers to verify they are closed. Visually<br>inspect for leaking containers, deterioration of containers, rust,<br>corrosion, or trends that indicate possible decline of structural<br>integrity; check container for labels identifying the chemical(s) or<br>chemical class in the drum, the EPA hazardous waste code(s), the<br>date the container was placed in storage, and the generator's name<br>and location. |  |  |  |  |  |
| Containment System                                                                                                                                                                      | Weekly                                                                                                 | Inspect the floor and curbing of the storage area for cracking,<br>flaking, chipping, or gouging, and for excessive wear or<br>deterioration. Inspect secondary containment for liquids, weekly,<br>when waste is brought to the facility.                                                                                                                                                                                                        |  |  |  |  |  |
| Communication<br>Devices – Telephone                                                                                                                                                    | Weekly                                                                                                 | Check for dial tone. Determine if outgoing calls can be made.                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| General Area:<br>Warning signs<br>"No Smoking" signs<br>Doors<br>Windows<br>Building                                                                                                    | Weekly                                                                                                 | Check that warning signs are posted; check that doors and<br>windows are secured. Inspect container placement and stacking to<br>determine if the required aisle space for inspection and use of<br>emergency equipment exists. Check labels to determine if the<br>waste indicated is stored in the proper/designated area. Annually<br>inspect roof, walls, and entrances for settling, cracks, and spalling<br>in concrete.                    |  |  |  |  |  |
| Concrete Slab<br>Loading/Unloading<br>Area                                                                                                                                              | Weekly (Daily when in use)                                                                             | Visually inspect for cracking, flaking, chipping, gouging, and excessive wear or deterioration. Inspect the loading area for heavy stains.                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Safety Equipment:<br>Eye Wash<br>Shower                                                                                                                                                 | Monthly                                                                                                | Check for operability.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Fence around the Unit                                                                                                                                                                   | Bi-Annually                                                                                            | Check for integrity.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Water                                                                                                                                                                                   | Annually                                                                                               | Verify inspection of fire hydrants for pressure, volume, and operability.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Building                                                                                                                                                                                | Weekly (Daily when in use)                                                                             | Visually inspect building to insure that it is secure.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Area between<br>Loading/Unloading<br>Dock and Container<br>Storage Area                                                                                                                 | Weekly                                                                                                 | Visually inspect for stains and excessive wear or deterioration.                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Radiation Monitoring<br>Equipment                                                                                                                                                       | Weekly (Daily when in use)                                                                             | Check for operability.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| SPILL CLEANUP AND F                                                                                                                                                                     | PERSONAL PROTECTI                                                                                      | ON EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Goggles<br>Protective Booties<br>Protective Gloves<br>Protective Coveralls<br>Air Purifying<br>Respirators<br>Absorbents and<br>Neutralizers<br>Recovery Drums<br>Air Monitoring Meters | Monthly and after<br>each incident<br>response requiring<br>use of personal<br>protection<br>equipment | Check for sufficient inventory; verify that expiration dates have not<br>lapsed. Check condition of protective equipment and gear. Safety<br>Supply Inventory form shall be used to guide the inventory.                                                                                                                                                                                                                                          |  |  |  |  |  |
| <sup>1</sup> Daily refers to work day                                                                                                                                                   | s when operations invol                                                                                | ving hazardous waste occur                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

Attachment A6-2 Emergency Equipment Description (Figure 3 of Beck Road Facility Contingency Plan)

# Figure 3

## Beck Road Storage Facility MIR 000 001 834 Emergency Equipment Description Safety Supply Inventory

Date: / / By: \_\_\_\_

(Check if items are stocked)

| Room 101                |                       | (                |                 |
|-------------------------|-----------------------|------------------|-----------------|
| Documents               | Purpose or Capability | Minimum Quantity | Quantity Needed |
| Contingency Plan        | Response Protocols    | 1 Сору           |                 |
| Phone Numbers           | Contact Information   | 1 Сору           |                 |
| Tools and Equipment     | Purpose or Capability | Minimum Quantity | Quantity Needed |
| Flashlights             | Portable Illumination | 2 Triple D Cell  |                 |
| Flashlight—Rechargeable | Portable Illumination | 1                |                 |

#### Room 109

| PPE                            | Purpose or Capability                      | Minimum Quantity                | Quantity Needed |
|--------------------------------|--------------------------------------------|---------------------------------|-----------------|
| Personal Protection            | Personal Protection                        | 1 Copy Located in Safety        |                 |
| Equipment (PPE) Selection      | Equipment (PPE) Selection                  | Supply Cabinet                  |                 |
| Guides                         | Guides                                     |                                 |                 |
| North Air Purifying Respirator | Respiratory Protection—                    | 4 pair Organic Vapor/           |                 |
| Cartridges                     | See PPE Selection Guide                    | HEPA/Acid Gas                   |                 |
| North Air Purifying            | Respiratory Protection—                    | 2 Large                         | Large           |
| Respirator—1/2 face            | See PPE Selection Guide                    | 2 Medium                        | Medium          |
|                                |                                            | 2 Small                         | Small           |
| North Air Purifying            | Respiratory Protection—                    | 2 Med / Large                   | Med / Large     |
| Respirator—Full Face           | See PPE Selection Guide                    | 2 Small                         | Small           |
| Nitrile Gloves, Heavy Duty     | Hand Protection—                           | 12 Pairs, Size 10 (13           |                 |
|                                | See PPE Selection Guide                    | inches)                         |                 |
| Nitrile Gloves, Single Use     | Hand Protection—                           | 2 Boxes XL                      | XL              |
|                                | See PPE Selection Guide                    | 2 Boxes Lg                      | Lg              |
| Butyl Gloves                   | Hand Protection—                           | 6 Pairs, Size 10 (17 mil)       |                 |
|                                | See PPE Selection Guide                    |                                 |                 |
| Silver Shield / 4H Gloves      | Hand Protection—                           | 6 Pairs, Large                  |                 |
|                                | See PPE Selection Guide                    |                                 |                 |
| Leather Palm Gloves            | Hand Protection                            | 12 Pairs                        |                 |
| Shoe Covers (Booties)—         | Splash Protection—                         | 12 Pairs                        |                 |
| Saranex / Polycoat             | See PPE Selection Guide                    |                                 |                 |
| Shoe Covers (Booties)—         | Splash Protection—                         | 12 Pairs                        |                 |
| Latex Response Boots           | See PPE Selection Guide                    |                                 |                 |
| Coverall Protective Suits      | Splash Protection—                         | 2 CPF3, XXL                     | XXL             |
|                                | See PPE Selection Guide                    | 2 CPF3, XL                      | XL              |
|                                |                                            | 6 Proshield 2/NexGen, XXL       | XXL             |
|                                |                                            | 6 Proshield 2/NexGen, XL        | XL              |
|                                |                                            | 6 Proshield 2/NexGen, Lg        | Lg              |
| Safety Goggles                 | Eye Splash Protection                      | 6 Pairs                         |                 |
| Lab Coats                      | Splash Protection                          | 6 Coats (sizes: 40 to 46)       |                 |
| Spill Supplies                 | Purpose or Capability                      | Minimum Quantity                | Quantity Needed |
| Plastic Shovel                 | Debris Collection                          | 1                               |                 |
| Floor Squeegee                 | Liquid Movement                            | 1                               |                 |
| Vermiculte                     | Liquid Absorption (5 gal/ft <sup>3</sup> ) | 4 Bags (4 ft <sup>3</sup> each) |                 |
| Floor Dri                      | Oil Absorption (4 gal/bag)                 | 4 Bags (40 pounds each)         |                 |
| Solvent Adsorbent              | Solvent Absorb (Up to 15 gal)              | 160 Pounds                      |                 |
| Acid Neutralizer               | Neutralize Acids (Up to 30 gal)            | 300 Pounds                      |                 |

Attachment A6-2, Emergency Equipment Description Page 8 of 17 Form EQP 5111 Attachment Template A6, Prevention and Preparedness

#### Figure 3 Beck Road Storage Facility MIR 000 001 834 Emergency Equipment Description Safety Supply Inventory (Cont.)

Date: / /

| Room 109 (Cont.)       |                                                 |                               |                 |
|------------------------|-------------------------------------------------|-------------------------------|-----------------|
| Spill Supplies         | Purpose or Capability                           | Minimum Quantity              | Quantity Needed |
| Caustic Neutralizer    | Neutralize Bases (Up to 4 gal)                  | 50 Pounds                     |                 |
| Blue Pads              | Liquid Absorption                               | 1 Packet (new bundle)         |                 |
| Paper Towels           | Liquid Absorption                               | 4 Packets                     |                 |
| Heavy Duty Wipes       | Liquid Absorption                               | 4 Packets                     |                 |
| Litmus (pH) Paper      | pH Testing of Liquids                           | 1 Roll ( range 1 to 12)       |                 |
| Radiation Safety Kit   | Radioactive Clean Up                            | 1                             |                 |
| Sorbent Booms P-200    | Spill Containment (12<br>Gallons per Box of 12) | 8 (3 inch x 4 feet)           |                 |
| Sorbent Pillows P-300  | Spill Containment (8<br>Gallons per Box of 16)  | 8 (7 x 15 inch)               |                 |
| Broom                  | Debris Collection                               | 1                             |                 |
| Dust Pan               | Debris Collection                               | 1                             |                 |
| Tools and Equipment    | Purpose or Capability                           | Minimum Quantity              | Quantity Needed |
| First Aid Kit          | Minor Injuries up to 25                         | 1 Johnson & Johnson           |                 |
|                        | People                                          | Kit No. 8161                  |                 |
| Rotary Drum Pump       | Liquid Transfer                                 | 1 (1 inch ID hose)            |                 |
| Flashlight Batteries   | Replacement Batteries                           | 6 D Cell                      |                 |
| 9 Volt Batteries       | Replacement Batteries                           | 2                             |                 |
| GM Meter               | Radiation Detection                             | 1 (uses 2 D cell batteries)   |                 |
| Ion Chamber            | Radiation Exposure                              | 1 (uses 2 x 9 volt batteries) |                 |
|                        | Measurement                                     |                               |                 |
| Drum Truck             | Drum Movement                                   | 1                             |                 |
| Floor Mop with Wringer | Floor Cleaning                                  | 1                             |                 |
| Containers             | Purpose or Capability                           | Minimum Quantity              | Quantity Needed |
| Plastic Pails          | Material Collection                             | 12 x 5 gal, HDPE              |                 |
| Plastic Bags           | Material Collection                             | 10 (4 mil, 38 x 72") (55 gal) |                 |
| Empty Drums            | Material Collection                             | 2 x 30 gal Poly Closed Head   |                 |
| Empty Drums            | Material Collection                             | 2 x 55 gal Poly Closed Head   |                 |
| Empty Drums            | Material Collection                             | 1 x 30 gal DM Closed Head     |                 |
| Empty Drums            | Material Collection                             | 1 x 55 gal DM Closed Head     |                 |
| Empty Drums            | Material Collection                             | 2 x 15 gal Poly Closed Head   |                 |
| Empty Drums            | Material Collection                             | 2 x 30 gal Poly Open Head     |                 |
| Empty Drums            | Material Collection                             | 2 x 55 gal Poly Open Head     |                 |
| Empty Drums            | Material Collection                             | 2 x 30 gal DM Open Head       |                 |
| Empty Drums            | Material Collection                             | 2 x 55 gal DM Open Head       |                 |
| Bung Gaskets           | Replacement Gaskets                             | 20 x 2"<br>20 x ¾"            | 2"<br>3⁄4"      |
| Drum Lid Gaskets       | Replacement Gaskets                             | 8 (55 DM open head)           |                 |
| 4 Gallon Boxes         | Material Collection                             | 12 (holds 4 x 1 gallon each)  |                 |

#### **Storage and Waste Areas**

| Tools and Equipment      | Purpose or Capability   | Minimum Quantity           | Quantity Needed |
|--------------------------|-------------------------|----------------------------|-----------------|
| Non-Sparking Bung Wrench | Open/Close Drum Bungs   | 1 Beryllium Copper         |                 |
| Speed Wrench             | Open/Close Drum Bolts   | 1 With 15/16 Inch Socket   |                 |
| Organic Vapor Detector   | Organic Vapor Detection | 1 (From NCTF As Necessary) |                 |

Date: /\_/\_\_ By: \_\_\_\_

#### Figure 3 Beck Road Storage Facility MIR 000 001 834 Emergency Equipment Description Fire Extinguisher Monthly Inventory

| No. | Location                                    | Туре | Size   | Seal | Gauge | Mount | Visible | Cylinder |
|-----|---------------------------------------------|------|--------|------|-------|-------|---------|----------|
| 1   | Outside Room<br>218                         | ABC  | 5 Lbs  |      |       |       |         |          |
| 2   | 2 <sup>nd</sup> Floor Hall<br>Near Room 200 | ABC  | 10 Lbs |      |       |       |         |          |
| 3   | Outside Room<br>207                         | ABC  | 10 Lbs |      |       |       |         |          |
| 4   | Outside Room<br>105                         | ABC  | 10 Lbs |      |       |       |         |          |
| 5   | Room 109 (S.E.<br>Door)                     | ABC  | 10 Lbs |      |       |       |         |          |
| 9   | Outside Rooms<br>115/125                    | CO2  | 10 Lbs |      |       |       |         |          |
| 6   | Room 109B                                   | ABC  | 10 Lbs |      |       |       |         |          |
| 7   | Room 113                                    | ABC  | 10 Lbs |      |       |       |         |          |
| 8   | Outside Room<br>117                         | ABC  | 20 Lbs |      |       |       |         |          |
| 10  | 1 <sup>st</sup> Floor North<br>Exit         | ABC  | 10 Lbs |      |       |       |         |          |
| 13  | Room 120                                    | CO2  | 10 Lbs |      |       |       |         |          |
| 14  | Room 120                                    | ABC  | 10 Lbs |      |       |       |         |          |
| 12  | Room 100                                    | ABC  | 10 Lbs |      |       |       |         |          |
| 11  | Outside Room<br>101                         | ABC  | 10 Lbs |      |       |       |         |          |

Comments:

A check mark ( $\sqrt{}$ ) indicates that the conditions observed are satisfactory. Unsatisfactory conditions are noted in the comments.

