Appendix F

PRB Data

Appendix F-1a: Kinetics Experiment Analytical Data Appendix F-1b: Continuously Stirred Batch Reactor Experiment Analytical Data Appendix F-1c: Field Parameters Appendix F-2: Laboratory Bench Testing Data Report Appendix F-3: Bench Testing Photo Log Appendix F-4: Bench Testing Data QA/QC Review Appendix F-5: Peerless Metal 8/50 Zero Valent Iron Product Specifications

Appendix F-1a

Kinetics Experiment Analytical Data

Appendix F-1a Kinetics Experiment Analytical Data D.E. Karn Generating Facility Consumers Energy

			Location Date Sample Type		Kin-01 7/29/2020 N	Kin-03 7/29/2020 N	Kin-05 7/29/2020 N	Kin-09 7/29/2020 N	Kin-12 7/29/2020 N	Kin-Control-12 7/29/2020 N
Parameter	Units	Chronic-Based Mixing Zone GSI Criteria ¹	Acute-Based Mixing Zone GSI Criteria ¹							
Effective Date Exceedance Key		12/23/2015 Underline	12/23/2015 No Exceed							
Arsenic (USEPA 6010C)	ug/l	<u>100</u>	680	<u>450</u>	< 1 U	1	1	1	< 1 U	<u>316</u>

<u>Footnotes</u>

N Sample Type: Normal

U The analyte was analyzed for, but was not detected.

¹Criteria shown are mixing zone-based groundwater surface water interface (GSI) criteria that were developed for the D.E. Karn Generating Facility by the Michigan Department of Environment, Great Lakes, and Energy in December 2015

Appendix F-1b

Continuously Stirred Batch Reactor Experiment Analytical Data

Appendix F-1b CSBR Experiment Analytical Data D.E. Karn Generating Facility Consumers Energy

				Karn-MW-	Kin-CSBR-	Karn-CSBR-															
			Location	10	Initial	05-01	10-01	05-02	10-02	05-03	10-03	05-04	10-04	05-05	10-05	05-06	10-06	05-07	10-07	05-08	10-08
			_																		
			Date	-,,	7/31/2020	7/31/2020	7/31/2020	8/01/2020	8/01/2020	8/01/2020		8/02/2020	8/02/2020	8/02/2020	8/02/2020	8/03/2020	8/03/2020	8/03/2020	8/03/2020	8/04/2020	8/04/2020
			Sample Type Acute-Based	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Chronic-Based																			
		Mixing Zone	Mixing Zone																		
Parameter	Units	GSI Criteria ¹	GSI Criteria ¹																		
Effective Date		12/23/2015	12/23/2015																		
Exceedance Key		Underline	No Exceed																		
General Parameters																					
Dimethylarsinic acid	ug/l	N/A	N/A	< 1 U	< 1 U					< 1 U					< 1 U						
Monomethylarsonic acid	ug/l	N/A	N/A	< 1 U	< 1 U					< 1 U					< 1 U						
Dissolved Metals																					
Arsenic (USEPA 7010)	ug/l	<u>100</u>	680	<u>447</u>	<u>385</u>	4	2	23	4	8	3	20	11	49	15	<u>155</u>	53	94	41	<u>104</u>	41
Arsenic (USEPA 6010C)	ug/l	<u>100</u>	680	<u>450</u>	<u>320</u>																
Arsenic III	ug/l	<u>100</u>	680	<u>395</u>	< 1 U					< 1 U					< 1 U						
Arsenic V	ug/l	<u>100</u>	680	45	<u>298</u>					8					13						
Arsenic, other as species	ug/l	100	680	8	1					< 1 U					< 1 U						
Barium	ug/l	N/A	N/A	120	120					50					55						
Cadmium	ug/l	N/A	N/A	< 0.1 U	< 0.1 U					< 0.1 U					< 0.1 U						
Chromium	ug/l	N/A	N/A	< 1 U	< 1 U					2					< 1 U						
Iron	ug/l	N/A	N/A	18	22					14					12						
Lead	ug/l	N/A	N/A	11	49					9					10						
Manganese	ug/l	N/A	N/A	170	180					8					6						
Mercury	ug/l	N/A	N/A	< 0.08 U	< 0.08 U					< 0.08 U					< 0.08 U						
Selenium	ug/l	55	120	19	< 1 U					< 1 U					< 1 U						

Footnotes N Sample Type: Normal FD Sample Type: Field Duplicate

U The analyte was analyzed for, but was not detected.

¹Criteria shown are mixing zone-based groundwater surface water interface (GSI) criteria that were developed for the D.E. Karn Generating Facility by the Michigan Department of Environment, Great Lakes, and Energy in December 2015

Appendix F-1b CSBR Experiment Analytical Data D.E. Karn Generating Facility Consumers Energy

			Location	05-09	10-09	05-10	10-10	Karn-CSBR- 05-11	10-11	Karn-CSBR- 05-12	10-12	Karn-CSBR- 05-13	Karn-CSBR- 10-13		3R-05-14	Karn-CSBR- 10-14
				8/04/2020	8/04/2020	8/05/2020	8/05/2020	8/05/2020	8/05/2020	8/06/2020	8/06/2020	8/06/2020	8/06/2020	8/07,		8/07/2020
			Sample Type	N	N	N	N	N	N	N	N	N	N	N	FD	N
		Chronic-Based	Acuté-Baséd													
		Mixing Zone	Mixing Zone													
Parameter	Units	GSI Criteria ¹	GSI Criteria ¹													
Effective Date		12/23/2015	12/23/2015													
Exceedance Key		<u>Underline</u>	No Exceed													
General Parameters																
Dimethylarsinic acid	ug/l	N/A	N/A	< 1 U	< 1 U									< 1 U	< 1 U	< 1 U
Monomethylarsonic acid	ug/l	N/A	N/A	< 1 U	< 1 U									< 1 U	< 1 U	< 1 U
Dissolved Metals																
Arsenic (USEPA 7010)	ug/l	<u>100</u>	680	98	65	70	97	99	77	<u>178</u>	47	206	68	<u>215</u>	<u>201</u>	<u>113</u>
Arsenic (USEPA 6010C)	ug/l	<u>100</u>	680											<u>210</u>	<u>210</u>	
Arsenic III	ug/l	<u>100</u>	680	< 1 U	2									2	2	1
Arsenic V	ug/l	<u>100</u>	680	77	62									<u>184</u>	<u>182</u>	<u>112</u>
Arsenic, other as species	ug/l	100	680	< 1 U	< 1 U									< 1 U	< 1 U	< 1 U
Barium	ug/l	N/A	N/A	56	61									76	78	76
Cadmium	ug/l	N/A	N/A	< 0.1 U	< 0.1 U									< 0.1 U	< 0.1 U	< 0.1 U
Chromium	ug/l	N/A	N/A	< 1 U	< 1 U									< 1 U	< 1 U	< 1 U
Iron	ug/l	N/A	N/A	12	11									12	13	31
Lead	ug/l	N/A	N/A	< 1 U	< 1 U									< 1 U	< 1 U	< 1 U
Manganese	ug/l	N/A	N/A	4	4									3	3	4
Mercury	ug/l	N/A	N/A	< 0.08 U	< 0.08 U									< 0.08 U	< 0.08 U	< 0.08 U
Selenium	ug/l	55	120	< 1 U	< 1 U									< 1 U	< 1 U	< 1 U

 Footnotes

 N Sample Type: Normal

 FD Sample Type: Field Duplicate

 U The analyte was analyzed for, but was not detected.

¹Criteria shown are mixing zone-based groundwater surface water i

Data Footnotes and Qualifiers

Barr Standard Footnotes and Qualifiers

	Not analyzed/Not available.
N	Sample Type: Normal
FD	Sample Type: Field Duplicate
U	The analyte was analyzed for, but was not detected.

Appendix F-1c

Field Parameters

Appendix F-1c CSBR Experiment Field Parameters D.E. Karn Generating Facility Consumers Energy

Batch	Zero Valent Iron Mass (g)	рН (s.u.)	Oxidation Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Conductivity (µS/cm)	Temperature (°C)
1	5	7.82	150.7	14.48*	650	8.7
I	10	8.10	144.8	14.46*	627	
2	5	8.13	200.4	13.91*	808	21.7
2	10	8.06	192.3	15.17*	762	21.7
3	5	8.14	86.6	14.22*	763	22.9
5	10	8.15	98.6	13.83*	747	22.3
4	5	8.06	175.8	12.88*	726	21.3
4	10	8.11	160.7	13.71*	733	21.3
5	5	8.30	163.6	13.01*	699	22.6
C	10	8.71	164.3	13.04*	732	22.7
6	5	8.31	170.7	13.38*	738	21.9
0	10	8.32	168.8	13.98*	691	21.7
7	5	7.27	170.1	4.22	625	23.7
1	10	7.42	144.5	3.52	653	23.8
8	5	8.23	113.3	4.15	652	22.4
0	10	7.98	106.2	3.98	647	22.5
9	5	7.96	67.4	3.37	658	24.0
9	10	7.90	69.0	3.42	663	23.7
10	5	8.06	164.3	4.20	1212	21.1
10	10	8.13	213.4	4.13	1327	21.1
11	5	8.06	183.6	5.17	704	23.3
11	10	8.08	221.5	4.48	787	23.1
12	5	7.91	147.1	4.57	678	22.6
12	10	7.95	133.3	4.07	649	22.4
13	5	7.32	134.7	4.10	699	23.5
C I	10	7.84	121.0	3.86	683	24.1
14	5	8.11	124.0	4.26	704	22.9
14	10	8.12	112.1	4.52	682	22.9

*Value believed erroneous due to faulty dissolved oxygen sensor

Appendix F-2

Laboratory Bench Testing Data Report

Data Transmittal Cover Page

Project Name: Barr Engineering ATS Project Number: B008-ARS ATS Report Number(s): Inorg_Analysis_SRF_0727201, 0731201, 0804201, & 0807201 Client PO Number:

Project Description: This data report

This data report contains the results of 37 samples received by ATS between July 27, 2020 and August 7,2020, to be analyzed for various parameters.

We certify that the sample analyses for this report have been conducted in accordance with guidelines provided in the referenced standard test method, and are consistent with detailed procedures described in a written Standard Operating Procedure specific to the ATS Laboratories, as required by USEPA. Laboratory data sheets, SOPs, and QA/QC information are available for inspection and audit at the laboratory upon request. Unless specifically noted on the data report, all applicable sample preservation and holding time requirements have been met.

Recipient:	Mr. Andre	w Dykstra		Email: FAX Number:	adykstra@barr.com		
No. of Page	es (including	g cover pg.):	63				
From:	Mark DeLongEmail:Senior ScientistFAX Number:			Mark.DeLong@annarbortechnicalservices.com 734-995-3731			
Additional 	Message:	Copy Dana Pa	asi at dpasi@barr.co	om			
 Date:	8/27/20		Signed:	May	k aledong		
	IF YOU DO NOT RECEIVE ALL PAGES OF THIS TRANSMITTAL, PLEASE CALL 734-995-0995.						

This material is intended only for the use of the individual or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient or the agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone. Thank you.

LABORATORY OPERATIONS SAMPLE DELIVERY GROUP (SDG) CASE NARRATIVE

ATS Project Number: B008-ARS Report Date: 8/14/20 PRELIMINARY Updated: 8/27/20 FINAL ATS SDGs: 0727201, 0731201, 0804201 & 0807201

Case Narrative Summary

This case narrative applies to the following 37 samples that were received at Ann Arbor Technical Services, Inc. (ATS) between July 27 and August 7, 2020, and associated matrix-specific QA/QC:

es			
Client Sample Identification	Laboratory Identification	Laboratory Sample ID	Matri
Karn-MW-10 7/24/20	ATS / BAL	0727201-1 / 2033017-10	Wate
Kin-01 7/29/20	ATS	0731201-1	Wate
Kin-03 7/29/20	ATS	0731201-2	Wate
Kin-05 7/29/20	ATS	0731201-3	Wate
Kin-09 7/29/20	ATS	0731201-4	Wate
Kin-12 7/29/20	ATS	0731201-5	Wate
Kin-Control-12 7/29/20	ATS	0731201-6	Wate
Karn-CSBR-Initial 7/31/20	ATS / BAL	0731201-7 / 2033017-06	Wate
Karn-CSBR-05-01 7/31/20	ATS	0804201-1	Wate
Karn-CSBR-10-01 7/31/20	ATS	0804201-2	Wate
Karn-CSBR-05-02 8/1/20	ATS	0804201-3	Wate
Karn-CSBR-10-02 8/1/20	ATS	0804201-4	Wate
Karn-CSBR-05-03 8/1/20	ATS / BAL	0804201-5 / 2033017-07	Wate
Karn-CSBR-10-03 8/1/20	ATS	0804201-6	Wate
Karn-CSBR-05-04 8/2/20	ATS	0804201-7	Wate
Karn-CSBR-10-04 8/2/20	ATS	0804201-8	Wate
Karn-CSBR-05-05 8/2/20	ATS	0804201-9	Wate
Karn-CSBR-10-05 8/2/20	ATS / BAL	0804201-10 / 2033017-08	Wate
Karn-CSBR-05-06 8/3/20	ATS	0804201-11	Wate
Karn-CSBR-10-06 8/3/20	ATS	0804201-12	Wate
Karn-CSBR-05-07 8/3/20	ATS	0804201-13	Wate
Karn-CSBR-10-07 8/3/20	ATS	0804201-14	Wate
Karn-CSBR-05-08 8/4/20	ATS	0804201-15	Wate
Karn-CSBR-10-08 8/4/20	ATS	0804201-16	Wate

B008-ARS.20\SDG_0727_0731_0804_0807.doc

SDG CASE NARRATIVE ATS SDGs: 0727201, 0731201, 0804201, 0807201 Page 2 of 5

Karn-CSBR-05-09 8/4/20	ATS / BAL	0807201-1 / 2033017-04	Water
Karn-CSBR-10-09 8/4/20	ATS / BAL	0807201-2 / 2033017-05	Water
Karn-CSBR-05-10 8/5/20	ATS	0807201-3	Water
Karn-CSBR-10-10 8/5/20	ATS	0807201-4	Water
Karn-CSBR-10-11 8/5/20	ATS	0807201-5	Water
Karn-CSBR-05-11 8/5/20	ATS	0807201-6	Water
Karn-CSBR-05-12 8/6/20	ATS	0807201-7	Water
Karn-CSBR-10-12 8/6/20	ATS	0807201-8	Water
Karn-CSBR-05-13 8/6/20	ATS	0807201-9	Water
Karn-CSBR-10-13 8/6/20	ATS	0807201-10	Water
Karn-CSBR-05-14 8/7/20	ATS / BAL	0807201-11 / 2033017-02	Water
Karn-CSBR-10-14 8/7/20	ATS / BAL	0807201-12 / 2033017-01	Water
DUP 8/7/20	ATS / BAL	0807201-13 / 2033017-11	Water

Upon receipt, samples were scheduled for the following analyses:

- Soluble Arsenic by USEPA 7010
- Soluble Metals by USEPA 6010C (select samples)
- Soluble Mercury by USEPA 7470A (select samples)
- Arsenic Speciation by ATS IC/ICP-MS (select samples)
- 37 + 5 Matrix Spikes + 5 Matrix Spike Duplicates
- 9 + 1 Matrix Spike + 1 Matrix Spike Duplicate
- 9 + 1 Matrix Spike + 1 Matrix Spike Duplicate
- 11 + 2 Matrix Spikes + 2 Matrix Spike Duplicate

A subsample was prepared by ATS and shipped under chain of custody to Brook Applied Labs for analysis by ATS IC/ICP-MS.

Sample Receipt and Chain of Custody Records

Samples were delivered directly to ATS by a client representative. Samples were received on ice, with proper chain of custody records included. Sample condition and anomalies, if any, are presented in the "Sample Receipt" section of this report. All samples were prepared and analyzed within the holding times cited in the corresponding analytical methods with the following exceptions:

• None

Data Review and Approval

All data contained in this report have been generated in accordance with guidelines provided in the referenced standard test methods, and are consistent with detailed procedures described in a written standard operating procedure (SOP) specific to the laboratories, as required by USEPA. All data are peer and management reviewed to ensure compliance with the above referenced SOP's and project specifications. In addition, all data conform to the laboratory's Quality Assurance / Quality Control Manuals.

Data Qualifications, Specifications, and Technical Narration

The following are qualifier descriptions that may be used throughout this SDG and are presented with their associated samples in each SDG section as appropriate.

- "E" exceeds the calibration range of the method
- "D" result taken from sample dilution
- "J" concentration reported between the laboratory / instrument determined method detection limit (MDL) and the practical quantitation limit (PQL)
- "B" analyte concentration in method blank exceeds reporting limit
- "U" analyte not detected above MDL
- "*" indicates analyte has exceeded batch or sample specific QA/QC control limits
- "M" indicates matrix interference

A single QA/QC batch is defined as no more than 20 samples excluding method blanks (MB, LRB), fortified blanks (BS, LFB, LCS), matrix spikes (MS, SPK), and duplicates whether spiked or native (MSD, SPK DUP, DUP, LR).

Data Deliverables

All data deliverables are generated to comply with the USEPA. This data package constitutes a Level II package; other data report packages (Level I, Level IV DVP, EPA R5 EDD) are available upon request. There were no hardcopy data summary sheets generated for this project.

Sample Preparation

All samples were filtered by ATS upon receipt using a 0.45 micron membrane filter after allowing them to stabilize for approximately 24 hours at 4°C, per client request. Following filtration, samples were preserved with either nitric acid or sodium EDTA (ethylenediaminetetraacetic acid), as appropriate for the methods. The following anomalies were noted:

Anomalies Noted:

• None

Sample Analysis

<u>Soluble Arsenic Analysis</u>: Samples were analyzed in accordance with USEPA method 7010 (Determination of Metals and Trace Elements in Water and Wastes by Graphite Furnace Atomic Absorption Spectrophotometry). An initial calibration with at least five levels was used for quantitation. Concentrations were reported to the lowest calibration standard. Samples were reported as mg/L.

<u>Soluble Metals Scan Analysis</u>: Select samples were analyzed in accordance with USEPA method 6010C (Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry). An initial calibration with at least five levels was used to quantitate individual metals. Concentrations were reported to the lowest calibration standard. Samples were reported as mg/L.

SDG CASE NARRATIVE ATS SDGs: 0727201, 0731201, 0804201, 0807201 Page 4 of 5

<u>Soluble Mercury Analysis</u>: Select samples were analyzed in accordance with USEPA method 7470A (Determination of Mercury in Liquid Wastes by Cold Vapor-Atomic Emission Spectrometry). An initial calibration with at least five levels was used for quantitation. Concentrations were reported to the method detection limit (MDL). Samples were reported as mg/L.

<u>Arsenic Speciation Analysis</u>: Select samples were analyzed in accordance with ATS method IC/ICP-MS 200.8 (Determination of Arsenic Species by Ion Chromatography / Inductively Coupled Plasma-Atomic Mass Spectrometry). An initial calibration with at least five levels for each species was used for quantitation. Concentrations were reported to a project specific reporting limit (RL). Samples were reported as mg/L.

Anomalies Noted:

• For purposes of this study, sample dilution factor was not applied to the reporting limit noted on the data report.

Analytical QA/QC Summary

Calibration Verification (Applicable to all analyses)

Method calibration and instrument suitability was verified through the analysis of a mid-level calibration verification standard at a frequency of every 10 samples. All verification standards met method criteria with the following exceptions:

Lab Sample ID	Method	Constituent	Percent Recovery	Acceptance Limits
CCV-5	USEPA 6010	Iron	89.5	90-110%

Instrument Blanks (Applicable to all analyses)

Low system background was demonstrated through the analysis of instrument blanks at a frequency of approximately every 10 samples. All instrument blanks met the acceptance criteria with the following exceptions:

• None

Interference Checks (Applicable to ICP/AES analyses only)

The lack of spectral interferences was verified through the analysis of interference check standards daily. All interference standards met the acceptance criteria with the following exceptions:

• None

Laboratory Reagent Blanks (Applicable to all analyses)

A laboratory reagent blank (LRB) was analyzed as part of each QA/QC batch. The LRB's met the acceptance criteria with the following exceptions:

• None

SDG CASE NARRATIVE ATS SDGs: 0727201, 0731201, 0804201, 0807201 Page 5 of 5

Laboratory Fortified Blanks and Matrix Spikes (Applicable to all analyses)

A laboratory fortified blank (LFB) / laboratory control sample (LCS) was analyzed with each QA/QC batch. For arsenic speciation, the LCS/LFB's contained appropriate concentrations of arsenite (As III) species, arsenate (As V) species, dimethylarsinic acid (DMA) species, and monomethylarsonic acid (MMA) species. All LCS/LFB's met the acceptance criteria with the following exceptions:

• None

A matrix spike (MS) and matrix spike duplicate (MSD) was analyzed with each QA/QC batch. For arsenic speciation, the LCS/LFB's contained appropriate concentrations of arsenite (As III) species, arsenate (As V) species, dimethylarsinic acid (DMA) species, and monomethylarsonic acid (MMA) species. All MS/MDS's met the acceptance criteria with the following exceptions:

• Two matrix spikes and spike duplicates for arsenate were not reportable due to inadequate spiking levels relative to native sample concentrations.

Matrix Replicates (Applicable to all analyses)

A minimum of one replicate analysis was analyzed with each QA/QC batch. All replicates met the acceptance criteria with the following exceptions:

• None

Sample Dilutions

Samples containing compounds at concentrations above the initial calibration curve were diluted and reanalyzed for those compounds. The following samples and analytes were diluted:

• <u>EPA 7010</u>

0727201-1	0804201-12	0807201-2	0807201-8
0731201-6	0804201-13	0807201-3	0807201-9
0731201-7	0804201-14	0807201-4	0807201-10
0804201-3	0804201-15	0807201-5	0807201-11
0804201-9	0804201-16	0807201-6	0807201-12
0804201-11	0807201-1	0807201-7	0807201-13

allel

/ August 27, 2020

Mark T. DeLong (Quality Assurance Coordinator)

Philip B. Simon (Laboratory Director) B008-ARS.20\SDG 0727 0731 0804 0807.doc

AS

/ August 27, 2020

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0727201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification: Karn-	MW-10
------------------------------	-------

Laboratory Sample ID: 0727201-1

7/24/20
10:40 AM
Client
7/27/20
Wastewater

				Reporting	Analysis	Analysis	
Parameter	Method	Units	Result	Limit	Date	Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.447	0.001	8/13/20	12:23	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.45	0.001	8/11/20	17:04	DMS
Soluble Barium	USEPA 6010C	mg/L	0.12	0.001	8/11/20	17:04	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	17:04	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	17:04	DMS
Soluble Iron	USEPA 6010C	mg/L	0.018	0.001	8/11/20	17:04	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.17	0.001	8/11/20	17:04	DMS
Soluble Lead	USEPA 6010C	mg/L	0.011	0.001	8/11/20	17:04	DMS
Soluble Selenium	USEPA 6010C	mg/L	0.019	0.001	8/11/20	17:04	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	17:56	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.045	0.001	8/15/20	12:53	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	0.395	0.001	8/15/20	12:53	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:53	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:53	BAL
Other As Species	IC/ICP-MS	mg/L	0.008	0.001	8/15/20	12:53	BAL

...

. .

Comments

Barr Engineering Co.

3005 Boardwalk Dr

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0731201

Ann Arbor, MI 48108							
Sampl	e Identification:	Kin-01					
Labora	tory Sample ID:	0731201-1					
Sample Date:	7/29/20						
Sample Time:	11:10 AM						
Sampled By:	Client						
Laboratory Receipt Date:	7/31/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	<0.001	0.001	8/21/20	12:02	JEB

Comments

Barr Engineering Co.

3005 Boardwalk Dr

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0731201

Ann Arbor, MI 48108							
Samp	le Identification:	Kin-03					
Labora	atory Sample ID:	0731201-2					
Sample Date:	7/29/20						
Sample Time:	1:10 PM						
Sampled By:	Client						
Laboratory Receipt Date:	7/31/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.001	0.001	8/21/20	12:08	JEB

Comments

Barr Engineering Co.

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0731201

3005 Boardwalk Dr Ann Arbor, MI 48108				ATS SRF	: <u>0731201</u>		
Sample	Sample Identification:						
Laborato	ory Sample ID:	0731201-3					
Sample Date:	7/29/20						
Sample Time:	3:10 PM						
Sampled By:	Client						
Laboratory Receipt Date:	7/31/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.001	0.001	8/21/20	12:14	JEB

Comments

Barr Engineering Co.

3005 Boardwalk Dr

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0731201

Ann Arbor, MI 48108							
Samp	le Identification:	Kin-09					
Labor	atory Sample ID:	0731201-4					
Sample Date:	7/29/20						
Sample Time:	7:10 PM						
Sampled By:	Client						
Laboratory Receipt Date:	7/31/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.001	0.001	8/12/20	15:08	JEB

Comments

Barr Engineering Co.

3005 Boardwalk Dr

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0731201

Ann Arbor, MI 48108							
Sa	mple Identification:	Kin-12					
Lat	ooratory Sample ID:	0731201-5					
Sample Date:	7/29/20						
Sample Time:	10:10 PM						
Sampled By:	Client						
Laboratory Receipt Dat	e: 7/31/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	<0.001	0.001	8/12/20	15:15	JEB

Comments

Soluble Arsenic

290 South Wagner Road 290 South Wagner Koad Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

USEPA 7010

mg/L

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20

Barr Engineering Co. 3005 Boardwalk Dr ATS SRF: 0731201 Ann Arbor, MI 48108 Sample Identification: Kin-Control-12 Laboratory Sample ID: 0731201-6 Sample Date: 7/29/20 Sample Time: 10:15 PM Sampled By: Client Laboratory Receipt Date: 7/31/20 Sample Matrix: Wastewater Reporting Analysis Analysis Parameter Method Units Result Limit Date Time Analyst

0.316

0.001

8/13/20

12:30

JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0731201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Kin-CSBR-Initial

Laboratory Sample ID: 0731201-7

7/31/20
6:00 AM
Client
7/31/20
Wastewater

Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.385	0.001	8/12/20	15:27	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.32	0.001	8/11/20	17:32	DMS
Soluble Barium	USEPA 6010C	mg/L	0.12	0.001	8/11/20	17:32	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	17:32	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	17:32	DMS
Soluble Iron	USEPA 6010C	mg/L	0.022	0.001	8/11/20	17:32	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.18	0.001	8/11/20	17:32	DMS
Soluble Lead	USEPA 6010C	mg/L	0.049	0.001	8/11/20	17:32	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	17:32	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	18:09	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.298	0.001	8/15/20	13:08	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	13:08	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	13:08	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	13:08	BAL
Other As Species	IC/ICP-MS	mg/L	0.001	0.001	8/15/20	13:08	BAL

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

		Karn-CSBR-	05-01				
		0804201-1					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	7/31/20 6:35 PM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.004	0.001	8/21/20	12:21	JEB

Comments

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

		Karn-CSBR-	10-01				
		0804201-2					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	7/31/20 6:30 PM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.002	0.001	8/21/20	12:27	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample	Karn-CSBR-0	05-02					
Laborato	ory Sample ID:	0804201-3					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/1/20 6:30 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.023	0.001	8/21/20	12:33	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample	Identification:	Karn-CSBR-	10-02				
Laborato	ory Sample ID:	0804201-4					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date:	8/1/20 6:35 AM Client 8/4/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.004	0.001	8/13/20	10:35	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification: Karn-CSBR-05-03

Laboratory Sample ID: 0804201-5

Sample Date:	8/1/20
Sample Time:	6:35 PM
Sampled By:	Client
Laboratory Receipt Date:	8/4/20
Sample Matrix:	Wastewater

				Reporting	Analysis	Analysis	
Parameter	Method	Units	Result	Limit	Date	Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.008	0.001	8/13/20	10:42	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.012	0.001	8/11/20	18:15	DMS
Soluble Barium	USEPA 6010C	mg/L	0.050	0.001	8/11/20	18:15	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	18:15	DMS
Soluble Chromium	USEPA 6010C	mg/L	0.002	0.001	8/11/20	18:15	DMS
Soluble Iron	USEPA 6010C	mg/L	0.014	0.001	8/11/20	18:15	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.008	0.001	8/11/20	18:15	DMS
Soluble Lead	USEPA 6010C	mg/L	0.009	0.001	8/11/20	18:15	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001			DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	18:28	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.008	0.001	8/15/20	12:22	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:22	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:22	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:22	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:22	BAL

...

Comments

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

· · · · · · · · · · · ·		Karn-CSBR-	10-03				
		0804201-6					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/1/20 6:45 PM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.003	0.001	8/21/20	13:31	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample	Identification:	Karn-CSBR-	05-04				
Laborat	ory Sample ID:	0804201-7					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/2/20 6:47 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.020	0.001	8/21/20	12:58	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification: Laboratory Sample ID:		Karn-CSBR-	10-04				
		0804201-8					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/2/20 6:52 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.011	0.001	8/21/20	13:12	JEB

Comments

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

		Karn-CSBR-	05-05				
		0804201-9					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/2/20 6:40 PM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.049	0.001	8/13/20	11:20	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification: Karn-CSBR-10-05
--

Laboratory Sample ID: 0804201-10

Sample Date:	8/2/20
Sample Time:	6:45 PM
Sampled By:	Client
Laboratory Receipt Date:	8/4/20
Sample Matrix:	Wastewater

				Reporting	Analysis	Analysis	
Parameter	Method	Units	Result	Limit	Date	Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.015	0.001	8/13/20	11:27	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.022	0.001	8/11/20	18:42	DMS
Soluble Barium	USEPA 6010C	mg/L	0.055	0.001	8/11/20	18:42	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	18:42	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	18:42	DMS
Soluble Iron	USEPA 6010C	mg/L	0.012	0.001	8/11/20	18:42	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.006	0.001	8/11/20	18:42	DMS
Soluble Lead	USEPA 6010C	mg/L	0.010	0.001	8/11/20	18:42	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	18:42	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	18:34	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.013	0.001	8/15/20	12:38	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:38	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:38	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:38	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	12:38	BAL

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

		Karn-CSBR-	05-06				
		0804201-11					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/3/20 6:35 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.155	0.001	8/13/20	11:45	JEB

Comments

USEPA 7010

mg/L

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Soluble Arsenic

		Karn-CSBR-	10-06				
		0804201-12					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/3/20 6:40 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst

0.053

0.001

8/13/20

11:52

JEB

Comments

USEPA 7010

mg/L

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Soluble Arsenic

		Karn-CSBR-	05-07				
		0804201-13					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/3/20 6:45 PM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst

0.094

0.001

8/13/20

11:58

JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

		Karn-CSBR-	10-07				
		0804201-14					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/3/20 6:50 PM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.041	0.001	8/13/20	12:04	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:		Karn-CSBR-0)5-08				
Laboratory Sample ID:		0804201-15					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/4/20 6:45 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.104	0.001	8/13/20	12:11	JEB

Comments

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0804201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:		Karn-CSBR-	10-08				
Laboratory Sample ID:		0804201-16					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/4/20 6:50 AM Client 8/4/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.041	0.001	8/13/20	12:17	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

.

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification: Karn-CSBR-05-09

Laboratory Sample ID: 0807201-1

8/4/20
6:37 PM
Client
8/7/20
Wastewater

				Reporting	Analysis	Analysis	
Parameter	Method	Units	Result	Limit	Date	Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.098	0.001	8/12/20	13:21	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.093	0.001	8/11/20	19:25	DMS
Soluble Barium	USEPA 6010C	mg/L	0.056	0.001	8/11/20	19:25	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	19:25	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	19:25	DMS
Soluble Iron	USEPA 6010C	mg/L	0.012	0.001	8/11/20	19:25	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.004	0.001	8/11/20	19:25	DMS
Soluble Lead	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	19:25	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	19:25	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	18:41	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.077	0.001	8/15/20	10:05	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:05	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:05	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:05	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:05	BAL

...

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

.

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification: Karn-CSBR-10-09

Laboratory Sample ID: 0807201-2

Sample Date:	8/4/20
Sample Time:	6:42 PM
Sampled By:	Client
Laboratory Receipt Date:	8/7/20
Sample Matrix:	Wastewater

				Reporting	Analysis	Analysis	
Parameter	Method	Units	Result	Limit	Date	Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.065	0.001	8/12/20	13:40	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.080	0.001	8/11/20	19:37	DMS
Soluble Barium	USEPA 6010C	mg/L	0.061	0.001	8/11/20	19:37	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	19:37	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	19:37	DMS
Soluble Iron	USEPA 6010C	mg/L	0.011	0.001	8/11/20	19:37	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.004	0.001	8/11/20	19:37	DMS
Soluble Lead	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	19:37	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	19:37	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	18:47	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.062	0.001	8/15/20	10:20	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	0.002	0.001	8/15/20	10:20	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:20	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:20	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	10:20	BAL

...

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:		Karn-CSBR-0	05-10				
Laborate	0807201-3						
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/5/20 6:40 AM Client 8/7/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.070	0.001	8/12/20	13:46	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:		Karn-CSBR-	10-10				
Laborate	0807201-4						
Sample Date:	8/5/20						
Sample Time:	6:46 AM						
Sampled By:	Client						
Laboratory Receipt Date:	8/7/20						
Sample Matrix:	Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.097	0.001	8/12/20	13:53	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:		Karn-CSBR-	10-11				
Laboratory Sample ID:		0807201-5					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/5/20 6:43 PM Client 8/7/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.077	0.001	8/12/20	13:59	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

· · · · · · · · · · · ·		Karn-CSBR-0	05-11				
		0807201-6					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/5/20 6:47 PM Client 8/7/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.099	0.001	8/12/20	14:05	JEB

Comments

For: Mr. Andrew D. Dykstra

Sample Matrix:

Barr Engineering Co.

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Wastewater

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

3005 Boardwalk Dr Ann Arbor, MI 48108 Sample Identification: Karn-CSBR-05-12 Laboratory Sample ID: 0807201-7 Sample Date: 8/6/20 Sample Time: 6:44 AM Sampled By: Client Laboratory Receipt Date: 8/7/20

Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.178	0.001	8/12/20	14:12	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample	Identification:	Karn-CSBR-10-12					
Laborato	ory Sample ID:	0807201-8					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/6/20 6:49 AM Client 8/7/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.047	0.001	8/12/20	14:18	JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample	Identification:	Karn-CSBR-05-13					
Laborato	ory Sample ID:	0807201-9					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date: Sample Matrix:	8/6/20 6:36 PM Client 8/7/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.206	0.001	8/12/20	14:24	JEB

Comments

USEPA 7010

mg/L

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Soluble Arsenic

Sa	mple Identification:	Karn-CSBR-1	0-13				
Lab	ooratory Sample ID:	0807201-10					
Sample Date: Sample Time: Sampled By: Laboratory Receipt Date Sample Matrix:	8/6/20 6:41 PM Client e: 8/7/20 Wastewater						
Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst

0.068

0.001

8/12/20

14:31

JEB

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:	Karn-CSBR-05-14
------------------------	-----------------

Laboratory Sample ID: 0807201-11

Sample Date:	8/7/20
Sample Time:	6:30 AM
Sampled By:	Client
Laboratory Receipt Date:	8/7/20
Sample Matrix:	Wastewater

Deveryoten	Mathad	l lucito	Desult	Reporting	Analysis	Analysis	A a h a t
Parameter	Method	Units	Result	Limit	Date	Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.215	0.001	8/12/20	16:06	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.21	0.001	8/11/20	20:28	DMS
Soluble Barium	USEPA 6010C	mg/L	0.076	0.001	8/11/20	20:28	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	20:28	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:28	DMS
Soluble Iron	USEPA 6010C	mg/L	0.012	0.001	8/11/20	20:28	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.003	0.001	8/11/20	20:28	DMS
Soluble Lead	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:28	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:28	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	18:53	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.184	0.001	8/15/20	9:50	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	0.002	0.001	8/15/20	9:50	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	9:50	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	9:50	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	9:50	BAL

Comments

Metals Analysis Data Summary Sheet

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108

Sample Identification:	Karn-CSBR-10-14
------------------------	-----------------

Laboratory Sample ID: 0807201-12

Sample Date:	8/7/20
Sample Time:	6:35 AM
Sampled By:	Client
Laboratory Receipt Date:	8/7/20
Sample Matrix:	Wastewater

Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Farameter	Wethou	Units	Result		Date	ime	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.113	0.001	8/13/20	12:36	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.13	0.001	8/11/20	20:32	DMS
Soluble Barium	USEPA 6010C	mg/L	0.076	0.001	8/11/20	20:32	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	20:32	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:32	DMS
Soluble Iron	USEPA 6010C	mg/L	0.031	0.001	8/11/20	20:32	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.004	0.001	8/11/20	20:32	DMS
Soluble Lead	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:32	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:32	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	19:00	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.112	0.001	8/15/20	9:34	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	0.001	0.001	8/15/20	9:34	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	9:34	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	9:34	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	9:34	BAL

Comments

For: Mr. Andrew D. Dykstra Barr Engineering Co. 3005 Boardwalk Dr Ann Arbor, MI 48108 ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20 ATS SRF: 0807201

Sample Identification: DUP

Laboratory Sample ID:

ID:	0807201	-13
		-

290 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

Sample Date:	8/7/20
Sample Time:	
Sampled By:	Client
Laboratory Receipt Date:	8/7/20
Sample Matrix:	Wastewater

Parameter	Method	Units	Result	Reporting Limit	Analysis Date	Analysis Time	Analyst
Soluble Arsenic	USEPA 7010	mg/L	0.201	0.001	8/12/20	16:31	JEB
Soluble Arsenic	USEPA 6010C	mg/L	0.21	0.001	8/11/20	20:43	DMS
Soluble Barium	USEPA 6010C	mg/L	0.078	0.001	8/11/20	20:43	DMS
Soluble Cadmium	USEPA 6010C	mg/L	<0.0001	0.0001	8/11/20	20:43	DMS
Soluble Chromium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:43	DMS
Soluble Iron	USEPA 6010C	mg/L	0.013	0.001	8/11/20	20:43	DMS
Soluble Manganese	USEPA 6010C	mg/L	0.003	0.001	8/11/20	20:43	DMS
Soluble Lead	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:43	DMS
Soluble Selenium	USEPA 6010C	mg/L	<0.001	0.001	8/11/20	20:43	DMS
Soluble Mercury	USEPA 7470A	mg/L	<0.00008	0.00008	8/11/20	19:06	JEB
Arsenic Speciation							
Arsenate (As V)	IC/ICP-MS	mg/L	0.182	0.001	8/15/20	13:08	BAL
Arsenite (As III)	IC/ICP-MS	mg/L	0.002	0.001	8/15/20	13:08	BAL
DMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	13:08	BAL
MMA	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	13:08	BAL
Other As Species	IC/ICP-MS	mg/L	<0.001	0.001	8/15/20	13:08	BAL

Comments

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0812201 Parameter: Arsenic (USEPA 7010) ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS				
0807201-1 Matrix Spike	0.30 mg/L	0.30 mg/L	0.30 mg/L	1.0
#B008-ARS				
0731201-7 Matrix Spike	1.2 mg/L	1.3 mg/L	1.3 mg/L	0.2

SPIKES and/or QC CHECK SAMPLES

Comple/Anglyte	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS				
Laboratory Fortified Blank 8/12/20	<0.001 mg/L	0.010 mg/L	0.011 mg/L	109.7
#B008-ARS				
0807201-1 Matrix Spike	0.10 mg/L	0.20 mg/L	0.30 mg/L	100.7
0807201-1 Matrix Spike Duplicate	0.10 mg/L	0.20 mg/L	0.30 mg/L	99.2
#B008-ARS				
0731201-7 Matrix Spike	0.38 mg/L	0.80 mg/L	1.2 mg/L	109.4
0731201-7 Matrix Spike Duplicate	0.38 mg/L	0.80 mg/L	1.3 mg/L	109.6

BLANK ANALYSIS

Sample	Analyzed Concentration	QC Decision
#B008-ARS		
Laboratory Reagent Blank	<0.001 mg/L	Acceptable

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0813201

Parameter: Arsenic (USEPA 7010)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0804201-5 Matrix Spike	0.029 mg/L	0.028 mg/L	0.028 mg/L	3.8
#B008-ARS 0807201-12 Matrix Spike	0.30 mg/L	0.30 mg/L	0.30 mg/L	3.1

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS				
Laboratory Fortified Blank 8/13/20	<0.001 mg/L	0.010 mg/L	0.010 mg/L	101.4
#B008-ARS				
0804201-5 Matrix Spike	0.009 mg/L	0.020 mg/L	0.029 mg/L	101.0
0804201-5 Matrix Spike Duplicate	0.009 mg/L	0.020 mg/L	0.028 mg/L	95.7
#B008-ARS				
0807201-12 Matrix Spike	0.11 mg/L	0.20 mg/L	0.30 mg/L	91.5
0807201-12 Matrix Spike Duplicate	0.11 mg/L	0.20 mg/L	0.30 mg/L	96.3

BLANK ANALYSIS

Sample	Analyzed Concentration	QC Decision
#B008-ARS		
Laboratory Reagent Blank	<0.001 mg/L	Acceptable

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0821201 Parameter: Arsenic (USEPA 7010) ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0804201-3 Matrix Spike	0.066 mg/L	0.067 mg/L	0.066 mg/L	1.7

SPIKES and/or QC CHECK SAMPLES

Known	Spike	Analyzed	Recovery
Concentration	Concentration	Concentration	(percent)
<0.001 mg/L	0.010 mg/L	0.009 mg/L	86.7
0.011 mg/L	0.050 mg/L	0.066 mg/L	109.1
0.011 mg/L	0.050 mg/L	0.067 mg/L	111.3
		_	
	Concentration Co.001 mg/L 0.011 mg/L	Concentration Concentration <0.001 mg/L	Concentration Concentration Concentration <0.001 mg/L

Sample	Analyzed Concentration	QC Decision
#B008-ARS		
Laboratory Reagent Blank	<0.001 mg/L	Acceptable

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201

Parameter: Mercury (USEPA 7470A)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	0.0041 mg/L	0.0042 mg/L	0.0042 mg/L	1.4

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known Concentration	Spike Concentration	Analyzed Concentration	Recovery (percent)
#B008-ARS				
				100.0
Laboratory Fortified Blank 8/11/20	<0.00008 mg/L	0.0020 mg/L	0.0022 mg/L	109.0
#B008-ARS				
0731201-7 Matrix Spike	<0.00008 mg/L	0.0040 mg/L	0.0041 mg/L	103.5
•	, and the second s	•	, and the second s	
0731201-7 Matrix Spike Duplicate	<0.00008 mg/L	0.0040 mg/L	0.0042 mg/L	105.0
BLANK ANALYSIS				

Sample	Analyzed Concentration	QC Decision	
#B008-ARS			
Laboratory Reagent Blank	<0.0008 mg/L	Acceptable	

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201 Parameter: Arsenic (USEPA 6010C) ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	4.3 mg/L	4.3 mg/L	4.3 mg/L	1.6

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS Laboratory Fortified Blank	<0.001 mg/L	1.0 mg/L	1.1 mg/L	106.7
#B008-ARS 0731201-7 Matrix Spike 0731201-7 Matrix Spike Duplicate	0.32 mg/L 0.32 mg/L	4.0 mg/L 4.0 mg/L	4.3 mg/L 4.3 mg/L	98.6 100.3

<0.001 mg/L	Acceptable
	<0.001 mg/L

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201

Parameter: Barium (USEPA 6010C)

ATS Project: Barr Engineering Co. #B008-ARS Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	4.0 mg/L	4.1 mg/L	4.0 mg/L	2.5

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known Concentration	Spike Concentration	Analyzed Concentration	Recovery (percent)
#B008-ARS Laboratory Fortified Blank	<0.001 mg/L	1.0 mg/L	1.0 mg/L	95.7
#B008-ARS 0731201-7 Matrix Spike 0731201-7 Matrix Spike Duplicate	0.12 mg/L 0.12 mg/L	4.0 mg/L 4.0 mg/L	4.0 mg/L 4.1 mg/L	96.1 98.7

Analyzed Concentration	QC Decision
<0.001 mg/L	Acceptable
	<0.001 mg/L

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201

Parameter: Cadmium (USEPA 6010C)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	3.7 mg/L	3.8 mg/L	3.8 mg/L	2.7

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known Concentration	Spike Concentration	Analyzed Concentration	Recovery (percent)
#B008-ARS				
Laboratory Fortified Blank	<0.0001 mg/L	1.0 mg/L	1.1 mg/L	108.3
#B008-ARS				
0731201-7 Matrix Spike	<0.0001 mg/L	4.0 mg/L	3.7 mg/L	93.6
0731201-7 Matrix Spike Duplicate	<0.0001 mg/L	4.0 mg/L	3.8 mg/L	96.2

<0.0001 mg/L	Acceptable
1	<0.0001 mg/L

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201

Parameter: Chromium (USEPA 6010C)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	3.8 mg/L	3.9 mg/L	3.8 mg/L	1.9

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known Concentration	Spike Concentration	Analyzed Concentration	Recovery (percent)
#B008-ARS Laboratory Fortified Blank	<0.001 mg/L	1.0 mg/L	1.1 mg/L	106.2
#B008-ARS 0731201-7 Matrix Spike 0731201-7 Matrix Spike Duplicate	<0.001 mg/L <0.001 mg/L	4.0 mg/L 4.0 mg/L	3.8 mg/L 3.9 mg/L	94.6 96.4

Analyzed Concentration	QC Decision
<0.001 mg/L	Acceptable
	<0.001 mg/L

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201 Parameter: Iron (USEPA 6010C) ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	33 mg/L	34 mg/L	34 mg/L	1.2

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS Laboratory Fortified Blank	<0.001 mg/L	1.0 mg/L	1.0 mg/L	96.4
#B008-ARS 0731201-7 Matrix Spike 0731201-7 Matrix Spike Duplicate	0.022 mg/L 0.022 mg/L	40 mg/L 40 mg/L	33 mg/L 34 mg/L	83.3 84.3

Acceptable

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20

#B008-ARS

ATS Project: Barr Engineering Co.

