Corrective Action Investigation Report Nortru, LLC Petro-Chem Processing Group Facility 421 Lycaste Street, Detroit, MI

February 12, 2015

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

John A. Maloy

Director, EH&S Risk Management

CONTENTS

<u>Section</u>	<u>Page</u>
EXEC	UTIVE SUMMARYiii
1.0	INTRODUCTION1
2.0	ENVIRONMENTAL SETTING
2.1	HYDROLOGY AND CLIMATE3
2.2	AREA REDEVELOPMENT3
2.3	HISTORIC UPGRADIENT AND ADJACENT PROPERTY INFORMATION3
2.4	GEOLOGY4
2.5	HYDROGEOLOGY5
3.0	POTENTIAL RECEPTORS AND PATHWAY ANALYSIS6
4.0	INVESTIGATION AND SAMPLING9
4.1	SAMPLE LOCATIONS9
4.2	SOIL SAMPLING PROTOCOLS
4.3	GROUNDWATER SAMPLING PROTOCOLS11
4.4	QAPP PROTOCOLS12
4.5	DATA MANAGEMENT PLAN
5.0	NATURE AND EXTENT OF CONTAMINATION13
5.1	MEDIA AND CONSTITUENTS OF CONCERN13
5.2	PRIMARY VOCS13
5.2.1	Soils13
5.2.1.	1 Results14
5.2.2	Groundwater15
5.2.2.	1 Results16
6.0	CONCLUSIONS18
Cited	References Control of the Control of
<u>Table</u>	<u>s</u>
1	Summary of Relevant Exposure Pathways in Soils
2	Summary of Relevant Exposure Pathways in Groundwater 8
3	Corrective Action Investigation Analytical Results for VOCs in Soils
4	Corrective Action Investigation Analytical Results for VOCs in Groundwater
5	MtBE Concentration Trends in Groundwater Detection Monitoring
6	PCE Concentration Trends in Groundwater Detection Monitoring

CONTENTS

(continued)

7 Xylenes Concentration Trends in Groundwater Detection Monitoring

Figures

1	Facility Location Map
2	Corrective Action Investigation Soil Boring and Groundwater Sampling Location Map
3	Location of Geologic Cross-Sections
4	Geologic Cross-Sections A-A' and B-B'
5	Geologic Cross-Section C-C'
6	Location of Deep Soil Boring DB-1A (WWE, 1991)
7	Groundwater Elevation Contours (June 2014)
8	PCE in Soil Exceeding Nonresidential Cleanup Criteria
9	Xylenes in Soil Exceeding Nonresidential Cleanup Criteria
10	MtBE in Groundwater Exceeding Nonresidential Cleanup Criteria
11	PCE in Groundwater Exceeding Nonresidential Cleanup Criteria
12	Xylenes in Groundwater Exceeding Nonresidential Cleanup Criteria
13	MtBE Concentrations in Soil Exceeding Nonresidential Criteria Shown in Cross-Section A and B
14	MtBE Concentrations in Soil Exceeding Nonresidential Criteria Shown in Cross-Section C
15	PCE Concentrations in Soil Exceeding Nonresidential Criteria Shown in Cross-Section A and B
16	PCE Concentrations in Soil Exceeding Nonresidential Criteria Shown in Cross-Section C
17	Xylenes Concentrations in Soil Exceeding Nonresidential Criteria Shown in Cross-Section A and B
18	Xylenes Concentrations in Soil Exceeding Nonresidential Criteria Shown in Cross-Section C
19	MtBE Concentrations in Groundwater Exceeding Nonresidential Criteria Shown in Cross-Section A and B
20	MtBE Concentrations in Groundwater Exceeding Nonresidential Criteria Shown in Cross-Section C
21	PCE Concentrations in Groundwater Exceeding Nonresidential Criteria Shown in Cross-Section A and B
22	PCE Concentrations in Groundwater Exceeding Nonresidential Criteria Shown in Cross-Section C
23	Xylenes Concentrations in <u>Groundwater</u> Exceeding Nonresidential Criteria Shown in Cross-Section A and B
24	Xylenes Concentrations in Groundwater Exceeding Nonresidential Criteria Shown in Cross-Section C

Appendices

- A Soil Boring and Monitoring Well Completion Logs
- B Corrective Action Investigation Analytical Data

EXECUTIVE SUMMARY

Stericycle Environmental Solutions, Inc. retained Bureau Veritas North America, Inc. (Bureau Veritas) to conduct a Corrective Action Investigation (CAI) to determine the nature and extent of contamination in soils and shallow groundwater at the Petro-Chem Processing Group Facility (Facility) located at 421 Lycaste Street in Detroit, Michigan.

On December 18, 2012, the MDEQ issued a new Operating License for the Facility (Michigan Facility ID No. MID 980 615 298). As part of this Operating License, the Facility is required to conduct a Corrective Action Investigation (CAI) to determine if a release has occurred from Waste Management Unit (WMU) Number 15 (Former Container Processing System), area of concern (AOC) Number 1 (Soil Volatilization to Indoor Air Exceedances), AOC Number 2 (Soil Volatilization to Ambient Air Exceedances), and AOC Number 3 (MTBE Release to Site Wide Groundwater).

This CAI Report provides the data and summary of the investigation that was conducted in accordance with the approved CAIWP. The CAIWP specified that soil and groundwater samples were to be collected and analyzed in locations approved by the MDEQ to address the nature and extent of contamination of VOCs at the Facility. Semi-annual groundwater sampling events were completed, as specified in the Facility Operating License, and incorporated into the data set utilized to evaluate the nature and extent of contamination addressed in this CAI.

A pathway analysis was completed to determine relevant nonresidential cleanup criteria. There is a very low permeability confining clay layer associated with regional lacustrine deposits at the Facility. There is a low flow rate in the uppermost water bearing zone associated with moist peat at the Facility at depths of seven to twelve feet below ground surface (bgs). There is no known regional groundwater aquifer in the area of the Facility. Volatilization to Indoor Air Inhalation criteria (VIIC) and Volatilization to Ambient Air Inhalation criteria (VAIC) are the relevant contaminant pathways to consider for future use of the Facility, and provide the relevant cleanup criteria for nonresidential use.

Primary contaminants of concern (COCs) were established for the Facility. Methyl-tert-Butyl Ether (MtBE), tetrachloroethene (PCE) and xylenes do not appear to be readily associated with releases from WMU-15 and COCs are not present in concentrations exceeding relevant nonresidential cleanup criteria in soils or groundwater near or immediately downgradient of WMU-15.

In addressing AOCs 1 and 2, VOCs are present in upper soils materials and in the shallow perched water bearing zone at the Facility at depths of approximately seven to twelve feet bgs. Consistently, VOC concentrations within fill material, moist peat, and silty sand lenses at the Facility do not exceed applicable VIIC or VIAC.

In addressing AOC 3, MtBE concentrations are observed in fill soils and in the shallow water bearing zone within the property boundary. The presence of MtBE is not ubiquitous. Concentrations of MtBE in soils and within the uppermost water bearing zone do not exceed relevant nonresidential cleanup criteria. Groundwater monitoring data collected at the Facility on a semi-annual basis indicate that MtBE is present within three well locations (MW-4 [upgradient], MW-6 and MW-9), but not in all groundwater monitoring wells at the Facility. MtBE concentrations in groundwater do not exceed groundwater

volatilization to indoor air inhalation criteria (GVIIC) or groundwater volatilization to ambient air inhalation criteria (GVAIC).

Near the western property boundary, in the vicinity of the SBS Solids Building, several VOCs were identified in the shallow water bearing zone and in the soils above the confining impermeable clay barrier. COCs do not exceed relevant cleanup criteria in soils or shallow perched groundwater horizontally or vertically at the Facility.

Groundwater monitoring should proceed in accordance with the Facility Operating License at established compliance points. Decreasing trends in concentrations of VOCs have been noted in semi-annual groundwater sampling events since 2009. Current concentrations of VOCs in groundwater continue to demonstrate that relevant nonresidential clean up criteria (GVIIC and GVAIC) have not been exceeded at the Facility. GVIIC and GVAIC are the relevant nonresidential cleanup criteria for the Facility.

EPA ID: MID 980 615 298

February 12, 2015 Project No. 11013-000191.00

1.0 INTRODUCTION

On June 16, 1999, the Michigan Department of Environmental Quality (MDEQ) issued a Hazardous Waste Treatment and Storage Facility Operating License (Operating License) for the Petro-Chem facility (Facility), Michigan Facility ID No. MID 980 615 298. Petro-Chem is permitted to receive a wide range of waste codes that include halogenated and non-halogenated volatile organic compounds (VOCs). Depending on the characteristics of the wastes received, the wastes may be processed on- or off-site. Environmental studies in soils and groundwater have been conducted at the Facility since 1982.

Waste identification, characterization, operations, management and containment system requirements are documented in the operating permit and are conducted at the Facility. Petro-Chem began "detection" semi-annual groundwater monitoring in September 1999 in compliance with specifications of the Operating License. Based on results of the groundwater monitoring and soil boring sampling, the Facility is required to conduct corrective action for releases of a contaminant from a Waste Management Unit (WMU) to protect human health and the environment in accordance with R 299.9629. Should contamination be found beyond the facility boundary, corrective action will be conducted in accordance with R 299.9629(2).

A RCRA Facility Investigation (RFI) was conducted at the Facility in October 2010 and the RFI report was submitted to the Michigan Department of Environmental Quality (MDEQ) on February 16, 2011. The purpose of the RFI was to conduct further evaluation of the horizontal extent of soil and groundwater impact at the Facility. The potential for off-site migration of contaminants was evaluated by collecting soil and groundwater samples from locations in the adjacent right-of-ways. On September 28, 2012, the MDEQ approved the RFI Report pursuant to Part 111, Hazardous Waste Management, of the Naturals Resources and Environment Protection Act, 1994 PA 451 (amended). In the RFI Report approval letter, the MDEQ indicated that because contamination was found at the property boundary, a Corrective Measures Study and a Corrective Measures Implementation work plan were recommended, pursuant to the current hazardous waste management facility Operating License.

On December 18, 2012, the MDEQ issued a new Operating License for the Facility (Michigan Facility ID No. MID 980 615 298). As part of this Operating License, Petro-Chem is required to conduct a Corrective Action Investigation (CAI) to determine if a release has occurred from Waste Management Unit (WMU) Number 15 (Former Container Processing System), area of concern (AOC) Number 1 (Soil Volatilization to Indoor Air Exceedances), AOC Number 2 (Soil Volatilization to Ambient Air Exceedances), and AOC Number 3 (MtBE Release to Site Wide Groundwater).

The Facility prepared a Corrective Action Investigation Work Plan (CAIWP) as part of RCRA Corrective Action proceedings and submitted it to the Michigan Department of Environmental Quality (MDEQ) in February 2013. MDEQ approved the final CAIWP in May 2013. From August 2013 to September 2014, the work described in the approved CAIWP, including the drilling of 28 soil borings, was conducted at both onsite and offsite locations. The primary objective of the CAIWP was to evaluate potential sources of contamination and, if found, to delineate soil and groundwater contamination with respect to MDEQ Generic Nonresidential Cleanup Criteria.

The CAIWP specified that soil and groundwater samples were to be collected and analyzed in locations approved by the MDEQ to address the nature and extent of contamination. Semi-annual groundwater

EL

February 12, 2015 Project No. 11013-000191.00

sampling events were completed, as specified in the Facility Operating License, and incorporated into the data set utilized to evaluate the nature and extent of contamination addressed in this CAI.

An extension of the CAI Report deadline was requested on October 23, 2014, because of delays in obtaining access agreements for some off-site sampling locations, as well as, to conduct additional sampling onsite. An extension was granted by MDEQ personnel on October 31, 2014. An addendum to the CAIWP was submitted to the MDEQ on November 6, 2014, and approved by MDEQ personnel on November 18, 2014.

This CAI Report includes a summary of the investigation that was conducted in accordance with the approved CAIWP and addendum. The report is submitted on behalf of the Facility in accordance with rules for hazardous waste management facilities as identified in Michigan Department of Environmental Quality Act 451 Part 111 and promulgated under R299.9629.

The Facility location is depicted in Figure 1. Soil boring and groundwater sampling locations discussed in this CAI report are shown in Figure 2.

Petro-Chem Processing Group of Nortru, LLC Detroit, Michigan EPA ID: MID 980 615 298

February 12, 2015

2.0 ENVIRONMENTAL SETTING

HYDROLOGY AND CLIMATE 2.1

The Facility is located within one-half mile to the north of the Detroit River. The Detroit River flows south and west between the United States and Canadian border. It flows from the St. Clair River and Lake St. Clair, and empties into the west end of Lake Erie. The land is nearly flat, rising gently north-westward from the waterways. Upland terrain is gently rolling, typical of glaciated outwash plain geomorphology.

The climate in the Detroit area is influenced by its location near the Great Lakes and its position in a major storm track. Climatic variations arise from the urban heat island, the effect becoming most apparent at night, when temperatures in urban downtown remain significantly higher than those in suburban locations. There are four distinct seasons. Average daily temperatures in winter are 28.1° F and in summer, 72.3° F, with an annual average of 48.6° F. Winters are generally long and cold, and storms can bring combinations of rain, snow, freezing rain, and sleet with heavy snowfall possible at times. Annual snowfalls average around 45 inches. During the summer, storms pass to the north, allowing for intervals of warm, humid weather with occasional thunderstorms that are followed by days of mild, dry weather. Air pollution emanating from heavy industry in the area has been minimized since the 1970s with industry air pollution control efforts (City Data, 2014).

The Facility is located at 421 Lycaste Street, Wayne County, Detroit, Michigan at the northwestern corner of Lycaste Street and Freud Street at latitude 42° 22' 1" and longitude 82° 57' 55". The average elevation at the site is 580 feet above mean sea level, as documented in the Facility Operating License.

2.2 AREA REDEVELOPMENT

Through the Department of Economic Redevelopment, developers have purchased vacant lands and are in the process of building high density residential units on properties that border the Detroit River. A large marina complex is located southwest of the Facility. Within the past 10 years, a residential community has been developed on the property directly south of the Facility where the former Laro Coal property was located. The residential community is hydraulically upgradient of the Facility.

2.3 HISTORIC UPGRADIENT AND ADJACENT PROPERTY INFORMATION

Baseline Environmental Assessments (BEAs) were conducted in 2002, 2004 and 2005 at the former Laro Coal property prior to its redevelopment. The former Laro Coal property is located south of and hydraulically upgradient of the Facility. Historic use of the upgradient property includes the Former City of Detroit Auto Pound storage lot to the southwest, the Monroe Waste Paper Company to the southeast and the Apex Foundry to the south. Additionally, railroad lines were present south of the Facility. When the historic businesses were abandoned, the properties were reportedly used for illegal dumping. It was also noted that the Monroe Waste Paper Company operated underground storage tanks at their facility.

Soil and groundwater samples were collected on the former Laro Coal property upgradient of the subject Facility prior to the BEAs being conducted. BEA reports indicated that site stratigraphy consists of fill (industrial materials interspersed with disturbed natural glacial deposits) with layers of sandy silt or clay to a depth of 15 feet below ground surface (bgs). Below the sand/silt layers, the deposits consist of silty

February 12, 2015 Project No. 11013-000191.00

clay and clay to a depth of 30 feet bgs. The uppermost water bearing zone was encountered from 6 to 15 feet bgs. On the southern two-thirds of the property site, the shallow water bearing zone flows toward the Detroit River. On the northern one-third of the property, the shallow water bearing zone flows northwestward.

Findings from soil and groundwater samples collected during the BEAs indicated that VOC concentrations in groundwater exceeded groundwater contact criteria and residential, commercial and industrial volatilization to indoor air (VIA) criteria (AES, 2005).

An industrial dry cleaning operation was known to have existed on the western adjacent property, on the northwest corner of St. Jean Avenue and Freud Street, west of the Facility, from circa 1968 through 2002. Tetracholorethene is associated with historic dry cleaning operations.

Findings from the BEAs indicate that upgradient and off-site VOC contamination may contribute to soil and groundwater contamination at the Facility.

2.4 GEOLOGY

The Facility is located on lowland lacustrine terrace deposits of the late Wisconsinan glacial timeframe (approximately 12,400 years before present). Detroit is underlain by a sequence of sediments up to 150 meters thick that lie unconformably on Devonian sedimentary rocks of the Michigan basin (Howard, 2013). Geology at the site and at off-site perimeter locations was determined through soil borings and groundwater monitoring well logs from the CAI, as well as, from past soil and groundwater investigations conducted at the Facility. Well logs and soil boring logs used in compiling this report are provided in Appendix A.

Stratigraphy at the Facility consists of fill with layers of sandy silt and silty sand with some clay to a depth that ranges from one to 13 feet bgs. The sandy silt, silty sand and clay are typical of glacial outwash deposits. In some areas, the fill material may not be disturbed, but in other locations, shards of glass and brick fragments were noted at depth within the sandy silt fill material as identified in the boring logs. A layer of peat underlies the fill and silty sand layer across the site. The thickness of the peat ranges from inches on the northwest property boundary to four feet along the southern property boundary. In some locations, the peat is underlain by a thin silty sand lens. The peat and/or the silty sand lies directly above a dry, persistent, silty clay. The peat and/or silty sand lens are moist to wet and contain the uppermost water bearing zone at the Facility. During the CAI, soil samples were collected from above the water table in Soil Boring BSB-37 and analyzed for grain size, density and porosity. The grain size analysis indicated that the soil from a depth of 4 to 6 feet bgs is a fine- to medium-grained sand with silt and trace limestone, with a USCS designation of SP (i.e., poorly graded sand). The density ranged from 92.6 to 99.1 pounds per cubic foot, while the porosity had a range of 40.79 to 45.00 percent.

A dry, thick unit of silty clay uniformly underlies the peat and silty sand across the site. Thickness of the silty clay at the site is undetermined, but it is present at depths of 30 feet bgs and more. It was identified in an onsite deep boring (DB-1A) drilled on February 4, 1991 from a depth of 8.4 feet to 30 feet bgs (WWE, 1991 with revisions, 1993). It is present in perimeter soil borings at depths up to 30 feet bgs in the BEAs conducted in upgradient properties to the south of the site (AES, 2005). Regionally, soil boring logs from the North Jefferson Chysler plant depict a uniform clay layer from 10 to 103 feet bgs (WWE, 1991 with revisions, 1993).

February 12, 2015 Project No. 11013-000191.00

Data compiled from the on-site monitoring well network and recent soil boring logs from this CAI were used to create detailed geologic cross-sections. Locations of the cross-sections are shown in Figure 3. The site stratigraphy is depicted in cross-sections shown in Figures 4 and 5.

2.5 HYDROGEOLOGY

Groundwater from onsite monitoring wells and groundwater samples collected from temporary wells installed in soil borings during the CAI were collected from the shallow water bearing zone that is contained within the peat and/or underlying silty sand layer, where it exists. The moist or damp layer is present at depths ranging from approximately 7 to 12 feet bgs.

In January 1991, a bail-down slug test was performed at MW-7. The transmissivity was calculated to be 5.97x10⁻³ cm²/sec and assuming a porosity of 0.4 for the peat layer where the well screen is placed, the groundwater flow rate was calculated to be 2x10⁻² cm/sec. Additionally, a three-inch Shelby tube sample was collected from the homogeneous clay layer at 13 to 15 feet bgs in the deep boring DB-1A. Permeability of the sample was tested using the triaxial cell method and was found to be 8.5X10⁻⁹ cm/sec, indicating a very tight dense lean clay (WWE, 1991 with revisions in 1993). The location of DB-1A is shown in Figure 6.

The ubiquitous silty clay acts as an impermeable barrier to infiltrating surface water. All surface water that infiltrates the fill or peat is contained in a thin perched water bearing zone associated with the peat or underlying silty sand. Hydrogeologic information obtained from the CAI is identified on the geologic cross-sections depicted in Figures 4 and 5. Water levels from monitoring wells and soil borings are shown on the cross-sections. A regional aquifer is not delineated at the Facility or in neighboring upgradient soil boring logs. The uniform, thick, dry, silty clay forms an impermeable barrier to downward migration of the uppermost water bearing zone. The impermeable clay barrier is present at depths of 30 feet or more on site and in locations adjacent to the Facility (AES, 2005). Regionally, it is present at depths up to 105 feet bgs, substantiating evidence that there is no regional aquifer from which groundwater is pumped for residential or industrial use.

Groundwater Level Data and Flow Direction

Groundwater level data and flow maps have been compiled for the Facility during semi-annual compliance monitoring. Semi-annual reports have been submitted to the MDEQ prior to and throughout the term of this CAI. For the purposes of this report, groundwater flow data from the June 2014 sampling event is highlighted in cross-sections (Figures 4 and 5) and in a map showing typical groundwater flow direction (Figure 7). Groundwater flow maps from semi-annual sampling in 2013 and 2014 (through the duration of this CAI) have been submitted previously to MDEQ in a series of semi-annual reports in compliance with conditions of the Facility Operating Permit.

Groundwater level data indicates that there is an arch in the groundwater flow direction that trends northward. The higher groundwater elevations are near the current Container Management Building, in the location of the former Container Processing System (WMU-15). From the arch, groundwater flow in the perched water bearing zone trends westward, slightly northward, and eastward. This flow direction and pattern are consistent throughout groundwater monitoring events as reported for the Facility since at least 1982 (WWE, 1991 with revisions in 1993).

February 12, 2015 Project No. 11013-000191.00

3.0 POTENTIAL RECEPTORS AND PATHWAY ANALYSIS

Media with potential migration pathways and known impacts were selected for sampling and include soil and groundwater. The CAI was designed to investigate the nature and extent of volatile organic carbon (VOC) contamination associated with off-site migration at levels exceeding nonresidential cleanup criteria in soil and groundwater in accordance with the Generic Cleanup Criteria Requirements of Response Activity (R299.49).

MDEQ Part 201 Rules provide generic cleanup criteria for residential and nonresidential possible land uses and vapor intrusion exposure pathways. Rule 714 outlines Groundwater Volatilization Indoor Air Inhalation Criteria (GVIIC) and Rule 724 outlines Soil Volatilization Indoor Air Inhalation Criteria (SVIIC) through ambient or indoor air volatilization (effective date, December 30, 2013). The purpose of this section is to evaluate exposure risk by assessing viable routes of migration and potential receptors to known contamination from constituents of concern (COCs) identified at the Facility.

Each possible exposure pathway in soils is summarized and evaluated in Table 1.

February 12, 2015 Project No. 11013-000191.00

Table 1 Summary of Relevant Exposure Pathways in Soils

Exposure	Description	Considered	Relevant
Pathway	Becompaci	, oonoraa	
	Soil	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Drinking Water Protection	This pathway involves contaminants that may leach to groundwater in an aquifer, or groundwater that is not in an aquifer but that may transport contaminants into an aquifer. The drinking water exposure pathway does not appear to be relevant because the shallow perched water bearing zone at the Facility is present in granular fill and peat across the site in a lens that is less than or equal to five feet thick at depths of 7 to 12 feet bgs. The uppermost water bearing zone is directly underlain by a persistent, dry, silty clay that is present to a minimum depth of 30 feet bgs. Regional soil boring data suggests that the homogeneous clay with a permeability of 8.5x10-9 cm/sec exists at depths up to 105 feet bgs. Regionally, lacustrine deposits are known to be present at depths up to 150 meters bgs. Drinking water in the Detroit metro area is provided by the regional publicly operated treatment works, the Detroit Water and Sewerage Department (DWSD). The DWSD obtains water from the Great Lakes and their connecting waters, not from groundwater. The main pumping station for the DWSD is located northwest and upstream of the Facility.	YES	NO
Groundwater /Surface Water Interface (GSI) Protection	This pathway involves contaminants that may leach to groundwater that is hydraulically connected to a surface water body. This pathway is not relevant because there are no surface water bodies in the direction of groundwater flow and the onsite storm sewers discharge to the municipal wastewater treatment plant, the DWSD. There is no known direct pathway from the perched uppermost water bearing zone at the facility to the Detroit River, which is the nearest receiving surface water body. The Detroit River is located southeast of and not directly downgradient from the Facility. Groundwater flow velocity at the Facility is very slow at 1.6x10-6 cm/sec.	YES	NO
Direct Contact	This pathway involves long-term ingestion and dermal exposure to contaminated soil and is relevant for this property. It should be noted that the majority of the property is covered with pavement; therefore, minimizing dermal exposure to contamination.	YES	YES
Soil Volatilization to Indoor Air Inhalation Criteria (SVIIC)	This pathway involves potential exposure to volatile indoor air contaminants from vapor intrusion resulting from soil contamination.	YES	YES
Soil Volatilization to Ambient Air Inhalation Criteria (SVAIC)	This pathway involves potential exposure to volatile outdoor air contaminants from vapor intrusion resulting from soil contamination.	YES	YES

EPA ID: MID 980 615 298

February 12, 2015 Project No. 11013-000191.00

Each possible exposure pathway in groundwater is summarized and evaluated in Table 2.

Table 2
Summary of Relevant Exposure Pathways in Groundwater

Exposure	Description	Considered	Relevant
Pathway	Bescription	Considered	Rolovani
- aciivay	Groundwater		ı
Drinking Water	This pathway involves contaminants that may leach to	YES	NO
Dilliking water	groundwater in an aquifer, or groundwater that is not in an	120	110
	aquifer but that may transport contaminants into an aquifer.		
	The drinking water exposure pathway does not appear to be		
	relevant because the shallow perched water bearing zone at the Facility is present in granular fill and peat across the site in		
	a lens that is less than or equal to five feet thick at depths of 7		
	to 12 feet bgs. The uppermost water bearing zone is directly		
	underlain by a persistent, dry, silty clay that is present to a		
	minimum depth of 30 feet bgs. Regional soil boring data		
	suggests that the homogeneous clay with a permeability of		
	8.5x10-9 cm/sec exists at depths up to 105 feet bgs. Regionally, lacustrine deposits are known to be present at		
	depths up to 150 meters bgs. Drinking water in the Detroit		
	metro area is provided by the regional publicly operated		
	treatment works, the Detroit Water and Sewerage Department		
	(DWSD). The DWSD obtains water from the Great Lakes and		
	their connecting waters, not from groundwater. The main pumping station for the DWSD is located northwest and		
	upstream of the Facility.		
GSI	This pathway involves contaminants that may leach to	YES	NO
	groundwater that is hydraulically connected to a surface water		
	body. This pathway is not relevant because there are no		
	surface water bodies in the direction of groundwater flow and the onsite storm sewers discharge to the municipal wastewater		
	treatment plant, the DWSD. There is no known direct pathway		
	from the perched uppermost water bearing zone at the facility to		
	the Detroit River, which is the nearest receiving surface water		
	body. The Detroit River is located southeast of and not directly		
	downgradient from the Facility. Groundwater flow velocity at the Facility is very slow at 1.6x10-6 cm/sec.		
Groundwater	This pathway is relevant for volatile contaminants in	YES	YES
Volatilization	groundwater if and when a habitable structure overlies the		
to Indoor Air	contaminated area and vapor intrusion issues are encountered		
Inhalation Criteria	from the uppermost water bearing zone at the Facility.		
(GVIIC)			
Groundwater	This pathway is relevant for volatile contaminants in	YES	YES
Volatilization	groundwater if and when vapor intrusion issues are		
to Ambient Air	encountered from the uppermost water bearing zone at the Facility.		
Inhalation Criteria	i aciiity.		
(GVAIC)			

For purposes of this investigation all nonresidential pathways are considered and highlighted in the discussion of the nature and extent of contamination in this CAI Report. Relevant nonresidential cleanup criteria are presented in the results section of the CAI Report.

February 12, 2015 Project No. 11013-000191.00

4.0 INVESTIGATION AND SAMPLING

Bureau Veritas conducted this CAI at the Petro-Chem Processing Group of Nortru, LLC (Petro-Chem) facility located at 421 Lycaste Street in Detroit, Michigan, in accordance with the CAIWP, dated February 15, 2013, and approved in a letter from MDEQ received in May 2013. The CAIWP was prepared pursuant to Part VI.D of the facility Operating License and was designed to define the source, nature and extent of VOC contamination at the facility.

From August 2013 to September 2014, the work described in the approved CAIWP, including the drilling of 28 soil borings, was conducted at both onsite and offsite locations. The primary objective of the CAIWP was to delineate soil and groundwater contamination relative to MDEQ generic nonresidential cleanup criteria, and to evaluate potential sources of contamination at the Facility. Soil and groundwater samples were collected in accordance with the CAIWP.

An Addendum to the CAIWP was submitted to the MDEQ (BVNA, 2014) on November 6, 2014. The objective of the CAIWP Addendum was to evaluate the nature and extent of contamination beneath the SBS Solids Building. Data collected during the CAI identified elevated concentrations of VOCs near the SBS Solids Building, most notably in borings BSB-12, BSB-13 and BSB -18. To further evaluate the nature and extent of contamination in this area, soil borings were completed directly beneath the SBS Solids Building in December 2014 in locations BSB-37, BSB-38 and BSB-39.

4.1 **SAMPLE LOCATIONS**

Soil and groundwater samples were collected during the CAI in locations shown on Figure 2. Sampling points were chosen based on the geographic area to be sampled, the size of the area, media of concern, and other physical constraints that affect the distribution of contamination at the facility. Other physical constraints that may influence the distribution of potential contaminants include buried utilities and differing soil types.

During this investigation, Bureau Veritas collected 58 soil samples and 25 groundwater samples from the uppermost water bearing zone and designated them for analysis of VOCs in accordance with the approved Sampling Plan that was included in the CAIWP (BVNA, 2013) and Addendum (BVNA, 2014). A portion of the soil samples was collected to evaluate impact of the vadose zone above the capillary fringe.

Data sets collected during this CAI can be compared to each other because the data were generated by the same consultant over time utilizing the same outside laboratory. Compound nomenclature and reporting units conformed with SW846 methodology. All soil sample analytical results were reported in dry weight in units of micrograms per kilogram (µg/kg). Units of micrograms per liter (µg/L) were used for all aqueous sample results. Use of standard methodologies ensure data comparability. Bureau Veritas Standard Operating Procedures (SOPs) provided in the CAI Work Plan were used to standardize field procedures and data recording.

Detailed information on the sampling locations for each selected medium is shown on the sample location map (Figure 2). Sampling locations, depths of samples within each soil boring, and date of sample collection are provided in the compiled soil data table (Table 4). Four events of soil and groundwater

EPA ID: MID 980 615 298

February 12, 2015 Project No. 11013-000191.00

sample collections were conducted in 2013 and 2014 at locations both onsite and offsite to evaluate the nature and extent of VOC impacts.

Grab soil samples allow for a greater resolution of spatial distribution of data than composite samples. Therefore, grab soil and groundwater samples were collected to evaluate the nature and extent of impact.

The purpose of this investigation was to evaluate the nature and extent of the impact; therefore, temporary wells were installed during this investigation and groundwater data collected from the temporary wells were utilized for delineation purposes only. Permanent monitoring wells are present at the facility (MW-1 through MW-10) and are known to be impacted with VOCs. Semi-annual groundwater monitoring is conducted at the facility in accordance with the Operating License, and data collected during the course of this investigation during the semi-annual monitoring events supplement groundwater contamination delineation efforts. Based on water level data submitted during semi-annual compliance monitoring, Monitoring Well MW-4 is considered an upgradient well with the remaining wells being compliance wells.