Attachment A6-2, Emergency Equipment Description

Page 10 of 17 Form EQP 5111 Attachment Template A6, Prevention and Preparedness (

Attachment A6-3 Fire Hydrant Locations

## Beck Road Storage Facility Fire Hydrant Locations



Attachment A6-4 Inspection Log

# **INSPECTION LOG**

# University of Michigan Environment, Health and Safety (EHS) Beck Road Storage Facility, EPA ID: MIR 000 001 834 8501 Beck Road Belleville, MI 48111 (734) 487-3259

Instructions: Perform inspection of facility, if conditions are satisfactory write "SAT" in the conditions

observed column. If there are any discrepancies list them in the conditions observed column also.

| A. General Facility                                                  | <b>Conditions Observed on Date:</b> |
|----------------------------------------------------------------------|-------------------------------------|
| 1. All door entrances and windows properly secured                   |                                     |
| 2. No signs of unauthorized entry                                    |                                     |
| 3. No signs of vandalism or theft                                    |                                     |
| 4. No signs of flooding or fire                                      |                                     |
| 5. No electrical hazards identified                                  |                                     |
| 6. Fire extinguishers in designated locations, and charged           |                                     |
| 7. Ventilation and lighting system operating properly                |                                     |
| 8. No evidence of eating, drinking, smoking                          |                                     |
| 9. Aisle space adequate for emergency equipment                      |                                     |
| 10. Emergency supplies, monitoring equipment & PPE available         |                                     |
| 11. Emergency supplies storage cabinet inspected (needs noted below) |                                     |
| 12. Fire exits are clear and unobstructed                            |                                     |
| 13. Storage and work areas organized and uncluttered                 |                                     |
| 14. Emergency eyewash and shower station tested (1st week of month)  |                                     |
| 15. Annual water availability inspection conducted on                |                                     |
| 16. Biannual inspection of perimeter fences conducted on             |                                     |
| 17. Operation's log up to date                                       |                                     |
| 18. Forklift inspected and operational                               |                                     |
| 19. Verify telephones are operational - check for dial tone          |                                     |

| <b>B. Appropriate Postings Throughout the Facility</b>    | <b>Conditions Observed</b> |
|-----------------------------------------------------------|----------------------------|
| 1. NRC "Notice to Employee"                               |                            |
| 2. EGLE "Notice to Employee" (Form EQC 1627)              |                            |
| 3. EGLE Radioactive Material Registration (Form EQP 1614) |                            |
| 4. Radioactive Materials Restricted Area (entrances)      |                            |
| 5. No smoking signs (2+ entrances)                        |                            |
| 6. Emergency phone numbers                                |                            |
| 7. Radiological Emergency Procedures                      |                            |
| 8. MSDS location poster                                   |                            |

# **RCRA** Waste Storage Areas Properly Identified and Segregated

| C. Corrosive Base and Reactive Area 109A            | Conditions Observed |
|-----------------------------------------------------|---------------------|
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |

| D. Toxics Area 109B                                 | Conditions Observed |
|-----------------------------------------------------|---------------------|
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |

| E. Corrosive Acid Room 111                          | <b>Conditions Observed</b> |
|-----------------------------------------------------|----------------------------|
| 1. Waste containers identified and labeled properly |                            |
| 2. No signs of leakage from waste containers        |                            |
| 3. No signs of deterioration or damaged containers  |                            |
| 4. No evidence of odors                             |                            |
| 5. Containment system in good condition             |                            |

| F. Toxic and Oxidizer Area 113                      | Conditions Observed |
|-----------------------------------------------------|---------------------|
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |

| G. Toxic Room 116                                   | Conditions Observed |
|-----------------------------------------------------|---------------------|
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |

H. Ignitable and Toxic Room 117

**Conditions Observed** 

| 1. Waste containers identified and labeled properly |  |
|-----------------------------------------------------|--|
| 2. No signs of leakage from waste containers        |  |
| 3. No signs of deterioration or damaged containers  |  |
| 4. Ventilation system operating properly            |  |
| 5. No evidence of odors                             |  |
| 6. Containment system in good condition             |  |

| I. Loading / Unloading Area 125      | <b>Conditions Observed</b> |
|--------------------------------------|----------------------------|
| Trenches clear of debris             |                            |
| Containment system in good condition |                            |

#### Comments:

**Note:** For any discrepancies noted in the conditions observed column list the corrective action taken to remedy each discrepancy below.

### Corrective Actions:

Corrective Actions performed by: \_\_\_\_\_

Date corrective actions performed: \_\_\_\_\_

Supplies needed: \_\_\_\_\_

Inspection performed by:

Date: \_\_\_\_\_

Time: \_\_\_\_\_

**Reviewed by:** 

Hazardous Materials Manager: \_\_\_\_\_

Date: \_\_\_\_\_

Radiation Safety Officer:

Date: \_\_\_\_\_

Attachment 7

Closure Plan

# FORM EQP 5111 ATTACHMENT TEMPLATE A11 CLOSURE AND POSTCLOSURE CARE PLANS

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, (Act 451), R 299.9613 and Title 40 of the Code of Federal Regulations (CFR), Part 264, Subpart G, establishes requirements for the closure and, if necessary, postclosure care of hazardous waste management facilities. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003. This license application template addresses requirements for the proper closure and, if necessary, postclosure care of the hazardous waste management units and the hazardous waste management facility for the Beck Road Facility in Belleville, Michigan.

Ensure that all samples collected for waste characterization and environmental monitoring during closure and postclosure care activities are collected, transported, analyzed, stored, and disposed by trained and qualified individuals in accordance with the QA/QC Plan. The QA/QC Plan should, at a minimum, include the written procedures outlined in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, Third Edition, Chapter 1 (November 1986), and its Updates.

This template is organized as follows:

| A11 A        | CLOSURE PLAN |
|--------------|--------------|
| / \     ./ \ |              |

- A11.A.1 Closure Performance Standard
- A11.A.2 Unit-Specific Information
- Table A11.A.1
   Hazardous Waste Management Unit Information
- A11.A.3 Schedule of Final Facility Closure
- A11.A.4 Notification and Time Allowed for Closure
  - A11A.4(a) Extensions for Closure Time
- A11.A.5 Unit-Specific Closure Procedures
  - A11.A.5(a) Closure of Container Storage Areas
- A11.A.6 Certification of Closure
- A11.A.7 Postclosure Notices Filed
- A11.B POSTCLOSURE CARE PLAN
  - A11.B.1 Applicability
  - A11.B.2 Postclosure Care Objectives
  - A11.B.3 Postclosure Care Period Point of Contact
  - A11.B.4 Postclosure Care Activities
  - Table A11.B.1Postclosure Monitoring and Maintenance
  - A11.B.5 Postclosure Care Plan Amendment
  - A11.B.6 Certification of Postclosure
- Attachment A11-1 Location of Waste Management Units
- Attachment A11-2 Waste Analysis Procedures
- Attachment A11-3 Quality Assurance Plan

# A11.A CLOSURE PLAN

(Check as appropriate)

# A11.A.1 Closure Performance Standard

[R 299.9613 and 40 CFR §264.111]

This Closure Plan is designed to ensure that the facility will be closed in a manner that achieves the following:

- a. Minimizes the need for further maintenance; and
- b. Controls, minimizes, or eliminates, to the extent necessary to protect human health and the environment, postclosure escape of hazardous wastes, hazardous constituents, leachate, contaminated runoff, or hazardous waste decomposition byproducts to the groundwater, surface water, or atmosphere; and, as applicable
- c. Complies with the unit-specific closure requirements for each of the following units:

| $\boxtimes$ | Use and management of containers                                                       | R 299.9614 and 40 CFR §264.178        |
|-------------|----------------------------------------------------------------------------------------|---------------------------------------|
|             | Tank systems                                                                           | R 299.9615 and 40 CFR §264.197        |
|             | Surface impoundments                                                                   | R 299.9616 and 40 CFR §264.228        |
|             | Waste piles                                                                            | R 299.9617 and 40 CFR §264.258        |
|             | Land treatment <sup>a</sup>                                                            | R 299.9618 and 40 CFR §264.280        |
|             | Landfill                                                                               | R 299.9619 and 40 CFR §264.310        |
|             | Incinerators                                                                           | R 299.9620 and 40 CFR §264.351        |
|             | Drip pads <sup>b</sup>                                                                 | R 299.9621 and 40 CFR §264.575        |
|             | Miscellaneous units                                                                    | R 299.9623 and 40 CFR §§264.601-603   |
|             | Hazardous waste munitions and explosive $\ensuremath{storage}\xspace^{\ensuremath{b}}$ | R 299.9637 and 40 CFR §264.1202       |
|             | Boilers and industrial furnaces                                                        | R 299.9808 and 40 CFR §266.102(e)(11) |
|             |                                                                                        |                                       |

<sup>a</sup> Not included in the template

<sup>b</sup> Not yet included in 40 CFR §264.111; therefore not considered

Unit-specific closure procedures are discussed in Section A11.A.5 of this template for each unit type indicated above.

#### A11.A.2 Unit-Specific Information [R 299.9613 and 40 CFR §§264.112(b)(3) and (6)]

# Table A11.A.1 Hazardous Waste Management Units Information

The following table identifies each hazardous waste management unit at the Beck Road Facility subject to the closure requirements of this hazardous waste management facility operating license. The table also includes: each unit's maximum licensed hazardous waste inventory, a list of the waste codes managed in the unit, the anticipated date of closure (if known), and the Page 2 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

estimated duration of closure activities once closure begins. Unit-specific methods for closure and detailed schedules are discussed in Section A11.A.5 of this template.

| Unit<br>Designation                                 | Maximum<br>Inventory<br>(Include Units) | Waste Codes of<br>Hazardous<br>Wastes Managed                                                                                                                                                                                                           | Scheduled<br>Closure<br>Date | Estimated Duration<br>of Closure |
|-----------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|
| Room 109A<br>RCRA Corrosive<br>Base and<br>Reactive | 880 gallons                             | D002, D003                                                                                                                                                                                                                                              | 2050<br>(Estimated<br>Date)  | 180 Days                         |
| Room 109B<br>RCRA Toxic                             | 2530 gallons                            | D004, D005, D006,<br>D007, D008, D009,<br>D010, D011, D018,<br>D019, D021, D022,<br>D023, D024, D025,<br>D026, D027, D028,<br>D029, D030, D032,<br>D033, D034, D035,<br>D036, D038, D039,<br>D040, D041, D042,<br>D043, F002, F004,<br>U138, U151       | 2050<br>(Estimated<br>Date)  | 180 Days                         |
| Room 111<br>RCRA Corrosive<br>Acid                  | 880 gallons                             | D002                                                                                                                                                                                                                                                    | 2050<br>(Estimated<br>Date)  | 180 Days                         |
| Room 113<br>RCRA Toxic and<br>Oxidizer              | 2310 gallons                            | D001, D004, D005,<br>D006, D007, D008,<br>D009, D010, D011,<br>D018, D019, D021,<br>D022, D023, D024,<br>D025, D026, D027,<br>D028, D029, D030,<br>D032, D033, D034,<br>D035, D036, D038,<br>D039, D040, D041,<br>D042, D043, F002,<br>F004, U138, U151 | 2050<br>(Estimated<br>Date)  | 180 Days                         |
| Room 116<br>RCRA Toxic                              | 4730 gallons                            | D004, D005, D006,<br>D007, D008, D009,<br>D010, D011, D018,<br>D019, D021, D022,<br>D023, D024, D025,<br>D026, D027, D028,<br>D029, D030, D032,<br>D033, D034, D035,<br>D036, D038, D039,<br>D040, D041, D042,<br>D043, F002, F004,<br>U138, U151       | 2050<br>(Estimated<br>Date)  | 180 Days                         |
| Room 117<br>RCRA Ignitable<br>and Toxic             | 1870 gallons                            | D001, F003, F005                                                                                                                                                                                                                                        | 2050<br>(Estimated<br>Date)  | 180 Days                         |

 Table A11.A.1 Hazardous Waste Management Units Information

Note: Hazardous and mixed waste with multiple hazardous waste characteristics will be assigned to a waste management unit based on the US DOT Precedence of Hazard Table, Page 3 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

49 CFR 173.2a (See Attachment A7-8).

# A11.A.3 Schedule of Final Facility Closure

[R 299.9613 and 40 CFR §264.112(b)(6)]

The Beck Road Facility is not expected to be closed before the permit expires. For the purpose of this closure plan, 2050 is estimated to be the year of closure. The estimated schedule for closure activities is described in the table below.

#### **Detailed Closure Schedule for Facility Closure**

| Closure Activity                                              | Time Completed |  |
|---------------------------------------------------------------|----------------|--|
| Notification of intent to close facility                      | -60 days       |  |
| Receipt of final volume of hazardous and mixed waste          | -10 day        |  |
| Begin closure activities                                      | 0 days         |  |
| Conduct final drum inventory, inspect and repack              | 0-15 days      |  |
| drums (if needed); prepare waste manifest; prepare            |                |  |
| drums for shipment                                            |                |  |
| Removal/disposal of final waste inventory                     | 15-45 days     |  |
| Collect samples                                               | 45-50 days     |  |
| Sample analysis                                               | 50-70 days     |  |
| Steam cleaning and decontamination of drum storage areas      | 70-80 days     |  |
| (if necessary)                                                |                |  |
| Confirmatory sampling                                         | 80-85 days     |  |
| Sample analysis                                               | 85-105 days    |  |
| Additional steam cleaning (if necessary)                      | 105-115 days   |  |
| Confirmatory sampling and analysis                            | 115-135 days   |  |
| Accounting for all waste shipment manifests                   | 170 days       |  |
| Completion of closure and certification submittal by facility | 180 days       |  |
| representatives and an independent registered                 |                |  |
| Professional Engineer                                         |                |  |

#### A11.A.4 Notification and Time Allowed for Closure

[R 299.9613 and 40 CFR §§264.112(d)(2) and 264.113(a) and (b)]

Final closure activities will be initiated within 90 days of receipt of the final volume of hazardous wastes and completed within 180 days of receipt of the final volume of waste. The tasks and estimated time required for closure shall follow the schedule specified in Section A11.A.3. The Director will be notified by Beck Road Facility 60 days before final closure begins. Final closure will be certified by both Beck Road Facility and an independent, qualified, registered professional engineer of the state of Michigan.

#### A11.A.4(a) Extensions for Closure Time

[R 299.9613 and 40 CFR §264.113(a) and (b)]

In the event an extension for closure for the facility or any unit is necessary, the Beck Road Facility will request an extension in accordance with the requirements of 40 CFR §264.113(a).

No extension beyond the 180 days required under the regulations is anticipated for closure of the facility. If however, an extension would be necessary to properly close the facility, a petition would be sent to the EGLE. The petition would detail requested amendments to the closure schedule listed in Section A11.A.3. This petition must, according to 40 CFR 264.113(a) and (b), demonstrate that the activities required for removal of waste will, of necessity, take longer than 90 days to complete; or

- The hazardous waste management unit or facility has the capacity to receive additional hazardous wastes, or has the capacity to receive non-hazardous wastes if the owner or operator complies with paragraphs 40 CFR 264.113 (d) and (e); and
- There is a reasonable likelihood that he or another person will recommence operation of the hazardous waste management unit or the facility within one year; and
- Closure of the hazardous waste management unit or facility would be incompatible with continued operation of the site; and
- The facility has taken and will continue to take all steps to prevent threats to human health and the environment, including compliance with all applicable permit requirements.

The Director of the Materials Management Division (MMD) may approve an extension to the closure period if the owner or operator complies with all applicable requirements for requesting a closure plan modification.