QC Batch Number: QCINORG0811201

Parameter: Manganese (USEPA 6010C)

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	3.9 mg/L	4.0 mg/L	3.9 mg/L	1.9

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS Laboratory Fortified Blank	<0.001 mg/L	1.0 mg/L	1.0 mg/L	104.8
#B008-ARS 0731201-7 Matrix Spike 0731201-7 Matrix Spike Duplicate	0.18 mg/L 0.18 mg/L	4.0 mg/L 4.0 mg/L	3.9 mg/L 4.0 mg/L	93.0 94.9

Sample	Analyzed Concentration	QC Decision	
#B008-ARS			
Laboratory Reagent Blank	<0.001 mg/L	Acceptable	

Comments:

DI ANIZ ANIAI VOIC

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201 Parameter: Lead (USEPA 6010C) ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	3.8 mg/L	3.9 mg/L	3.8 mg/L	2.0

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS				
Laboratory Fortified Blank	<0.001 mg/L	1.0 mg/L	1 mg/L	103.9
#B008-ARS				
0731201-7 Matrix Spike	0.049 mg/L	4.0 mg/L	3.8 mg/L	93.1
0731201-7 Matrix Spike Duplicate	0.049 mg/L	4.0 mg/L	3.9 mg/L	95.0

BLANK ANALYSIS Sample	Analyzed Concentration	QC Decision
#B008-ARS Laboratory Reagent Blank	<0.001 mg/L	Acceptable

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: QCINORG0811201

Parameter: Selenium (USEPA 6010C)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS 0731201-7 Matrix Spike	4.1 mg/L	4.2 mg/L	4.1 mg/L	1.4

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known	Spike Concentration	Analyzed	Recovery (percent)
Sample/Analyte	Concentration	COncentration	Concentration	(percent)
#B008-ARS				
Laboratory Fortified Blank	<0.001 mg/L	5.0 mg/L	5.4 mg/L	107.5
#B008-ARS				
0731201-7 Matrix Spike	<0.001 mg/L	4.0 mg/L	4.1 mg/L	102.9
0731201-7 Matrix Spike Duplicate	<0.001 mg/L	4.0 mg/L	4.2 mg/L	104.3

Acceptable

Comments:

Calculations performed prior to rounding.

Control Limits:

Recoveries

Laboratory Fortified Blank (85 - 115 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: B202271

Parameter: Arsenate (As V) (ATS Custom IC/ICP-MS)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS				
Karn CSBR-Initial MS	0.302 mg/L	0.302 mg/L	0.302 mg/L	<0.1
Karn CSBR-Initial MS Matrix Spike	0.354 mg/L	0.352 mg/L	0.353 mg/L	0.6
Karn CSBR-Initial MSD	0.303 mg/L	0.297 mg/L	0.300 mg/L	2.0
Karn CSBR-Initial MSD Matrix Spike	0.351 mg/L	0.352 mg/L	0.352 mg/L	0.2

SPIKES and/or QC CHECK SAMPLES

Sample/Analyte	Known Concentration	Spike Concentration	Analyzed Concentration	Recovery (percent)
#B008-ARS				
Laboratory Fortified Blank (B202271-BS1)	<0.001 mg/L	0.005 mg/L	0.005 mg/L	98.0
#B008-ARS				
Karn CSBR-Initial MS Matrix Spike	0.302 mg/L	0.051 mg/L	NR	-
Karn CSBR-Initial MS Matrix Spike Duplicate	0.302 mg/L	0.051 mg/L	NR	-
Karn CSBR-Initial MSD Matrix Spike	0.300 mg/L	0.051 mg/L	NR	-
Karn CSBR-Initial MSD Matrix Spike Duplicate	0.300 mg/L	0.051 mg/L	NR	-

BLANK ANALYSIS Sample Analyzed Concentration QC Decision #B008-ARS Laboratory Reagent Blank <0.001 mg/L</td> Acceptable

Comments:

Calculations performed prior to rounding.

NR - Not Reportable due to inadequate spiking levels relative to native sample concentrations.

Control Limits:

Recoveries Laboratory Fortified Blank (75 - 125 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

QC Batch Number: B202271

Parameter: Arsenite (As III) (ATS Custom IC/ICP-MS)

ATS Project:Barr Engineering Co.#B008-ARSReport Date:8/21/20 PRELIMINARY; Updated 8/25/20

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS				
Karn CSBR-Initial MS	<0.001 mg/L	<0.001 mg/L	<0.001 mg/L	nc
Karn CSBR-Initial MS Matrix Spike	0.055 mg/L	0.054 mg/L	0.054 mg/L	0.9
Karn CSBR-Initial MSD	<0.001 mg/L	<0.001 mg/L	<0.001 mg/L	nc
Karn CSBR-Initial MSD Matrix Spike	0.054 mg/L	0.055 mg/L	0.055 mg/L	0.6

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS Laboratory Fortified Blank (B202271-BS1)	<0.001 mg/L	0.005 mg/L	0.005 mg/L	101.0
#B008-ARS				
Karn CSBR-Initial MS Matrix Spike	<0.001 mg/L	0.055 mg/L	0.055 mg/L	100.0
Karn CSBR-Initial MS Matrix Spike Duplicate	<0.001 mg/L	0.055 mg/L	0.054 mg/L	99.0
Karn CSBR-Initial MSD Matrix Spike	<0.001 mg/L	0.055 mg/L	0.054 mg/L	99.0
Karn CSBR-Initial MSD Matrix Spike Duplicate	<0.001 mg/L	0.055 mg/L	0.055 mg/L	99.0

BLANK ANALYSIS Sample Analyzed Concentration QC Decision #B008-ARS Laboratory Reagent Blank <0.001 mg/L</td> Acceptable

Comments:

Calculations performed prior to rounding. nc - not calcuable.

Control Limits:

Recoveries

Laboratory Fortified Blank (75 - 125 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20

#B008-ARS

ATS Project: Barr Engineering Co.

QC Batch Number: B202271

Parameter: DMA (ATS Custom IC/ICP-MS)

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS Karn CSBR-Initial MS Karn CSBR-Initial MS Matrix Spike	<0.001 mg/L 0.054 mg/L	<0.001 mg/L 0.054 mg/L	<0.001 mg/L 0.054 mg/L	nc <0.1
Karn CSBR-Initial MSD Karn CSBR-Initial MSD Matrix Spike	<0.001 mg/L 0.053 mg/L	<0.001 mg/L 0.054 mg/L	<0.001 mg/L 0.054 mg/L	nc 0.8

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS				
Laboratory Fortified Blank (B202271-BS1)	<0.001 mg/L	0.005 mg/L	0.005 mg/L	104.0
#B008-ARS				
Karn CSBR-Initial MS Matrix Spike	<0.001 mg/L	0.055 mg/L	0.054 mg/L	102.0
Karn CSBR-Initial MS Matrix Spike Duplicate	<0.001 mg/L	0.055 mg/L	0.054 mg/L	102.0
Karn CSBR-Initial MSD Matrix Spike	<0.001 mg/L	0.055 mg/L	0.053 mg/L	102.0
Karn CSBR-Initial MSD Matrix Spike Duplicate	<0.001 mg/L	0.055 mg/L	0.054 mg/L	102.0
	<i>,</i>			

BLANK ANALYSIS Sample Analyzed Concentration QC Decision #B008-ARS Laboratory Reagent Blank <0.001 mg/L</td> Acceptable

Comments:

Calculations performed prior to rounding. NC - not calculated

Control Limits:

Recoveries

Laboratory Fortified Blank (75 - 125 %) Matrix Spike (75 - 125 %) Relative Range

Quality Assurance / Quality Control Data Summary

Report Date: 8/21/20 PRELIMINARY; Updated 8/25/20

#B008-ARS

ATS Project: Barr Engineering Co.

QC Batch Number: B202271

Parameter: MMA (ATS Custom IC/ICP-MS)

Results of QA Samples run concurrently with project samples

REPLICATE ANALYSIS

Sample	Replicate #1	Replicate #2	Mean	Relative Range (percent)
#B008-ARS				
Karn CSBR-Initial MS	<0.001 mg/L	<0.001 mg/L	<0.001 mg/L	nc
Karn CSBR-Initial MS Matrix Spike	0.053 mg/L	0.054 mg/L	0.054 mg/L	1.1
Karn CSBR-Initial MSD	<0.001 mg/L	<0.001 mg/L	<0.001 mg/L	nc
Karn CSBR-Initial MSD Matrix Spike	0.054 mg/L	0.055 mg/L	0.054 mg/L	1.4

SPIKES and/or QC CHECK SAMPLES

	Known	Spike	Analyzed	Recovery
Sample/Analyte	Concentration	Concentration	Concentration	(percent)
#B008-ARS				
Laboratory Fortified Blank (B202271-BS1)	<0.001 mg/L	0.005 mg/L	0.005 mg/L	108.0
#B008-ARS				
Karn CSBR-Initial MS Matrix Spike	<0.001 mg/L	0.055 mg/L	0.053 mg/L	104.0
Karn CSBR-Initial MS Matrix Spike Duplicate	<0.001 mg/L	0.055 mg/L	0.054 mg/L	105.0
		0.055 //	0.054	405.0
Karn CSBR-Initial MSD Matrix Spike	<0.001 mg/L	0.055 mg/L	0.054 mg/L	105.0
Karn CSBR-Initial MSD Matrix Spike Duplicate	<0.001 mg/L	0.055 mg/L	0.055 mg/L	107.0

BLANK ANALYSIS Sample Analyzed Concentration QC Decision #B008-ARS Laboratory Reagent Blank <0.001 mg/L</td> Acceptable

Comments:

Calculations performed prior to rounding. NC - not calculated

Control Limits:

Recoveries

Laboratory Fortified Blank (75 - 125 %) Matrix Spike (75 - 125 %) Relative Range

PROJECT ID / NUMBER LABORATORY INFORMATION						ON.	SHIPPIN	G INFOR	MATION	SHIPPER	(Check on	e) / TRAC	KING NUN	ABERIS	/ applicab	18)			
8008-ARS;	1008-ARS; Barr Engineering AMPLE CUSTODIAN (Profil Symposium)			Techr	nical S	Services, Inc.	Date		Fed Ex		UPS		DHL		Courier		Tracking Number	r	
SAMPLE CUS	IPLE CUSTODIAN (Boots 3						Date	1	Fed Ex		UPS	-	DHL		Courier		Tracking Numbe		
Andrew Dyks	stra Que .	Q2				L	Date		Fed Ex		UPS		DHL		Courier		Tracking Number	-	
							Date		Fed Ex		UPS	1000	24		Courier	i fondi	Tracking Number		
Andrew Dyks		The	DATE / 9 : 1 			(COCOUNT)		TIME		UISHED B					TIME		DBY (Print & S		DATE I TIME
	ED BY (P		DATE /	TIME		RECEIVED BY (Print & Signature)	DATE	TIME	RELINQ	UISHED B	Y (Print & Sig	pature)	3			RECEIVE	D BY (Print & Signature		DATE / TIME
	Presenation and i imparound, please filter sample with 45 uM	A filter for dissolved	metals anal	ysis			RS	NUMBER	Arsenic by 200.9	als Scan od, Cr, Fe, b, Se)	Sol. Mercury (EPA 7470)	speciation Custom hod)		S210D)		рН (АРНА 4500Н - В			MATRIX Indicate Soil/Water/Air Sediment/Sludge
LINE NO.	SAMPLE DENTIFICATION	DATE	TIME	COMP.	GRAB	LABORATORY IDENTIFICATION (ATS Use Only)	NO. OF CONTAINERS	PRIORUY NUMBER	Soluable Arsenic EPA 200.9	Sol. Metals Sca (As, Ba, Cd, Cr, F Mn, Pb, Se)	Sol. M (EPA	Arsenic Speciati (ATS Custom Method)	B((APHA	CC (APHA	D (AF 4500/EF	(APHA F			Extract
1.	Karn-MW-10	7/24/2020	10:40		x	0727201-1	1		x	x	x	x							Wastewater
2.									19										
3.							1		1	100									
4.			-							-	-			-		1		1	
5.	· · · · · · · · · · · · · · · · · · ·			1			1.1							1		-		1	
							1		1	1				-	-			1-	
6. 7.											-							1	
8.				1										-				1	
9.				1				1				-			1				
10.				1										-				1	
11.														([]		1			
12.																1			
13.																			
14.																1.			
15.																			
16.											1						1.00	1.1	
17.					1									-	1		-	12	
18.																			
1																			
															1				

PROJECT	ROJECT ID / NUMBER LABORATORY INFORMATION								MATION:	SHIPPER	Check on	e) / TRACI	KING NUN	MBER(S) (If applicabl	ie)		the second se
	S; Barr Engineering		Ann Arbor	Techr	nical S	iervices, Inc.	Date		Fed Ex		UPS		DHL	1	Courier		Tracking Number	
SAMPLE CU	STODIAN Port & Spread						Date		Fed Ex	-	UPS		DHL		Courier		Tracking Number	
Andrew Dy	kstra	0	-	-		N .	Date		Fed Ex		UPS		DHL		Courier		Tracking Number	
	and 1	ne-			_		Date		Fed Ex UPS DHL RELINQUISHED BY (Print & Elignature)					11.5	Courier		Tracking Number	1
RELINQUIS	HED BY I'M STORE IN	-	DATE			RECEIVED BY (Print & Signature)	DATE	TIME	RELINQ	UISHED B	((Print & Big	nature)		DATE	/ TIME	RECEIVED	D BY (Prini & Signisture)	DATE / TIME
Andrew Dy	kstra Ch	2 -	7/31/20			Markheiting		_										
RELINCUIS	HED BY (Poor & Equiv.net		DATE /	TIME	-	RECEIVED BY (Print & Signature)	DATE	/ TIME	RELINO	UISHED B	(Print & Sig	nanue)		DATE	/ TIME	RECEIVED	D BY (Print & Signature)	DATE / TIME
						2												
	S (Preservation, elc.)							1.00						NALYS				
Field filter	red with 45 um filter. Please hold all sample	es from 7/29/30 (Kin	-## sample	s).				BER	nic by	r. Fe.	25	ation	(B)	(Q0	60.1	''		MATRIX
							ERS	MUN	Arse 200.	cd. Cd. C	Aercu 7470	Speci Custo thod)	00	0D	PHA PA 3	B 450		Indicate Soil/Water/Air Sediment/Sludge
LINE NO.			1200	d.	9		NO, OF CONTAINERS	PRIORITY NUMBER	Soluable Arsenic b EPA 200.9	Sol. Metals Sca (As. Ba, Cd, Cr, I Mn, Pb, Se)	Sol. Mercury (EPA 7470)	Arsenic Speciation (ATS Custom Method)	BOD (APHA 5210B)	CHA	A (A	рН (АРНА 4500Н - В		Extract
E F	SAMPLE IDENTIFICATION	DATE	TIME	COMP	GRAB	LABORATORY IDENTIFICATION (ATS Use Only)	Son	PRIC	Sol	Sc (As	12	Ars	-	3	45	A.		
1.	🛹 Kin-01	7/29/2020	11:10		x	0731201-1	1	Hold	x		12			0.11				Wastewater
2.	Kin-03	7/29/2020	13:10	5	x	2	1	Hold	x			E-lin1			110			Wastewater
3.	Kin-05	7/29/2020	15:10		x	5	1	Hold	x									Wastewater
4.	Kin-09	7/29/2020	19:10	in	x	4	1	Hold	x									Wastewater
5.	Kin-12	7/29/2020	22:10		x	2.	1	Hold	x				÷.					Wastewater
6.	Kin-Control-12	7/29/2020	22:15		x	b	1	Hold	x					1				Wastewater
7.	Karn-CSBR-Initial	7/31/2020	6:00		x	5 7	3		x	x	x	x						Wastewater
8.											1	1						
9.				111			~			-				1				
10.				11		"How" Jamptes	R.	1-	4704	Fe	m2	An	1-LA	110				1/12
11.				11		Per Eth	1	- V.	61	1			1		1			
12.											1	1000		1				
13.											1	110.1	100	1				
14.																		
15,									1			1.200	11.11					1
16.												1	1.000	1				
17.														1				
18.					2		1						1.1					
18,				1					1									
. I.				-	-			-	-	-	-			-	-			

CHAIN OF CUSTODY RECORD

OK TO PROCEED, Page 1 MIKE ELLIS, 8/5/202

PROJECT ID / NUMBER			LABORATORY INFORMATION SHI					SHIPPING INFORMATION. SHIPPER (Check one) / TRACKING NUMBER(S) (If applicable)													
8008-ARS; 8	008-ARS; Barr Engineering MPLE CUSTODIAN (Prent & Standore) Indrew Dykstra		Ann Arbor 1	Techn	ical s	Services, Inc.	-	Date		Fed Ex		UPS	1	DHL	1	Courier		Tracking	Number		
SAMPLE CUST	ODIAN (Print & Signature)							Date	-	Fed Ex		UPS	1	DHL	5 mm	Courier			Number	_	
Andrew Dykst	ra /.	-	5	2	_			Date	1	Fed Ex		UPS		DHL		Courier			Number		
	(en	~	0	4	-			Date	100.4	Fed Ex		UPS		DHL		Courier			Number		
RELINQUISHED	D BY (Print & Bigradium)		DATE /	TIME		RECEIVED BY (Print & Signature)		DATE	TIME	RELINQUISHED BY (Print & Signature)					DATE	/ TIME	RECEIVE	ED BY (Print	A Dignauxe)		DATE / TIME
	an the		8/04/202	0 - 9:	00	1 Mack Derton	9								1						
Andrew Dyksti RELINQUISHED	D BY (Print & Signations)		DATE /	TIME		RECEIVED BY (Privit & Significate)	1	DATE	/ TIME	RELINQU	ISHED BY	(Print & Sig	nature)		DATE	/ TIME	RECEIVE	ED BY (Print	A Signment		DATE / TIME
							2	1.1							1						
COMMENTS (P	Preservation, etc.)			-	-					1				,	NALYSI	s					
	with 45 um filter, Standard turnaround time.	Samples prese	erved with ni	tric a	cid w	ere also provided for Karn-CSBR-0	05-03 and		ff	c by	Fe,	0.11	ion	3)	ía	1.0	Ť				MATRIX
Karn-CSBR-	-10-05	-	_	-	_			s	UMBE	rseni 00.9	Is Sc I, Cr. Se)	Sol. Mercury (EPA 7470)	rsenic Speciatio (ATS Custom Method)	BOD (APHA 5210B)	D 5210	A 36(500				Indicate Soil/Water/Air
o I		1.	-	1	1			VINER	NALI	ble A PA 2	Meta a, Co n, Pb	I. Me	Neth	BO	HA	(AP)	HA A B				Sediment/Sludge Extract
LINE NO.	SAMPLE IDENTIFICATION	DATE	TIME	COMP.	GRAB	LABORATORY IDENTIFICATION (ATS	Use Only)	NO. OF CONTAINERS	PRIORITY NUMBER	Soluable Arsenic I EPA 200.9	Sol. Metals Sca (As, Ba, Cd, Cr, I Mn, Pb, Se)	S E	Arser (A	(AF	COD (APHA 5210D)	4500	(AP	-			
1.	Karn-CSBR-05-01	7/31/2020	18:35		x		Had -	A DESCRIPTION OF		x		_	13	1							Wastewater
2.	Karn-CSBR-10-01	7/31/2020	18:30		x	acuse unal		1		x				1				1			Wastewater
3.	Karn-CSBR-05-02	8/1/2020	6:30	1	1.2	125 WL	1 2	1		x	-					1	1-				Wastewater
14.1			6.35	P	x	125"mL	1 4						1		1111						
.4.	Kann-Cobik-10-02	8/1/2020		×		i25mL	1	1	OTM	X				-		-					Wastewater
5.	Karn-CSBR-05-03	8/1/2020	18:35	-	X	TAD BE T Hales 1 M	5	1000	-	X	×	X	x		-	-		-			Wastewater
6.	Karn-CSBR-10-03	8/1/2020	18:45	-	X	bed devel	d,	Na	mino	X		-	-			1.1.1.1.1.1		-			Wastewater
7.	Karn-CSBR-05-04	8/2/2020	6:47			2000 I will	Ŧ	1	-	X	-	-						-			Wastewater
8.	Kam-CSBR-10-04	8/2/2020	6:52		x	Zont Jul	8	1		X				1							Wastewater
9.	Karn-CSBR-05-05	8/2/2020	18:40 -		x	125 1116	9	1		x							1				Wastewater
10.	Karn-CSBR-10-05	8/2/2020	18:45	21	x	125ml HAR'S DIR	16	2		x	x	x	x				1				Wastewater
11.	Kam-CSBR-05-06	8/3/2020	6:35	-	x	IZTML	- 1	1	-	x							11				Wastewater
12.	Karn-CSBR-10-06	8/3/2020	6:40	$\mathbb{P}_{1}^{\mathbb{Z}}$	x	125mL	17	1		x								1			Wästewater
13.	Karn-CSBR-05-07	8/3/2020	18:45		x	12502	13	1		x								1			Wastewater
14.	Karn-CSBR-10-07	8/3/2020	18:50	11	x	its rul	14	1		x								1			Wastewater
15.	Karn-CSBR-05-08	8/4/2020	6:45		x	125mil	15	1		x	-						1				Wastewater
16.	Karn-CSBR-10-08	8/4/2020	6:50		1	izsmi k	(>	1		x											Wastewater
17.			1											1				212			
18.		1	1			1 2	10 V	to	- 0	ind	NV:	9.9	0	23	1	lik	eT	EI	Nis	8	4 20
19.			1000								1		1								1
20.		1	-			0.00		1.00	_					1	1			1.00			
.v.		1		-	-		1	1. 1.4	1.1		-	-		_	-		-		<u> </u>		

\$ KARN-CSER-10-01 - Jampte Times 6:35 from & Dylestra 8/17/20

200 South Wagner Road Ann Arbor, Michigan 48103 Tel. 734/995-0995 Fax. 734/995-3731 Michigan Laboratory ID: 9604 Wisconsin Laboratory ID: 998321720

CHAIN OF CUSTODY RECORD

Page 1

PROJE	CT ID / NUMBER		LABORATORY	INFO	RMATI	N	SHIPPIN	G INFOR	MATION:	SHIPPER	(Check or	ne) / TRAC	KING NUN	BER	Il soplicat	le)		
B008-	ARS; Barr Engineering		Ann Arbor T	echn	ical S	ervices, Inc.	Date		Fed Ex		UPS		DHL		Courier	1	Tracking Number	
SAMPL	E CUSTODIAN (Print & Signan Ma)	-					Date	16.7	Fed Ex		UPS	1	DHL		Counter		Tracking Number	
Andrey	v Dykstra	52	-	-	1	4	Date	1	Fed Ex		UPS		DHL		Courier		Tracking Number	
	Un	- De	-	-			Date		Fed Ex		UPS		DHL		Courier		Tracking Number	
	DUISHED BY (Print & Signature)	2	DATE / 8/07/2020	TIME	- 1	RECEIVED BY (Prinz & Significant)	DATE	/ TIME	RELINQ	UISHED B	Y (Print & Si	gnature)		DATE	/ TIME	RECEIVE	D BY (Print & Skpunture)	DATE / TIME
	UISHED BY (Print & Signature)		DATE /	TIME		RECEIVED BY (Print & Signature)	DATE	/ TIME	RELING	UISHED B	Y (Frintă Sk	granicae)		DATE	/ TIME	RECEIVE	D BY (Print & Sign me)	DATE / TIME
COMM	ENTS (Preservation, etc.)			-					1			-		ANALYS	IS.	-		
Field	filtered with 45 um filter, Standard turnaround ti	me. Please filter ag	ain on Mond	day A	ugust	10 before analysis	\$2	NUMBER	vrsenic by 00.9	d, Cr, Fe,), Se)	arcury 7470)	pectation ustom od)	1.00	and the second second		+1000E) =		MATRIX Indicate Sol/Water Air Sediment/Sludge
LINE NO.	SAMPLE IDENTIFICATION	DATE	TIME	COMP.	GRAB	LABORATORY IDENTIFICATION (ATS Use Only)	NO. OF CONTAINERS	PRIORITY NUMBER	Soluable Arsenic by EPA 200.9	Sol. Metals Sca (As, Ba, Cd, Cr, I Mn, Pb, Se)	Sol. Mercury (EPA 7470)	Arsenic Speciatio (ATS Custom Method)	BO (APHA	COD (APHA 5210D)	DK (AP 4500/EP	pH (APHA 4500H - B		Extract
1.	C-7 Kam-CSBR-05-09	8/4/2020	18:37	in to	x	0807201-1	1		x	x	x	x						Wastewater
2.	C-T Kam-CSBR-10-09	8/4/2020	18:42		x	2	1	1	x	x	x	x	-	1				Wastewater
3.	C-V /Karn-CSBR-05-10	8/5/2020	6:40		x	3	1		x									Wastewater
4.	GU /Karn-CSBR-10-10	8/5/2020	6:46		x	4	1		x	-								Wastewater
5.	CV Karn-CSBR-10-11	8/5/2020	18:43		x	5	1		x									Wastewater
0.	2-2 Karn-CSBR-05-11	8/5/2020	18:47		x	6	1		x									Wastewater
7.	C-2 /Karn-CSBR-05-12	8/6/2020	6:44		x	ト	1		x									Wastewater
8.	CA Karn-CSBR-10-12	8/6/2020	6:49		x	8	1		x									Wastewater
9.	C-1 Karn-CSBR-05-13	8/6/2020	18:36		x	9	1		x	-								Wastewater
10.	C-(/ Karn-CSBR-10-13	8/6/2020	18:41		x	10	1		x									Wastewater
11.	CH Karn-CSBR-05-14	8/7/2020	6:30		x	11	1		x	x	x	x						Wastewater
12,	C-1 Kam-CSBR-10-14	8/7/2020	6:35		x	12	1		x	x	x	x						Wastewater
13,	C-I V DUP	8/7/2020			x	0 13	1		x	x	x	x						Wastewater
14.																		Wastewater
15.		-														1		
16.		1.1.1.																
17.																		
18.																		
19.			1	T.I	E						1,75	1.72		1111		1		
20.				1						1	1							
20.		-	-	1 .	_		-	-	1	1	-	1		1	-			

Appendix F-3

Bench Testing Photo Log

Attachment F-3: Photolog

D.E. Karn Generating Facility Essexville, Michigan July 2020

Photo #	Comments					
1	Peerless Metal 8/50 Zero Valent Iron					
2	Kinetics Experiment Test Vials					
3	Kinetics Experiment Setup					
4	Kinetics Experiment Hach Test Results					
5	CSBR Experiment Setup					
6	10-gram ZVI CSBR After Four Batches					
7	CSBR Experiment Hach Test Results					

Photo 1: Peerless Metal 8/50 Zero Valent Iron

Photo 2: Kinetics Experiment Test Vials

Photo 3: Kinetics Experiment Setup

Photo 4: Kinetics Experiment Hach Test Results

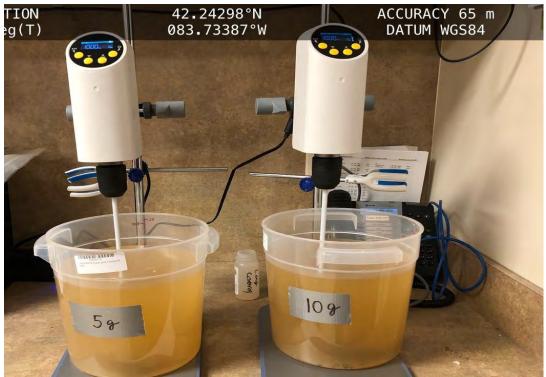


Photo 5: CSBR Experiment Setup

Photo 6: 10-gram ZVI CSBR After Four Batches

Photo 7: CSBR Experiment Hach Test Results

Appendix F-4

Permeable Reactive Barrier Experiments Data Quality Assurance/Quality Control Review

Appendix F-4:

Permeable Reactive Barrier Experiments Data Quality Assurance/Quality Control Review

A review of the quality control data was conducted to assess the validity of the analytical results for the water samples collected for the Permeable Reactive Barrier Experiments for the DE Karn Generating Facility site, located in Essexville, Michigan. There were 37 water samples collected and analyzed for arsenic, and additional metals parameters and arsenic speciation analysis was performed for select samples. This review was performed in accordance with Barr Engineering Co.'s Standard Operating Procedures (SOPs) for data evaluation, which are based on *The National Functional Guidelines for Organic and Inorganic Data Review* (USEPA, 2008 and 2010). The analyses were performed by Ann Arbor Technical Services (ATS), located in Ann Arbor, Michigan. This data evaluation discusses sample data contained within the work order B008-ARS.

Both field sampling and laboratory analytical procedures were examined in the sampling event review. Field sampling procedures were examined utilizing field (masked) duplicate sample analyses. Laboratory procedures were evaluated by assessing technical holding times, sample preservation methods, method blank samples, accuracy and precision data, and data package completeness.

Field sampling procedures

Field (masked) duplicate sample results were evaluated by calculating the relative percent difference (RPD) values for compounds where both the native and field duplicate sample had concentrations reported above the reporting limit (RL). The RPD formula is as follows:

$$RPD = \frac{\left|S - D\right|}{\left(S + D\right)/2} \times 100$$

Where:

RPD = relative percent difference

S = original sample result

D = duplicate sample result

One sample (Karn-CSBR-05-14/DUP) served as the field duplicate sample during the sampling event. The acceptance criteria used for the field duplicate samples data precision (30% RPD) was based on Barr's SOPs for routine data evaluation. The field duplicate data met the RPD criteria for precision.

Laboratory Procedures

Technical holding times and preservation were evaluated for each sample and target parameter based on United States Environmental Protection Agency and method recommendations. The technical holding times were within these recommendations for all of the analyses, and the water samples arrived at the laboratory at the correct temperatures and with the correct chemical preservatives. Method blanks were analyzed by the laboratory for each parameter. No target compounds were detected above the RL in the method blank samples.

The accuracy and precision data review included evaluation of laboratory control spike (LCS), matrix spike (MS), and matrix spike duplicate (MSD) samples. Accuracy was evaluated by comparing laboratory percent recoveries from LCS, MS, and MSD samples to laboratory acceptance criteria. Precision was evaluated by calculating the RPD of the MS/MSD duplicate sample pairs.

The LCS samples displayed acceptable accuracy when compared to the laboratory acceptance criteria.

The laboratory utilized project samples as needed for MS/MSD evaluation when sufficient sample volume was available. Only the MS/MSD samples taken from project samples may be evaluated compared to project data. In instances where MS recoveries failed acceptance criteria and the native sample concentration was significantly greater than the spike added (greater than four times), the spike recovery could not be accurately evaluated; therefore, the criteria did not apply and acceptance of the sample results were based on the acceptable LCS data. The MS/MSDs displayed accuracy and/or precision within laboratory acceptance criteria.

Data completeness was evaluated by comparing the analyses requested with the data package as received. The samples were analyzed in accordance with the chain-of-custody, so the data package was considered complete.

Conclusion

The data are deemed acceptable for the purposes of this project with no qualification assigned during the data evaluation process.

References

United States Environmental Protection Agency (USEPA), 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. EPA QA/R-5. 2008

United States Environmental Protection Agency (USEPA), 2010. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Inorganic Methods Data Review. EPA QA/R-5. 2010

Appendix F-5

Peerless Metal 8/50 Zero Valent Iron Product Specifications

PMP ZERO VALENT IRON AGGREGATE SIZE 8/50

TYPICAL 5 MINUTE ROTAP

SCREEN SIZE	%RETAINED
4	0
8	95-100
16	75-98
30	30- 58
50	2- 19
100	0- 7

TYPICAL BULK DENSITY 150 POUNDS PER CUBIC FOOT (+ OR -10 POUNDS)

PMP IRON AGGREGATES ARE 100% DRY AND OIL FREE

TYPICAL CHEMISTRY:

Element	<u>Percentage</u>
Iron	95+
Carbon	0.7-2.5
Silicon	1.5-2.0
Manganese	0.60
Sulfur	0.12
Phosphorus	0.14
Nickel	0.20
Chromium	0.20
Molybdenum	0.15
Copper	0.20

18900 Rialto Street* Melvindale, Michigan 48122 Office: (313)-841-5400 Fax: (313)-841-0240 WWW. Peerlessmetal.com 6/2020
 Table 1:
 Iron and Column Properties

Iron:		
Source	Peerless Metal F	Peerless Metal Powders, Detroit, MI
Type	14D Type A	14D Type B
Surface Area	1.22 m ² /g	1.57 m ² /g
Column:		
Elow Volocity	47.7 cm/day *	42.4 cm/day
	(1.56 ft/day)	(1.4 ft/day)
Residence Time	25.2 hr	28.2 hr
Pore Volume	300 mL	342 mL
Total Porosity	0.53	0.60
Bulk Density	3.39 g/cm ³	2.98 g/cm ³
Iron to Volume of Solution Ratio	6.4 g : 1 mL	4.9g:1mL
Surface Area to Volume of Solution Ratio	7.8 m ² : 1 mL	7.7 m ² : 1 mL

Parameter	Units	Nr. I-002	Nr. I-006
Inner diameter	in	1.5	1.5
	cm	3.81	3.81
Bed Height	in	24	24
bearleight	cm	60.96	60.96
Bed volume	mL	695	695
ZVI	g	2360	2200
Bulk density	g/cm3	3.40	3.17
Porosity*		0.43	0.45
Pore volume	mL	295	311
Direction of flow		upflow	upflow
Flowrate**	mL/min	1.76	1.79
Contact time**			
Influent		0	0
Port 1		43	43
Port 2	minutes	86	87
Port 3		130	130
Effluent		170	170

Table 1. Selected Column Parameters

* Porosity was determined in a separate test by packing ZVI to the bulk density observed in the columns, then measuing the amount of water needed to fill the void space.

** At time of sample collection. Flow and contact time varied over the course of the test. See Section 2.3.

Attachment C

D.E. Karn Generating Facility Corrective Action Feasibility Study Addendum

Feasibility Study Addendum Permeable Reactive Barrier Extension Evaluation

D.E. Karn Generating Facility

Prepared for Consumers Energy Company

December 2021

3005 Boardwalk Street, Suite 100 Ann Arbor, MI 48108 734.922.4400 www.barr.com

Feasibility Study Addendum – Permeable Reactive Barrier Extension Evaluation

December 2021

Contents

Ex	ecutive	Summary	.1
1	Ir	ntroduction and Remedial Response Objectives	2
	1.1	Remedial Response Objectives	2
	1.2	Report Organization	2
2	A	dditional Investigation Activities	.4
	2.1	Monitoring Well Installation and Soil Sampling	4
	2.1.1	Monitoring Well Installation and Development	4
	2.1.2	Soil Logging and Sampling	. 5
	2.2	Groundwater Sampling	. 5
	2.3	Slug Testing	6
	2.3.1	Data Collection	6
	2.3.2	Results	6
	2.4	Pump Testing	7
	2.4.1	Data Collection	7
	2.4.2	Results	7
3	Р	RB Extension Evaluation	9
	3.1	Arsenic Concentrations	.9
	3.2	Hydrogeological Evaluation	9
	3.2.1	Confining Layer Evaluation	9
	3.2.2	Groundwater Model Updates	10
	3.	2.2.1 Predictive Scenarios	10
	3.3	Groundwater and Soil Quality Evaluation	13
	3.3.1	Groundwater Quality Comparison	13
	3.3.2	Soil Quality Comparison	15
	3.4	Geotechnical Evaluation	16
	3.5	Constructability Evaluation	17
	3.6	Reconsideration of FS Balancing Criteria	18
	3.7	Schedule and Cost Considerations	18
4	C	onclusions and Recommendations	19
		eferences	~ ~

\\barr.com\projects\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\PRB Additional Extent Evaluation\Feasibility Study Addendum\DE Karn - Feasibility Study Addendum.docx

List of Tables

Table 1	Summary of Slug Testing Results	7
Table 2	Summary of Groundwater Model Hydraulic Conductivity Data Updates	10
Table 3	Summary of PRB Fouling Characteristics	11
Table 4	Summary of Upper Native Sand Unit Hydraulic Conductivity Sensitivity Analysis	12
Table 5	Feasibility Study Area and Additional Area Groundwater Quality Comparison	14
Table 6	Feasibility Study Extent and Additional Remedial Response Area Extent Soil Quality	
	Comparison	15
Table 7	Factors of Safety for Slope Stability	17

List of Figures

Figure 1	Site Location
Figure 2	Site Layout
Figure 3	PRB Extension Investigation Locations
Figure 4	July 2021 Total Arsenic Concentrations for Select Wells Along the Northern Perimeter
	Embankment Dike
Figure 5	Cross Section Location
Figure 6	Cross Section A-A'
Figure 7	Cross Sections F-F' and G-G'
Figure 8	Cross Section A-A' with Potential PRB Installation Depths
Figure 9	Permeable Reactive Barrier Groundwater Model Results
Figure 10	Select Particle Traces from Groundwater Model Results
Figure 11	Hydraulic Conductivity of the Upper Native Sand Unit

List of Appendices

- Appendix A Boring Logs, Well Development Logs, Groundwater Data, Soil Data
- Appendix B Slug Testing and Pumping Tests
- Appendix C Groundwater Flow Model Files

Abbreviations

µg/L	micrograms per liter
bay	Saginaw Bay
bgs	below ground surface
FS	feasibility study
feet/day	feet per day
GSI	groundwater-surface water interface
PRB	Permeable Reactive Barrier
psf	pounds per square foot
PVC	polyvinyl chloride
QA/QC	quality assurance quality control
RAP	Remedial Action Plan
river	Saginaw River
TOC	total organic carbon
ZVI	zerovalent iron

Executive Summary

This addendum to the feasibility study (FS) for the Consumers Energy Company's D.E. Karn Electrical Power Generating Facility (generating facility) describes a feasibility-level evaluation for extending the permeable reactive barrier (PRB) that was recommended in the FS (reference (1)) to address arsenicimpacted groundwater venting to Saginaw Bay (bay) from the Type III, low-hazard industrial landfill (Karn Landfill) at the generating facility.

Since the FS, additional investigation activities have been performed to collect data for a feasibility-level assessment of extending the PRB along the length of the northern perimeter embankment dike. Results from the investigation activities are summarized in this report and were incorporated into the evaluations completed as part of this addendum to the FS; namely, hydrogeological, geotechnical, and constructability evaluations; a revaluation of FS balancing criteria (i.e., short- and long-term effectiveness; implementability; and permitting and community considerations); and reassessment of schedule and relative cost.

Based on the results of these evaluations, extending the PRB along the length of the northern perimeter embankment dike is the recommended remedial response to move forward into a remedial action plan, because groundwater quality, soil quality, and hydrogeologic conditions in the additional area considered are generally consistent with conditions observed within the FS remedial response area and would allow for mitigation of arsenic impacts by a PRB amended with zerovalent iron (ZVI); a PRB is implementable within the additional extent; key findings for the balancing criteria considered in the FS except for costs and schedule considerations were applicable for the additional extent; and costs and schedule impacts associated with the additional extent were reasonable relative to cost and schedule considerations for a PRB identified in the FS.

1 Introduction and Remedial Response Objectives

This addendum to the feasibility study (FS) for the Consumers Energy Company's (Consumers') D.E. Karn Electrical Power Generating Facility (generating facility) describes a feasibility-level evaluation for extending the permeable reactive barrier (PRB) that was recommended in the FS (reference (1)) to address arsenic-impacted groundwater venting to Saginaw Bay (bay) from the Type III, low-hazard industrial landfill (Karn Landfill) at the generating facility. The generating facility is located at 2742 N. Weadock Highway in Essexville, Michigan east of the Saginaw River (river) on the south end of the bay (Figure 1).

Since the time of the FS, the extent of the remedial response area has been revised to include the entire northern boundary of the Karn Landfill immediately upgradient of the groundwater-surface water interface (GSI), as shown on Figure 2, and is referred to as the revised remedial response area. This addendum to the FS includes an evaluation of the recommended remedial response option, a PRB, in the revised remedial response area. Within this document, the remedial response area evaluated in the FS is referred to as the FS remedial response area, and the extent of the revised remedial response area to the northwest of the FS remedial response area is referred to as the additional remedial response area. The revised remedial response area also includes an area to the southeast of the FS remedial response area, but a detailed evaluation of that area was not conducted because conditions within that area are similar to the FS remedial response area.

1.1 Remedial Response Objectives

The GSI pathway is the primary, relevant exposure pathway of concern; therefore, the primary remedial response objective is the same as the remedial response objective identified in the FS (reference (1)), which is to meet and maintain long-term compliance during post-closure care of the Karn Landfill with mixing zone-based GSI criteria for arsenic in groundwater venting from the Karn Landfill to the bay. Site-specific chronic and acute mixing zone-based concentration values for arsenic are 100 micrograms per liter (µg/L) and 680 µg/L, respectively.