4.2 SOIL SAMPLING PROTOCOLS

The data collection quality assurance project plan (QAPP) was developed to document monitoring procedures (sampling, field measurements, and sample analysis performed during the investigation) to characterize the environmental setting, source, and contamination, and to ensure that all information, data, and resulting decisions are technically sound, statistically valid, and properly documented. Soil samples were collected in accordance with the QAPP, developed for the CAIWP. In short, soil samples were collected using the following measures:

- All boring locations were identified prior to the start of field activities.
- Continuous soil samples were collected until the water table was encountered or the maximum proposed depth was achieved.
- A minimum of two soil samples per boring, including the soil sample exhibiting the highest PID
 reading above the water table and the soil sample from just above the water table were collected
 and analyzed for volatile organic compounds (VOCs) in accordance with RRD Operational
 Memorandum No. 2, Attachments 4 (Sample Preservation, Sample Handling, and Holding Time
 Specifications) and 6 (Sampling Methods for Volatile Organic Compounds).
- A boring log was completed for each location by the site geologist and included relevant information necessary to the assessment of the subsurface geology.
- Soil collected in each 5-foot acetate liner was field screened using a hand-held PID at each 2-foot interval. Soil collected by hand auger was field screened using a hand-held PID at each 1-foot interval.
- One sample was submitted as a MS/MSD for every ten samples collected for each media.

BUREAU VERITAS

February 12, 2015 Project No. 11013-000191.00

- Soil samples intended for VOC analysis were collected and submitted to the laboratory in accordance RRD Operational Memorandum No. 2, Attachment 6 (Sampling Methods for Volatile Organic Compounds), dated October 22, 2004, using USEPA Method 5035.
- Samples were stored in the field on ice. Appropriate COC documentation was maintained for the samples. COC documentation includes the sample number, date and time of collection, depth, location, number of containers, requested analyses, and sample handling sequence. A trip blank was prepared and transported with the samples for appropriate QA/QC documentation.
- Samples were packed on ice and transferred to Fibertec Environmental Service's laboratory in Holt, Michigan for analysis.
- Soil samples were analyzed in accordance with the protocols in the document EPA SW-846 Test Methods for Evaluating Solid Waste and in accordance with Table 1 of Operational Memo
 GEN-8, Revision 8. Soil samples submitted for VOC analysis were analyzed using USEPA
 Method 5035/8260B.
- Appropriate QA/QC documentation was provided with each batch of samples. Quality control replicates, laboratory spikes, and control blanks were analyzed according to standard protocols.

4.3 GROUNDWATER SAMPLING PROTOCOLS

Groundwater samples were collected throughout the CAI process. Groundwater is being monitored separately on a semi-annual basis with an existing series of monitoring wells. A thin, water-bearing zone, ranging from one to five feet in thickness above the uniform confining silty clay is found across the site. Sandy soils and/or peat are sporadically moist and wet. Although vertical aquifer profiling was proposed in the CAIWP, it was not conducted during this CAI due to the thin water column present at the Facility. In general, groundwater samples were collected by installing temporary monitoring wells during soil boring drilling procedures. Sample collection was conducted in accordance with the CAIWP. In short, procedures are highlighted below:

- Groundwater samples were collected using a Geoprobe screen point 16 groundwater sampler or a temporary monitoring well.
- Groundwater samples were collected using a peristaltic pump and placed in appropriate
 containers. Groundwater samples, and 1 duplicate, 1 field blank, 1 equipment blank and 1 trip
 blank (per cooler) sample were collected and analyzed for VOCs in accordance with RRD
 Operational Memorandum No. 2, Attachments 4 (Sample Preservation, Sample Handling, and
 Holding Time Specifications) and 6 (Sampling Methods for Volatile Organic Compounds). One
 sample was submitted as a MS/MSD for every ten samples collected for each media.
- Groundwater samples intended for VOCs analysis were placed into 40-mL glass containers prepreserved with hydrochloric acid.
- Samples collected for analysis were stored in the field on ice. Appropriate COC documentation
 was maintained for all samples. COC documentation included the sample number, date and time

February 12, 2015 Project No. 11013-000191.00

of collection, depth, location, number of containers, requested analyses, and sample handling sequence. Trip blanks were prepared and followed the samples for appropriate QA/QC documentation.

- Groundwater samples were packed on ice and transferred to Fibertec Environmental Service's laboratory in Holt, Michigan laboratory for analysis.
- Groundwater samples were analyzed in accordance with the protocols set forth in the USEPA document EPA SW-846 Test Methods for Evaluating Solid Waste and in accordance with Table 1 of Operational Memo GEN-8, Revision 8. Groundwater samples submitted for VOC analysis were analyzed using USEPA Method 5035/8260B.
- Appropriate QA/QC documentation was provided with each batch of samples. Quality control replicates, laboratory spikes, and control blanks were inserted according to standard State Laboratory protocols.

4.4 QAPP PROTOCOLS

Sampling, analytical and laboratory protocols specified in the approved QAPP, submitted in the CAIWP, were followed throughout the CAI.

4.5 DATA MANAGEMENT PLAN

The Data Management Plan was developed for this CAI and was used to document and track investigation data and results. The Data Management Plan is incorporated in the CAIWP.

Sampling locations, contaminant concentrations, extent of contamination, as well as, figures to aid in the presentation of data obtained during the subsurface investigation are discussed in the following section of the CAI report.

February 12, 2015 Project No. 11013-000191.00

5.0 NATURE AND EXTENT OF CONTAMINATION

5.1 MEDIA AND CONSTITUENTS OF CONCERN

Based on previous investigations at the Facility, it is known that soil and the uppermost water bearing zone have been impacted by VOC constituents. This CAI focused on finding the nature and extent of VOC concentrations in the shallow soils and uppermost water bearing zone at the Facility.

The COCs for this investigation are limited to VOCs. The nature and extent of COCs are discussed relative to MDEQ nonresidential cleanup criteria. Criteria considered include protection of drinking water (DW), protection of the interface between groundwater and surface water (GSI), direct contact, volatilization to indoor air inhalation criteria (VIIC), and volatilization to ambient air inhalation criteria (VAIC).

To better understand the distribution of constituents at the facility, there are a few sitewide COCs that are discussed in detail. Focusing on a few COCs allows for understandable discussion of patterns of contamination at the Facility.

5.2 PRIMARY VOCS

Methyl tert-butyl ether (MtBE) is a gasoline additive that is widely found in contaminated groundwater associated with facilities that process, store or manage large quantities of gasoline. MtBE is also used as a solvent, but not to the extent that it is used as an additive.

Tetrachloroethene (PCE), a chlorinated solvent, is used in the dry cleaning industry, as a metal parts degreaser in the automotive industry, and to some extent as a paint stripper. It is contained within some of the waste streams that are managed at the Facility.

Xylenes are a component of gasoline derivatives and petroleum products that are managed at the Facility. Xylenes are more prevalent than benzene, ethylbenzene and toluene in the soils at the Facility. For this reason, xylenes are discussed in detail for the purposes of demonstrating nature and extent of contamination from gasoline derivatives at the Facility.

5.2.1 Soils

Soil samples were collected from 27 soil borings during the course of the CAI in locations shown on Figure 2. Analytical data from soil samples, two samples per boring, are provided in Table 3. It was determined that MtBE is not widely distributed in soils across the Facility. Distribution of PCE and xylenes found in soils at concentrations exceeding MDEQ nonresidential cleanup criteria are shown in Figures 8 and 9, respectively. Cross-sections showing primary VOC distribution are included as Figures 13 through 18. COCs in concentrations above cleanup criteria, as shown on the figures, do not appear to be migrating off-site and are contained near impacted areas within the property boundary.

February 12, 2015 Project No. 11013-000191.00

5.2.1.1 Results

<u>WMU-15</u>

To address WMU-15, soil borings were conducted in upgradient and downgradient locations and soil and groundwater samples were collected. Upgradient soil borings locations, relative to WMU-15, are BSB-20 and BSB-25. PCE and trichloroethene were detected at concentrations exceeding nonresidential DW protection cleanup criteria in the shallow interval, from 3 to 5 feet bgs in Soil Boring BSB-20. VOCs were not present at concentrations exceeding nonresidential cleanup criteria in the deeper sample from Soil Boring BSB-20, at 5 to 7 feet bgs. Benzene was detected in the upgradient, and off-site, location of BSB-25 at a concentration which exceeded the DW protection criteria in the shallow interval sample, but was not detected above laboratory detection limits in the deeper sample from the same location.

In soil boring locations downgradient of WMU-15 (i.e., BSB-16, BSB-19, BSB-21, BSB-22, and BSB-23), VOC concentrations exceeding nonresidential cleanup criteria were only reported in Soil Boring BSB-19, within the shallow interval of 3 to 5 feet bgs. Ethylbenzene and xylenes exceed DW protection and GSI protection criteria; PCE exceeds GSI protection; and 1,2,4-trimethylbenzene exceeds DW protection.

PCE is present in two shallow sampling locations upgradient and downgradient of WMU-15, but it should be noted that the concentration of PCE is higher in the upgradient location (BSB-20) than in the downgradient location (BSB-19).

VOC concentrations in soils do not persist at deeper depths in any of the soil borings near WMU-15. The distribution of constituents and their concentrations do not indicate that the contamination emanates from Roleans from WMU-15 at surface Though.
Theirober Rolaans WMU-15.

AOC-1/AOC-2

To address AOC-1 and AOC-2, soil borings were conducted in the area (i.e., adjacent to WMU-15) where concentrations of contaminants were previously identified which exceeded the soil volatilization to indoor air inhalation criterion (SVIIC) and/or soil volatilization to ambient air inhalation criterion (SVAIC). Concentrations of contaminants in the area of WMU-15 did not exceed the SVIIC or SVAIC, thereby indicating the lack of an area-wide concern.

AOC-3

To address AOC-3, soil borings were conducted across the entire Facility, as well as, on adjacent properties. Results from the soil borings collected did not indicate the site wide presence of MtBE in soils at concentrations exceeding nonresidential cleanup criteria. In fact, MtBE was only detected in Soil Boring BSB-12, on the west edge of the Facility, at concentrations exceeding nonresidential cleanup criteria.

Additionally, a sample of the silty clay unit was collected from Soil Boring BSB-36 to address the potential for contamination to be migrating into the clay unit. Concentrations of contaminants were not detected in the sample of the silty clay, while MtBE was detected in the soil sample collected from the peat located directly above the silty clay.

It should be noted that during the CAI, various contaminants were detected in shallow soil samples collected at off-site locations. Based on historical use information presented in Section 2.3 of this report,

February 12, 2015 Project No. 11013-000191.00

it is most likely that this contamination is attributable to impacts from neighboring properties and not the Facility.

VOC contaminants in soil sporadically appear in shallow soil samples at concentrations exceeding DW protection and GSI protection criteria. The distribution of primary COCs in the soils are shown in the cross-sections, Figures 13 through 18. The site stratigraphy controls distribution of COCs. COCs are associated with the peat and/or the underlying silty sand layer, where it is present. Concentrations of COCs and their vertical extent are depicted and show that COC concentrations appear to be localized. Generally, MtBE, PCE and xylenes concentrations exceed DW and/or GSI cleanup criteria in locations upgradient of WMU-15 (i.e., BSB-19 and BSB-20) and in the area of the SBS Solids Building (i.e., BSB-12 and BSB-13). MtBE and PCE concentrations in soils exceed nonresidential cleanup for DW in soils at location BSB-24, but the peat layer is thinner northwest of the Facility. As shown in the groundwater results (refer to Figure 18), MtBE and PCE concentrations were not present (or at levels below cleanup criteria) in the groundwater collected from the BSB-24 location.

In general, the distribution of primary COCs in soils as shown in stratigraphic cross-sections are not migrating downward through the soils in the vadose zone or into the impermeable clay confining layer, which underlies the shallow water bearing zone. At depth, primary COCs are contained in localized areas and are not migrating across the Facility to off-site, downgradient locations.

Based on evaluation of the data collected during the CAI, the highest levels of VOC contamination in soil are present in the western portion of the Facility, including the area around the SBS Solids Building. Concentrations of VOCS in soil exceed MDEQ generic nonresidential cleanup criteria in patterns that are not consistent with one source identification or one particular medium. The patterns of contamination in the upper fill and soils at the Facility indicate small impacted areas of contamination, not sitewide areas of concern.

5.2.2 **Groundwater**

Groundwater samples were collected from temporary wells in 25 of the 27 soil borings drilled during the course of the CAI in locations shown in Figure 2. Analytical data from groundwater samples are provided in Table 4. Distribution of MtBE, PCE, and xylenes found at concentrations exceeding MDEQ nonresidential cleanup criteria are shown in Figures 10, 11, and 12, respectively. Cross-sections showing primary VOC distribution are included as Figures 19 through 24. In addition, groundwater samples are collected at the Facility on a biannual basis from the onsite permanent monitoring wells as a condition of the Facility Operating License.

MtBE, PCE and xylenes concentration trends in the existing permanent monitoring wells collected since June 2009, are shown in Tables 5, 6 and 7, respectively. Each of the primary COC concentrations generally decrease over time in each well within the groundwater monitoring network. The groundwater samples collected from the groundwater monitoring wells are more representative of actual groundwater characteristics than are those collected from temporary wells, as temporary wells are not able to be replicated. Temporal trends from groundwater collected from the soil boring locations are not able to be identified.

BUREAU VERITAS

February 12, 2015 Project No. 11013-000191.00

5.2.2.1 Results

<u>WMU-15</u>

To address the Former Container Processing System as a source of contamination at the Facility, groundwater samples were collected from locations upgradient and downgradient of WMU-15. Samples collected from MW-2D, MW-4 and BSB-20 are upgradient of WMU-15, while samples collected from MW-1, MW-3, BSB-16, BSB-19, BSB-21, BSB-22, and BSB-23 represent locations downgradient of WMU-15.

MtBE was detected at concentrations exceeding the nonresidential cleanup criteria for DW at upgradient well MW-4 and downgradient boring BSB-23. The concentrations of MtBE in the upgradient location, MW-4, exceeded that detected in the downgradient location. MtBE did not exceed cleanup criteria in other locations upgradient or downgradient of WMU-15. Benzene and PCE were also detected at concentrations exceeding the DW criteria in upgradient well MW-2D, but the concentrations do not exceed cleanup criteria in other locations surrounding WMU-15. Dietheyl ether and diisopropyl ether exceeded the DW criteria at BSB-16, which is downgradient of WMU-15, but these VOCs were not consistently present in the locations surrounding WMU-15.

The distribution of VOCs in groundwater near WMU-15 indicate that WMU-15 is not a source area for sitewide VOC contamination.

AOC-1/AOC-2

Groundwater samples were collected from temporary monitoring wells and permanent monitoring wells across the Facility during the CAI. Concentrations of contaminants detected did not indicate the presence of contamination at concentrations exceeding GVIIC or GVAIC.

AOC-3

To address AOC-3, soil borings were conducted across the entire Facility, as well as, on adjacent properties. Groundwater was collected from temporary monitoring wells, when sufficient groundwater was present for sampling. In general, MtBE was detected above laboratory detection limits across the Facility. Concentrations ranged from slightly above the detection limit of 1.0 micrograms per liter (μg/L) to 27,000 μg/L. The highest concentrations of MtBE were encountered in the western portion of the Facility, in the vicinity of the SBS Solids Building, and exceeded the nonresidential DW and GSI criteria. Additionally, MtBE was detected at a concentration exceeding nonresidential cleanup criteria in one offsite boring location, BSB-3. However, this soil boring is located in an upgradient location in relation to the Facility; therefore, it is likely that it is not attributable to the Facility. MtBE was not detected at any other offsite location. Based on the results of the sampling, it appears that MtBE has been delineated on the Facility property.

Concentrations of COCs reported from recent sampling events that exceed MDEQ generic nonresidential cleanup criteria are depicted on cross-sections in Figures 19 through 24. The cross-sections depict the extent of vertical contamination of primary COCs at the Facility. The zones of elevated concentrations of primary COCs relative to nonresidential cleanup criteria in groundwater appear to be confined within the Facility boundary. The site stratigraphy and hydrogeologic setting controls the distribution of primary COCs in groundwater.

February 12, 2015 Project No. 11013-000191.00

Concentrations of MtBE in soils reported in location BSB-24 exceeded nonresidential DW cleanup criteria; however, MtBE in the groundwater sampled from a temporary well within the same soil boring did not contain MtBE. Concentrations of VOCs across the Facility are not uniform or persistent. Distribution patterns of primary COCs in soils and groundwater as depicted in Figures 13 through 24, show that primary COCs are not migrating downward or laterally from localized areas. Analytical data collected during the CAI are provided in Appendix B.

Based on the evaluation of the data collected during the CAI, the highest levels of VOC concentrations in groundwater at the Facility are present in the western portion of the property, including the area surrounding the SBS Solids Building. Concentrations of VOCs in groundwater exceed MDEQ nonresidential cleanup criteria for DW and GSI in patterns that are not consistent with one source identification. The distribution patterns of contamination in the shallow water bearing zone at the Facility indicate small impacted areas of original contamination confined to the Facility boundary.

February 12, 2015 Project No. 11013-000191.00

6.0 CONCLUSIONS

As part of this Operating License, Petro-Chem was required to conduct a Corrective Action Investigation (CAI) to determine if a release has occurred from the following:

WMU-15 (Former Container Processing System)

AOC-1 (Soil Volatilization to Indoor Air Exceedances)

AOC-2 (Soil Volatilization to Ambient Air Exceedances)

AOC-3 (MTBE Release to Site Wide Groundwater)

As discussed in Section 3.0 of this report, the drinking water criteria do not apply to groundwater at this Facility because the groundwater is perched in an uppermost water bearing zone above a persistent, dry, silty clay layer that is not associated with nor hydraulically connected to a regional drinking water aquifer. Permeability of the uniform clay confining layer is 8.5x10⁻⁹ cm/sec. Lacustrine deposits are known to be nearly 150 meters thick in the area of the Detroit River and are not used for groundwater supply. Groundwater flow in the peat and associated silty sand zones of the uppermost water bearing zone flows very slowly at 2x10⁻² cm/sec. It is not expected that contaminants associated with the moist layer will impact off-site properties. Water supply is obtained from the Detroit River and Great Lakes basin and is provided to regional users by the DWSD. There is no known regional groundwater aquifer in the area surrounding the Facility.

Additionally, the GSI pathway is not relevant because there are no surface water bodies in the direction of groundwater flow and the onsite storm sewers discharge to the municipal wastewater treatment plant, the DWSD. There is no known direct pathway from the perched uppermost water bearing zone at the facility to the Detroit River, which is the nearest receiving surface water body. The Detroit River is located southeast of and not directly downgradient from the Facility.

Since the DW and GSI pathways are not relevant, direct contact, VIIC and VAIC are the pathways that are most likely to cause concern in a future use scenario of the Facility. They provide the relevant cleanup criteria for nonresidential use.

Primary COCs (MtBE, PCE and xylenes) do not appear to be readily associated with WMU-15. Primary COCs are not present in concentrations exceeding applicable nonresidential cleanup criteria in soils or groundwater near or immediately downgradient of WMU-15. The distribution of COCs and their concentrations do not indicate that the contamination emanates from WMU-15.

In addressing AOCs 1 and 2, VOCs are present in upper soil materials and in the shallow perched water bearing zone at the Facility at depths of approximately 7 to 12 feet bgs. Consistently, VOC concentrations within fill material and moist peat and silty sand lenses at the Facility do not exceed applicable VIIC or VAIC.

In addressing AOC-3, MtBE concentrations are observed in fill soils and in the shallow water bearing zone within the property boundary. The presence of MtBE is not ubiquitous. Concentrations of MtBE in soils and within the uppermost water bearing zone do not exceed applicable nonresidential cleanup criteria (i.e., VIIC and VAIC). Groundwater monitoring data collected at the Facility on a semi-annual

EPA ID: MID 980 615 298

February 12, 2015 Project No. 11013-000191.00

basis indicate that MtBE is present within three well locations (MW-4 [upgradient], MW-6 and MW-9); however, MtBE concentrations in groundwater do not exceed GVIIC or GVAIC.

Near the western property boundary, in the vicinity of the SBS Solids Building, several VOCs were identified in the shallow water bearing zone and in the soils above the confining clay barrier at concentrations higher than in other areas across the Facility. These VOC concentrations do not exceed direct contact, VIIC, or VAIC.

Should contaminants continue to impact the shallow water bearing zone and soils above the impermeable clay layer at the Facility to the point at which direct contact, VIIC, or VAIC nonresidential cleanup criteria are exceeded, it may be necessary for soils or perched groundwater to be removed or treated. If new sources of contamination are determined, corrective measures may be implemented to improve source control.

Groundwater monitoring should proceed in accordance with the Facility Operating License at established compliance points. Current downward trends in concentrations of VOCs have been noted in semi-annual groundwater sampling events since 2009. Current concentration trends in groundwater detection will demonstrate that applicable nonresidential clean up criteria (direct contract, VIIC, and VAIC) have not been exceeded at the Facility.

Based on the pathway evaluation conducted as part of this CAI, direct contract, VIIC, and VAIC are the nonresidential cleanup criteria appropriate for evaluating the necessity for Corrective Measures, environmental media removal or treatment.

REFERENCES CITED

- Associated Environmental Services, 2005. Category "N" Baseline Environmental Assessment, Former Laro Coal Property, prepared for Morgan Development, LLC, July 29, 2005.
- Bureau Veritas North America, 2007. Evaluation of Part 201 Exposure Pathways, prepared for Petro-Chem Processing Group, August 27, 2007.
- Bureau Veritas North America, 2013. Corrective Action Investigation Work Plan, prepared for Petro-Chem Processing Group, February 15, 2013.
- Bureau Veritas North America, 2014. Corrective Action Investigation Work Plan Addendum, prepared for Petro-Chem Processing Group, November 6, 2014.
- City Data, 2014. http://www.city-data.com/us-cities/The-Midwest/Detroit-Geography-and-Climate.html, November 15, 2014.
- Howard, J.L., 2013. Quaternary Geology of the Detroit, Michigan Quadrangle and Surrounding Areas, Wayne State University.
- W-W Engineering and Science, 1991 and revised 1993. Hydrogeological Report and Groundwater Detection Monitoring Program, in Petro-Chem Processing, Inc. Part B Permit Application. March 1, 1991, Revised August 20, 1993.

BUREAU VERITAS	
TABLES	

Table 3
Corrective Action Investigation
Laboratory Analytical Results for Volatile Organic Compounds in Soil

Petro-Chem Processing Group Facility - Detroit, Michigan

Sample Identification		BS	B-11		BSB-12		BSI	3-13	BSE	3-14	DUP-01	BSE	3-15		MDFQ	Nonresidential Cle	anun Criteria**	
(sample interval - feet)		(3-5)	(5-7)	(8-10)	(10-12)	(18-20)	(3-5)	(5-7)	(3-5)	(5-7)		(3-5)	(5-7)					
Collection Date	MDEQ TDL	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/23/2013	8/23/2013	Drinking	Groundwater	Volatilization to		Soil Saturation
Analysis Date	10/2006	8/28/2013	8/28/2013	8/28/2013 8/30/2013	8/27/2013 8/28/2013	8/27/2013 8/28/2013	8/27/2013	8/27/2013 8/28/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	Water Protection	Surface Water Interface	Ambient/Indoor Air	Direct Contact	Concentration Screening
Collection Method				0/00/2010	O/EO/EO 10	0,20,2010	Gı	rab	I			11		Totection	Protection	Δ"		Levels
VOCs				-					<u></u>									207010
Acetone	1,000	<1,000 J,V-	<1,000 J,V-	<1,000 J.V-	1,516	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1.000	42,000	34,000	160,000,000 C	73.000.000	110,000,000
Benzene	50	<50	<50	270 J.J-	750	<50	<50	110	<50	<50	<50	<50	<50	100	4,000 X	8.400	840,000 C	400,000
2-Butanone	250	<631	<608	<808 J,J-	2,900 J,E1	<583	<588	<613	<609	<592	<644	<685	<693	760,000	44,000	35,000,000	700,000,000 C, DD	27,000,000
n-Butylbenzene	50	<50	<50	<50 J,J-	160	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	880,000,000	8.000.000	10,000,000
sec-Butylbenzene	50	<63	<60	<80 J,J-	170	<58	<58	<61	<60	<59	<64	<68	<69	4,600	ID	180,000,000	8,000,000	10,000,000
tert -Butylbenzene	50	<50	<50	<50 J,J-	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	290,000,000	8,000,000	10,000,000
Carbon tetrachloride	50	<63	<60	390 J,J-	<71	<58	<58	<61	<60	<59	<64	<68	<69	100	900 X	990	440.000 C	390,000
Chloroethane	250	<315	<304	1,000 J,J-	<359	<291	385	<306	<304	<296	<322	<342	<346	34.000	22,000 X	5,300,000 C	12,000,000 C	950,000
Cyclohexane	250	330 🏶	<304	<404 J.J-	1,300	<291	<294	<306	<304	<296	<322	<342	<346	NA	NA NA	NA	NA.	NA NA
1,2-Dichlorobenzene	50	<50	<50	<50 J,J-	3,800	<50	<50	610	<50	<50	<50	<50	<50	14.000	280	20,000,000 C	63,000,000 C	210,000
1,1-Dichloroethane	50	<63	<60	6,700 J,J-	580	<58	510 🥌	530 🚙	<60	<59	<64	<68	<69	50,000	15.000	430,000	87,000,000 C	890,000
1,2-Dichloroethane	50	<63	<60	82 J,J-	<71	<58	<58	<61	<60	<59	<64	<68	<69	100	7,200 X	11,000	420,000	1,200,000
1,1-Dichloroethene	50	<63	<60	200 J,J-	<71	<58	<58	<61	<60	<59	<64	<68	<69	140	2,600	330	660,000 C	570,000
cis-1,2-Dichloroethene	50	<50	<50	1,100 J,J-	1,400	<50	210 🙈	290 🦑	<50	<50	<50	<50	<50	1,400	12,000	41,000	8,000,000 C	640,000
trans -1,2-Dichloroethene	50	<50	<50	140 J,J-	<63	<50	<50	<50	<50	<50	<50	<50	<50	2,000	30.000 X	43,000	12,000,000 C	1,400,000
Ethylbenzene	50	69 🦣	<60	11,000 J.J-	180,000	210 鶲	2,500	15,000	<60	<59	<64	<68	<69	1,500	360	460.000 C	71,000,000 C	140,000
Isopropylbenzene	50	<320	<300	<400 J,J-	2,800	<290	<290	330 🥒	<300	<300	<320	<340	<350	260,000	3,200	730,000 C	80,000,000 C	390,000
4-Isopropyltoluene	50	<130	<120	<160 J,J-	410	<120	<120	<120	<120	<120	<130	<140	<140	NA	NA NA	NA NA	NA NA	NA.
Methylene Chloride	100	<100	<100	15,000 J.J-	2,000	<100	468	1,100	<100	<100	<100	<100	<100	100	30.000 X	240.000	5,800,000 C	2,300,000
2-Methylnaphthalene	250	678 🧶	<304	1,300 J,J-	2,700	<291	<294	591 🥟	<304	<296	<322	<342	<346	170,000	4,200	1.800.000	26,000,000	NA NA
4-Methyl-2-Pentanone (MICSI)	250	<315	<304	5,400 J,J-	8,200	<291	<294	1,300 🧀	<304	<296	<322	<342	<346	100,000	ID	53,000,000	18.000.000 C	2,700,000
Methyl tert -butyl ether (MtBE)	50	<320	<300	1,800 J,J-	4,700	<290	<290	320 🤛	<300	<300	<320	<340	<350	800	140.000 X	18,000,000 C	7,100,000 C	5,900,000
Naphthalene	250	459 🧠	<304	1,900 J,J-	4,700	<291	<294	569 🦛	<304	<296	<322	<342	<346	100,000	730	350,000	52,000,000	NA
n-Propylbenzene	50	<63	<60	330 J,J-	5,100	<58	<58	570 🥟	<60	<59	<64	<68	<69	4,600	ĪD	590,000,000	8,000,000	10,000,000
Tetrachloroethene	50	<63	<60	2,900 J,J-	250	<58	210	130	760	91 🚜	<64	<68	<69	100	1,200 X	21,000	930,000 C	88,000
Tetrahydrofuran	250	<315	<304	1,200 J,J-	4,900	<291	364 🥮	1,200	<304	<296	<322	<342	<346	5,400	220,000 X	2,400,000	9,500,000	120,000,000
Toluene	50	310 🥌	<50	14,000 J,J-	350,000	280 🦀	1,900 🐠	8,500	<50	<50	<50	<50	70 🥒	16,000	5,400	610,000 C	16.000.000 C	250,000
1,2,4-Trichlorobenzene	250	<315	<304	<404 J,J-	<359	<291	<294	<306	<304	<296	<322	<342	<346	4,200	5,900 X	18,000,000 C	5,800,000 C.DD	1,100,000
1,1,1-Trichloroethane	50	<63	<60	2,300 J,J-	<86	<58	250 🥟	160 🥌	<60	<59	<64	<68	<69	4,000	1,800	460.000	1,000,000,000 C, D	460,000
Trichloroethene	50	<63	<60	2,200 J,J-	140	<58	<58	63 🐠	<60	<59	<64	<68	<69	100	4,000 X	1,900	660,000 C.DD	500,000
1,2,3-Trimethylbenzene	50	<130	<120	<160 J,J-	2,100	<120	<120	190 🐠	<120	<120	<130	<140	<140	NA	NA	NA.	NA	NA
1,2,4-Trimethylbenzene	50	200 🧶	<120	710 J,J-	14,000	<120	<120	1,300	<120	<120	<130	<140	<140	2,100	570	8,000,000 C	100.000.000 C	110.000
1,3,5-Trimethylbenzene	50	<130	<120	490 J,J-	6,200	<120	<120	590 🥮	<120	<120	<130	<140	<140	1,800	1,100	4,800,000 C	100,000,000 C	94,000
Vinyl Chloride	50	<50	<50	<50 J,J-	320	<50	<50	<50	<50	<50	<50	<50	<50	40	260 X	2,800	34,000	490,000
Xylenes	100	723 🏶	<182	39,000	750,000	913	7,800	62,000	<182	<177	<193	<205	<207	5,600	820		1,000,000,000 C, D	150,000
Other VOCs	NA	ND	ND	ŃD	ND	ND	ND	ND	ND	ND	ND	ND	ND	Vary	Varv	Varv	Vary	Vary
All soil sample results in micrograms per l									<u></u>				, ,,,,,	,			tary	- vary

All soil sample results in micrograms per kilogram (µg/kg) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

< = limit of detection for sample

E1 = the reported value is estimated due to the presence of interference

J = the concentration is an estimated value

J- = the result is an estimated quantity, but the result may be biased low

V- = recovery in the assoceted continuing calibration verification sample (CCV) exceeds the lower control limit. Results may be biased low.

Reporting limits for some analytes may vReporting limits for some analytes may vary depending on the percent moisture content of the sample.