Any requests for a change in operating plans, facility design, or the approved closure plan will be submitted in writing to the EGLE in a closure plan amendment and will be in compliance with state and federal regulations as outlined in this section.

# A11.A.5 Unit-Specific Closure Procedures

Unit-specific closure procedures are provided for each unit identified in Section A11.A.2 of this template.

# GUIDANCE/REFERENCES

- Part 201, Environmental Remediation, of Act 451. September 1996.
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods SW 846, Update III plus Variations. December 1996. EPA

# A11.A.5(a) Closure of Container Storage Areas

[R 299.9614 and 40 CFR §264.178]

This section describes the procedures for closure of Beck Road Facility. The general closure requirement and specific closure procedures are discussed below.

A. General Closure Requirement

At closure, all hazardous waste and hazardous waste residues will be removed from the containment system. Remaining containers, liners, bases, and soil containing or contaminated with hazardous waste or hazardous waste residues will be decontaminated or removed.

#### B. <u>Specific Closure Procedures</u>

Specific procedures for inventory management, unit inspection, decontamination, sampling and analysis, and additional waste management are discussed below.

#### 1. Inventory and Remedial Waste Management Procedures

Upon formal notification to proceed with closure, no additional hazardous and mixed waste will be accepted at the facility. Furthermore, all hazardous and mixed waste remaining in the inventory will be profiled, packaged, manifested and transported, by contractual agreement, to an approved EPA and/or NRC licensed treatment, storage or disposal facility. Remediation wastes will be characterized for disposal and managed in accordance with Parts 111, 115 and 121 of Act 451 and their administrative rules, as appropriate. Sampling of remediation waste, as necessary, will be based on EPA SW-846 guidelines. After the final inventory has been removed, the facility will be inspected for non-waste items. These non-waste items will be removed and properly disposed.

#### 2. Unit Inspection Procedures

A complete historical record of spills and/or releases at the facility will be reviewed to identify spills requiring decontamination and decommissioning and to locate areas where significant releases may have occurred. These historical records, together with the visual inspection of the empty waste management units, will determine whether the sampling plan needs to be modified. If a modification is required, a closure plan amendment will be submitted to EGLE for review and approval.

3. Decontamination Procedures

The waste management units, including the loading/unloading area, are the structures to be decontaminated. The waste management units are Rooms 109A, 109B, 111, 113, 116 and 117, and the loading/unloading area, all of which are listed on Attachment A11-1, Location of Waste Management Units. All equipment coming into contact with hazardous and mixed waste will be decontaminated at closure or will be characterized, packaged, manifested and transported, by contractual agreement, to an approved EPA and/or NRC licensed treatment, storage or disposal facility.

After all stored hazardous and mixed waste has been removed from the waste management units, a comprehensive radiological survey will be performed. The comprehensive radiological survey will be conducted in each waste management unit, loading/unloading area, and at applicable areas where waste was transported from the loading/unloading area to the waste management units following applicable EGLE, EPA, and NRC protocols. The survey will include the use of appropriate radiation survey meters, and swipes. Collected swipes will be analyzed using a sensitive and calibrated liquid scintillation counter. All identified radiological contamination will be decontaminated using detergents and water. Following decontamination activities, the former areas of contamination will be resurveyed to verify that the areas are at or below background levels. Decontamination activities will be repeated as necessary to reach background levels. Should the decontamination activities fail to adequately clean any surface or equipment, the contaminated material will be segregated and removed for proper
disposal.

During the radiological decontamination activities appropriate measures (collection, containment, berms, etc.) will be in place to prevent any associated liquids from migrating to subsurface soils or to surface waters. All wash water and rinsate liquids will be collected, characterized, and properly disposed.

Following the radiological survey and any radiological decontamination activities, any solid surfaces exhibiting chemical contamination (e.g., staining, discoloration, chemical odors) will be decontaminated. Trained personnel wearing appropriate personal protective equipment will wash each solid surface requiring decontamination. They will first wash the surface with water containing anionic surfactant, followed by high pressure triple rinsing. Washing will be repeated as necessary until there is no longer visual evidence of chemical contamination. Should the decontamination activities fail to adequately clean any surface or equipment the contaminated material will be segregated and removed for proper disposal.

During the chemical decontamination activities, appropriate measures (e.g., collection, containment, berms, etc.) will be in place to prevent any associated liquids from migrating to subsurface soils or to surface waters. All decontamination liquids will be recovered and collected in drums. Samples will be collected using a composite liquid waste sampler (COLIWASA), and will be analyzed for the chemicals of concern listed in Table A3.A.1, Waste Analysis Procedures (Attachment A11-2), Following characterization, all liquids will be properly disposed.

Expendable items used in the decontamination activities--such as mops, brooms, gloves, coveralls, and boots--will be placed in containers and properly disposed. Hand tools (e.g., shovels) and buckets will be washed and rinsed in containers during and following the procedures used to decontaminate the facility. All wastes generated in conjunction with the closure of Beck Road Facility will be characterized for disposal and managed in accordance with Parts 111, 115 and 121 of Act 451 and their administrative rules, as appropriate.

Decontamination procedures and sampling and analytical testing at the facility will be conducted by trained U-M personnel. If necessary, the services of non U-M trained personnel will be obtained at the time of closure notification using contractual procedures established by U-M. The U-M will specify procedures for decommissioning, decontamination, sampling, and testing, and will require the contractor(s) to provide all necessary equipment, training, and protective clothing to safely decontaminate, sample, and test the appropriate areas.

Once the decontamination process for the facility is completed, an independent registered Professional Engineer will visually inspect the Beck Road Facility; review the analytical results; and, if all criteria described above are met, certify the Beck Road Facility as closed.

4. Sampling and Analysis Procedures

If the inspection of the empty waste management units and loading/unloading area reveals no cracks in the floors or evidence of spills, then samples of the low areas on the

floor surface will be taken at a frequency prescribed in EGLE, EPA, and NRC guidance for closure of NRC- licensed facilities to confirm that the surfaces are free of any contamination above background levels. In areas where there are cracks in the floor or evidence of spills, additional swipe samples will be taken at each location to determine if the surface is contaminated. Sampling size will be determined by using a statistical formula as described in *Methods for Evaluating the Attainment of Cleanup Standards*, EPA 230/02-89-042, February 1989, and the *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NUREG-1575)* developed by four U.S. federal agencies: EPA, Nuclear Regulatory Commission, Department of Energy and Department of Defense. Prior to sampling, sampling locations will be submitted to EGLE for approval in the form of a closure plan amendment.

If a spill or release had occurred, and there is a history or visual indication that the floor is in poor condition, tests will be performed on the subsurface. The concrete will be cored at spill areas where cracks or signs of deterioration exist, and subsurface soil samples will be collected using standard drilling techniques. At a minimum, soil samples will be collected directly beneath the concrete floor. Deeper samples may be collected depending on field indicators (e.g., staining, odors, photoionization detector readings). If any contaminated soil or groundwater is found, further sampling and analysis will be conducted to determine the lateral and vertical extent of contamination. Sampling locations and the number of samples will continue until a contamination profile can be constructed. If groundwater is encountered during soil sampling, or if the potential for groundwater contamination exists, it will be sampled and analyzed for chemicals of concern.

If subsurface sampling is required, a closure plan amendment will be submitted to the EGLE for approval detailing the subsurface sampling plan, including standard field operating procedures, prior to the commencement of field work.

Subsurface investigative activities, including sample collection and preservation techniques, and laboratory requirements, will be conducted using procedures described in the *Quality Assurance Plan* (Attachment A11-3), and in a manner that meets EGLE Part 201 requirements, including, at the time, current Part 201 guidance documents and operational memoranda as allowed under Part 111.

All soil and groundwater laboratory analytical results will be compared to Part 111 cleanup criteria. Soil determined to be contaminated will be fully evaluated for proper treatment, disposal, or implementation of site controls to minimize exposure to human health and the environment. This analysis will be conducted using a comprehensive analysis of future site usage and applicable state, including Part 201, and federal regulations.

As described above, analytical and sampling methods described in SW-846 will be used when available.

Hazardous and mixed waste stored at the facility is segregated by waste characteristic. The waste management units within the facility are separated by concrete walls and secondary containment berms that minimize the potential of cross-contamination from one unit to another as a result of a spill or leakage. Therefore, confirmatory samples collected within each waste management unit will be analyzed only for the hazardous waste constituents waste stored in that unit. Samples from the loading/unloading area will be analyzed for all hazardous waste constituents in Attachment A11-2. Attachment A11-2 indicates the hazardous waste constituents that the samples will be analyzed for in each unit. See Attachment A11-2 for analytical methods and reference levels.

5. Additional Waste Management Procedures

Decontamination wastes and materials will be analyzed by the methods outlined in item Number 4 above, Sampling and Analysis Procedures. All wastes generated in conjunction with the closure of this facility will be characterized, classified, and managed in accordance with Parts 111, 115, and 121 of Act 451 and their administrative rules, as appropriate.

## A11.A.6 Certification of Closure [R 299.9613]

Within 60 days of completion of closure Beck Road Facility will submit to the Director of the MMD, by registered mail, a certification that the hazardous waste management unit or facility, as applicable, has been closed in accordance with the specifications in the approved closure plan. The certification will be signed by the Beck Road Facility and by an independent registered professional engineer. Documentation supporting the independent registered engineer's certification will be furnished to the Director of the MMD in accordance with R 299.9613(3), including:

- 1. The results of all sampling and analysis;
- 2. Sampling and analysis procedures;
- 3. A map showing the location where samples were obtained;
- 4. Any statistical evaluations of sampling data;
- 5. A summary of waste types and quantities removed from the site and the destination of these wastes; and
- 6. If soil has been excavated, the final depth and elevation of the excavation and a description of the fill material used.

The certification must be worded as follows:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

# A11.B POSTCLOSURE PLAN

[R 299.9613 and 40 CFR §264.118]

## A11.B.1 Applicability

(Check as appropriate)

Not applicable: Hazardous waste will not be left behind at closure. A survey plat, postclosure care, postclosure certifications, and other notices are not required.

Page 9 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Closure and PostClosure Care Plans, Revision 0

Attachment A11-1 Location of Waste Management Units



# **Beck Road Storage Facility**

## Attachment A11-2 Waste Analysis Procedures

## Waste Analysis Procedures (Table A3.A.1)

| Screening Parameter<br>(Check as appropriate)                            | Rationale for<br>Parameter           | Test Method                                                                       | Reference                             | Frequency                         | Rationale for Frequency                                                                          |
|--------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Waste Code                                                               |                                      |                                                                                   |                                       |                                   |                                                                                                  |
| Ignitability<br>EPA HW No. D001                                          | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 1020<br>(liquids); SW-<br>846 1030<br>(solids) | 40 CFR<br>261.21                      | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Corrosivity<br>EPA HW No. D002                                           | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge;<br>Hydrion Paper;<br>SW-846 9040C                         | Regulated<br>Level: pH<br>≤2 or ≥12.5 | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Reactivity<br>EPA HW No. D003                                            | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 9010C<br>(Total and<br>amendable cyanide)      | 40 CFR<br>261.23                      | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Characteristics D004 to<br>D043 First Utilize Test<br>Method SW-846 1311 |                                      | Then The Test<br>Methods Cited<br>Below                                           |                                       |                                   |                                                                                                  |
| Toxicity—Arsenic<br>EPA HW No. D004                                      | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D                              | Regulated<br>Level:<br>5.0 mg/L       | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Barium<br>EPA HW No. D005                                       | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D                              | Regulated<br>Level:<br>100.0 mg/L     | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Cadmium<br>EPA HW No. D006                                      | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or                                       | Regulated<br>Level:<br>1.0 mg/L       | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

Attachment A11-2, Waste Analysis Procedures

Page 13 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

|                                                      |                                      | 6020D                                                |                                   |                                   |                                                                                                  |
|------------------------------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Toxicity—Chromium<br>EPA HW No. D007                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>5.0 mg/L   | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Lead<br>EPA HW No. D008                     | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>5.0 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Mercury<br>EPA HW No. D009                  | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 7470A or<br>7471B | Regulated<br>Level:<br>0.2 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Selenium<br>EPA HW No. D010                 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>1.0 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Silver<br>EPA HW No. D011                   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 6010D or<br>6020D | Regulated<br>Level:<br>5.0 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| ToxicityBenzene<br>EPA HW No. D018                   | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>0.5 mg/L   | Verified at Time of<br>Collection | Gnerator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination  |
| Toxicity—<br>Carbon Tetrachloride<br>EPA HW No. D019 | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>0.5 mg/L   | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Chlorobenzene<br>EPA HW No. D021            | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>100.0 mg/L | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—Chloroform<br>EPA HW No. D022               | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D             | Regulated<br>Level:<br>6.0 mg/L   | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