This addendum and the FS were completed to meet the requirements of State of Michigan Part 115, Solid Waste Management, of the Natural Resources and Environmental Protection Act (NREPA), Public Act 451 of 1994, as amended (Part 115, reference (2)) and State of Michigan Part 201, Environmental Remediation of NREPA, Public Act 451 of 1994, as amended (Part 201, reference (3)) and the administrative rules promulgated pursuant thereto (Part 115 and Part 201 Rules). Specifically, this is being pursued under R 299.4319(6)(e) and in compliance with the provisions of section 20120 of Part 201.

1.2 Report Organization

This FS addendum is organized as follows:

Section 2 Additional Investigation Activities: This section summarizes the additional investigation activities conducted to evaluate extending the PRB.

Section 3 PRB Extension Evaluation: This section evaluates extending the PRB, including evaluations of arsenic concentrations, hydrogeological conditions, groundwater and soil quality data, geotechnical conditions, constructability considerations, reconsideration of balancing criteria from the FS, and schedule and cost implications for extending a PRB.

Section 4 Conclusions and Recommendations: This section summarizes results of the evaluation, identifies whether the extended portion of the PRB should be carried forward to the remedial action plan, and outlines recommended next steps.

Section 5 References

2 Additional Investigation Activities

Additional investigation activities conducted since the FS were monitoring well installations, soil and groundwater sampling, slug testing, and pump testing. Data from these activities were used to inform the feasibility-level assessment of extending the PRB along the revised remedial response area. Sections 2.1 through 2.4 describe the investigation activities and results of slug and pump testing. Evaluations of the soil and groundwater data, and updates to the groundwater flow model (groundwater model) based on slug and pump testing results, are discussed in Section 3.

2.1 Monitoring Well Installation and Soil Sampling

Nine temporary monitoring wells (TW-21-009, TW-21-010, TW-21-011S, TW-21-011I, TW-21-011D, TW-21-012S, TW-21-012I, TW-21-012D, and TW-21-013) were installed and developed at five locations shown on Figure 3 between June 28 and July 1, 2021. The temporary monitoring wells were installed along the northwest portion of the northern perimeter embankment dike to characterize groundwater and soil impacts in the additional remedial response area extent and evaluate the hydrogeologic connectivity between the upper and lower sand units.

2.1.1 Monitoring Well Installation and Development

The monitoring wells were installed from June 28 to June 30, 2021. The temporary monitoring wells were screened within three general depth intervals – shallow, intermediate, and deep – which are defined as follows:

- the terminal depth of shallow wells roughly aligned with the top of the glacial till/clay unit encountered beneath the southeast extent of the northern perimeter embankment dike at 25 to 33 feet below the ground surface (bgs);
- the terminal depth of intermediate wells was directly above the intermediate silt/clay unit at 32 to 34 feet bgs; and,
- the terminal depth of deep wells was directly below the intermediate silt/clay unit at 49 to 51 feet bgs.

The temporary monitoring well installations included the following activities:

- installing three shallow temporary monitoring wells with continuous split-spoon soil sample collection;
- installing two nests of a shallow, intermediate, and deep temporary monitoring well with continuous soil sample collection through the deep borings and blind drilling through the shallow and intermediate borings;
- collecting two Shelby tube samples of the intermediate silt/clay unit from the two deep borings;

- constructing wells using 2-inch-diameter polyvinyl chloride (PVC) casings with 5-feet-long mill-slotted screens;
- installing a protective metal riser casing (including a lock) around the 2-inch PVC monitoring wells and two concrete bumper posts around individual- or nested-well locations; and,
- developing the monitoring wells by surging and over-pumping methods until a turbidity of less than 20 nephelometric turbidity units was observed.

Boring logs and well development logs for the monitoring wells are included in Appendix A-1a and Appendix A-1b, respectively.

2.1.2 Soil Logging and Sampling

Where drilling was completed using continuous sampling collection methods, Barr's field technician logged soil stratigraphy in general accordance with ASTM D2488-17e1 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures) (reference (4)) and completed field screening at each location, including documentation of visual, olfactory, and photoionization detector measurements. One soil sample was collected in the upper sand unit for laboratory analysis from each soil boring in which continuous soil sampling was conducted. An additional soil sample was collected from TW-21-012D from 32 to 34 feet bgs to characterize conditions of a deeper interval within the upper sand unit. The soil analytical data are presented in Appendix A-2, and the laboratory analytical report and quality assurance quality control (QA/QC) review of the laboratory methods are in Appendix A-3 and Appendix A-4, respectively.

Shelby tube samples were collected from the intermediate silt/clay layer at TW-21-011D and TW-21-012D. The Shelby tube samples were submitted for flexible wall permeameter testing by Materials Testing Consulting, Inc. The results of this testing are included in Appendix A-5, and the hydraulic conductivity of the intermediate silt/clay layer was measured at 2.10x10⁻² and 1.78x10⁻² feet per day (feet/day) for samples collected at TW-21-011D and TW-21-012D, respectively

2.2 Groundwater Sampling

Groundwater samples were collected from temporary monitoring wells TW-21-009 through TW-21-013 on July 6 and 7, 2021, approximately one week after the wells were developed. The groundwater samples were collected using low-flow sampling methods

Field parameters were collected using a YSI Pro DSS® water quality meter and Hach® 2100q turbidimeter, and laboratory analytical parameters were analyzed by the Consumers Trail Street laboratory, Merit Laboratories, and Brighton Analytical. A table comparing groundwater sampling results to applicable relevant Part 201 and site-specific criteria is included in Appendix A-6, and the low-flow sampling logs, the laboratory analytical report, and QA/QC review of the laboratory methods are included in Appendix A-7, Appendix A-8, and Appendix A-4, respectively.

2.3 Slug Testing

Slug tests were conducted at four monitoring wells (TW-21-010, TW-21-011S, TW-21-011D, TW-21-012D) as shown on Figure 3 to estimate hydraulic conductivity for use in the groundwater model.

2.3.1 Data Collection

In a slug test, the water level in a well is instantaneously changed, typically via rapid insertion or removal of a solid "slug." The recovery of the water level in the well to static conditions is monitored using an integrated pressure transducer/datalogger, and an estimate of the aquifer hydraulic conductivity is obtained by fitting a mathematical model to the observed water level response data.

The slug testing procedure used for each well was as follows:

- An In-Situ LevelTROLL 700 pressure transducer/datalogger was installed more than 5 feet below the water table. Solid plastic slugs, 5 feet long and 1.25 inches or 1.5 inches in diameter, were used to slug test each well.
- Data collection was started just prior to inserting the slug into the well, and the slug was carefully lowered to a depth completely below the water level (a falling head or "slug in" test).
 Data collection continued until the water level had recovered to approximately 90 to 95% of the pre-insertion value.
- Data collection was resumed with a new log file just prior to removing the slug from the well, and the slug was pulled from the well (a rising head or "slug out" test). Data collection continued until the water level had recovered to approximately 90 to 95% of the pre-removal value.

As recommended by Butler (reference (5)), a series of six slug tests using a combination of falling head and rising head methods were completed at each tested well. Two of the six tests in the series used a smaller diameter slug (1.25 inches vs. 1.5 inches) to vary the water level displacement induced by tests.

2.3.2 Results

The water level response data were analyzed using standard slug test analytical methods. Slug test results were evaluated generally following the recommendations of Butler (reference (5)). The data for each test were filtered to remove the early-time noise that results from the insertion or removal of the solid slug. This is known as the translation method, and it is the recommended approach for processing slug test data with early-time noise (reference (5)).

The data were used to estimate hydraulic conductivity of the sediments surrounding open screen intervals for each well using the Cooper et al. (reference (6)), Hvorslev (reference (7)), or KGS model (reference (8)) method as implemented in the software package AQTESOLV (reference (9)). Outputs from AQTESOLV are presented in Appendix B-1. Slug test results are summarized in Table 1 and were used to update the groundwater model.

Table 1	Summary	of Slua [·]	Testina	Results
	Jannary	or slug	resung	Results

Well	Hydrostratigraphic Unit	Solution	Hydraulic Conductivity (feet per day)	Geometric Mean	
TW-21-010	Upper Sand	Cooper et al.	44		
TW-21-011S	Upper Sand	Cooper et al. and Hvorslev ^[1]	24	32	
TW-21-011D	Lower Sand	Cooper et al.	1.9	10	
TW-21-012D	Lower Sand	KGS model	53	10	

[1] The slug test at TW-21-011S was analyzed with two different analytical solutions that both provided an acceptable fit to the data. The hydraulic conductivity shown is the average of the estimates from the two solutions.

2.4 Pump Testing

A short-term pumping test was completed on July 14, 2021, at TW-21-012D with monitoring in TW-11-012I to evaluate the competency of the intermediate silt/clay unit as a confining unit between the upper native sand unit and lower native sand unit. The intermediate silt/clay unit is slightly thinner and has lower clay content at TW-21-012D than at TW-21-011D, and TW-21-012D was selected for pump testing to provide a conservative evaluation of the intermediate silt/clay unit's confining nature.

2.4.1 Data Collection

A submersible pump was installed in TW-21-012D with the intake set in the upper part of the screened interval and pressure transducers were installed in TW-21-012D and TW-21-012I to provide nearly continuous water level measurements before, during, and after the pumping test below and above the intermediate silt/clay unit, respectively. Manual static water level measurements were collected from each monitoring well approximately once per hour to assess groundwater drawdown and validate pressure transducer data. The effluent flow rate was measured at TW-21-012D approximately once per hour by measuring the time required by the effluent to fill a one-gallon container.

The pumping rate was approximately 3.3 gallons per minute during the 6-hour test, and the effluent was discharged to the ground approximately 15 feet from TW-21-012D and TW-21-012I, partway down the slope of the perimeter dike. Once the pump was shut off, pressure transducer data were collected from both wells until the water level in TW-21-012D recovered to at least 95% of the pre-testing water level. The pumped well recovered to 95% of static water levels within about 4 minutes.

2.4.2 Results

Maximum drawdown of 1.57 feet was observed in TW-21-012D and no drawdown was observed in TW-21-012I. The results from the pumping test at TW-21-012D were analyzed using industry standard AQTESOLV software (reference (9)). This software allows flexibility in selecting from multiple analysis methods to identify the best fit to the field data collected and the hydrogeologic setting. Outputs from AQTESOLV are presented in Appendix B-2.

The Hantush-Jacob solution, an analytical solution for leaky confined aquifers, was used to estimate hydraulic conductivity values from pump testing results. The horizontal hydraulic conductivity of the lower sand was estimated at 55 feet/day, and the vertical hydraulic conductivity of the intermediate silt/clay unit was estimated at 0.034 feet/day using this solution. The confining nature of the intermediate silt/clay unit is supported by the lack of drawdown observed at TW-21-012I during the pumping test, and the pumping test results were used to update the lower native sand unit hydraulic conductivity in the groundwater model. Due to the sensitivity of confining unit vertical hydraulic conductivity to other adjustable parameters in the Hantush-Jacob solution, the intermediate silt/clay layer vertical hydraulic conductivity estimate was used to corroborate the lab permeability test results.

3 PRB Extension Evaluation

This evaluation incorporates key findings from the FS and results from additional investigation activities to assess the need to extend the PRB along the additional remedial response area and the feasibility of extending the PRB based on the following: arsenic concentrations in the additional remedial response area; hydrogeological evaluation; groundwater and soil quality data evaluation; geotechnical evaluation; constructability evaluation; consideration of the applicability of balancing criteria from the FS to the additional remedial response area; and the estimated schedule and range of costs for implementation of a PRB in the revised remedial response area.

3.1 Arsenic Concentrations

Concentrations of arsenic in groundwater were evaluated against the site-specific mixing zone-based arsenic GSI criteria to assess the extent of locations exceeding mixing zone-based GSI criteria for arsenic in groundwater. Figure 4 shows the concentrations of arsenic in groundwater from July 2021 sampling and the FS and revised remedial response areas. The average arsenic concentration in groundwater within the FS remedial response area in July 2021 was 276 µg/L. The corresponding average arsenic concentration in groundwater within the additional remedial response area extent was 338 µg/L, not including the results of samples collected below the intermediate silt/clay unit. Arsenic concentrations in monitoring wells below the intermediate silt/clay unit were less than the site-specific chronic and acute mixing zone-based GSI criteria for arsenic. Therefore, a PRB is necessary in the additional remedial response area extent, extending to the top of the intermediate silt/clay unit.

3.2 Hydrogeological Evaluation

The PRB in the additional remedial response area extent could key into either the intermediate silt/clay unit or the underlying glacial till. Because of the greater depth of the glacial till in the additional remedial response area, the suitability of the intermediate silt/clay unit as a base for the PRB was evaluated.

3.2.1 Confining Layer Evaluation

As shown on Figure 5 though Figure 7, the intermediate silt/clay unit is continuous in the western portion of the Karn Landfill. The intermediate silt/clay unit thins to the east where it intersects the glacial till unit, and the PRB could be tied into the glacial till unit in this area.

The confining properties of the intermediate silt/clay unit were evaluated based on pump testing results and groundwater quality data. Pump testing results suggest that the intermediate silt/clay unit is confining, and groundwater quality data collected above and below the intermediate silt/clay layer, included in Appendix A-6 and shown on Figure 4, also suggests that the layer is confining due to the difference in water quality in the upper and lower sand units (e.g., arsenic concentrations are more than an order of magnitude lower in the lower sand unit).

The lateral extent and thickness and confining properties of the intermediate silt/clay layer suggest the PRB could be keyed into the intermediate silt/clay unit to the west and into the glacial till unit to the east, and this was further evaluated using the groundwater model for the Karn Landfill.

3.2.2 Groundwater Model Updates

The existing groundwater model for the Karn Landfill (Appendix A of the FS (reference (1)) was updated with hydraulic conductivity estimates from additional investigation activities to evaluate the potential for groundwater to bypass (by going around or under) a PRB in the revised remedial response area before discharging to the bay. Groundwater model files, including from scenarios run for the FS, are included in Appendix C.

The vertical hydraulic conductivity of the intermediate silt/clay unit was updated in the groundwater model based on the lab permeability test results. Pumping test results corroborated the lab permeability test results but were not used directly because the lab permeability test was a more direct measurement of the vertical hydraulic conductivity. Horizontal hydraulic conductivity of the intermediate silt/clay unit remained at the calibrated value (1.86 feet/day). The horizontal hydraulic conductivity of the lower native sand unit was updated in the groundwater model based on the results of slug tests completed at TW-21-011D and TW-21-012D and the pump test completed at TW-21-012D. The vertical hydraulic conductivity of the lower native sand unit was updated to maintain anisotropy of 10, consistent with the calibrated model. A summary of groundwater model hydraulic conductivity updates is shown in Table 2.

Hydrostratigraphic Unit	Parameter	Calibrated Value (feet per day)	Updated Value (feet per day)
Intermediate silt/clay	Vertical hydraulic conductivity	0.168	0.0192
Lower native sand	Horizontal hydraulic conductivity	7.58	9.98
Lower native sand	Vertical hydraulic conductivity	0.692	0.998

.				
Table 2	Summary of Groundwater	Model Hydraulic	Conductivity Data L	pdates
	······································			

The calibrated horizontal hydraulic conductivity of the upper native sand unit was reviewed against the results of slug tests completed at TW-21-010 and TW-21-011S and against previously collected data. Instead of updating and recalibrating the groundwater model, a sensitivity analysis of the upper native sand hydraulic conductivity was performed with predictive scenarios described below.

3.2.2.1 Predictive Scenarios

An existing conditions scenario was run following updates to the hydraulic conductivity of the intermediate silt/clay unit and lower native sand unit, and a 1.5-feet-thick PRB along the northern perimeter embankment dike was evaluated in multiple scenarios with the groundwater model. A PRB construction configuration depicted in Figure 8 was considered with the groundwater model. Using

MODPATH 7 (reference (10)), particles were tracked from the Karn Landfill and upper native sand unit beneath the footprint of the Karn Landfill to receiving waterbodies. The percentage of particles simulated to pass through the area proposed for a PRB for the existing conditions scenario was used as a basis for evaluating potential changes to groundwater flow in other predictive scenarios considered.

Existing Condition Scenario

In the existing conditions scenario, approximately 65% of particles were simulated to pass through the area proposed for the PRB, approximately 34% were simulated to move northwest to the river, west to the intake channel, or south to the discharge channel instead of northeast through the PRB, and less than 1% of particles were simulated to travel downward into the lower native sand before reaching the bay (Figure 9). Currently, groundwater flow to the river meets GSI criteria and the intake and discharge channels are not classified as waters of the state; therefore, remedial response is not needed in these areas. The less than 1% of particles that are simulated to travel downward to the lower native sand unit are not considered significant relative to the greater than 99% of particles that do not travel downward, because the particle tracking results are intended to evaluate groundwater flow at a high level. Further, if small amounts of downward flow through the intermediate silt/clay unit does occur, the arsenic concentrations discussed in Section 3.1 confirm the flow is not significant enough to cause water quality concerns. Scenarios discuss in the following sections will be evaluated relative to this existing condition scenario to understand the effect of the proposed PRB on groundwater flow.

Scenarios Evaluating the Sensitivity of PRB Horizontal Hydraulic Conductivity

Groundwater flow through the PRB is predicted to decrease over time as mineral precipitation would fill void space at the PRB surface and decrease porosity. The sensitivity of the assumed permeability of the PRB was evaluated to assess how plugging and fouling may impact groundwater flow through a PRB. Three sensitivity scenarios were completed using PRB hydraulic conductivity values listed in Table 3, which were based on available literature data. In these scenarios the upper native sand unit was assigned the calibrated hydraulic conductivity values and the PRB was represented as keyed into the uppermost confining unit.

PRB Condition Represented in Model Scenario	Porosity	Hydraulic Conductivity (feet per day)
Initial condition ^[1]	0.32	12.1
Moderately fouled ^[2]	0.17	1.21
Highly fouled ^[2]	0.02	1.42 x 10 ⁻³

Table 3 Summary of PRB Fouling Characteristics

[1] Values assumed from literature data (reference (11))

[2] Values calculated from initial condition values as well as literature methods for porosity reduction and estimating hydraulic conductivity from porosity (reference (12))

Modeling results showed less than a 1% difference between the number of particles passing through the revised remedial response area for scenarios assuming no PRB (the existing conditions scenario), an "initial condition" PRB, and a PRB with moderate fouling. Therefore, groundwater flow is expected to be similar to

existing conditions (i.e., groundwater from the Karn Landfill will primarily flow through the PRB area) when the PRB is installed and up to moderate fouling. Approximately 3% of particles bypassed the highly fouled PRB. These particle traces were simulated to diverge from particle traces for the initial condition passing through the PRB as they approached the bay (Figure 10), indicating that if a high degree of fouling occurs, some flow around the PRB could occur, but the flow rates would be low. This information can be used to guide design decisions regarding PRB media refreshment.

Groundwater flow downward through the intermediate silt/clay unit was not simulated to increase due to the PRB. Similar to the existing conditions scenario, the three PRB hydraulic conductivities evaluated had a small number of particles (<1%) travel downward to the lower native sand unit.

Scenarios Evaluating the Sensitivity of Upper Native Sand Horizontal Hydraulic Conductivity

The influence of upper native sand unit horizontal hydraulic conductivity was evaluated through a sensitivity analysis using three different assumed horizontal hydraulic conductivity conditions for the upper native sand. For two scenarios, a uniform hydraulic conductivity value was used for the upper native sand unit. For the third scenario, the model domain was split into two zones where data generally indicates higher (northwest) or lower (southeast) hydraulic conductivity. For each of these three hydraulic conductivity distributions, the two PRB construction configurations were simulated for a total of six scenarios. Horizontal hydraulic conductivity values for the sensitivity scenarios are summarized in Table 4, and the distribution of hydraulic conductivity was assumed to be one-tenth the horizontal hydraulic conductivity, and the PRB was assumed to have a hydraulic conductivity of 1.2 feet/day, representing moderate fouling.

Scenario	Horizontal Hydraulic Conductivity (feet per day)	Data Source
Baseline	11.1	Model calibration
Uniformly higher hydraulic conductivity	32.5	Geometric mean of upper native sand slug test results at TW-21-010 and TW-21-011S
Spatially variable hydraulic conductivity	14.4 in northwest zone 2.53 in southeast zone	Geometric mean of representative data within each model zone

-	o (11		
Table 4	Summary of Upper	[•] Native Sand Unit Hydraulic	c Conductivity Sensitivity Analysis

Minimal differences (1 to 4% of particles) were observed in the horizontal direction between particle traces from model runs with different upper native sand hydraulic conductivity values. These results indicate that heterogeneity of hydraulic conductivities within the upper native sand unit, that may not be adequately characterized for inclusion in the groundwater model, are not likely to impact the overall effectiveness of a PRB based on the minimal differences in the observed horizontal direction of particles when different hydraulic conductivities were modeled.

Differences were observed in the vertical movement of particle traces depending on the upper native sand hydraulic conductivity. Similar to the existing conditions scenario, less than 1% of particles were simulated to flow downward to the lower native sand unit in predictive scenarios with hydraulic conductivity at or below 14.4 feet/day in the upper native sand unit and with the PRB keyed into the uppermost confining unit. The associated particles were simulated to move downward into the intermediate silt/clay unit where the upper native sand was represented as less than 6 feet thick in the groundwater model; however, factors besides the intermediate silt/clay unit thickness were involved (i.e., simulated head in the upper native sand unit and represented thickness of the upper native sand unit). In the sensitivity scenario with uniformly higher hydraulic conductivity, no particles were simulated to flow downward to the lower native sand unit. Therefore, if the actual hydraulic conductivity in the northwest portion of the Karn Landfill is higher than suggested by the geometric mean of the representative data in the northwest zone and the model calibration (e.g., if low hydraulic conductivity estimates are disproportionately lowering the mean), no downward flow to the lower native sand would be expected.

Predictive Scenario Summary

In all of the predictive scenarios evaluated, approximately 65% of particles were simulated to pass through the PRB and reach the bay (Figure 9) and zero to less than 1% of particles were simulated to travel downward into the lower native sand. Predictive scenarios results had minimal sensitivity to PRB fouling and the modeled differences in upper native sand unit horizontal hydraulic conductivity. These model results, combined with water quality data from the lower native sand, support keying the PRB into the intermediate silt/clay unit in the additional remedial response area extent.

3.3 Groundwater and Soil Quality Evaluation

Groundwater and soil quality data from the FS remedial response area extent were compared to groundwater and soil quality data collected from the additional remedial response area extent to assess differences in groundwater and soil quality data between these two areas and potential implications differences may have on the effectiveness of a PRB.

3.3.1 Groundwater Quality Comparison

Groundwater quality will primarily influence the effectiveness of a PRB based on: 1) the ability of a PRB amended with zerovalent iron (ZVI) to provide long-term attenuation of arsenic to below site-specific mixing zone-based criteria, 2) the rate and magnitude of fouling/plugging of the PRB, and 3) the potential for adverse changes to non-arsenic parameters.

Groundwater quality data collected from wells screened in the upper sand unit in the additional remedial response area in July 2021 (included in Appendix A-6) were compared to data collected from wells screened in the upper sand unit in the FS remedial response area (i.e., MW-8, MW-10, MW-12, and MW-14) in August 2020, October 2020, and July 2021 (included in Appendix A-9). For each location, the most recent data available for each parameter was used in the comparison. Groundwater quality data collected from temporary wells installed in the lower sand unit, TW-21-011D and TW-21-012D, were not included in this comparison because remedial response is not needed in the lower sand unit due to arsenic

concentrations being below site-specific mixing zone-based criteria. A comparison of the average values for select parameters in each extent is included in Table 5.

		Average Value		
Parameter	Units	FS Remedial Response Area	Additional Remedial Response Area	
Alkalinity, total, as CaCO ₃	micrograms per liter (µg/L)	447,500	331,286	
Total Arsenic	µg/L	276	338	
Total Calcium	µg/L	223,750	136,600	
Total Iron	µg/L	3,769	1,495	
Total Magnesium	µg/L	64,300	27,814	
Total Manganese	µg/L	557	407	
Oxidation reduction potential	millivolts	-52.0	-123	
рН	standard units.	7.2	8.3	
Total Potassium	µg/L	12,775	6,883	
Sulfate, as SO ₄	µg/L	452,225	154,729	

 Table 5
 Feasibility Study Area and Additional Area Groundwater Quality Comparison

Key observations from this evaluation are as follows:

- The data do not suggest that iron concentrations will be higher downgradient of the additional remedial response area than downgradient of the FS remedial response area.
- The oxidation reduction potential within the additional remedial response area suggests that the aquifer is a reducing environment consistent with conditions observed within the FS remedial response area. This indicates that arsenic speciation will be similar between the two areas, and arsenic will primarily be in the more soluble arsenite form (As³⁺).
- The average pH observed within the additional remedial response area was higher than the average pH observed within the FS remedial response area.
 - Higher groundwater pH can lead to greater mineral deposition within the PRB and/or localized areas where groundwater pH may approach a relevant criterion immediately downgradient of the PRB.
 - Observations included in the FS of ZVI's propensity to increase the pH of the Karn Landfill groundwater suggest that ZVI at a 5% amendment ratio will likely not increase groundwater pH above 9.0 standard units under in-situ conditions

• Groundwater quality minerals and parameters that may affect the rate and magnitude of plugging and fouling of a PRB, which include calcium, magnesium, manganese, alkalinity, and sulfate, have lower concentrations within the additional remedial response area than within the FS remedial response area. However, rate of plugging and fouling within the additional remedial response area extent is expected to be similar to the FS remedial response area extent.

Together, these observations suggest that a PRB installed in the additional remedial response area would have the ability to provide effective, long-term removal of arsenic to below site-specific mixing-zone based GSI criteria, consistent with findings from the FS for a PRB installed in the FS remedial response area. Changes to groundwater quality downgradient of a PRB are anticipated to be consistent between the two areas based on this evaluation.

3.3.2 Soil Quality Comparison

Soil quality in the upper sand unit was compared between the additional and FS remedial response areas based on soil samples collected from the TW-21-009 through TW-21-013 borings installed in July 2021 and the DEK-SB-20001 through DEK-SB-20010 borings installed in July 2020. The locations of the 2020 and 2021 soil samples are shown on Figure 3. The analytical results from the 2021 soil samples are included in Appendix A-2 and analytical results for the 2020 soil samples are included in Appendix A-10.

Field observations of the upper sand unit were similar in both areas. The saturated soils in these areas were primarily classified as poorly graded, fine to medium grained, tan to dark gray sands. A comparison of analytical data from each area included concentrations of total organic carbon (TOC), arsenic, and iron. A comparison of the average values in each extent for each parameter is included in Table 6.

		Average Value		
Parameter	Units	FS Remedial Response Area	Additional Remedial Response Area	
Carbon, total organic	milligrams per kilogram (mg/kg)	2,380	1,590	
Moisture	%	15.9	19.2	
Solids, percent	%	84.0	80.0	
Arsenic	mg/kg	7.73	7.39	
Iron	mg/kg	4,080	3,450	

Table 6 Feasibility Study Extent and Additional Remedial Response Area Extent Soil Quality Comparison

For each of these parameters, average concentrations in the two areas were generally consistent. Average arsenic and iron concentrations were approximately 4% and 15% lower, respectively, between the additional and FS remedial response areas. The average TOC concentration was approximately 33% lower

within the additional remedial response area compared to the FS remedial response area. High TOC concentrations can result in biofouling of PRBs, but literature suggests that biofouling is not a concern for ZVI-amended PRBs (reference (13)), and so the differences in TOC between the two areas does not affect this evaluation. A comparison of field observations and analytical data collected between these two areas suggests that performance of a PRB would be similar between the additional and FS remedial response areas.

3.4 Geotechnical Evaluation

The geotechnical stability of the original PRB alignment was studied in the FS by evaluating sections through the southeast portion of the northern perimeter embankment dike. However, it was necessary to evaluate the stability of the extended portion of the PRB due to presence of a stratigraphic unit that was not evaluated in the geotechnical model for the FS – the intermediate silt/clay unit. The intermediate silt/clay was previously studied by Golder (reference (14)) and was found to be sensitive based on field vane testing, possibly because of calcium carbonate cement. Therefore, a geotechnical evaluation was performed to evaluate stability of the extended portion by developing a geotechnical model in SLOPE/W® software, produced by GEO-SLOPE International, Ltd. of Calgary, Alberta, a two-dimensional limit equilibrium slope stability modeling software (reference (15)). Material parameters were assigned using data from previous geotechnical investigations consistent with the FS (reference (1)).

A section was evaluated through Pond A into the bay at the northern portion of the northern perimeter embankment dike, as shown on Figure 3, which represents the area with the greatest elevation change from the Karn Landfill to the bay, while intersecting the intermediate silt/clay unit. The intermediate silt/clay unit is generally a low-plasticity organic silt/clay, OL in USCS classification (reference (16)). Barr conducted an additional model scenario to evaluate the consequences of disturbing the cemented structure of the intermediate silt/clay through the PRB excavation process. In that model scenario, remolded strength values were selected for the intermediate silt/clay to represent the strength of the material in the absence of cementation. The remolded strength of the intermediate silt/clay was conservatively selected as the 25th percentile remolded strength from the field vane tests conducted by Golder in the ponds (reference (14)), 500 pounds per square foot (psf).

The phreatic surface in the stability model was set at approximately 582 feet based on results from the groundwater model. Construction loading during trenching activities was modeled consistent with the FS (reference (1)), using discrete strip loads at the dynamic max load for a one-pass trencher, approximately 2,300 psf (16 pounds per square inch), roughly centered on the dike alignment.

Results for drained and undrained loading were generally similar to those for Pond A East as described in the FS and are summarized in Table 7. The results showed acceptable factors of safety relative to the threshold factors of safety of 1.30 for undrained loading and 1.50 for drained loading (40 CFR § 257.74(e)(1)). Remolded cases also had acceptable factors of safety relative to the 1.30 undrained threshold and the alternative 1.20 liquefaction threshold from 40 CFR § 257.74(e)(1), which was taken to be the nearest approximation of the remolded case. These results indicate no new conclusions for the geotechnical stability of the dike relative to what was identified in the FS (reference (1)); therefore, it is

anticipated that construction activities for the extended PRB would not destabilize the northern perimeter embankment dike or cause slope failure.

	Loading Conditions			
	Drained Factor of Safety (minimum 1.50)	Undrained Factor of Safety (minimum 1.30)	Remolded ^[1] Factor of Safety (minimum 1.20)	
Existing Conditions	2.33	2.33	1.75	
Trencher Loading	1.84	2.31	1.71	

Table 7 Factors of Safety for Slope Stability

[1] Critical slip surfaces for the remolded cases were forced along the interface between the intermediate silt/clay and the underlying lower native sand by making the underlying lower native sand impenetrable in SLOPE/W. In the remolded case, the intermediate silt/clay is modeled with remolded strength, and other units are modeled with undrained strengths, if applicable.

3.5 Constructability Evaluation

Constructability considerations evaluated were the existing constraints, the anticipated PRB geometry, and the anticipated PRB design parameters. These considerations were evaluated for a one-pass trenching technology; however, this construction is likely feasible with multiple PRB installation technologies.

Constraints including the landfill final cover system, perimeter embankment dike geometry, existing infrastructure, and existing stratigraphy were evaluated for assessing the PRB constructability. The landfill final cover system will restrict the PRB work platform width to the perimeter embankment dike crest, but the perimeter embankment dike crest width of approximately 24 feet should be sufficient for one-pass trenching. However, the perimeter embankment dike crest slopes may require minor grading to create a level work platform. Locations of utilities and other existing infrastructure will need to be verified during remedy design, and caution will be required when working in areas near overhead power lines, storm water culverts, or existing instrumentation to mitigate damage to existing infrastructure. The Karn Landfill stratigraphy is not anticipated to include large cobble seams or boulders that would obstruct the operation of a one-pass trenching technology. Thickness of the intermediate silt/clay unit was observed to be approximately 9.5 and 5.0 feet at TW-21-011D and TW-21-012D, respectively, and those observations generally agree with observations from other deep borings in the vicinity and the modeled thickness of the layer from the Earth Volumetric Studio model previously completed by Barr. A minimum embedment depth requirement of 2 feet to 3 feet is anticipated in this unit, which is achievable for the thicknesses observed, while an embedment of 5 feet is anticipated in areas where the PRB would be embedded into the glacial till

PRB geometry assumptions for depth, width, alignment, and continuity were evaluated for assessing the PRB constructability. The depth of the PRB is anticipated to range from 25 feet to 45 feet and reaching this design depth range is achievable by the one-pass trenching technology. One-pass trenching methods typically minimize the number of depth changes for production efficiency; however, the technology does have the capability to install to a variable design depth profile as needed. A minimum width of 1.5 feet is anticipated for the remedy design and is achievable with the one-pass trenching technology (standard

machine widths are 1.5 feet, 2 feet, and 2.5 feet). The one-pass trenching operation will likely require the alignment be offset several feet from the centerline of the dike crest to allow for traffic and material staging on the crest, which will serve as the working platform, however this should not create a constructability concern.

PRB parameter assumptions of strength, permeability, uniformity, continuity, and ZVI amendment rate were evaluated for assessing the PRB constructability. Industry standard strength and permeability ranges are anticipated for the remedy design and are achievable by the one-pass trenching technology. Uniformity and continuity requirements are achievable with the one-pass trenching operation which is able to construct a well-mixed final barrier through the subsurface layers and achieve a consistent ZVI amendment rate.

Results of the constructability evaluation indicate that it is feasible to construct the extended PRB with one-pass trenching technology. It is likely that other common PRB installation technologies could achieve the anticipated remedy design; however, one-pass trenching is anticipated to be the more efficient, lower cost, and effective installation method.

3.6 Reconsideration of FS Balancing Criteria

The same balancing criteria considered in the FS were reconsidered for a PRB installed in the additional remedial response area extent based on results of evaluations conducted since the FS. Key findings for each of these elements (effectiveness, implementability, permitting considerations, community considerations, and advantages and disadvantages) were applicable for a PRB installed along the additional remedial response area extent, with the exception of schedule and cost which are discussed below

3.7 Schedule and Cost Considerations

It is anticipated that construction of the PRB along the length of the revised remedial response area could be completed in approximately four to six months and costs for implementation in the revised remedial response area would increase, relative to the costs estimated for the FS remedial response area, based on the additional length of the PRB and increased depth of installation in select areas. Assumptions used to estimate the PRB lifetime costs and construction duration are similar to the FS.

4 Conclusions and Recommendations

Since the FS was written, additional evaluations were completed to investigate the need for and feasibility of a PRB along the length of the revised remedial response area as shown on Figure 2. Conclusions of these evaluations include the following:

- Remedial response should be implemented in the upper sand unit within the revised remedial response area due to groundwater arsenic concentrations above mixing zone-based GSI criteria.
- Remedial response is not required within the lower sand unit within the revised remedial response area because arsenic concentrations are below mixing zone-based GSI criteria and the intermediate silt/clay layer is confining.
- A PRB installed along the length of the revised remedial response area and keyed into the uppermost confining unit (i.e., the intermediate silt/clay unit to the northwest or the glacial till to the southeast) would not alter groundwater flow directions in a manner that would limit the effectiveness of a PRB. A PRB installed in this manner would effectively capture groundwater that is currently flowing into the bay.
- Groundwater quality, soil quality, and hydrogeologic conditions within the additional remedial response area extent are generally consistent with conditions observed within the FS remedial response area extent and would allow for mitigation of arsenic impacts by a PRB amended with ZVI.
- Based on geotechnical and constructability evaluations, a PRB is implementable within the
 additional remedial response area, but the increased thickness of the upper sand unit and the
 relative thinness of the intermediate silt/clay layer in this area, which the PRB would be
 embedded into, will result in greater complexity and cost for the implementation of a PRB in
 this area.

Based on these results, a PRB installed along the length of the revised remedial response area is recommended to be carrier forward to the remedial action plan.

5 References

References in this document are presented in ISO 690-Numerical Reference citation style. References below that begin with a "—" indicate that the author is the same as the one listed above it in bold. For example, the author of reference (3) is the same as the author of reference (2) (i.e., Legislative Council, State of Michigan).

1. Barr Engineering Co. Feasibility Study: D.E. Karn Generating Facility. February 2021.

2. **Legislative Council, State of Michigan.** Natural Resources and Environmental Protection Act (Excerpt) Act 451 of 1994 Part 115 Solid Waste Management.

3. —. Natural Resources and Environmental Protection Act (Excerpt) Act 451 of 1994 Part 201 Environmental Remediation. 2020.

4. **ASTM International.** ASTM Standard D2488-17 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures). West Conshohocken, PA : ASTM International, 2017.

5. Butler, J. J. The Design, Performance, and Analysis of Slug Tests. Boca Raton : CRC Press LLC, 1998.

6. **Cooper Jr., Hilton H., Bredehoeft, John D. and Papadopulos, Istavros S.** Response of a finitediameter well to an instantaneous charge of water. *Water Resources Research.* March 1967, Vol. 3, 1, pp. 263-269.

7. **Hvorslev, M. Juul.** Time Lag and Soil Permeability in Ground-Water Observations. s.l. : U.S. Army Corps of Engineers, April 1951. Bulletin No. 36.

8. **Hyder, Zafar, et al.** Slug tests in partially penetrating wells. *Water Resources Research*. 1994, Vol. 30, 11, pp. 2945–2957.

9. HydroSOLVE, Inc. AQTESOLV for Windows-Version 4.5 User's Guide. 2007.

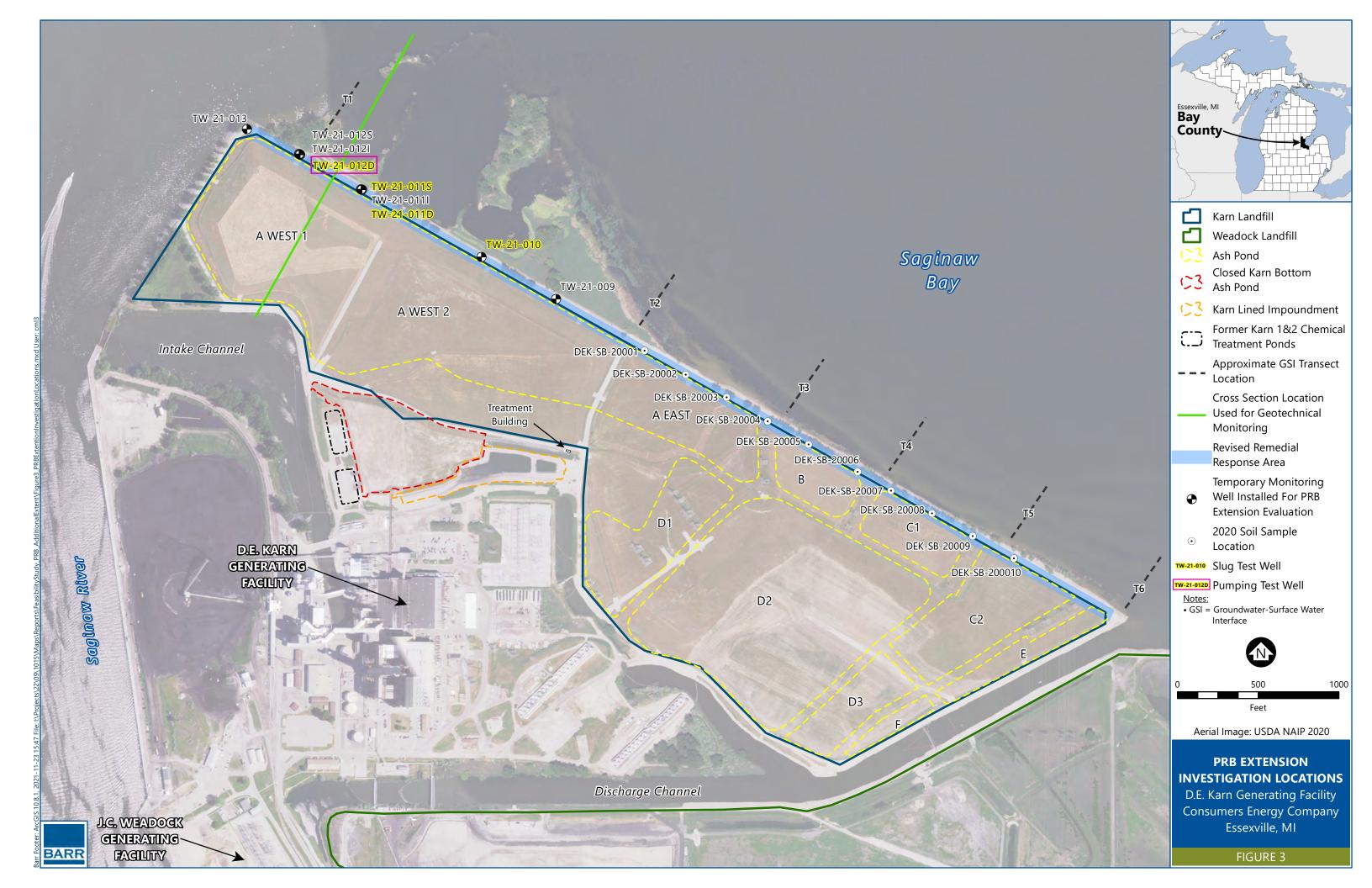
10. **Pollock, D.W.** MODPATH v7.2.01: A particle-tracking model for MODFLOW: U.S. Geological Survey Software Release. December 15, 2017.