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnotes

NA = criterion is not available

ND = non-detect

ID = insufficient data to develop criterion

- C = the criterion developed exceeds the chemical-specific soil saturation screening level (Csat)
- D = calculated criterion exceeds 100 percent, hence it is reducted to 100 percent or 1.0E+9 parts per billion (ppb)
- DD = hazardous substance ceuses developmental effects
- X = the GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinkipg water source

Petro-Chem Processing Group Facility - Detroit, Michigan

Sample Identification		BSE	3-16	l BSI	B-17	BSF	3-18	DUP-03	BS	3-19	Bei	B-20	De.	B-21	1	More			
(sample interval - feet)		(3-5)	(5-7)	(3-5)	(5-7)	(3-5)	(5-7)		(3-5)	(5-7)	(3-5)	(5-7)	(3-5)	(5-7)		MDEC	Nonresidential C	leanup Criteria**	
Collection Date	MDEQ TDL	8/23/2013	8/23/2013	8/23/2013	8/23/2013	8/23/2013	8/23/2013	8/23/2013	8/26/2013	8/26/2013	8/26/2013	8/26/2013	8/26/2013	8/26/2013	Drinkina	Groundwater	Volatilization to		1
Analysis Date	10/2006	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013 8/28/2013	8/28/2013	8/27/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	Water Protection	Surface Water Interface	Ambient/Indoor	Direct Contact	Soil Saturation
Collection Method			·	<u> </u>		, 0,-0,-0.0		Grab				·			Protection	Protection	Air		Concentration
VOCs				I					1		I		T T	<u> </u>		<u> </u>			Screening Levels
Acetone	1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<3,602	<1,000	<1,000	<1.000	<1.000	<1.000	42,000	34,000	160.000,000 C	72 000 000	440,000,000
Benzene \	50	<50	<50	<50	<50	450	350	<50	<290	<50	<50	84	<50	<50	100	4,000 X	8.400	73,000,000	110,000,000
2-Butanone (MCK)	250	<573	<562	<655	<636	<630	<603	<653	<2,900	<306	<414	<323	<334	<335	760.000	44,000	35,000,000		400,000
n-Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<290	<50	<50	<50	<50	<50	4,600	44,000 ID			27,000,000
sec-Butylbenzene	50	<57	<56	<65	<63	<63	<60	<65	<290	<50	<50	<50	<50	<50	4,600	ID ID		8,000,000 8,000,000	10,000,000
tert -Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<290	<50	<50	<50	<50	<50	4,600	ID.		8,000,000	10,000,000
Carbon tetrachloride	. 50	<57	<56	<65	<63	<63	<60	<65	<570	<61	<82	<64	<66	<67	100	900 X	290,000,000		10,000,000
Chloroethane	250	<286	<281	<327	<318	449 🐲	514	<326	<2,900	<306	<414	<323	<334	<335	34,000	22,000 X	5,300,000 C	440,000 C 12,000,000 C	390,000
Cyclohexane	250	<286	<281	<327	<318	535	<301	<326	<571	<250	<250	<250	<250	<250	0 1,000 NA	22,000 X	5,500,000 C		950,000
1,2-Dichlorobenzene	50	<50	<50	<50	<50	<50	<50	<50	<290	<50	<50	<50	<50	<50	14,000	280	20.000.000 C	63.000.000 C	NA 210.000
1,1-Dichloroethane	50	<57	<56	<65	<63	<63	<60	<65	<570	<61	<82	<64	<66	<67	50,000	15,000	430,000	87,000,000 C	210,000 890.000
1,2-Dichloroethane	50	<57	<56	<65	<63	<63	<60	<65	<570	<61	<82	<64	<66	<67	100	7,200 X	11,000	420,000	
1,1-Dichloroethene	50	<57	<56	<65	<63	<63	<60	<65	<290	<50	<50	<50	<50	<50	140	2,600	330	660.000 C	1,200,000
cis-1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<290	<50	<50	<50	<50	<50	1,400	12,000	41,000	8,000,000 C	570,000
trans-1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<290	<50	<50	<50	<50	<50	2,000	30,000 X	43,000	12,000,000 C	640,000
Ethylbenzene	50	<57	<56	<65	<63	22,000	16,000	<65	790	74 🧠	<50	200	<50	<50	1,500	360	460,000 C	71,000,000 C	1,400,000
Isopropylbenzene	50	<290	<280	<330	<320	330 🕪	<300	<330	<290	<50	<50	<50	<50	<62	260,000	3,200	730,000 C	80,000,000 C	140,000
4-Isopropyltoluene	50	<110	<110	<130	<130	<130	<120	<130	<290	<50	<50	<58	<50	<50	NA NA	0,200 NA	730,000 C	80,000,000 C NA	390,000
Methylene Chloride	100	<100	<100	<100	<100	<100	<100	<100	<285	<100	<100	<100	<100	<100	100	30,000 X	240,000	5,800,000 C	NA 0 200 000
2-Methylnaphthalene	250	<286	<281	<327	<318	<315	<301	<326	<285	<250	<250	<250	<250	<250	170,000	4,200	1,800,000	26,000,000	2,300,000
4-Methyl-2-Pentanone	250	<286	<281	<327	<318	<315	<301	<326	<5,700	<613	<828	<647	<668	<670	100,000	7,200 ID	53,000,000	18,000,000 C	NA 700 000
Methyl tert -butyl ether (MtBE)	50	<290	<280	<330	<320	800 🚙	780 🧆	<330	<570	<61	<82	<64	<66	<67	800	140,000 X	18,000,000 C	7,100,000 C	2,700,000 5,900,000
Naphthalene	250	<286	<281	<327	<318	<315	<301	<326	<285	<250	<250	<250	<250	<250	100,000	730	350,000	52,000,000	5,900,000 NA
n-Propylbenzene	50	<57	<56	<65	<63	240	230	<65	<290	<50	<50	<50	<50	<50	4,600	מו	590,000,000	8,000,000	10,000,000
Tetrachloroethene	50	<57	<56	<65	<63	<63	<60	<65	520	<50	940	<50	<50	<50	100	1,200 X	21,000	930,000 C	10,000,000
Tetrahydrofuran	250	<286	<281	<327	<318	<315	<301	<326	<2,900	615 🚁	<414	<323	<334	<335	5,400	220,000 X	2,400,000	9,500,000	120,000,000
Toluene	50	<50	<50	<50	<50	170 🧠	300	<50	820	110 👐	340 🦠	360 🕯	<50	240 🦑	16,000	5,400	610.000 C	16,000,000 C	250,000
1,2,4-Trichlorobenzene	250	<286	<281	<327	<318	<315	<301	<326	863 🐡	<250	<250	<250	<250	<250	4,200	5,900 X	18,000,000 C	5.800.000 C.DD	1,100,000
1,1,1-Trichloroethane	50	<57	<56	<65	<63	<63	<60	<65	<570	<61	<82	<64	<66	<67	4,000	1,800	460,000	1,000,000,000 C, D	460,000
Trichloroethene	50	<57	<56	<65	<63	<63	<60	<65	<570	<61	130	<64	<66	<67	100	4,000 X	1,900	660,000 C,DD	
1,2,3-Trimethylbenzene	50	<110	<110	<130	<130	<130	<120	<130	350,,,,,	<50	<50	<50	<50	<50	NA.	NA NA	1,300 NA	NA	500,000
1,2,4-Trimethylbenzene	50	<110	<110	<130	<130	220 🦇	270	<130	1,000	<89	<50	<50	<50	<50	2,100	570	8,000,000 C	100,000,000 C	NA
1,3,5-Trimethylbenzene	50	<110	<110	<130	<130	270 🤏	260	<130	450⊚∞	<50	<50	<50	<50	<50	1,800	1,100	4,800,000 C	100,000,000 C	110,000
Vinyl Chloride	50	<50	<50	<50	<50	<50	<50	<50	<290	<50	<50	<50	<50	<50	40	260 X	2,800	34.000	94,000
Xylenes	100	<172	<168	<196	<191	44,000	37,000	<195	4,400	625	<150	545	<150	<150	5,600	820		1,000,000,000 C, D	490,000
Other VOCs	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Varv	Varv	12,000,000 C	1,000,000,000 C, D Varv	150,000 Varv
All soil sample results in micrograms pe	ır kilogram (µg/kg) d	or parts per billion	(ppb)						٠,					110	- vary	vary	vary	vary	vary

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

< = limit of detection for sample

NA = criterion is not available

Reporting limits for some analytes may vary depending on the percent moisture content of the sample.

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footgotes

NA = criterion is not available

ND = non-detect

ID = insufficient data to develop criterion

C = the criterion developed exceeds the chemical-specific soil saturation screening level (Csat)

D = calculated criterion exceeds 100 percent, hence it is reducted to 100 percent or 1.0E+9 parts per billion (ppb)

DD = hazardous substance causes developmental effects

X = the GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source

Petro-Chem Processing Group Facility - Detroit, Michigan

	1	BSF	3-22	BSE	3-23	BSE	3-24	BSE	-25	BSI	3-26	BSE	3-27	DUP-06	Groundwater				
Sample Identification (sample interval - feet)		(3-5)	(9-10)	(3-5)	(9-10)	(3-5)	(7.5-8.5)	(3-5)	(5-7)	(3-5)	(5-7)	(3-5)	(5-7)					•	1
Collection Date	MDEQ TDL	8/26/2013	8/26/2013	8/26/2013	8/26/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	8/27/2013	Drinking		Volatilization to		Soil Saturation
Analysis Date	10/2006						0/00/0040	0/00/0040	0/00/0040	0/00/0040	8/29/2013	8/29/2013	8/29/2013	8/30/2013	Water	Surface Water	Ambient/Indoor	Direct Contact	Concentration
I manyon bank		8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/29/2013	8/29/2013	8/29/2013	8/29/2013	8/30/2013	8/30/2013	Protection	Interface Protection	Air		Screening
Collection Method								Grab								Protection			Levels
VOCs									· · · · · · · · · · · · · · · · · · ·										
Acetone	1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<21,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<21,000	42,000			73,000,000	
Benzene	50	<50	<50	<50	<50	<50	<1,100	120	<50	<50	<50	<50	<64	<1,100	100		8,400	840,000 C	
2-Butanone	250	<394	<281	<287	<295	<582	<21,000	<559	<607	<552	<258	<552	<687	<21,000	760,000			700,000,000 C, DD	
n-Butylbenzene	50	<50	<50	<50	<50	<50	69,000	<50	<50	<50	<50	<50	<50	57,000	4,600		880,000,000	8,000,000	
sec-Butylbenzene	50	<50	<50	<50	<50	<58	28,000	<55	<60	<55	<50	<55	<68	24,000	4,600		180,000,000	8,000,000	10,000,000
tert -Butylbenzene	50	<50	<50	<50	<50	<50	3,500	<50	<50	<50	<50	<50	<50	3,000 🥯	4,600		290,000,000	8,000,000	10,000,000
Carbon tetrachloride	50	<78	<56	<57	<59	<58	<2,100	<55	<60	<55	<51	<55	<68	<2,100	100		990	440,000 C	
Chloroethane	250	<394	<281	<287	<295	<291	<11,000	<279	<303	<276	<258	<276	<343	<11,000	34,000		5,300,000 C	12,000,000 C	
Cyclohexane	250	<250	<250	<250	<250	<291	<11,000	<279	<303	<276	<250	<276	<343	<11,000	NA		NA	NA	
1,2-Dichlorobenzene	50	<50	<50	<50	<50	<50	<1,100	<50	<50	<50	<50	<50	<50	<1,100	14,000	280	20,000,000 C	63,000,000 C	
1,1-Dichloroethane	50	<78	<56	<57	<59	<58	<2,100	<55	<60	<55	<51	<55	<68	<2,100	50,000	15,000	430,000	87,000,000 C	
1,2-Dichloroethane	50	<78	<56	<57	<59	<58 -	<2,100	<55	<60	<55	<51	<55	<68	<2,100	100		11,000	420,000	
1,1-Dichloroethene	50	<50	<50	<50	<50	<58	<2,100	<55	<60	<55	<50	<55	<68	<2,100	140		330	660,000 C	
cis -1,2-Dichloroethene	50	<50	<50	<50	110	<50	<1,100	<50	<50	<50	<50	<50	<50	<1,100	1,400	12,000	41,000	8,000,000 C	
trans -1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<1,100	<50	<50	<50	<50	<50	<50	<1,100	2,000	30,000 X	43,000	12,000,000 C	
Ethylbenzene	50	<50	<50	<50	<50	<58	<2,100	<55	<60 ·	<55	70 🥷 _	<55	250	<2,100	1,500		460,000 C	71,000,000 C	
Isopropylbenzene	50	<50	<50	<50	<50	<290	<11,000	<280	<300	<280	<66	<280	<340	<11,000	260,000	3,200	730,000 C	80,000,000 C	-
4-Isopropyltoluene	50	<50	<50	<50	<50	<120	36,000 🥌	<110	<120	<110	<50	<110	<140	32,000	NA NA	∫ NA	NA NA	NA	
Methylene Chloride	100	<100	<100	<100	<100	<100	<2,100	<100	<100	<100	<100	<100	<100	<2,100	100	30,000 X	240,000	5,800,000 C	
2-Methylnaphthalene	250	<250	<250	<250	<250	<291	88,000	<279	<303	<276	<580	<276	1,400 🦃	85,000	170,000	4,200	1,800,000	26,000,000	NA NA
4-Methyl-2-Pentanone	250	<789	<562	<574	<591	<291	<11,000	<279	<303	<276	<517	<276	<343	<11,000	100,000	ID	53,000,000	18,000,000 C	2,700,000
Methyl tert -butyl ether (MtBE)	50	<78	<56	<57	<59	<290	<11,000	<280	<300	<280	<51	<280	<340	<11,000	800	140,000 X	18,000,000 C	7,100,000 C	5,900,000
Naphthalene	250	<250	<250	<250	<250	<291	70,000	<279	<303	<276	<259	<276	8,600	60,000	100,000	730	350,000	52,000,000	
n-Propylbenzene	50	<50	<50	<50	<50	<58	17,000	<55	<60	<55_	71 🦓	<55	<68	15,000	4,600	· ID	590,000,000	8,000,000	10,000,000
Tetrachloroethene	50	<50	<50	<50	<50	390	8,000	<55	<60	<55	<50	<55	<68	7,400	100	San resembly the control of the cont	21,000	930,000 C	88,000
Tetrahydrofuran	250	<394	<281	<287	<295	<291	<11,000	<279	<303	<276	<258	<276	<343	<11,000	5,400	220,000 X	2,400,000	9,500,000	
Toluene	50	170 🦇 😘	<50	64	<50	<50	<1,100	160 🧠	<50	<50	190 🐗	<50	240 🐃	<1,100	16,000	5,400	610,000 C	16,000,000 C	
1,2,4-Trichlorobenzene	250	<250	<250	<250	<250	<291	<11,000	<279	<303	<276	<250	<276	<343	<11,000	4,200	5,900 X	18,000,000 C	5,800,000 C,DD	
1,1,1-Trichloroethane	50	<78	<56	<57	<59	<58	<2,100	<55	<60	<55	<51	<55	<68	<2,100	4,000	1,800	460,000		
Trichloroethene	50	<78	<56	93	<59	<58	<2,100	<55	<60	<55	<51	<55	<68	<2,100	100		1,900	660,000 C,DD	,
1,2,3-Trimethylbenzene	50	<50	<50	<50	<50	<120	140,000	<110	<120	<110	<58	<110	<140	120,000	NA		NA	NA	
1,2,4-Trimethylbenzene	50	<50	<50	<50	<50	<120	220,000	<110	<120	<110	120	<110	230 🦃	190,000	2,100	570	8,000,000 C	100,000,000 C	110,000
1,3,5-Trimethylbenzene	50	<50	<50	<50	<50	<120	74,000	<110	<120	<110	<50	<110	<140	67,000	1,800	1,100	4,800,000 C	100,000,000 C	94,000
Vinyl Chloride	50	<50	<50	<50	<50	<50	<1,100	<50	<50	<50	<50	<50	<50	<1,100	40		2,800	34,000	
Xylenes	100	261	<150	<150	<150	<174	25,000	<167	<182	<165	387 🦇	<165	761	23,000	5,600	820		1,000,000,000 C, D	150,000
Other VOCs	NA	ND	ND	ND	ND	ND	. ND	ND	ND :	ND	ND	ND	ND	ND	Vary	Vary	Vary	Varv	/ Vary

All soil sample results in micrograms per kilogram (µg/kg) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

< = limit of detection for sample

NA = criterion is not available

Reporting limits for some analytes may vary depending on the percent moisture content of the sample.

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnoles

NA = criterion is not available

ND = non-detect

ID = insufficient data to develop criterion

C = the criterion developed exceeds the chemical-specific soil saturation screening level (Csat)

D = calculated criterion exceeds 100 percent, hence it is reducted to 100 percent or 1.0E+9 parts per billion (ppb)

DD = hazardous substance causes developmental effects

X = the GSI criterion shown in the generic cleanup criterie tables is not protective for surface water that is used as a drinking water course

Petro-Chem Processing Group Facility - Detroit, Michigan

Soil Boring Number		RSF	3-28	BSE	3-29	BSI	3-30	BSE	3-31	DUP-02					
(sample interval - feet)		(4-5)	(5-6)	(3-4)	(8-9)	(4-5)	(9-10)	(7-8)	(11-12)		D . I .	Groundwater			- 0.000 0 0 00 00 00
Collection Date	MDEQ TDL	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	Drinking	Surface Water	Volatilization to		Soil Saturation
Analysis Date	10/2006	4/24/2014	4/24/2014	4/24/2014	4/24/2014	4/24/2014	4/24/2014	4/24/2014	4/24/2014	4/24/2014	Water	Interface	Ambient/Indoor	Direct Contact	Concentration
Collection Method		112 112 111	DE BEOTT	W- W-511		Grab	<u> </u>		<u> </u>	•	Protection	Protection	Air		Screening Levels
VOCs		1								l .					
Acetone	1.000	<1.000	<1.000	<1,000	<1.000	<1.000	<1.000	<1.000	<1.000	<1,000	42,000	34,000	160,000,000 C	73,000,000	110,000,000
Benzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	4,000 X	8,400	840.000 C	400,000
2-Butanone	250	<250	<250	<250	<250	<250	<250	<250	<250	<250	760,000	44,000	35,000,000	700,000,000 C, DD	27,000,000
n-Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	880,000,000		10,000,000
sec-Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	180,000,000		10,000,000
tert -Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	290,000,000	8,000,000	10,000,000
Carbon tetrachloride	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	900 X	990	440,000 C	390,000
Chloroethane	. 250	<250	<250	<250	<250	<250	<250	<250	<250	<250	34,000	22,000 X	5,300,000 C	12,000,000 C	950,000
Cyclohexane	. 250	<250	<250	<250	<250	<250	<250	<250	<250	<250	NA	NA	NA	NA	NA
1.2-Dichlorobenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	14,000	280	20,000,000 C	63,000,000 C	210,000
1.1-Dichloroethane	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	50,000	15,000	430,000	87,000,000 C	890,000
1.2-Dichloroethane	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	7,200 X	11,000	420,000	1,200,000
1.1-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	140	2,600	330	660,000 C	570,000
cis-1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,400	12,000	41,000	8,000,000 C	640,000
trans-1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	2,000	30,000 X	43,000	12,000,000 C	1,400,000
Ethylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,500	360	460,000 C	71,000,000 C	140,000
Isopropylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	260,000	3,200	730,000 C	⊢ 80,000,000 C	390,000
4-Isopropyltoluene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA		NA
Methylene Chloride	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	100	30,000 X	240,000		2,300,000
2-Methylnaphthalene	250	<250	<250	<250	<250	<250	<250	<251	<250	<250	170,000	4,200	1,800,000		NA NA
4-Methyl-2-Pentanone	250	<328	<308	<299	<312	<283	<313	<339	<301	<250	100,000	ID	53,000,000		2,700,000
Methyl tert-butyl ether (MtBE)	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	800	140,000 X	18,000,000 C	7,100,000 C	5,900,000
Naphthalene	250	<250	<250	<250	<250	<250	<250	630	<250	<250	100,000	730	350,000		NA NA
n-Propylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	590,000,000		10,000,000
Tetrachloroethene	50	2,500	<50	62 🥙	<50	120	<50	<50	<50	<50	100	1,200 X	21,000		88,000
Tetrahydrofuran	250	<328	<308	<299	<312	<283	<313	<339	<301	<250	5,400	220,000 X	2,400,000	9,500,000	120,000,000
Toluene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	16,000	5,400	610,000 C	16,000,000 C	250,000
1,2,4-Trichlorobenzene	250	<250	<250	<250	<250	<250	<250	<250	<250	<250	4,200	5,900 X	18,000,000 C	5,800,000 C,DD	1,100,000
1,1,1-Trichloroethane	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,000	1,800	460,000		460,000
Trichloroethene	50	100 🌑	<50	<50	<50	<50	<50	<50	<50	<50	100	4,000 X	1,900	660,000 C,DD	500,000
1,2,3-Trimethylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	NA	NA NA	NA	NA	NA NA
1,2,4-Trimethylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	2,100	570	8,000,000 C		110,000
1,3,5-Trimethylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,800	1,100	4,800,000 C		94,000
Vinyl Chloride	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	40	260 X	2,800		490,000
Xylenes	100	<150	<150	<150	<150	<150	<150	<150	<150	<150	5,600	820	,,	1,000,000,000 C, D	150,000
Other VOCs	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	Vary	Vary	Vary	Vary	Vary

All soil sample results in micrograms per kilogram (µg/kg) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

< = limit of detection for sample

NA = criterion is not available

Reporting limits for some analytes may vary depending on the percent moisture content of the sample.

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnotes

NA = criterion is not available

ND = non-detect

ID = insufficient data to develop criterion

C = the criterion developed exceeds the chemical-specific soil saturation screening level (Csat)

D = calculated criterion exceeds 100 percent, hence it is reducted to 100 percent or 1.0E+9 parts per billion (ppb)

DD = hazardous substance causes developmental effects

X = the GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source

Petro-Chem Processing Group Facility - Detroit, Michigan

Soil Boring Number		BSE	3-32	BSE	3-33	BS	3-34	BSE	3-35	Dup-03	Groundwater				
(sample interval - feet)	1	(2-4)	(10-12)	(2-4)	(8-10)	(3-5)	(8-10)	(2-4)	(6-8)			Canunduuntaa		1	
Collection Date	MDEQ TDL	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	Drinking	Surface Water	Volatilization to	t	Soil Saturation
Analysis Date	10/2006	9/23/2014	9/23/2014	9/23/2014	9/23/2014	9/23/2014	9/23/2014	9/23/2014	9/23/2014	9/24/2014	Water	Interface	Ambient/Indoor	Direct Contact	Concentration
1,	·	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014	Protection	Protection	Air	i	Screening Levels
Collection Method						Grab						FIOLECTION			
VOCs													-		
Acetone	1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	42,000	34,000		73,000,000	110,000,000
Benzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	4,000 X	∠ 8,400		400,000
2-Butanone	250	<250	<250	<250	<250	<250	<250	<250	<250	<250	760,000	44,000		700,000,000 C, DD	27,000,000
n-Butylbenzene	50	<50	<50	<50	<50	130 🦃	<50	<50	<50	170 🧶	4,600	ID		8,000,000	10,000,000
sec-Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID		8,000,000	10,000,000
tert -Butylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,600	ID	290,000,000	8,000,000	10,000,000
Carbon tetrachloride	50	<56	<65	<55	<74	<60	<98	<60	<82	<61	100	900 X	990	440,000 C	390,000
Chloroethane	250	<280	<320	<270	<370	<300	<490	<300	<410	<300	34,000	22,000 X	5,300,000 C	12,000,000 C	950,000
Cyclohexane	250	<250	<250	<250	<250	<250	<250	<250	<250	<250	NA	NA NA	NA	NA	NA
1,2-Dichlorobenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	14,000	280	20,000,000 C	63,000,000 C	210,000
1,1-Dichloroethane	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	50,000	15,000	430,000	87,000,000 C	890,000
1,2-Dichloroethane	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	7,200 X	11,000	420,000	1,200,000
1,1-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	140	2,600	330	660,000 C	570,000
cis -1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1,400	12,000	41,000	8,000,000 C	640,000
trans-1,2-Dichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	2,000	30,000 X	43,000	12,000,000 C	1,400,000
Ethylbenzene	50	<50	<50	<50	<50	60 🍩	<50	<50	<50	120 🦃	1,500	360	460,000 C	71,000,000 C	140,000
Isopropylbenzene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	260,000	3,200	730,000 C	80,000,000 C	390,000
4-Isopropyltoluene	50	<50	<50	<50	<50	<50	<50	<50	<50	56 🥖	NA	NA	NA	NA	NA
Methylene Chloride	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	100	30,000 X	240,000	5,800,000 C	2,300,000
2-Methylnaphthalene	250	<250	<250	<250	<250	<250	<250	<250	<250	<250	170,000	4,200	1,800,000	26,000,000	NA
4-Methyl-2-Pentanone	250	<280	<320	<270	<370	<300	<490	<300	<410	<300	100,000	ID	53,000,000	18,000,000 C	2,700,000
Methyl tert -butyl ether (MtBE)	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	800	140,000 X	18,000,000 C	7,100,000 C	5,900,000
Naphthalene	250	<250	<250	<250	<250	410	<250	<250	<250	370 🦸	100,000	730	350,000	52,000,000	NA
n-Propylbenzene	50	<50	<50	<50	<50	92 🐔	<50	<50	<50	140 🥟	4,600	ID	590,000,000	8,000,000	10,000,000
Tetrachloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	1,200 X	21,000	930,000 C	88,000
Tetrahydrofuran	250	<280	<320	<270	<370	<300	<490	<300	<410	<300	5,400	220,000 X	2,400,000	9,500,000	120,000,000
Toluene	50	<50	<50	<50	<50	59 🥌	<50	<50	<50	160 🥬	16,000	5,400	610,000 C	16,000,000 C	250,000
1,2,4-Trichlorobenzene	250	<250	<250	<250	<250	<250	<250	<250	<250	<250	4,200	5,900 X	18,000,000 C	5,800,000 C,DD	1,100,000
1,1,1-Trichloroethane	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	4,000	1,800		1,000,000,000 C, D	460,000
Trichloroethene	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	100	4,000 X	1,900	660,000 C,DD	500,000
1,2,3-Trimethylbenzene	50	<50	<50	<50	<50	140 🌋	<50	<50	<50	220 🦑	NA	NA	NA	NA .	NA
1,2,4-Trimethylbenzene	50	<50	<50	<50	<50	470 🎪	<50	<50	<50	680	2,100	570	8,000,000 C	100,000,000 C	110,000
1,3,5-Trimethylbenzene	50	<50	<50	<50	<50	86 🥮	<50	<50	<50	130 🦓	1,800	1,100	4,800,000 C	[100,000,000 C	94,000
Vinyl Chloride	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	40	260 X	2,800	34,000	490,000
Xylenes	100	<150	<150	<150	<150	420 🥟	<150	<150	<150	790 🦛	5,600	820		1,000,000,000 C, D	150,000
Other VOCs	NA	ND	ND "	Vary	Vary	Vary	Vary	Vary							

All soil sample results in micrograms per kilogram (µg/kg) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

< = limit of detection for sample

Reporting limits for some analytes may vary depending on the percent moisture content of the sample.

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded Indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnotes

NA = criterion is not available

ND = non-detect

ID = insufficient data to develop criterion

C = the criterion developed exceeds the chemical-specific soil saturation screening level (Csat)

D = calculated criterion exceeds 100 percent, hence it is reducted to 100 percent or 1.0E+9 parts part

DD = hazardous substance causes developmental effects

X = the GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source

Table 3 (continued) Corrective Action Investigation

Laboratory Analytical Results for Volatile Organic Compounds in Soil

Petro-Chem Processing Group Facility - Detroit, Michigan

Collection Date Collection Method Co	Soil Boring Number		1	BSB-36		BSE	23R	1	MDEC) Nonrecidential (Cleanup Criteria**	
Collection Date Incompany Incompany			(0-2)		(12 5-13)					Troncoldenia (Jicariap Officina	
Analysis Date 10/2006 12/27/2014 12/27/2014 12/25/2014 12		MDEO TOL						Drinking		Volatilization to		Soil Saturation
Collection Method Grab Protection Pr								Water		Ambient/Indoor	Direct Contact	Concentration
VoCs	Collection Method				Grah			1 101000001	Protection	Α"		Screening Levels
Apestone					Oldb							
Entreme		1.000	<1.000.11+	<1.100 J.L+	<1.000	<1.000	<5.300	42,000	34,000	160,000,000 C	73 000 000	110,000,000
Payulbanzene	2074.00.											
F-Buylbanzene 50 <50 <50 <50 <50 <50 <50 <50 <50 <50												
Sec-Bulylbenzene												
Fort-Buylbenzene												
Carbon tetrachloride												
Chloroethane												
Cyclohexane 250 <250 <250 <250 <270 NA NA </td <td>* ***</td> <td></td>	* ***											
1,2-Dichlorobenzene	Onioroculario											
1,1-Dichloroethane			1									
1,2-Dichloroethane	1,2-Dichioropolizone				-							
1,1-Dichloroethene												
cis-1,2-Dichloroefthene 50 <50 <50 <50 <50 <50 <270 1,400 12,000 41,000 8,000,000 C 640,000 C Diisopropyl ether 250 <250												
Disopropylether 260 <250 <2,000 <250 <250 <250 <250 <270				• •								
Ethylbenzene 50 <50 <50 <50 <50 <400 4,000 <270 1,500 360 460,000 C 71,000,000 C 140,000 (soproylbenzene) 50 <100 J,L+ <230 J,L+ <50 370 <270 260,000 3,200 730,000 C 80,000,000 C 390,000 C 14 (soproylbenzene) 50 <50 <50 <50 <50 <50 <70 NA								7, 100	12,000	77,000	0,000,000 0	040,000
Isopropy benzene								1.500	360	460 000 C	71 000 000 C	140,000
A-Isopropylidulene 50										,		
Methylene Chloride 100 <100 <100 <100 <530 100 30,000 X 240,000 5,800,000 C 2,300,000 2-Methylnaphthalene 250 <250						City in						
2-Methylnaphthalene 250 <250 <250 <250 <250 <250 <530 170,000 4,200 1,800,000 26,000,000 NA 4-Methyl-2-Pentanone 250 <510 3,500 <250 <340 <1,100 100,000 ID 53,000,000 18,000,000 C 2,700,000 Methyl tert-butyl ether (MtBE) 50 <50 <50 <50 1,000 5,200 800 140,000 X 18,000,000 C 7,100,000 C 5,900,000 NA n-Propylbenzene 50 <550 <250 <250 <250 <250 <250 <270 100,000 730 350,000 52,000,000 NA n-Propylbenzene 50 <50 <50 <50 <50 <50 <50 <50 <50 <50												
4-Methyl-2-Pentanone 250 <510 3,500 <250 <340 <1,100 100,000 ID 53,000,000 18,000,000 C 2,700,000 Methyl tert - butyl ether (MtBE) 50 <50												
Methyl ferr - butyl ether (MtBE) 50 <50 8,300 <50 1,000 5,200 800 140,000 X 18,000,000 C 7,100,000 C 5,900,000 Naphthalene 250 <250												
Naphthalene 250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <27												. ,
n-Propylbenzene 50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50												
Styrene 50 <50 <50 <50 <50 <270												-, +
Tetrachloroethene 50 160 <50 <50 <50 <270 100 1,200 X 21,000 930,000 C 88,000 Tetrahydrofuran 250 <260								7,000	,		0,000,000	10,000,000
Tetrahydrofuran 250 <260 4,500 <290 1,600 <2,700 5,400 220,000 X 2,400,000 9,500,000 120,000,000 Toluene 50 <50								100	1.200 X	21,000	930 000 C	88 000
Toluene 50 <50 130 <50 1,100 <270 16,000 5,400 610,000 C 16,000,000 C 250,000 1,2,4-Trichlorobenzene 250 <250												
1,2,4-Trichlorobenzene 250 <250												, , , , , ,
1,1,1-Trichloroethane 50 <50												
Trichloroethene 50 <50 <50 <50 <50 <270 100 4,000 X 1,900 660,000 C,DD 500,000 1,2,3-Trimethylbenzene 50 <50												
1,2,3-Trimethylbenzene 50 <50 <50 <50 <50 430 <270 NA												
1,2,4-Trimethylbenzene												
1,3,5-Trimethylbenzene 50 <50	T,Z,O THINOTHY IDONE CONO	1										
Vinyl Chloride 50 <50 <50 <50 <50 <50 <50 <270 40 260 X 2,800 34,000 490,000 Xylenes 100 190 <150												
Xylenes 100 190 <150 <150 <24,000 <800 5,600 820 12,000,000 C 1,000,000,000 C, D 150,000	1,0,0 Fintotrytotrizono	T										/
										,		
Other VOCs NA ND ND ND ND ND Vary Vary Vary Vary Vary Vary		NA NA	ND ND	ND ND	ND ND	ND	ND	Varv	Vary			Vary

All soil sample results in micrograms per kilogram (µg/kg) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

< = limit of detection for sample

Reporting limits for some analytes may vary depending on the percent moisture content of the sample.