Attachment A11-2, Waste Analysis Procedures Page 14 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

|                      |                    | T                           |            |                     |                                                                                 |
|----------------------|--------------------|-----------------------------|------------|---------------------|---------------------------------------------------------------------------------|
| Toxicity—o-Cresol    | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D023      | Waste              | 846 8270E                   | Level:     | Collection          | Profile to Comply with Hazardous waste<br>Determination                         |
|                      |                    |                             | 200.0 mg/L |                     |                                                                                 |
| Toxicity—m-Cresol    | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D024      | Waste              | 846 8270E                   | Level:     | Collection          | Determination                                                                   |
| Taulaita a Oracal    |                    | Oceanates                   | 200.0 mg/L | Marilla Lat The and |                                                                                 |
| l oxicity—p-Cresol   | Hazardous          | Generator<br>Knowledge: SW- | Regulated  | Collection          | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste |
| EPA HW No. D025      | Waste              | 846 8270E                   |            | Collection          | Determination                                                                   |
|                      |                    |                             | 200.0 mg/L |                     |                                                                                 |
| Toxicity—Cresol      | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| EPA HW No. D026      | Hazardous          | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste                                          |
|                      | Waste              | 040 0270L                   | 200.0 mg/L |                     | Determination                                                                   |
| Toxicity—            | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| 1,4-Dichlorobenzene  | Hazardous<br>Waste | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste                                          |
| EPA HW No. D027      | Wallo              | 01002002                    | 7.5 mg/L   |                     |                                                                                 |
| Toxicity—            | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| 1,2-Dichloroethane   | Hazardous          | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste                                          |
| EPA HW No. D028      | Waste              | 040 02000                   | 0.5 mg/L   |                     |                                                                                 |
| Toxicity—            | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| 1,1-Dichloroethylene | Hazardous<br>Waste | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste                                          |
| EPA HW No. D029      | Waste              | 040 02000                   | 0.7 mg/L   |                     |                                                                                 |
| Toxicity—            | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| 2,4-Dinitrotoluene   | Hazardous          | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste                                          |
| EPA HW No. D030      | Waste              | 040 02702                   | 0.13 mg/L  |                     |                                                                                 |
| Toxicity—            | Characteristic     | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste                                           |
| Hexachlorobenzene    | Hazardous          | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste                                          |
| EPA HW No. D032      | waste              | 846 8270E                   | 0.13 mg/L  |                     | Determination                                                                   |
|                      | 1                  | 1                           |            |                     |                                                                                 |

| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
|-----------------------|-----------------------------|-----------------------------|------------|---------------------|----------------------------------------|--|
| Hexachlorobutadiene   | Hazardous<br>Waste          | Knowledge; SW-<br>846 8270F | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D033       | Walto                       | 01002102                    | 0.5 mg/L   |                     | Determination                          |  |
| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| Hexachloroethane      | Hazardous<br>Waste          | Knowledge; SW-<br>846 8270E | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D034       |                             |                             | 3.0 mg/L   |                     |                                        |  |
| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| Methyl Ethyl Ketone   | Hazardous<br>Waste          | Knowledge; SW-<br>846 8260D | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D035       |                             | 0.0002002                   | 200.0 mg/L |                     |                                        |  |
| Toxicity—Nitrobenzene | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| EPA HW No. D036       | Hazardous<br>Waste          | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
|                       |                             | 0.0002.02                   | 2.0 mg/L   |                     |                                        |  |
| Toxicity—Pyridine     | Characteristic<br>Hazardous | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| EPA HW No. D038       | Waste                       | 846 8270E                   | 5 0 mg/l   | Concention          | Determination                          |  |
| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| Tetrachloroethylene   | Hazardous                   | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D039       | Waste                       | 846 8260D                   | 0.7 mg/L   |                     | Determination                          |  |
| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| Trichloroethylene     | Hazardous                   | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D040       | Waste                       | 846 8260D                   | 0.5 mg/L   |                     | Determination                          |  |
| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| 2,4,5-Trichlorophenol | Hazardous                   | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D041       | vvaste 846 8270E            |                             | 400.0 mg/L |                     | Determination                          |  |
| Toxicity—             | Characteristic              | Generator                   | Regulated  | Verified at Time of | Generator Knowledge Provided by Waste  |  |
| 2,4,6-Trichlorophenol | Hazardous                   | Knowledge; SW-              | Level:     | Collection          | Profile to Comply with Hazardous Waste |  |
| EPA HW No. D042       | VVASIC                      | 040 027 UE                  | 2.0 mg/L   |                     |                                        |  |

| Toxicity—Vinyl Chloride<br>EPA HW No. D043                                | Characteristic<br>Hazardous<br>Waste | Generator<br>Knowledge; SW-<br>846 8260D | Regulated<br>Level:<br>0.2 mg/L          | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
|---------------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| Toxicity—Chlorobenzene<br>EPA HW No. F002<br>(See D021)                   | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Methylene Chloride<br>EPA HW No. F002                        | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Ortho-Dichlorobenzene<br>EPA HW No. F002                     | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Tetrachloroethylene<br>EPA HW No. F002<br>(See D039)         | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>Trichloroethylene<br>EPA HW No. F002<br>(See D040)           | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>1,1,1-Trichloroethane<br>EPA HW No. F002                     | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |
| Toxicity—<br>1,1,2-Trichloro-1,2,2-<br>Trifluoroethane<br>EPA HW No. F002 | Listed<br>Hazardous<br>Waste         | Generator<br>Knowledge; SW-<br>846 8260D | Spent Solvent<br>per 40 CFR<br>261.31(a) | Verified at Time of Collection    | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

|                                |                         |                                        |                             |                                   | ,                                                                               |  |
|--------------------------------|-------------------------|----------------------------------------|-----------------------------|-----------------------------------|---------------------------------------------------------------------------------|--|
| Toxicity—                      | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| Trichlorofluoromethane         | Hazardous<br>Waste      | Knowledge; SW-<br>846 8260D            | per 40 CFR<br>261.31(a)     | Collection                        | Profile to Comply with Hazardous Waste                                          |  |
| EPA HW No. F002                |                         | 0.0002002                              | (a)                         |                                   | Determination                                                                   |  |
| Toxicity—                      | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| 1,1,2-Trichloroethane          | Hazardous<br>Waste      | Knowledge; SW-<br>846 8260D            | per 40 CFR<br>261.31(a)     | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                         |  |
| EPA HW No. F002                |                         |                                        |                             |                                   |                                                                                 |  |
| Ignitability— Acetone          | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| EPA HW No. F003                | Hazardous<br>Waste      | Knowledge; SW-<br>846 8260D            | per 40 CFR<br>261.31(a)     | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                         |  |
| Ignitability—                  | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| Cyclohexanone                  | Hazardous<br>Waste      | Knowledge; SW-<br>846 8260D            | per 40 CFR<br>261.31(a)     | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                         |  |
| EPA HW No. F003                |                         |                                        |                             |                                   |                                                                                 |  |
| Ignitability— Ethyl<br>Acetate | Listed<br>Hazardous     | Generator<br>Knowledge; SW-            | Spent Solvent<br>per 40 CFR | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste |  |
| EPA HW No. F003                | Waste                   | 846 8260D                              | 261.31(a)                   |                                   | Determination                                                                   |  |
| Ignitability— Ethyl<br>Benzene | Listed<br>Hazardous     | Generator<br>Knowledge; SW-            | Spent Solvent<br>per 40 CFR | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste |  |
| EPA HW No. F003                | Waste                   | 846 8260D                              | 261.31(a)                   |                                   | Determination                                                                   |  |
| Ignitability— Ethyl Ether      | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| EPA HW No. F003                | Hazardous<br>Waste      | Knowledge; SW-<br>846 8260D            | per 40 CFR<br>261.31(a)     | Collection                        | Profile to Comply with Hazardous Waste Determination                            |  |
| Ignitability— Methanol         | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| EPA HW No. F003                | Hazardous<br>Waste      | Knowledge; SW-<br>846 8260D &<br>8015C | per 40 CFR<br>261.31(a)     | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                         |  |
| Ignitability—                  | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| Methyl Isobutyl Ketone         | Hazardous<br>Waste      | Knowledge; SW-                         | per 40 CFR<br>261 31(a)     | Collection                        | Profile to Comply with Hazardous Waste                                          |  |
| EPA HW No. F003                |                         |                                        | 201.01(0)                   |                                   |                                                                                 |  |
| Ignitability—                  | Listed                  | Generator                              | Spent Solvent               | Verified at Time of               | Generator Knowledge Provided by Waste                                           |  |
| n-Butyl Alcohol                | Hazardous               | Knowledge; SW-                         | per 40 CFR<br>261 31(a)     | Collection                        | Profile to Comply with Hazardous Waste                                          |  |
| EPA HW No. F003                | Waste 846 8260D & 8015C |                                        | 201.01(0)                   |                                   | Determination                                                                   |  |

Attachment A11-2, Waste Analysis Procedures Page 18 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

| Ignitability— Xylene      | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
|---------------------------|--------------------|-------------------------------|-------------------------|---------------------|---------------------------------------------------------|--|
| EPA HW No. F003           | Waste              | 846 8260D                     | 261.31(a)               | Collection          | Determination                                           |  |
| Toxicity—                 | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| Cresols and Cresylic Acid | Hazardous<br>Waste | Knowledge; SW-<br>846 8270E   | per 40 CFR<br>261.31(a) | Collection          | Profile to Comply with Hazardous Waste                  |  |
| EPA HW No. F004           |                    |                               | (-)                     |                     |                                                         |  |
| (See D026)                |                    |                               |                         |                     |                                                         |  |
| Toxicity— Nitrobenzene    | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| EPA HW No. F004           | Hazardous<br>Waste | Knowledge; SW-<br>846 8270F   | per 40 CFR<br>261 31(a) | Collection          | Profile to Comply with Hazardous Waste                  |  |
| (See D036)                | maono              | 010 02/02                     | 201101(0)               |                     |                                                         |  |
| Toxicity—Benzene          | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| EPA HW No. F005           | Hazardous<br>Waste | Knowledge; SW-<br>846 8260D   | per 40 CFR<br>261.31(a) | Collection          | Profile to Comply with Hazardous Waste                  |  |
| (See D018)                |                    |                               | (-)                     |                     |                                                         |  |
| Ignitability, Toxicity—   | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| Carbon Disulfide          | Hazardous<br>Waste | Knowledge; SVV-<br>846 8260D  | per 40 CFR<br>261.31(a) | Collection          | Profile to Comply with Hazardous Waste<br>Determination |  |
| EPA HW No. F005           |                    |                               |                         |                     |                                                         |  |
| Ignitability, Toxicity—   | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| 2-Ethoxyethanol           | Hazardous<br>Waste | Knowledge; SW-<br>846 8260D & | per 40 CFR<br>261.31(a) | Collection          | Profile to Comply with Hazardous Waste<br>Determination |  |
| EPA HW No. F005           |                    | 8015C                         |                         |                     |                                                         |  |
| Ignitability, Toxicity—   | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| Isobutanol                | Hazardous<br>Waste | Knowledge; SW-                | per 40 CFR<br>261 31(a) | Collection          | Profile to Comply with Hazardous Waste                  |  |
| EPA HW No. F005           | Walto              |                               | 201101(0)               |                     | Determination                                           |  |
| Ignitability, Toxicity—   | Listed             | Generator                     | Spent Solvent           | Verified at Time of | Generator Knowledge Provided by Waste                   |  |
| Methyl Ethyl Ketone       | Hazardous<br>Waste | Knowledge; SW-                | per 40 CFR<br>261 31(a) | Collection          | Profile to Comply with Hazardous Waste                  |  |
| EPA HW No. F005           |                    |                               | (                       |                     |                                                         |  |
| (See D035)                |                    |                               |                         |                     |                                                         |  |

| Ignitability, Toxicity— | Listed                                            | Generator                                                                | Spent Solvent           | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
|-------------------------|---------------------------------------------------|--------------------------------------------------------------------------|-------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| 2-Nitropropane          | Waste                                             | 846 8260D                                                                | 261.31(a)               | Collection                        | Determination                                                                                    |
| EPA HW No. F005         |                                                   |                                                                          |                         |                                   |                                                                                                  |
| Ignitability, Toxicity— | Listed                                            | Generator                                                                | Spent Solvent           | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| Pyridine                | Hazardous<br>Waste                                | Knowledge; SW-<br>846 8270E                                              | per 40 CFR<br>261.31(a) | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| EPA HW No. F005         |                                                   |                                                                          |                         |                                   |                                                                                                  |
| (See D038)              |                                                   |                                                                          |                         |                                   |                                                                                                  |
| Ignitability, Toxicity— | Listed                                            | Generator                                                                | Spent Solvent           | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| Toluene                 | Waste                                             | 846 8260D                                                                | 261.31(a)               | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| EPA HW No. F005         |                                                   |                                                                          | · · · ·                 |                                   |                                                                                                  |
| Toxicity—Methyl Iodide  | Listed                                            | Generator                                                                | Listed per 40           | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| EPA HW No. U138         | Hazardous<br>Waste                                | Knowledge; SW-<br>846 8260D                                              | CFR 261.31(f)           | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| Toxicity—Mercury        | Listed                                            | Generator                                                                | Listed per 40           | Verified at Time of               | Generator Knowledge Provided by Waste                                                            |
| EPA HW No. U151         | Hazardous<br>Waste                                | Knowledge; SW-<br>846 7470A or<br>7471B                                  | CFR 261.31(f)           | Collection                        | Profile to Comply with Hazardous Waste<br>Determination                                          |
| Free Liquids            | Determine if<br>Waste<br>Contains Free<br>Liquids | Generator<br>Knowledge;<br>Paint Filter<br>Liquids Test:<br>SW-846 9095B | Liquid or Solid         | Verified at Time of<br>Collection | Generator Knowledge Provided by Waste<br>Profile to Comply with Hazardous Waste<br>Determination |

<sup>1</sup> According to R 299.9630 and 40 CFR §264.1034(d), TSDFs must identify and meet specific technical requirements for all process vents associated with distillation, fractionation, thin-film evaporation, solvent extraction, or air/stream stripping processes that manage wastes with a 1 part per million by weight (ppmw) or greater total organics concentration on a time-weighted annual average basis. Total organic concentrations in the waste can be measured using SW-846 Method 8260B. According to R 299.9631 and 40 CFR §264.1050, TSDFs must also determine if its equipment contains or contacts organic wastes with 10 percent or greater total organic content. The total organic content can be determined using (1) American Society of Testing and Materials Methods D2267-88, E169-87, or E260-85, (2) SW-846 Method 8260B, or (3) knowledge of the nature of the wastes stream or the waste generating process.

Attachment A11-3 Quality Assurance Plan

University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Closure and PostClosure Care Plans, Revision 0

# Section 1 QUALITY ASSURANCE OBJECTIVES

Data Quality Objectives (DQOs) will be established for each major sample collection effort. DQOs are the quantitative and qualitative descriptions of the data required to support an environmental decision or action. As target values for data quality, they are not necessarily criteria for acceptance or rejection of data. The data user develops DQOs for a specific purpose. The DQO development process involves three stages--including (1) defining the question or decision to be made, (2) clarifying and precisely identifying the information required, and (3) designing a data collection program.

The DQOs for sample collection and analysis at the Beck Road Storage Facility are:

- To document that hazardous waste and hazardous wastes constituents have not been released from the storage facility
- To document that hazardous waste and hazardous waste constituents are not present in quantities of concern in the soil beneath the facility

The following parameters are indicators of data quality: accuracy, precision, completeness, representativeness, and comparability. Quantitative goals for the data quality indicator parameters are discussed in detail in Section 5 (see Table 5-1). These parameters will be determined by quality control measures taken in the field and in the laboratory. Field activities will be assessed by blanks and replicates and laboratory activities will be subject to compliance screening. Frequencies of quality control measures are discussed in detail in Section 8 (see Table 8-1).

#### ACCURACY AND PRECISION

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter. Analytical accuracy can be determined using known reference materials or matrix spikes. Spiking of reference materials into the actual sample matrix is the preferred technique because it quantifies the effects of the matrix on the analytical accuracy. Accuracy can be expressed as the percent recovery (P) as determined by the following equation:

Attachment A11-3, Quality Assurance Plan

Page 23 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

$$P = \frac{SSR - SR}{SA} \times 100$$

where:

SSR = spiked sample result SR = sample result (native) SA = spike added

Precision is the measure of the agreement or repeatability of a set of replicate results obtained from repeat determinations made under the same conditions. The precision of a duplicate determination can be expressed as the relative percent difference (RPD), which is determined by the following equation:

$$RPD = \frac{|X_1 - X_2|}{X_1 + X_2} \times 200$$

where:

 $X_1 = first duplicate value$  $X_2 = second duplicate value$ 

For a given laboratory analysis, the replicate RPD values are tabulated and the mean and standard deviation of the RPD are calculated. Control limits for precision are usually plus or minus two standard deviations from the mean.

Accuracy and precision will be monitored by using field replicate, matrix spike, and matrix spike duplicate samples. These data alone cannot be used to evaluate accuracy and precision of individual samples but will be used to assess the long-term accuracy and precision of the analytical method.