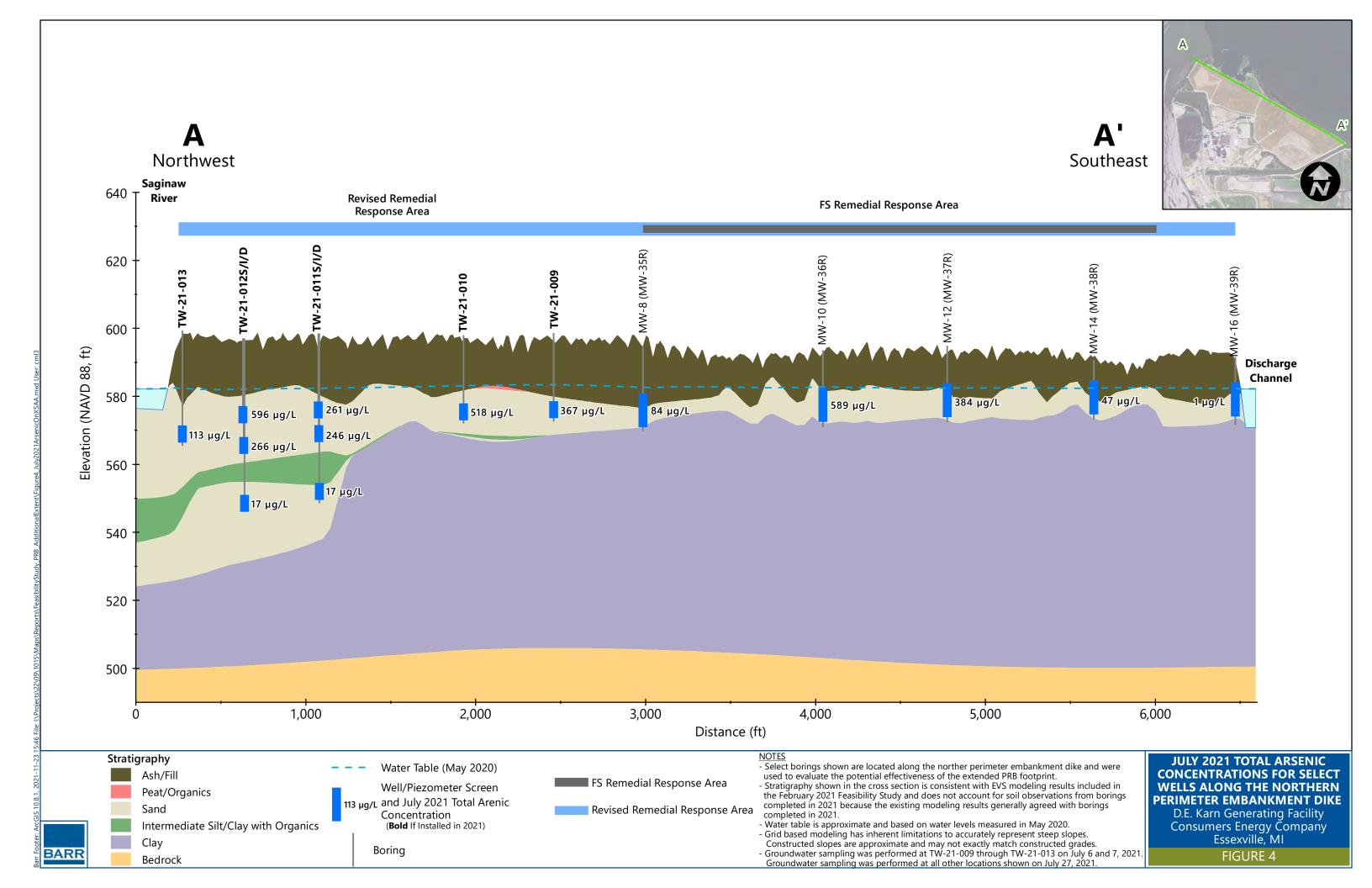
11. **S.M. Stoller Corporation.** Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier. s.l. : U.S. Department of Energy Office of Legacy Management, February 2005.

12. Li, Lin, Benson, Craig H. and Lawson, Elizabeth M. Impact of Mineral Fouling on Hydraulic Behavior of Permeable Reactive Barriers. *Ground Water*. July-August 2005, Vol. 43, 4, pp. 582-596.

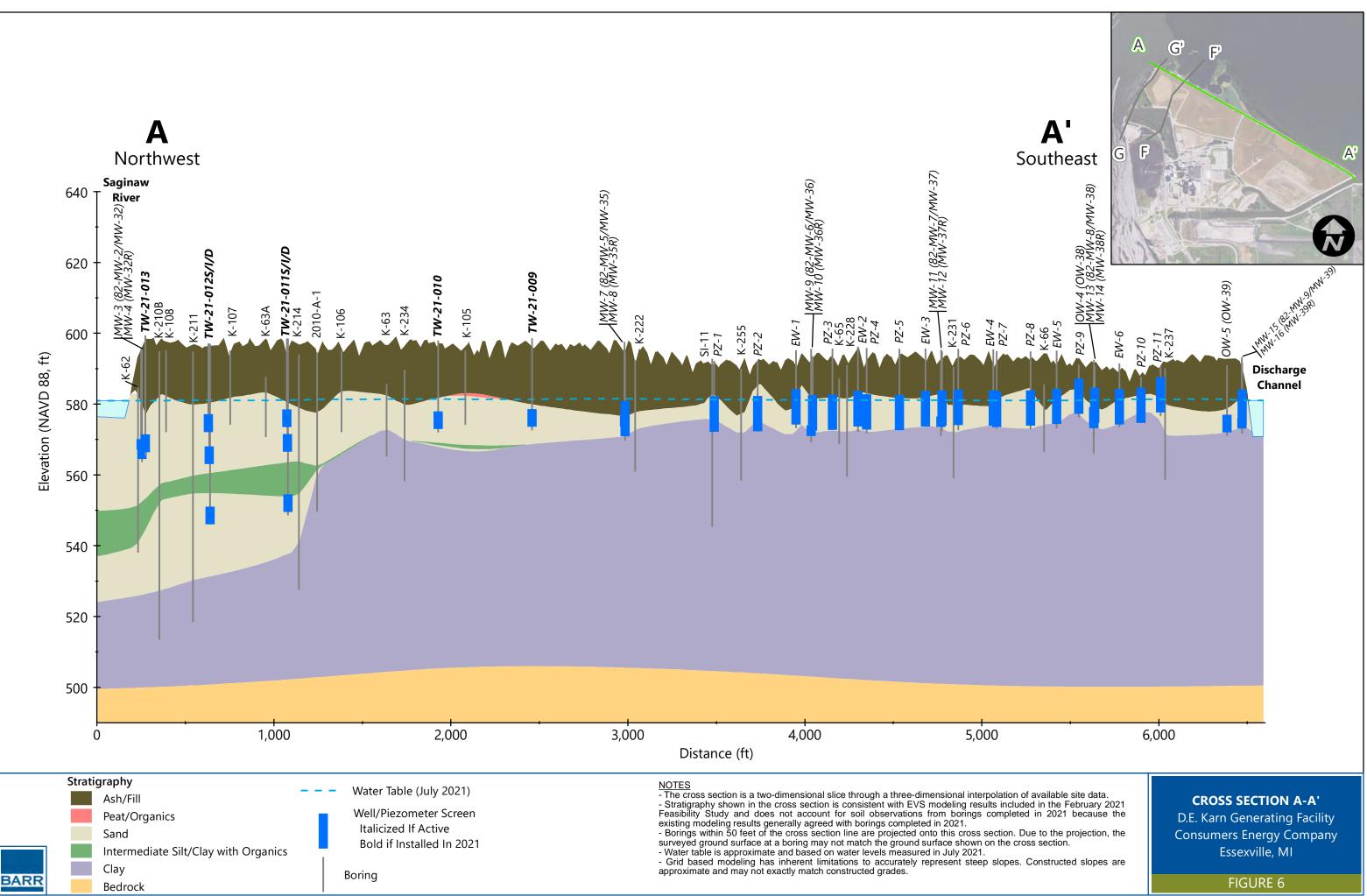
13. **The Interstate Technology and Regulatory Council.** Permeable Reactive Barrier: Technology Update. June 2011.

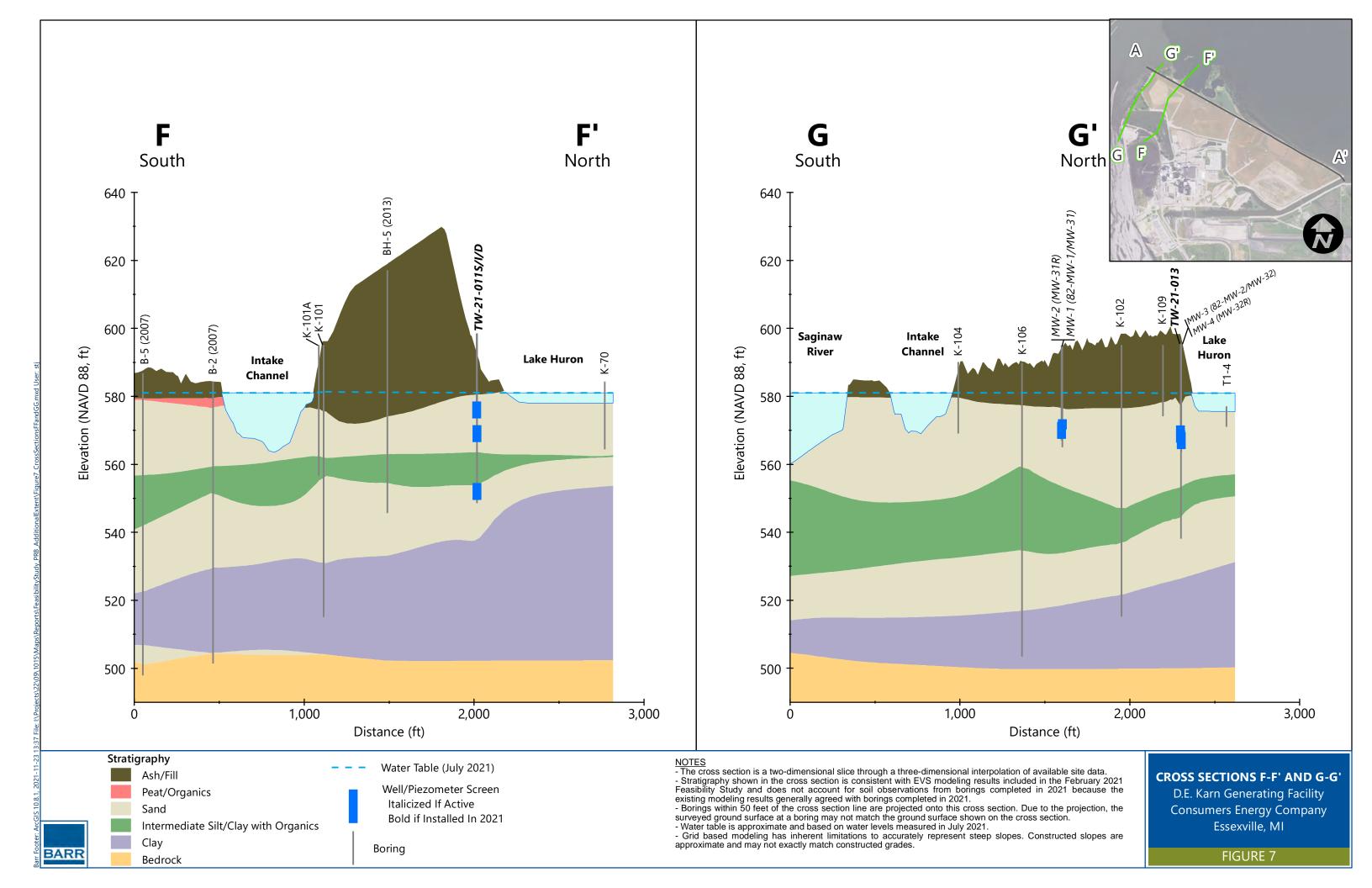
14. **Golder Associates Inc.** Geotechnical Report for the D.E. Karn Solid Waste Disposal Area. January 15, 2014.

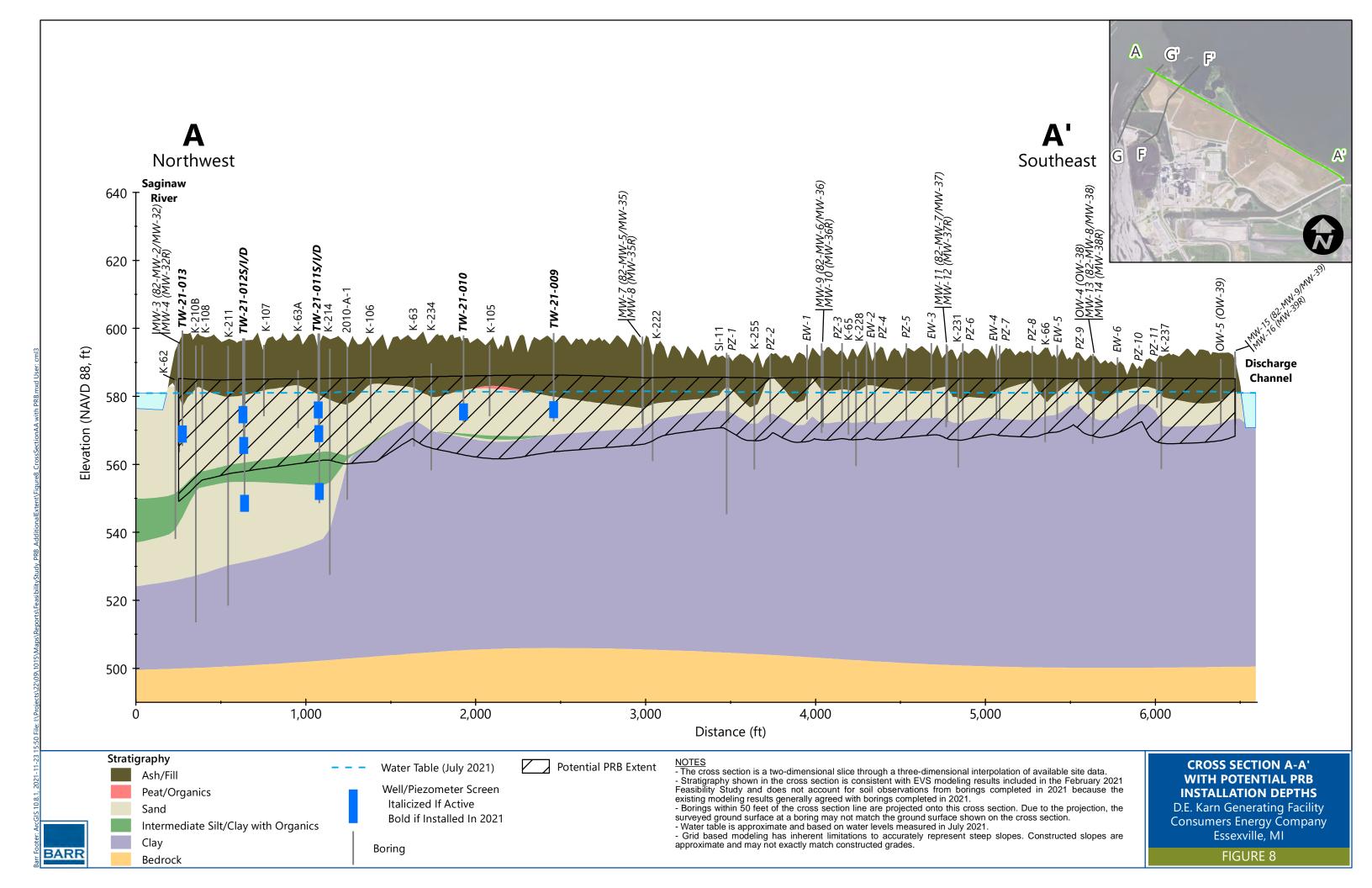

15. GEO-SLOPE International Ltd. Stability Modeling with GeoStudio. 2020.

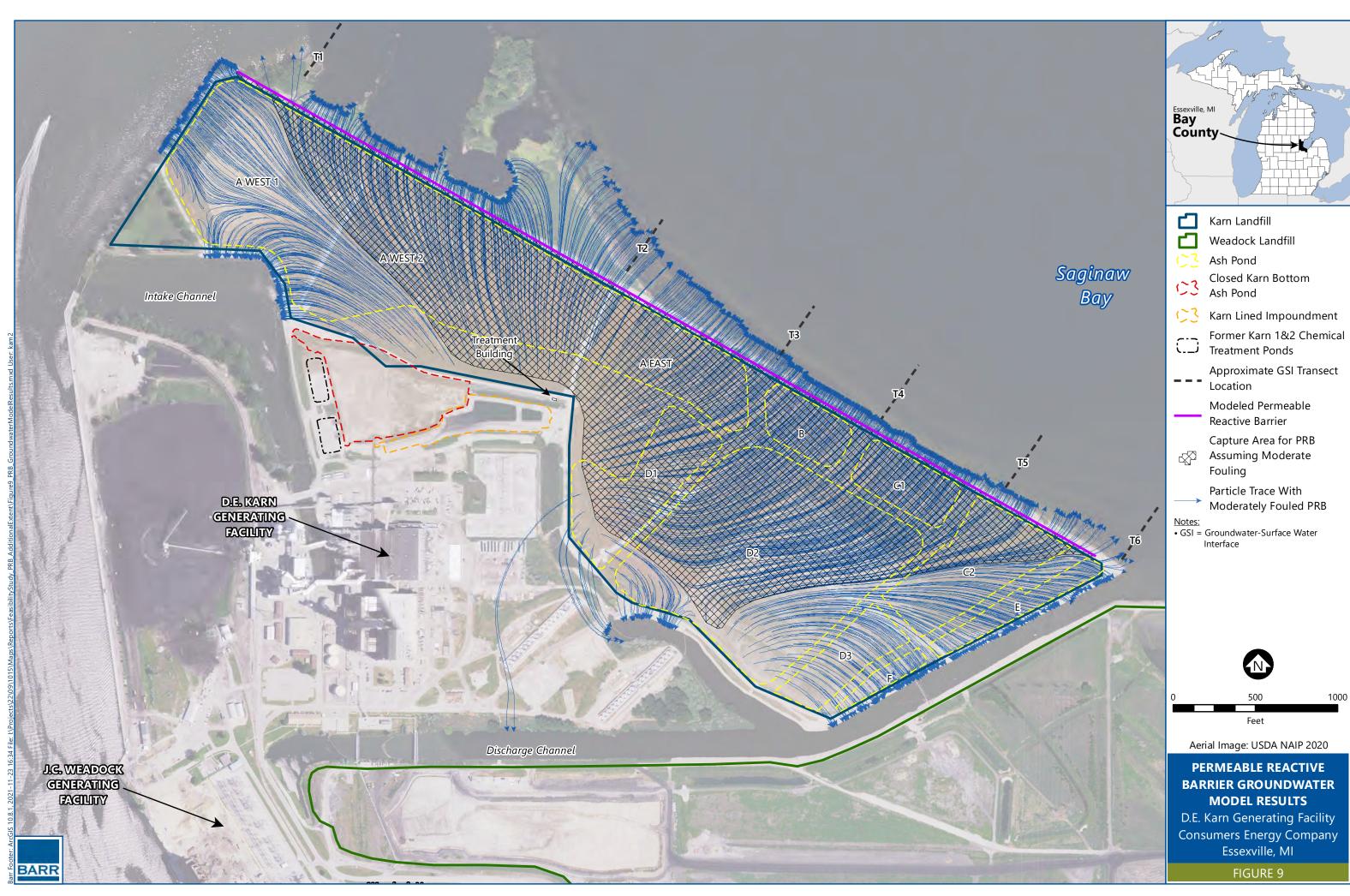

16. **ASTM International.** ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA : ASTM International, 2017.

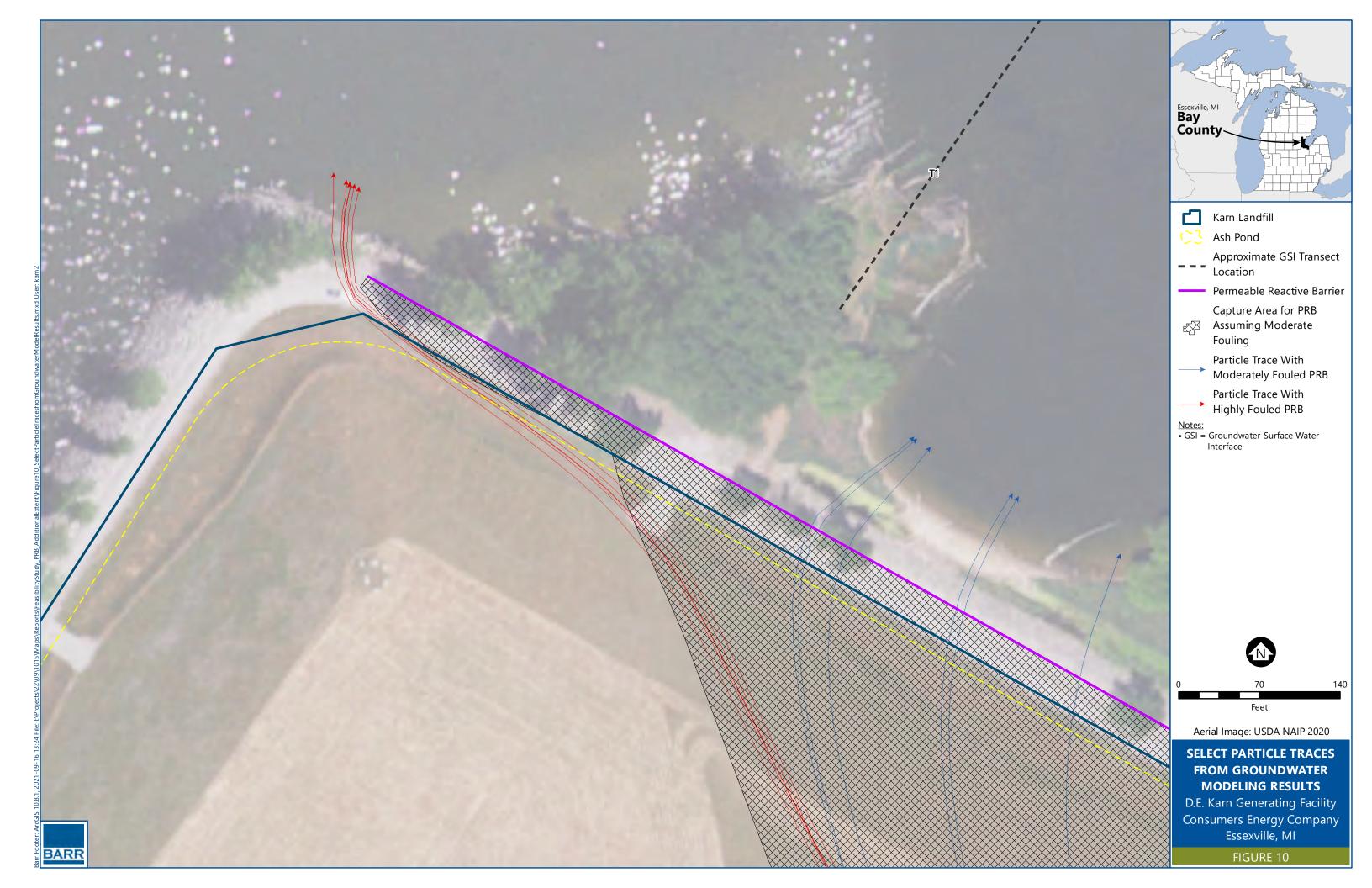
Figures

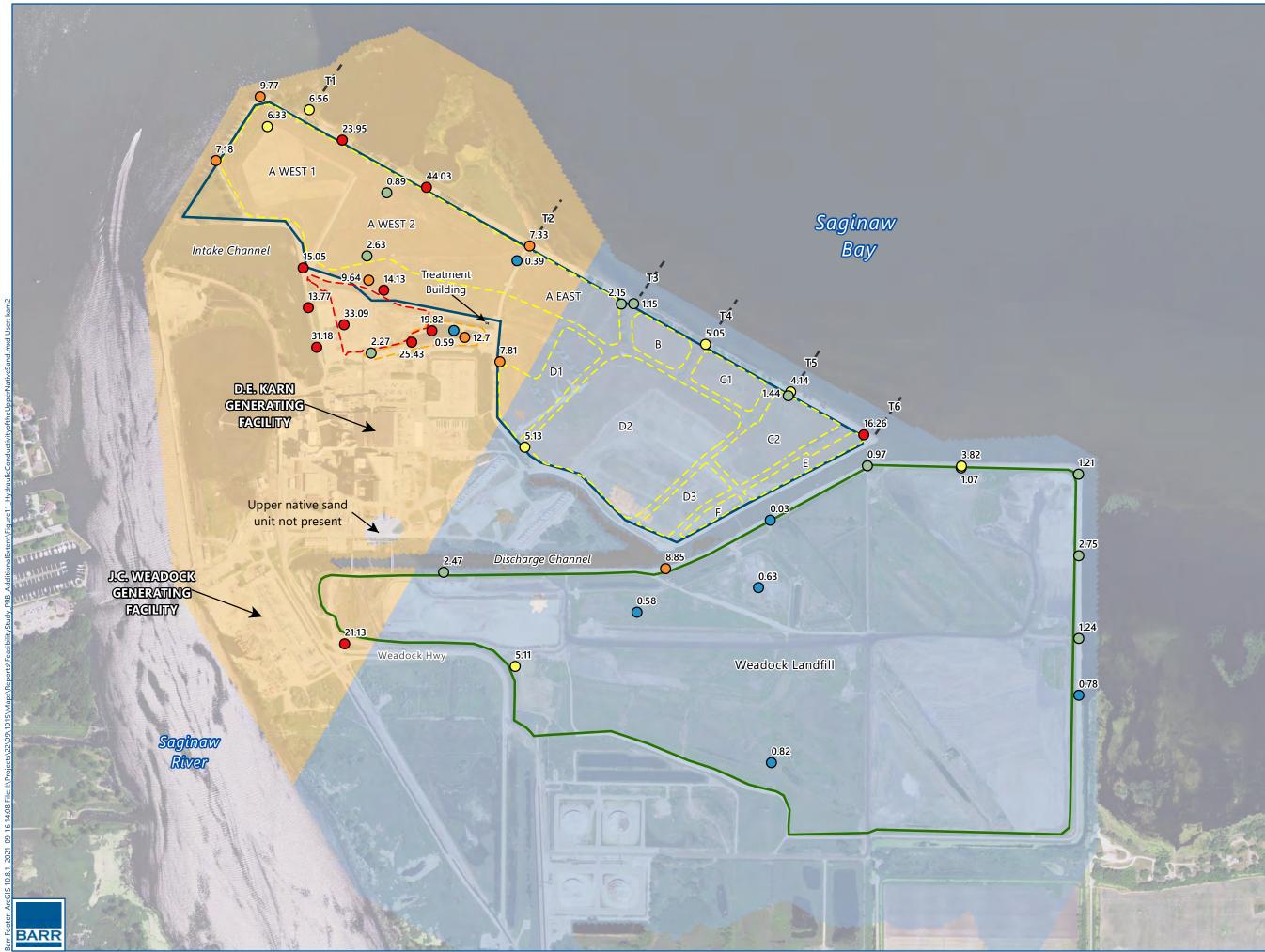


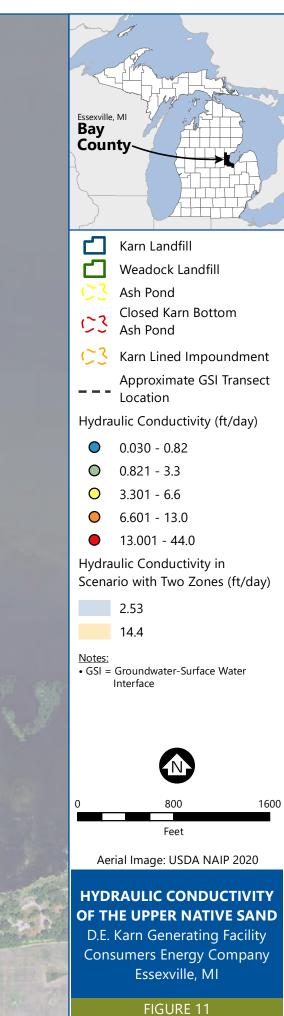












Appendices

Appendix A

Boring Logs, Well Development Logs, Groundwater Data, Soil Data

Appendix A-1a

Boring Logs

		3	005 Boardv	ering Company valk St, Suite 100			LOG		BC	RING TW-21-0	03
BA	\ R	R T	nn Arbor, N elephone:	/I 48108 734-922-4400						SHEET 1 OF 1	1
Locat	ct No.: ion: dinates	5:	22/09-101 Essexville, N 783,969			/D88	Surface Elevation: 598.6 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 26.0 ft	Top of	Cas	ing Elev.: 601.6 ft	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	w		OR PIEZOMETER DNSTRUCTION DETAIL	Elevation feet
-0			6-3-4-4.	PID: 0.1			√FILL: sand with gravel; gray; moist; roadbase. FILL: fine to medium sand; tan; moist; few silt. ∕At 1.4 ft, black fabric debris.			-Stick-up Protective Cover	
-			7-5-6-7.	PID:0.1 D/O/S:None/ None/ None			FILL: lean clay; grayish brown; stiff; moist; trace gravel. At 2 ft, fine to medium sand lens. FILL: fine to medium sand and coal cinders; dark gray;				59
5 -			5-5-8-14.	PID: 0.1			moist; trace gravel.				
-			8-6-10-8. 2-4-22-15.	PID:0.4 D/O/S:None/ None/ None						-Bentonite Grout 1-17 ft	5
10-			3-6-10-10.	PID: 0.1			FILL: lean clay; grayish brown; stiff; moist; trace gravel.				
-			4-34- 50/5.5"	PID:0.1 D/O/S:None/ None/ None			FILL: fine to medium sand and coal cinders; dark gray; moist; trace gravel.				5
15-			6-11-11-11.	PID: 0.1			At 14.5 ft, crushed limestone rock fragments. FILL: lean clay; grayish brown; moist; trace gravel. At 15.8 ft, fine to medium sand; orange; few silt.				
Ā			6-4-5-7.	PID: 0.1	SP		At 16.4 ft, wood debris. POORLY GRADED SAND (SP): fine to medium grained; tan; moist to wet; few silt; possible fill.			-Bentonite Chip 17-18 ft	¥
- 20-			5-3-3-6.	D/O/S:None/ None/ None PID:0.2			POORLY GRADED SAND (SP): fine to medium grained; gray; wet; few silt, trace shells.			-Filter Pack Sand 18-25 ft	5
-			2-2-4-5. 2-6-12-11.	PID:0.2 D/O/S:None/ None/ None	SP					−2-inch dia. PVC 10-Slot Screen 20-25 ft	5
- 25- -			2-2-2-3.	PID: 0.1			End of boring 26.0 feet		800	-Natural Collapse 25-26 ft	
-											5
	Boring		ed: pleted:	6/30/21 6/30/21			Remarks:				
ogge	ed By: Ig Con			A. Schumacher Pearson CME750X			PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Additional data may have been collected in the field which is not included on this		G/S/F =	Gravel/Sand/Fines	

3	8005 Boardv	ering Company valk St, Suite 100			LOG	OF B	ORING TW-21-0	10
BARR ^A	Ann Arbor, N Telephone:	/I 48108 734-922-4400					SHEET 1 OF 1	1
Project: Project No.: Location: Coordinates: Datum:	22/09-101 Essexville, N 784,229			D88	Surface Elevation: 598.0 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 26.0 ft	Top of Ca	asing Elev.: 601.2 ft	
Depth, feet Sample Type & Recovery Sample No.	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION		LL OR PIEZOMETER CONSTRUCTION DETAIL	Elevation feet
	5-3-2-2.	PID: 0.4			-FILL: sand with gravel; gray; moist; roadbase. FILL: fine to medium sand; tan; moist; few silt. At 1.8 ft, fine to medium grained sand and coal cinders;		-Stick-up Protective Cover	
	7-4-5-5.	PID:0.3 D/O/S:None/ None/ None			dark gray. At 2.5 ft, lean clay; grayish brown; stiff; moist; trace gravel./ FILL: fine to medium grained sand and coal cinders; dark gray; trace gravel.			59
5	2-3-3-4. 2-1-3-5.	PID: 0.0			FILL: lean clay; grayish brown; moist; trace gravel and and. FILL: fine to medium sand; brown; moist; few silt, trace clayey lenses.			
10	5-20-25-13.	PID:0.1 D/O/S:None/ None/ None			∼At 8.3 ft, crushed limestone rock fragments; trace fossils. →FILL: coal ash; gray; moist. →FILL: fine to medium sand and coal cinders; dark gray;		-Bentonite Grout 1-17 ft	59
	2-8-16-12.	PID: 0.2			moist. FILL: lean clay; grayish brown; stiff; moist; trace gravel. At 11 ft, crushed limestone rock fragments. At 11.5 ft, fine to medium sand and coal cinders; dark gray.			
	2-4-8-52.	PID:0.1 D/O/S:None/ None/ None PID:0.1			At 13.5 ft, fine to medium sand and coal cinders; dark gray.			58
15-	2-2-4-13.	PID:0.2			FILL: fine to medium sand; orange; moist; few silt. POORLY GRADED SAND (SP): fine to medium grained;			
Ţ	3-3-4-8.	D/O/S:None/ None/ None PID:0.3			orange; moist; few silt. From 16-19 ft, tan; trace gravel.		-Bentonite Chip 17-18 ft	¥58
20	5-3-5-5.	PID: 0.1			From 19-26 ft, gray; trace shells.		-Filter Pack Sand 18-25	
	5-2-4-6.	PID:0.1	SP				-2-inch dia. PVC 10-Slot	
	WH-WH-5- 6.	D/O/S:None/ None/ None					Screen 20-25 ft	57
25-	1-1-2-6.	PID: 0.2			End of boring 26.0 feet		- S -Natural Collapse 25-26 d ft	
								57
 Date Boring Star		6/30/21			Remarks: WH - Weight of Hammer			
Date Boring Corr Logged By: Drilling Contracto Drill Rig:		6/30/21 A. Schumacher Pearson CME750X			PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Co Additional data may have been collected in the field which is not included on this lo		F = Gravel/Sand/Fines	

		3	005 Boardv	ering Company valk St, Suite 100 /I 48108			LOG	OF BORING TW-21-011D
BA	١R	RT	elephone:	/1 48108 734-922-4400				SHEET 1 OF 2
ocati	ct No.: ion: linates	:	22/09-101 Essexville, N 784,644			′D88	Surface Elevation: 598.5 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 50.0 ft	Top of Casing Elev.: 601.8 ft
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-0	\setminus						FILL: fine to medium grained; brown; moist; poorly graded sand with silt.	
-			2-1-2-5. 2-3-5-5.	PID:0.1 D/O/S:None/ None/ None			FILL: brown; moist; trace sand and fine gravel; lean clay.	
_	$\langle \rangle$			PID: 0.5			FILL: dark gray; moist; trace gravel; coal ash and sand.	5
5 —			2-3-9-13.	PID:0.1 D/O/S:None/ None/ None				
-	X		3-6-7-9.	PID: 1.0			FILL: fine grained; tan; moist; few silt, trace clay and	
- - 10-			4-4-4-5.	PID: 0.3			gravel, poorly graded sand. From 8-8.3 ft, coal ash and sand.	5
_	X		3-6-14-12.	PID: 0.3			From 11.1-11.5 ft, coal ash and sand.	
_			4-4-5-10.	PID:0.2 D/O/S:None/ None/ None			FILL: grayish brown; moist; trace gravel; lean clay.	5
15 <u>-</u>			4-13-15-17.	PID: 0.4			FILL: fine grained; tan; moist to wet; few silt with coal ash, trace clay and gravel; poorly graded sand.	¥
-			2-3-5-8.	PID:0.3 D/O/S:None/ None/ None	SP		POORLY GRADED SAND (SP): fine to medium grained; tan; wet; few silt, trace gravel.	
- 20—			2-2-4-4.	PID: 0.0			POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray to dark gray; wet; trace shells.	5
-			1-1-3-2.	D/O/S:None/ None/ None				-Bentonite Grout 1-40.8 ft
-			2-4-4-6.	PID: 0.5	SP- SM			5
25-			2-3-7-10.	PID: 0.6				
-	$\left \right\rangle$		2-4-6-7.	D/O/S:None/ None/ None PID:0.3				
-	X		2-4-9-16.					5
ate E	-		ed: pleted:	6/28/21 6/28/21	<u> </u>		From 29.5-29.8 ft, few gravel. Remarks: Shelby tube collected from 34 to 36 feet bel WH - Weight of Hammer	low ground surface.
	ed By: g Con Rig:	racto	Dr:	A. Schumacher Pearson CME750X			PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Additional data may have been collected in the field which is not included on this	

		30	005 Boardv	ering Company valk St, Suite 100			LOG	OF BORING TW-21-011D
BA	R	२ ^{Ar} Te	nn Arbor, M elephone:	1 48108 734-922-4400				SHEET 2 OF 2
ocatio	t No.: on: inates	: :	22/09-1015 Essexville, N 784,644.			′D88	Surface Elevation: 598.5 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 50.0 ft	Top of Casing Elev.: 601.8 ft
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-30 			2-2-5-14.	PID:0.4 PID:0.1 D/0/S:None/ None/ None	SP- SM		POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray to dark gray; wet; trace shells. <i>(continued)</i> From 31-31.3 ft, few gravel.	
35-	X		2-2-4-4.	PID:0.2			LEAN CLAY WITH ORGANICS (CL): grayish brown; moist; soft to very soft; few shells.	56
_	\bigvee		2-2-2-3.	PID:0.2 D/O/S:None/ None/ None	CL			56
40	\bigwedge		1-2-3-4. 1-1-2-2.	PID:0.2 PID:0.2 D/O/S:None/ None/ None				-Bentonite Chip 40.8-41.8 ft
	\bigvee		WH-WH- WH-3.	PID:0.3 PID:0.2	SP-		POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray; wet.	
45— _(_	\bigwedge		2-1-4-3. 3-5-6-5.	PID:0.1 D/O/S:None/ None/ None	SM		From 45-45.3 ft, little clay. SILTY SAND (SM): fine to medium grained; gray; wet.	-2-inch dia. PVC 10-Slot
-(- 50-(1/12"- 1/12"	PID:0.2	SM SC		CLAYEY SAND (SC): gray; very soft. End of boring 50.0 feet	-Natural Collapse 49-50
								54
_								
 Date B	loring	Start	ed:	6/28/21			Remarks: Shelby tube collected from 34 to 36 feet be	elow ground surface.
	Boring d By: g Cont	Com	pleted:	6/28/21 A. Schumacher Pearson CME750X			WH - Weight of Hammer PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methar Additional data may have been collected in the field which is not included on th	ne Corrected; G/S/F = Gravel/Sand/Fines

		3	arr Engineering Company 005 Boardwalk St, Suite 10	00		LOG	GOF BORING TW-21-011
BA		R T	nn Arbor, MI 48108 elephone: 734-922-4400				SHEET 1 OF 2
ocat	ct No.: ion: linates	s:	Consumers D.E. Karn Cor 22/09-1015 Essexville, MI N 784,645.7 ft E 13,262,4 XY: NAD83 MI StPIn Sout	408.2 ff	:	Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon	Top of Casing Elev.: 601.6 ft
Depth, feet	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL
-0 - - -			PID:0.1 D/O/S:None/ None/ None PID:0.5			FILL: fine to medium grained; brown; moist; poorly graded sand with silt. FILL: brown; moist; trace sand and fine gravel; lean clay. FILL: dark gray; moist; trace gravel; coal ash and sand.	-Stick-up Protective Cover 59
5 — - -			PID:0.1 D/O/S:None/ None/ None PID:1.0			FULL fire grained ten maint four all trace alowand gravely people	
- - 10-			PID:0.3			FILL: fine grained; tan; moist; few silt, trace clay and gravel; poorly graded sand. From 8-8.3 ft, coal ash and sand.	5
-			PID:0.3 PID:0.2 D/O/S:None/ None/ None			From 11.1-11.5 ft, coal ash and sand. FILL: grayish brown; moist; trace gravel; lean clay.	-Bentonite Grout 1-22.8 ft 55
15			PID:0.4 PID:0.3 D/O/S:None/ None/ None			FILL: fine grained; tan; moist to wet; few silt with coal ash, trace clay and gravel; poorly graded sand. POORLY GRADED SAND (SP): fine to medium grained; tan; wet;	
- - 20 -			PID:0.0 D/O/S:None/ None/ None	SP		few silt, trace gravel. POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray to dark gray; wet; trace shells.	5
- 25-			PID: 0.5	SP- SM			-Bentonite Chip 22.8-23.8 ft -Filter Pack Sand
-			PID:0.6 D/O/S:None/ None/ None PID:0.3				23.8-32 ft -2-inch dia. PVC 10-Slot Screen 27-32 ft
-30 -						From 29.5-29.8 ft, few gravel.	
Date E Date E Logge	ed By:	Com	pleted: 6/28/21 A. Schumach	er		Remarks: Blind drilled to 32 feet below ground surface Lithology details taken from TW-21-011D. PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane	
Drillin Drill F	g Con Rig:	tracto	or: Pearson CME750X			Additional data may have been collected in the field which is not included on the	

		Ba 30	arr Engineering Company 005 Boardwalk St, Suite 10	00				LOC	G OF BC	RING TW-21-0 1	111
В	AR		nn Arbor, MI 48108 elephone: 734-922-4400							SHEET 2 OF 2	2
Pro Loc	ject: ject No. ation: ordinate um:	: s:	Consumers D.E. Karn Cor 22/09-1015 Essexville, MI N 784,645.7 ft E 13,262,4 XY: NAD83 MI StPIn Sout	108.2	ft		Surface Elevation: Drilling Method: Sampling Method: Completion Depth:	598.5 ft Hollow Stem Auger Split Spoon 32.0 ft	Top of Ca	sing Elev.: 601.6 ft	
Depth, feet	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log		LITHOLOGIC DESCRI	PTION		L OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
-30			PID:0.4	SP- SM		grained; gr From 31-3	GRADED SAND WITH SILT (SP ay to dark gray; wet; trace shells 1.3 ft, few gravel. ing 32.0 feet	-SM): fine to medium 6. <i>(continued)</i>			-
35	- ;										565-
ATE.GDT	-										- 560-
RARY.GLB ENVIRO LOG BARR TEMPLATE.GDT) - -										-
RY.GLB ENVIRO L	- ;										555-
S.GPJ BARRLIBRA	-										- 550-
N PRB TEMP WELL	(- -										-
091015.01 DE KARN 55	- - -										545-
ONGINT/PROJECTS/22091015 DE KARN/22091015.01 DE KARN PRB TEMP WELLS.GPJ BARRUB LI D D D D Li D D D D D D D D D D D D D D D D D D D	-										- - 540-
Date Date Log	e Boring Boring ged By: ling Cor	g Com	pleted: 6/28/21 A. Schumach	er	<u> </u>	1	Remarks: Blind drilled to 32 Lithology details taken from PID = Headspace; D/O/S = Discoloration	TW-21-011D.		= Gravel/Sand/Fines	<u> </u>
	l Rig:		CME750X				Additional data may have been collected	in the field which is not included on th	is log.		