Criteria Footnotes

NA = criterion is not available

ND = non-detect

ID = insufficient data to develop criterion

C = the criterion developed exceeds the chemical-specific soil saturation screening level (Csat)

D = calculated criterion exceeds 100 percent, hence it is reducted to 100 percent or 1.0E+9 parts per billion (ppb)

DD = hazardous substance causes developmental effects

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup X = the GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criterie

Table 4 Corrective Action Investigation Laboratory Analytical Results for Volatile Organic Compounds in Groundwater

Petro-Chem Processing Group Facility - Detroit, Michigan

Г	Sample Identification		BSB-11	B\$B-12	BSB-13	BSB-14	DUP-02	BSB-15	BSB-16	BSB-17	BSB-18	DUP-04	BSB-19	BSB-20	BSB-21	MDEQ	Nonresidential Cle	eanup Criteria**
	(screen depth - feet)		(7-11)	(12-16)	(7-11)	(7-11)		(7-11)	(7-11)	(7-11)	(7-11)		(7-11)	(7-11)	(7-11)	1		
Ľ	Collection Date	MDEQ TDL	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/23/2013	8/23/2013	8/23/2013	8/23/2013	8/23/2013	8/26/2013	8/26/2013	8/26/2013	Drinking	Groundwater	Volatilization to
	Analysis Date	10/2006	8/30/2013	8/28/2013 8/31/2013	8/30/2013 8/31/2013	8/30/2013	8/30/2013	8/30/2013	8/30/2013	8/28/2013 8/30/2013	8/29/2013 8/30/2013	8/30/2013	8/30/2013 8/31/2013	8/30/2013 8/31/2013	8/30/2013 8/31/2013	Water	Surface Water Interface	Indoor Air
	Collection Method		***************************************					S	creen Point 1	6								
V	/OCs																	
A	Acetone	20	<20	48,000 J,V+	160,000	<20	<20	<50	<20	<200	<1,000	<50	<20	<26	<20	2,100	1,700	1,000,000,000 D,S
E	Benzene	1.0	<1.0	130	<1,000	<1.0	<1.0	19	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	5.0 A	200 X	35,000
Ē	Bromochloromethane	1.0	<1.0	19	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	NA	NA	NA
te	ert-Butyl alcohol	50	<50	<10,000	<5,000	<50	<50	750 👺	580 🥔	<100	3,600#	690 🐗	<50	180 J,* 🥙	87 J,* 🦥	11,000	NA	1,000,000,000 D,\$
2	2-Butanone (MEI<)	5.0	<5.0	18,000	32,000	<5.0	<5.0	<25	<5.0	<100	<500	<25	<5.0	9.5 👳	<5.0	38,000	2,200	240,000,000 S
c	-Butylbenzene	1.0	<1.0	1.1	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	< 6.0	<1.0	<1.0	<1.0	230	ID	ID
s	sec-Butylbenzene	1.0	<1.0	<1.0	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	230	ID	1D
C	Chlorobenzene	1.0	<1.0	2.0	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	100 A	25	470,000 S
C	Chloroethane	5.0	<5.0	6.5	<2,000	<5.0	<5.0	<25	<5.0	<40	<500	<25	<5.0	<5.0	<5.0	1,700	1,100 X	5,700,000 S
C	Chloroform	1.0	<1.0	2.1	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	1.5 🥏	<1.0	80 A,W	350	180,000
1	,2-Dichlorobenzene	1.0	<1.0	55	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	600 A	13	160,000 S
_	,4-Dichlorobenzene	1.0	<1.0	<1.0	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	75 A	17	74,000 S
	,1-Dichloroethane	1.0	<1.0	<2,000	1,300	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	2,500	740	2,300,000
1	,2-Dichloroethane	1.0	<1.0	42	<820	<1.0	<1.0	<5.0	<1.0	<16	<100	<5.0	<1.0	<1.0	<1.0	5.0 A	360 X	59,000
1	,1-Dichloroethene	1.0	<1.0	4.0	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	7.0 A	130	1,300
	is-1,2-Dichloroethene	1.0	<1.0	<2,000	1,800	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	70 A	620	210,000
	rans-1,2-Dichloroethene	1.0	<1.0	43	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	100 A	1,500 X	200,000
	Diethyl ether	5.0	<5.0	61	<1,000	<5.0	<5.0	<10	47	<20	<200	<10	<5.0	<5.0	<5.0	10 E	ID ID	61,000,000 S
	Diisopropyl ether	5.0	<5.0	45	<1,000	<5.0	<5.0	5.9 🐲	160	<20	180	11 🐠	<5.0	<5.0	<5.0	86	DI.	8,000 S
	Ethylbenzene	1.0	<1.0	<2,000	20,000	3.1 🥔	3.0 🦠	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	74 E	18	170,000 S
	2-Hexanone	5.0	<5.0	14	<2,000	<5.0	<5.0	<25	<5.0	<40	<500	<25	<5.0	<5.0	<5.0	2,900	ID	8,700,000
-	sopropylbenzene	1.0	<1.0	24	<850	<1.0	<1.0	<5.0	<1.0	<17	<100	<5.0	<1.0	<1.0	<1.0	2,300	28	56,000 S
	l-Isopropyltoluene	1.0	<1.0	<1.0	<630 ⋅	<1.0	<1.0	<5.0	<1.0	<13	<100	<5.0	<1.0	<1.0	<1.0	NA /	NA	NA
	2-Methylnaphthalene	5.0	<5.0	<5.0	<3,900	<5.0	<5.0	<20	<5.0	<80	<390	<20	<5.0	<5.0	<5.0	750	19	25,000 S
1 -	I-Methyl-2-Pentanone	5.0	<5.0	84,000 J,V+	180,000	6.2 🥟	<5.0	<25	<5.0	<21	<500	<25	<5.0	<5.0	<5.0	5,200	ID	20,000,000 S
	Methyl tert-butyl ether (MtBE)	1.0	3.1 🐠	14,000	27,000 J, V-	220 E	210	740	28 🦑	<40 J,V-	9,900	710	3.8	13 🤌	16 🏇	40 E	7,100 X	47,000,000 S
-	Naphthalene	5.0	<5.0	6.3	<1,000	<5.0	<5.0	<26	<5.0	<20	<500	<25	<5.0	<5.0	<5.0	1,500	11	31,000 S
	-Propylbenzene	1.0	<1.0	29	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	230	ID	ID
_	Styrene	1.0	<1.0	1.1	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	100 A	80 X	310,000 S
	ert -Amylmethyl ether	5.0	<5.0	120	<1,000 J, V-	<5.0	<5.0	< 5.0	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<5.0	190 E	NA CO Y	570,000
	Tetrachloroethene	1.0	<1.0	36	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	5.0 A	60 X	170,000
	Tetrahydrofuran	5.0	<5.0	43,000	85,000	7.1 🥙	11 🥯	170 🥬	110 #	<100	1,700	<25	150 @	<5.0	<5.0	270	11,000 X	16,000,000
	foluene	1.0	<1.0	24,000	99,000	8.8	9.5 🙈	<5.0	2.2	<20	<100	<5.0	1.3 #	<1.0	<1.0	790 E	270	530,000 S
	1,1,1-Trichloroethane	1.0	<1.0	9.6	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	200 A	89	1,300,000 S
1	Frichloroethene	1.0	<1.0	29	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	5.0 A	200 X	4,900
11	1,2,3-Trimethylbenzene	1.0	<1.0	37	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	NA .	NA 47	NA SC 000 C
	,2,4-Trimethylbenzene	1.0	<1.0	200	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	63 E	17	56,000 S
-	1,3,5-Trimethylbenzene	1.0	<1.0	62	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	72 E	45	61,000 S
-	/inyl Chloride	1.0	<1.0	14	<1,000	<1.0	<1.0	<5.0	<1.0	<20	<100	<5.0	<1.0	<1.0	<1.0	2.0 A	13 X	13,000
	(ylenes	3.0	<3.0	15,000	91,000	14 🍘	14 🐠	140	<3.0	<40	<200	<10	<3.0	<3.0	<3.0	280 E	41	190,000 S
C	Other VOCs	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Vary }	Vary	Vary

All groundwater sample results in micrograms per Liter (µg/L) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

ND = not detected

E = The analyte was detected at a concentration greater than the calibration range, therefore the result is estimated.

J = the concentration is an estimated value

V- = recovery in the assocated continuing calibration verification sample (CCV) exceeds the lower control limit. Results may be biased low.

V+ = recovery in the associated continuing calibration verification sample (CCV) exceeds the upper control limit. Results may be biased high.

* = value reported is outside QA limits

< = limit of detection for sample

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnotes

- ID = insufficient data to develop criterion
- A = Criterion is the state of Michigan drinking water standard established pursuant to Sceoin 5 of 1976 PA 399, MCL 325.1005
- D = Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent of 1.0E+9 parts per billion (ppb)
- E = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of NREPA, 1994 PA 451, as amended
- S = Criterion defaults to the hazardous substance-specific water solubility limit
- W = Concentrations of trihatomethanes in groundwaer shall be added together to determine compliance with the Michigan drinking water standard of 80 uo/L.
- X = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source NA = not available

Petro-Chem Processing Group Facility - Detroit, Michigan

Sample Identification	1	B\$B-22	BSB-23	DUP-05	BSB-24	BSB-25	BSB-26	BSB-29	BSB-30	BSB-31	Dup-01	BSB-32	BSB-33	BSB-34	BSB-35	Dup-04	BSB-36	BSB-38	MDEQ N	Ionresidential Clea	nup Criteria**
(screen depth - feet)	Ī	(10-14)	(7-11)		(7-11)	(7-11)	(8-12)	(4-9)	(5-10)	(8-13)		(11-16)	(11-16)	(11-16)	(7-12)		1				
Collection Date	MDEQ TDL	8/26/2013	8/26/2013	8/26/2013	8/27/2013	8/27/2013	8/27/2013	4/17/2014	4/17/2014	4/17/2014	4/17/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	9/18/2014	12/22/2014	12/22/2014	Drinking	Groundwater	Volatilization to
Analysis Date	10/2006	8/30/2013	8/30/2013 8/31/2013	8/30/2013	8/30/2013 8/31/2013	8/30/2013 8/31/2013	8/30/2013 8/31/2013	4/24/2014	4/24/2014	4/24/2014	4/24/2014	9/23/2014	9/23/2014	9/23/2014	9/23/2014	9/23/2014	12/24/2014	12/24/2014	Water	Surface Water Interface	Indoor Air
Collection Method	İ		0,0 1,2010			en Point 16	0,01,2010							Tempo	rary Monitorir	na Well		_			
VOCs	i	I						1		······································											
Acetone	20	<20	<20	<20	<20	<20	<20	<20	<20	<20	21 #	<20	<20	<20	<20	<20	<20	<20 J.*	2,100	1,700	1,000,000,000 D.S
Benzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6.5	5.0 A	200 X	35.000
Bromochloromethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA
tert-Butyl alcohol	50	<50	100 J.*	91 J.* 🙈	<50	<50	<50	<50	<50	1,100 🐡	<50	<50	<50	<50	<50	<50	1,500	1,400	11,000	NA	1,000,000,000 D,S
2-Butanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0 J.L+	<5.0 J.L+	<5.0 J.L+	<5.0 J.L+	<5.0 J.L.+	<5.0 J.L+	<5.0 J.*	38,000	2,200	240,000,000 S
n-Butylbenzene	1.0	<1.0	<1.0	<1.0	1.0 🚳	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	230	ID	ID
Chlorobenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 A	25	470,000 S
Chloroethane	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	14	35 🕸	1,700	1,100 X	5,700,000 S
Chloroform	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	80 A.W	350	180,000
1,2-Dichlorobenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	600 A	13	160,000 S
1,1-Dichloroethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2,500	740	2.300.000
1.2-Dichlorcethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	5.0 A	360 X	59.000
1.1-Dichloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.0 A	130	1,300
cis-1.2-Dichloroethene	1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	70 A	620	210,000
trans-1.2-Dichloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 A	1.500 X	200,000
Diethyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	6.9 🗶	11 🕏	10 E	ID	61,000,000 S
Diisopropyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	140	160	86	ID	8.000 S
Ethylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1,3 🦛	<1.0	<1.0	<1.0	<1.0	<1.0	10 #	74 E	18	170,000 S
2-Hexanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 J.L+	<5.0 J.L+	<5.0 J.L+	<5.0 J.L+	<5.0 J.L+	<5.0 J.L+	<5.0 J.*	2.900	ID	8.700.000
Isopropylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2,300	28	56.000 S
4-Isopropyltoluene	1.0	<1.0	<1.0	<1.0	1.0 🔊	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA
2-Methylnaphthalene	5.0	<5.0	<5.0	<5.0	7.4 🌸	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	750	19	25.000 S
4-Methyl-2-Pentanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.200	ID	20.000.000 S
Methyl tert-butyl ether (MtBE)	1.0	5.0	41	16 🥌	<2.0	7.5	<2.0	<1.0	<1.0	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.700	8,200	40 E	7.100 X	47,000,000 S
Naphthalene	5.0	<5.0	<5.0	<5.0	6.9 🐡	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1,500	11	31,000 S
n-Propylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	230	ID	ID
Styrene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 A	80 X	310,000 S
tert-Amvimethyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 J.V-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	7.3 🏽	8.6 🥒	190 E	NA	570,000
Tetrachloroethene	1.0	<1.0	<1.0	<1.0	1,2 🚳	<1.0	<1.0	2.5	<1.0	<1.0	1.3 🌞	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 A	60 X	170,000
Tetrahydrofuran	5.0	<5.0	<5.0	<5.0	<5.0	36 🏶	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	24 🎄	59 🏽	270	11,000 X	16,000,000
Toluene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5 🌊	<1.0	1.4 @	3.6 🦓	6.4 🦸	4.6 🛭	5.3 🔏	2.6 🌦	3.6 🥒	<1.0	5.2 🏘	790 E	270	530,000 S
1,1,1-Trichloroethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	200 A	89	1,300,000 S
Trichloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 A	200 X	4,900
1,2,3-Trimethylbenzene	1.0	<1.0	<1.0	<1.0	14 🧆	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA
1,2,4-Trimethylbenzene	1.0	<1.0	<1.0	<1.0	17 ∰	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4 #	1.2 🦼	<1.0	<1.0	<1.0	<1.0	3.3 🦸	63 E	17	56,000 S
1.3,5-Trimethylbenzene	1.0	<1.0	<1.0	<1.0	4.9 🌸	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2 🦸	72 E	45	61,000 S
Vinyl Chloride	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0 A	13 X	13,000
Xylenes	3.0	<3.0	<3.0	<3.0	4.6 🎄	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	8.3 🤌	4.7 🦸	4.9 🏇	<3.0	3.5 🏿	<3.0	57	280 E	41	190,000 S
Other VOCs	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND ;	ND	Vary	Vary	Vary

All groundwater sample results in micrograms per Liter (µg/L) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

ND = not detected

L+ = Recovery in the assocated laboratory sample (LCS) exceeds the upper control limit. Results may be biased high.

J = the concentration is an estimated value

V- = recovery in the assocated continuing calibration verification sample (CCV) exceeds the lower control limit. Results may be biased low.

* = value reported is outside QA limits

Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria

Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnoles

- ID = insufficient data to develop criterion
- A = Criterion is the state of Michigan drinking water standard established pursuant to Sceoin 5 of 1976 PA 399, MCL 325.1005
- D = Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent of 1.0E+9 parts per billion (ppb)
- E = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of NREPA, 1994 PA 451, as amended
- S = Criterion defaults to the hazardous substance-specific water solubility limit
- W = Concentrations of trihalomethanes in groundwaer shall be added together to determine compliance with the Michigan drinking water standard of 80 µg/L.
- X = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source

NA = not available

Petro-Chem Processing Group Facility - Detroit, Michigan

Sample Identification		TB-1	TB-02	TB-03	TB-04	Trip Blank	TB-9/18/14	FB-01	FB-02	FB-01	FB-9/18/14	RB-01	RB-02	RB-01	RB-9/18/14	Trip Blank	Rinsate	MDEQ N	onresidential Cle	anup Criteria**
Collection Date	MDEQ TOL	8/22/2013	8/23/2013	8/26/2013	8/27/2013	4/18/2014	9/18/2014	8/22/2013	8/26/2013	4/17/2014	9/18/2014	8/23/2013	8/27/2013	4/17/2014	9/18/2014	12/22/2014	12/22/2014		Groundwater	•
Analysis Date	10/2006	8/29/2013	8/29/2013	8/30/2013	8/30/2013	4/24/2014	9/29/2014	8/30/2013	8/30/2013	4/24/2014	9/29/2014	8/30/2013 8/31/2013	8/30/2013	4/24/2014	9/29/2014	12/26/2014	12/26/2014	Drinking Water	Surface Water	Volatilization to Indoor Air
Collection Method	1!								Gı	rab						•			Interface	
VOCs														l						
Acetone	20	<28	<20	<20	<20	<20	<20	<20	<24	<20	<21	<20	<21	<20	<21	<20 J,L+	<21	2,100	1,700	1,000,000,000 D,S
Benzene	1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 A	200 X	35,000
Bromochloromethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA
Bromodichloromethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	80 A,W	ID	37,000
tert-Butyl alcohol	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	< 60	<50	250 J,E	11,000	NA	1,000,000,000 D,S
2-Butanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 J,L+	<5.0 J,L+	38,000	2,200	240,000,000 S
n-Butylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	230	ID	ID
sec-Butylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	230	ID	ID
Chlorobenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 A	25	470,000 S
Chloroethane	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1,700	1,100 X	5,700,000 S
Chloroform	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.7	80 A,W	350	180,000
Dibromochloromethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	80 A,W	ID	110,000
1,2-Dichlorobenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	600 A	13	160,000 S
1,4-Dichlorobenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	75 A	17	74,000 S
1,1-Dichloroethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2,500	740	2,300,000
1,2-Dichloroethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 A	360 X	59,000
1,1-Dichtoroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.0 A	130	1,300
cis-1,2-Dichloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	70 A	620	210,000
trans-1,2-Dichloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	100 A	1,500 X	200,000
Diethyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5:0	<5.0	<5.0	14	10 E	<u>ID</u>	61,000,000 S
Diisopropyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	86	ID.	8,000 S
Ethylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	74 E	18	170,000 S
2-Hexanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 J,L+	<5.0 J,L+	2,900	ID	8,700,000
Isopropylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2,300	28	56,000 S
4-Isopropyltoluene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	NA	NA
Methylene Chloride	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	210 J,E	750	40	05.000.0
2-Methylnaphthalene	5.0 5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	750 5.200	19 ID	25,000 S										
4-Methyl-2-Pentanone	1.0	<5.0 <2.0	<2.0	<5.0 <2.0	<2.0	<1.0	<5.0 <1.0	<5.0 <1.0	<2.0	<1.0	<5.0 <1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<0.0, <1.0	5,200 40 E	7.100 X	20,000,000 S 47,000,000 S
Methyl <i>tert</i> -butyl ether (MtBE) Naphthalene	5.0	<5.0 <5.0	<5.0	<2.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0:	40 E 1.500	7,100 X	47,000,000 S 31,000 S
n-Propylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	230	ID	31,000 S
Styrene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 A	80 X	310.000 S
tert-Amylmethyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	190 E	NA NA	570.000
Tetrachloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 A	60 X	170,000
Tetrahydrofuran	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	270	11,000 X	16,000,000
Toluene	1.0	<1.5	<1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	790 E	270	530,000 S
1,1,1-Trichloroethane	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	200 A	89	1,300,000 S
Trichloroethene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 A	200 X	4,900
1,2,3-Trimethylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA.	NA NA	NA
1,2,4-Trimethylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	63 E	17	56,000 S
1.3.5-Trimethylbenzene	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	72 E	45	61,000 S
Vinyl Chloride	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0 A	13 X	13,000
Xylenes	3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	280 E	41	190,000 S
Other VOCs	NA NA	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	Varv	Varv	Varv
Outer 4009	110	IND	IAD	1412	NO	I MD	140	ND	I ND	ND	1 140	IND	IND	MD	IND	ואט	1417	vary	Yaly	v a i y

All groundwater sample results in micrograms per Liter (µg/L) or parts per billion (ppb)

MDEQ = Michigan Department of Environmental Quality

** = Part 201 Generic Cleanup Criteria and Screening Levels, dated December 30, 2013

TDL = Target Detection Limit

VOCs = volatile organic compounds

ND = not detected

< = limit of detection for sample

E = The analyte was detected at a concentration greater than the calibration range, therefore the result is estimated

J =The concentration is an estimated value

L+ = Recover in the associated laboratory sample (LCS) exceeds the upper control limit. Results may be blased high Yellow Shaded/Bold typeface indicates that concentration exceeds MDEQ Generic Nonresidential Cleanup Criteria Gray Shaded indicates that concentrations exceed this MDEQ Generic Nonresidential Cleanup Criteria

Criteria Footnotes

- ID = insufficient data to davelop criterion
- A = Criterion is the state of Michigan drinking water standard established pursuant to Sceoin 5 of 1976 PA 399, MCL 325,1005
- D = Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent of 1.0E+9 parts per billion (ppb)
- E = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of NREPA, 1994 PA 451, as amended
- S = Criterion defaults to the hazardous substance-specific water solubility limit
- W = Concentrations of trihalomethanes in groundweer shall be added together to determine compliance with the Michigan drinking water standard of 80 μg/L.
- X = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source NA = not available

Corrective Action Investigation MtBE Concentration Trends in Groundwater Table 5

Petro-Chem Processing Group Facility - Detroit, Michigan

MW-10		6.3	NS	7.8	12	11	NS	NS	7.45	NS	8.12	NS	₹	NS	6.9	NS	4.5	4.5	4.0	5.1
6-WW		1,100	1,500	2,100	3,000	1,300	1,800	1,180	852	922	1,060	680	1,030	SN	1,100	SN	200	820	200	760
MW-8		5.4	NS	5.8	6.2	NS	5.2	9.67	6.17	SN	6.21	10.6	11.2	9.4	4.3	2.9	<3.0	2.5	2.8	<3.7
MW-7		₽	SN	₽	1.7	SN	۲٠0 د	SN	1.11	SN	<1.0	NS	₽	SN	⊽	SN	<2.0	1.4	0.1^	<1.0
MW-6	ion (µg/L)	3,100	SN	3,300	3,700	NS	3,100	3,000	2,080	2,460	2,130	798	1,670	1,900	2,500	SN	1,400	1,400	1,100	1,300
MW-5	Concentration (µg/L	20	SN	10	8.5	NS	8.3	NS	7.73	SN	13	15.2	10	NS	11	9.9	7.7	8.1	6.3	7.4
MW-4		150	NS	140	170	NS	140	NS	102	NS	120	SN	103	NS	140	SN	130	110	68	110
MW-3		NS	NS	NS	NS	NS	1.6	NS	√.	NS	√.	SN	9.72	SN	SN	NS	NS	7.9	5.4	SN
MW-2		2	NS	6.3	2.5	NS	3.7	NS	1.43	NS	1.15	SN	1.42	<1.5	<1.5	NS	<2.1	1.5	1.3	<1.4
MW-1	, , , , , , , , , , , , , , , , , , ,	20	NS	37	12	NS	19	NS	9.4	NS	13.9	17.9	28.7	27.5	32	12.5	26	29	4.7	27
ote C	Date	6/10/2009	7/23/2009	12/9/2009	6/30/2010	7/30/2010	12/29/2010	2/16/2011	6/22/2011	8/10/2011	12/21/2011	3/9/2012	6/7/2012	8/10/2012	11/8/2012	1/30/2013	5/30/2013	11/27/2013	6/20/2014	11/20/2014

MDEQ Generic Nonresidential Cleanup Criteria for Groundwater (µg/L)

Nonresidential Drinking Water

Groundwater Surface Water Interface

Non-Residential Volatilization to Indoor Air

Shaded concentration exceeds MDEQ Generic Nonresidential Drinking Water Cleanup Critera for Groundwater (dated December 30, 2013)

Corrective Action Investigation PCE Concentration Trends in Groundwater Table 6

Petro-Chem Processing Group Facility - Detroit, Michigan

6/10/2009 NS	Dato	MW-1	MW-2	MW-3	MW-4	MW-5	9-MW	MW-7	MW-8	6-WM	MW-10
NS						Concentrat	tions (µg/L)				
NS	6/10/2009	NS	SN	NS	NS	SN	SN	NS	٧	SN	⊽
NS	7/23/2009	NS	SN	NS	SN	SN	NS	NS	SN	NS	SN
NS	12/9/2009	<۱	٧	SN	₽	۲	۸	₹	₹	⊽	⊽
NS	6/30/2010	٧	₹	⊽	⊽	₹	7	^	₹	⊽	⊽
NS	7/30/2010	SN	SN	NS	NS	NS	SN	NS	۷	⊽	SN
NS	12/29/2010	₽	\	1.18	⊽	7	⊽	▽	₹	⊽	⊽
A	2/16/2011	NS	SN	NS	NS	NS	⊽	NS	₹	⊽	SN
NS	6/22/2011	\	<1	⊽	₽	٧	Ş	⊽	₹	⊽	⊽
State Stat	8/10/2011	SN	SN	NS	SN	NS	₹	NS	⊽	⊽	SN
<1 NS NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	12/21/2011	, \	<1	\	٧	۲	٧	۲	₹	⊽	⊽
C C C C C C C C C C	3/9/2012	, >	NS	SN	NS	₹	⊽	SN	₹	⊽	SN
<1 <1 NS NS <1 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	6/7/2012	<1	۲>	⊽	٧	₹	\ \	⊽	₹	⊽	⊽
<1 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	8/10/2012	~	<1	√-	SN	NS	₹	SN	√	⊽	SN
<1 NS NS <1 NS NS<	11/8/2012	~	<1	NS	٧	٧	⊽	₹	⊽	⊽	⊽
State NS State	1/30/2013	<u>.</u>	SN	NS	NS	V .	NS	SN	⊽	SN	SN
<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	5/30/2013	V	٧	NS	⊽	٧	⊽	₹	₹	⊽	⊽
<1 '10 1.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	11/27/2013	₹	Ý	۲	⊽	۲	₹	₹	₹	₹	₹
<1 <1 NS <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	6/20/2014	V	110	1.2	₹	⊽	٧	۷	₹	₹	⊽
	11/20/2014	V	⊽	SN	\ 1.	^	۸	V	⊽	₹	٧

NS = Not Sampled

MDEQ Nonresidential Cleanup Criteria for Groundwater (µg/L)

Nonresidential Drinking Water

Groundwater Surface Water Interface

Non-Residential Volatilization to Indoor Air

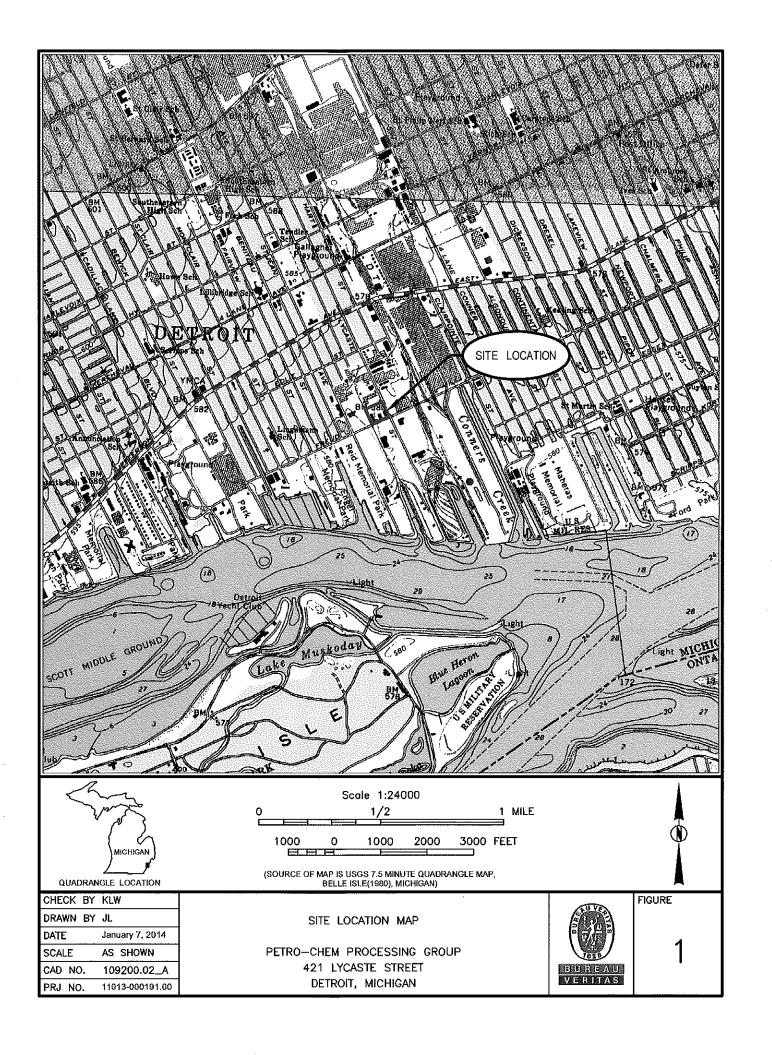
Shaded concentration exceeds one or more MDEQ Generic Nonresidential Cleanup Critera for Groundwater (Dated December 30, 2013)

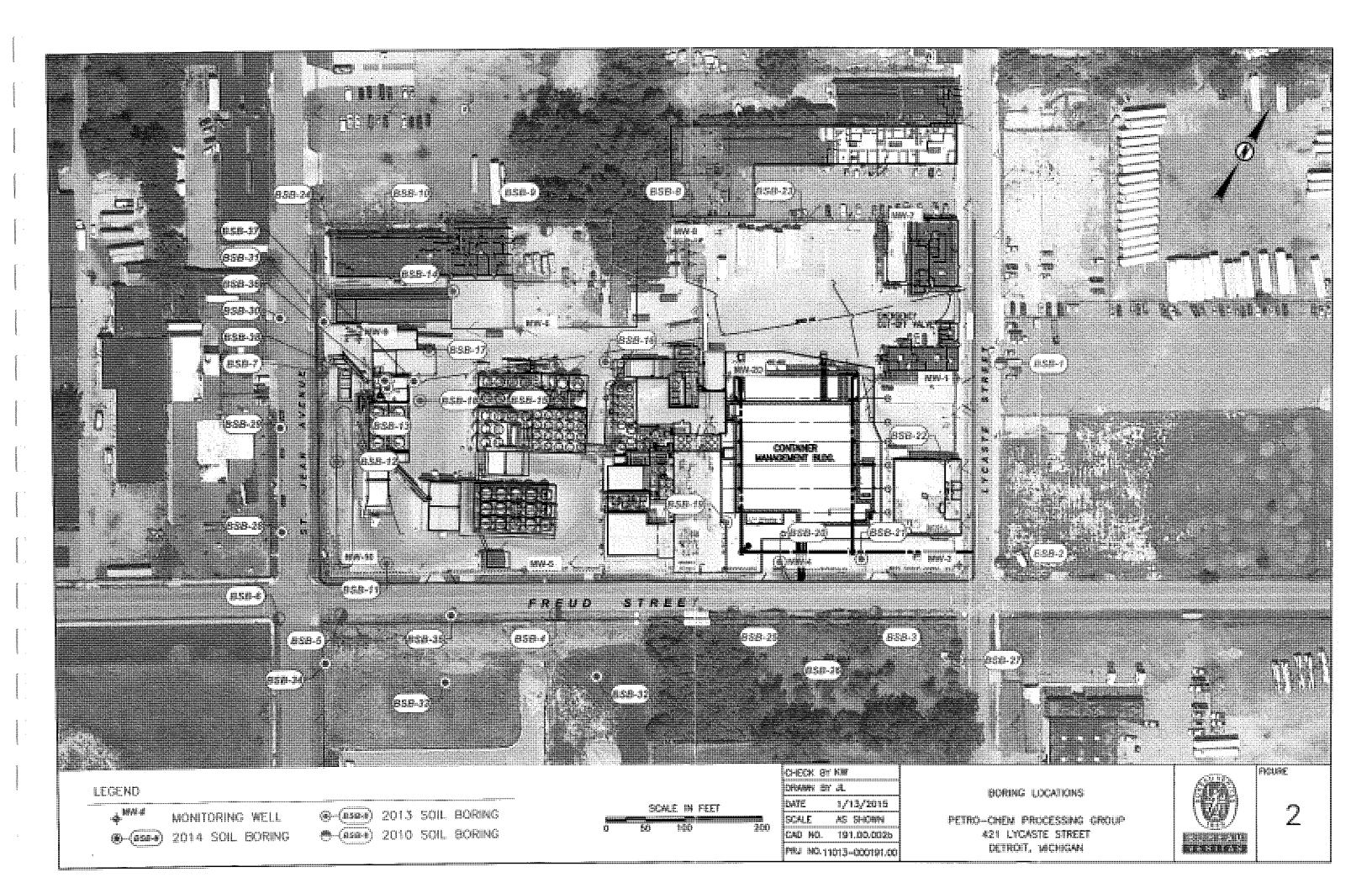
Table 7 Corrective Action Investigation Xylenes Concentration Trends in Groundwater