#### COMPLETENESS

Completeness is defined as the percentage of analytical measurements made that are judged to be valid with validity being defined by the DQOs. Percent completeness is calculated as the number of valid analyses divided by the total number of analyses performed multiplied by 100. Nationwide, the Contract Laboratory Programs data have been found to be 80 to 85 percent complete.

Attachment A11-3, Quality Assurance Plan Page 24 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

-----

#### REPRESENTATIVENESS

Representativeness expresses the degree to which sample data accurately and precisely represent parameter variations at a sampling point. Representativeness is a measure of how closely the measured results reflect the actual distribution and concentration of certain chemical compounds in the medium sampled. Section 2 describes the procedures to be used to collect samples. This process will generate samples that are as representative as possible. Documentation of laboratory and field procedures will be used to establish that protocols have been followed and that sample identification and integrity have been maintained.

#### COMPARABILITY

Comparability is the term that describes the confidence with which one data set can be compared to another. Comparability refers to such issues as using standard field and analytical techniques and reporting data in the same units. This criterion becomes important if more than one field team is collecting samples or more than one laboratory is analyzing the samples.

# Section 2 SAMPLE HANDLING

A required part of any sampling and analytical program is the integrity of the sample, from sample collection to data reporting. This includes the ability to trace the possession and handling of samples from the time of collection, through analysis and final disposition. The essential components of this chain are summarized below.

#### SAMPLE CUSTODY

The field sampling personnel are responsible for the care and custody of samples until they are delivered (or shipped) to the laboratory custodian.

The sample custody procedures to be used for this program conform to the guidelines established in SW-846, Section 2. The sampling coordinator will be responsible for implementing and maintaining sample custody in the field.

Laboratory sample custody procedures will be implemented and maintained by sample custodians at the receiving laboratories. Copies of all field and laboratory custody records will be returned to the central project file.

#### FIELD CHAIN OF CUSTODY

Before collecting field samples, the sampling coordinator will issue containers with labels attached to field samplers. Field samplers will label each sample collected, filling in the appropriate information in waterproof ink. The cap of each container will be sealed with a tape bearing the sample number. The field sampler will be responsible for collecting the samples and for logging the samples into assigned field notebooks until they are transferred to the sampling coordinator. The sampling coordinator will acknowledge receipt of the samples from the field sampler in writing and verify that chain-of-custody procedures have been followed. The sampling coordinator will then transcribe the field sample information to the chain-of-custody

Attachment A11-3, Quality Assurance Plan

Page 26 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

record in duplicate. One copy will be retained by the sampling coordinator, and the other will accompany the samples during shipment.

#### TRANSFER OF SAMPLES

The sample will be clearly labelled with sample identification number, analysis required, media, date and time of sampling, and sampling initials. The person receiving the samples will sign, date, and note the time of sample receipt on the documentation form. Each sample shipment will be accompanied by documentation, which identifies the contents of the shipment.

#### LABORATORY SAMPLE HANDLING

A custodian at the laboratory will verify that the containers are intact and that the documentation accompanying the samples matches the actual contents. Any anomalies, such as broken bottles, elevated temperatures, and missing labels, will also be documented by the laboratory custodian. The laboratory will retain sample identification tags, data sheets, original instrument output records, and logbooks, as part of the final file.

#### SAMPLE DISPOSAL

The samples will be disposed of at a licensed hazardous waste facility in accordance with RCRA regulations after the analyses have been completed.

#### DATA DOCUMENTATION BY THE LABORATORY

All data will be documented to meet the specific requirements for data submitted for analyses as described in Section 3.

#### FINAL FILE

The final file will contain raw laboratory data in addition to sample transfer documentation summaries of quality control checks and analytical results.

# Section 3 ANALYTICAL PROCEDURES

Samples collected during the investigation will be analyzed at the selected laboratory, using analytical methods selected from SW-846, Test Methods for Evaluating Solid Waste, Third Edition, December 1986, as amended.

#### SAMPLE MATRICES

Soil samples will be analyzed for the parameters stored at the facility. The following analyses will be performed as described below.

#### VOLATILE ORGANIC COIWPOUNDS

Samples will be analyzed for volatile organic compounds by the analytical methods indicated in Table A3.A.1, Waste Analysis Procedures (Attachment A11-1).

#### SEMI-VOLATILE ORGANIC COMPOUNDS

Samples will be analyzed for semi-volatile organic compounds by the analytical methods indicated in Table A3.A.1, Waste Analysis Procedures, (Attachment A11-1).

#### METALS

Samples will be analyzed for metals by the analytical methods and extraction procedure indicated in Table A3.A.1, Waste Analysis Procedures, (Attachment A11-1).

#### METHOD SUBSTITUTION

The analytical plan will be reviewed before closure to assess the continued applicability and appropriateness of the listed methods to satisfy the objectives of the closure plan.

#### Section 4

#### DATA REDUCTION, VALIDATION, AND REPORTING

Data reduction, validation, and reporting are steps in the overall management and use of analytical data.

#### DATA REDUCTION

Data reduction is the review, manipulation, and calculations performed to translate the raw laboratory output to the final reported concentrations. All data reduction will be performed in the laboratory. The laboratory will retain copies of all laboratory worksheets, laboratory notebooks, calculation worksheets, standards records, maintenance records, calibration records, and associated quality control records. These sources will be available for inspection and audit and to assess the quality of the analytical data.

#### DATA VALIDATION

Data validation is the review of laboratory analytical data to assess the quality of the data and to evaluate if it can be used to meet the project objectives. The data validation will be performed by a qualified reviewer who is not directly involved in laboratory operations nor in performing the analyses.

The reviewer will assess sample-specific analytical data, associated field and laboratory QA/QC data, and the raw laboratory data to evaluate the performance of the laboratory as compared to the requirements of the laboratory analytical method, the laboratory QA/QC procedures, and the QA/QC requirements of this guidelines document.

The reviewer will evaluate instrument calibration and performance, compliance with required holding times, analyte identification and quantitation, and the possible presence of contamination in the samples on the basis of the analysis of field and laboratory blanks. The accuracy of the analysis will be determined by assessing recoveries of surrogate compounds and analyzing spiked samples. The precision of the analysis will be determined by analyzing

duplicate samples. Matrix spike and matrix spike duplicate analyses will also be evaluated to assess whether there are qualities of the sample matrix that may lower the quality of the analytical results.

The actual performance of the laboratory will be compared to the performance criteria of the analytical method and the Quality Assurance Project Plan (QAPP). The reviewer will note any deficiencies and, where possible, assess the effect of the deficiencies on the quality of the data. The reviewed data will then be compared to the DQOs and the project-specific requirements to determine if it is usable to support project decisions. Data may be found to be acceptable for use, acceptable for use with qualifications or unacceptable for use. Where the data is found to be acceptable with qualifications, or unacceptable, it may be necessary to analyze additional samples to obtain sufficient usable data to meet project DQOs.

#### REPORTING

#### CONTENTS OF REPORT

The laboratory report shall contain at a minimum, but not be limited to, such information for samples as:

- Date report was prepared
- Sample identification number
- Name and location of sample
- Type of sample (water, soil, etc.)
- Date on which analysis was performed
- Any special circumstances or comments that may be relevant for interpretation of the data
- Name of parameter analyzed, name or number of approved analytical method used, results of analysis, and the units of the reported results

#### RECORDS

Copies of all records related to field sampling and laboratory analysis of the samples will be retained by the laboratory. These records will include, but not necessarily be limited to, field notebooks, laboratory notebooks, laboratory worksheets, copies of raw laboratory data, copies of QA/QC results associated with each sample, and laboratory instrument performance data associated with the samples. There will be sufficient information in the files to identify the record, the sample it is associated with, and the activity to which it applies.

## Section 5 QUALITY CONTROL CHECKS

A number of QA/QC samples will be collected to check the adequacy of sample collection and analysis and to monitor laboratory performance.

Duplicates, blanks, and spiked samples are used to test the sampling technique to determine if the technique affects the analytical results, to measure the internal consistency of the samples, and to estimate any variance or bias in the analytical process. The field and laboratory QA/QC sampling procedures are described below.

#### FIELD SAMPLING QUALITY CONTROL PROCEDURES

Quality control replicate (split) samples and blanks are used to provide a measure of the internal consistency of the samples and an estimate of variance and bias. Table 5-1 shows the collection frequencies of the field QC samples.

| Table 5-1<br>COLLECTION FREQUENCIES OF FIELD QC SAMPLES |                |               |              |                                        |  |  |  |
|---------------------------------------------------------|----------------|---------------|--------------|----------------------------------------|--|--|--|
| Analysis                                                | Field<br>Blank | Trip<br>Blank | Replicate    | Additional Volume Needed for<br>MS/MSD |  |  |  |
| Acid/Base<br>Neutral<br>Extractable                     | 1/day          |               | 1/20 samples | Triple volume per 20 samples           |  |  |  |
| Volatiles                                               | 1/day          | 1/day         | 1/20 samples | Triple volume per 20 samples           |  |  |  |
| Metals                                                  | 1/day          |               | 1/20 samples | Double volume per 20 samples           |  |  |  |

Blanks provide a measure of cross-contamination sources, decontamination efficiency, and other potential errors that can be introduced from sources other than the sample. Two types of blanks can be generated during sampling activities: trip blanks and field blanks.

One trip blank will be included with each daily shipment of volatile organic samples. The trip blanks will be prepared before each sampling event, shipped or transported to the field with the

Attachment A11-3, Quality Assurance Plan

Page 32 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

sampling bottles, and returned unopened for analysis. Trip blanks will indicate if there is any contamination during shipment to the field, from storage in the field, or from shipment from the field to the analytical laboratory.

One field blank will be included with each daily shipment of samples. The field blanks will indicate if there is any contamination by the sampler or from handling of the sample bottle in the field. The sample container will be filled with distilled, deionized water in the field at the time of sampling. Preservatives will be added as appropriate and the sample container capped, packed, and shipped with the samples.

One field replicate (duplicate) sample will be obtained for every 20 field samples collected. The sampling station from which the duplicate is taken will be randomly selected for each event. Each replicate sample will be split evenly into two sample containers and submitted for analysis as two independent samples.

#### LABORATORY ANALYTICAL QUALITY CONTROL PROCEDURES

Laboratory quality control procedures will be consistent with those required for SW-846. These procedures will include the use of matrix spikes and matrix spike duplicates in separate aliquots of one sample selected from 20 field samples. These spikes will be used to assess accuracy and precision.

#### Section 6

#### PERFORMANCE AND SYSTEMS AUDITS

An audit of field activities will be conducted during sample collection activities. The audit will cover, in general, verification that approved procedures are in place and used, an organization structure is in place, personal responsibilities are clearly defined, a training program for personnel is in place and current, a chain-of-custody program and records retention program are in place, and corrective action of variances taken by laboratory and field personnel is responsive and timely.

#### LABORATORY PERFORMANCE AND SYSTEMS AUDITS

The analytical laboratory will conduct internal quality control checks. Internal quality control checks will consist of replicates, spikes, and duplicates.

# Section 7 PREVENTIVE MAINTENANCE

.

Maintenance procedures and schedules for all laboratory analytical instruments will be in strict accordance with the recommendations of the equipment manufacturers. Routine maintenance will be performed by laboratory personnel as needed. All records of inspection and maintenance will be dated and documented in laboratory record books.

University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Closure and PostClosure Care Plans, Revision 0

#### Section 8

#### DATA ASSESSMENT PROCEDURES

The precision and accuracy of data will be routinely assessed to ensure that they meet the requirements of the DQOs presented in Table 8-1. If enough data are generated, the precision, accuracy, and completeness may be assessed using statistical procedures.

| PRECISIC                                                                                          | Table 8-<br>DN, ACCURACY, AND CO | 1<br>MPLETENESS OBJECTI | VES |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|-----|--|--|--|--|--|
| Precision (Relative<br>Percent Accuracy %<br>Parameters Difference) % Spike Recovery Completeness |                                  |                         |     |  |  |  |  |  |
| Acid/Base Neutral<br>Extractables                                                                 | < ± 20                           | 80-120                  | 85  |  |  |  |  |  |
| Volatiles                                                                                         | < ± 20                           | 80-120                  | 85  |  |  |  |  |  |
| Metals                                                                                            | < ± 20                           | 80-120                  | 85  |  |  |  |  |  |

Precision is commonly determined from duplicate samples; thus precision is usually expressed as RPD or relative standard deviation (RSD). These quantities are defined as follows.

$$RPD = 100 \ x \ 2 \ \frac{|X_1 - X_2|}{(X_1 + X_2)}$$

$$RSD = (100/2) x [2|X_1 - X_2|/(X_1 + X_2)]$$

where  $X_1 \mbox{ and } X_2$  are the reported concentrations for each duplicate sample

Accuracy is commonly presented as percent bias or percent recovery. Percent bias is a standardized average error, that is, the average error divided by the actual or spiked

Attachment A11-3, Quality Assurance Plan Page 37 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021) concentration and converted to a percentage. Percent bias is unitless, so it allows the accuracy of analytical procedures to be compared easily.

Percent recovery provides the same information as percent bias. Accuracy is often determined from spiked samples. Percent recovery is defined as:

% Recovery = 
$$\frac{R}{S} \times 100$$

where S = spiked concentration R = reported concentration

Given this definition, it can be shown that

% bias = % recovery - 100

# Section 9 CORRECTIVE ACTIONS

Corrective Action plans and procedures will include the corrective actions, maintenance instructions, and calibration procedures for each piece of equipment specified or suggested by the manufacturer. Corrective actions will also include training/retraining of personnel, as necessary and appropriate. Corrective actions may also include revised procedures and validation testing of revised procedures before implementation, as experience may suggest.

As part of routine performance monitoring and system and performance audits, each sampling and analysis method will be monitored for precision, accuracy, and compliance with the QC/performance requirements of the method.

If, during routine performance monitoring or system or performance audits, weaknesses or problems are uncovered, corrective action will be initiated immediately. Corrective action will include, but not necessarily be limited to the following:

- Recalibration of instruments using freshly prepared calibration standards
- Replacement of lots of solvent or other reagents that have given unacceptable blank values
- Additional training of personnel in correct implementation of sample preparation and analysis methods

Whenever long-term corrective action is necessary to eliminate the cause of nonconformance, the following closed-loop corrective action system will be used. The appropriate field personnel will ensure that each of these steps is followed:

- The problem will be defined.
  - Responsibility for investigating the problem will be assigned.
  - The cause of the problem will be investigated and determined.

#### Attachment A11-3, Quality Assurance Plan

Page 39 of 40 Form EQP 5111 Attachment Template A11, Closure and PostClosure Care Plans (6-2-2021)

- Corrective action to eliminate the problem will be determined.
- Responsibility for implementing the corrective action will be assigned and accepted.
- The effectiveness of the corrective action will be established, and the correction will be implemented.
- The fact that the corrective action has eliminated the problem will be verified.