Г

	30	arr Engineering Company 005 Boardwalk St, Suite 10 nn Arbor, MI 48108	0		LOG	OF E	BORING TW-21-01	15
BAR		nn Arbor, MI 48108 elephone: 734-922-4400					SHEET 1 OF	1
Project: Project No.: ocation: Coordinates Datum:	:	Consumers D.E. Karn Corr 22/09-1015 Essexville, MI N 784,647.5 ft E 13,262,4 XY: NAD83 MI StPIn South	05.1	ft	Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon	Top of	f Casing Elev.: 601.8 ft	
Depth, feet Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	v	VELL OR PIEZOMETER CONSTRUCTION DETAIL	Elevation feet
-0		PID:0.1 D/O/S:None/ None/ None			FILL: fine to medium grained; brown; moist; poorly graded sand with silt. FILL: brown; moist; trace sand and fine gravel; lean clay.		-Stick-up Protective Cover	
5 -		PID:0.5 PID:0.1 D/O/S:None/ None/ None			FILL: dark gray; moist; trace gravel; coal ash and sand.			59
- - 10		PID:1.0 PID:0.3			FILL: fine grained; tan; moist; few silt, trace clay and gravel; poorly graded sand. From 8-8.3 ft, coal ash and sand.		-Bentonite Grout 1-17 ft	5
-		PID:0.3 PID:0.2 D/O/S:None/ None/ None			From 11.1-11.5 ft, coal ash and sand. FILL: grayish brown; moist; trace gravel; lean clay.			5
15-		PID:0.4 PID:0.3 D/O/S:None/ None/ None	SP		FILL: fine grained; tan; moist to wet; few silt with coal ash, trace clay and gravel; poorly graded sand. POORLY GRADED SAND (SP): fine to medium grained; tan; wet; few silt, trace gravel.		-Bentonite Chip 17-18 ft	
20		PID:0.0 D/O/S:None/ None/ None	SP-		POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray to dark gray; wet; trace shells.		Filter Pack Sand 18-25	5
25-		PID:0.5	SM		End of boring 25.0 feet		-2-inch dia. PVC 10-Slot Screen 20-25 ft	5
					-			5
-30		pleted: 6/28/21			Remarks: Blind drilled to 25 feet below ground surface Lithology details taken from TW-21-011D.	ce.		
₋ogged By: Drilling Con Drill Rig:	tracto	A. Schumache r: Pearson CME750X	er		PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methar Additional data may have been collected in the field which is not included on t		G/S/F = Gravel/Sand/Fines	

		ering Company valk St, Suite 100			LOG)F B	ORI	NG TW-21-012	2D
								SHEET 1 OF 2	:
Project: Project No.: Location: Coordinates: Datum:	22/09-1015 Essexville, N 784,862.			088	Surface Elevation: 597.0 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 51.0 ft	Top of	f Casin	g Elev.: 600.3 ft	
Depth, feet Sample Type & Recovery Sample No.	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	v		OR PIEZOMETER ISTRUCTION DETAIL	Elevation feet
	4-2-6-11. 6-13-18-16.	PID:0.0 D/O/S:None/ None/ None PID:0.4			FILL: fine to medium grained; tan; moist; few silt; poorly graded sand. FILL: grayish brown; moist; stiff; trace gravel and ash; lean clay. From 2.5-3 ft, dark gray fine to medium grained sand and coal cinders. From 4.7-5 ft, dark gray fine to medium grained sand and coal cinders.			Stick-up Protective Cover	59
5	10-11-12- 12. 12-23-17- 12. 8-6-7-7.	PID:0.1 PID:0.0 D/O/S:None/ None/ None			 FILL: fine to medium grained; orange; moist; few silt; poorly graded sand. From 6-7 ft, coal cinders present; dark gray. FILL: grayish brown; moist; stiff; trace gravel and ash; lean clay. From 8-8.5 ft, dark gray fine to medium sand and coal cinders. 				59
	2-6-8-9. 5-8-6-12.	PID:0.1 PID:0.0 PID:0.6 D/0/S:None/ None/ None			FILL: gray; moist; wax-like texture, few gravel, trace orange mottling, trace sand; lean clay. From 12-14.3 ft, alternating 6-in layers of grayish brown lean clay with trace gravel and sand and orange fine to medium grained sand with trace coal cinders and silt. Lean clay gets sandier and less stiff with depth.				58
15-	3-5-9-8. 5-5-5-7.	PID:0.4 D/O/S:None/ None/ None	SP/SM		POORLY GRADED SAND (SP/SM): fine to medium grained; tan; moist to wet; few to little silt.			7	58
20	6-4-4-6. 3-4-7-8.	PID:0.7 PID:0.7 D/0/S:None/ None/ None			From 19-19.5 ft, trace shells and gravel. POORLY GRADED SAND (SP/SM): fine to medium grained; gray; wet; few silt and shells, trace gravel.		—е	3entonite Grout 1-43 ft	57
25-	4-3-6-9. 1-2-4-6.	PID:0.7 PID:0.8	SP/SM						
-30	WH-WH-3- 2. 8-12-19-21.	D/O/S:None/ None/ None PID:0.4			At 27.5 ft, increased gravel. At 29 ft, light gray.				57
30	mpleted:	6/29/21 6/29/21 A. Schumacher Pearson CME750X			Remarks: Access road (gravel) at surface. Shelby tube surface. WH - Weight of Hammer PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane C Additional data may have been collected in the field which is not included on this lo	corrected;		-	Ind

		3	005 Boardw	ring Company /alk St, Suite 100 // 48108			LOG O	F BORING TW-21-012	D
Proje Proje Locat	ct: ct No.: ion: dinates	К т	Consumers 22/09-1015 Essexville, N 784,862.	734-922-4400 D.E. Karn Corrective A		′D88	Surface Elevation: 597.0 ft T Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Completion Depth: 51.0 ft	SHEET 2 OF 2	
Depth, feet	Sample Type & Recovery	Sample No.	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL	Elevation feet
-30- - - - 35- - -			10-16-32- 32. 9-12-16-14. 2-1-1-1.	PID:0.8 D/O/S:None/ None/ None PID:3.0	SP/SN SP- SM CL CL		POORLY GRADED SAND (SP/SM): fine to medium grained; gray; wet; few silt and shells, trace gravel. (continued) POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray; wet; few shells. LEAN CLAY (CL): gray; moist; soft; few sand and silt, trace shell fragments. ORGANIC LEAN CLAY (CL): dark brown; moist; trace wood fragments.		56
- 40- - - 45- - - - - - - 50-			1-2-2-3. 1-1-3-2. 1-1-2-4. 2-2-4-8. 5-13-22-25. 5-10-12-22.	PID:0.5 D/O/S:None/ None/ None PID:0.3 PID:0.4 D/O/S:None/ None/ None PID:0.4 PID:0.4 PID:0.4 PID:0.4 PID:0.4 PID:0.4	SP. SM/ CL SC SP- SM		POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; grayish brown; moist. ORGANIC LEAN CLAY (CL): dark brown; moist. CLAYEY SAND (SC): brown/grayish brown; moist to wet; soft; trace shells. POORLY GRADED SAND WITH SILT (SP-SM): fine to medium grained; gray; moist to wet; few clay. POORLY GRADED SAND (SP): fine to medium grained; gray; wet; few silt.	-Bentonite Chip 43-44 ft -Filter Pack Sand 44-51 ft -2-inch dia. PVC 10-Slot Screen 46-51 ft	55
- - 55-	-						End of boring 51.0 feet		54
Date I Logge	ed By: Ig Con	Com	pleted:	6/29/21 6/29/21 A. Schumacher Pearson CME750X			Remarks: Access road (gravel) at surface. Shelby tube c surface. WH - Weight of Hammer PID = Headspace: D/O/S = Discoloration/Odor/Sheen: FID/MC = FID/Methane Cor Additional data may have been collected in the field which is not included on this log	- rrected; G/S/F = Gravel/Sand/Fines	54 Ind

		З	Barr Engineering Company 8005 Boardwalk St, Suite 10	00				LOG	OF	во	RING TW-21-01	121
B/	٩R	\mathbf{R}_{1}^{\prime}	Ann Arbor, MI 48108 Telephone: 734-922-4400								SHEET 1 OF 2	2
Loca	ect No. tion: dinate		Consumers D.E. Karn Cor 22/09-1015 Essexville, MI N 784,864.4 ft E 13,262,0 XY: NAD83 MI StPIn Sout)24.6	ft		Surface Elevation: Drilling Method: Sampling Method: Completion Depth:	597.1 ft Hollow Stem Auger Split Spoon 34.0 ft	Top c	of Cas	ing Elev.: 600.4 ft	
Depth, feet	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log		LITHOLOGIC DESCRI	PTION	1		OR PIEZOMETER DNSTRUCTION DETAIL	Elevation feet
-0-						FILL: fine to med	lium grained; tan; moist; fe	ew silt; poorly graded sand.			-Stick-up Protective	+
	-		PID:0.0 D/O/S:None/ None/ None PID:0.4			From 2.5-3 ft, da cinders.	wn; moist; stiff; trace grav Irk gray fine to medium gra Irk gray fine to medium gra	ined sand and coal			Cover	59
5 -	-		PID: 0.1		\bigotimes	FILL: fine to med	lium grained; orange; mois	st: few silt: poorly graded				
			PID:0.0 D/O/S:None/ None/ None			sand.	cinders present; dark gra					
							wn; moist; stiff; trace grav Irk gray fine to medium sar					59
10-			PID: 0.1			FILL: gray; moist trace sand; lean	t; wax-like texture, few grav clay.	vel, trace orange mottling,				
			PID:0.0			with trace gravel with trace coal ci	alternating 6-in layers of g and sand and orange fine inders and silt. andier and less stiff with d	to medium grained sand			-Bentonite Grout 1-26 ft	58
15-			D/O/S:None/ None/ None		\times	,,,	ED SAND (SP to SP-SM):	•				
			PID:0.4 D/O/S:None/ None/ None	SP to SP- SM		From 19-19.5 ft,	trace shells and gravel.					58
20-			PID: 0.7			POORLY GRAD	ED SAND (SP): fine to me s, trace gravel.	dium grained; gray; wet;				
			PID:0.7 D/O/S:None/ None/ None									57
25-			PID: 0.7	SP								
			PID:0.8 D/O/S:None/ None/ None								-Bentonite Chip 26-27 ft	5
			PID :0.4			At 27.5 ft, increas	-				-Filter Pack Sand 27-34 ft	
-30 -						At 29 ft, light gray	у.					
Date Date		Con	npleted: 6/29/21				emarks: Blind drilled to 34 thology details taken from	feet below ground surface TW-21-012D.				
	ed By: ng Cor Pia:		A. Schumach or: Pearson CME750X	er				N/Odor/Sheen; FID/MC = FID/Methane C in the field which is not included on this		G/S/F =	Gravel/Sand/Fines	

		Ba	arr Engineering Company 005 Boardwalk St, Suite 10	10						LC	og of Bo	DRING TW-21-0 [°]	121
B	AR		nn Arbor, MI 48108 elephone: 734-922-4400	0								SHEET 2 OF	2
Loca	ect No. ation: rdinates	: s:	Consumers D.E. Karn Cor 22/09-1015 Essexville, MI N 784,864.4 ft E 13,262,0 XY: NAD83 MI StPIn Sout)24.6	ft			Surface Eleval Drilling Methor Sampling Meth Completion De	d: hod:	597.1 ft Hollow Stem Auger Split Spoon 34.0 ft		asing Elev.: 600.4 ft	
Depth, feet	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log		L	ITHOLOGIC DE	SCRI	PTION		L OR PIEZOMETER CONSTRUCTION DETAIL	Elevation, feet
—30- 35-			PID:0.8 D/O/S:None/ None/ None	SP- \SM/		few silt and	3 shells, tra GRADED S ay; wet; fe	ace gravel. <i>(cont</i> SAND WITH SIL w shells.	tinued)	dium grained; gray; we) -SM): fine to medium	t;	-2-inch dia. PVC 10-Slot Screen 29-34 ft	- 565- - - - - - - - - - - - - - - - - -
OXIGNT/PROJECTS/22091015 DE KARN/22091015.01 DE KARN PRB TEMP WELLS.GPJ BARRLIBRARY.GLB ENVIRO LOG BARR TEMPLATE.GDT 100 100 100 100 100 100 100 10	-												- - - 555-
21 BARRLIBRARY.GLB ENV	-												- - 550-
KARN PRB TEMP WELLS.GF	-												- - 545- -
91015 DE KARN/22091015.01 DE 55	-												- - 540- -
03-03 Date Date Logg Drillin Drillin Drillin	Boring Boring Jed By: ng Con Rig:	g Com	pleted: 6/29/21 A. Schumach	er	<u> </u>	1	Litholo PID = He	egy details taken eadspace; D/O/S = Disc	from *	Feet below ground surf TW-21-012D. vOdor/Sheen; FID/MC = FID/Mett in the field which is not included o	hane Corrected; G/S/F	= Gravel/Sand/Fines	<u> </u>

	Barr Engineering Cor 3005 Boardwalk St, S	Suite 100		LOG OF BORING TW-21-012	2S
BAR	Ann Arbor, MI 48108 Telephone: 734-922	-4400		SHEET 1 OF 1	1
Project: Project No.: Location: Coordinates Datum:	Essexville, MI	3,262,020.9 f	ft	Surface Elevation: 597.1 ft Top of Casing Elev.: 600.2 ft Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon VD88 Completion Depth: 25.0 ft	I
Depth, feet Sample Type & Recovery	O ອ ອ ມ ມ ບ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ ອ	TAL S C S	Graphic Log	LITHOLOGIC DESCRIPTION WELL OR PIEZOMETER CONSTRUCTION DETAIL	Elevicien foot
	PID:0.0 D/O/S:None/ None/ PID:0.4 PID:0.1 PID:0.0 D/O/S:None/ None/ PID:0.1 PID:0.1 PID:0.1 PID:0.0 D/O/S:None/ None/ PID:0.4 D/O/S:None/ None/ PID:0.7 D/O/S:None/ None/	None SP to SP-SM		ILL: fine to medium grained; tan; moist; few silt; poorly graded sand. -Stick-up Protective Cover ILL: grayish brown; moist; stiff; trace gravel and ash; lean clay. -Stick-up Protective Cover rom 2.5.3 ft, dark gray fine to medium grained sand and coal inders. -Stick-up Protective Cover rom 4.7.5 ft, dark gray fine to medium grained sand and coal inders. -Stick-up Protective Cover ILL: fine to medium grained; orange; moist; few silt; poorly graded and. -Stick-up Protective Cover inders. -Stick-up Protective Gravel and ash; lean clay. -Stick-up Protective Cover ilL: grayish brown; moist; stiff; trace gravel and ash; lean clay. -Bentonite Grout 1-17 ft ilL: gray moist; wax-like texture, few gravel, trace orange mottling, race gravel and sand and orange fine to medium grained sand with trace oral cinders an silt. -Bentonite Grout 1-17 ft rom 12-14.3 ft, alternating 6-in layers of grayish brown lean clay with trace gravel and sand and orange fine to medium grained sand with trace oral cinders an silt. -Bentonite Chip 17-18 ft POORLY GRADED SAND (SP): fine to medium grained; gray; wet; ew silt and shells, trace gravel. -Filter Pack Sand 18-25 ft POORLY GRADED SAND (SP): fine to medium grained; gray; wet; ew silt and shells, trace gravel. -Sciene 20-25 ft End of boring 25.0 feet -All of boring 25.0 feet -Sciene 20-25 ft	55 55 55 57 57
 Date Boring Date Boring Logged By:	Completed: 6/29/2			Remarks: Blind drilled to 25 feet below ground surface. Lithology details taken from TW-21-012D.	
Drilling Cont Drill Rig:	ractor: Pearso CME7			PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines Additional data may have been collected in the field which is not included on this log.	

		3005 Board	ering Company walk St, Suite 100			LU	5 UF	סנ	ORING TW-21-0 ⁴	13
BAF	RR	Ann Arbor, M Telephone:	MI 48108 734-922-4400						SHEET 1 OF 2	2
Project: Consumers D.E. Karn Corrective Action Project No.: 22/09-1015 Location: Essexville, MI Coordinates: N 785,020.9 ft E 13,261,697.9 ft Datum: XY: NAD83 MI StPIn South Int Ft; Z: NAVD88					D88	Surface Elevation:599.4 ftDrilling Method:Hollow Stem AugerSampling Method:Split SpoonCompletion Depth:34.0 ft	Top of Casing Elev.: 602.6 ft			
Depth, feet Sample Type &	Recovery	Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	N		OR PIEZOMETER ONSTRUCTION DETAIL	
-0		4-7-7-9. 1-4-10-12.	PID:1.6 D/O/S:None/ None/ None			FILL: fine to medium sand; tan; moist; few silt. FILL: lean clay; grayish brown; stiff; moist; trace gravel. At 1.7 ft, fine to medium sand and coal cinders; dark brown. At 2 ft, fine to medium sand; tan; moist; few silt, no coal cinders.			-Stick-up Protective Cover	
5 -		2-9-12-14.	PID:0.4 PID:0.3 D/O/S:None/ None/ None			FILL: fine to medium sand and coal cinders; dark gray; moist; trace gravel. At 4.5 ft, lean clay; grayish brown; few sand and trace gravel.				5
10		2-8-11-14. 2-3-4-6.	PID:1.1 D/O/S:None/ None/ None PID:1.1			FILL: fine to medium sand; orange; moist; few silt. FILL: fine to medium sand; trace shells and silt. At 8 ft, dark gray fine to medium sand and coal cinders. At 8.3 ft, fine to medium sand; orange; few silt. At 9.5 ft, trace roots.				5
		2-24-26-13.	PID:0.8 D/O/S:None/ None/ None			FILL: fine to medium sand and coal cinders; dark gray; trace coal fragments. FILL: fine to medium sand and coal cinders; trace silt,				
15-		3-4-5-5.	PID:0.3			voots, and plastic debris, no coal cinders. FILL: lean clay; grayish brown; trace gravel and coal cinders.			-Bentonite Grout 1-25 ft	5
		3-1-1-3.	PID:0.2 D/O/S:None/ None/ None PID:0.2			FILL: lean clay; gray; moist; lean clay.				
20		WH-1-1-3.	PID: 0.1 D/O/S: None/ None/ None							Ę
		WH-1-3-3.	PID: 0.1							
25-		1-1-2-3.	PID:0.1 D/O/S:None/ None/ None			At 24 ft, dark gray; soft; homogeneous.				5
		WH-1. 1/12"-1-4.	PID:0.3 D/O/S:None/ None/ None			POORLY GRADED SAND (SP): fine grained; dark gray; wet; few silt, trace shells.			-Bentonite Chip 25-26 ft -Filter Pack Sand 26-33 ft	
30		1-1-1-1.	PID:0.3	SP						5
Date Boring Started:6/30/21Date Boring Completed:6/30/21Logged By:A. Schumacher				Remarks: Access road (gravel) at surface. WH - Weight of Hammer						
vrilling Contractor: Pearson Drill Rig: CME750X				PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines Additional data may have been collected in the field which is not included on this log.						

		3	005 Boardv	ering Company valk St, Suite 100			LO	G OF BORING TW-21-0	13			
B/	٩R							SHEET 2 OF 2				
Project: Consumers D.E. Karn Corrective Action Project No.: 22/09-1015 Location: Essexville, MI Coordinates: N 785,020.9 ft E 13,261,697.9 ft Datum: XY: NAD83 MI StPIn South Int Ft; Z: NAVD88						/D88	Surface Elevation:599.4 ftDrilling Method:Hollow Stem AugerSampling Method:Split SpoonCompletion Depth:34.0 ft	Top of Casing Elev.: 602.6 ft				
Depth, feet Sample Type & Recovery Sample No.		Blows/6in.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL	Flevation feet				
-30- - - - - - - - - - -			1-1-1-1. 4-4-6-12.	PID:0.4 D/O/S:None/ None/ None PID:0.4 D/O/S:None/ None/ None PID:0.3	SP		POORLY GRADED SAND (SP): fine grained; dark gray; wet; few silt, trace shells. <i>(continued)</i> End of boring 34.0 feet	-2-inch dia. PVC 10-Slot Screen 28-33 ft -Natural Collapse 33-34 ft	56			
- 40- - -	-								56			
45- - - -	-								55			
50- - - -	-											
55- - - -	-								54			
–60 <i>–</i> Date	Boring	Start	 ed:	6/30/21			Remarks: Access road (gravel) at surface.		54			
Date Logge Drillir	Date Boring Started:6/30/21Date Boring Completed:6/30/21Logged By:A. SchumacherDrilling Contractor:PearsonDrill Rig:CME750X						WH - Weight of Hammer PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines Additional data may have been collected in the field which is not included on this log.					

Appendix A-1b

Well Development Logs

Barr Engineering Company WELL DEVELOPMENT LOG

Client: OMSUN	ners		Wel	Well Number: TW-21-009						
Location: DE K	arn		Dat	Date(s): 7/1/2/						
Project #: 2209	1016		Dev	Developer: Pearson/Ams3						
GENERAL	DATA	DEVELOPMENT LOG								
Casing diameter ("):	2 inch			Cond. @ 25 μS/cm	pH, standard units	⁺ Turbidity, NTU	Appearance/			
Well Depth – Before Development:*	27.89	Date/Time	Temp. ⁰C				Comments (i.e. sediment/color/ Cloudiness)			
Well Depth – After Development:*	27.90		1							
Type of Development	Surge	×	surg-	ed me	ell 3	times	t			
Type of Pump:	Submersibl	e all	owe	d to	clea	rtoc	ZONTU			
Pumping Rate:	~2gal/min									
Total Volume Removed:	~40gal									
Well Volume:										
Purge time:	1740-1800									
SWL:	20.13'		-							
WELL CONST	RUCTION		-	-		1	1			
Top Sealed?	Yes (Lock)									
Bolts Straight?	N/A									
Concrete Pad?	Yes	Notes/Obser	vations:							
Odor:	none notice	d								
Purge Appearance:	Clear he following sections	to be filled ou	ut by geol	ogist overse	eeing well i	nstallation ***				
	STALLATION NOTE			pH PROFILING NOTES (FOR SCREENED INTERVAL)						
Geologist Initials: An	453			Initial Color: pH Range:						
Screen Length (ft): 5	ScreenInter	val: 20-25	Able	Able to pump continuously? (Y/N):						
Volume Flushed from B	orehole (gal): 40	lach	Pum	Pumping Rate during pH profiling (gpm):						

*Measurements are referenced from top of riser pipe, unless otherwise indicated.

Barr Engineering Company WELL DEVELOPMENT LOG

Client: Consum	ners		We	Well Number: JW-21-010							
Location: DE K	arn		Dat	Date(s): 7/1/2/							
Project #: 2209	1016		Dev	eloper: /	Pears	on/AMS	3				
GENERA	DATA	DEVELOPMENT LOG									
Casing diameter ("):	2 inch			Cond. @ 25 µS/cm			Appearance/				
Well Depth – Before Development:*	27.88	Date/Time	Temp. ℃		pH, standard units	Turbidity, NTU	Comments (i.e. sediment/color/ Cloudiness)				
Well Depth – After Development:*	28.02										
Type of Development	Surge	¥	Sura	jed m	ell 3	times &	allowed				
Type of Pump:	Submersible	to	clea	r to	<20	NTU					
Pumping Rate:	~2gal/mi	1									
Total Volume Removed:	~70gal										
Well Volume:	-										
Purge time:	1620-1655										
SWL:	19.90										
WELL CONST	RUCTION										
Top Sealed?	Yes (Lock)										
Bolts Straight?	N/A										
Concrete Pad?	Yes	Notes/Observ	vations:								
Odor:	hone notice	d									
Purge Appearance:	Clear he following sections	to be filled ou	t hy geol	onist overs	eeino well i	nstallation **					
	STALLATION NOTE		1	pH PROFILING NOTES (FOR SCREENED INTERVAL)							
Geologist Initials: 🛕 🅅	153		-	Initial Color: pH Range:							
Screen Length (ft): 5	Screen Interv	ral:20-25	Able	Able to pump continuously? (Y/N):							
Volume Flushed from B	Pum	Pumping Rate during pH profiling (gpm):									

*Measurements are referenced from top of riser pipe, unless otherwise indicated.

Barr Engineering Company WELL DEVELOPMENT LOG

client: Consumers				Well Number: TW-21-011S/I/D				
Location: DE Karn				Date(s):7/1/21				
Project #: 22091016			Dev	veloper: P	earson	n/Ams3		
GENERA					LOPMENT	/		
Casing diameter ("):	2 inch D≊NM						Appearance/	
Well Depth – Before Development:*	I 35.30 S=27.57	Date/Time	Temp. ℃	Cond. @ 25 µS/cm	pH, standard units	Turbidity, NTU	Comments (i.e. sediment/color/ Cloudiness)	
Well Depth – After Development:*	D= 32.37 I= 35.38 S= 27.58							
Type of Development	Surge	*A	Il we	lls su	ged 3	times &	allowed	
Type of Pump:	Submersible	to	clear	to <	ZONT	u		
Pumping Rate:	~2gal/min							
Total Volume Removed:	varied.							
Well Volume:	varied.							
Purge time:	D=0820-0850 1=0855-0920	2						
SWL:	S=0925-0945 D=20.37' I=20.39'							
WELL CONS	5=20 601							
Top Sealed?	Yes (Lock)		_					
Bolts Straight?	NA							
Concrete Pad?	Yes	Notes/Obser						
Odor:	none noticed	at s/I/I	>					
Purge Appearance:	Clear The following sections	to be filled o	ut by aeo	logist overs	eeina well i	nstallation ***		
WELL INSTALLATION NOTES						FOR SCREEN	ED INTERVAL)	
Geologist Initials: AN		D= 44.4		Initial Color: pH Range:				
Screen Length (ft): 5	Screed Interv	/al: I = 27-3	2' Able	Able to pump continuously? (Y/N):				
Volume Flushed from Borehole (gal): Variod S=20-25"			S" Pum	Pumping Rate during pH profiling (gpm):				

1

ì

*Measurements are referenced from top of riser pipe, unless otherwise indicated.

Barr Engineering Company WELL DEVELOPMENT LOG

client: Consumers			Wel	Well Number: TW-2/-0125/I/D				
Location: DEK	arn			e(s): 1/1		/	12	
Project #: 22091016			Dev	eloper: 1	Pearson	n		
GENERAL	DATA				LOPMENT			
Casing diameter ("):	2 inch D = 54.63			Qual			Appearance/ Comments (i.e.	
Well Depth – Before Development:*	I= 36.70 S= 27.85	Date/Time	Temp. ℃	Cond. @ 25 µS/cm	pH, standard units	Turbidity, NTU	sediment/color/ Cloudiness)	
Well Depth – After Development:*	D=54.80 T=36.71 S=27.71							
Type of Development	Surge	*A	lne	ls sur	ged 3	time's LZON	-w	
Type of Pump:	Submers, ble	a11.	wed	to cle	ar to	LZON	tu	
Pumping Rate:	~2gal/min							
Total Volume Removed:	varied.							
Well Volume:	varied.							
Purge time:	$D = 000 - 035 \\ I = 040 - 115 \\ S = 120 - 210 \\ 000 - 100 - 115 \\ 000 - 1$							
SWL: bTOC	D=18.91 I=19.39							
	S = 19.23 FRUCTION							
Top Sealed?	Yes (Lock)							
Bolts Straight?	N/A							
Concrete Pad?	Yes	Notes/Obser	vations:					
Odor:	nonenotice	d						
Purge Appearance:	Clear	to be filled or	it hy and	onist overs	eeina well in	stallation ***		
*** The following sections to be filled out b WELL INSTALLATION NOTES							ED INTERVAL)	
Geologist Initials: AMS3			-	pH PROFILING NOTES (FOR SCREENED INTERVAL) Initial Color: pH Range:				
Screen Length (ft): 5	ScreenInterv	al. = 29-30	2	Able to pump continuously? (Y/N):				
Volume Flushed from B		d 3 20-2.	5	Pumping Rate during pH profiling (gpm):				

*Measurements are referenced from top of riser pipe, unless otherwise indicated.

Barr Engineering Company WELL DEVELOPMENT LOG

Client: Consumers			Wel	Well Number: TW-21-013					
Location: DE Karh				Date(s): 7/1/7-1					
	97016		Dev	Developer: Pearson/AMS3					
GENERAL	DATA			DEVE	LOPMENT				
Casing diameter ("):	2 inch						Appearance/		
Well Depth – Before Development:*	36.48	Date/Time	Temp. ⁰C	Cond. @ 25 µS/cm	pH, standard units	Turbidity, NTU	Comments (i.e. sediment/color/ Cloudiness)		
Well Depth – After Development:*	36.52								
Type of Development	Surge	¥S	urge	d 3 + 1	mesz	allowed	to		
Type of Pump:	Surge Submersibl	e clea	r to	620	NTU				
Pumping Rate:	~2gal/min								
Total Volume Removed:	~90gal								
Well Volume:									
Purge time:	1215-1300								
SWL:	21.40								
WELL CONST	RUCTION								
Top Sealed?	Yes (Lock)								
Bolts Straight?	N/A								
Concrete Pad?	Yes	Notes/Obser	vations:						
Odor:	nonenotice	d							
Purge Appearance:	Clear he following sections	to be filled or	it by geoly	onist overe	eeina well i	nstallation ***			
WELL INSTALLATION NOTES			1 1 1 1	by geologist overseeing well installation *** pH PROFILING NOTES (FOR SCREENED INTERVAL)					
Geologist Initials: A	MS3		-	Initial Color: pH Rapge:					
Screen Length (ft): 5		val: 28-33	Able	Able to pump continuously? (Y/M):					
Volume Flushed from B	0	200	-	Pumping Rate during pH profiling (gpm):					

*Measurements are referenced from top of riser pipe, unless otherwise indicated.

Appendix A-2

Soil Analytical Data

Appendix A-2 Soil Analytical Data D.E. Karn Generating Facility Consumers Energy

L	ocation	TW-21-009	TW-21-010	TW-21-011D	TW-21-012D	TW-21-012D	TW-21-013
	Date	6/30/2021	6/30/2021	6/28/2021	6/29/2021	6/29/2021	6/30/2021
	Depth	22 - 24 ft	20 - 22 ft	22 - 23 ft	22 - 24 ft	32 - 34 ft	30 - 32 ft
Samp	ole Type	N	N	N	N	N	N
Parameter	Units						
General Parameters							
Carbon, total organic	% wt	0.16	0.13	0.18	0.35	0.072	0.062
Carbon, total organic	mg/kg	1600	1300	1800	3500	720	620
Moisture	%	21	18	20	21	16	19
Solids, percent	%	79	81	81	77	82	82
Sulfur, as S	mg/kg	300	300	300	300	200	< 300 U
Metals							
Arsenic	mg/kg	6.26	11.1	12.2	9.88	2.10	2.77
Iron	mg/kg	3510	4020	3660	4990	2010	2520

Footnotes

N Sample Type: Normal U The analyte was analyzed for, but was not detected.

Appendix A-3

Soils Lab Report

To: HDRegister, P22-521

From: EBlaj, T-258

Date: July 27, 2021

Subject: DE KARN PRB - SOILS - 2021 Q3

CC: CDBatts, Karn/Weadock

Mike Ellis, PE Barr Engineering Co. 3005 Boardwalk Drive, Suite 100 Ann Arbor, MI 48108

Chemistry Project: 21-0821

phone 517-788-1251 *fax* 517-788-2533

135 W. Trail St.

Jackson, MI 49201

Barr Engineering conducted soil sampling at the DE Karn solid waste disposal area on 06/28/2021 through 6/30/2021. The samples were received for analysis by the Chemistry department of Laboratory Services on 07/02/2021.

Samples for Total Organic Carbon and Total Sulfur (by Combustion) have been subcontracted to ALS Environmental and the results are listed under the analyst initials "ALS". Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. Sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. When submitted for analysis, results for the field blanks, field duplicates, and/or recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data are listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

Qualifier	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
Μ	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:Karn/Weadock ComplexWork Order ID:Karn Soil Samples from BARRDate Received:7/2/2021Chemistry Project:21-0821

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	Site
21-0821-01	TW-21-011D (17-18')	Soil	06/28/2021 01:00 PM	DEK Solid Waste Disposal Area
21-0821-02	TW-21-011D (22-23')	Soil	06/28/2021 01:05 PM	DEK Solid Waste Disposal Area
21-0821-03	TW-21-012D (22-24')	Soil	06/29/2021 12:00 PM	DEK Solid Waste Disposal Area
21-0821-04	TW-21-012D (32-34')	Soil	06/29/2021 12:05 PM	DEK Solid Waste Disposal Area
21-0821-05	TW-21-013 (30-32')	Soil	06/30/2021 10:30 AM	DEK Solid Waste Disposal Area
21-0821-06	TW-21-009 (22-24')	Soil	06/30/2021 01:50 PM	DEK Solid Waste Disposal Area
21-0821-07	TW-21-010 (20-22')	Soil	06/30/2021 04:30 PM	DEK Solid Waste Disposal Area

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0821
Field Sample ID:	TW-21-011D (22-23')	Collect Date:	06/28/2021
Lab Sample ID:	21-0821-02	Collect Time:	01:05 PM
Matrix:	Soil		

Metals by EPA 6020B: As, Fe, Soils/Solids				Aliquot #: 21-0821-02-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Arsenic	12.2		mg/kg	0.2	07/15/2021	AB21-0715-05
Iron	3660		mg/kg	5.0	07/15/2021	AB21-0715-05
Dry Weight by ASTM D2216				Aliquot #: 21-	0821-02-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Percent Solids	81		%	1.0	07/16/2021	AB21-0715-10
Total Organic Carbon by Walkley Blac	k, Soil Method			Aliquot #: 21-	0821-02-C01-A03	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	1800		mg/kg	300	07/23/2021	AB21-0723-11
Total Sulfur by ASTM E1915				Aliquot #: 21-	0821-02-C01-A04	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfur	300		mg/kg	300	07/26/2021	AB21-0727-15

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0821
Field Sample ID:	TW-21-012D (22-24')	Collect Date:	06/29/2021
Lab Sample ID:	21-0821-03	Collect Time:	12:00 PM
Matrix:	Soil		

Metals by EPA 6020B: As, Fe, Soils/Solids				Aliquot #: 21-0821-03-C01-A01		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Arsenic	9.88		mg/kg	0.2	07/15/2021	AB21-0715-05
Iron	4990		mg/kg	5.0	07/15/2021	AB21-0715-05
Dry Weight by ASTM D2216				Aliquot #: 21-	0821-03-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Percent Solids	77		%	1.0	07/16/2021	AB21-0715-10
Total Organic Carbon by Walkley Blac	k, Soil Method			Aliquot #: 21-	0821-03-C01-A03	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	3500		mg/kg	300	07/23/2021	AB21-0723-11
Total Sulfur by ASTM E1915				Aliquot #: 21-	0821-03-C01-A04	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfur	300		mg/kg	300	07/26/2021	AB21-0727-15

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0821
Field Sample ID:	TW-21-012D (32-34')	Collect Date:	06/29/2021
Lab Sample ID:	21-0821-04	Collect Time:	12:05 PM
Matrix:	Soil		

Metals by EPA 6020B: As, Fe, Soils/Solids			Aliquot #: 21-0821-04-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Arsenic	2.10		mg/kg	0.2	07/15/2021	AB21-0715-05
Iron	2010		mg/kg	5.0	07/15/2021	AB21-0715-05
Dry Weight by ASTM D2216				Aliquot #: 21-	0821-04-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Percent Solids	82		%	1.0	07/16/2021	AB21-0715-10
Total Organic Carbon by Walkley Bl	ack, Soil Method			Aliquot #: 21-	0821-04-C01-A03	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	720		mg/kg	300	07/23/2021	AB21-0723-11
Total Sulfur by ASTM E1915				Aliquot #: 21-	0821-04-C01-A04	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfur	200		mg/kg	200	07/26/2021	AB21-0727-15

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0821
Field Sample ID:	TW-21-013 (30-32')	Collect Date:	06/30/2021
Lab Sample ID:	21-0821-05	Collect Time:	10:30 AM
Matrix:	Soil		

Metals by EPA 6020B: As, Fe, Soils/Solids			Aliquot #: 21-0821-05-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Arsenic	2.77		mg/kg	0.2	07/15/2021	AB21-0715-05
Iron	2520		mg/kg	5.0	07/15/2021	AB21-0715-05
Dry Weight by ASTM D2216				Aliquot #: 21-	0821-05-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Percent Solids	82		%	1.0	07/16/2021	AB21-0715-10
Total Organic Carbon by Walkley Bla	ick, Soil Method			Aliquot #: 21-	0821-05-C01-A03	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	620		mg/kg	300	07/23/2021	AB21-0723-11
Total Sulfur by ASTM E1915				Aliquot #: 21-	0821-05-C01-A04	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfur	ND		mg/kg	300	07/26/2021	AB21-0727-15

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0821
Field Sample ID:	TW-21-009 (22-24')	Collect Date:	06/30/2021
Lab Sample ID:	21-0821-06	Collect Time:	01:50 PM
Matrix:	Soil		

Metals by EPA 6020B: As, Fe, Soils/Solids			Aliquot #: 21-0821-06-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Arsenic	6.26		mg/kg	0.2	07/15/2021	AB21-0715-05
Iron	3510		mg/kg	5.0	07/15/2021	AB21-0715-05
Dry Weight by ASTM D2216				Aliquot #: 21-	0821-06-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Percent Solids	79		%	1.0	07/16/2021	AB21-0715-10
Total Organic Carbon by Walkley Blac	ck, Soil Method			Aliquot #: 21-	0821-06-C01-A03	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	1600		mg/kg	300	07/23/2021	AB21-0723-11
Total Sulfur by ASTM E1915				Aliquot #: 21-	0821-06-C01-A04	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfur	300		mg/kg	300	07/26/2021	AB21-0727-15

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0821
Field Sample ID:	TW-21-010 (20-22')	Collect Date:	06/30/2021
Lab Sample ID:	21-0821-07	Collect Time:	04:30 PM
Matrix:	Soil		

Metals by EPA 6020B: As, Fe, Soils/Solids			Aliquot #: 21-	Analyst: EB		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Arsenic	11.1		mg/kg	0.2	07/15/2021	AB21-0715-05
Iron	4020		mg/kg	5.0	07/15/2021	AB21-0715-05
Dry Weight by ASTM D2216				Aliquot #: 21-	0821-07-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Percent Solids	81		%	1.0	07/16/2021	AB21-0715-10
Total Organic Carbon by Walkley Blac	ck, Soil Method			Aliquot #: 21-	0821-07-C01-A03	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	1300		mg/kg	300	07/23/2021	AB21-0723-11
Total Sulfur by ASTM E1915				Aliquot #: 21-	0821-07-C01-A04	Analyst: ALS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfur	300		mg/kg	300	07/26/2021	AB21-0727-15

Exception Summary

No exceptions occured.