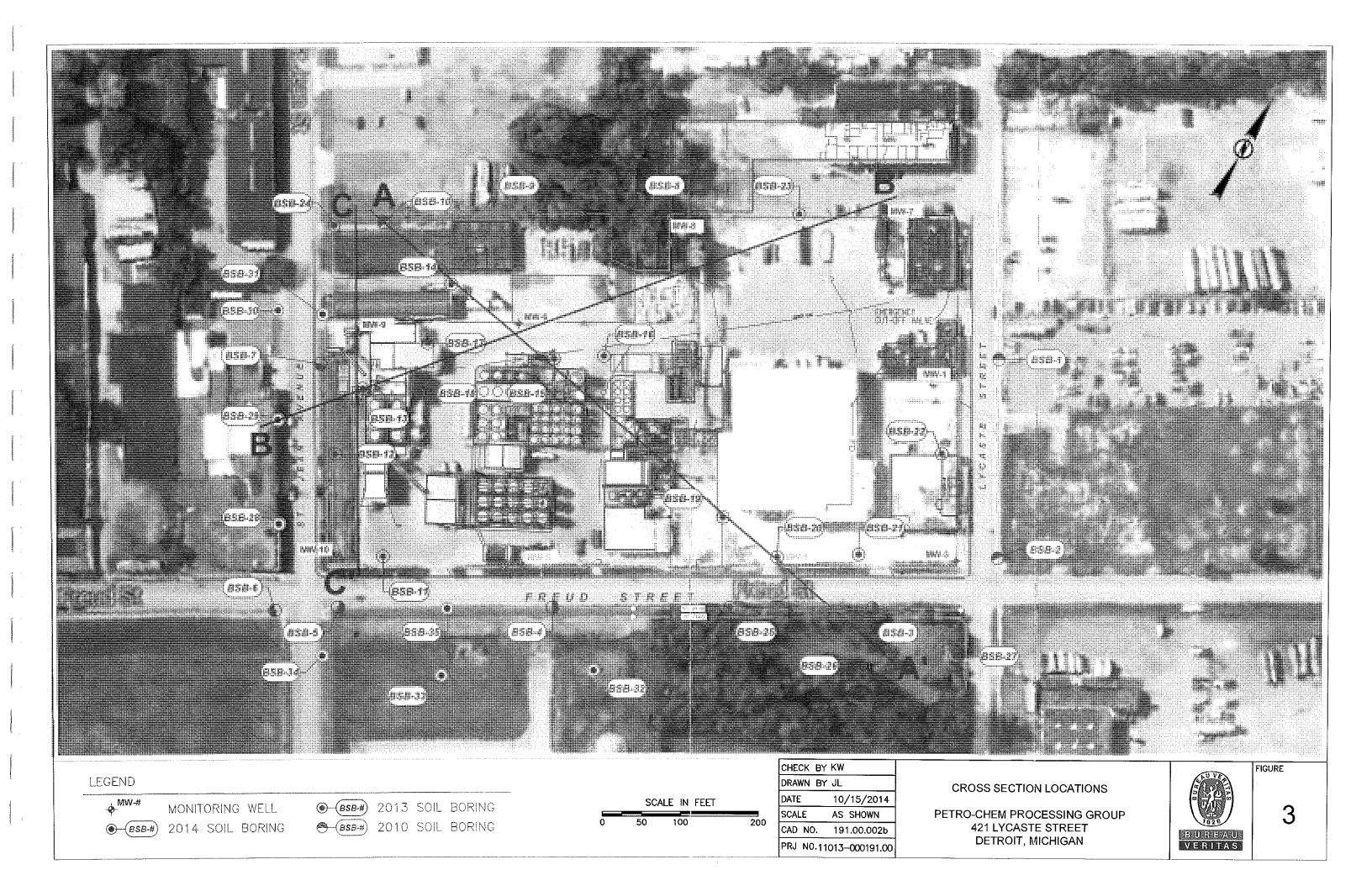
Petro-Chem Processing Group Facility - Detroit, Michigan

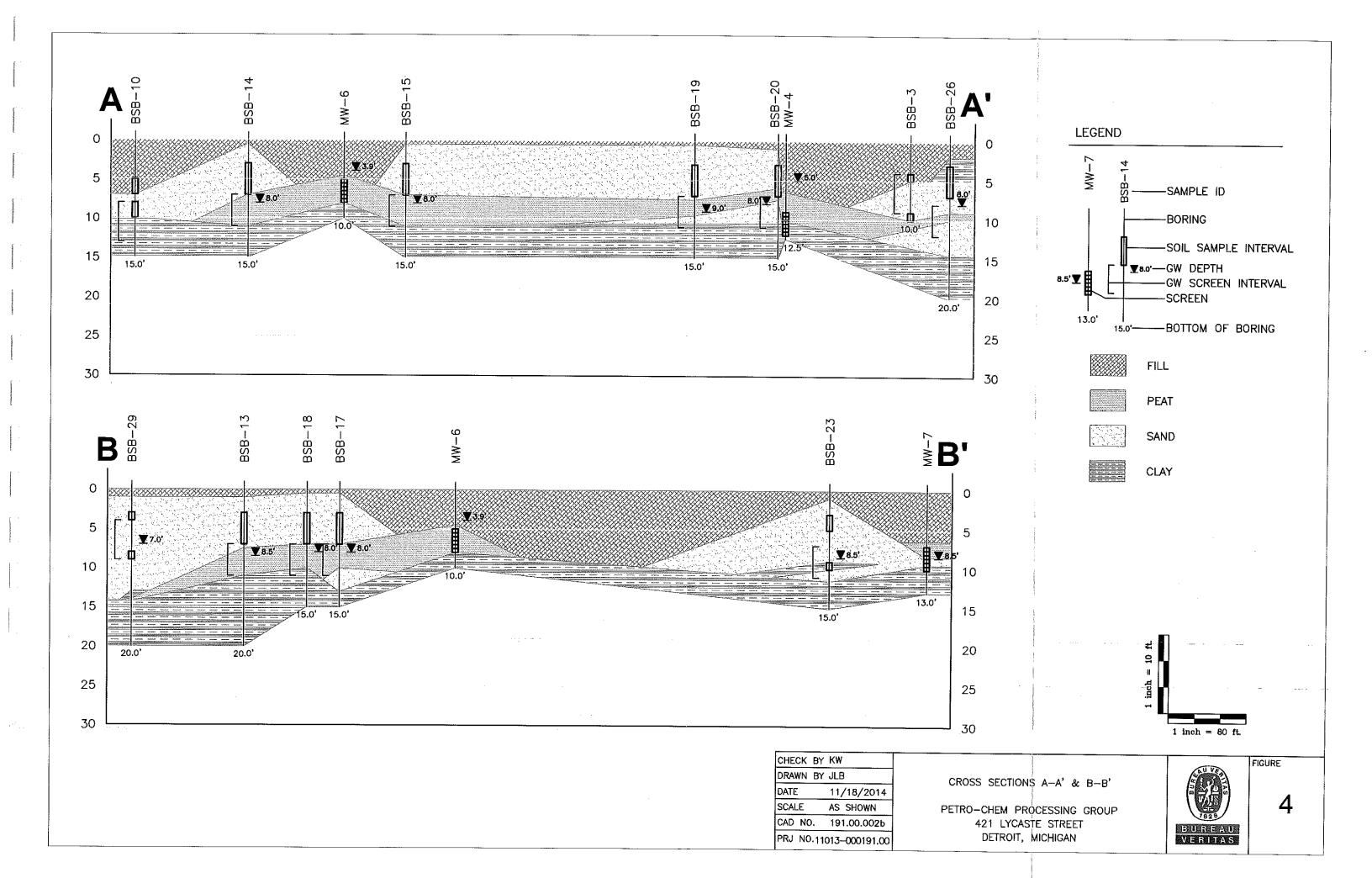
oteO	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	6-WW	MW-10
ב ה					Concentration (µg/L	tion (µg/L)				
6/10/2009	\$3	1.2	SN	<3	8	\	♡	\$	₩	8
7/23/2009	NS	NS	NS	NS	8	NS	NS	NS	₽	NS
12/9/2009	\$	<3	\$	٣	8	\ \ \ \	♡	<3	₹	<3
6/30/2010	\$	<3	<3	♡	₹	<3	8	♡	8	\$
7/30/2010	NS	NS	SN	SN	SN	NS	NS	SN	NS	SN
12/29/2010	<3	1.17	<3	\$	₹	<3	8	ę	\$	8
2/16/2011	NS	SN	SN	NS	NS	\$	NS	V	SN	SN
6/22/2011	<3	<3	♡	\$	♡	<3	V	\$	₹	3
8/10/2011	NS	NS	NS	NS	SN	SN	NS	SN	NS	NS
12/21/2011	V	<3	<3	\$	8	\$	♡	8	₩	33
3/9/2012	NS	NS	NS	SN	8	8	SN	٣	V	NS
6/7/2012	\$	3	3	₽	£	8	♡	♡	\&	₩
8/10/2012	♡	33	<3	SN	SN	8	NS	SN	NS	SN
11/8/2012	\$	<3	NS	₹	₩	₹	♡	8	₩	₹
1/30/2013	NS	NS	NS	SN	SN	NS	SN	8	NS	NS
5/30/2013	×3	<3	SN	<3	8	8	₹	۲ ج	ę	۳ ۲
11/27/2013	<3	<3	€>	₹	₹	×3	8	83	Ŷ	8
6/20/2014	<3	<3	♡	€	₽	8	♡	8	₩	33
11/20/2014	\$	<3	NS	♡	8	8	8	♡	V	٧ ا
NC - Not Campled	þ									

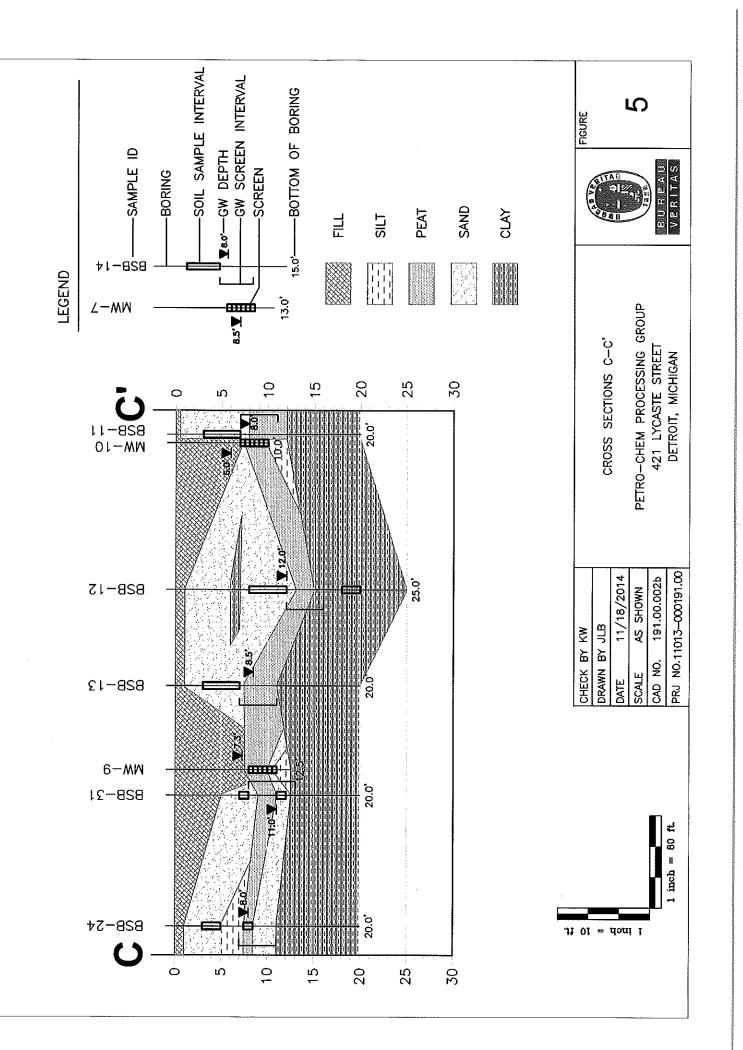
NS = Not Sampled

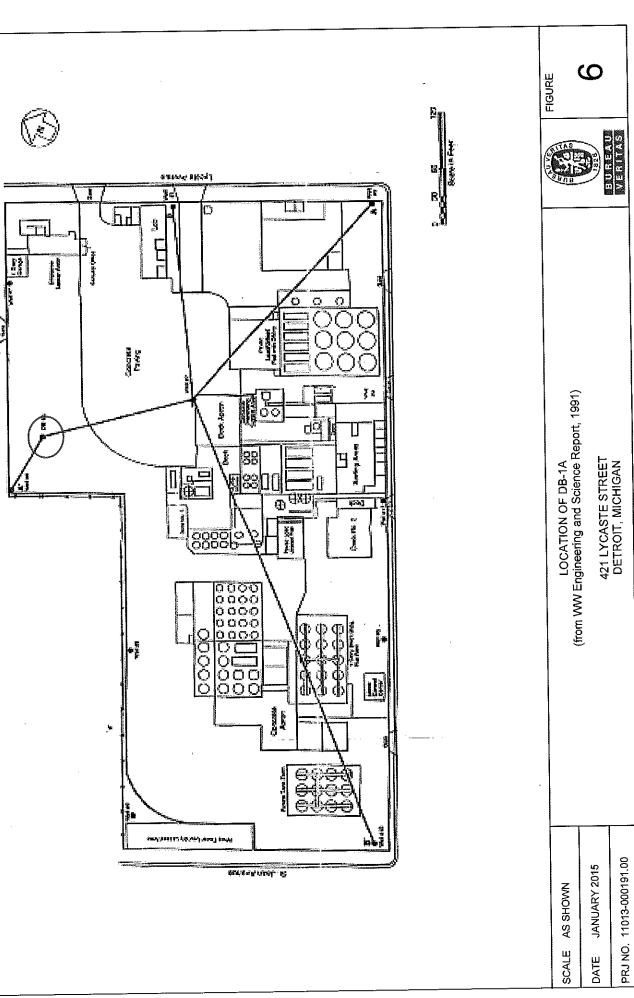

MDEQ Nonresidential Cleanup Criteria for Groundwater (µg/L)
Nonresidential Drinking Water
Groundwater Surface Water Interface
Non-Residential Volatilization to Indoor Air