.

Attachment 8

Subpart CC Air Emissions from Tanks, Containers, and Surface Impoundments

### FORM EQP 5111 ATTACHMENT TEMPLATE C11 - SUBPART CC AIR EMISSIONS FROM TANKS, CONTAINERS, AND SURFACE IMPOUNDMENTS

This document is an attachment to the Michigan Department of Environment, Great Lakes, and Energy's (EGLE) *Instructions for Completing Form EQP 5111, Operating License Application Form for Hazardous Waste Treatment, Storage, and Disposal Facilities.* See Form EQP 5111 for details on how to use this attachment.

The administrative rules promulgated pursuant to Part 111, Hazardous Waste Management, of Michigan's Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451), R 299.9504, R 299.9508, R 299.9605, and R 299.9634; and Title 40 of the Code of Federal Regulations (CFR), Part 264, Subpart CC, and 40 CFR §270.27, establish requirements for controlling organic air emissions from tanks, containers, and surface impoundments. All references to 40 CFR citations specified herein are adopted by reference in R 299.11003.

This license application template addresses air emission control requirements for tanks, containers, and surface impoundments at the hazardous waste management facility for the Beck Road Facility in Belleville, Michigan.

## (Check as Appropriate)

- Applicant for Operating License for Existing Facility
- Applicant for Operating License for New, Altered, Enlarged, or Expanded Facility
- Tanks, Containers, or Surface Impoundments Subject to 40 CFR Part 264, Subpart CC (R 299.9634)
- No Tanks, Containers, or Surface Impoundments Subject to 40 CFR Part 264, Subpart CC, Exist at the Facility (R 299.9634)

EPA 1990. Hazardous Waste TSDF – Technical Guidance Document for RCRA Air Emission Standards for Process Vents and Equipment Leaks. Document No. EPA-450/3-89-021. July.

This template is organized as follows:

- C11.C AIR EMISSIONS FROM TANKS, CONTAINERS, AND SURFACE IMPOUNDMENTS C11.C.1 Waste Streams
  - C11.C.1(a) Average Volatile Organic (VO) Concentration Determination Via Direct Measurement at the Point of Waste Origination
  - C11.C.1(b) Average VO Concentration Determination Via Process Knowledge at the Point of Waste Origination
  - C11.C.1(c) Average VO Concentration Determination Via Direct Measurement at the Point of Waste Treatment
  - C11.C.1(d) Maximum Organic Vapor Pressure Determination of Hazardous Waste in a Tank Using Level 1 Controls Via Direct Measurement
  - C11.C.1(e) Maximum Organic Vapor Pressure Determination of Hazardous Waste in a Tank Using Level 1 Controls Via Process Knowledge
  - C11.C.1(f) Description of Procedures for Determining No Detectable Organic Emissions
- C11.C.2 Tanks Description
- C11.C.3 Surface Impoundment Description
- C11.C.4 Container Descriptions

C11.C.4(a) Description of Container Level 1 Controls

- C11.C.4(a)(1) Michigan Department of Transportation
  - Specifications
- C11.C.4(a)(2) Cover and Closure Devices

C11.C.4(a)(3) Open-Top Containers with Organic Vapor-Suppressing Barrier

C11.C.4(a)(4) Inspection Procedures

C11.C.4(b) Description of Container Level 2 Controls

C11.C.4(c) Description of Container Level 3 Controls

- C11.C.5 Description of Closed-Vent Systems and Control Devices
- C11.C.6 Description of Record Keeping Procedures

Attachment C11-1 Inspection Log

C11.C AIR EMISSIONS FROM TANKS, CONTAINERS, AND SURFACE IMPOUNDMENTS [R 299.9634 and 40 CFR Part 264, Subpart CC]

Tanks

Containers

Surface Impoundments

# C11.C.1 Waste Streams [R 299.9634 and 40 CFR §264.1082(c)]

Hazardous and mixed waste is generated from teaching, research and supporting operations at the University of Michigan. The Beck Road Facility accepts hazardous and mixed waste generated from these activities. Hazardous and mixed waste is commingled into containers with a capacity of 55 gallons (0.212 m<sup>3</sup>) or less. Hazardous and mixed waste may remain in the original container and not be commingled; waste and container compatibility is evaluated.

C11.C.1(a) Average VO Concentration Determination Via Direct Measurement at the Point of Waste Origination [R 299.9634 and 40 CFR §264.1083]

No exemption is claimed. As per instructions, go to Section C11.C.1(c).

# C11.C.1(b) Average VO Concentration Determination Via Process Knowledge at the Point of Waste Origination [R 299.9634 and 40 CFR §264.1083(a)(2)]

No exemption is claimed. As per instructions, go to Section C11.C.1(c).

C11.C.1(c) Average VO Concentration Determination Via Direct Measurement at the Point of Waste Treatment [R 299.9634 and 40 CFR §264.1083(b)]

No exemption is claimed. As per instructions, go to Section C11.C.1(d).

C11.C.1(d) Maximum Organic Vapor Pressure Determination of Hazardous Waste in a Tank Using Level 1 Controls Via Direct Measurement [R 299.9634 and 40 CFR §264.1083(c)]

This section does not apply. No tanks are in use at the storage facility.

C11.C.1(e) Maximum Organic Vapor Pressure Determination of Hazardous Waste in a Tank Using Level 1 Controls Via Process Knowledge [R 299.9634 and 40 CFR §264.1083(c)]

This section does not apply. No tanks are in use at the storage facility.

C11.C.1(f) Description of Procedures for Determining No Detectable Organic Compound Emissions [R 299.9634 and 40 CFR §§264.1083(d) and 270.27(a)(6)]

No exemption is claimed.

C11.C.2 Tanks Description [R 299.9634 and 40 CFR §270.27(a)(1) and (3)]

This section does not apply.

C11.C.3 Surface Impoundment Description [R 299.9634 and 40 CFR §264.1085]

This section does not apply.

C11.C.4 Container Descriptions [R 299.9634 and 40 CFR §§264.1086, and 270.27(a)(2)]

Hazardous and mixed waste is commingled into new US DOT UN rated performance oriented packagings constructed of HDPE, metal, or other compatible material, with a capacity of 55 gallons (0.212 m<sup>3</sup>) or less. The design specifications rate the containers at PG-I/ PG-II/ PG-III or PG-II/PG- III.

Hazardous and mixed waste may also be received at the facility and not be commingled. The receipt container volume is from 15 to 55 gallons (0.212 m<sup>3</sup>), or a lab pack of containers from 5 gallons or less. Each receipt packaging is a US DOT UN rated performance-oriented packaging and is compatible with the contents. The design specifications rate the receipt packagings at PG-I/ PG-II/ PG-III or PG-II/PG-III.

The waste management units are referenced in Template A7, Contingency Plan, Attachment A7.6, Location of Waste Management Units. Subpart CC requirements are met.

### C11.C.4(a) Description of Container Level 1 Controls

[R 299.9634 and 40 CFR §264.1086(b) and (c)]

Level 1 controls are appropriate because containers used to manage hazardous and mixed waste are 55 gallons (0.212 m<sup>3</sup>) or less in capacity. Each container is equipped with a cover or closure devices that forms a continuous barrier over the container openings such that when the cover and

closure devices are secured in the closed position there are no visible holes, gaps, or other open spaces into the interior of the container.

The covers and closure devices that are used are supplied by the manufacturer and are composed of suitable materials to minimize exposure of the hazardous and mixed waste to the atmosphere and to maintain the container integrity, for as long as the container is in service.

When hazardous and mixed waste is in a container all covers and closure devices for the container shall be installed and secure, as applicable to the container, and each closure device shall be maintained in the closed position except as follows:

- For the purpose of adding waste to the container.
- For the purpose of removing waste from the container.
- When access inside the container is needed to perform routine activities other than transfer of
  waste. Examples of such activities include those times when a worker needs to open a cover or
  closure device to measure the depth of or to sample the material in the container. Following
  completion of the activity, the closure device shall be promptly secured in the closed position or
  the cover shall be reinstalled, as applicable to the container.

Waste containers are inspected upon arrival at the storage facility. The storage facility is inspected weekly, at a minimum, for container integrity and for other items shown on the Inspection Log (Attachment C11-1). As part of the facility inspection, waste containers are inspected to evaluate their condition, which includes leaking, deterioration, corrosion, bulging or other signs of container failure. In addition to waste container inspections, the secondary containment system and loading area are inspected weekly for system integrity as outlined in Table A5.A.1, Inspection Schedule. Remedial action will begin immediately upon discovery of a defect in a container, cover, or closure device.

#### C11.C.4(a)(1) Michigan Department of Transportation Specifications [R 299.9634 and 40 CFR §264.1086(c)(1)]

Hazardous and mixed waste is commingled into new US DOT UN rated performance oriented packagings constructed of HDPE, metal, or other compatible material, with a capacity of 55 gallons (0.212 m<sup>3</sup>) or less. The design specifications rate the containers at PG-I/ PG-II/ PG-III or PG-II/PG-III. Waste containers meet the applicable requirements, and are managed, as specified in 40 CFR 264.1086(f).

Hazardous and mixed waste may also be received at the facility and not be commingled. The receipt container volume is from 15 to 55 gallons (0.212 m<sup>3</sup>), or a lab pack of containers from 5 gallons or less. Each receipt packaging is a US DOT UN rated performance-oriented packaging and is compatible with the contents. The design specifications rate the receipt packagings at PG-I/ PG-II/ PG-III or PG-II/PG-III. Waste containers meet the applicable requirements, and are managed, as specified in 40 CFR 264.1086(f).

# C11.C.4(a)(2) Cover and Closure Devices

[R 299.9634 and 40 CFR §264.1086(c)]

Containers used to manage hazardous and mixed waste are 55 gallons (0.212 m<sup>3</sup>) or less in capacity. Each container is equipped with a cover or closure devices that form a continuous barrier over the container openings such that when the cover and closure devices are secured in the closed position there are no visible holes, gaps, or other open spaces into the interior of the container.

# C11.C.4(a)(3) Open-Top Containers with Organic Vapor-Suppressing Barrier [R 299.9634 and 40 CFR §264.1086(c)]

This section is not applicable.

# C11.C.4(a)(4) Inspection Procedures

[R 299.9634 and 40 CFR §264.1086(c)(4)]

Containers are inspected upon arrival at the storage facility. As part of the facility inspection, waste containers are inspected weekly to evaluate their condition, which includes leaking, deterioration, corrosion, bulging or other signs of container failure. The inspection will show if there is waste container failure. Waste containers that are not in good condition will be overpacked or replaced. The contents of a waste container that is not in good condition will be transferred to a new container by direct transfer or by the means of an appropriate drum pump. In addition to waste container inspections, the secondary containment system and loading area are inspected weekly for system integrity.

If inspections reveal that non-emergency maintenance is needed, EHS will respond in a timely manner to preclude further damage. If a hazardous waste constituent release is imminent, or has occurred, remedial action will begin immediately upon discovery. In the unlikely event of an emergency involving the release of hazardous waste constituents to the environment, efforts will be directed towards containing the hazard, removing it, and subsequently decontaminating the affected area, as discussed in greater detail in the U-M Emergency Response Contingency Plan (Template A7).

The inspection schedule outlined in Table A5.A.1, Inspection Schedule, lists the types of problems that the inspector routinely examines. Items that are examined during the container inspection are documented on the Inspection Log (Attachment C11-1).

# C11.C.4(b) Description of Container Level 2 Controls

[R 299.9634 and 40 CFR §264.1086(d)]

This subsection does not apply to the application. No containers as defined by Level 2 Controls are in use.

C11.C.4(c) Description of Container Level 3 Controls [R 299.9634 and 40 CFR §264.1086(e)]

This subsection does not apply to the application. No containers as defined by Level 3 Controls are in use.

#### C11.C.5 Description of Closed-Vent Systems and Control Devices [R 299.9634 and 40 CFR §§264.1087 and 270.27(a)(5)]

This section does not apply.

#### C11.C.6 Description of Record Keeping Procedures [R 299.9634 and 40 CFR §264.1089(a)]

The Beck Road Facility is not claiming the VO concentration exemption, nor does the facility use tanks or surface impoundments for waste management. The record keeping requirements of this section do not apply.

University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Air Emissions Subpart CC, Revision 0

Attachment C11-1 Inspection Log

#### **INSPECTION LOG**

University of Michigan

Occupational Safety & Environment Health and Safety (EHS)

Beck Road Storage Facility, EPA ID: MIR 000 001 834

8501 Beck Road, Belleville, MI 48111

#### (734) 487-3259

Instructions: Perform inspection of facility if conditions are satisfactory write "SAT" in the conditions

observed column. If there are any discrepancies, list them in the conditions observed column also.

| A. General Facility                                                  | Conditions Observed on Date: |  |  |
|----------------------------------------------------------------------|------------------------------|--|--|
| 1. All door entrances and windows properly secured                   |                              |  |  |
| 2. No signs of unauthorized entry                                    |                              |  |  |
| 3. No signs of vandalism or theft                                    |                              |  |  |
| 4. No signs of flooding or fire                                      |                              |  |  |
| 5. No electrical hazards identified                                  |                              |  |  |
| 6. Fire extinguishers in designated locations, and charged           |                              |  |  |
| 7. Ventilation and lighting system operating properly                |                              |  |  |
| 8. No evidence of eating, drinking, smoking                          |                              |  |  |
| 9. Aisle space adequate for emergency equipment                      |                              |  |  |
| 10. Emergency supplies, monitoring equipment & PPE available         |                              |  |  |
| 11. Emergency supplies storage cabinet inspected (needs noted below) |                              |  |  |
| 12. Fire exits are clear and unobstructed                            |                              |  |  |
| 13. Storage and work areas organized and uncluttered                 |                              |  |  |
| 14. Emergency eyewash and shower station tested (1st week of month)  |                              |  |  |
| 15. Annual water availability inspection conducted on                |                              |  |  |
| 16. Biannual inspection of perimeter fences conducted on             |                              |  |  |
| 17. Operation's log up to date                                       |                              |  |  |
| 18. Forklift inspected and operational                               |                              |  |  |
| 19. Verify telephones are operational - check for dial tone          |                              |  |  |
| B. Appropriate Postings Throughout the Facility                      | Conditions Observed          |  |  |
| 1. NRC "Notice to Employee"                                          |                              |  |  |
| 2. EGLE "Notice to Employee" (Form EQC 1627)                         |                              |  |  |
| 3. EGLE Radioactive Material Registration (Form EQP 1614)            |                              |  |  |
| 4. Radioactive Materials Restricted Area (entrances)                 |                              |  |  |
| 5. No smoking signs (2+ entrances)                                   |                              |  |  |
| 6. Emergency phone numbers                                           |                              |  |  |
| 7. Radiological Emergency Procedures                                 |                              |  |  |
| 8. MSDS location poster                                              |                              |  |  |
| RCRA Waste Storage Areas Properly Identified and Segregated          |                              |  |  |
| C. Corrosive Base and Reactive Area 109A                             | Conditions Observed          |  |  |
| 1. Waste containers identified and labeled properly                  |                              |  |  |

| 2. No signs of leakage from waste containers        |                     |
|-----------------------------------------------------|---------------------|
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| D. Toxics Area 109B                                 | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| E. Corrosive Acid Room 111                          | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| F. Toxic and Oxidizer Area 113                      | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| G. Toxic Room 116                                   | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. No evidence of odors                             |                     |
| 5. Containment system in good condition             |                     |
| H. Ignitable and Toxic Room 117                     | Conditions Observed |
| 1. Waste containers identified and labeled properly |                     |
| 2. No signs of leakage from waste containers        |                     |
| 3. No signs of deterioration or damaged containers  |                     |
| 4. Ventilation system operating properly            |                     |
| 5. No evidence of odors                             |                     |
| 6. Containment system in good condition             |                     |
| I. Loading / Unloading Area 125                     | Conditions Observed |
| Trenches clear of debris                            |                     |
| Containment system in good condition                |                     |

| Comments:                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| <b>Note:</b> For any discrepancies noted in the conditions observed column list the corrective action taken to remedy each discrepancy below. |
| Corrective Actions:                                                                                                                           |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| Corrective Actions performed by:                                                                                                              |
|                                                                                                                                               |
| Date corrective actions performed:                                                                                                            |
|                                                                                                                                               |
| Cumling wooded                                                                                                                                |
| Supplies needed:                                                                                                                              |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| Inspection performed by:                                                                                                                      |
|                                                                                                                                               |
|                                                                                                                                               |
| Date:                                                                                                                                         |
|                                                                                                                                               |
| Time:                                                                                                                                         |
|                                                                                                                                               |
|                                                                                                                                               |
| Reviewed by:                                                                                                                                  |
|                                                                                                                                               |
| Hazardous Materials Manager:                                                                                                                  |
|                                                                                                                                               |
| Date:                                                                                                                                         |
| Date                                                                                                                                          |
|                                                                                                                                               |
| Radiation Safety Officer:                                                                                                                     |
|                                                                                                                                               |
| Date:                                                                                                                                         |