CONSUMERS ENERGY

Chemistry Department

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 3 ATTACHMENT A

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Sample Origin/Project Name:	ALL Inspection Ry	07-02-2024 Inspection By: EB	
Shipment Delivered By: Enter the type of shipment carrier. Pony FedEx UPS USPS Airborne Other Land Carry (whom) Shipping Form Attached: Yes No. Shipping Containers: Enter the type and number of shipping containers received. Cooler Cardboard Box Custom Case Envelope/Mailer Loose/Unpackaged Containers Other Damaged Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None Dented Leaking Other			
Pony FedEx UPS USPS Airborne Other fland Carry (whom) The cost Shipping Form Attached: Yes No. Shipping Containers: Enter the type and number of shipping containers received. Cooler Cardboard Box Custom Case Envelope/Mailer Loose/Unpackaged Containers Other Envelope/Mailer Envelope/Mailer Douged Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None Dented Leaking Other Other Dented Leaking Other Shipping Containers Received: Opened Sealed Image Other Work Request Air Data Sheet Other Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range Samples Received on Ice: Yes No M&TE # and Expiration OlSto (J 3/2 2) No Image Image VOA (40mL or 60mL)	ect Name:	ect Name:	
Other Land Carry (whom) There is the subscription of the shipping Form Attached: Yes No. Shipping Containers: Enter the type and number of shipping containers received. Cooler Cardboard Box Custom Case Envelope/Mailer Loose/Unpackaged Containers Other Condition of Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None Dented Leaking Other	By: Enter the type of shipment carrier.	By: Enter the type of shipment carrier.	
Other Land Carry (whom) The hast Tracking Number: Shipping Form Attached: Yes No. Shipping Containers: Enter the type and number of shipping containers received. Cooler Cardboard Box Custom Case Envelope/Mailer Loose/Unpackaged Containers Other Condition of Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None Dented Leaking Other Other Damaged Shipment Observed: None Dented Leaking Other Other Shipping Containers Received: Opened Sealed Imaged Shipping Containers: Enter the type of documents enclosed with the shipment. Coc Work Request Air Data Sheet Other Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range Samples Received on Ice: Yes No M&TE # and Expiration O1Stor G/3/2x Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Image: Containers received. Quart/Liter (g/p)	FedEx UPS USPS	FedEx UPS USPS Airborr	ie
Shipping Containers: Enter the type and number of shipping containers received. Cooler Cardboard Box Custom Case Envelope/Mailer Loose/Unpackaged Containers Other Condition of Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None Dented Leaking Other Shipping Containers Received: None Dented Leaking Other Dented Leaking Shipment Security: Enter if any of the shipping containers were opened before receipt. Shipping Containers Received: Opened Sealed	Carry (whom) JAdams	Carry (whom) JAdans	
Cooler Cardboard Box Custom Case Envelope/Mailer Loose/Unpackaged Containers Other	umber: Shipping Form Attached	Imber: Shipping Form Attached: Yes	No
Loose/Unpackaged Containers Other Condition of Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None V Dented Leaking Other	s: Enter the type and number of shipping containers received.	s: Enter the type and number of shipping containers received.	
Loose/Unpackaged Containers Other Condition of Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None V Dented Leaking Other	Cardboard Box Custom Case	Cardboard Box Custom Case Envelope/M	lailer
Condition of Shipment: Enter the as-received condition of the shipment container. Damaged Shipment Observed: None Dented			
Damaged Shipment Observed: None Dented Leaking Other Shipping Containers Received: Opened Sealed Shipping Containers Received: Opened Sealed Enclosed Documents: Enter the type of documents enclosed with the shipment. CoC Work Request Air Data Sheet Other Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range 2.42° Samples Received on Ice: Yes No			
Other			
Shipment Security: Enter if any of the shipping containers were opened before receipt. Shipping Containers Received: Opened			3
Shipping Containers Received: Opened Sealed Enclosed Documents: Enter the type of documents enclosed with the shipment. CoC Work Request Air Data Sheet Other Other Other M&TE # and Expiration O15102 6/3/222 Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Lea VOA (40mL or 60mL)			
Enclosed Documents: Enter the type of documents enclosed with the shipment. CoC \checkmark Work Request Air Data Sheet Other Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range 2.4% Samples Received on Ice: Yes \checkmark No M&TE # and Expiration 015402 $6/3/22$ Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Less VOA (40mL or 60mL) Quart/Liter (g/p)	Enter if any of the shipping containers were opened before receipt.	Enter if any of the shipping containers were opened before receipt.	
Enclosed Documents: Enter the type of documents enclosed with the shipment. CoC V Work Request Air Data Sheet Other Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range $2\cdot4^{\circ}$ Samples Received on Ice: Yes $Vo_$ M&TE # and Expiration $015for 6/3/2r Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Les VOA (40mL or 60mL) $	ontainers Received: Opened Sealed	ontainers Received: Opened Sealed	
CoC Work Request Air Data Sheet Other Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range 2.4° Samples Received on Ice: Yes No M&TE # and Expiration 0154° $6/3/2^{\circ}$ No Matrix Number and Type of Containers: Enter the total number of sample containers received. Enter the total number of sample containers received. Container Type Water Soil Other Broken Les VOA (40mL or 60mL)	s. Enter the type of documents enclosed with the shipment	s. Enter the type of documents enclosed with the shipment	
Temperature of Containers: Measure the temperature of several sample containers. As-Received Temperature Range 2.4° Samples Received on Ice: Yes V No M&TE # and Expiration 015102 $6/3/222$ Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Les VOA (40mL or 60mL)	and the second	The second s	
As-Received Temperature Range 2.4° Samples Received on Ice: Yes V No M&TE # and Expiration $015402 6/3/22$ Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Lea VOA (40mL or 60mL)	WORK Request Air Data Sneet		
M&TE # and Expiration $O1540$ $G/3/2$ Number and Type of Containers: Enter the total number of sample containers received. $Container Type$ Water Soil Other Broken Les VOA (40mL or 60mL)			
Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Les VOA (40mL or 60mL)			
Number and Type of Containers: Enter the total number of sample containers received. Container Type Water Soil Other Broken Les VOA (40mL or 60mL)	ntainers: Measure the temperature of several sample containers.	ntainers: Measure the temperature of several sample containers.	
Container Type Water Soil Other Broken Lea VOA (40mL or 60mL)	ntainers: Measure the temperature of several sample containers. d Temperature Range 2.4°C Samples Received on Ice:	ntainers: Measure the temperature of several sample containers. d Temperature Range 2.4°C Samples Received on Ice: Yes V No	_
VOA (40mL or 60mL)	ntainers: Measure the temperature of several sample containers. d Temperature Range <u>え.4℃</u> Samples Received on Ice: nd Expiration <u>01540 6/3</u> /22	ntainers: Measure the temperature of several sample containers. d Temperature Range <u> え.4℃</u> Samples Received on Ice: Yes <u> ✓</u> No_ d Expiration <u>015foみ 6/3</u> /2み	_
Quart/Liter (g/p)	ntainers: Measure the temperature of several sample containers. d Temperature Range 2.4% Samples Received on Ice: d Expiration 015402 6/3/22 of Containers: Enter the total number of sample containers received	ntainers: Measure the temperature of several sample containers. d Temperature Range 2.4% Samples Received on Ice: Yes \checkmark No d Expiration $015102 6/3/22$ of Containers: Enter the total number of sample containers received.	
2-oz (amber glass) 7	ntainers: Measure the temperature of several sample containers.d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice:ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers receivedTypeWaterSoilOther	Intainers: Measure the temperature of several sample containers. Interpretation Range 2.4% Samples Received on Ice: Yes V No Interpretation 01540 $6/3/2$ Interpretation 01540 $6/3/2$ Interpretation 01540 $6/3/2$ Interpretation 01540 $6/3/2$ Interpretation 01540 0000 Interpretation 01540 00000 Interpretation 01540 000000 Interpretation 01540 $00000000000000000000000000000000000$	Leakins
2-oz (amber glass)	Intainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received Type Water Soil or 60mL)	Intainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: Yes \vee No d Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received. Type Water Soil or 60mL)	
	ntainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received Type Water Soil or 60mL)	Intainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: Yes \checkmark No d Expiration 0151° $6/3/2^{\circ}$ Of Containers: Enter the total number of sample containers received. Type Water Soil Other Broken . or 60mL)	
	Intainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received Type Water Soil of 00mL)	Intainers: Measure the temperature of several sample containers. d Temperature Range 2.4% Samples Received on Ice: Yes No_{1} d Expiration 0154° $6/3/2\infty$ No of Containers: Enter the total number of sample containers received. Type Water Soil Other Broken or 60mL)	
125 mL (plastic)	Intainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received Type Water Soil or 60mL)	Intainers: Measure the temperature of several sample containers. d Temperature Range 2.4° Samples Received on Ice: Yes V No_ d Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received. Type Water Soil Other er (g/p)	
24 mL vial (glass)	Intainers: Measure the temperature of several sample containers. d Temperature Range 2.4° Samples Received on Ice: ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received Type Water Soil or 60mL)	Intainers: Measure the temperature of several sample containers. at Temperature Range 2.4° Samples Received on Ice: Yes V No_ at Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received. Type Water Soil Other Broken .or 60mL)	
500 mL (plastic)	Intainers: Measure the temperature of several sample containers. d Temperature Range $\lambda.4^{\circ}$ Samples Received on Ice: ad Expiration 0154° $6/3/2^{\circ}$ of Containers: Enter the total number of sample containers received Type Water Soil or 60mL)	Intainers: Measure the temperature of several sample containers. d Temperature Range 2.4% Samples Received on Ice: Yes V No d Expiration 015402 $6/3/22$ of Containers: Enter the total number of sample containers received. Type Water Soil Other Broken or 60mL)	

21-0821 Page 12 of 13

APLING SITE: P DE Karn DE Karn APLING TEAM: D APLING TEAM: D ANDE Schumacher (BARR) D CE DATE SAMPLE SAMPLE SAMPLE MATRIX CE DATE SAMPLE SAMPLE SAMPLE MATRIX OZ21-01 D6/28/2021 1300 SOIL -02 1305 1 -03 1205 1	ST., JACKSON, MI 49201 PROJECT NUMBER: ZZO9[0](0,0]/L DATE SHIPPED: CMS COULTER $7/2/21$ SAMPLE DESCRIPTION/LOCATION $TVV-21-011D(17-18^{\circ})$ $TW-21-011D(22-23^{\circ})$ $W-21-012D(22-24^{\circ})$ $TW-21-012D(32-34^{\circ})$	1	ANALYSIS REQUI	ESTED PAGEOF SEND REPORT TO: MELLIS @ Barr. Com PHONE: REMARKS ¥HOLD FOR ÁNALYSI
DE Karn APLING TEAM: INNE Schumacher (BARR) CE SAMPLE SAMPLE SAMPLE CONTROL # DATE TIME MATRIX 0221-01 06/28/2021 1300 SOIL -02 / 1305, 7 -03 06/29/2021 1200 T -04 / 1205 7	22091016.01/4 DATE SHIPPED: CMS COULTER $7/2/21$ SAMPLE DESCRIPTION/LOCATION TVV-21-011D(17-18) TW-21-011D(22-23) W-21-012D(22-24)	E SKETCH ATTACHED? CIRCLE ONE: YES NO DEPTH CONTAINER: 17-18' 1 22-23' 1 22-24'	seeTablet	SEND REPORT TO: MELLIS @ Barr. Com PHONE: REMARKS
MPLING TEAM: INNE Schumacher (BARR) CONTROL # SAMPLE SAMPLE SAMPLE DATE TIME MATRIX 0221-0106/28/2021 1300 SOIL -02 / 1305, 7 -0306/29/2021 1200 T -04 / 1205 7	DATE SHIPPED: CMS COURTER $7/2/21$ SAMPLE DESCRIPTION / LOCATION TVV-21-011D (17-18') TW-21-011D (22-23') W-21-012D (22-24')	E SKETCH ATTACHED? CIRCLE ONE: YES NO DEPTH CONTAINER: 17-18' 1 22-23' 1 22-24'	s	MEIlis @ Barr. Com PHONE: REMARKS
nne Schumacher (BARR) Date Sample Sample Sample Matrix 0221-0106/28/2021 1300 SOIL -02 / 1305, 7 -0306/29/2021 1200 T -04 / 1205 7	CMS COURIER 7/2/21 SAMPLE DESCRIPTION / LOCATION T-VV-21-011D (17-18') TW-21-011D (22-23') W-21-012D (22-24')	CIRCLE ONE: YES NO DEPTH CONTAINER: 17-18' 1 22-23' 1 22-24'	s	REMARKS
CE DONTROL # SAMPLE DATE SAMPLE TIME SAMPLE MATRIX 0221-01 06 28 2021 1300 SOIL 1 -02 1305 1305 1 1 1 1 1 -03 1202 1200 1	$\frac{\text{SAMPLE DESCRIPTION / LOCATION}}{T_{VV} - 21 - 011D(17 - 18')}$ $\frac{T_{VV} - 21 - 011D(22 - 23')}{W - 21 - 012D(22 - 23')}$	DEPTH CONTAINERS 17-18' 1 22-23' 1 22-24'	s	REMARKS
0221-010628/2021 1300 SOIL - -02 / 1305, 7 -030625/2021 1200 T -04 / 1205 7	Tw-21-011D(17-18) Tw-21-011D(22-23) Tw-21-012D(22-24)	DEPTH CONTAINER: 17-18' 1 22-23' 1 22-24' 1	s v	
-02 / 1305, 7 -0306/25/2021 1200 T -04 / 1205 7	Fw-21-011D(22-23) Fw-21-012D(22-24)	22-23' 22-24'		*HOLD FOR ANALYSI
-03 06/25/2021 1200 T -04 1205 T	W-21-012D (22-24)	22-24'		
-04 1 1205 1				
-04 1 1205 1	TW-21-012D(32-34)	22-24		
		36 31		
	Tw-21-013 (30-32')	30-32		
		22-24		
	1/			
- or V 1630 V T	TW-21-010 (20-22)	20-22 1	4	
	ŝ			
	E RECEIVED BY: (SIGN	ATURE)		COMMENTS
UL / U /2/2		-	2.40	
INQUISHED DATE / TIME DATE / TIME 7-2-2		ATURE)	* 013	402

14-Sep-2021

Emil Blaj Consumers Energy Company Laboratory Services 135 W Trail St Jackson, MI 49201

Re: 210-0821

Work Order: 21070726

Dear Emil,

ALS Environmental received 7 samples on 09-Jul-2021 10:50 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 18.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Bill Carey

Bill Carey Project Manager

Enuironmental 🕽

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS HIGHT PARTNER

Date: 14-Sep-21

Client:	Consumers Energy Company
Project:	210-0821
Work Order:	21070726

Work Order Sample Summary

Lab Samp ID <u>Client Sample ID</u>	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
21070726-02 TW-21-011D (22-23')	Soil		6/28/2021 13:05	7/9/2021 10:50	
21070726-03 TW-21-012D (22-24')	Soil		6/29/2021 12:00	7/9/2021 10:50	
21070726-04 TW-21-012D (32-34')	Soil		6/29/2021 12:05	7/9/2021 10:50	
21070726-05 TW-21-013 (30-32')	Soil		6/30/2021 10:30	7/9/2021 10:50	
21070726-06 TW-21-009 (22-24')	Soil		6/30/2021 13:50	7/9/2021 10:50	
21070726-07 TW-21-010 (20-22')	Soil		6/30/2021 16:30	7/9/2021 10:50	

<u>Climente</u>	C	
Client:	Consumers Energy Company	OUALIFIERS ,
Project:	210-0821	
WorkOrder:	21070726	ACRONYMS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
а	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference $> 40\%$
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods
D	ASTM
Е	EPA

SW SW-846 Update III

Units Reported Description

% of sample Percent of Sample

as noted

Client:	Consumers Energy Company
Project:	210-0821
Sample ID:	TW-21-011D (22-23')
Collection Date:	6/28/2021 01:05 PM

Work Order: 21070726 Lab ID: 21070726-02 Matrix: SOIL

Analyses	Result Qua	1 T :: t T: t	ution actor	Date Analyzed
MOISTURE		SW3550C		Analyst: CDG
Moisture	20	0.10 % of sample	1	7/12/2021 10:22 AM
ORGANIC CARBON - WALKLEY-BLACK		WALKLEY- BLACK 1969		Analyst: KF
Organic Carbon - W-B	0.18	0.031 % by wt-dry	1	7/23/2021 01:25 PM
SUBCONTRACTED ANALYSES		SUBCONTRACT		Analyst: ALS
Subcontracted Analyses	See report	as noted	1	7/27/2021

Client:	Consumers Energy Company
Project:	210-0821
Sample ID:	TW-21-012D (22-24')
Collection Date:	6/29/2021 12:00 PM

Work Order: 21070726 Lab ID: 21070726-03 Matrix: SOIL

Analyses	Result Qua	Report al Limit Units	Dilution Factor	Date Analyzed
MOISTURE		SW3550C		Analyst: CDG
Moisture	21	0.10 % of sample	e 1	7/12/2021 10:22 AM
ORGANIC CARBON - WALKLEY-BLACK		WALKLEY- BLACK 1969		Analyst: KF
Organic Carbon - W-B	0.35	0.032 % by wt-dry	y 1	7/23/2021 01:25 PM
SUBCONTRACTED ANALYSES		SUBCONTRACT		Analyst: ALS
Subcontracted Analyses	See report	as noted	1	7/27/2021

Client:	Consumers Energy Company
Project:	210-0821
Sample ID:	TW-21-012D (32-34')
Collection Date:	6/29/2021 12:05 PM

Work Order: 21070726 Lab ID: 21070726-04 Matrix: SOIL

Analyses	Result Qual	Report Dilution Limit Units Factor	Date Analyzed
MOISTURE		SW3550C	Analyst: CDG
Moisture	16	0.10 % of sample 1	7/12/2021 10:22 AM
ORGANIC CARBON - WALKLEY-BLACK		WALKLEY- BLACK 1969	Analyst: KF
Organic Carbon - W-B	0.072	0.030 % by wt-dry 1	7/23/2021 01:25 PM
SUBCONTRACTED ANALYSES		SUBCONTRACT	Analyst: ALS
Subcontracted Analyses	See report	as noted 1	7/27/2021

Client:	Consumers Energy Company
Project:	210-0821
Sample ID:	TW-21-013 (30-32')
Collection Date:	6/30/2021 10:30 AM

Work Order: 21070726 Lab ID: 21070726-05 Matrix: SOIL

Analyses	Result Qu	Report 1al Limit Units	Dilution Factor	Date Analyzed
MOISTURE		SW3550C		Analyst: CDG
Moisture	19	0.10 % of sample	le 1	7/12/2021 10:22 AM
ORGANIC CARBON - WALKLEY-BLACK		WALKLEY- BLACK 1969		Analyst: KF
Organic Carbon - W-B	0.062	0.031 % by wt-dr	y 1	7/23/2021 01:25 PM
SUBCONTRACTED ANALYSES		SUBCONTRACT		Analyst: ALS
Subcontracted Analyses	See report	as noted	1	7/27/2021

Client:	Consumers Energy Company
Project:	210-0821
Sample ID:	TW-21-009 (22-24')
Collection Date:	6/30/2021 01:50 PM

 Work Order:
 21070726

 Lab ID:
 21070726-06

 Matrix:
 SOIL

Analyses	Result Qu	Report al Limit Units	Dilution Factor	Date Analyzed
MOISTURE		SW3550C		Analyst: CDG
Moisture	21	0.10 % of sample	e 1	7/12/2021 10:22 AM
ORGANIC CARBON - WALKLEY-BLACK		WALKLEY- BLACK 1969		Analyst: KF
Organic Carbon - W-B	0.16	0.032 % by wt-dry	/ 1	7/23/2021 01:25 PM
SUBCONTRACTED ANALYSES Subcontracted Analyses	See report	SUBCONTRACT as noted	1	Analyst: ALS 7/27/2021

Client:	Consumers Energy Company
Project:	210-0821
Sample ID:	TW-21-010 (20-22')
Collection Date:	6/30/2021 04:30 PM

Work Order: 21070726 Lab ID: 21070726-07 Matrix: SOIL

Analyses	Result Qual	Report Dilution Limit Units Factor	Date Analyzed
MOISTURE		SW3550C	Analyst: CDG
Moisture	18	0.10 % of sample 1	7/12/2021 10:22 AM
ORGANIC CARBON - WALKLEY-BLACK		WALKLEY- BLACK 1969	Analyst: KF
Organic Carbon - W-B	0.13	0.031 % by wt-dry 1	7/23/2021 01:25 PM
SUBCONTRACTED ANALYSES		SUBCONTRACT	Analyst: ALS
Subcontracted Analyses	See report	as noted 1	7/27/2021

Client:	Consumers Energy Company
Work Order:	21070726
Project:	210-0821

Date: 14-Sep-21

QC BATCH REPORT

Batch ID: R321883	Instrument ID MC	DIST		Metho	d: SW35	50C						
MBLK	Sample ID: WBLKS-R	321883				U	nits: % o f	f sample	Analysis	s Date: 7/12	2/2021 10:	22 AM
Client ID:		Run ID:	MOIST	_210712A		Sec	qNo: 757 3	3794	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		ND	0.10									
LCS	Sample ID: LCS-R321	883				U	nits: % o f	f sample	Analysis	s Date: 7/12	2/2021 10:	22 AM
Client ID:		Run ID	MOIST	_210712A		Sec	qNo: 757 3	3793	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	:	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		99.99	0.10	100		0	100	98-102	0			
DUP	Sample ID: 21070504-	01A DUP				U	nits: % o f	f sample	Analysis	s Date: 7/12	2/2021 10:	22 AM
Client ID:		Run ID	MOIST	_210712A		Sec	qNo: 757 3	3775	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		9.38	0.10	0		0	0	0-0	10.06	7	10	
DUP	Sample ID: 21070726-	01A DUP				U	nits: % o f	f sample	Analysis	s Date: 7/12	2/2021 10:	22 AM
Client ID: TW-21-01	1D (17-18')	Run ID	MOIST	_210712A		Sec	qNo: 757 3	3786	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		15.34	0.10	0		0	0	0-0	15.22	0.785	10	
The following samp	oles were analyzed in th	is batch:		1070726-02 1070726-05			726-03A 726-06A		070726-04A 070726-07A			

QC BATCH REPORT

Batch ID: R322727

Instrument ID WETCHEM

Method: Walkley-Black 196

MBLK	Sample ID: WBLKS1-	210723-R32	2727			Units: % b	y wt	Analysis	Date: 7/23	8/2021 01:	25 PM
Client ID:		Run ID	WETCH	HEM_21072	3G	SeqNo: 760	5221	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Organic Carbon -	· W-B	ND	0.025								
LCS	Sample ID: WLCSS1-	210723-R32	2727			Units: % b	y wt	Analysis	Date: 7/23	8/2021 01:	25 PM
Client ID:		Run ID	WETCH	IEM_21072	3G	SeqNo: 760	5222	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Organic Carbon -	-W-B	0.1102	0.025	0.1		0 110	90-140	0			
MS	Sample ID: 21070726	-07A MS				Units: % b	y wt	Analysis	Date: 7/23	8/2021 01:	25 PM
Client ID: TW-21	-010 (20-22')	Run ID	WETCH	IEM_21072	3G	SeqNo: 760	5230	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Organic Carbon -	·W-B	0.3777	0.025	0.2421	0.10	94 111	90-140	0			
MSD	Sample ID: 21070726	-07A MSD				Units: % b	y wt	Analysis	Date: 7/23	8/2021 01:	25 PM
Client ID: TW-21	-010 (20-22')	Run ID	WETCH	HEM_21072	3G	SeqNo: 760	5231	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Organic Carbon -	- W-B	0.3786	0.025	0.2427	0.10	94 111	90-140	0.3777	0.242	20	
The following sa	amples were analyzed in t	nis batch:		1070726-02/ 1070726-05/		1070726-03A 1070726-06A		070726-04A 070726-07A			

	Chain	of Custo	ody F	orm	D		nati, OH I 733 533€	, (Hollan +1 616	d, MI 5 399 6070	, 0	Salt Lake Ci +1 801 266	ty, UT 7700
	[Page of	1	·	7 0	Everett +1 425	, WA 356 2600	, C	Housto	n, TX 530 5656		Spring City, 1 610 948	
(ALS) Environmental	C	OC ID: 12	3456		0	Fort Ca +1 970	llins, CO 490 1511	C		town, PA 944 5541		/ork, PA -1 717 505	
Customer Information		AL.	S Project	Manager:						rk Order		Inno	726
Purchase Order PR 21070 807	Project	Project In	ormatic kee	m		+		Parame	ter/Me	thod Re	quest for	Analysi	
Work Order 21-0821	Project Nu		1					l Orze	<u>enic</u>	Carlo	on by	wall	day Black
COMPANY Name CONFU MERS ENERGY	Bill To Com		 			1000	Total	L Sul	fur	<u> </u>	ASTH	Elai	
Send Report To EMIL BLAJ	Invoice		<u> </u>										
Address 135 W. Trail	Adı	dress				D E							
City/State/Zip JACKSON NI 49201	City/Stat	e/Zin	<u> </u>			F							
Phone 51-788-5888	*****	hone			·	G	······						
Fax 517 - 7 88 - 2533		Fax				H							
s-Mail Address emil. bly @ cmsenergy.c	e-Mail Add	fress											
No. Sample Description	Date	Time	Matrix	Pres	# Bottles				******	di secondo			
1 TW-21-011 D (17-18')	6-28-21	1300	ا نعک		*.comes	A	B	C D	े हि	F	С н	1	J Hold
2 TW-21-011 D (22-231)	J J	1305	<u>i¤<</u>							┞───┞			
3 TW-21-012D (22-24')	6-29-21	1200			-	5	レノ			<u> </u>			
* TW-21-0120 (32-34')	V	1205				V	1						
	6-30-21	1030			1	1	1						
		1350			1	/	V						
⁻ IN-21-010 (20-22')	<u> </u>	1630				~	~		1			╉╾╾┼	
												╋╼╾╄	
10												╅╼╍╁	
Sampler(s): Please Print & Sign	Shipm	ent Method:	Requ	uired Turn	around T								
Relinguished by: A Date: 17	U		Ċ	STD 10 Wk D		ime: 5 Wk D	avs F	Other	 124		Results D	ue Date:	
		Received by:				Note		2 WK Days		Hour			
Kelip/itithed bud	1530 ime: R	U PS Received by (Labora		/									
UUTS 7/9/21	1050	Coerved by (Labora	tory;	4	~	Coo	ler Temp.	QC Packa					
Logged by (Laboratory):		hecked by (Laborat	ory)	$\overline{\mathbf{n}}$	L		290	Le		Standard			
			<u> </u>	V		ji ji		Lev	vel III: S	SW846 (Raw Data LP-Like	┢╹──	
	5-Na2S2O3 6-N			legrees C	9-5038				her: _		Site		
Note: Any changes must be made in writing once samples and CO	C Form have bee	n submitted to Al	S Environ	mental.		and an				014 5 41	<u> </u>	<u> </u>	

Copyright 2011 by ALS Group

Sample Receipt Checklist

Client Name: CONSENJACK		Date/Time I	Received:	<u>09-Jul-21</u>	<u>10:50</u>
Work Order: 21070726		Received b	y:	<u>LYS</u>	
Checklist completed by <u>Lydia Sweet</u> (09-Jul-21 Date	Reviewed by:	Bill Carey eSignature		12-Jul-21 Date
Matrices: <u>Soil</u> Carrier name: <u>UPS</u>					
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Prese	ent	
Custody seals intact on shipping container/cooler?	Yes	No 🗌	Not Prese	ent 🗹	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Prese	ent 🗹	
Chain of custody present?	Yes 🗸	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌			
Samples in proper container/bottle?	Yes 🗸	No 🗌			
Sample containers intact?	Yes 🗸	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes 🗸	No 🗌			
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌			
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ✔ <u>5.2/5.2C</u>	No 🗌	IR1	-	
Cooler(s)/Kit(s):]
Date/Time sample(s) sent to storage:		2:30:18 PM			
Water - VOA vials have zero headspace?	Yes	No	No VOA vials	submitted	\checkmark
Water - pH acceptable upon receipt?	Yes	No 🗌	N/A		
pH adjusted? pH adjusted by:	Yes	No 🗌	N/A 🗹		

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		
		SR

Service Request No:T2101170

Bill Carey ALS - Holland 3352 128th Avenue Holland, MI 49424

Laboratory Results for: 21070726

Dear Bill,

Enclosed are the results of the sample(s) submitted to our laboratory July 13, 2021 For your reference, these analyses have been assigned our service request number **T2101170**.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results

apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

On behalf of Wendy Hyatt

Wendy Hyatt Laboratory Director

> ADDRESS 4208 S Santa Rita Avenue, Tucson, AZ 85714 PHONE +1 520 573 1061 | FAX +1 520 623 9218 ALS Group USA, Corp. dba ALS Environmental

ALS	i Subcontractor: ALS Environmental 4208 S.Santa Rita Av Tucson, AZ 85714	Æ.		520) 623-8501 520) 573-1062	C	HAIN		0117		-	ECOF 5	RD	Date: COC ID: Due Date:	<u>12-Jul-2</u> <u>17202</u> 21-Jul-	
	Salesperson	ALSHN	and a second sec				_				41				
	Sustomer Information			Project Inform	ation						Request		ilysis		
Purchase Order		Proje	ect Name	21070726		A S	ubcontrac	ted Ana	lyses (S	UBCON	TRACT)				
Work Order		Proje	ect Number			B									
Company Name	ALS Group USA, Corp	Bill	To Company	ALS Group	USA, Corp	.C									
Send Report To	Bill Carey	Inv /	Attn	Accounts I	Payable	D									
Address	3352 128th Ave	Add	Tess	3352 128th	Ave	E									
						F									
City/State/Zip	Holland, Michigan 49424	City	State/Zip	'Holland, M	ichigan 49424	G									
Phone	(616) 399-6070	Pho	ne	(616) 399-6	6070	H									
Fax	(616) 399-6185	Fax		.(616) 399-6	185	1									
eMail Address	bill.careyaralsglobal.com	eMa	il CC			J									
ALS Sample ID	Client Sample ID	Matrix	Collectio	on Date 24hr	Bottle	Α	B	C	D	E	F	G	H	I J	
21070726-01A	TW-21-011D (17-18')	Soil	28/Jun/	2021 13:00	(1) 4OZGNEA	т х		-							
21070726-02A	TW-21-011D (22-23')	Soil	28/Jun/	2021 13:05	(1) 4OZGNEA	т х								-	
21070726-03A	TW-21-012D (22-24')	Soil	29/Jun/	2021 12:00	(1) 4OZGNEA	тх					1				
21070726-04A	TW-21-012D (32-34')	Soil	29/Jun/	2021 12:05	(1) 4OZGNEA										
21070726-05A	TW-21-013 (30-32')	Soil	30/Jun/	2021 10:30	(1) 4OZGNEA										
21070726-06A	TW-21-009 (22-24')	Soil	30/Jun/	2021 13:50	(1) 4OZGNEA	ТХ				-					-
21070726-07A	TW-21-010 (20-22')	Soil	30/Jun/	2021 16:30	(1) 4OZGNEA										

Comments:	Please analyze these samples for Sulfur	by ASTM E1915-20. Th	ank you.		
- (-1-1-1				
Relinquidual by:	D Date lime	Received by:	raich 7/13/21/1	Cooler IDs	Report/QC Level
Relinquished	Date/Time	Received by:	Date/Time		

~		Sample P	ecelpt Form	T210117	www.alsglobal.o
		Sample R	eccipt Form	AL8 - Holland 21070726	
lient/Project:	ALS Holland		Work Order Numbe	er:	
eceived by:	Cynthia Vroegh	Date & Tim	e: 7/13/21 1315	Matrix: Solid	7.20-00-
amples were recei	ved via?: Fe	dEx	Samples were received in:	Cooler	
ere custody seals	on containers?	O Yes INO O	NA If yes, how many a	nd where?	
present were cus	tody seals intact?	O Yes No	If present, were they sig	gned and dated?	O Yes 🖲 No
	Temp Blank C	Tracking Numbe			
9.8	NA		981776823	575	
id all sample label ere all the approp	rrive in good conditi s and tags agree wit rlate containers and ed deemed acceptabl	h COC?	the tests indicated?	If No, record comi ecord discrepancies	s below
omments: - 4oz wm clea	r glass jars 2107	1			
lotes, discrepa ridge A	ncies, & resolutio	ns:			

As a part of ISO 17025 protocols, ALS must notify clients that the quoted analytical methods performed by ALS may have minor modifications from the methods as published. These modifications are written into our Standard Operating Procedures and do not impact the quality of the data. Receipt of this document will be considered an acceptance of the procedures used by the laboratory for analysis unless notified by the client. Modifications may include, but are not limited to:

- The analysis of a sample matrix that differs from that stated in the published method (example ASTM D5865 Standard Test Method for Gross Calortific Value of Coal and Coke is used for other matrices such as blomass, Tire Derived Fuel, etc.).
- Analyzing a sample mass that differs from those in the published method (example to accommodate samples with high concentrations of analyte, samples of limited volume, or to comply with the instrument manufacturer's operating guidelines).
- Instruments used for the analysis may differ from those listed in the published method (example using ICP- OES when the method references flame Atomic Absorption Spectroscopy)

Client: ALS Environmental - Holland (MI) 3352 128th Avenue Holland, MI 49424 Attn: Bill Carey

Project: 21070726

Date Received:

July 13, 2021

Certificate of Analysis

Sample ID:	Sample Date and Time:	Lab #:	Moisture, Total D3173 wt%	Sulfur, Total E1915 Moist Free wt%
TW-21-011D (22-23')	6/28/21 13	05 T2101170-002	19.74	0.03
TW-21-012D (22-24')	6/29/21 12	00 T2101170-003	19.65	0.03
TW-21-012D (32-34')	6/29/21 12	05 T2101170-004	15.37	0.02
TW-21-013 (30-32')	6/30/21 10	30 T2101170-005	17.77	<0.03
TW-21-009 (22-24')	6/30/21 13	50 T2101170-006	18.28	0.03
TW-21-010 (20-22')	6/30/21 16	30 T2101170-007	18.80	0.03

Appendix A-4

PRB Additional Extent Evaluation Soil and Groundwater Data QAQC Review

Appendix A-4:

PRB Additional Extent Evaluation Soil and Groundwater Data Quality Assurance/Quality Control Review

A review of the quality control data was conducted to assess the validity of the analytical results for the soil and groundwater samples collected June 28 to 30 and July 6 to 7, 2021, respectively, at the D.E. Karn Generating Facility, located in Essexville, Michigan. This review was performed in accordance with Barr Engineering Co.'s Standard Operating Procedures for data evaluation, which are based on *The National Functional Guidelines for Organic and Inorganic Data Review* (United States Environmental Protection Agency [USEPA], 2008 and 2010). Most of the analyses were performed by Consumers Trail Street Laboratory located in Jackson, Michigan with soil total organic carbon (TOC) tested by ALS in Holland, Michigan, groundwater analysis of sulfide tested by Merit Laboratories located in East Lansing, Michigan, and TOC tested in groundwater by Brighton Analytical located in Brighton, Michigan. This data evaluation discusses sample data contained within the Consumers' work orders 21-0821 for soil and 21-0819 for groundwater.

Laboratory analytical procedures were evaluated by assessing technical holding times, sample preservation methods, method blank samples, accuracy and precision data, and data package completeness based on the information provided in the laboratory reports.

Laboratory Procedures

Technical holding times were evaluated for each sample and target parameter based on USEPA and method recommendations. The technical holding times were within these recommendations for all analyses. The soil and groundwater samples collected during the sampling events arrived at the laboratory at the correct temperatures.

The Consumers laboratory data reports noted that all method quality control requirements were met, and no deviations were noted. No specific method blank data was provided, except for the TOC soil data tested by ALS Holland.

The accuracy and precision data review included evaluation of laboratory control spike (LCS), matrix spike (MS), matrix spike duplicate (MSD), and laboratory duplicate samples as provided in the laboratory data reports. Accuracy was evaluated by comparing laboratory percent recoveries from LCS, MS, and MSD samples to laboratory acceptance criteria. Precision was evaluated by calculating the relative percent difference of the MS/MSD and laboratory duplicate sample pairs.

The LCS samples displayed acceptable accuracy when compared to the laboratory acceptance criteria and no deviations were noted in the laboratory reports.

The laboratory utilized project samples as needed for MS/MSD evaluation when sufficient sample volume was available. Only the MS/MSD samples taken from project samples may be evaluated compared to

P:\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\PRB Additional Extent Evaluation\Feasibility Study Addendum\Appendices\Appendix A - Boring Logs, Groundwater and Soil Data\Appendix A-4 - Soil and Groundwater Data QAQC Review.docx

project data. The MS/MSDs displayed accuracy and/or precision within laboratory acceptance criteria and no deviations were noted in the laboratory reports.

The laboratory duplicate sample data displayed acceptable precision when compared to the laboratory acceptance criteria and no deviations were noted in the laboratory reports.

Data completeness was evaluated by comparing the analyses requested with the data package as received. The samples were analyzed in accordance with the chain-of-custody, so the data package was considered complete.

Conclusion

The data are deemed acceptable for the purposes of this project with no qualification assigned during the data evaluation process.

References

- United States Environmental Protection Agency (USEPA), 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. EPA QA/R-5. 2008
- United States Environmental Protection Agency (USEPA), 2010. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Inorganic Methods Data Review. EPA QA/R-5. 2010

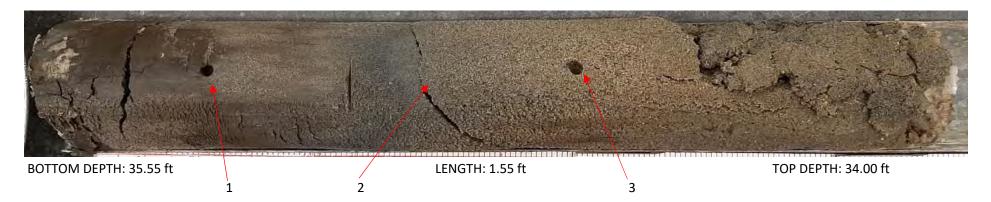
Appendix A-5

MTC Shelby Tube Results

mtc-test.com	0.968.8378	PROJECT NO.: DATE: SHEET:	 21125 21/20 OF	
PROJECT CLIENT CONTRACTOR ENGINEER/ARCHITECT	DE Karn RAP Assistance, 22091015.01 Barr Engineering		 	

_

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER ASTM D 5084


MTC SAMPLE NO .:	158727			TEST DATE:		07/20/2021			
SAMPLE LOCATION:	TW-21-011D, 35.4-35.0 ft		0 ft	SAMPLE CON	SAMPLE CONDITION:		Undisturbed		
SAMPLE DESCRIPTION:	Brown Silt, Organic smell and texture noted (visual / manua				l classit	fication)			
TYPE OF SAMPLE:	Shelby T	ube							
SAMPLE DIMENSIONS - INI	TIAL								
DIAMETER (IN):	_2	874	HEIGHT (II	N):	3.012		AREA (SQ IN):	6.487	
DRY UNIT WEIGHT (PC	CF): _7	4.0	WATER CO	ONTENT (%):	43.9				
TYPE OF PERMEANT:			De-Aired Wat	ter					
MAXIMUM BACK PRESSUR	E USED (P	SI):	60.0 psi						
MAXIMUM EFFECTIVE CON	ISOLIDATIO	ON STRESS:	2.0 psi						
MINIMUM EFFECTIVE CONS	SOLIDATIO	N STRESS:	1.0 psi						
RANGE OF HYDRAULIC GR	ADIENT:		5.084 – 7.130)					
SAMPLE DIMENSIONS - FIN	IAL								
DIAMETER (IN):	_2	.860	HEIGHT (II	N):	2.999		AREA (SQ IN):	6.423	
DRY UNIT WEIGHT (PC	CF): <u>7</u>	3.7	WATER CO	ONTENT (%):	46.9		SATURATION:	100% *	
						k20	over Ti	ne	
AVERAGE HYDRAULIC C	ONDUCTIV	/ITY (CM/SEC)	7.37 x 10 ⁻⁶			NZ V			
				1.00E-05					
		0.05		8.00E-06	6				
REMARKS: *Assumed Spe	cific Gravi	iy - 2.65		K20					
				6.00E-06	5			•	_
				4.00E-06	-				
				4.00E-00	0	1	2 3	4	5
					-			·	
					Rea	aungs	Taken at 1 Hou		J
1									
		1		1	~	-			
h		10		1	1	/	A.D		
REPORT BY:	D	VL	~	REVIEWED BY	lin	rothy	A Landert	rach	

This report has been prepared for the exclusive use of the client and any partial or whole reproduction without the consent of the client is prohibited.

MTC PROJECT NO.:	211257		
DATE:	7/8/2021		
SAMPLE ID:	TW-21-011D 34-36		

Shelby Tube Extrusion Photo Log

MATERIAL DESCRIPTION/CLASSIFICATION:

- 1. Brown Silt with organic smell and texture from 34.95 to 35.55 ft pocket pen reading of 1.25 at 35.30 ft
- 2. Contact between Brown Silt and Brown Poorly Graded Sand at 34.95 ft
- 3. Brown Poorly Graded Sand from 34.00 to 34.95 ft pocket pen reading of 0.25 at 34.65 ft
- Comments: When extruding the sample, the bottom material was pushed out the back end of the tube. Thus, the recovered sample is shorter compared to when the sample was in the tube. The bottom material is classified as brown clayey silt and was collected.

mtc-test.com	
PROJECT	DF Karn RAP As

 PROJECT NO.:
 211257

 DATE:
 7/21/2021

 SHEET:
 1
 OF
 1

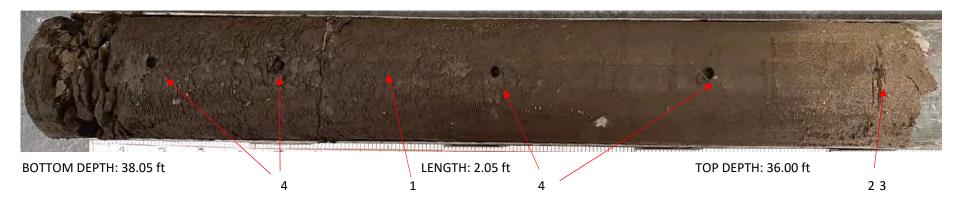
DE Karn RAP Assistance, 22091015.01 Barr Engineering

ENGINEER/ARCHITECT

CLIENT

CONTRACTOR

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER ASTM D 5084


MTC SAMPLE NO .:	158728			TEST DATE:		07/20/2021		
SAMPLE LOCATION:	TW-21-012D, 37.5-37.9 ft			SAMPLE CON	ONDITION: Undisturbed			
SAMPLE DESCRIPTION:	Brown Silt, Organic smell and texture noted (visual / manual classification)							
TYPE OF SAMPLE:	Shelby Tube							
SAMPLE DIMENSIONS - INI	TIAL							
DIAMETER (IN):	_	2.806	HEIGHT (II	N):	3.010	AREA (SQ IN):	6.185	
DRY UNIT WEIGHT (PC	CF):	41.5	WATER CO	ONTENT (%):	104.6			
TYPE OF PERMEANT:			De-Aired Wat	or				
MAXIMUM BACK PRESSUR			60.0 psi				_	
MAXIMUM EFFECTIVE CON		,	2.0 psi					
MINIMUM EFFECTIVE CON			1.0 psi					
RANGE OF HYDRAULIC GR		ON STRESS.	7.216 – 9.460	3				
NANGE OF TITDINAULIC GR	ADILINI.		7.210 - 9.400)				
SAMPLE DIMENSIONS - FIN	JAL							
DIAMETER (IN):		2.802	HEIGHT (II	N):	3.009	AREA (SQ IN):	6.166	
DRY UNIT WEIGHT (PO		39.6) ONTENT (%):	119.4	SATURATION:	100% *	
,	, <u> </u>							
AVERAGE HYDRAULIC C	ONDUCT	IVITY (CM/SEC)	6.28 x 10 ⁻⁶	3		k20 over Tir	ne	
				9.00E-06	5			
REMARKS: *Assumed Spe	cific Grav	/ity - 2.65		7 005 00				
				7.00E-06	,			
				5.00E-06	5			
				3.00E-06	; —			
					0	1 2 3	4 5	
					Rea	adings Taken at 1 Hou	r Intervals	
\wedge	-	1			0	-		
6	-			(Ţ	7.0		
	D	n	\sim	REVIEWED BY	lin	rolling of Loudent	nach	

This report has been prepared for the exclusive use of the client and any partial or whole reproduction without the consent of the client is prohibited.

MTC PROJECT NO.:	211257		
DATE:	7/8/2021		
SAMPLE ID:	TW-21-012D 36-38		

Shelby Tube Extrusion Photo Log

MATERIAL DESCRIPTION/CLASSIFICATION:

- 1. Brown Silt with organic smell and texture from 36.10 to 38.05 ft
- 2. Contact beween Brown Silt and Brown Fine Sand at 36.10 ft
- 3. Brown Fine Sand from 36.00 to 36.10 ft pocket pen reading of 0.75tsf at 36.10 ft
- 4. Brown Silt pocket pen reading of 1.50tsf at 36.50 ft, 37.00 ft, 37.50 ft, and 37.85 ft

Comments: Extrusion of sample was normal. Bottom 0.15 ft of the sample was damaged.

Appendix A-6

Groundwater Analytical Data

				Location	TW-21-009	TW-21-010	TW-21-011D	TW-21-011I	TW-21-011S	TW-21-012D	TW-21-012I	TW-21-012S	TW-21-013
				Date	7/07/2021	7/07/2021	7/06/2021	7/06/2021	7/06/2021	7/06/2021	7/06/2021	7/06/2021	7/06/2021
				Sample Type	N	N	N N	N	N N	N	N	N	N
		1	Obrania Danad		N	N	IN	N	N	N	IN	IN	N
			Chronic-Based Mixing Zone GSI	Acute-Based Mixing Zone GSI									
	Parameter	Units	Criteria	Criteria									
	Effective Date	Units	06/25/2018	06/25/2018									
	Exceedance Key		Bold	No Exceed									
	General Parameters		Bold	NU LACEEU									
	Alkalinity, bicarbonate, as CaCO3	ug/l	N/A	N/A	188000	247000	932000	286000	462000	773000	370000	283000	483000
се	Alkalinity, carbonate, as CaCO3	ug/l	N/A	N/A	< 10000 U	< 10000 U	< 10000 U	< 10000 U	< 10000 U	< 10000 U	< 10000 U	< 10000 U	< 10000 U
	Alkalinity, total, as CaCO3	ug/l	N/A	N/A	188000	247000	932000	286000	462000	773000	370000	283000	483000
r	Carbon, total organic	ug/l	N/A	N/A	4000	2900	33000	4400	3200	22000	7000	6300	8400
	Chloride	ug/l	N/A	N/A	86700	62100	687000	74200	51700	1050000	45700	2820	65100
	Nitrogen, ammonia, as N	ug/l	N/A	N/A	2020	2550	55800	7180	5090	42500	7440	977	15600
	Nitrogen, nitrate, as N	ug/l	N/A	N/A	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	227	< 100 U	< 100 U
	Nitrogen, nitrite, as N	ug/l	N/A	N/A	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U
	Solids, total dissolved	ug/l	N/A	N/A	921000	836000	2130000	520000	1060000	2620000	712000	412000	650000
	Sulfate, as SO4	ug/l	N/A	N/A	304000	257000	14300	46300	222000	2360	161000	74800	18000
ł	Sulfide, as S ² -	ug/l	N/A	N/A	< 40 U	< 40 U	< 40 U	70	< 40 U	< 40 U	< 40 U	< 40 U	< 40 U
	Dissolved Metals												
	Arsenic	ug/l	100	680	336	548	5	255	123	6	277	569	108
	Iron	ug/l	N/A	N/A	94	117	168	139	88	141	79	59	94
	Manganese	ug/l	N/A	N/A	341	338	553	192	882	572	301	323	389
	Total Metals												
	Arsenic	ug/l	100	680	367	518	17	246	261	17	266	596	113
	Boron	ug/l	44000	69000	7170	4900	120	4580	8700	125	2680	1270	9360
	Calcium	ug/l	N/A	N/A	166000	154000	206000	76400	226000	189000	112000	90800	131000
	Iron	ug/l	N/A	N/A	4820	226	14500	451	2260	8290	762	737	1210
	Magnesium	ug/l	N/A	N/A	30800	26700	68400	18200	40800	65700	27200	22200	28800
	Manganese	ug/l	N/A	N/A	364	355	530	194	904	561	315	313	402
	Potassium	ug/l	N/A	N/A	7420	7790	5930	4800	8000	3890	4110	9180	6880
	Selenium	ug/l	55	120	5	1		2	2	5	2	< 1 U	2
	Sodium	ug/l	N/A	N/A	37800	45100	461000	73600	28800	654000	84200	9170	47900

LEGEND

Site-specific mixing zone Groundwater Surface Water Interface Criteria shown for arsenic, boron, and selenium are from the Michigan Department of Environmental Quality approval letter dated December, 23, 2015.