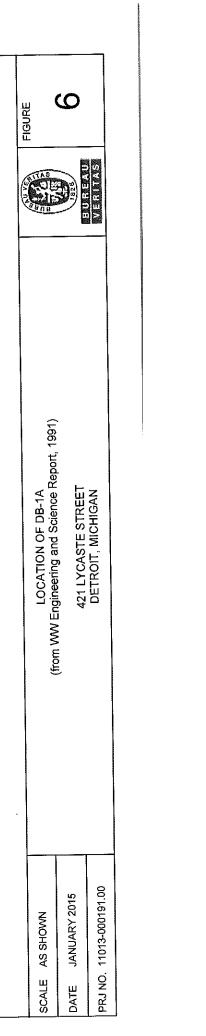

280 41 190,000

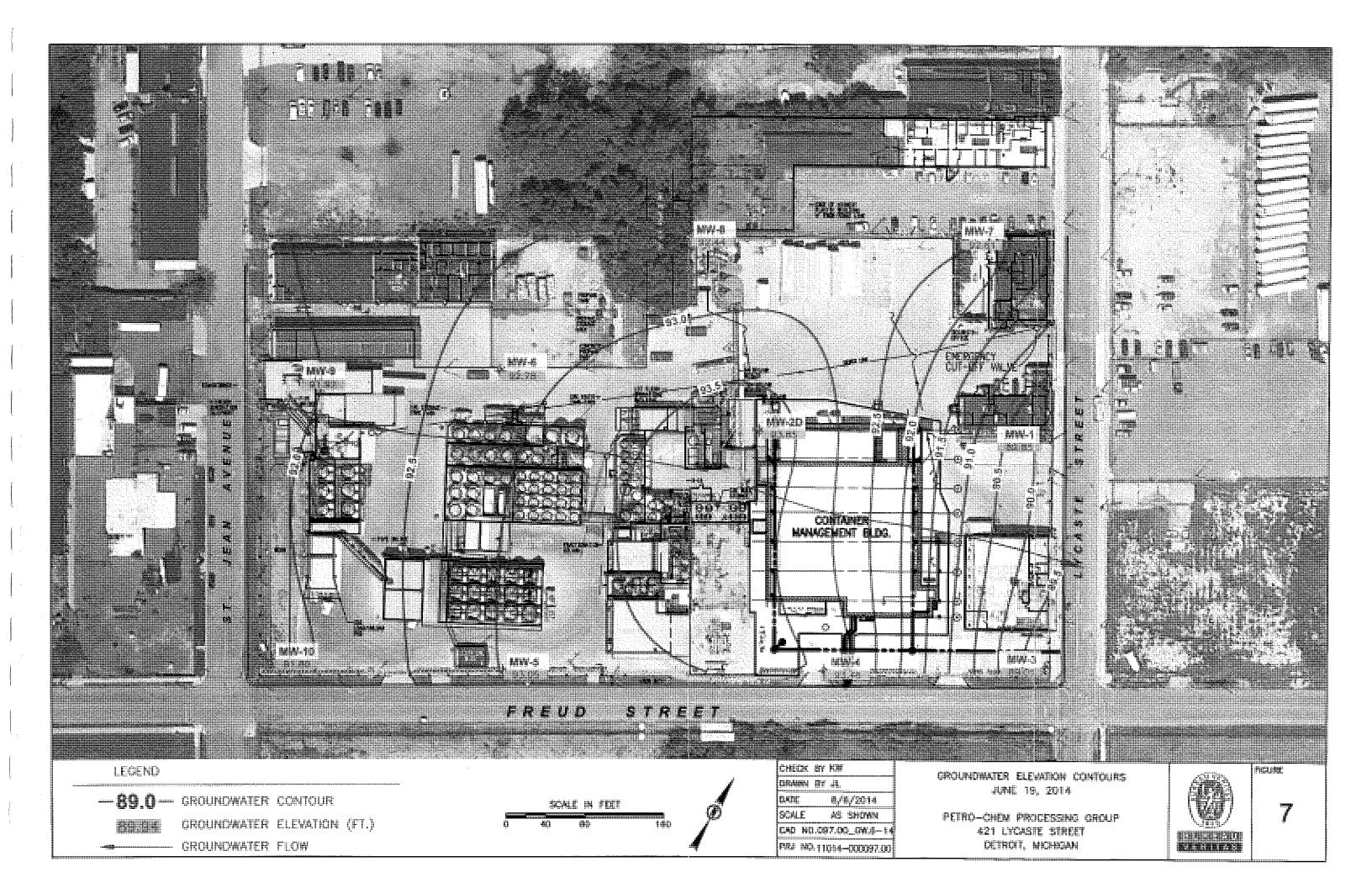


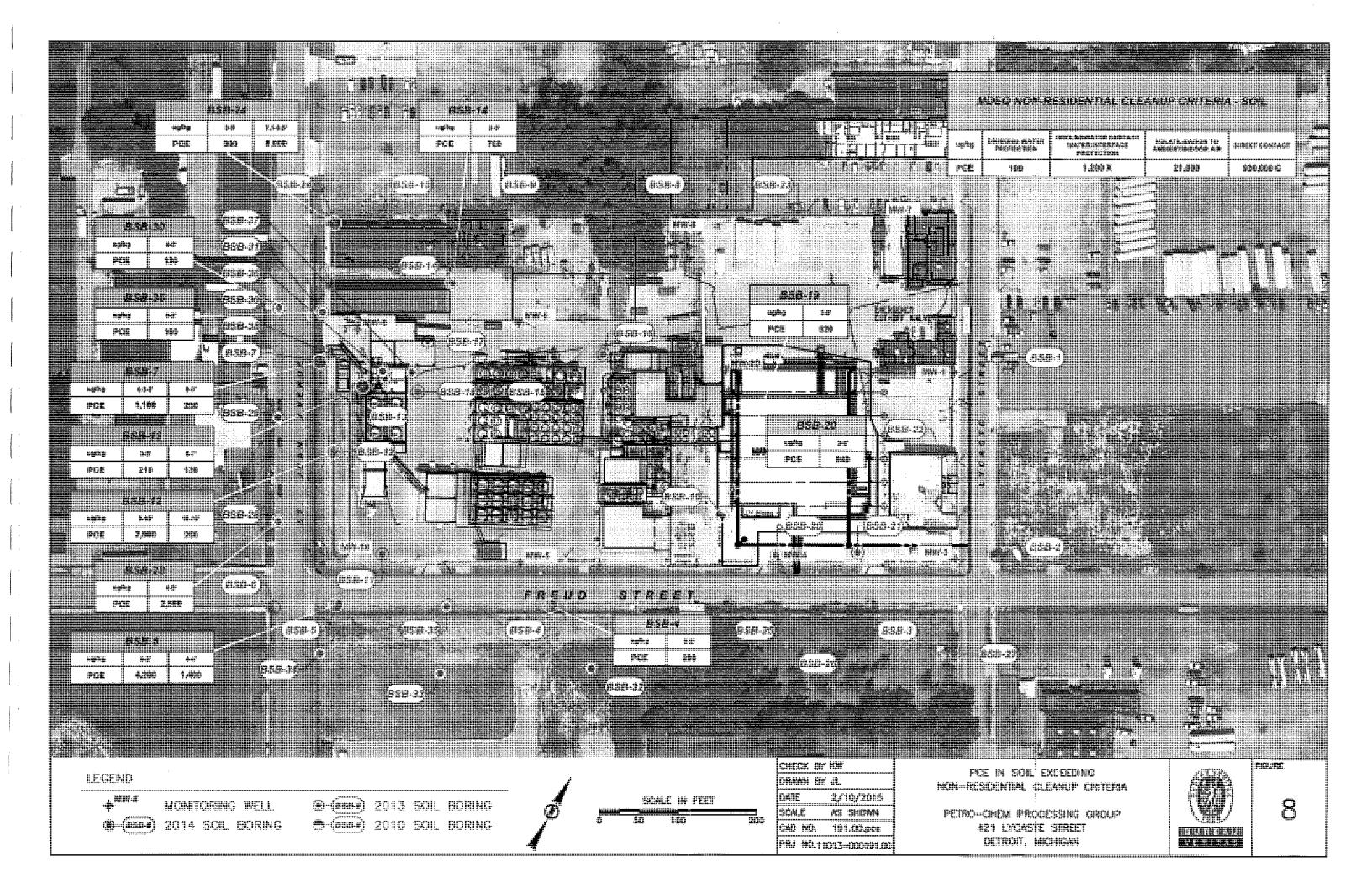

FIGURES

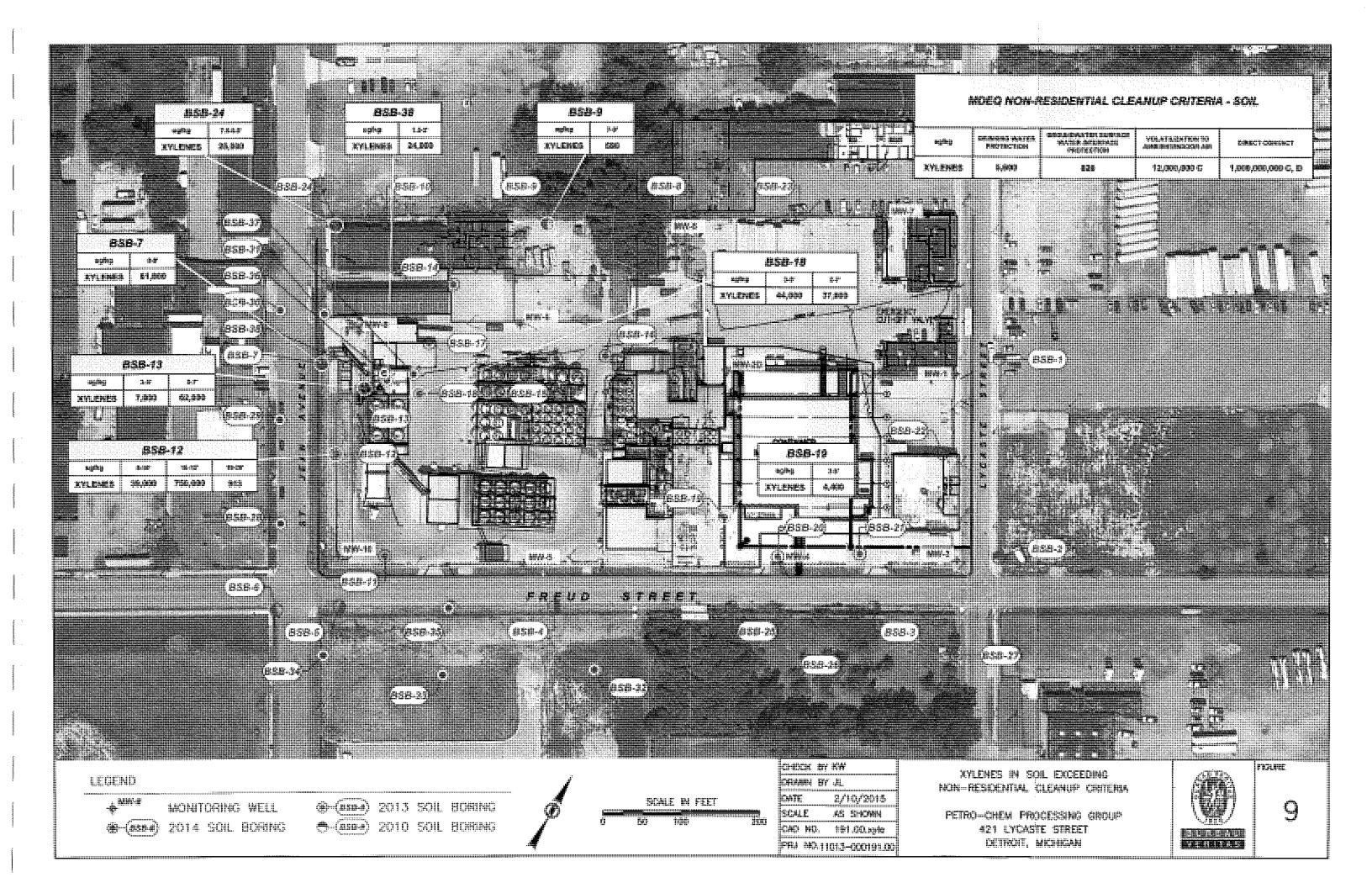

	:			
,				

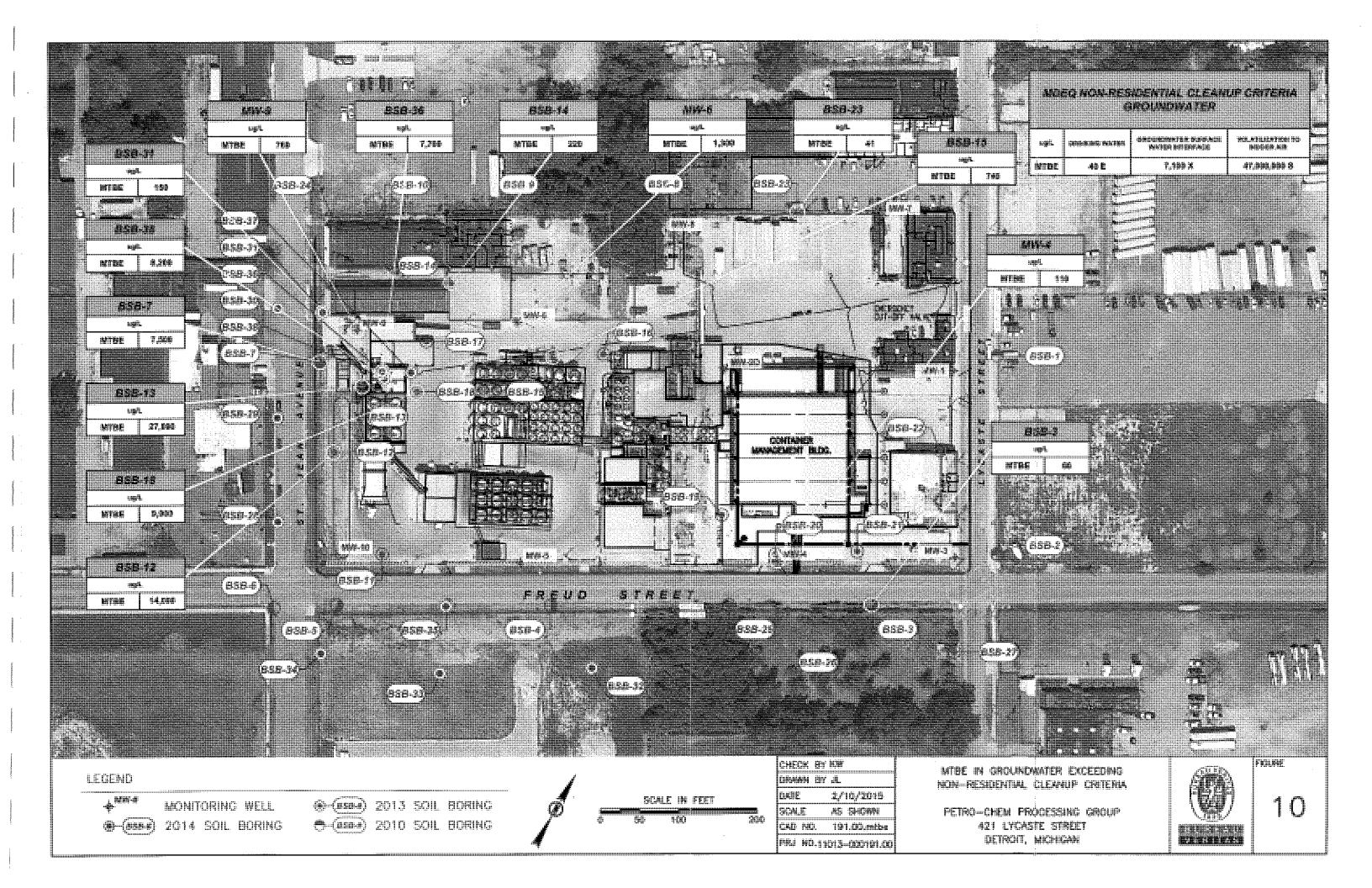


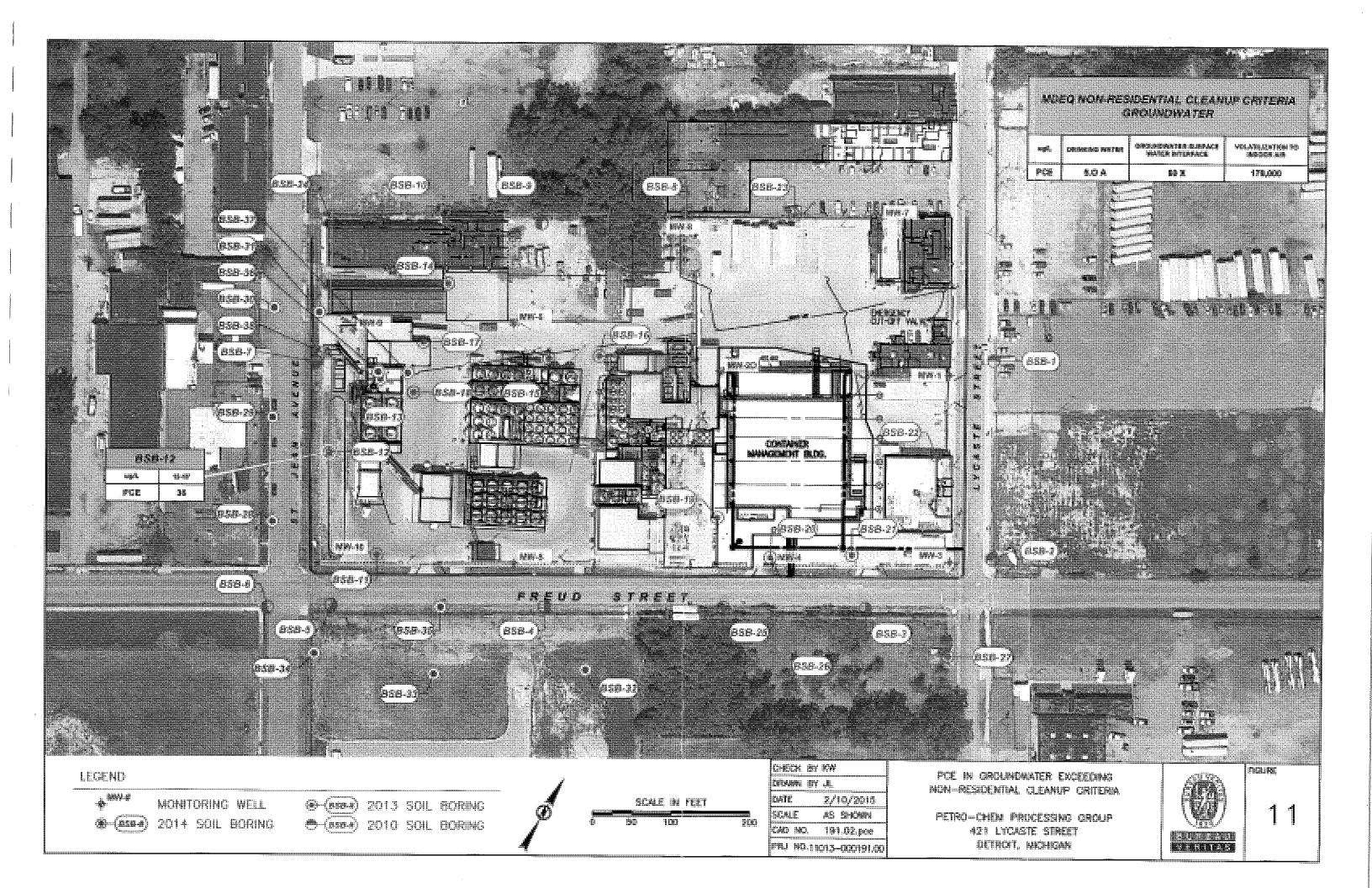


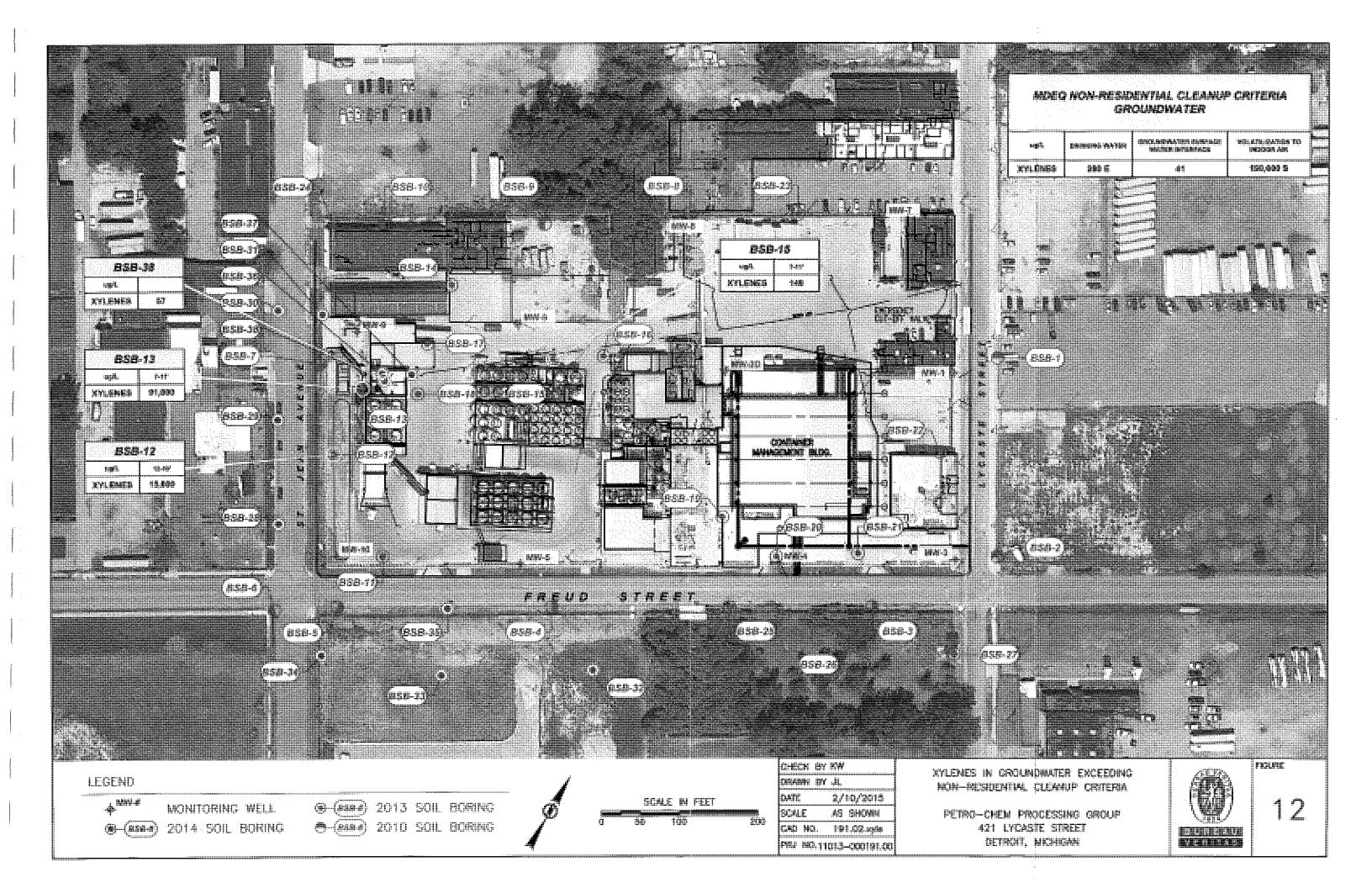


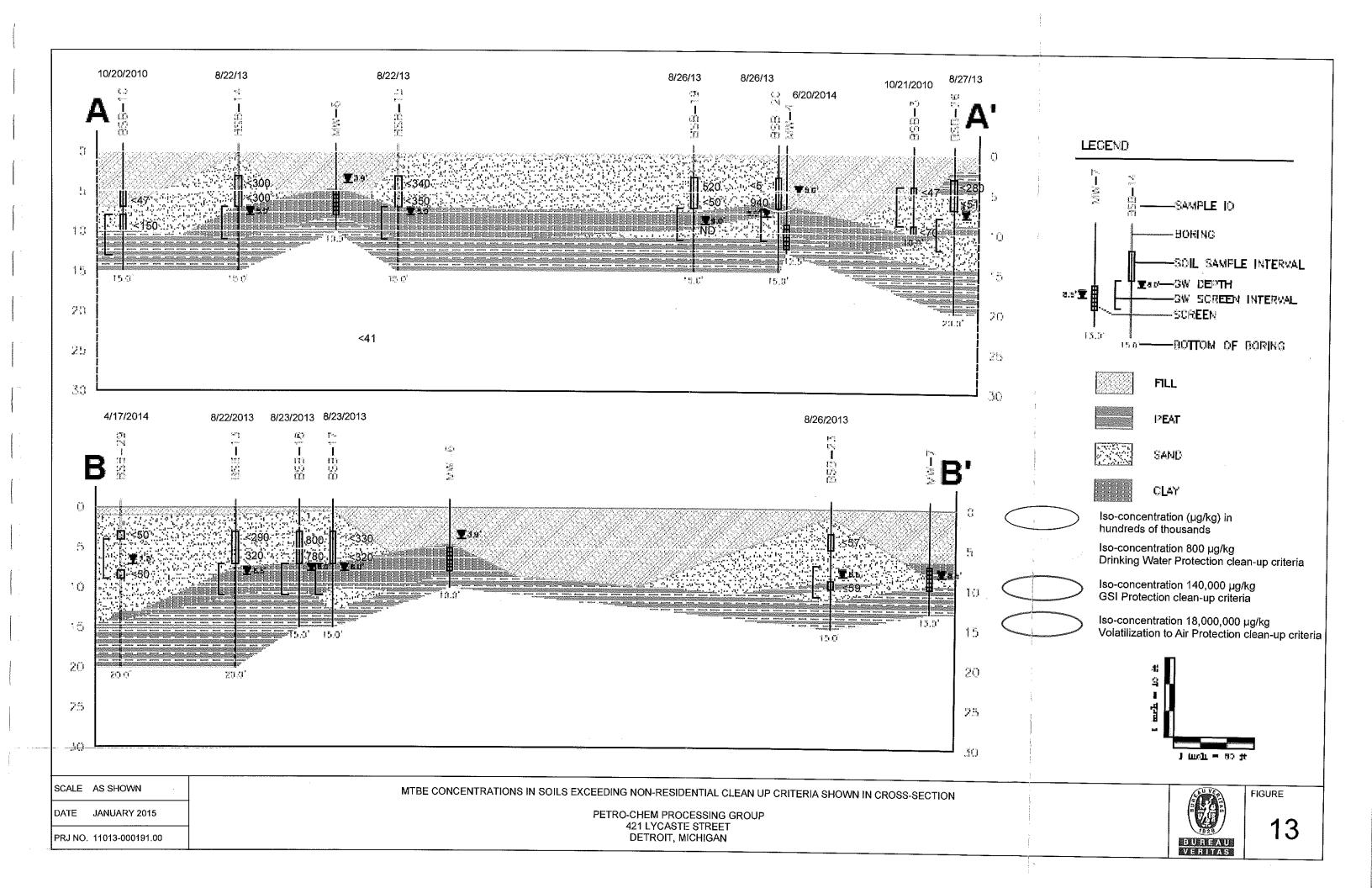


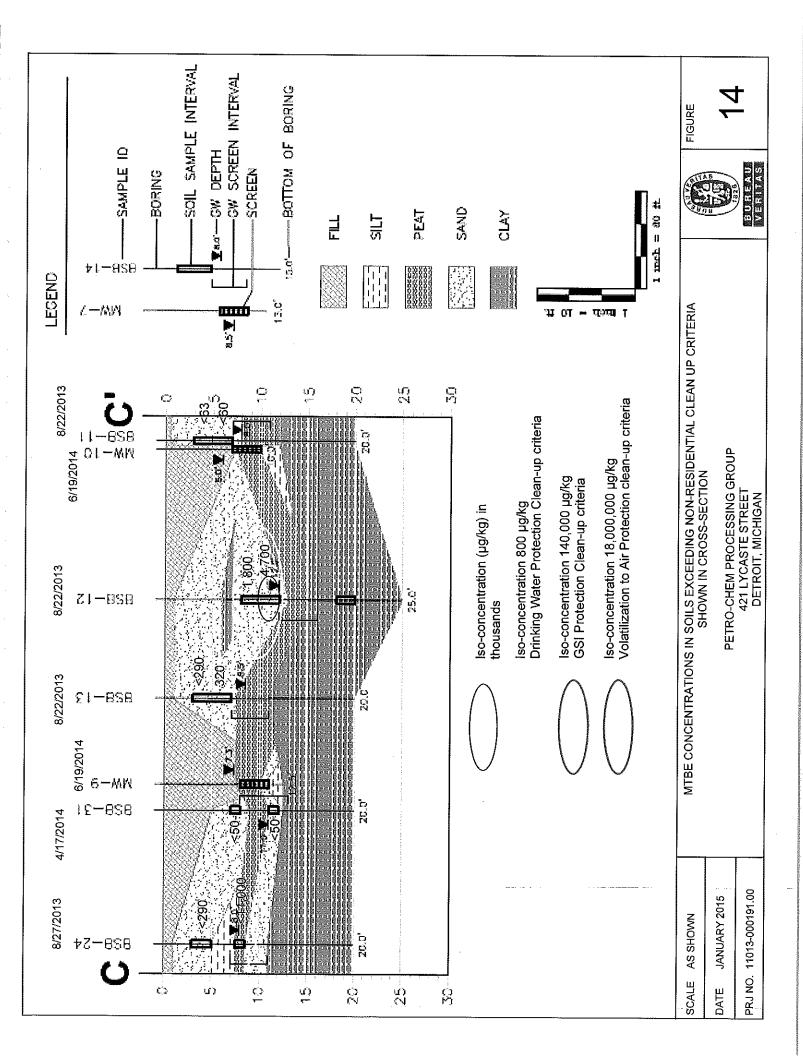


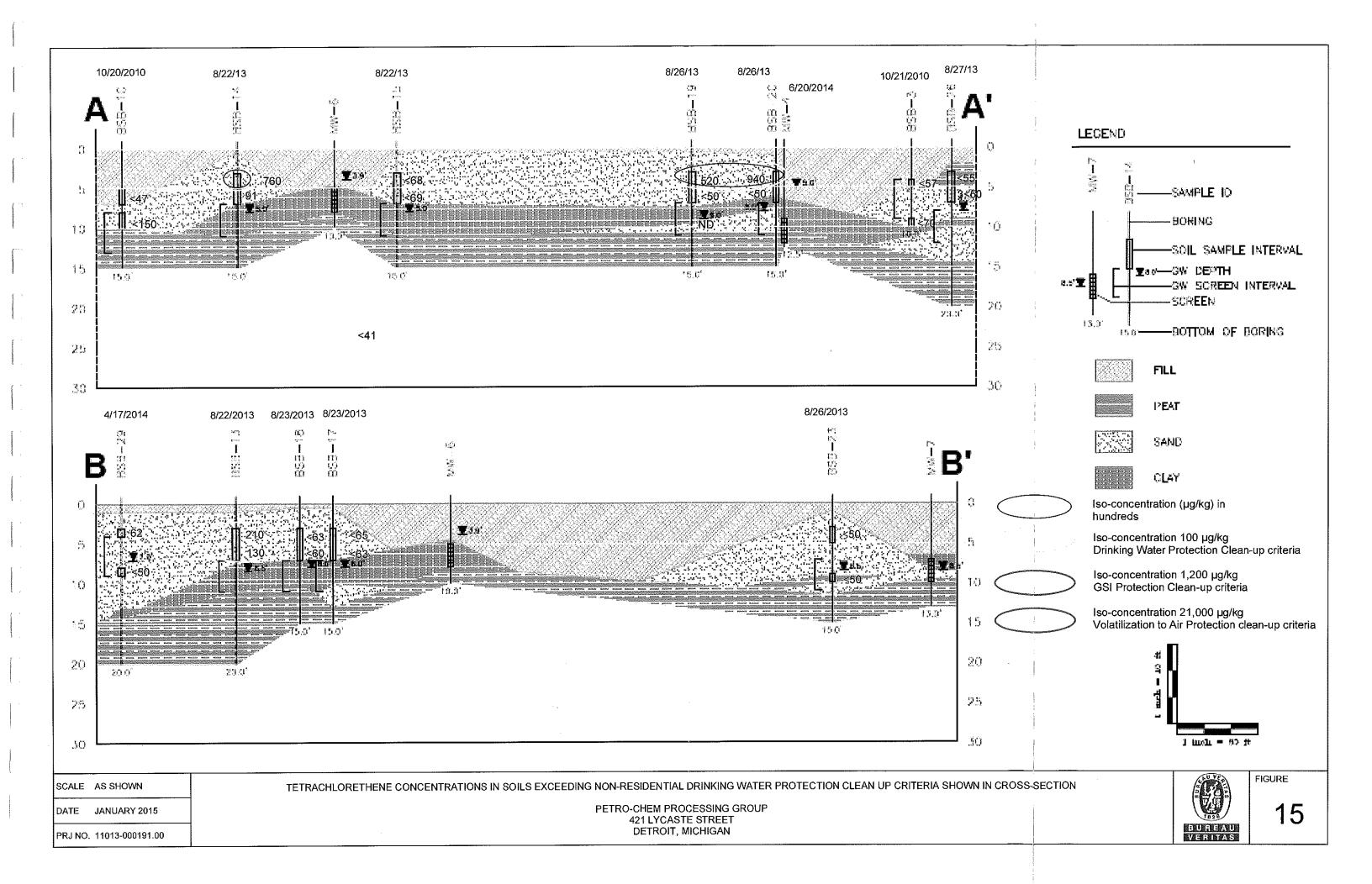


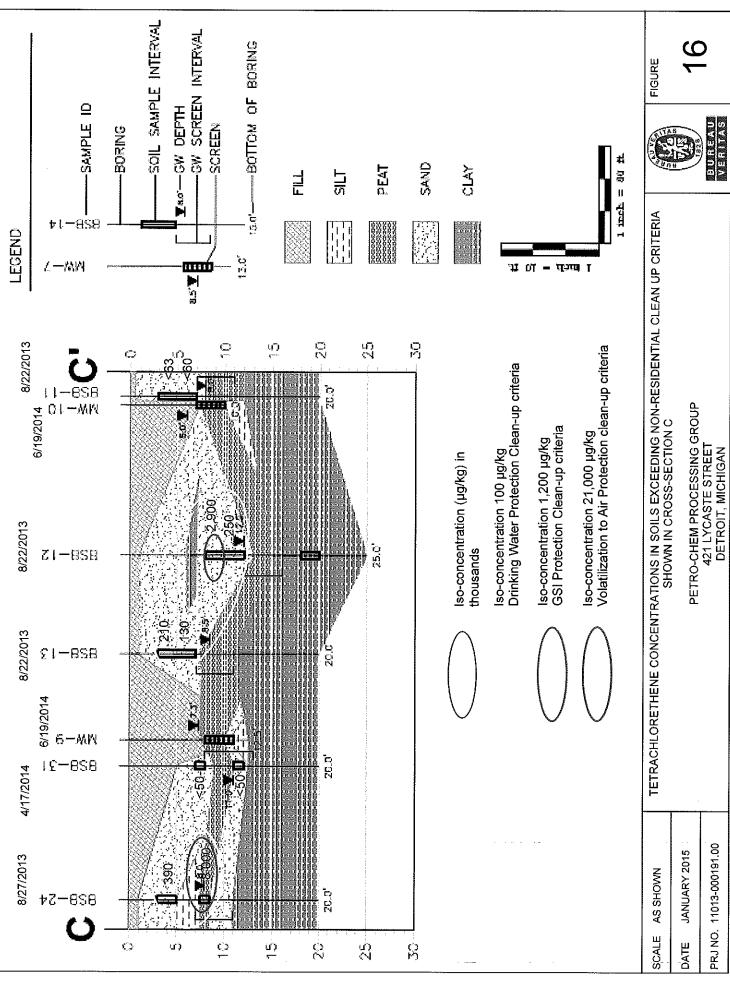


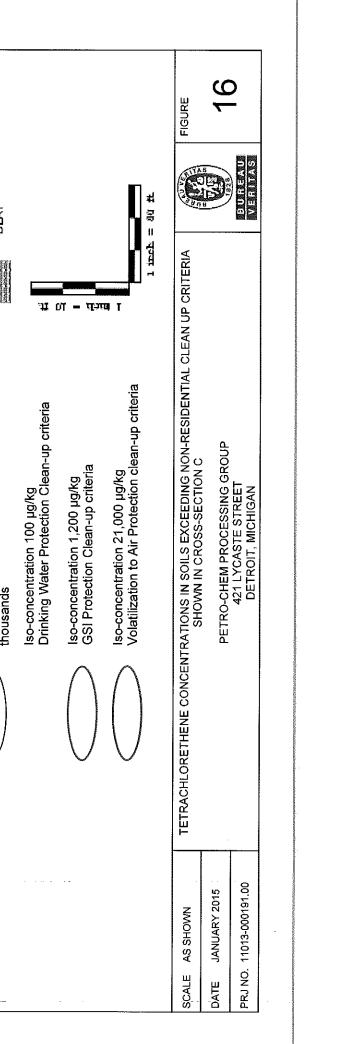


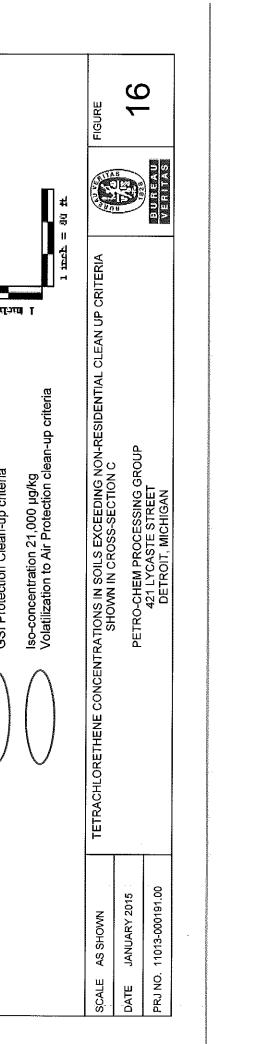


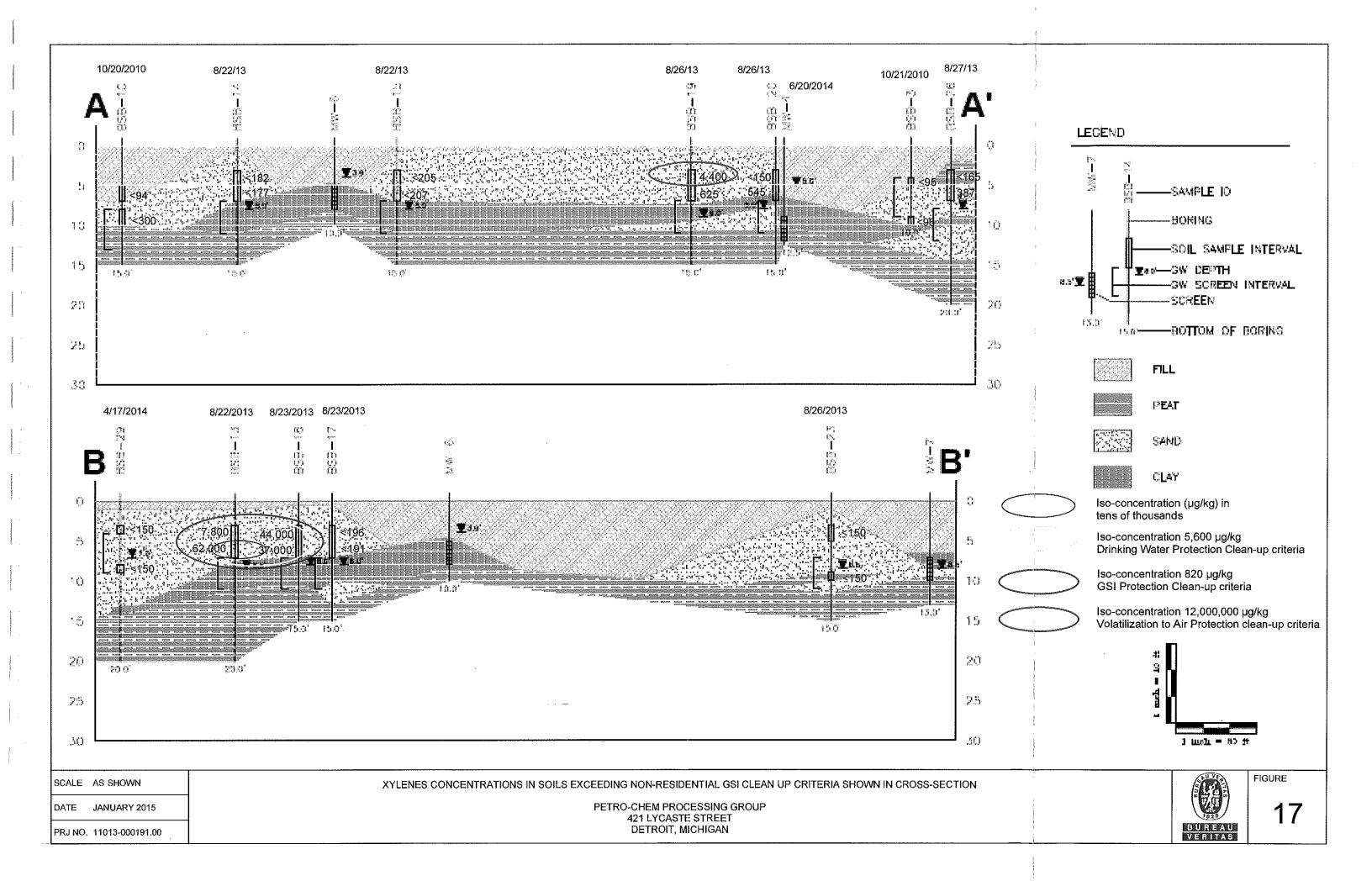


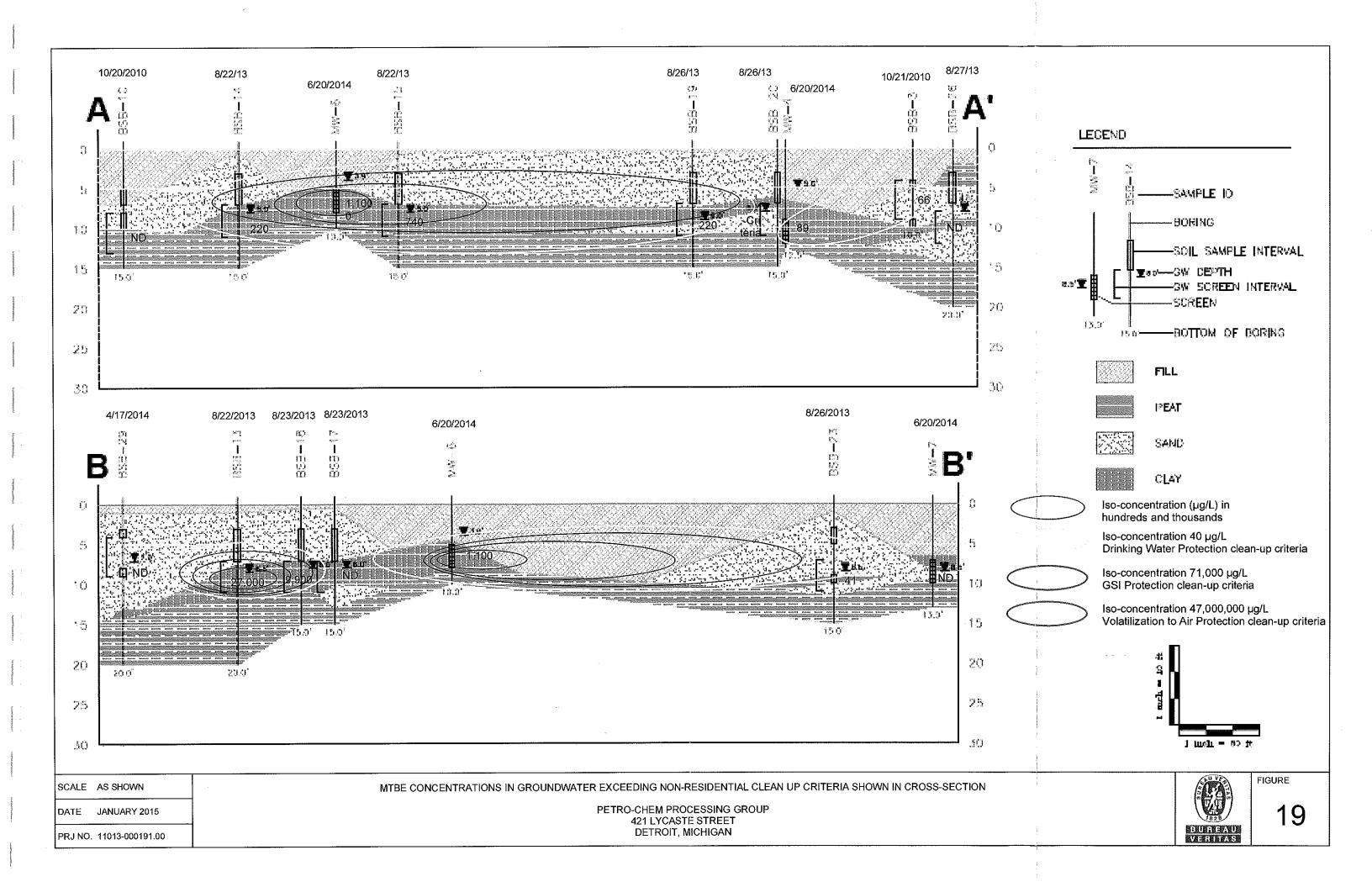


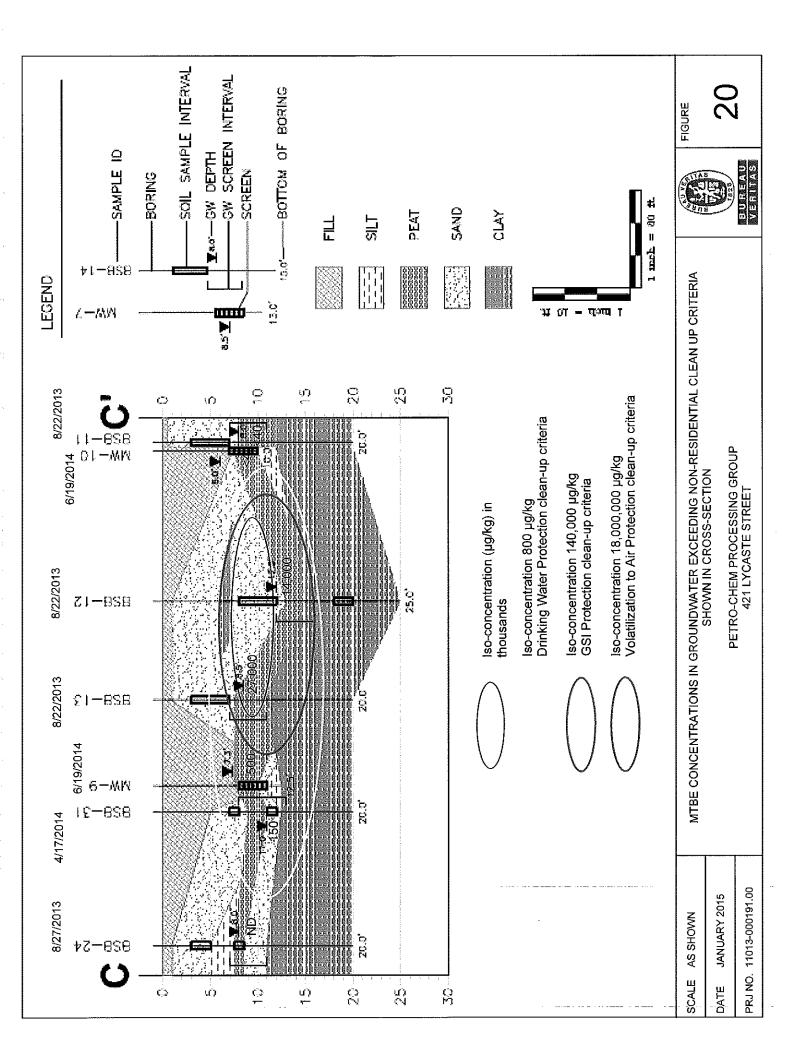


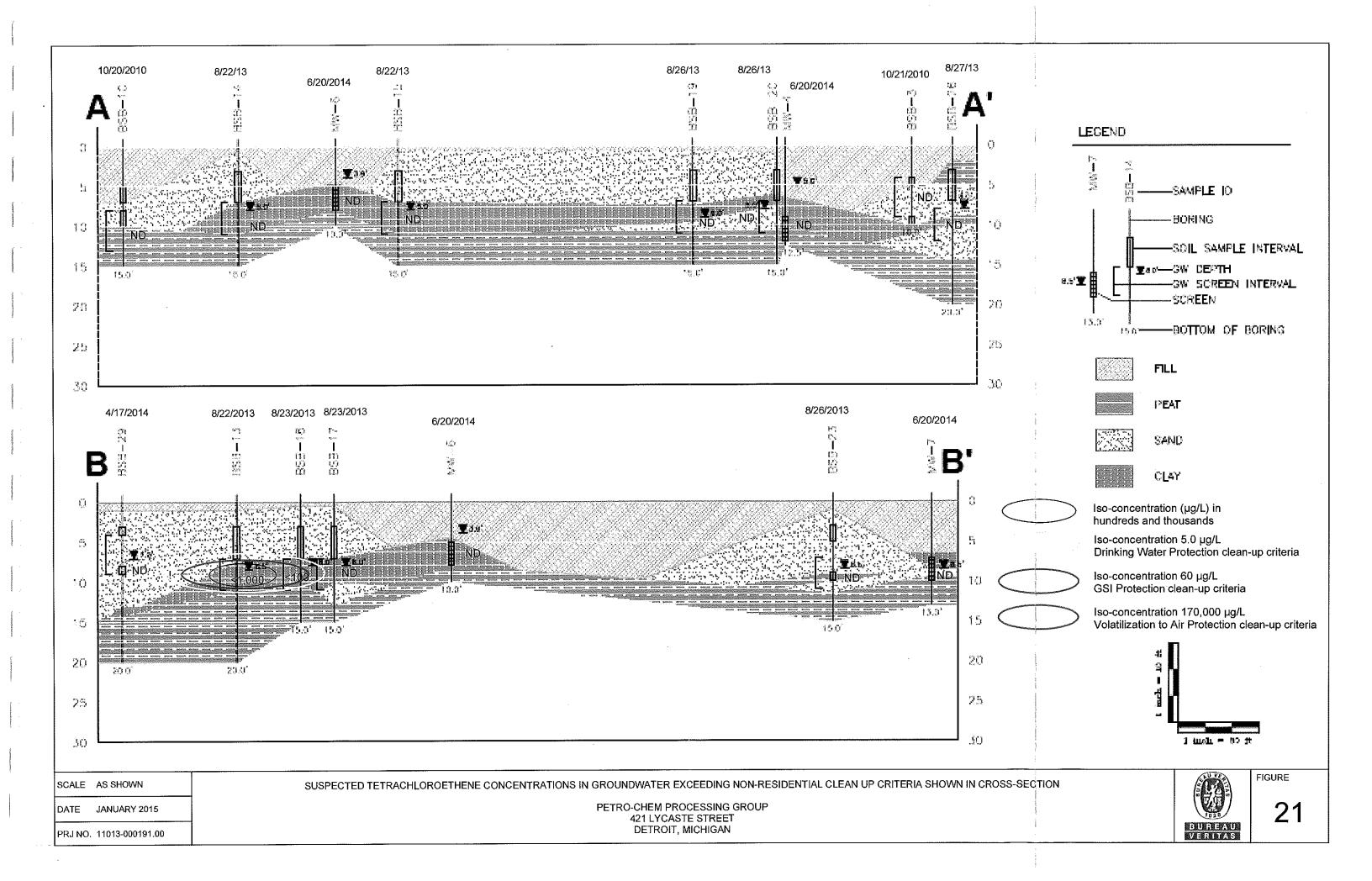


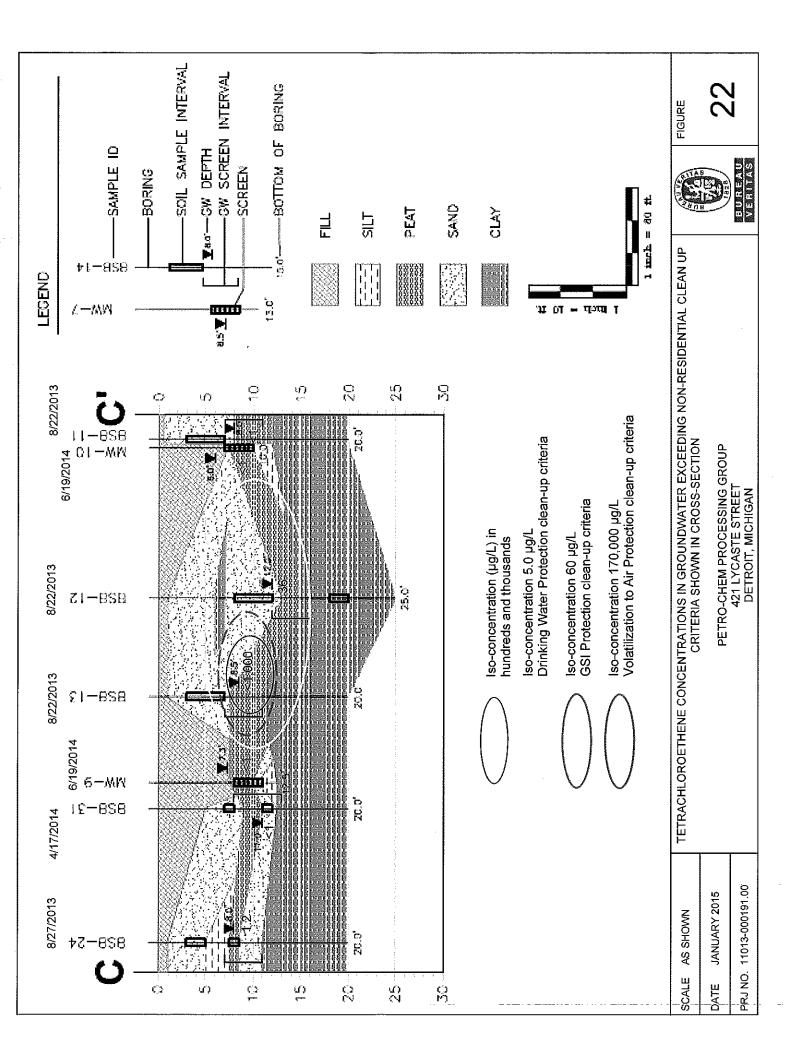


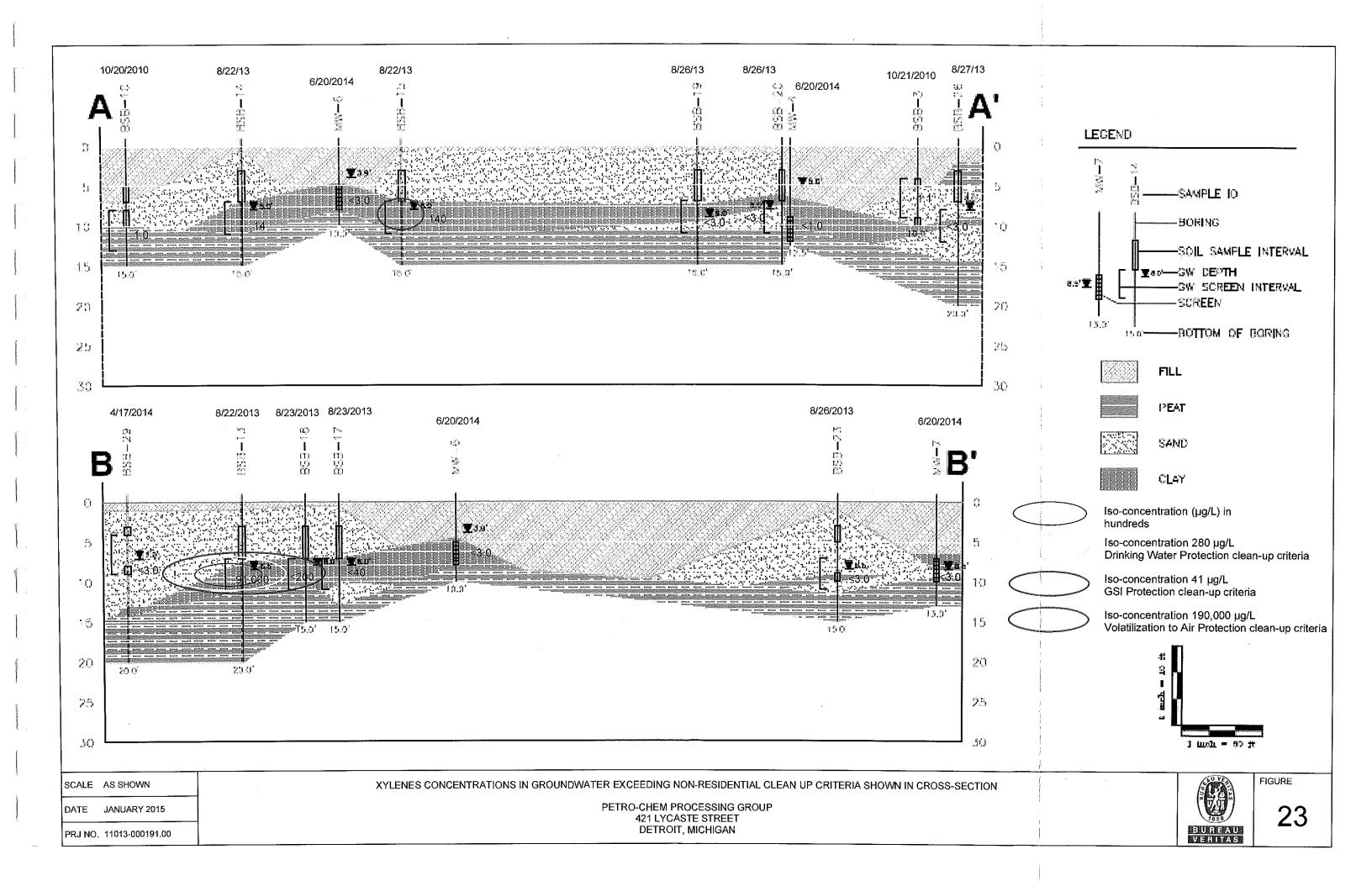


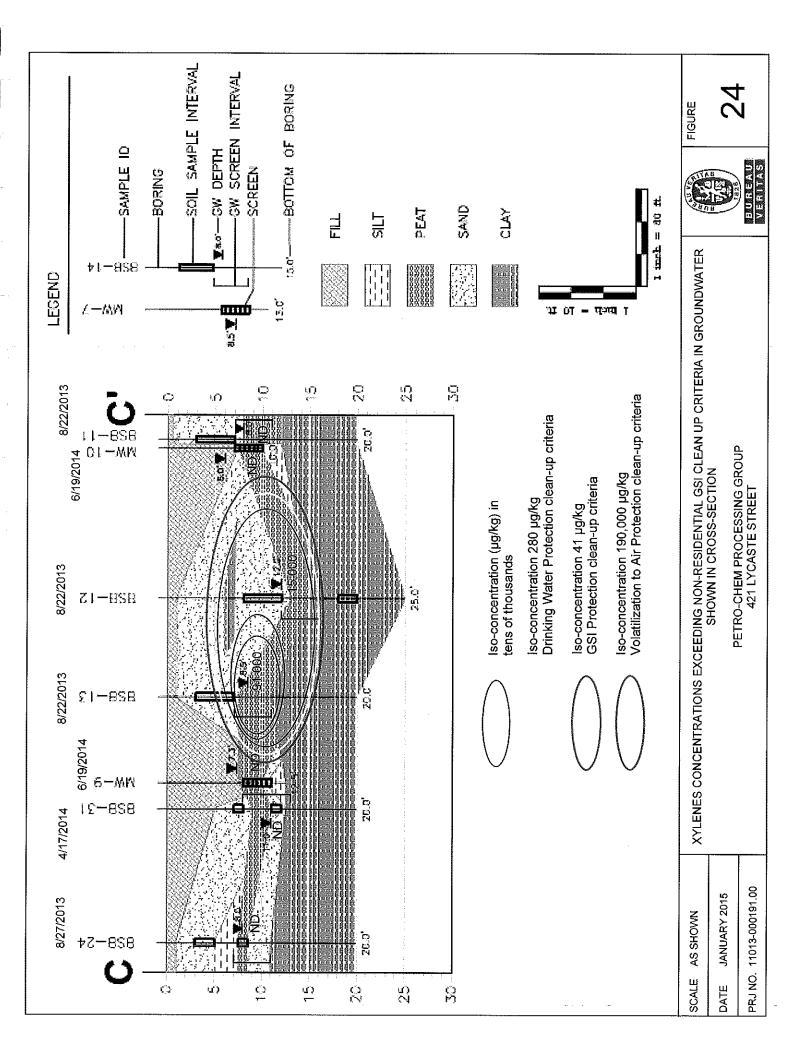












APPENDIX A SOIL BORING AND MONITORING WELL COMPLETION LOGS

			in Vision (Million vigino quanto vi
			quater Vysococycliptocolones
			Sciences Sar
			no-sussections (Carrier
			ta casasasasasasasasasasasasasasasasasasa
			Classes and accomplished in the Control of the Cont
			in the state of th
			Vasspoonnisestuniesky
			· usanassisseneteevo
			Supplies of the supplies of th
			biosammannanparpol
			Vacatasisca compact School
			- Vermontoninonales contains
			tanico tankanina
			distribution (distribution)
			moderatory schoolses
			Material Colors (Color)
			Managering processing of
			tornthuchts?842565År

BORING	NO: BS	B-11	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	
			East of MW-10	Γ					
			Lycaste, Detroit, Michigan		NG CO: Fi	.		RILLING METHOD: Direct-Push	
			nental Services	ł		SCREENED	-	OGGED BY: G. Blinkiewicz	
START D						ROM: 7 - 11 feet		OP OF CASING ELEVATION:	
FINISH D				GROUT				ROUND SURFACE ELEVATION:	
BENTON	TE PL	UG:		FILTER	PACK:		l V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
1			CONCRETE		XXXXX				
2	20		SILTY SAND black, dry, loose, brick fragments			BSB-11 (3-5 feet)	0.6		
]			brown, dry, loose, with trace coarse sand		¥		0.0		
6 - 2					* * * * * * * * * * * * * * * * * * *	BSB-11 (5-7 feet)			
🛊	45		brown/black, moist, with trace coarse sar	ıd			0.0		
8 1			PEAT dark brown to black, moist to wet		**************************************		0.1	Organic odor Groundwater was encountered at a depth of approximately 8 feet. A temporary well was	
12 -			SILTY CLAY		# # # # # # # # # # # # # # # # # # #		0.0	installed for the collection of groundwater.	Ħ
14-	83		gray, moist, soft gray, dry, medium stiff, with trace coars	e sand	X X X		0.0		
🗐									
16-	100		brown/gray mottled, dry, medium stiff, w trace coarse sand	/1(II	H		0.0		
18-1	100				F F F F		0.0	The soil boring was backfilled with original material and capped with an concrete patch upon completion.	
22-			BORING TERMINATED						
24-									
								W-H N-	

Page: 1 of 1

BORING N	NO: BS	B-12	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING I	LOCAT	TION: N	orth of MW-10						
SITE: Petr	o-Cher	n, 421 I	ycaste, Detroit, Michigan	DRILL	ING CO: F	bertec	D	RILLING METHOD: Direct-Push	
CLIENT: 1	PSC Er	vironn	ental Services	GROU	NDWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START DA	ATE: 8	/22/13		AND SA	AMPLED F	ROM: 12 - 16 feet	Т	OP OF CASING ELEVATION:	
FINISH DA	ATE: 8	/22/13		GROU	Г:		G	ROUND SURFACE ELEVATION:	
BENTONI	TE PL	UG:		FILTE	R PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
2 min 1 min	40		SILTY SAND black/brown, dry, loose, with trace coarse	e sand			0.1		
8	75		SILTY CLAY light brown, dry, medium stiff SILTY SAND black/brown, dry, loose, with trace coarse	e sand		BSB-12 (8 - 10 feet)	0.0		
12 - 4	67		black/brown, dry, loose with pieces of brown/black, moist to wet, with trace coasand PEAT dark brown to black, moist to wet			BSB-12 (10 - 12 feet)	20.1	Groundwater was encounteredat a depth of approximately 12 feet. A temporary well was installed for the collection of groundwater.	
16 1 18 1 18 1	50		SILTY CLAY gray/brown mottled, dry, soft, with trace of sand	coarse	* * * * * * * * * * * * * * * * * * *	BSB-12 (18 - 20 fcet)	34.5 54.5	groundwater.	
22 - 6 - 22 - 24 - 24 - 24 - 24 - 24 - 2	40		transitioning to gray		X		12.4 10.6 9.8	The soil boring was backfilled with original material upon completion.	
26 - 8			BORING TERMINATED		<u> </u>				
		e: 1 of						Well No ·	

Page: 1 of 1

BORING	NO: BS	B-13	PROJECT NO: 11013-000191.0	00	PROJECT	NAME: Corrective Acti	on Inves	tigation	
			South of MW-9	Г					
			Lycaste Detroit, Michigan		NG CO: Fi			RILLING METHOD: Direct-Push	
			nental Services	-		SCREENED	ļ	OGGED BY: G. Blinkiewicz	
START D						ROM: 12 - 16 feet		OP OF CASING ELEVATION:	
FINISH D				GROUT				ROUND SURFACE ELEVATION:	
BENTON	ITE PL	UG:		FILTER	PACK:	·	V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
			GRASS		~~~				
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50		SILTY SAND light gray/black, dry, loose			BSB-13 (3 - 5 feet)	0.7		
62			dark brown, dry, loose, with trace coarse	sand		BSB-13 (5 - 7 feet)	1.3	Groundwater was encountered	
8	80		PEAT dark brown to black, moist to wet		X		10.3	at a depth of approximately 8.5 feet. A temporary well was installed for the collection of groundwater. An odor and sheen was observed.	
12 - 4	83		SILTY CLAY gray, moist, soft gray/brown mottled, dry, medium stiff, w trace coarse sand	vith	**************************************		0.2		
16-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	100						0.1	The soil boring was backfilled with original material upon completion.	
22			BORING TERMINATED						

Page: 1 of 1

BORING N	O: BS	SB-14	PROJECT NO: 11013-000191.0	00	PROJECT	NAME: Corrective Act	ion Inves	itigation	
			Northeast of MW-9				1		
			Lycaste, Detroit, Michigan		ING CO: Fi			RILLING METHOD: Direct-Push	
			nental Services	-		SCREENED	-	OGGED BY: G. Blinkiewicz	
START DA				 		ROM: 7 - 11 feet		OP OF CASING ELEVATION:	
FINISH DA				GROUT			-+	ROUND SURFACE ELEVATION:	
BENTONI	TE PL	JUG:		FILTER	R PACK:		_ V	OLUME PURGED:	
рертн	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	РІВ (ррм)	COMMENT	TEMPORARY WELL DIAGRAM
			ASPHALT						
2	35		SILTY SAND gray/black, dry, loose, with trace coarse s	sand		BSB-14 (3-5 feet)	0.1		
6 - 2			dark brown, dry, loose, with trace coarse	sand	# # # # # # # # # # # # # # # # # # #	BSB-14 (5-7 feet) Dup-01	0.1	Groundwater was encountered	
8 -	18		dark brown, moist to wet				0.0	at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater. A duplicate groundwater sample was collected (Dup-02).	
12 - 4	83		SILTY CLAY gray, moist, soft gray/brown mottled, dry, with trace coars medium stiff	se sand,			0.0	The soil boring was backfilled with original material and capped with an asphalt patch upon completion.	
16			BORING TERMINATED						
20 - 6		e: 1 o						Well No :	

### DORNO LOCATION: Southern of MW-6 STRAT FOR Environmental Services GROUNDWATER NCREENED AND SAMPLED FROM: 7-11 feet DRILLING METHOD: Direct-Peak CLERY: PSC Environmental Services GROUNDWATER NCREENED AND SAMPLED FROM: 7-11 feet TOF OF CASING ELEVATION: TOF OF CASING ELEVATION: PRINTED PACE: \$23/13 BENTONTE PILIG: DESCRIPTION	BORING	NO: BS	SB-15	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	
CLIENT, PSC Environmental Services START DATE. 823/13 AND SAMPLED FROM: 7-11 feet TOP OF CASING ELEVATION: TOP OF CASING ELEVATION: GROWINS DATE. 823/13 BENTONITE PLUC: DESCRIPTION	BORING	LOCA:	FION: S	Southeast of MW-6						