Attachment 9

Engineering Plans and Specifications

# FORM EQP 5111 ATTACHMENT B6 ENGINEERING PLANS

Engineering plans used to construct the licensed areas of Beck Road Facility, and the service drive, are presented in Attachment B6-1. Six plans are included in Attachment B6-1:

- Remodel for Secondary Containment, Demolition and Construction Plans, Sheet A1.0
- Remodel for Secondary Containment, Floor Slope Plan/Sections/Details, Sheet No. A2.0
- Remodel for Loading Dock, Plan, Elevations, Sections, Details, Sheet No. A2.1
- Beck Road Storage Facility, Service Drive, Sheet No. C-1
- Exhaust Ventilation in Room 117, Sheet No. ME 1
- Remodel for Secondary Containment, Plan, Sections & Details, Sheet No. S-1









University of Michigan--Beck Road Facility Site ID No. MIR 000 001 834 Engineering Plans, Revision 0

Attachment B6-1 Engineering Plans

(6-2-2021)





Attachment 10

List of Acceptable Hazardous Wastes

# TABLE A2.A.2 HAZARDOUS WASTES ACCEPTED AT THE FACILITY

| Hazardous     | Waste                                                                                        | Hazardous                | Basis for                                                   | Hazardous Waste            |
|---------------|----------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|----------------------------|
| Waste<br>Code | Description                                                                                  | Waste<br>Characteristics | Hazardous<br>Designation                                    | Management Unit            |
| F002          | Spent solvents generated<br>by teaching, research and<br>supporting operations               | Toxicity                 | Listed wastes; toxic waste hazard code                      | Rooms 109B, 113, or<br>116 |
| F003          | Spent solvents generated<br>by teaching, research and<br>supporting operations               | Ignitability             | Listed wastes;<br>ignitable waste<br>hazard code            | Room 117                   |
| F004          | Spent solvents generated by teaching, research and supporting operations                     | Toxicity                 | Listed wastes; toxic waste hazard code                      | Rooms 109B, 113, or<br>116 |
| F005          | Spent solvents generated<br>by teaching, research and<br>supporting operations               | Ignitability, toxicity   | Listed wastes;<br>ignitable and toxic<br>waste hazard codes | Room 117                   |
| D001          | Ignitables generated by teaching, research and supporting operations                         | Ignitability             | Ignitable waste<br>hazard code                              | Room 117                   |
| D001          | Oxidizers generated by<br>teaching, research and<br>supporting operations                    | Ignitability             | Ignitable waste<br>hazard code                              | Room 113                   |
| D002          | Corrosive acids generated<br>by teaching, research and<br>supporting operations              | Corrosivity              | Corrosive waste hazard code                                 | Room 111                   |
| D002          | Corrosive bases generated<br>by teaching, research and<br>supporting operations              | Corrosivity              | Corrosive waste<br>hazard code                              | Room 109A                  |
| D003          | Reactives generated by teaching, research and supporting operations                          | Reactivity               | Reactive waste hazard code                                  | Room 109A                  |
| D004          | Waste containing arsenic<br>generated by teaching,<br>research and supporting<br>operations  | Toxicity                 | Hazard code for<br>toxicity characteristic<br>waste         | Rooms 109B, 113, or<br>116 |
| D005          | Waste containing barium<br>generated by teaching,<br>research and supporting<br>operations   | Toxicity                 | Hazard code for<br>toxicity characteristic<br>waste         | Rooms 109B, 113, or<br>116 |
| D006          | Waste containing cadmium<br>generated by teaching,<br>research and supporting<br>operations  | Toxicity                 | Hazard code for<br>toxicity characteristic<br>waste         | Rooms 109B, 113, or<br>116 |
| D007          | Waste containing chromium<br>generated by teaching,<br>research and supporting<br>operations | Toxicity                 | Hazard code for<br>toxicity characteristic<br>waste         | Rooms 109B, 113, or<br>116 |
| D008          | Waste containing lead<br>generated by teaching,<br>research and supporting<br>operations     | Toxicity                 | Hazard code for<br>toxicity characteristic<br>waste         | Rooms 109B, 113, or<br>116 |
| D009          | Waste containing mercury<br>generated by teaching,<br>research and supporting<br>operations  | Toxicity                 | Hazard code for<br>toxicity characteristic<br>waste         | Rooms 109B, 113, or<br>116 |

| D010 | Waste containing selenium<br>generated by teaching,<br>research and supporting<br>operations              | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
|------|-----------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------|----------------------------|
| D011 | Waste containing silver<br>generated by teaching,<br>research and supporting<br>operations                | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D018 | Waste containing benzene<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D019 | Waste containing carbon<br>tetrachloride generated by<br>teaching, research and<br>supporting operations  | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D021 | Waste containing<br>chlorobenzene generated<br>by teaching, research and<br>supporting operations         | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D022 | Waste containing chloroform<br>generated by teaching,<br>research and<br>supporting operations            | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D023 | Waste containing o-cresol<br>generated by teaching,<br>research and supporting<br>operations              | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D024 | Waste containing m-cresol<br>generated by teaching,<br>research and supporting<br>operations              | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D025 | Waste containing p-cresol<br>generated by teaching,<br>research and supporting<br>operations              | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D026 | Waste containing cresol<br>generated by teaching,<br>research and supporting<br>operations                | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D027 | Waste containing 1,4-<br>dichlorobenzene generated<br>by teaching, research and<br>supporting operations  | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D028 | Waste containing 1,2-<br>dichloroethane generated by<br>teaching, research and<br>supporting operations   | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D029 | Waste containing 1,1-<br>dichloroethylene generated<br>by teaching, research and<br>supporting operations | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D030 | Waste containing 2,4-<br>dinitrotoluene generated by<br>teaching, research and<br>supporting operations   | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |

| D032 | Waste containing<br>hexachlorobenzene<br>generated by teaching,<br>research and supporting<br>operations   | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
|------|------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------|----------------------------|
| D033 | Waste containing<br>hexachlorobutadiene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D034 | Waste containing<br>hexachloroethane generated<br>by teaching, research and<br>supporting operations       | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D035 | Waste containing methyl<br>ethyl ketone generated by<br>teaching, research and<br>supporting operations    | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D036 | Waste containing<br>nitrobenzene generated<br>by teaching, research and<br>supporting operations           | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D038 | Waste containing pyridine<br>generated by teaching,<br>research and supporting<br>operations               | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D039 | Waste containing<br>tetrachloroethylene<br>generated by teaching,<br>research and supporting<br>operations | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D040 | Waste containing<br>trichloroethylene generated<br>by teaching, research and<br>supporting operations      | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D041 | Waste containing 2,4,5-<br>trichlorophenol generated by<br>teaching, research and<br>supporting operations | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D042 | Waste containing 2,4,6-<br>trichlorophenol generated<br>by teaching, research and<br>supporting operations | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| D043 | Waste containing vinyl<br>chloride generated by<br>teaching, research and<br>supporting operations         | Toxicity | Hazard code for<br>toxicity characteristic<br>waste | Rooms 109B, 113, or<br>116 |
| U138 | Waste containing methyl<br>iodide generated by<br>teaching, research and<br>supporting operations          | Toxicity | Listed waste; hazard code for toxic waste           | Rooms 109B, 113, or<br>116 |
| U151 | Waste containing mercury<br>generated by teaching,<br>research and<br>supporting operations                | Toxicity | Listed waste; hazard code for toxic waste           | Rooms 109B, 113, or<br>116 |

Attachment 11

Operation and Maintenance Plan for Units 3 and 4

Operation & Maintenance Plan for Waste Management Units 3 & 4 Inspection, Planned Excavation and Maintenance Protocol University of Michigan Beck Road Storage Facility Belleville, Michigan

#### 1.0 INTRODUCTION

#### 1.1 Status of Corrective Action

The Beck Road Storage Facility (BRSF) is a 134-acre, fenced compound owned by the University of Michigan (U-M), located at 8501 Beck Road in Belleville, Michigan (see Plate 1, BRSF Location Map included in Appendix A). The State of Michigan, Department of Environmental Quality (MDEQ) issued a Resource Conservation and Recovery Act (RCRA) Part B Operating License on July 16, 1999, to allow U-M to manage and store mixed (hazardous and low-level radioactive) waste in Building 2201. The Operating License includes requirements for Corrective Action at two Waste Management Units (WMU-3 and WMU-4) located on the site.

On April 18, 2003, U-M completed a Corrective Measures Implementation Final Report for the BRSF. As described in the report, "The remaining corrective action for the BRSF consists of preventing exposure to groundwater exceeding Residential and Commercial I (R&C I) Drinking Water Criteria at WMU-3 and soils exceeding the R&C I Direct Contact Criteria at WMU-4." Data developed through groundwater modeling completed during the corrective action process indicated that groundwater concentrations of the observed constituents would be attenuated on site.

In a letter dated July 24, 2003, the MDEQ presented results from Slug Testing Wells for Groundwater Velocity Determination conducted by Waste and Hazardous Materials Division (WHMD) staff. Following review of the collected data, Mr. Dale Bridgford, Senior Geologist, MDEQ – WHMD concluded, "Based on the amount of time that has passed since utilization of the tanks ceased at the facility and the time calculated for the plume to attenuate, it is concluded that groundwater monitoring has been completed for Waste Management Unit 3 and does not need to continue."

Therefore, to complete requirements of the Corrective Measures Implementation, the following tasks remain:

- Develop an MDEQ approved Operation and Maintenance (O&M) Plan to prevent exposure to groundwater in the vicinity of WMU-3 and to soils located 4 feet below ground surface (bgs) in the vicinity of WMU-4.
- File an MDEQ approved Restrictive Covenant, including the installation of permanent marker, with Wayne County Register of Deeds for both WMUs.

This document presents the O&M Plan for both WMUs. A copy of this plan will be available at the BRSF Building 2201. Additionally, the U-M Occupational Safety and Environmental Health Department (OSEH) Hazardous Materials & Remediation Services (HMRS) Program Manager will provide copies upon request.

#### 1.2 Site History

The BRSF Site (the Site), for purposes of the Corrective Measures Investigation, includes WMU-3 and WMU-4 in a 32,000 square-foot (approximately) investigation area, as shown on Plate 2, Site Location, included in Appendix A.

#### 1.2.1 WMU-3

WMU-3 is the former location of a 2,000-gallon gasoline underground storage tank (UST), which was removed in 1996. A gasoline release was noted when the tank was removed and notifications were made to the MDEQ. Plate 3, Limit of Restricted Areas, in Appendix A, depicts the limits of WMU-3. Impacted soils surrounding the tank (130 cubic yards) were excavated and removed to a depth of seven feet bgs. Following removal of contaminated soils, remaining soils in WMU-3 did not exceed applicable criteria. However, concentrations of benzene, ethyl benzene, naphthalene, toluene, and xylenes were detected in groundwater

( 1

above the groundwater surface water interface (GSI) and/or R&C I Drinking Water Criteria in the immediate vicinity of the former tank. Subsequent modeling studies and activities conducted for the Corrective Measures Investigation demonstrated that contaminants in groundwater exceeding Drinking Water Criteria (benzene, ethyl benzene, and xylenes) would be attenuated on site, and that the GSI is not a relevant pathway. As noted earlier, the MDEQ conducted hydraulic conductivity tests (slug tests) of the aquifer within WMU-3 (at MW-101) and in downgradient wells VW-1, VW-2, and VW-3 that verified groundwater velocity determinations used in the modeling. Therefore groundwater use within the vicinity of WMU-3 (Restricted Groundwater Use Area) shall be restricted. Plate 3 in Appendix A depicts the limits of the Restricted Groundwater Use Area.

Because the MDEQ has concluded that groundwater monitoring has been completed for WMU-3, select monitoring wells and piezometers at the Site will be abandoned as part of this O&M Plan. The wells/piezometers will be abandoned in accordance with the procedures and requirements outlined in the Part 111 Administrative Rules of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. The verification wells (VW-1, VW-2, VW-3) and MW-101 will not be abandoned. VW-1, VW-2, and VW-3 will remain as Restricted Groundwater Use Area boundary markers, and if needed, used as monitoring wells at a later date. MW-101 serves as the basis for evaluating any results of the verification wells.

#### 1.2.2 WMU-4

WMU-4 is beneath a paved driveway / parking area adjacent to Building 2205 as shown on Plate 3 in Appendix A. The area of WMU-4 has no history of waste management, handling, or storage activities. It was identified as a WMU when a polynuclear aromatic (PNA) benzo(a)pyrene was discovered in soil at concentrations greater than the R&C I Direct Contact criterion. The soil samples containing these elevated PNA concentrations were located at a depth of four to six feet bgs. Groundwater sampling in the area has not found PNA contamination. An exposure barrier consisting of four feet of soil including existing pavement is currently in place across WMU-4. The existing barrier within the vicinity of WMU-4 (Restricted Excavation Area) shall be maintained. The Restricted Excavation Area is

-3-

an approximately thirty-foot by thirty-foot area at the northeast corner of Building 2205. As shown in Plate 3 on Appendix A, WMU-4 is within the area designated as the Restricted Excavation Area.