Footnotes

N Sample Type: Normal

U The analyte was analyzed for, but was not detected N/A Mixing zone-based GSI criteria have not been developed

Appendix A-6 July 2021 Groundwater Analytical Data D.E. Karn Generating Facility **Consumers Energy**

Appendix A-7

Low-Flow Sampling Logs

CLIENT: COOSUME	2/4	Monitoring Location:/_				
LOCATION: DE	Sain	Sample ID: $\underline{T} \cup \underline{-2!} - \underline{1!} D$				
		Well Type: PV//				
		···				
INSPECTION						
Label on well?	NO REMEDIED	Is cement pad in good repair? (YES? NO NA REMEDIED				
Is reference mark visible?	NO REMEDIED	Is protective casing locked and in good repair? NO NA REMEDIED				
Standing water present?	YES NO REMEDIED	Is inner cap in place and properly sealing well?				
Indication of surface runoff in well? Repair Notes:	YES NO REMEDIED	Is well casing in visibly good repair?				
STATIC WATER LEVEL						
	l.	Date: <u>7/6/21</u> Time: 1045				
Top of Casing Elevation:						
Depth to Water:	20.(0) Mea	asured with:				
Elevation of Water:	•	all denote warffield?				
		ell depth verified? (est NO 52.35 (after sampling)				
WELL PURGING						
Purge Method: PERISTALIC	BLADDER OTHER	Date: 7/6/21 Start Time: 050				
	F					
Measured Well Depth: 52.3		5 feet Depth to Screen Midpoint: 99.83				
Mater Lough	TURG. (NTV)	nH Press Conductores Obvious (Deduction Di C				
Water Level	-Drawdown- Pumping Rate	pH Spec Conductance Oxygen/Reduction Diss Oxy				
Time (feet)	(ml/min)	(S.U.) Temp (°C) (MS/cm) (m/V) (mg/l)				
10 20.41	2.50 -	7				
1106 20.43		7.54 13.6 3635 -64.5 0.97				
111 12.93	7.71 - 60 -	7.38 - 19.1 - 3663 - 87.2 - 0.74				
10.95 (f.	15) 7.60 740 -	7.22 14.2 5684 -99.2 0.24				
1126 20.94	+.+4 450	717 -141 -3695 -101.5 0.21				
169 10.99	7-16 150 -	717 139 3736 7101.6 0.17				
1132 20.03	7.79 290 -	7.17 14.2 3739 -102 0 0.17				
1157 20.97	7.70 250	7.18 11.0 3744 -105.3 0.15				
1144 20.42	+165 <u>- 660</u> -	7.29 13.1 3764 -1145 0,12				
-1152 -2042	7.97 250	7.28 14.0 3755 121.2 0.13				
Total Volume Purged (gal):	Stabilization Criteria: +/-	- 0.2 Units +/- 0.02 mS/cm +/- 20 mV +/- 0.2 mg/L (+/- 0.02 mMho/cm)				
Total volume ruiged (gal)						
FIELD ANALYSIS						
Time:		CALIBRATION CHECK Mark if				
	deg. C	Standard (conc.) Reading Recalibrated				
pH:		pH:				
	mS/cm	Specific Cond.:mS/cm				
ORP:	mV	Eh:mV				
Dissolved Oxygen:	mg/L	Dissolved Oxygen: mg/L				
SAMPLE COLLECTION	Time:2.05	Sample Duplicate ?: no				
Appearance of Sample:	clear, no odor	Sample Method: Grak				
NO./BOTTLES: SIZE:	TYPE: FILTERED:	PRESERVATIVE: PARAMETER:				
ml		None, HCI, HNO3 NaOH, H2SO4 Job. & Diss. Metals				
mi		None, HCI, HNO3, NaOH, H2SO4 Anions - Nitrates				
mi		None, HCI, HNO3, NaOH, H2SO4 Amononia None, HCI, HNO3, MART H2SO4 TD5, AK				
mi		None, HCI, HNO3, WARD H2SO4				
mi	~	None, RD HNO3, NaOH, H2SO4				
SAMPLING PERSONNEL	No.	Chain of Custody No.				
the second se	Do An Pat	Name (SIGNATURE):				

CLIENT: LOCATION:	Sourn Sample ID: 12-21-111					
				Well Type:	-21 PVC	
INSPECTION	1					
Label on well?	NO REMEDIED	Is cement pad	in good repair?	6	NO NA	REMEDIED
Is reference mark visible?	TES NO REMEDIED	Is protective ca	asing locked and in	good repair?	NO NA	REMEDIED
Standing water present?	YES REMEDIED		place and properly		NO NA	REMEDIED
Indication of surface runoff in well? Repair Notes:	YES NO REMEDIED	ls,well casing in	n visibly good repa	ir?	NO NA	REMEDIED
STATIC WATER LEVEL			Date: 7/6/1	-	1222	
Top of Casing Elevation:			Date: <u>7/9/</u> 0	1 time:	1007	
Depth to Water:	20:50	Measured with:	E	LECTRONIC TAPE CHAL	KED TAPE OTHER	
Elevation of Water:		Well depth verifi	-	S) NO		and the second sec
			C			
WELL PURGING		-	24.00		12.2	_
Purge Method: ERISTALIC	BLADDER OTHER		Date: 7/6/4	Start Ti	me: 1222	
Measured Well Depth: <u>35.32</u>		h: <u>5 fer</u>	C	Depth to Screen Mid	point:	÷
Water Level	Tvrb (NTV) -Drawdown Pumping Rate	e pH		Spec Conductance	Oxvgen/Reduction	Diss Oxy
Time (feet)	-(feet) (ml/min)		Temp (°C)	(b S/cm)	(m/V)	(mg/l)
1225 20.58	- 275	(0.0.)	*****		()	(11.9.17
17 32 2058	8.65 2.75	\$.48	13.2	0,05	-15.5	0.24
17.37 70.50	12.8 775	8.69	12 7.	105	-115.2	0.17
12118 20.54		0.00 -	1.7 9	070	-133 z	0,12
	530 727	8/1-	120	1922	-12/11	0,10
1300 20.58	434 746	8.68	13.1	12.1	-1116 1	0.10
	124 647		13.	127	140.1	0.09
1304 20.58	4.67 149	8.71 a 72	13,3	<u> </u>	198194	0.09
1309 20.59		<u> </u>	19.5	901	-170-0	0.01
	ananuurmahaninalanuurmahilikki - Ke					
						
	Stabilization Criteria:	+/- 0.2 Units		+/- 0.02 mS/cm	+/- 20 mV	+/- 0.2 mg/L
Total Volume Purged (gal):		47º 0.2 Onits	(*	+/- 0.02 mMho/cm)	1-20111	1/- 0.2 mg/L
FIELD ANALYSIS						
Time:				CALIBRATIC	N CHECK	Mark if
Temperature:	deg. C			Standard (conc.)	Reading	Recalibrated
pH:	S.U.		pH:			
Specific Conductance:	mS/cm		Specific Cond.:	<u></u>	mS/cm	
ORP:	mV		Eh:		mV	
Dissolved Oxygen:	mg/L	Dis	ssolved Oxygen:		mg/L	ļ
SAMPLE COLLECTION	Time: 1310		5	Sample Duplicate ?:	10	
	near no odor	i	5	Sample Method:	low flow	1grale
NO./BOTTLES: SIZE:	TYPE: FILTERED:			ERVATIVE:		METER:
m				NaOH, H2SO4	TOT + Dis	
m	l glass plastic yes 👰		1	103, NaOH, H2SO4	Anions TO	5
m			None, HCI, HN None, HCL HN		Ammonin Sulfide	
m				103, NaOH, H2SO4	toc	
m				103, NaOH, H2SO4	Allsqlinit	Y
SAMPLING PERSONNEL		Cha	ain of Custody N			,
Name (SIGNATURE): ADD	à au Qui		GNATURE			

CLIENT: <u>Consume</u> LOCATION: <u>DE Ka</u>		Monitoring Location: <u>TU-21-115</u> Sample ID: <u>TU-21-115</u> Well Type: <u>2'' PVC</u>				
INSPECTION Label on well? Is reference mark visible? Standing water present? Indication of surface runoff in well? Repair Notes:	YES NO REMEDIED NO REMEDIED YES OF REMEDIED YES NO REMEDIED	Is cement pad in good repair? Is protective casing locked and in good repair? Is Inner cap in place and properly sealing well? Is well casing in visibly good repair? Is well casing in visibly good repair?				
STATIC WATER LEVEL Top of Casing Elevation: Depth to Water: Elevation of Water:		Date: 7/6/2/ Time: 1337 asured with: ell depth verified?				
WELL PURGING	BLADDER OTHER	Date: 7/6/21 Start Time: 1337				
Measured Well Depth: 37.50		5 feet Depth to Screen Midpoint:				
Water Level Time (feet) 1346 20.75 1351 20.75 1351 20.75 1405 20.75 1405 20.75 1405 20.75 1405 20.75 1405 20.75 1405 20.75 1405 20.75 1405 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.75 1418 20.15	Turu. (μ TV) DrawdownDrawdownPumping Rate(feet)(ml/min) 266 37.126618.12006.467005.432005.452003.65266	pH Spec Conductance Oxygen/Reduction Diss Oxy $(S.U.)$ Temp (°C) (MS/cm) (m/V) (mg/l) 7.59 19.49 13.49 -76.5 1.497 8.19 19.5 19.49 -788.6 0.394 8.19 19.5 19.6 0.12 0.12 8.25 19.4 19.5 19.6 0.12 8.25 19.5 19.5 0.12 0.12 8.33 14.9 19.5 19.5 0.12 8.33 14.9 19.5 19.5 0.12 8.34 19.5 19.5 0.12 0.12 8.36 19.5 19.5 0.10 0.10 -0.2 Units $+/-0.02$ mS/cm $+/-20$ mV $+/-0.2$ mg/L				
FIELD ANALYSIS						
Time: Temperature: 한번: Specific Conductance: ORP: Dissolved Oxygen:	S.U. mS/cm mV	CALIBRATION CHECK Mark if Standard (conc.) Reading Recalibrated pH:S.U. Specific Cond.:mS/cm Eh:mV Dissolved Oxygen:mg/L				
SAMPLE COLLECTION Appearance of Sample:	Time: 1425	Sample Duplicate ?:				
NO./BOTTLES: SIZE: mi Mi MI Name (SIGNATURE): APPRI	TYPE: FILTERED: glass plastic yes for glass plastic yes nor glass plastic yes nor glass plastic yes nor glass plastic yes nor glass plastic yes for	PRESERVATIVE: None, HCI, HNO3, NaOH, H2SO4 None, HCI, HNO3, HCI, H2SO4 NONE, HCI, HNO3, HCI, H2SO4 NONE, HCI, HONA, H2SO4 NONE, HCI, HCI, HONA, H2SO4 NONE, HCI, HCI, HCI, HCI, HCI, HCI,				

CLIENT: COASUME	Monitorin	ig Location: TU - 21-012.D
LOCATION: DE H	Lain	Sample ID: <u>Th/-21-01</u> 2D
-05-1	J MA TI	Well Type: <u>2" PV//</u>
INSPECTION	1	
Label on well? Is reference mark visible?	NO REMEDIED Is cement pad in good repair? Is protective casing locked and in good re	
Standing water present?	YES REMEDIED Is protective casing locked and in good re YES REMEDIED Is inner cap in place and properly sealing	\mathcal{L}
Indication of surface runoff in well?	YES REMEDIED Is well casing in visibly good repair?	NO NA REMEDIED
Repair Notes:		
STATIC WATER LEVEL	2/1/01	
Top of Casing Elevation:	- Date: <u>7/6/</u> 2/	Time: <u>1956</u>
Depth to Water:	19.05 Measured with: BLECTRO	
Elevation of Water:		NIC TAPE CHALKED TAPE OTHER
Elevation of water.	Well depth verified?	
WELL PURGING		1
Purge Method: PERISTALIC	BLADDER OTHER Date: 7/6/21	Start Time:5_7
Measured Well Depth: 54,7	28 Screen Length: <u>5 Feet</u> Depth to	o Screen Midpoint:
	IVI EINAT (NIV)	
Water Level		Conductance Oxygen/Reduction Diss Oxy
• Time (feet)		b S/cm) (m/V) (mg/i)
501 1404	300	
505 1010	53.6 500 7.19 13.3 1	4342 -74.0 0.43
1511 19.08	42.1 300 7194 13.1 2	1340 -85.1 0.21
1517 19.08	<u>-83.7 300 8.02 13.3 -1</u>	325 -88.2 0,17
1522 19.08	08.4 306 8:19 12.4	1328 -89.2 3,15
1528 19.08	50.9 200 0.20 11.3	333 -89.4 6.14
1543 19.09	29.3 300 8.23 12.3	1385 -92.7 0.11
1548 19.09	17.6 806 8.14 133	4410 -93.5 611
1253 19.00	9.16 300 R.O. 13.3 4	11/26 -23.9 0.11
FFF 19.10	4,90 300 7.90 13.0 4	1423 - 94, R CNO
1601 10.10	4.24 300 7.91 13.2	1435 -96.0 0.10
Total Volume Purged (gal):		02 mS/cm +/- 20 mV +/- 0.2 mg/L
Total Volume Purged (gal):	- 4,13 300 7.94 13.1 (+/-0.02	2 mMho/cm) - 46,6 0,10
FIELD ANALYSIS		
Time:		CALIBRATION CHECK Mark if
		dard (conc.) Reading Recalibrated
	S.U. pH;	S.U.
Specific Conductance:		mS/cm
ORP:		mv
	mg/L Dissolved Oxygen:	mg/L
SAMPLE COLLECTION	Time: 1610 Sample	Duplicate ?:
Appearance of Sample:	CARD C CONTRACTOR	Method: Grade
NO./BOTTLES: SIZE:	TYPE: FILTERED: PRESERVATIN	
ml		
m[
mi		0H, H2504 <u>Ammonia</u> 0H, H2504 <u>SUIFIM</u>
ml		10H, H2SO4 $201HVC$
m		
SAMPLING PERSONNEL	Chain of Custody No.	
Name (SIGNATURE): ADD	and the second sec	

CLIENT: CONSUMUS Monitoring Location: TLA-21-0121						
LOCATION: DE 150						
	Well Type: 2" PVC					
INSPECTION	1	-				
Label on well?	RED NO REMEDIED IS COMMON TO A REMEDIED					
Is reference mark visible?	TER NO REMEDIED Is protective casing locked and in good repair? TER NO NA REMEDIED					
Standing water present?	YES WE REMEDIED Is inner cap in place and properly sealing well?					
Indication of surface runoff in well? Repair Notes:	YES (of REMEDIED . Is well casing in visibly good repair?					
STATIC WATER LEVEL						
	Date: <u>7/6/1</u> Time: <u>1624</u>					
Top of Casing Elevation:						
Depth to Water:	19.61 Measured with: ELECTRONIC TAPE CHALKED TAPE OTHER					
Elevation of Water:	Well depth verified?					
WELL PURGING	BLADDER OTHER Date: 7/6/2/ Start Time: 1626					
Puige Method.	BLADDER OTHER Date: 716/21 Start Time: 1026					
Measured Well Depth: <u>36.6</u>	2 Screen Length: <u>5 FULA</u> Depth to Screen Midpoint:					
Water Level	Tury (NIV)					
Time (feet) 1631 1070	$\underbrace{(\text{foet})}_{\text{foet}} (\text{ml/min}) (\text{S.U.}) \text{Temp} (°\text{C}) (MS/cm) (m/V) (mg/l)$	<u>}</u>				
16 35 19.73		0				
16117 A 21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2				
1046 14.71						
1077 19.76						
105 19.71						
19.70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
<u> 14.7 c</u>	-3-88 -300 -111 -12,2 -1140 -113,8 -111					
· · · · · · · · · · · · · · · · · · ·	Stabilization Criteria: +/- 0.2 Units +/- 0.02 mS/cm +/- 20 mV +/- 0.2 m	ng/L				
Total Volume Purged (gal):	(+/- 0.02 mMho/cm)).				
FIELD ANALYSIS	I					
Time:	CALIBRATION CHECK Mark if					
Temperature:	deg. C Standard (conc.) Reading Recalibrated					
	s.U. pH:S.U					
Specific Conductance:	mS/cm Specific Cond.:mS/cm					
• ORP:	mV Eh:mV					
Dissolved Oxygen:	mg/L Dissolved Oxygen:mg/Lmg/L					
SAMPLE COLLECTION	Time: 705 Sample Duplicate ?:					
Appearance of Sample:	Cillar, no od or Sample Method: Orally					
NO./BOTTLES: SIZE:	TYPE: FILTERED: PRESERVATIVE: PARAMETER:					
m	I glass plastic yes to None, HCI, NOB, NaOH, H2SO4 Tot + Dis metals					
m						
mi						
ml						
m						
SAMPLING PERSONNEL	Chain of Custody No					
Name (SIGNATURE): AD						

\$

CLIENT: COASUM	115	Monitoring Location: TV-21-0125		
	Sample ID: Tw-ZI-DIZS			
1		Well Type: 2" PVC		
IN ODE OTION				
INSPECTION	~			
Label on well?		ment pad in good repair?		
Is reference mark visible?		otective casing locked and in good repair? NO NA REMEDIED		
Standing water present?		ner cap in place and properly sealing well? NO NA · REMEDIED		
Indication of surface runoff in well?	YES NO REMEDIED IS WE	ell casing in visibly good repair?		
Repair Notes:				
STATIC WATER LEVEL		Date: 7/6/2/ Time: 17/7		
Top of Casing Elevation:				
Depth to Water:	19.17 Measured	d with: ELEGTRONIC TAPE CHALKED TAPE OTHER		
Elevation of Water:	• •	pth verified?		
Elevation of Water.				
WELL PURGING				
Purge Method: PERISTALIC	BLADDER OTHER	Date: <u>7//6/2/</u> Start Time: <u>17/7</u>		
Measured Well Depth: 27,	83 Screen Length: 5	Fral- During and		
	······································	<u>+ UU</u> Depth to Screen Midpoint:		
Water Level	Ture (NTU)			
	-Drawdown Pumping Rate pl			
Time (feet)	(feet) (ml/min) (S.U	J.) Temp (°C) (% S/cm) (m/V) (mg/l)		
172 14.36	- 400 -			
1724 19.52	-3.6+ 260 B.	7 12.3 667 -114.4 0.44		
1735 19,53	2.89 200 0.	18 12, 176 -121, 0.27		
1730 19.53	PMBM1235 200 91	13 12.1 670 -176.7 0.21		
17113 1952	1.78 7.60 8.1	04 12,0 640 -179.2 0.18		
1142				
P				
	Sec Handa, - L Poly Land, - Link, - St Market, - Link,	Party balant		
	and an in the second			
Total Maluma Duran d (ast)	Stabilization Criteria: +/- 0.2 L			
Total Volume Purged (gal):		(+/- 0.02 mMho/cm)		
FIELD ANALYSIS				
		CALIBRATION CHECK Mark if		
Temperature:	deg. C	Standard (conc.) Reading Recalibrated		
pH:	S.U.	pH:		
Specific Conductance:	mS/cm	Specific Cond.: mS/cm		
	mV	Eh: mV		
Dissolved Oxygen:		Dissolved Oxygen: mg/L		
SAMPLE COLLECTION	Time: 1750	Sample Duplicate ?: 10		
A	llar, no odor	Sample Method:		
NO./BOTTLES: SIZE:	TYPE: FILTERED:			
NO./BOTTLES: SIZE:		PRESERVATIVE: PARAMETER: ATOT + Dis. Metally		
m		ADAGE HCI, ALLOS, NaOH, H2SO4 ATIONS TOS		
m		None, HCI, HNO3, NaOH, H2504		
mi		None, HCI, HNO3, NaOH, H2SO4		
mi		None, H, HNO3, NaOH, H2SO4		
mi	200	MOR, HCI, HNO3, NaOH, H2SO4		
SAMPLING PERSONNEL	and the second se	Chain of Custody No.		
Name (SIGNATURE): ADC	à man	Name (SIGNATURE):		

CLIENT: / ONSUMMAN Monitoring Location: TU-21-013					
LOCATION: DE					
	77071	Well Type:			
		wen type:			
INSPECTION	1				
	Contraction of the second seco				
Label on well?	VES NO REMEDIED	Is cement pad in good repair?			
Is reference mark visible? Standing water present?	YES NO REMEDIED	Is protective casing locked and in good repair? (FES) NO NA REMEDIED Is inner cap in place and properly sealing well? (FES) NO NA REMEDIED			
Indication of surface runoff in well?	YES REMEDIED	Is inner cap in place and properly sealing well? (YES) NO NA REMEDIED Is well casing in visibly good repair? (YES) NO NA REMEDIED			
Repair Notes:					
STATIC WATER LEVEL	1				
	1	Date: 7/6/7/ Time: 1815			
Top of Casing Elevation:		Date. 1144 01 Time. 1010			
Depth to Water:	21-11	Measured with: ELECTRONIC TAPE CHALKED TAPE OTHER			
Elevation of Water:	2171	Well depth verified?			
Elevation of water.		Weil deput vermed ?			
WELL PURGING	1				
and the second se	J	Date: 7/6/2 Start Time: 8/6			
Purge Method: PERISTALIC	BLADDER OTHER	Date: 1/0/01 Start Time: 18/0			
	F 5	m Onal			
Measured Well Depth: 36.		th: <u>5</u> FPET Depth to Screen Midpoint:			
	~TUT6 (NTU)				
Water Level	Drawdown Pumping Rat	e pH Spec Conductance Oxygen/Reduction Diss Oxy			
Time (feet)	(ml/min)	(S.U.) Temp (°C) (M S/cm) (m/V) (mg/l)			
1620 2175	200				
1674 2126	21.7 250	7.57 13.2 1119 -97.3 0.64			
1120 2174	16.1 250	7.84 13.3 1115 121.1 0.23			
1430 0114		7.71 13. 1110 -125.8 O.A3			
1070 4.14	11.3 250				
1640 2.75	7.21 250	7.94 13.2 1111 -133.8 0.27			
1646 21.74	4,98 250	$\frac{8.03}{8.08}$ $\frac{13.1}{13.0}$ $\frac{113}{1111}$ $\frac{-120.7}{141.8}$ $\frac{0.20}{0.16}$			
1650 21.76	431 250				
1663 21.77	2.95 74	2.18 13.0 Hill -143.6 0.15			
10 0 0 - 1 - 1 - 1	010				
		An and a second se			
	Stabilization Criteria:	+/- 0.2 Units +/- 0.02 mS/cm +/- 20 mV +/- 0.2 mg/L			
Total Volume Purged (gal):		(+/- 0.02 mMho/cm)			
		, , , , , , , , , , , , , , , , , , ,			
FIELD ANALYSIS	I				
Time		CALIBRATION CHECK Mark if			
	deg. C	Standard (conc.) Reading Recalibrated			
	s.u.	рН:S.U			
Specific Conductance		Specific Cond.: mS/cm			
ORP	mV	Eh:mV			
	mg/L	Dissolved Oxygen:mg/L			
SAMPLE COLLECTION	Time: 1855	Sample Duplicate ?:			
Appearance of Sample:	OPAL none	Sample Method:			
NO./BOTTLES: SIZE:	TYPE: FILTERED	PRESERVATIVE: PARAMETER:			
m	l glass plastic yes 🙀	None, HCI, HNOR, NaOH, H2SO4 Ot + D.S metals			
m		NOTE, HCI, HNO3, NOH, H2SO4 AnionS 1 TDS			
m		None, HCI, HNO3, NaOH, HZSOR Ammoni			
m	l glass plastic yes 😥	None, HCI, HNO3, NOTH H2SO4			
m		None HO HNO3, NaOH, H2SO4			
m	l glass plastic yes 👰	(NODE, HCI, HNO3, NaOH, H2SO4 AIII			
SAMPLING PERSONNEL		Chain of Custody No			
Name (SIGNATURE): A	Diz ang	Name (SIGNATURE):			

3

CLIENT: CONSUMERS Monitoring Location: 74-21-009					
LOCATION: DE P					
1		Well Type: 2" PVC			
	1				
INSPECTION					
Label on well?	NO REMEDIED	Is cement pad in good repair? (TES) NO NA REMEDIED			
Is reference mark visible?	REP NO REMEDIED	Is protective casing locked and in good repair? NO NA REMEDIED			
Standing water present?		Is inner cap in place and properly sealing well? NO NA REMEDIED			
Indication of surface runoff in well?	YES 🔞 REMEDIED	Is well casing in visibly good repair?			
Repair Notes:					
STATIC WATER LEVEL					
		Date: 7/7/21 Time: 724			
Top of Casing Elevation:					
Depth to Water:	20.29	Measured with: ELECTRONIC TAPE CHALKED TAPE OTHER			
Elevation of Water:		Well depth verified?			
WELL PURGING					
Purge Method: PERISTALI	BLADDER OTHER	Date: 7/7/21 Start Time: 725			
algo motion. (Lenorality	UTIER	Start Hille.			
Measured Well Depth: 27.9		E Depth to Screen Midpoint:			
Weasured Wen Depth.		E Depth to Screen Midpoint:			
	TUCH (NTU)				
Water Level	-Brawdown Pumping Rate				
Time (feet)	(feet) (ml/min)	(S.U.) Temp (°C) (MAS/cm) (m/∨) (mg/l)			
750 20.35	750				
756 20.35	3.63 250	<u>R.95 11.8 1178 -48.8 9.41</u>			
802 20.35	2,33 250	8.71 119 1185 -72.9 021			
EAR 20,35	3.54 250	RA 832 11.9 1182 -459 021.			
\$18 20.35	3.32 250	573 17.6 1236 -723 0.27			
923 20.35	210 250	8.22 12.0 1222 -15.4 0.19			
20 21 20 24	171 700				
921	-1.11 -250-	8,30 12.1 1215 -807 0.16			
	Stabilization Criteria:	+/- 0.2 Units +/- 0.02 mS/cm +/- 20 mV +/- 0.2 mg/L			
Total Volume Purged (gal):		(+/- 0.02 mMho/cm)			
FIELD ANALYSIS					
Time:	and the second	CALIBRATION CHECK Mark if			
	deg. C	Standard (conc.) Reading Recalibrated			
	S.U.	PH: 7/10 \$24/128.U. X			
Specific Conductance:		Specific Cond.: 1409 1346 mS/cm			
	mV	(off) Eh: 237.5 235.1 mV			
Dissolved Oxygen:	mg/L	Dissolved Oxygen: mg/L mg/L			
SAMPLE COLLECTION	Time: 835	Sample Duplicate ?:			
Appearance of Sample:	Clear, no Galor	Sample Method:			
NO./BOTTLES: SIZE:	TYPE: FILTERER	PRESERVATIVE: PARAMETER: None, HCI, (NO) NaOH, H2SO4 <u>TertDis Metals</u>			
mi	100				
mi					
m		None, HCI, HNO3, NaOH, (250) None, HCI, HNO3, (200), H2SO4			
mi		None, RC HNO3, NaOH, H2SO4			
mi		Hora HCI, HNO3, NaOH, H2SO4 AIK			
SAMPLING PERSONNEL		Chain of Custody No.			
	· 0 12 -				
Name (SIGNATURE): 4)か)	1 am & man	Name (SIGNATURE):			

CLIENT: Consumers LOCATION: DE KSIA	Monitoring Location: T 6 - 21 - 010 Sample ID: T 6 - 21 - 010
	Well Type: 2º PVC
INSPECTION Label on well? Is reference mark visible? Standing water present? Indication of surface runoff in well? Repair Notes:	Is cement pad in good repair? Is protective casing locked and in good repair? Is inner cap in place and properly sealing well? Is well casing in visibly good repair? NO NA REMEDIED NO NA REMEDIED
STATIC WATER LEVEL	Date: 7/7/21 Time: 9/2
Top of Casing Elevation: Depth to Water: Elevation of Water:	Measured with: Well depth verified?
WELL PURGING	7/7/21 011
Purge Method: CERISTALE BLADDER OTHER	
Measured Well Depth: 28.02	en Length: FeeF Depth to Screen Midpoint:
Water Level Drewdown Pump Time (feet) (m 920 19.94 19.2	bing Rate pH Spec Conductance Oxygen/Reduction Diss Oxy nl/min) (S.U.) Temp (°C) (MS/cm) (m/V) (mg/l) 5° 9.13 12.1 1155 -67.3° 0.33 60 8.23 12.0 1165 -73.9 0.40° 5° 8.43 17.6° 1165 -746.5° 0.21 5° 8.62 11.9 1154 -119.2 0.47° 5° 8.63 11.9 1154 -122.7 0.16 5° 8.63 11.9 1154 -121.1 0.17 5° 8.63 11.9 1154 -122.7 0.16 5° 8.63 11.9 1154 -121.1 0.17
Stabilization Criteria:	:: +/- 0.2 Units +/- 0.02 mS/cm +/- 20 mV +/- 0.2 mg/L (+/- 0.02 mMho/cm)
FIELD ANALYSIS	
pH:s Specific Conductance: ORP:	CALIBRATION CHECK Mark if deg. C Standard (conc.) Reading Recalibrated S.U. pH: 7.19,10,52.U.
	Sample Duplicate ?
	PRESERVATIVE: PARAMETER: Dore HCI, MOO, NaOH, H2SO4 Tot + Dis Multals Anions HCI, HNO3, NaOH, H2SO4 Anions + TD3 Anions HCI, HNO3, NaOH, H2SO4 Anions + TD3 Anions None, HCI, HNO3, NaOH, H2SO4 Anions Anions TD3 Anions Anions HCI, HNO3, NaOH, H2SO4 Anions Anions TD3 Anions Anions TD3 Anions Anions TD3 Anions TD3 Anions Anions TD3 Anions Anions Anions Anions Anions Anio

Appendix A-8

Groundwater Lab Report

135 W. Trail St. Jackson, MI 49201 *phone* 517-788-1251 *fax* 517-788-2533

To: HDRegister, P22-521

Count on Us®

Consumers Energy

Laboratory Services A CENTURY OF EXCELLENCE

From: EBlaj, T-258

Date: July 27, 2021

Subject: DE KARN PRB – GROUNDWATER – 2021 Q3

CC: CDBatts, Karn/Weadock

Mike Ellis, PE Barr Engineering Co. 3005 Boardwalk Drive, Suite 100 Ann Arbor, MI 48108

Chemistry Project: 21-0819R

Barr Engineering conducted groundwater monitoring at the DE Karn solid waste disposal area on 07/06/2021 and 7/07/2021. The samples were received for analysis by the Chemistry department of Laboratory Services on 07/07/2021 and 7/08/2021.

Samples for Total Sulfide have been subcontracted to Merit Laboratories, Inc. and the results are listed under the analyst initials "Merit". Samples for Total Organic Carbon have been subcontracted to Brighton Analytical, LLC, and the results are listed under the analyst initials "BAL". Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions, except as noted below and in the attached Sample Log-In Shipment Inspection Form. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

NOTE: Samples for dissolved metals were not field filtered; a sample aliquoted was taken from the Total Dissolved Solids container upon receipt at the laboratory, filtered through a 0.45 μ m disposable filter, and preserved with Nitric Acid.

II. <u>Methodology</u>

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

<u>Acronym</u>	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit

21-0819 Page 2 of 29

TDL	Target Detection Limit
SM	Standard Methods Compendium
Qualifier	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
М	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:Karn/Weadock ComplexWork Order ID:Karn GW Samples from BARRDate Received:7/8/2021Chemistry Project:21-0819

Field Sample ID	Matrix	Sample Date	Site
TW-21-11D	Groundwater	07/06/2021 12:05 PM	DEK Solid Waste Disposal Area
TW-21-11I	Groundwater	07/06/2021 01:10 PM	DEK Solid Waste Disposal Area
TW-21-11S	Groundwater	07/06/2021 02:25 PM	DEK Solid Waste Disposal Area
TW-21-012D	Groundwater	07/06/2021 04:10 PM	DEK Solid Waste Disposal Area
TW-21-012I	Groundwater	07/06/2021 05:05 PM	DEK Solid Waste Disposal Area
TW-21-012S	Groundwater	07/06/2021 05:50 PM	DEK Solid Waste Disposal Area
TW-21-013	Groundwater	07/06/2021 06:55 PM	DEK Solid Waste Disposal Area
TW-21-009	Groundwater	07/07/2021 08:35 AM	DEK Solid Waste Disposal Area
TW-21-010	Groundwater	07/07/2021 10:10 AM	DEK Solid Waste Disposal Area
	TW-21-11D TW-21-11I TW-21-11S TW-21-012D TW-21-012I TW-21-012S TW-21-013 TW-21-009	TW-21-11DGroundwaterTW-21-11IGroundwaterTW-21-11SGroundwaterTW-21-012DGroundwaterTW-21-012IGroundwaterTW-21-012SGroundwaterTW-21-013GroundwaterTW-21-009Groundwater	TW-21-11D Groundwater 07/06/2021 12:05 PM TW-21-11I Groundwater 07/06/2021 01:10 PM TW-21-11S Groundwater 07/06/2021 02:25 PM TW-21-012D Groundwater 07/06/2021 02:25 PM TW-21-012D Groundwater 07/06/2021 04:10 PM TW-21-012I Groundwater 07/06/2021 05:05 PM TW-21-012S Groundwater 07/06/2021 05:50 PM TW-21-013 Groundwater 07/06/2021 06:55 PM TW-21-009 Groundwater 07/07/2021 08:35 AM

Analyst: EB

Aliquot: 21-0819-01-C01-A01

07/08/2021

07/07/2021

AB21-0708-03

AB21-0720-08

Laboratory Services

Count on Us®

A CENTURY OF EXCELLENCE

Total Dissolved Solids

Sulfate

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-11D	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-01	Collect Time:	12:05 PM
Matrix:	Groundwater		

Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	17		ug/L	1	07/21/2021	AB21-0720-04
Boron	120		ug/L	20	07/20/2021	AB21-0720-04
Calcium	206000		ug/L	1000	07/22/2021	AB21-0720-04
Iron	14500		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	68400		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	530		ug/L	5	07/21/2021	AB21-0720-04
Potassium	5930		ug/L	100	07/22/2021	AB21-0720-04
Selenium	2		ug/L	1	07/21/2021	AB21-0720-04R
Sodium	461000		ug/L	1000	07/22/2021	AB21-0720-04
GSI Dissolved Metals by E	PA 6020A, Extended List			Aliquot:	21-0819-01-C02-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #

Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Arsenic	5	ug/L	1	07/21/2021	AB21-0720-05
Iron	168	ug/L	20	07/21/2021	AB21-0720-05
Manganese	553	ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL				Aliquot: 21-0819-01-C03-A01		Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Ammonia	55800		ug/L	25	07/15/2021	AB21-0712-12
Total Dissolved Solids by SM 2540C				Aliquot:	21-0819-01-C04-A01	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #

mg/L

ug/L

10

1000

2130

14300

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot: 21-0819-01-C04-A02		Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06	
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06	
Anions by EPA 300.0 Aque	eous, CI, SO4			Aliquot:	21-0819-01-C04-A03	Analyst: TMR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Chloride	687000		ug/L	1000	07/20/2021	AB21-0720-08	

Sulfide, Total by SM 4500 S2D			Aliquot: 21-0819-01-C05-A01		Analyst: Merit	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Sulfide	ND		ug/L	40	07/11/2021	AB21-0714-04

21-0819 Page 5 of 29

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

_

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-11D	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-01	Collect Time:	12:05 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous				Aliquot: 21-0819-01-C06-A01		Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	33000		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B				Aliquot:	21-0819-01-C07-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	932000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	932000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

Aliquot: 21-0819-02-C01-A01

Analyst: EB

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-11I	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-02	Collect Time:	01:10 PM
Matrix:	Groundwater		

Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	246		ug/L	1	07/21/2021	AB21-0720-04
Boron	4580		ug/L	20	07/20/2021	AB21-0720-04
Calcium	76400		ug/L	1000	07/22/2021	AB21-0720-04
Iron	451		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	18200		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	194		ug/L	5	07/21/2021	AB21-0720-04
Potassium	4800		ug/L	100	07/22/2021	AB21-0720-04
Selenium	2		ug/L	1	07/21/2021	AB21-0720-04
Sodium	73600		ug/L	1000	07/22/2021	AB21-0720-04
GSI Dissolved Metals by EPA 602	GSI Dissolved Metals by EPA 6020A, Extended List				21-0819-02-C02-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	255		ug/L	1	07/21/2021	AB21-0720-05
Iron	139		ug/L	20	07/21/2021	AB21-0720-05

Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL					21-0819-02-C03-A01	Analyst: CLH
Manganese	192		ug/L	5	07/21/2021	AB21-0720-05
			0	-		

Ammonia	7180	ug/L	25	07/15/2021	AB21-0712-12
Total Dissolved Solids by SM 2540C			Aliquot:	21-0819-02-C04-A01	Analyst: CLH
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	520	mg/L	10	07/08/2021	AB21-0708-03

Anions by EPA 300.0 Aqueous, NO2, NO3			Aliquot: 21-0819-02-C04-A02		Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqu	eous, CI, SO4			Aliquot:	21-0819-02-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	74200		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	46300		ug/L	1000	07/07/2021	AB21-0720-08

Sulfide, Total by SM 4500 S2D			Aliquot	21-0819-02-C05-A01	Analyst: Merit	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #	
Sulfide	70	ug/L	40	07/11/2021	AB21-0714-04	

21-0819 Page 7 of 29

Consumers	Energy

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-11I	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-02	Collect Time:	01:10 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous			Aliquot: 21-0819-02-C06-A01		Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	4400		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B				Aliquot:	21-0819-02-C07-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	286000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	286000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-11S	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-03	Collect Time:	02:25 PM
Matrix:	Groundwater		

GSI Total Metals by EPA 6020A, Extended List			Aliquot:	Aliquot: 21-0819-03-C01-A01		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	261		ug/L	1	07/21/2021	AB21-0720-04
Boron	8700		ug/L	20	07/20/2021	AB21-0720-04
Calcium	226000		ug/L	1000	07/22/2021	AB21-0720-04
Iron	2260		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	40800		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	904		ug/L	5	07/21/2021	AB21-0720-04
Potassium	8000		ug/L	100	07/22/2021	AB21-0720-04
Selenium	2		ug/L	1	07/21/2021	AB21-0720-04
Sodium	28800		ug/L	1000	07/22/2021	AB21-0720-04
GSI Dissolved Metals by EPA	60204 Extended Lis			Aliquot	21-0819-03-C02-A01	Analyst [.] FB

GSI Dissolved metals by EFA 6020A, Extended List			Aliquot: 21-0819-03-C02-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	123		ug/L	1	07/21/2021	AB21-0720-05
Iron	88		ug/L	20	07/21/2021	AB21-0720-05
Manganese	882		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL			Aliquot: 21-0819-03-C03-A01		Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Ammonia	5090		ug/L	25	07/15/2021	AB21-0712-12
Total Dissolved Solids by SM 2540C				Aliquot	21-0819-03-C04-A01	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	1060		mg/L	10	07/08/2021	AB21-0708-03

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot: 21-0819-03-C04-A02		Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqueous, Cl,	SO4			Aliquot:	21-0819-03-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	51700		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	222000		ug/L	1000	07/20/2021	AB21-0720-08
Sulfide, Total by SM 4500 S2D				Aliquot:	21-0819-03-C05-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Sulfide	ND		ug/L	40	07/11/2021	AB21-0714-04

21-0819 Page 9 of 29

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

_

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-11S	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-03	Collect Time:	02:25 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous			Aliquot: 21-0819-03-C06-A01		Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	3200		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B				Aliquot:	21-0819-03-C07-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	462000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	462000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-012D	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-04	Collect Time:	04:10 PM
Matrix:	Groundwater		

GSI Total Metals by EPA 6020A, Extended List			Aliquot:	Aliquot: 21-0819-04-C01-A01	
Result	Flag	Units	RL	Analysis Date	Tracking #
17		ug/L	1	07/21/2021	AB21-0720-04
125		ug/L	20	07/20/2021	AB21-0720-04
189000		ug/L	1000	07/22/2021	AB21-0720-04
8290		ug/L	20	07/21/2021	AB21-0720-04
65700		ug/L	1000	07/22/2021	AB21-0720-04
561		ug/L	5	07/21/2021	AB21-0720-04
3890		ug/L	100	07/22/2021	AB21-0720-04
5		ug/L	1	07/21/2021	AB21-0720-04
654000		ug/L	1000	07/22/2021	AB21-0720-04
	Result 17 125 189000 8290 65700 561 3890 5	Result Flag 17 125 189000 8290 65700 561 3890 5	Result Flag Units 17 ug/L 125 ug/L 189000 ug/L 8290 ug/L 65700 ug/L 561 ug/L 3890 ug/L 5 ug/L	Result Flag Units RL 17 ug/L 1 125 ug/L 20 189000 ug/L 1000 8290 ug/L 20 65700 ug/L 1000 561 ug/L 5 3890 ug/L 100 5 ug/L 1	Result Flag Units RL Analysis Date 17 ug/L 1 07/21/2021 125 ug/L 20 07/20/2021 189000 ug/L 1000 07/22/2021 8290 ug/L 20 07/21/2021 65700 ug/L 1000 07/22/2021 561 ug/L 5 07/21/2021 3890 ug/L 100 07/22/2021 5 ug/L 100 07/22/2021

GSI Dissolved Metals by E	PA 6020A, Extended Lis	t		Aliquot	21-0819-04-C02-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	6		ug/L	1	07/21/2021	AB21-0720-05
Iron	141		ug/L	20	07/21/2021	AB21-0720-05
Manganese	572		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL				Aliquot: 21-0819-04-C03-A01		Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Ammonia	42500		ug/L	25	07/15/2021	AB21-0712-12	
Total Dissolved Solids by SM 2540C	;			Aliquot	21-0819-04-C04-A01	Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Total Dissolved Solids	2620		mg/L	10	07/08/2021	AB21-0708-03	

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot: 21-0819-04-C04-A02		Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqueous, Cl,	SO4			Aliquot:	21-0819-04-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	1050000		ug/L	1000	07/20/2021	AB21-0720-08
Chionae	1050000		ug/L	1000	01/20/2021	NB21 0720 00
Sulfate	2360		ug/L	1000	07/07/2021	AB21-0720-08
			Ũ	1000		

Sulfide

21-0819 Page 11 of 29

ug/L

40

07/11/2021

AB21-0714-04

ND

Consumers	Energy

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-012D	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-04	Collect Time:	04:10 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous			Aliquot: 21-0819-04-C06-A01		Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	22000		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B				Aliquot:	21-0819-04-C07-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	773000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	773000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-012I	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-05	Collect Time:	05:05 PM
Matrix:	Groundwater		

GSI Total Metals by EPA 6020A, Extended List			Aliquot:	Aliquot: 21-0819-05-C01-A01		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	266		ug/L	1	07/21/2021	AB21-0720-04
Boron	2680		ug/L	20	07/20/2021	AB21-0720-04
Calcium	112000		ug/L	1000	07/22/2021	AB21-0720-04
Iron	762		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	27200		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	315		ug/L	5	07/21/2021	AB21-0720-04
Potassium	4110		ug/L	100	07/22/2021	AB21-0720-04
Selenium	2		ug/L	1	07/21/2021	AB21-0720-04
Sodium	84200		ug/L	1000	07/22/2021	AB21-0720-04
GSI Dissolved Metals by EPA	60204 Extended List	•		Aliquot	21-0819-05-C02-A01	Analyst: EB