START DATE: 82M3 BEST-15 (3-5 feet) PEAT datk brown, moist to wet SILTY CLAY gray, moist, soft PEAT dark brown mothed, dry, medium stiff, with trace coarse sand BORING TERMINATED AND SAMPLED FROM: 7-11 feet GROUNTS URFACE ELEVATION: PEAT dark brown, moist to wet SILTY CLAY gray, moist, soft PEAT dark brown mothed, dry, medium stiff, with trace coarse sand BORING TERMINATED DESCRIPTION AND SAMPLED FROM: 7-11 feet GROUNTS URFACE ELEVATION: VOLUME PURCED: VOLUME PURCED: OO. GROUNTS URFACE ELEVATION: PEAT dark brown, moist to wet Transitioning to gray/black BSB-15 (3-5 feet) OO. Groundwater was encountered at a depth of approximately 8 feet. A temperature well was installed for the collection of grountwater. OO. The soil boring was backfilled with original material and capped with a concrete patch upon completion.				· · · · · · · · · · · · · · · · · · ·						
HISB DATE: \$2M3 BENTONTE PLIG: DESCRIPTION DESCRIPTIO				nental Services				-		
BESTONTE FLUG: Base Column Colum							ROM: 7 - 11 feet		· · · · · · · · · · · · · · · · · · ·	
DESCRIPTION DESCR										
CONCRETE SILTY SAND black, dry, loose, with trace coarse sand BSB-15 (3 - 5 feet) 0.0 BSB-15 (5-7 feet) PEAT dark brown, moist to wet SILTY CLAY gray, moist, soft gray/brown mottled, dry, medium stiff, with trace coarse sand BORING TERMINATED CONCRETE SILTY SAND BSB-15 (3 - 5 feet) 0.0 Groundwater was encountered at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater. The soil boring was backfilled with original material and approximately approximately 8 feet. A temporary well was installed for the collection of groundwater. BORING TERMINATED	BENTONI	TE PL	UG:		FILTER	R PACK:		V	OLUME PURGED:	
SILTY SAND black, dry, loose, with trace coarse sand BSB-15 (3 - 5 feet) 10 PEAT dark brown, moist to wet SILTY CLAY gray, moist, soft gray/brown mottled, dry, medium stiff, with trace coarse sand BORING TERMINATED O.0 Groundwater was encountered at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater. O.0 The soil boring was backfilled with original material and caped with a concerte patch upon completion.	DEPTH		BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
black, dry, loose, with trace coarse sand Comparison of transitioning to gray/black BSB-15 (3 - 5 feet)				The state of the s		\bowtie				
BSB-15 (5-7 feet) PEAT dark brown, moist to wet SILTY CLAY gray, moist, soft gray/brown mottled, dry, medium stiff, with trace coarse sand BORING TERMINATED BSB-15 (5-7 feet) Groundwater was encountered at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater. 0.0 The soil boring was backfilled with original material and capped with a concrete patch upon completion.	2	20					BSB-15 (3 - 5 feet)			
SILTY CLAY gray, moist, soft gray/brown mottled, dry, medium stiff, with trace coarse sand BORING TERMINATED SILTY CLAY gray, moist, soft The soil boring was backfilled with original material and capped with a concrete patch upon completion.			,			H H H H H H H H H H H H H H H H H H H	BSB-15 (5-7 feet)	0.0		
SILTY CLAY gray, moist, soft 12	8 1 1 1 1 1 1 1 1 1	27	,					0.0	feet. A temporary well was installed for the collection of	
gray/nown motited, dry, medium stirt, with trace coarse sand with original material and capped with a concrete patch upon completion. BORING TERMINATED BORING TERMINATED	12 -	80				**************************************				
	14				ith	* * * * * * * * * * * * * * * * * * *		0.0	with original material and capped with a concrete patch	
	18-			BORING TERMINATED						

BORING	NO: BS	B-16	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING	LOCA	FION: 9	Southeast of MW-6						
SITE: Pet	ro-Che	m, 421 I	Lycaste, Detroit, Michigan	DRILL1	NG CO: Fi	bertec	D	RILLING METHOD: Direct-Push	
CLIENT:	PSC E	nvironn	nental Services	GROUN	DWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START D.	ATE: 8	/23/13		AND SA	MPLED F	ROM: 7 - 11 feet	Т	OP OF CASING ELEVATION:	
FINISH D	ATE: 8	/23/13		GROUT	:		G	ROUND SURFACE ELEVATION:	
BENTON	ITE PL	UG:		FILTER	PACK:		v	OLUME PURGED:	
- DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57		SILTY SAND dark brown/black, dry, loose, with trace of sand	coarse		BSB-16 (3 - 5 feet)	0.3		
8—	68		PEAT dark brown/black, moist to wet SILTY CLAY gray/brown mottled, dry to moist, soft			BSB-16 (5-7 feet)	1.0	Groundwater was encountered at a depth of approximately 7.5 feet. A temporary well was installed for the collection of groundwater.	
12 - 4	70		gray/brown mottled, dry, soft gray/brown mottled, dry, medium stiff, w trace coarse sand	ith			0.0	The soil boring was backfilled with original material and capped with a concrete patch upon completion.	
18 - 1 - 6 - 20			BORING TERMINATED					XX/-II N/-	

Page: 1 of 1

BORING	NO: BS	SB-17	PROJECT NO: 11013-000191,	00	PROJECT	NAME: Corrective Acti	on Inves	tigation	
			East of MW-9	T					
			Lycaste, Detroit, Michigan		ING CO: Fi			RILLING METHOD: Direct-Push	
			nental Services	4		SCREENED	-	OGGED BY: G. Blinkiewicz	
START DA	ATE: 8	/23/13		AND SA	AMPLED F	ROM: 7 - 11 feet	T	OP OF CASING ELEVATION:	
FINISH D.	ATE: 8	3/23/13		GROU	Γ:		G	ROUND SURFACE ELEVATION:	
BENTONI	TE PL	UG:	· · · · · · · · · · · · · · · · · · ·	FILTE	R PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
			CONCRETE						
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57		SILTY SAND dark brown, dry, loose, with trace coarse	e sand		BSB-17 (3-5 feet) Dup-03	0.0		
6 1 2 8 1 1 1 1 1 1 1 1 1	48		PEAT dark brown/black, moist to wet			BSB-17 (5-7 feet)	1.8	Groundwater was encountered at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater. A duplicate groundwater sample Dup-04 was collected.	
12-	100		SILTY SAND gray, moist to wet				0.3		
14			SILTY CLAY gray/light brown mottled, dry, medium s with trace coarse sand	etiff,	X X X		0,0	The soil boring was backfilled with original material and capped with a concrete patch upon completion.	
18 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -			BORING TERMINATED						
	Dog	e: 1 o	f 1					Well No.:	

	PSC E	vironn /23/13	ycaste, Detroit, Michigan ental Services	GROU	AMPLED F	bertec SCREENED ROM: 7 - 11 feet	DRILLING METHOD: Direct-Push LOGGED BY: G. Blinkiewicz TOP OF CASING ELEVATION: GROUND SURFACE ELEVATION:		
ENTON	ITE PL	UG:		FILTE	R PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PLD (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
	35		SILTY SAND dark brown/black, dry, loose, with trac sand	e coarse		BSB-18 (3 - 5 feet)	15.8		
2 2	47	To the second se	PEAT dark brown, moist			BSB-18 (5-7 feet)	5.6	Groundwater was encountered at a depth of approximately 7 feet. A temporary well was installed for the collection of groundwater.8	
4	83		SILTY CLAY light gray, dry to moist, soft gray/brown mottled, dry, medium stiff				0.1	The soil boring was backfilled with original material and capped with a concrete patch upon completion.	
6			BORING TERMINATED						

BORING	NO: BS	B-19	PROJECT NO: 11013-00	0191.00	PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING 1	LOCA	TION: N	Northwest of MW-4				,		
SITE: Peti	ro-Chei	m, 421 I	ycaste, Detroit, Michigan	DRILL	ING CO: Fi	bertec	D	RILLING METHOD: Direct-Push	
CLIENT:	PSC E	vironn	ental Services	GROU	NDWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START DA	ATE: 8	/26/13		AND SA	AMPLED F	ROM: 7 - 11 feet	T	OP OF CASING ELEVATION:	
FINISH D	ATE: 8	/26/13		GROU	Г:		G	ROUND SURFACE ELEVATION:	
BENTONI	TE PL	UG:		FILTE	R PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25		CONCRETE SILTY SAND dark brown, dry to moist, loose, wi coarse sand	th trace		BSB-19 (3 - 5 feet)	6.9	·	
61-1-2	50		PEAT dark brown, moist	e coarse sand		BSB-19 (5-7 feet)	0.1	Groundwater was encountered at a depth of approximately 9 feet. A temporary well was installed for the collection of groundwater.	
10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	100		SILTY SAND brown, moist to wet, loose SILTY CLAY light gray, dry to moist, soft gray/brown mottled, medium stiff, coarse sand	with trace			0.2	The soil boring was backfilled with original material and	
16-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			BORING TERMINATED					capped with a concrete patch upon completion.	