#### 1.3 Corrective Action Requirements

As part of the Corrective Action at the Site, U-M is required to implement institutional controls to prohibit groundwater use within the Restricted Groundwater Use Area and to prevent contact with soils beneath the exposure barrier within the Restricted Excavation Area. These institutional controls shall be left in place until appropriate criteria are met and the MDEQ authorizes the lifting of the restrictions in writing. The Restricted Groundwater Use and Restricted Excavation Areas are depicted on Plate 3 in Appendix A. Institutional controls will include:

- Filing a Deed Restriction with the Wayne County Register of Deeds,
- Implementing inspection protocol of the areas, and
- Placing a permanent marker describing the area of WMU-3 and WMU-4 and delineating the Restricted Groundwater Use Area and the Restricted Excavation Area.

#### 1.3.1 Restricted Groundwater Use Area

The inspection protocol for the Restricted Groundwater Use Area will be performed on a semi-annual basis to verify that no new wells are installed within the Restricted Groundwater Use Area, and that there is no evidence of tampering or deterioration of the verification wells and MW-101.

#### 1.3.2 Restricted Excavation Area

In addition to the institutional controls described above, U-M will implement protocols to maintain the exposure barrier and permanent marker, restrict excavation and prevent exposure to soils exceeding direct contact criteria within the Restricted Excavation Area.

The exposure barrier for the Restricted Excavation Area currently consists of sand with varying amounts of silt and gravel overlain by several inches of gravel aggregate covered by asphalt. U-M will maintain a four-foot thick exposure barrier layer in the Restricted Excavation Area in order to prevent human contact with potentially contaminated subsurface soils which exist at depths between four to six feet bgs. The Restricted Excavation Area is depicted on Plate 3 in Appendix A.

Although elevated contaminants were only found in a limited area in subsoils within WMU-4 between four to six feet bgs, this corrective action conservatively prevents contact with all subsurface soil deeper than three feet bgs within the Restricted Excavation Area. The inspection protocol for the Restricted Excavation Area will be performed on a semi-annual basis to verify that the exposure barrier is in good condition and that it has not been significantly disturbed. In addition, the inspections shall confirm that the permanent marker is visible and legible.

- 5

#### 2.0 INSPECTION, EXCAVATION, AND REPAIR PROTOCOLS

#### 2.1 Inspection Scope

A site inspection will be performed two times per year on three areas/features (inspection areas are shown on Plate 3 in Appendix A):

- 1. Restricted Groundwater Use Area;
- 2. The exposure barrier area in the Restricted Excavation Area; and
- 3. The permanent marker located as noted on Plate 3 in Appendix A.

The inspection procedure for each area/item is detailed below.

#### 2.1.1 Restricted Groundwater Use Area

The inspector shall walk the entire Restricted Groundwater Use Area two times per year. The inspector shall look for evidence of well installation within the Restricted Groundwater Use Area. The inspector shall verify the integrity of the protective casings/flush mounts, locks, and guard posts (as appropriate) of VW-1, VW-2 and VW-3, and MW-101. If evidence of new well installation, tampering or deterioration is identified, the HMRS Program Manager shall be notified immediately. The details of the inspection shall be noted on the record keeping forms discussed in Section 2.1.4.

#### 2.1.2 Restricted Excavation Area

The inspector shall walk over the designated Restricted Excavation Area, inspect the entire ground surface, and identify any major damage, which is defined as excavation of soil more than three feet bgs. If any major damage is noted, the repair protocol described in Section 2.3 shall be initiated as soon as is practical.

- 6 -

#### 2.1.3 Permanent Marker

The inspector shall confirm that the permanent marker is not removed, covered, obscured, or otherwise altered. The inspections shall confirm that the permanent marker is visible and legible. If the marker is damaged, repairs shall be completed as soon as is practical.

#### 2.1.4 Inspection Form

The inspector shall note any major damage on the Semi-Annual Inspection Form. A copy of this form is included in Appendix B. The following procedure will be used:

- Restricted Groundwater Use Area. If neither no evidence of new well installation nor evidence of tampering or deterioration of the verification wells or MW-101 is observed, the inspector shall record "OK" in the "Comments" box of the Semi-Annual Inspection Form. If evidence of new well installation or tampering or deterioration of wells is found, the inspector shall record the location in the "Comments" box and notify the HMRS Program Manager immediately. The inspector shall locate each new well or evidence of tampering or deterioration of the wells on a map of the site (provided on the back side of the log).
- Restricted Excavation Area. If no major damage is observed, the inspector shall record "OK" in the "Comments" box on the Semi-Annual Inspection Form. If major damage is found, the inspector shall record the location and type of damage in the "Comments" box on the Semi-Annual Inspection Form. Similarly, if a building or grounds maintenance issue arises that is currently causing damage or has the potential to cause major damage to the exposure barrier if not repaired, the inspector shall note the maintenance issue in the "Comments" box on the Semi-Annual Inspection Form. The inspector shall locate each area of exposure barrier damage or maintenance needed on a map of the site (provided on the reverse side of the log).

-7.

 Permanent Marker. The marker shall be inspected to verify it is in good condition and is readable. If no damage is observed, the inspector shall record "OK" in the "Comments" box on the Semi-Annual Inspection Form. If damage is found, the inspector shall record the type of damage in the "Comments" box on the Semi-Annual Inspection Form.

In addition, the inspector shall answer the "yes or no" questions regarding evidence of wells, exposure barrier condition, permanent marker damage, or maintenance issues at the bottom of the Semi-Annual Inspection Form. The inspector shall print and sign his or her name, record the date of the inspection, and submit the log to the HMRS Program Manager. The HMRS Program Manager shall review the form, print and sign his or her name, and record the date of the review.

# 2.2 Protocol for Planned Excavation in the Restricted Excavation Area

If the exposure barrier in the Restricted Excavation Area must be excavated (i.e. for subsurface utility work), the HMRS Program Manager shall be notified prior to opening the exposure barrier (except in the case of an emergency). The HMRS Program Manager or his/her designee shall:

- Notify the MDEQ in writing if the proposed work will breach the integrity of the exposure barrier (i.e., activities at depths greater than 3 feet). The notice shall briefly describe the planned work and the schedule for conducting the work.
- Arrange for the work to be supervised to document that excavated soils are properly managed.
- Direct the persons excavating the exposure barrier to maintain excavated soils on plastic sheeting or other suitable impervious surface.
- Arrange for disposal of excavated soil from beneath the exposure barrier layer or, alternatively, return excavated soil to its original location beneath the exposure barrier. All soil shall be properly managed in accordance with appropriate federal & Michigan law.

- 8 -

# 2.3 Protocol for Repair of Restricted Excavation Area Exposure Barrier

For routine maintenance of the asphalt in the restricted excavation area, the following protocol shall be used:

- During the semiannual inspections, any observed damage to the asphalt cover shall be recorded on the inspection form.
- For linear cracking of the asphalt that is ½" wide and longer than 5 feet, asphalt sealant shall be used to repair the affected area within ten business days, weather-permitting.
- For linear cracking of the asphalt that is greater than ¾" wide and longer than 5 feet, asphalt cold patch shall be used to repair the affected area within ten business days, weather-permitting. If cold patch is deemed unsuitable, an alternative means of repair shall be determined and scheduled within one month, and repairs shall be conducted as soon as practical.
- For damaged areas less than ten square feet (e.g. potholes, rubbling), asphalt cold patch shall be used to repair the affected area within ten business days, weather-permitting.
- For damaged areas greater than ten square feet, U-M OSEH shall consult with the U-M Architecture, Engineering and Construction Department to determine the most effective means of restoring the asphalt to its original condition, or to a condition that provides an equivalent exposure barrier. Scheduling of the repair work shall be conducted within one month. Restoration or replacement of the asphalt is weather dependent (as hot mix asphalt paving is not practical during cold temperatures), but shall be conducted as soon as practical.'
- Any maintenance activities to restore damaged asphalt shall be recorded on the inspection form.

When unscheduled excavations occur below three feet in the Restricted Excavation Area, the following steps shall be taken:

- Notify the MDEQ in writing of the proposed repair work. The notice shall briefly describe the planned work and the schedule for conducting the work.
- The area will be secured to prevent direct contact with the underlying subsoil. The area of
  major damage shall be cordoned off until the repairs are complete and the area has been re-

-9-

inspected. Additionally, appropriate measures shall be taken to minimize dust emissions from soil beneath the exposure barrier layer.

- Soil and aggregate shall be used to restore the excavated area to its original condition, or to a condition providing an equivalent exposure barrier.
- The entity conducting repairs shall provide written verification that repairs have been completed in accordance with industry standard construction practices.
- The area shall be re-inspected as indicated in the re-inspection protocol contained in Section 2.4.

10

# 3.0 RESPONSIBILITIES

#### 3.1 Inspections and Repairs

The U-M HMRS Program Manager or his or her designee shall be responsible for facilitating timely semi-annual inspections, completing necessary repairs, and maintaining proper documentation. The HMRS Program Manager may designate a staff member or hire a consultant to conduct the inspections, but the responsibility for maintaining compliance with this O&M Plan resides with the HMRS Program Manager. U-M staff, a contractor, or a consultant may complete repairs.

A copy of this O&M Plan and copies of completed Semi-Annual Inspection Forms will be kept on file in the BRSF Building 2201 office and be made available for agency review upon request.

#### 3.2 Notifications

The HMRS Program Manager shall be notified if any of the following occurs:

- An unplanned exposure barrier breach exposes soil deeper than three feet bgs within the Restricted Excavation Area.
- Any groundwater well installation is planned in the Restricted Groundwater Use Area.

A copy of all notifications shall be placed in the records kept at the BRSF Building 2201 office, and the HMRS Program Manager shall maintain a copy.

The HMRS Program Manager or his or her designee shall arrange to implement the appropriate protocols discussed in Section 2.

#### 3.3 Record Retention

The HMRS Program Manager will coordinate the retention of records generated during the implementation of this O&M Plan.

Records and notifications associated with semi-annual inspections and exposure barrier repairs shall be retained on-site for the duration of the U-M's ownership or until the MDEQ lifts the land use restrictions. Repair records shall be detailed and include field notes and documentation of soil disposal, if appropriate.

If the BRSF property is sold, a copy of the O&M Plan, records and notifications shall be provided to the new owner. If other portions of the property are sold outside of the restricted areas as described in this document, the U-M shall maintain access to these areas through an easement or an alternative arrangement to facilitate compliance with this O&M Plan.

#### 3.4 Responsibilities of the Inspector

The following list includes basic responsibilities for the designated site inspector:

- The inspector shall be familiar with the property and the design of the barrier layer.
- The inspector shall review the inspection protocol before each semi-annual inspection.
- The inspector shall be capable of walking the restricted areas on a semi-annual basis and shall promptly investigate and report damage.
- The inspector shall promptly re-inspect any areas where repairs have been made.
- The inspector shall submit the Semi-Annual Inspection Form promptly to the HMRS Program Manager.

# 4.0 ABANDONMENT OF MONITORING WELLS AND PIEZOMETERS

Eleven wells/piezometers will be abandoned as part of this O&M Plan. These include MW-2, MW-3, MW-4, MW-5, MW-9, MW-14, MW-102, MW-103, PZ-1, PZ-2, and PZ-3. The wells/piezometers will be abandoned within 60-days after filing the Restrictive Covenant with the Wayne County Register of Deeds. The wells/piezometers will be abandoned in accordance with the procedures and requirements outlined in the Part 111 Administrative Rules of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended.

U-M will prepare a brief report summarizing abandonment operations for submittal to the MDEQ within 30 days of completion of the work The report will include necessary certification statements as outlined in 40 CFR 270.11(d).

- 13 -

# APPENDIX A

ż

1

BRSF Location Map, Plate 1; Site Location, Plate 2; and Limit of Restricted Area, Plate 3






1:/12/0515556434.DWG



ί.....

J:\Cad\13\0212526a2.dwg

· -

## APPENDIX B

Semi-Annual Inspection Form and Map

## THE UNIVERSITY OF MICHIGAN BECK ROAD STORAGE FACILITY SEMI-ANNUAL INSPECTION FORM

Instructions:

This form must be completed at the time of each inspection.

. Complete a full site inspection as detailed in the Inspection Protocol at least twice per year.

. Note the condition of each WMU area in the designated area of this sheet.

• Indicate (by circling) if repairs are necessary or if a maintenance issue has developed that is currently or could potentially impact the Restricted Excavation Area exposure barrier in the future.

· Sign and date form upon completion of each semi-annual inspection.

• If any major damage is noted, follow the procedures outlined in the Inspection, Excavation, and Repair Protocols (Section 2 of the Operation & Maintenance Plan).

 If repairs are necessary, upon completion of repairs, re-inspect the area where repairs have been made, indicate when they were completed, and initial the appropriate area on this form.

 This form, completed inspection records, and records of repair must be kept onsite by the facility owner until the MDEQ approves the lifting of the restrictions.

| WMU-3<br>Restricted GW Use Area                                                                                                               | Comments: | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|
| Inspect Restricted GW Use Area for<br>evidence of new well installation and<br>tampering or deterioration of VW-1,<br>VW-2, VW-3, and MW-101. |           |                                                                                                                 |
| WMU-4<br>Restricted Excavation Area                                                                                                           | Comments: |                                                                                                                 |
| Inspect Exposure Barrier In the<br>Restricted Excavation Area                                                                                 |           |                                                                                                                 |
| Permanent Marker                                                                                                                              | Comments: |                                                                                                                 |
| Lettering in good condition and legible                                                                                                       |           |                                                                                                                 |

| Evidence of new well installation?                              | If Yes, date wells<br>No / Yes removed? |                                           | Initials: |           |  |
|-----------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------|-----------|--|
| Evidence of<br>tampering or<br>deterioration of<br>VW/MW wells? | No / Yes                                | If Yes, date verification wells repaired? | Initials: |           |  |
| Exposure Barrier<br>Repairs<br>Necessary?                       | No / Yes                                | If Yes, date Repaired?                    | Initials: |           |  |
| Marker Repairs<br>Necessary?                                    | No / Yes                                | If Yes, date Repaired?                    | Initials; | Initials; |  |
| Maintenance<br>Repair Issue?                                    | No / Yes                                | If Yes, date Repaired?                    | Initials; |           |  |
| Inspector:                                                      |                                         |                                           | -         |           |  |
| Signature:                                                      | a<br>a                                  |                                           | Date:     | <u></u>   |  |
| HMRS Program I                                                  | Manager:                                |                                           |           |           |  |
| Signature:                                                      |                                         |                                           | Date:     |           |  |
|                                                                 |                                         |                                           | 10        | 1         |  |

Note: Map of Restricted Areas on back of form