	PSC Ei ATE: 8 ATE: 8	vironn /26/13 /26/13	Lycaste, Detroit, Michigan nental Services	GROUT AND SA GROUT	NDWATER AMPLED F	bertec Environmental SCREENED ROM: 7 - 11 feet	DRILLING METHOD: Direct-Push LOGGED BY: G. Blinkiewicz TOP OF CASING ELEVATION: GROUND SURFACE ELEVATION: VOLUME PURGED:		
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION	·	SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
	25		CONCRETE SILTY SAND dark brown, dry, loose, with trace coars	se sand		BSB-14 (3 - 5 feet)	0.1		
2			turning dry to moist transitioning to black PEAT dark brown, moist			BSB-14 (5-7 feet)	1.4	Groundwater was encountered	
┖┸ ╎╸ ┸┩┸┸┩┻┸┸ ╠╸ ┸	50		SILTY SAND light brown/light gray, moist to wet, lo	ose			1.4	at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater.	
4	100		SILTY CLAY light gray, dry to moist, soft, with trace gravel				0.0	The soil boring was backfilled with original material and capped with a concrete patch	
		The state of the s	light brown/light gray mottled, medium with trace fine gravel BORING TERMINATED	a stiff,	K - K - K			upon completion.	
6									

SITE: Pet	PSC E ATE: 8	m, 421 1 nvironn 7/26/13 3/26/13	East of MW-4 Lycaste, Detroit, Michigan nental Services	GROUN AND SA GROUT	NDWATER	bertec Environmental SCREENED ROM: 7 - 11 feet	DRILLING METHOD: Direct-Push LOGGED BY: G. Blinkiewicz TOP OF CASING ELEVATION: GROUND SURFACE ELEVATION: VOLUME PURGED:		
рертн	RECOVERY %	BLOW CNT (6")	DESCRIPTION	, FILLE	SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
2	37		CONCRETE SILTY SAND dark brown, dry, loose, with trace coarse	e sand		BSB-14 (3 - 5 feet)	0.2		
6 - 2	80		dark brown, dry to moist, looset, with trecoarse sand PEAT dark brown, moist SILTY SAND gray, moist to wet, soft	ace		BSB-14 (5-7 feet)	0.2	Groundwater was encountered at a depth of approximately 8.5 feet. A temporary well was installed for the collection of groundwater. A duplicate groundwater sample (Dup-05) was collected.	
10	100		transitioning to gray/black SILTY CLAY light gray, medium stiff, with trace fine	gravel			0.0	The soil boring was backfilled with original material and capped with a concrete patch upon completion.	
18 - 6			BORING TERMINATED		J				

Page: 1 of 1

BORING	NO: BS	SB-22		PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	ion Inves	stigation	
BORING	LOCA'	TION:	South MW-1							
SITE: Pet	ro-Che	m, 421	Lycaste, Detro	it, Michigan	DRILL	ING CO: Fi	hertec Environmental	D	RILLING METHOD: Direct-Push	
CLIENT:	PSC E	nvironn	nental Service	S	GROU	NDWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START D	ATE: 8	/26/13			AND S.	AMPLED F	ROM: 10 - 14 feet	Т	OP OF CASING ELEVATION:	
FINISH D	ATE: 8	3/26/13	1111		GROU			G	ROUND SURFACE ELEVATION:	
BENTON	ITE PL	UG:			FILTE	R PACK:		V	OLUME PURGED:	
- рертн	RECOVERY %	BLOW CNT (6")		DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
			CONCRI							
2	97			, loose, with trace coarse sand			BSB-14 (3-5 feet)	0.3		
8-7-	53		-	dry to moist				0.1		
10-1			sand	tht gray/light brown, with trace	coarse		BSB-14 (9-10 feet)	0.0	Groundwater was encountered at a depth of approximately 10	
			<u> </u>	n, wet, loose, with trace coarse	sand	* * * * * * * * * * * * * * * * * * *		0.0	feet. A temporary well was installed for the collection of	
12-			PEAT black, wet			****		0.0	groundwater.	丨丨
14-]	88		SILTY Cl gray, mois light brow coarse gra	t, soft n/light gray, medium stiff, with	trace	X		0.0	The soil boring was backfilled with original material and capped with a concrete patch upon completion.	
18 - 6			BORING	TERMINATED						
	D	e• 1 o	C 1						Well No :	

Page: 1 of 1

BORING	NO: BS	B-23	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	1.
BORING	LOCA	ΓΙΟΝ: V	West of MW-7						
SITE: Peti	ro-Che	m, 421 I	Lycaste, Detroit, Michigan	DRILLI	NG CO: Fi	bertec Environmental	D	RILLING METHOD: Direct-Push	
CLIENT:	PSC E	nvironn	nental Services	GROUN	DWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START D	ATE: 8	/26/13		AND SA	MPLED F	ROM: 7 - 11 feet	Te	OP OF CASING ELEVATION:	
FINISH D	ATE: 8	/26/13		GROUT	<u>`:</u>		G	ROUND SURFACE ELEVATION:	
BENTONI	TE PL	UG:		FILTER	PACK:		V	OLUME PURGED:	
- DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
2	7		ASPHALT SILTY SAND dark brown/black, dry, loose, with trace of sand	coarse		BSB-23 (3 - 5 feet)	0.0		
6 - 2	20		SILTY CLAY mottled light gray/light brown, with trace	e coarse		BSB-23 (9 - 10 feet)	0.0	Groundwater was encountered at a depth of approximately 10 feet. A temporary well was	CITUIK (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
12	100		sand SILTY SAND gray, wet, loose SILTY CLAY gray, dry, soft, with trace coarse sand				0.0	installed for the collection of groundwater.	
14-1			mottled gray/brown, medium stiff, with to coarse sand	race			0.0	The soil boring was backfilled with original material and capped with an asphalt patch upon completion.	
18 6			BORING TERMINATED						
	D.	e: 1 n	£ 1					Well No.:	

Page: 1 of 1

BORING	S NO: B	SB-24	PROJECT NO: 11013-000191.0	91.00 PROJECT NAME: Corrective Action Investigation						
BORING	G LOCA	TION:	North of MW-9							
			Lycaste, Detroit, Michigan			bertec Environmental		RILLING METHOD: Direct-Push		
			nental Services	GROU	NDWATER	SCREENED		OGGED BY: G. Blinkiewicz		
START	DATE:	8/27/13		AND S	AMPLED F	ROM: 7 - 11 feet	T	OP OF CASING ELEVATION:		
FINISH	DATE:	8/27/13		GROU'	Г:		G	ROUND SURFACE ELEVATION:		
BENTO	NITE P	LUG:	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	FILTE	R PACK:		V	OLUME PURGED:		
- DEРТН	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM	
‡			CONCRETE							
2	22		SILTY SAND black, dry, loose			BSB-24 (3-5 feet)	7.0			
6 - 2	55		SILT light brown/tan, dry		**************************************		69,6			
8=	33		PEAT dark brown, moist			BSB-24 (7.5-8.5 feet)		Odor		
10=			SILTY SAND light gray, moist to wet, loose, with trace sand	e coarse	E SE	Dup-06	0.4 0.9 2.3	Groundwater was encountered at a depth of approximately 8 feet. A temporary well was installed for the collection of		
12-	80		SANDY CLAY gray, moist to wet, soft				0.0	groundwater.	Ü	
14-1			mottled gray/brown, dry, medium stiff, w trace coarse sand				0.0	The soil boring was backfilled with original material and capped with a concrete patch upon completion.		
16-1	85		gray/tan, dry, medium stiff, with trace co- gravel	arse					And the second s	
18 - 6	6		gray, dry, soft, with trace coarse gravel				0.0			
22 -			BORING TERMINATED							
24		Te: 1 c						Well No ·		

Page: 1 of 1

BORING	NO: BS	SB-25	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING	LOCA	TION: Y	Vacant property, south of Freud Street and MV	W-4					
			Lycaste Detroit, Michigan			bertec Environmental		RILLING METHOD: Direct-Push	
			nental Services			SCREENED	-	OGGED BY: G. Blinkiewicz	
START D.						ROM: 7 - 11 feet		OP OF CASING ELEVATION:	
FINISH D				GROUT				ROUND SURFACE ELEVATION:	
BENTONI	TE PL	JUG:		FILTER	PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	РШ (ррт)	COMMENT	TEMPORARY WELL DIAGRAM
1			GRASS organics		\{\{\}\}				
2	30		SAND (FILL) black, dry, medium-grained, loose, brick fragments			BSB-25 (3 - 5 feet)	0.0		
6 - 2	80		SILTY CLAY gray, dry to moist, with trace coarse sand		* * * * * * * * * * * * * * * * * * *	BSB-25 (5 - 7 feet)	0,0		
8			PEAT black, moist to wet		"		0.0	Groundwater was encountered at a depth of approximately 7.5 feet. A temporary well was	
12 4	85		SILTY CLAY gray, moist, soft				0.0	installed for the collection of groundwater. The soil boring was backfilled with original material and capped with an asphalt patch upon completion.	
16-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			BORING TERMINATED						
20—		a• 1 a						Wall No :	

Page: 1 of 1

E: Petro-Ch	hem, 4 Enviro : 8/27/ : 8/27/	3	DRILL1 GROUN	NG CO: Fi DWATER MPLED F	bertec Environmental SCREENED ROM: 8 - 12 feet	DRILLING METHOD: Direct-Push LOGGED BY: G. Blinkiewicz TOP OF CASING ELEVATION: GROUND SURFACE ELEVATION: VOLUME PURGED:		
DEPTH RECOVERY %	BI OW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIACEAM
47	,	GRASS small trees on surface SILTY CLAY mottled gray/brown, dry, soft, with sand black, dry, fine-grained sand lense	trace coarse	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	BSB-26 (3 - 5 feet)	0.0		
- 2 68		SILTY SAND light brown, dry, loose, with trace contransitioning to dark brown PEAT	oarse sand		BSB-26 (5 - 7 feet)	0.0	Groundwater was encountered at a depth of approximately 10	
- - - - - - - - - - - - - - - - - - -		black, moist SILTY SAND gray, moist to wet, loose, with trace	coarse sand			0.0	feet. A temporary well was installed for the collection of groundwater. The soil boring was backfilled with original material and capped upon completion.	
100	0	inottled gray/brown, moist, soft gray, dry, medium stiff, with trace c becoming mottled gray/brown	oarse sand			0.0		
-		BORING TERMINATED						

BORING	BORING NO: BSB-27 PROJECT NO: 11013-000191			PROJECT NAME: Corrective Action Investigation						
BORING	LOCA	TION:	Vacant property, south of Freud Street	r						
SITE: Pe	tro-Che	m, 421	Lycaste, Detroit, Michigan	DRILLI	NG CO: Fi	bertec Environmental	D	RILLING METHOD: Direct-Push		
			nental Services	ł		SCREENED	-	OGGED BY: G. Blinkiewicz		
START I					MPLED F	ROM:		OP OF CASING ELEVATION:		
FINISH				GROUT				ROUND SURFACE ELEVATION:		
BENTON	ITE PL	.UG:		FILTER	PACK:	1	V	OLUME PURGED:		
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	78		GRASS with organics and brick fragments SILTY CLAY light brown, dry, soft to medium stiff, wi coarse sand	th trace		BSB-27 (3 - 5 feet)	0.0			
8-1	27		SILTY SAND light brown, dry, loose, with trace coarse	sand		BSB-27 (5 - 7 feet)	0.0	Not able to collect groundwater from this location.		
12 - 4	82		becoming light brown/brown PEAT dark brown, dry SILTY CLAY light gray, moist to wet, soft, with trace of sand mottled gray/brown, dry, soft, with fine g				0.0	The soil boring was backfilled with original material upon completion.		
18-	The state of the s	e: 1 o						Well No.:		

Page: 1 of 1

BORING	BORING NO: BSB-28 PROJECT NO: 11013-00019					PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING	LOCA	TION:	West of St. Jean	Avenue and MW-10						
SITE: Pet	ro-Che	m, 421]	Lycaste, Detroit	t, Michigan	DRILL	ING CO: Fi	bertec Environmental	D	RILLING METHOD: Direct-Push	
CLIENT:	PSC E	nvironn	nental Services		GROUN	NDWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START D.	ATE: 4	/17/14			AND SA	MPLED F	ROM:	Т	OP OF CASING ELEVATION:	
FINISH D	ATE: 4	/17/14			GROUT	Γ:		G	ROUND SURFACE ELEVATION:	
BENTON	ITE PL	UG:			FILTE	R PACK:		v	OLUME PURGED:	
							-			7
рертн	RECOVERY %	BLOW CNT (6")		DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	(mdd) (IIA	COMMENT	TEMPORARY WELL DIAGRAM
<u> </u>			GRASS topsoil with	n organics		\{\{\}\}				
2	50		SILTY SA black, dry, l	loose				0.2		
			brown, dry sand	to moist, loose with trace coan	rse	* * * * * *	BSB-28 (4 - 5 feet)	0.3		
			SILTY CL	AY		X X	BSB-28 (5 - 6 feet)	0.2		
6-1-2			gray, dry to			× × ×		0.0	N. a. Maria Wali	
8-	100							0.0	Not able to collect groundwater from this location.	
						× ×		0.1		🖣
10-								0.1		
								0.1		
12 =								0.1		
= 4	100		DEAT			2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		0.0		
14-	,		PEAT black, dry SILTY CL	AV	/			0.0		
1 1			mottled gray	y and brown, dry, medium stif	ff with			0.0		
16-								0.0		
+ +								0.0		
18	100							0.0	The soil boring was backfilled with original material upon	
								0.0	completion.	
20=-6						<u> </u>		0.0		
		e• 1 o	C 1			ı			Well No ·	L

Page: 1 of 1

BORING N	NO: BS	B-29	PROJECT NO: 11013-000191	.00	PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING I	LOCAT	rion: v	West of St. Jean Avenue and southwest of MV	V-9					
SITE: Petr	o-Che	m, 421 l	yeaste, Detroit, Michigan	DRILLI	NG CO: Fi	bertec Environmental	D	RILLING METHOD: Direct-Push	
CLIENT: 1	PSC E	nvironn	nental Services	GROUN	DWATER	SCREENED	L	OGGED BY: G. Blinkiewicz	
START DA	ATE: 4	/17/14		AND SA	MPLED F	ROM: 4-9 feet	T	OP OF CASING ELEVATION:	
FINISH DA	ATE: 4	/17/14		GROUT	:		G	ROUND SURFACE ELEVATION:	
BENTONI	TE PL	UG:		FILTER	PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
			GRASS topsoil with organics		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
2	70		SILTY SAND black, moist, loose			BSB-29 (3 - 4 feet)	0.0 0.4 0.1		
8 - 1	70		becoming gray			BSB-29 (8 - 9 feet)	0.0	Groundwater was encountered at a depth of approximately 7 feet. A temporary well was installed for the collection of groundwater. A duplicate groundwater sample (Dup-01) was collected.	
12 - 4	80		gray/brown, dry to moist, loose with tracoarse sand SILTY CLAY mottled brown and gray, medium stiff we coarse sand PEAT block dry				0.2 0.1 0.0		
16-1	100		SILTY CLAY mottled gray and brown, dry, medium s trace coarse sand	tiff with			0.0 0.0 0.0 0.0	The soil boring was backfilled with original material upon completion.	
20 - 6		٥٠ 1 ٥			=======================================			Well No ·	

Page: 1 of 1

BORING	NO: BS	SB-30	PROJECT NO: 11013-000191.0	00 PR	ROJECT	NAME: Corrective Acti	on Inves	tigation	•	
BORING	LOCA	TION:	West of St. Jean Avenue and MW-9							
SITE: Peti	o-Che	m, 421	Lycaste, Detroit, Michigan	DRILLING	G CO: Fi	bertec Environmental	DRILLING METHOD: Direct-Push			
CLIENT:	PSC E	nvironr	nental Services	GROUND	WATER	SCREENED	L	OGGED BY: G. Blinkiewicz		
START D	ATE: 4	/17/14		AND SAM	PLED F	ROM: 5-10 feet	Т	OP OF CASING ELEVATION:		
FINISH D	ATE: 4	/17/14		GROUT:			G	ROUND SURFACE ELEVATION:		
BENTON	TE PL	UG:		FILTER PACK:			v	OLUME PURGED:		
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM	
1111			ASPHALT/CONCRETE							
2	50		SILTY SAND brown, dry, loose				0.1			
			brown, dry to moist, loose	(*)		BSB-30 (4 - 5 feet)	0.4			
6 - 2	50		black, moist, loose PEAT black, moist SILTY SAND				0.9	Groundwater was encountered at a depth of approximately 7 feet. A temporary well was installed for the collection of groundwater. Odor and sheen noted.		
10-1			black, moist, loose SILTY CLAY gray, dry to moist, soft	2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# # # # # # # # # # # # # # # # # # #	BSB-30 (9 - 10 feet) (Dup-02)	0.5		∄	
14-1	80		PEAT black, dry SILTY CLAY mottled brown and gray, medium stiff wi coarse sand	ith trace			0.5 0.5 0.1			
16-1-18-1-18-1-18-1-18-1-18-1-18-1-18-1	100						0.1 0.0 0.0 0.0	The soil boring was backfilled with original material and capped with an asphalt patch upon completion.		
20 = 6				<u>k</u>			0.0			

Page: 1 of 1

SORIUS COLCATION: World of Name	BORING	NO: BS	B-31	PROJECT NO: 11013-000191.0)0 P	ROJECT	NAME: Corrective Action	on Inves	tigation	
CLIENT FOC Environmental Services					1					
START DATE 40714 GROUT: GR					_			D	RILLING METHOD: Direct-Push	
PRINT DATE				nental Services	┨			LOGGED BY: G. Blinkiewicz		
No. Part P							ROM: 8-13 feet			
DESCRIPTION DESCR										
GRASS HAND AUGER no recovery SILTY SAND black, dry to moist, loose PEAT black, dry SILTY SAND gray, moist, loose The soil boring was backfilled with original material upon completion. The soil boring was backfilled with original material upon completion.	BENTONI	ITE PL	UG:		FILTER	PACK:	T	V	OLUME PURGED:	
SILTY SAND black, dry to moist, loose SILTY SAND black, dry to moist, loose	рертн	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
SILTY SAND black, dry to moist, loose PEAT black, dry BSB-31 (7 - 8 feet) 0.1	11411					~~				
becoming gray BSB-31 (7 - 8 feet) PEAT black, dry SILTY SAND gray, moist, loose SILTY CLAY gray, dry, soft with trace coarse sand SILTY CLAY gray, dry, soft with trace coarse sand SILTY CLAY gray, dry, soft with trace coarse sand Decoming stiff The soil boring was backfilled with original material upon completion. The soil boring was backfilled with original material upon completion.	1111111	0								
gray, dry, soft with trace coarse sand 14	2	60		black, dry to moist, loose becoming gray			BSB-31 (7 - 8 feet)	0.1		
gray, dry, soft with trace coarse sand 14	10-1							0.2		
gray, dry, soft with trace coarse sand 14	1							0.1	Groundwater was encountered	
gray, dry, soft with trace coarse sand 14	12				i		BSB-31 (11 - 12 feet)	0.3	at a depth of approximately 11 feet. A temporary well was	
100 100 100 100 100 100 100 100	14-	100		1 6 24 .		# # # # # # # # # # # # # # # # # # #		0.0		B
100 18 100 100 100 100 100 100 100 100 1	16									
		100				# # K			with original material upon	
20 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18 -					* * * * * * * * * * * * * * * * * * *				
	20 - 6		43			* * * * * * * * * * * * * * * * * * *		0.0		

BORING	NO: BS	SB-32		PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Act	on Inves	tigation			
BORING	LOCA	rion:	South of Freud	l Street								
SITE: Pet	ro-Che	m, 421	Lycaste, Detro	it, Michigan	DRILLI	NG CO: Fi	bertec	D	RILLING METHOD: Direct-Push			
CLIENT:	PSC E	nvironn	nental Services	3	GROUN	NDWATER	SCREENED	L	OGGED BY: K. Wing			
START D.	ATE: 9	/18/14			AND SA	MPLED F	ROM:	Т	OP OF CASING ELEVATION:			
FINISH D	ATE: 9	/18/14			GROUT	·:		G	GROUND SURFACE ELEVATION:			
BENTON	ITE PL	UG:			FILTER	PACK:	<u>.</u>	V	OLUME PURGED:			
DEPTH	RECOVERY %	BLOW CNT (6")		DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM		
			TOPSOII									
2	95		fragments SILTY Cl	, loose, with pebbles, brick and LAY v, stiff, with pebbles	slag		BSB-32 (2-4 feet)	32.9				
6 - 2	70		becoming transitioning	soft ng to gray, slag fragments				0.0	Groundwater was not			
10	55		becoming SILTY SA				BSB-32 (10-12 feet)	0.0	encountered			
18 1 20 1	100		gray, wet SILTY Cl gray, dry,	LAY stiff				0.0	The soil boring was backfilled with original material upon completion.			
22 1		e• 1 o		TERMINATED					Well No :			

Page: 1 of 1

BORING	NO: BS	SB-33	PROJECT NO: 11013-000191.0	0	PROJECT	NAME: Corrective Acti	on Inves	tigation	
BORING	LOCA	FION: S	South of Freud Street						
SITE: Peti	ro-Che	m, 421 l	Lycaste, Detroit, Michigan	DRILL	ING CO: Fi	hertec	D	RILLING METHOD: Direct-Push	
			nental Services	1		SCREENED		OGGED BY: K. Wing	
START D.				ļ	AMPLED F	ROM:		OP OF CASING ELEVATION:	
FINISH D				GROU				ROUND SURFACE ELEVATION:	-
BENTONI	ITE PL	UG:		FILTE	R PACK:		V	OLUME PURGED:	
DEPTH	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
	:		TOPSOIL						
211111111111111111111111111111111111111	55		SILTY SAND brown, dry, loose, with brick, slag, glass fragments trace medium-grained sand			BSB-33 (2-4 feet)	0.0		
6-1-2	70		PEAT		新 	BSB-33 (8-10 feet)	0.0	Groundwater was encountered at a depth of approximately 10 feet. A temporary well was	
12 - 4	95		black, moist SAND brown, wet, medium- to coarse-grained PEAT black, moist SILTY CLAY gray, dry, medium stiff	/	# # # # # # # # # # # # # # # # # # #		0.0	installed for the collection of groundwater. A duplicate groundwater sample (Dup-04) was collected.	
18 1 6	100						0.0	The soil boring was backfilled with original material upon completion.	
22		0.10	BORING TERMINATED					Wall No.	

Page: 1 of 1

ENT. FSC Eavfronmental Services GROUNDWATER SCREENED LOGGED BY; K. Wing RT DATE: 9718/14 AND SAMPLED FROM: TOP OF CASE ELEVATION: GROUND SURFACE ELEVATION: TOP OF CASE ELEVATION: TOP				ycaste, Detroit, Michigan	DRILLING				RILLING METHOD: Direct-Push	
SILTY CLAY gray, dry, soft To soil boring was backfilled with original material upon completion. GROUTS GROUND SURFACE ELEVATION: VOLUME PURGED: AND BURN BEB-34 (3-5 feet) SILTY SAND brown, moist, coarse-grained PEAT black, moist SILTY CLAY gray, dry, soft The soil boring was backfilled with original material upon completion.				ental Services				ļ		
TOPSOIL SAND brown, moist, coarse-grained with gravel SILTY CLAY brown, wet, coarse-grained with gravel SAND brown, wet, coarse-grained with gravel SILTY CLAY gray, dry, soft The soil boring was backfilled with original material upon completion. The soil boring was backfilled with original material upon completion.						LED I	VOI.	- 1		
TOPSOIL SILTY SAND brown, dry, loose, with brick, glass, slag fragments SAND brown, moist, coarse-grained back, moist back, moist back, moist back, moist brown, moist, soft SILTY CLAY brown, moist, soft SILTY CLAY gray, dry, soft SILTY						CK:			***************************************	
SILTY SAND brown, dry, loose, with brick, glass, slag fragments SAND SAND Drown, moist, coarse-grained PEAT black, moist SILTY CLAY brown, moist, soft SILTY CLAY gray, dry, soft 100 The soil boring was backfilled with original material upon completion. The soil boring was backfilled with original material upon completion.			BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY
SAND brown, moist, coarse-grained PEAT black, moist SILTY CLAY brown, moist, soft SAND brown, wet, coarse-grained with gravel SAND brown, wet, coarse-grained with gravel SAND brown, wet, coarse-grained with gravel SILTY CLAY gray, dry, soft The soil boring was backfilled with original material upon completion.	- - -	50		SILTY SAND brown, dry, loose, with brick, glass, slag				0,0		
SAND brown, moist, soft SILTY CLAY brown, wet, coarse-grained with gravel SILTY CLAY gray, dry, soft 100 100 The soil boring was backfilled with original material upon completion.	-	טט					BSB-34 (3-5 feet)			
brown, moist, soft SAND brown, wet, coarse-grained with gravel SILTY CLAY gray, dry, soft The soil boring was backfilled with original material upon completion. The soil boring was backfilled with original material upon completion.	- - 2 -	10		brown, moist, coarse-grained PEAT black, moist	7 47 77 77 77 77 77 77 77 77 77 77 77 77	**************************************				
SAND brown, wet, coarse-grained with gravel SILTY CLAY gray, dry, soft Table 100 100 100 The soil boring was backfilled with original material upon completion.	-			brown, inoist, soft			BSB-34 (8-10 feet)	0.0	at a depth of approximately 10.5 feet. A temporary well	
100 100 100 100 100 100 100 100	- - - 9 - 4	05		brown, wet, coarse-grained with gravel SILTY CLAY		× × × × × × × × × × × × × × × × × × ×				
The soil boring was backfilled with original material upon completion.					- - -			0.0		Ħ
- 6	. 10	00							with original material upon	
	- 6			BORING TERMINATED				0.0	completion.	

Page: 1 of 1

BORING	NO: BS	B-35	PROJECT NO: 11013-000191.0	00	PROJECT	NAME: Corrective Acti	on Inves	tigation		
			South of Freud Street		NG GO FU		1 7	DIVINIC METHOD, Private Post		
			Lycaste, Detroit, Michigau nental Services	 	NG CO: Fi	SCREENED		OGGED BY: K. Wing		
START DA			ientai Services	-	MPLED FI		 	TOP OF CASING ELEVATION:		
FINISH D		-		GROUT		NOTE:		ROUND SURFACE ELEVATION:		
BENTONI				FILTER PACK:				OLUME PURGED:		
	Ĭ					· · · · · · · · · · · · · · · · · · ·				
рертн	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM	
=			TOPSOIL							
2 = 1	45		SILTY SAND brown, dry, loose, with brick, slag fragm	ents	****		0.0			
4			trace clay	l)		BSB-35 (2-4 feet)	0.0			
6 - 1			becoming moist with pebbles	£,			0.0			
8 - 2	50		PEAT		36 36 36 36 36 3	BSB-35 (6-8 feet)	0.0			
10-			black, moist SILTY SAND	. 1	77. 77. 77. 77. 77. 77. 77. 77. 77. 77.		0.0	Groundwater was encountered at a depth of approximately 10 feet. A temporary well was		
12			brown, wet, with pebbles, porcelain and fragments	giass			0.0	installed for the collection of groundwater.		
14	95		wood, brick fragments	(***			0.0	The soil boring was backfilled with original material upon completion.		
16-			BORING TERMINATED				0.0		Ħ	
18							0.0			
20 - 6							0.0			
22										
24-								W. II N		

Page: 1 of 1

	ro-Che PSC E ATE: 1	m, 421	Lycaste, Detroit, Michigan	DRILLI	NC CO. E						
CLIENT: START D.	PSC E ATE: 1		Lycaste, Detroit, Michigan	DRILLI	NC CO. E		1 _				
START D	ATE: 1	nvironr		GROUNDWATER SCREENED				DRILLING METHOD: Direct-Push			
			mental Services	GROUN	DWATER	SCREENED	L	LOGGED BY: K. Wing			
FINISH D	ATE; 1	2/22/20	114	AND SA	MPLED F	ROM: 7-12 feet	Т	OP OF CASING ELEVATION:			
		2/22/20	014	GROUT:				ROUND SURFACE ELEVATION:			
BENTONI	TE PL	UG:		FILTER	PACK:		V	OLUME PURGED:			
- рерти	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM		
2 10 10 12 12 12 12 12 1	50	8	CONCRETE SILTY SAND FILL trace gravel and plastic, light brown, moist with occasional cobbles, brick, and wood brown, moist MIXED SAND AND GRAVEL FILL gray, moist PEAT dark brown, moist CLAYEY PEAT trace sand and organics, gray, moist		本	BSB-36 (0.5-2 feet) BSB-36 (8-10 feet)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Groundwater was encountered at a depth of approximately 8 feet. A temporary well was installed for the collection of groundwater. The soil boring was backfilled with original material and capped with an concrete patch upon completion.			
14			SILTY CLAY trace sand, gravel, and organics, stiff to ha gray, moist BORING TERMINATED	ard,		BSB-36 (12.5-13 feet)	0.0				
20-		2.10									

Page: 1 of 1

BORING NO: BSB-37	PROJECT NO: 11013-000191.0	0 PROJE	CT NAME: C	orrective Actio	n Inves	tigation	
BORING LOCATION	V:	T					
SITE: Petro-Chem, 42	1 Lycaste, Detroit, Michigan	DRILLING CO	Fibertec		D	RILLING METHOD: Direct-Push	
CLIENT: PSC Enviro	nmental Services	GROUNDWAT	ER SCREENI	ED	L	OGGED BY: K. Wing	
START DATE: 12/22/	2014	AND SAMPLE	FROM:		T	OP OF CASING ELEVATION:	
FINISH DATE: 12/22/	/2014	GROUT:			G	ROUND SURFACE ELEVATION:	
BENTONITE PLUG:		FILTER PACK		and the second s	V	OLUME PURGED;	
DEPTH RECOVERY % BLOW CNT (6")	DESCRIPTION	SOIL DIAGRAM		SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM
	CONCRETE		\boxtimes		0.0		
2	MIXED SAND AND GRAVEL FILL cobbles, brown and gray, moist SILTY SAND FILL brown, moist SAND AND GRAVEL PEAT dark brown, moist CLAYEY PEAT with organics, gray, moist SILTY CLAY with organics, stiff, gray, moist BORING TERMINATED				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	The soil boring was backfilled with original material and capped with an concrete patch upon completion.	
18————————————————————————————————————						Well No.	

BORING IGCATION: START DATE: Ig22/2014 AND SAMPLED FROM: 635 - 5.75 feet FINSIN DATE: Ig22/2014 AND SAMPLED FROM: 635 - 5.75 feet FINSIN DATE: Ig22/2014 BENTONITE PLUG: FUTER PACK: CONCRETE MIXED SAND AND GRAVEL FILL trace plastic, brick, and glass, gray and black, moist CONCRETE PEAT trace sand, gravel, organics, and glass, black, moist FINSIN DATE: Ig22/2014 BORING TERMINATED DRILLING CO: Fibertee GROUNDWATE SCHEINID LOGGED BY: K. Wing TOP OF CASING ELEVATION: CROUND SUBLACE ELEVATION: CROUND SUBLACE ELEVATION: DOUBLE PURGED: VOLUME PURGED: AND AND AND GRAVEL FILL trace plastic, brick, and glass, gray and black, moist Trace and gravel, organics, and glass, black, moist BORING TERMINATED BRILLING CO: Fibertee GROUND SUBLACE LEVATION: DOUBLE PURGED: 18.40 197.9 Strong edon noted at a depth of approximately 5 feet. A temporary well was ansaled for the same ansaled f	BORING	NO: BS	B-38	PROJECT NO: 11013-000191.	00 1	PROJECT	NAME: Corrective Acti	on Inves	tigation		
CLERT; PSC Environmental Services START DATE: 1272/2014 AND SAND LOFFICE FROM: LYS - 5.78 feet FINSH DATE: 1272/2014 BENTONTE PLUG: PLUG: PLUG: PLUG: DESCRIPTION DES					1						
START DATE: 1222014 EINSH DATE: 1222014 GROUT GROUND SUBFACE ELEVATION: PENTONTE PLUG: PE					 						
PINISH DATE: 12222014 BENTONTE PLOG: FILTER PACK: VOLIME PURGED: VOLIME PURGED: VOLIME PURGED: AWAYD MANUAL PLANTON: VOLIME PURGED: AWAYD MANUAL PLANTON: AWAYD MANUAL PLANTON: WYD MANUAL PLANTON: AWAYD MANUAL PLANTON: AWAYD MANUAL PLANTON: WYD MANUAL PLANTON: AWAYD MANUAL PLANTON: WYD MANUAL PLANTON: AWAYD MANUAL PLANTON: WYD MANUAL PLANTON: WYD MANUAL PLANTON: WYD MANUAL PLANTON: AWAYD MANUAL PLANTON: WYD MANUA					┥	AND SAMPLED FROM: 0.75 - 5.75 feet					
PEAT trace sand, gravel, organics, and glass, black, moist PEAT trace sand, gravel, organics, and glass, black, moist					 						
DESCRIPTION DESCR				14							
MIXED SAND AND GRAVEL FILL trace plastic, brick, and glass, gray and black, moist PEAT trace sand, gravel, organics, and glass, gravel, organics, and glass, gravel, moist PEAT trace sand, gravel, organics, and glass, gravel, gravel, gravel, gra	BENTON	TEPL	UG:		FILTER	PACK:			OLUME PURGED;		
MIXED SAND AND GRAVEL FILL trace plastic, brick, and glass, gray and black, moist PEAT trace sand, gravel, organics, and glass, black, moist BSB-38 (1.5-2 feet) PEAT trace sand, gravel, organics, and glass, black, moist BSB-38 (4.5-5 feet) BSB-38 (4.5-5 fe	рертн	RECOVERY %	BLOW CNT (6")	DESCRIPTION		SOIL DIAGRAM	SAMPLE DEPTH	PID (ppm)	COMMENT	TEMPORARY WELL DIAGRAM	
	2			MIXED SAND AND GRAVEL FILL trace plastic, brick, and glass, gray and be moist PEAT trace sand, gravel, organics, and glass, be moist		现在的 20 元年 2	BSB-38 (1.5-2 feet) BSB-38 (4.5-5 feet)	397.9 27.8 22.8 18.4	Strong odor noted Groundwater was encountered at a depth of approximately 5 feet. A temporary well was installed for the collection of groundwater. The soil boring was backfilled with original material and capped with an concrete patch upon completion. Boring was located in a pit, approximately 50 inches below		

Page: 1 of 1