GSI Dissolved Metals by EF	s by EPA 6020A, Extended List Aliquot: 21-0819-05-C02-		21-0819-05-C02-A01	01 Analyst: EB		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	277		ug/L	1	07/21/2021	AB21-0720-05
Iron	79		ug/L	20	07/21/2021	AB21-0720-05
Manganese	301		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL				Aliquot: 21-0819-05-C03-A01		Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Ammonia	7440		ug/L	25	07/15/2021	AB21-0712-12
Total Dissolved Solids by SM 2540C				Aliquot:	21-0819-05-C04-A01	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	712		mg/L	10	07/08/2021	AB21-0708-03

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot:	Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	227		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqueous	, CI, SO4			Aliquot:	21-0819-05-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	45700		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	161000		ug/L	1000	07/20/2021	AB21-0720-08
Sulfide. Total by SM 4500 S2D				Aliquot:	21-0819-05-C05-A01	Analyst: Merit

Sumue, Total by Sivi 4300 32D			Aliquot.	21-0619-05-C05-A01	Analyst. Wertt				
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #				
Sulfide	ND	ug/L	40	07/11/2021	AB21-0714-04				
21 0910 Dage 12 of 20									

21-0819 Page 13 of 29

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

_

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-012I	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-05	Collect Time:	05:05 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous					Aliquot: 21-0819-05-C06-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	7000		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B					Aliquot: 21-0819-05-C07-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	370000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	370000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-012S	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-06	Collect Time:	05:50 PM
Matrix:	Groundwater		

GSI Total Metals by EPA 6020A, Extended List			Aliquot: 21-0819-06-C01-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	596		ug/L	1	07/21/2021	AB21-0720-04
Boron	1270		ug/L	20	07/20/2021	AB21-0720-04
Calcium	90800		ug/L	1000	07/22/2021	AB21-0720-04
Iron	737		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	22200		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	313		ug/L	5	07/21/2021	AB21-0720-04
Potassium	9180		ug/L	100	07/22/2021	AB21-0720-04
Selenium	ND		ug/L	1	07/21/2021	AB21-0720-04
Sodium	9170		ug/L	1000	07/22/2021	AB21-0720-04

GSI Dissolved Metals by EPA 6020A, Extended List			Aliquot: 21-0819-06-C02-A01		Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	569		ug/L	1	07/21/2021	AB21-0720-05
Iron	59		ug/L	20	07/21/2021	AB21-0720-05
Manganese	323		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL				Aliquot: 21-0819-06-C03-A01		Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Ammonia	977		ug/L	25	07/15/2021	AB21-0712-12
Total Dissolved Solids by SM 2540C	;			Aliquot	21-0819-06-C04-A01	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	412		mg/L	10	07/08/2021	AB21-0708-03

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot: 21-0819-06-C04-A02		Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqueous, Cl,	SO4			Aliquot:	21-0819-06-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	2820		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	74800		ug/L	1000	07/07/2021	AB21-0720-08
Sulfide, Total by SM 4500 S2D				Aliquot:	21-0819-06-C05-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #

Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Sulfide	ND		ug/L	40	07/11/2021	AB21-0714-04
	21-0819	Page 15	of 29			

21-0819 Page 15 of 29

Consumers	Energy

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-012S	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-06	Collect Time:	05:50 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous				Aliquot: 21-0819-06-C06-A01		Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Total Organic Carbon	6300		ug/L	1000	07/14/2021	AB21-0723-10	
Alkalinity by SM 2320B				Aliquot:	21-0819-06-C07-A01	Analyst: DLS	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Alkalinity Total	283000		ug/L	10000	07/19/2021	AB21-0719-03	
Alkalinity Bicarbonate	283000		ug/L	10000	07/19/2021	AB21-0719-03	
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03	

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-013	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-07	Collect Time:	06:55 PM
Matrix:	Groundwater		

GSI Total Metals by EPA 6020A, Extended List			Aliquot:	Aliquot: 21-0819-07-C01-A01		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	113		ug/L	1	07/21/2021	AB21-0720-04
Boron	9360		ug/L	20	07/20/2021	AB21-0720-04
Calcium	131000		ug/L	1000	07/22/2021	AB21-0720-04
Iron	1210		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	28800		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	402		ug/L	5	07/21/2021	AB21-0720-04
Potassium	6880		ug/L	100	07/22/2021	AB21-0720-04
Selenium	2		ug/L	1	07/21/2021	AB21-0720-04
Sodium	47900		ug/L	1000	07/22/2021	AB21-0720-04
GSI Dissolved Metals by FPA	60204 Extended List	•		Aliquot	21-0819-07-002-001	Analyst: FR

GSI Dissolved Metals by EPA 6020A, Extended List			Aliquot:	Analyst: EB		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	108		ug/L	1	07/21/2021	AB21-0720-05
Iron	94		ug/L	20	07/21/2021	AB21-0720-05
Manganese	389		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL				Aliquot: 21-0819-07-C03-A01		Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Ammonia	15600		ug/L	25	07/15/2021	AB21-0712-12	
Total Dissolved Solids by SM 25400	;			Aliquot	21-0819-07-C04-A01	Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Total Dissolved Solids	650		mg/L	10	07/08/2021	AB21-0708-03	

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot:	Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqueous, Cl,	SO4			Aliquot:	21-0819-07-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	65100		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	18000		ug/L	1000	07/07/2021	AB21-0720-08
Sulfide, Total by SM 4500 S2D				Aliquot:	21-0819-07-C05-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Sulfide	ND		ug/L	40	07/11/2021	AB21-0714-04

21-0819 Page 17 of 29

Consumers	Energy

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-013	Collect Date:	07/06/2021
Lab Sample ID:	21-0819-07	Collect Time:	06:55 PM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310B, Aqueous				Aliquot: 21-0819-07-C06-A01		Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Total Organic Carbon	8400		ug/L	1000	07/14/2021	AB21-0723-10	
Alkalinity by SM 2320B				Aliquot:	21-0819-07-C07-A01	Analyst: DLS	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #	
Alkalinity Total	483000		ug/L	10000	07/19/2021	AB21-0719-03	
Alkalinity Bicarbonate	483000		ug/L	10000	07/19/2021	AB21-0719-03	
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03	

A CENTURY OF EXCELLENCE

Sample Site: DE	EK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID: TV	V-21-009	Collect Date:	07/07/2021
Lab Sample ID: 21	-0819-08	Collect Time:	08:35 AM
Matrix: Gr	roundwater		

GSI Total Metals by EPA 6020A, Extended List			Aliquot: 21-0819-08-C01-A01		Analyst: EB
Result	Flag	Units	RL	Analysis Date	Tracking #
367		ug/L	1	07/21/2021	AB21-0720-04
7170		ug/L	20	07/20/2021	AB21-0720-04
166000		ug/L	1000	07/22/2021	AB21-0720-04
4820		ug/L	20	07/21/2021	AB21-0720-04
30800		ug/L	1000	07/22/2021	AB21-0720-04
364		ug/L	5	07/21/2021	AB21-0720-04
7420		ug/L	100	07/22/2021	AB21-0720-04
5		ug/L	1	07/20/2021	AB21-0720-04
37800		ug/L	1000	07/22/2021	AB21-0720-04
	367 7170 166000 4820 30800 364 7420 5	367 7170 166000 4820 30800 364 7420 5	367 ug/L 7170 ug/L 166000 ug/L 4820 ug/L 30800 ug/L 364 ug/L 7420 ug/L 5 ug/L	367 ug/L 1 7170 ug/L 20 166000 ug/L 1000 4820 ug/L 20 30800 ug/L 1000 364 ug/L 5 7420 ug/L 100 5 ug/L 1	367 ug/L 1 07/21/2021 7170 ug/L 20 07/20/2021 166000 ug/L 1000 07/22/2021 4820 ug/L 20 07/21/2021 30800 ug/L 1000 07/22/2021 364 ug/L 5 07/21/2021 7420 ug/L 100 07/22/2021 5 ug/L 1 07/20/2021

			Aliquot.	21-0013-00-002-A01	Analyst. LD	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	336		ug/L	1	07/21/2021	AB21-0720-05
Iron	94		ug/L	20	07/21/2021	AB21-0720-05
Manganese	341		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL				Aliquot: 21-0819-08-C03-A01		Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Ammonia	2020		ug/L	25	07/15/2021	AB21-0712-12
Total Dissolved Solids by SM 2540C				Aliquot	21-0819-08-C04-A01	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	921		mg/L	10	07/08/2021	AB21-0708-03

Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot: 21-0819-08-C04-A02		Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/07/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/07/2021	AB21-0708-06
Anions by EPA 300.0 Aqueous,	CI, SO4			Aliquot:	21-0819-08-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	86700		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	304000		ug/L	1000	07/20/2021	AB21-0720-08
Sulfide, Total by SM 4500 S2D				Aliquot:	21-0819-08-C05-A01	Analyst: Merit

Sullide, Total by Sivi 4500 SZD			Aliquot:	21-0819-08-C05-A01	Analyst: Merit
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking #
Sulfide	ND	ug/L	40	07/11/2021	AB21-0714-04
	21.0	0010 Dogo 10 of 20			

21-0819 Page 19 of 29

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

_

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-009	Collect Date:	07/07/2021
Lab Sample ID:	21-0819-08	Collect Time:	08:35 AM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310E	B, Aqueous			Aliquot: 2	21-0819-08-C06-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	4000		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B				Aliquot: 2	21-0819-08-C07-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	188000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	188000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

A CENTURY OF EXCELLENCE

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-010	Collect Date:	07/07/2021
Lab Sample ID:	21-0819-09	Collect Time:	10:10 AM
Matrix:	Groundwater		

GSI Total Metals by EPA 6020A	, Extended List			Aliquot:	21-0819-09-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	518		ug/L	1	07/21/2021	AB21-0720-04
Boron	4900		ug/L	20	07/20/2021	AB21-0720-04
Calcium	154000		ug/L	1000	07/22/2021	AB21-0720-04
Iron	226		ug/L	20	07/21/2021	AB21-0720-04
Magnesium	26700		ug/L	1000	07/22/2021	AB21-0720-04
Manganese	355		ug/L	5	07/21/2021	AB21-0720-04
Potassium	7790		ug/L	100	07/22/2021	AB21-0720-04
Selenium	1		ug/L	1	07/21/2021	AB21-0720-04
Sodium	45100		ug/L	1000	07/22/2021	AB21-0720-04

GSI Dissolved Metals by E	PA 6020A, Extended List			Aliquot:	21-0819-09-C02-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Arsenic	548		ug/L	1	07/21/2021	AB21-0720-05
Iron	117		ug/L	20	07/21/2021	AB21-0720-05
Manganese	338		ug/L	5	07/21/2021	AB21-0720-05

Nitrogen-Ammonia by SM4500N	ONH3(h), Groundwater HL Aliquot: 21-0819-09-C0		21-0819-09-C03-A01	Analyst: CLH		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Ammonia	2550	2550		25	07/15/2021	AB21-0712-12
Anions by EPA 300.0 Aqueous, I	NO2, NO3			Aliquot:	21-0819-09-C04-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Nitrate	ND		ug/L	100	07/08/2021	AB21-0708-06
Nitrite	ND		ug/L	100	07/08/2021	AB21-0708-06
Total Dissolved Solids by SM 25	40C			Aliquot:	21-0819-09-C04-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Dissolved Solids	836		mg/L	10	07/08/2021	AB21-0708-03

Anions by EPA 300.0 Aqueous, Cl,	SO4			Aliquot:	21-0819-09-C04-A03	Analyst: TMR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Chloride	62100		ug/L	1000	07/20/2021	AB21-0720-08
Sulfate	257000	Result Flag Units RL Analysis Date Tracking 62100 ug/L 1000 07/20/2021 AB21-0720-0 257000 ug/L 1000 07/20/2021 AB21-0720-0 Aliquot: 21-0819-09-C05-A01 Analyst: Me Result Flag Units RL Analysis Date Tracking	AB21-0720-08			
Sulfide, Total by SM 4500 S2D				Aliquot:	21-0819-09-C05-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Sulfide	ND		ug/L	40	07/11/2021	AB21-0714-04

21-0819 Page 21 of 29

Count on Us® **Laboratory Services**

A CENTURY OF EXCELLENCE

_

Sample Site:	DEK Solid Waste Disposal Area (392503)	Laboratory Project:	21-0819
Field Sample ID:	TW-21-010	Collect Date:	07/07/2021
Lab Sample ID:	21-0819-09	Collect Time:	10:10 AM
Matrix:	Groundwater		

Total Organic Carbon by SM 5310E	B, Aqueous			Aliquot: 2	21-0819-09-C06-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Total Organic Carbon	2900		ug/L	1000	07/14/2021	AB21-0723-10
Alkalinity by SM 2320B				Aliquot: 2	21-0819-09-C07-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking #
Alkalinity Total	247000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Bicarbonate	247000		ug/L	10000	07/19/2021	AB21-0719-03
Alkalinity Carbonate	ND		ug/L	10000	07/19/2021	AB21-0719-03

Consume	ers Energy
	Count on Us®
Laborato	r <mark>y Services</mark>
A CENTURY C	OF EXCELLENCE

Data Qualifiers

Exception Summary

No exceptions occured.

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 **REVISION 3** ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Inspection Date:	Ins	spection By:	ĵ	
Sample Origin/Project Name: DE K	arn PR	В		
Shipment Delivered By: Enter the type of shi	ipment carrier.			
Pony FedEx	UPS	USPS	Airb	orne
Other/Hand Carry (whom) CE	T			
Tracking Number:	-	Shipping Form Attac	hed: Yes	No
Shipping Containers: Enter the type and num	ber of shipping	containers received.		
Cooler Cardboard Box		Custom Case	Envelope	Mailer
Loose/Unpackaged Containers		Other		
Condition of Shipment: Enter the as-received	d condition of th	e shipment container.		
Damaged Shipment Observed: None	1	Dented	Leak	ing
Other				0
CoC Work Request	ments enclosed	with the shipment, Air Data Sheet	Other	_
Enclosed Documents: Enter the type of documents: Enter the type of documents: CoC Work Request Work Request Temperature of Containers: Measure the temperature Range 2.9 As-Received Temperature Range 2.9 M&TE # and Expiration 01540	ments enclosed perature of sevent $1 - 5.1^{\circ C}$ $52 - 6^{-}63^{-}$	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22	ce: Yes 🖉 N	
Enclosed Documents: Enter the type of documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the temperature of Containers: Measure the temperature Range 2.9 M&TE # and Expiration61546 Number and Type of Containers: Enter the temperature for temperatu	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0
Enclosed Documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the temperature Range 2.9 M&TE # and Expiration61546 Number and Type of Containers: Enter the temperature Range 2.9 M&TE # and Expiration61546	ments enclosed perature of sevent $1 - 5.1^{\circ C}$ $52 - 6^{-}63^{-}$	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22	ce: Yes 🖉 N	
Enclosed Documents: Enter the type of documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the temperature of Containers: Measure the temperature Range 2.9 M&TE # and Expiration61546 Number and Type of Containers: Enter the temperature for temperatu	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0
Enclosed Documents: Enter the type of documents: Enter the type of documents: CoC Work Request	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0
Enclosed Documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the temperature Range 2.4 M&TE # and Expiration 01540 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number and Type of Containers: Enter the temperature Range 2.4 Number Range 2.4 Numb	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0
Enclosed Documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the temperature Range 2.9 M&TE # and Expiration 01540 Number and Type of Containers: Enter the temperature Range 2.9 Number and Type 0.9 Number and Type 0.9	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0
Enclosed Documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the temperature of Containers: Measure the temperature Range 2.4 M&TE # and ExpirationO1546 Number and Type of Containers: Enter the temperature (g/p) Quart/Liter (g/p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic) 24 mL vial (glass)	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0
Enclosed Documents: Enter the type of documents: CoC Work Request Temperature of Containers: Measure the term As-Received Temperature Range 2.9 M&TE # and Expiration 01540 Number and Type of Containers: Enter the term Container Type Water VOA (40mL or 60mL) 16 Quart/Liter (g/p) 9-oz (amber glass jar) 2-oz (amber glass) 125 mL (plastic) 310^{-} 310^{-}	ments enclosed perature of sevent $1 - 5 \cdot 1^{\circ C}$ $52 - 6 - 63^{\circ C}$ total number of	with the shipment, Air Data Sheet eral sample containers. Samples Received on I -22 sample containers recei	ce: Yes <u>/</u> N ved.	0

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 2 OF 2 REVISION 3 ATTACHMENT A

TITLE: SAMPLE LOG-IN – SHIPMENT INSPECTION FORM

Container Damage List or Exception Report (required if leaking, damaged or exception containers are found)

Project Log-In Number: <u>21-0819</u> Inspection Date: <u>67-07-21</u>

Inspection By: _ UMO

Sample Container Damage Listing: List all sample containers that were found to be broken, leaking, missing sample labels or are not accounted for on the CoC.

Sample/Container ID	Damage/Exception Report
21-1809	1-2
21-0819-01	extra 250 mL bottle was collected
AII - CO2	Samples were not filtered for dissolved ino 7-7-21 Se metals in the field. Lab filtered Samples upon receipt

Sample Origination State □ CO XMI □ MN	□мо		пτх			Other:	_		-		Wat	_	T			140	7	COC Numb		1		5
REPORT TO					OICE T			11						1	Fide			Matrix (Code:	Pre	servative	Code:
Company: Bour Engineering	-	Comp	Company:					1						t 4	-			GW = Grou	210-11- P.		= None	1
Address: 3025 Board valk D	c	Addre	Address: Same Name: Me					Ø	Containers					4	1g			SW = Surf WW = Was			= HCl = HNO	3
Address: St. # 100, Ann Ar		Addre						K	tair	215				1	3 1 1			DW = Drinking		Vater D	$= H_2SC$	04
Name: Mille Ellis		Name						>	Con	netuls			INIMA				15			S = Soil/Solid SD = Sediment		
email: Mellis D Barr, con	1	email	email: P.O.				1 1	to .				N	65		63		0 = Other		(= NaHS		
Copy to: BarrDM@barr.com		P.O.						-	MEANS	00		1		141							la ₂ S ₂ O ₃ scorbic Acid	
Project Name: DE KOUN PR	B	Barr	Project No: 22.09/016.01 400 100 W W W W W W W W W W W W W W W W W				= Zn A	1 - W. M. M. M. M.														
	Sam	nple De		Collec		Collection	11223	ε	NN	2		P	41	V	NP.		% S(κ = Οί		= Othe	ler
Location	Start	Stop	Unit	Dat	· · · · · · · · · · · · · · · · · · ·	Time	Matrix Code		10.00				-	t			-	Preservative	e Code	Code		
		Stop (m./ft. or in.)		(mm/dd/yyyy)		(hh:mm)		Perf	Total		NN		VV	N	NN			Field Filtered				
TU-21-11D 21-0819	-01			07/06	6/2021	1205	GU		2	KK	X	X	XX	X	X			NO	50	mples	field	filler
TU-21-11I	-92					1310	1															
TW-21-115	-03					1425																
4. TW-21-012D	-04					1610																
5. TV-21-012I	-05					1705																
5. Tw-21-0123	-06					1750																
Tw-21-013	-07			V	, 	1855																
TW-21-013 TU-21-009	-08			07/07	7/202	835																
9.				14			V			[1])	1	1	1	1							
10.																						
BARR USE ONLY Sampled by: ADD2			uished I	the	95	-8	N To	Date 7-2	21	OS		ŝ	Rece	eive	tby	2	1	3	11	Date		Time
Barr Proj. Manager: MJE		1	uished	1	5	00/2	Ice?	Date 7-2	27		ime 25	5			d by: 🤇	Y	-	5	1	Date 7-7-2	1 13	Time
Barr DQ Manager: DCB Lab Name: Trail Street			les Ship Sampler	ped VIA:	Gro Oth	ound Courier		Air Ca	arrier		_		Air I	Bill	Number:	0				tandard Ti	ed Due D urn Around	
Lab Location: Jackson, MI	s	Lab V	vo: 21-	0819		Temperature or	n Receipt	(°C)	:		Cust	tody	Seal	l In	tact?	1 🗆	N	□ None	L F	Rush(mm/	dd/yyyy)	1.67

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Incluge-08181890000005; Scan and email: a copy to BarrDM@barr.com for tracking and filing procedures

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 3 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Proje	ct Log-In Number: 21.08	19		
	ction Date: 7.8.21		dmus	
Samp	le Origin/Project Name:			
Shipn	nent Delivered By: Enter the type of	shipment carrier.		
	Pony FedEx Other/Hand Carry (whom) D	UPS	USPS Airt	borne
	Tracking Number:	Shipping	Form Attached: Yes	No
Shinn	ing Containers: Enter the type and r			
շութը	Cooler <u>Cordboard Bo</u> Loose/Unpackaged Containers <u>Cooler</u>	ox Custom Cas		e/Mailer
				_
Cond	ition of Shipment: Enter the as-recei	to and the state of the second s		
	Damaged Shipment Observed: No			king
	Other			_
Shipn	nent Security: Enter if any of the shi	pping containers were opened b	before receipt.	
	Shipping Containers Received: Op	bened Sealed	×	
Enclo	sed Documents: Enter the type of do	cuments enclosed with the shir	oment.	
Enclo	CoC <u>V</u> Work Request	the second		
Temp	erature of Containers: Measure the	temperature of several sample of	containers.	
	As-Received Temperature Range		ceived on Ice: Yes 🗸 🛚 N	No
	M&TE # and Expiration 0154	02 6.3.22		
Numl	per and Type of Containers: Enter t	he total number of sample conta	ainers received.	
ett paper	Container Type Water	Soil Other	Broken	Leaking
	VOA (40mL or 60mL) 72			
0.0 - 14.0	Quart/Liter (g/p)			
at. nr. 13-640-500	9-oz (amber glass jar)			
0.0-17.0 24. nl. 13-640-508 10t: 222420	2-oz (amber glass)			
101. 2001-	125 mL (plastic)			
EXP: 8.1.23	24 mL vial (glass)			
		100		
EXP: 0.1.20	24 mL vial (glass) 500 mL (plastic) Other 250 (w) alustric 1			

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 2 OF 2 REVISION 3 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Project Log-In Number:	21-0819		
Inspection Date: 7.8.	.21	Inspection By:	dmw
Sample Container Damage Li		ple containers that were four ls or are not accounted for o	nd to be broken, leaking, missing on the CoC.
Sample/Container ID		Damage/Exception I	Report
21-0819.09 002	Sample we the field.	as not filtered fo	ample upon Arriver

ARR Barr Engineering Co. ample Origination State										Wa	ter	lysis r	l	uested So	il		and the second second second			88769
	ОМС		□ TX		Other:	_							3				COC	1	of	-
REPORT TO				INVOICE T	0								2	Fill			Matr	ix Code:	Pre	servative Code:
company: Barr Engineerin	8	Comp	any:					s					4	3				Groundwat Surface W		A = None B = HCl
					7	ner				~					WW= V	Waste Wat	er i	$= HNO_3$		
Address: 3005 Board Malk Dr. Address: 3 Address: 3006 # 100, Ann Argor, MI Address: 3 Name: Mike Elliz Name: 0				~	Containers				HUHU)	41	24		11		Drinking V Soil/Solid		$D = H_2 SO_4$ = NaOH			
lame: Mike Ellis		Name	6	10			>	Total Number Of Conta	tot i			2	2	1			SD = S	Sediment		= MeOH
mail: Mellis D Barricor	2	email:	mail:				0	÷.	Mot	2		1		3			0 = 0	Other		$5 = NaHSO_4$ $H = Na_2S_2O_3$
opy to: BarrDM@barr.com		P.O.	-		_		W/	er	1 2	10	2	NE	10016n: tv (t	IFe		s				= Ascorbic Ad
roject Name: Havin PRB		Barr I	Project N	No: 7.7.091014	1,01 400	100	MS	qui	10	Anions	21	1	A			Solids				= Zn Acetate = Other
	Sam	ple De	epth	Collection	Collection	Matrix	orm	NC			1.	1	F			%				
Location	Start	Stop	Unit (m./ft.	Date	Time	Code	Perfo	otal										ative Code		
			or in.)	(mm/dd/yyyy)	(hh:mm)	-	Å	Ĕ	M									tered Y		
TW-21-010 21-	0819	- 09		7107/2021	10:10	GW	N	8	XX	X	X	rx	x	٢			Not	field	filt	end
						T.														
		1																		
																			Y.	
															1					
						-	1					1			+					
						-			-			+			-	-				
							-		-	$\left \right $		+	-			-				
					(-						-								
0.																				
BARR USE ONLY		Relino	uished t	DV: 0	0	Ice?	Date		TT	ime	-1	Rece	Na	d by:		_			Date	1 0805
impled by: 10002		11111		u- t			8/			ime 63					6	2	el	s.	282	and the second sec
arr Proj. Manager: MTE		Reling	uished I	by:	On	Ice?	Date	6		Time		Rece	eive	d by:					Date	Time
arr DQ Manager: DLB		Sampl	les Shipp	ped VIA: 🗌 Gr	ound Courier	1.26	Air C	arrie	er .	-	1	Air I	Bill	Numbe	er:					ed Due Date:
b Name: Trail Street			Sampler	🗆 Oti	ner:			_		_		1								urn Around Time
b Location: JACKSON, ML		Lab V	VO: 21.	-0819	Temperature or	n Receipt	(°C): 4	.3	Cus	tody	Seal	In	tact?	IY D	IN	None		ush	(dd/yyyy)

Distribution - White-Original: Accompanies Shipment to Laboratory; Yellow Copy: Inclu24-0619ieldg@29uont29ts; Scan and email: a copy to BarrDM@barr.com for tracking and filing procedures

Report ID: S26059.01(01) Generated on 07/12/2021

Report to

Attention: Emil Blaj Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 C:517-684-9467 FAX: Email: emil.blaj@cmsenergy.com

Report produced by

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: John Laverty (johnlaverty@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Summary

Lab Sample ID(s): S26059.01-S26059.09 Project: 21-0819 PR21070814 Collected Date(s): 07/07/2021 - 07/08/2021 Submitted Date/Time: 07/09/2021 14:06 Sampled by: Unknown P.O. #: 4400096639

Table of Contents

Cover Page (Page 1) General Report Notes (Page 2) Report Narrative (Page 2) Laboratory Certifications (Page 3) Qualifier Descriptions (Page 3) Glossary of Abbreviations (Page 3) Method Summary (Page 4) Sample Summary (Page 5)

Naya Mushah

Maya Murshak Technical Director

Analytical Laboratory Report

General Report Notes

Analytical results relate only to the samples tested, in the condition received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

40 CFR Part 136 Table II Required Containers, Preservation Techniques and Holding Times for the Clean Water Act specify that samples

for acrolein and acrylonitrile need to be preserved at a pH in the range of 4 to 5 or if not preserved, analyzed within 3 days of sampling. QA/QC corresponding to this analytical report is a separate document with the same Merit ID reference and is available upon request.

Full accreditation certificates are available upon request. Starred (*) analytes are not NELAP accredited.

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc.

Limits for drinking water samples, are listed as the MCL Limits (Maximum Contaminant Level Concentrations)

PFAS requirement: Section 9.3.8 of U.S. EPA Method 537.1 states "If the method analyte(s) found in the Field Sample is present in the FRB at a concentration greater than 1/3 the MRL, then all samples collected with that FRB are invalid and must be recollected and reanalyzed."

Samples submitted without an accompanying FRB may not be acceptable for compliance purposes.

Report Narrative

There is no additional narrative for this analytical report

Laboratory Certifications

Authority	Certification ID
Michigan DEQ	#9956
DOD ELAP/ISO 17025	#69699
WBENC	#2005110032
Ohio VAP	#CL0002
Indiana DOH	#C-MI-07
New York NELAC	#11814
North Carolina DENR	#680
North Carolina DOH	#26702
Alaska CSLAP	#17-001
Pennsylvania DEP	#68-05884

Qualifier Descriptions

Qualifier	Description
!	Result is outside of stated limit criteria
В	Compound also found in associated method blank
E	Concentration exceeds calibration range
F	Analysis run outside of holding time
G	Estimated result due to extraction run outside of holding time
Н	Sample submitted and run outside of holding time
I	Matrix interference with internal standard
J	Estimated value less than reporting limit, but greater than MDL
L	Elevated reporting limit due to low sample amount
Μ	Result reported to MDL not RDL
0	Analysis performed by outside laboratory. See attached report.
R	Preliminary result
S	Surrogate recovery outside of control limits
Т	No correction for total solids
Х	Elevated reporting limit due to matrix interference
Y	Elevated reporting limit due to high target concentration
b	Value detected less than reporting limit, but greater than MDL
е	Reported value estimated due to interference
j	Analyte also found in associated method blank
р	Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.
х	Preserved from bulk sample

Glossary of Abbreviations

Abbreviation	Description
RL/RDL	Reporting Limit
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
SW	EPA SW 846 (Soil and Wastewater) Methods
E	EPA Methods
SM	Standard Methods
LN	Linear
BR	Branched
1	

Method Summary

Method

SM4500-S2 D

Version Standard Method 4450 S2 D 2011

Sample Summary (9 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S26059.01	TW-21-11D (21-0819-01)	Groundwater	07/07/21 12:05
S26059.02	TW-21-11I (21-0819-02)	Groundwater	07/07/21 13:10
S26059.03	TW-21-11S (21-0819-03)	Groundwater	07/07/21 14:25
S26059.04	TW-21-012D (21-0819-04)	Groundwater	07/07/21 16:10
S26059.05	TW-21-012I (21-0819-05)	Groundwater	07/07/21 17:05
S26059.06	TW-21-012S (21-0819-06)	Groundwater	07/07/21 17:50
S26059.07	TW-21-013 (21-0819-07)	Groundwater	07/07/21 18:55
S26059.08	TW-21-009 (21-0819-08)	Groundwater	07/08/21 08:35
S26059.09	TW-21-010 (21-0819-09)	Groundwater	07/08/21 10:10

Lab Sample ID: S26059.01

Sample Tag: TW-21-11D (21-0819-01) Collected Date/Time: 07/07/2021 12:05 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:36, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.02

Sample Tag: TW-21-111 (21-0819-02) Collected Date/Time: 07/07/2021 13:10 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:38, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.07	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.03

Sample Tag: TW-21-11S (21-0819-03) Collected Date/Time: 07/07/2021 14:25 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:46, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.04

Sample Tag: TW-21-012D (21-0819-04) Collected Date/Time: 07/07/2021 16:10 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:48, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.05

Sample Tag: TW-21-012I (21-0819-05) Collected Date/Time: 07/07/2021 17:05 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:50, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.06

Sample Tag: TW-21-012S (21-0819-06) Collected Date/Time: 07/07/2021 17:50 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:52, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.07

Sample Tag: TW-21-013 (21-0819-07) Collected Date/Time: 07/07/2021 18:55 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:54, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.08

Sample Tag: TW-21-009 (21-0819-08) Collected Date/Time: 07/08/2021 08:35 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:56, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Lab Sample ID: S26059.09

Sample Tag: TW-21-010 (21-0819-09) Collected Date/Time: 07/08/2021 10:10 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	5.0	IR

Inorganics

Method: SM4500-S2 D, Run Date: 07/11/21 08:58, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.04	0.010	mg/L	2	18496-25-8	

Merit Laboratories Login Checklist

Lab Set ID:S26059

Client: CONSUMERS (Consumers Energy)

Project: 21-0819 PR21070814

Submitted:07/09/2021 14:06 Login User: SRS

Attention: Emil Blaj Address: Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Selection	Description	Note
Sample Receiving	I	
01. X Yes No N/A	Samples are received at 4C +/- 2C Thermometer #	IR 5.0
02. X Yes No N/A	Received on ice/ cooling process begun	
03. Yes X No N/A	Samples shipped	
04. Yes X No N/A	Samples left in 24 hr. drop box	
05. Yes No X N/A	Are there custody seals/tape or is the drop box locked	
Chain of Custody		
06. X Yes No N/A	COC adequately filled out	
07. X Yes No N/A	COC signed and relinquished to the lab	
08. X Yes No N/A	Sample tag on bottles match COC	
09. Yes X No N/A	Subcontracting needed? Subcontacted to:	
Preservation		
10. X Yes No N/A	Do sample have correct chemical preservation	
10. X Yes No N/A 11. X Yes No N/A	Do sample have correct chemical preservation Completed pH checks on preserved samples? (no VOAs)	
11. X Yes No N/A	Completed pH checks on preserved samples? (no VOAs)	
II. X Yes No N/A 12. Yes X No N/A	Completed pH checks on preserved samples? (no VOAs)	
11. X Yes No N/A 12. Yes No N/A Bottle Conditions Image: Condition state s	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab?	
11. X Yes No N/A 12. Yes X No N/A Bottle Conditions 13. X Yes No N/A	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab? All bottles intact	
11. X Yes No N/A 12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used	
11. X Yes No N/A 12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A 15. Yes X No N/A	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used Merit bottles used	
11. X Yes No N/A 12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A 15. Yes Xo N/A 16. X Yes No N/A	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used Merit bottles used Sufficient sample volume received	

Corrective action for all exceptions is to call the client and to notify the project manager.

Merit Laboratories Bottle Preservation Check

Lab Set ID: S26059 Submitted: 07/09/2021 14:06 Client: CONSUMERS (Consumers Energy) Project: 21-0819 PR21070814 Attention: Emil Blaj Address: Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Initial Preservation Check: 07/09/2021 14:19 SRS Preservation Recheck (E200.8): N/A

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Sample ID	Bottle / Preservation	pH (Orig)	Add ml	pH (New)	Notes
S26059.01	125ml Plastic NaOH	>12			
S26059.02	125ml Plastic NaOH	>12			
S26059.03	125ml Plastic NaOH	>12			
S26059.04	125ml Plastic NaOH	>12			
S26059.05	125ml Plastic NaOH	>12			
S26059.06	125ml Plastic NaOH	>12			
S26059.07	125ml Plastic NaOH	>12			
S26059.08	125ml Plastic NaOH	>12			
S26059.09	125ml Plastic NaOH	>12			

REPORT				CHAIN	OF	CL	JST	TO	DY F	EC	COL	RD						INVOID	CET
CONTACT NAME En	nil Blaj							CONT	ACT NA	ME							X SAN	ЛЕ	
COMPANY CONSU	imers E	nergy						COMP	PANY										
ADDRESS 135 W	. Trail S	treet					-11	ADDR	IESS										
Jackson				STATE MI ZIP			01	CITY				. 4					STATE	ZIP CODE	
PHONE NO. 517-78	88-5888		FAX NO. 517-788-2533	P.O. NO. 4400090	639	1		PHON	IE NO.			3	E-M	AIL ADDRESS			-		
E-MAIL ADDRESS en	nil.blaj@	Demsen	ergy.com	QUOTE NO.			Ti					ANA	LYSIS (AT	TACH LIST IF	MORE	SPACE	E IS REQUI	RED)	
PROJECT NO./NAME				SAMPLER(S) - PLEASE	RINT/SI	GNNA	ME			,	N/A	1.				1	Certifica		
			1 DAY 2 DAYS 3 D	AYS STANDARD	Пот	HER		-		-	NA	1.	1911					AP Drin	king Wat
							_		-								DoD	NPD	DES
MATRIX SW		DWATER	WW=WASTEWATER S=SO DRINKING WATER 0=OIL	DIL L=LIQUID SI	=SOL	D		# Containers & Preservatives							Project L	_ocations	v York		
MERIT LAB NO.	YEA DATE	TIME	SAMPLE IDENTIFICATION-DE		MATRIX	# OF BOTTLES	NONE	HO	H,SO,	HON	OTHER	Total					Other Special I	Instructions	
	6/2021	1205	TW-21-11D (21-0819-01)	GW	-			T	1	T	1						with NaOH/	
a second s	2021	1310	TW-21-111 (21-0819-02)) -	GW	1			11	1	T	1					"		
.03.17	6/2021	1425	TW-21-11S (21-0819-03)	GW	1			T	1		1							-
.04 27	2/2021	1610	TW-21-012D (21-0819-0)4)	GW	1				1		1							
	G /2021		TW-21-012I (21-0819-0	5)	GW	1				1		1					u		
	2/2021	1750	TW-21-012S (21-0819-0	6)	GW	1				1		1					"		
17 7	2/2021	1855	TW-21-013 (21-0819-07)	GW	1				1		1							
			TW-21-009 (21-0819-08)	GW	1				1		1					"		
.09 17	/7/2021	1010	TW-21-010 (21-0819-09)	GW	1		-		1		1					"		
									Ļ	1			2.01						
RELINQUISHED BY: SIGNATURE/ORGAN	ZATION	Y.	ALCINFRC FUCKSY	Sampler DATE		106			ATURE/			TION						DATE	TIME
RECEIVED BY: SIGNATURE/ORGAN	ZATION	18	anguh	7/9/2	14	100			ATURE/		ANIZA	TION						DATE	TIME
RELINQUISHED BY: SIGNATURE/ORGAN	ZATION	0	0	DATE		TIME		SEAL NO. SEAL INTACT INITIALS NOTES: TEMP. ON ARRIVAL											
RECEIVED BY: DATE TIME SIGNATURE/ORGANIZATION				٦ŀ	SEAL NO. SEAL INTACT INITIALS 5.0														

~

PLEASE NOTE: SIGNING ACKNOWLEDGES ADHERENCE TO MERIT'S SAMPLE ACCEPTANCE POLICY ON REVERSE SIDE

2105 Pless Drive Brighton, Michigan 48114 Phone (810)229-7575 Fax (810)229-8650 E-mail bai-brighton@sbcglobal.net

July 21, 2021

Consumers Energy Company 135 W. Trail St. Jackson, MI 49201

Subject: DE Karn 21-0819

Dear Mr. Blaj :

Thank you for making Brighton Analytical, L.L.C. your laboratory of choice. Attached are the results for the samples submitted on 07/14/2021 for the above mentioned project. NELAP/TNI Accredited Analysis and EGLE Drinking Water Certified Analysis will be identified in their respective reporting formats. Hard copies can be supplied at your request for a fee of \$20.00 per copy.

The invoice for this project will be emailed separately. If you have any questions concerning the data or invoice, please don't hesitate to contact our office. We welcome your comments and suggestions to improve our quality systems. Please reference Brighton Analytical, L.L.C. Project ID 75866 when calling or emailing. We thank you for this opportunity to partner with you on this project and hope to work with you again in the future.

Sincerely, Brighton Analytical, L.L.C.

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/06/2021 07/14/2021 07/21/2021			13	nsumers Energy Compar 5 W. Trail St. ekson, MI 49201	у	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01052	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	1 TW-21-11D			Analysis
Paramete	ers	Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbon	ı	33000	ug/L	1000	SM5310B	RG	07/21/2021
DI =Reported detec	tion limit for analytical m	ethod requested Sou	ne compound	s require special			

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

Released by	lyooa			
Date	7/21/2021			

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/06/2021 07/14/2021 07/21/2021			13	onsumers Energy Compar 5 W. Trail St. ckson, MI 49201	y	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01053	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	2 TW-21-11I			Analysis
Paramete	ers	Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbor	1	4400	ug/L	1000	SM5310B	RG	07/21/2021
DI = Reported detec	ction limit for analytical m	nethod requested Sor	me compound	s require special			

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

Released by	topa
Date	7/21/2021

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/06/2021 07/14/2021 07/21/2021			135	nsumers Energy Compar 5 W. Trail St. kson, MI 49201	Ŋ	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01054	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	3 TW-21-11S			Analysis
Paramet	ers	Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbox	n	3200	ug/L	1000	SM5310B	RG	07/21/2021
DL=Reported deter	ction limit for analytical m	nethod requested. Sou	ne compound	s require special			

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

Released by	topa
Date	7/21/2021

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/06/2021 07/14/2021 07/21/2021			135	nsumers Energy Compar 5 W. Trail St. kson, MI 49201	у	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01055	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	4 TW-21-12D			Analysis
Parameters		Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbo	n	22000	ug/L	1000	SM5310B	RG	07/21/2021
0	n ction limit for analytical m		-		SM3510B	KŬ	07/21/2021

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

Released by

Date

7/21/2021

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/06/2021 07/14/2021 07/21/2021			135	nsumers Energy Compar 5 W. Trail St. kson, MI 49201	Ŋ	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01056	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	5 TW-21-12D			Analysis
Parameters		Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbo	n	7000	ug/L	1000	SM5310B	RG	07/21/2021
DL=Reported dete	ction limit for analytical m	ethod requested. Sor	me compound	s require special			

Released by	topa
Date	7/21/2021

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 07/06/2021 Submit Date: 07/14/2021 Report Date: 07/21/2021			135	nsumers Energy Compan W. Trail St. kson, MI 49201	у	
BA Report Number: 75866	Pr	oject Name:	DE Karn			
BA Sample ID: CP01057	Proj	ect Number:	21-0819			
	Sample ID:	21-0819-0	6 TW-21-12S			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Corbon	(200	ug/I	1000	SM5310B	RG	07/21/2021
Total Organic Carbon DL=Reported detection limit for analytical me	6300	ug/L		SM5510B	KG	0//21/2021

Released by	topa
Date	7/21/2021

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/06/2021 07/14/2021 07/21/2021			135	nsumers Energy Compar 5 W. Trail St. kson, MI 49201	Ŋ	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01058	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	7 TW-21-013			Analysis
Parameters		Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbo	n	8400	ug/L	1000	SM5310B	RG	07/21/2021
C	tion limit for analytical m		-		51133100	Ro	0112112021

Released by	topa
Date	7/21/2021

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/07/2021 07/14/2021 07/21/2021			13	nsumers Energy Compar 5 W. Trail St. skson, MI 49201	Ŋ	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01059	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	8 TW-21-009			Analysis
Parameters		Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbor	n	4000	ug/L	1000	SM5310B	RG	07/21/2021
DL=Reported detec	ction limit for analytical m	ethod requested Sor	ne compound	s require special			

Released by	topa
Date	7/21/2021

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: Submit Date: Report Date:	07/07/2021 07/14/2021 07/21/2021			135	nsumers Energy Compar 5 W. Trail St. kson, MI 49201	у	
BA Report Number:	75866	Pro	oject Name:	DE Karn			
BA Sample ID:	CP01060	Proj	ect Number:	21-0819			
		Sample ID:	21-0819-0	9 TW-21-010			Analysis
Parameters		Result	Units	DL	Method Reference	Analyst	Date
Organic Analysis Total Organic Carbor	1	2900	ug/L	1000	SM5310B	RG	07/21/2021
DI =Reported detec	tion limit for analytical m	nethod requested Sor	ne compound	s require special			

Released by	topa
Date	7/21/2021

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

75866

Consumers Energy

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251 • FAX (517) 788-2533

SAMPLING SITE: DE Karn			PROJECT NUMBER: 21-0819					ANALYSIS REQ	Page 1 of 1			
										SEND REPORT TO:		
AMPLIN	IG TEA				DATE SHIPPED:		SITE SKETCHED ATTACHED? CIRCLE ONE: YES NO					Emil.Blaj@cmsenergy.com
CE CONTRO	OL#	SAMPLE DATE	SAMPLE TIME	SAMPLE MATRIX	SAMPLE DESCRIPTION / LOC	ATION	DEPTH # OF		TOC			REMARKS
21-081	9-01	7/06/2021	1205	GW	TW-21-11D			1	x			1052
	-02	7/06/2021	1310	GW	TW-21-11I			1	x			53
	-03	7/06/2021	1425	GW	TW-21-11S			1	x			Su
	-04	7/06/2021	1610	GW	TW-21-012D			1	x			55
	-05	7/06/2021	1705	GW	TW-21-012D			1	x			56
-	-06	7/06/2021	1750	GW	TW-21-0128			1	x			57
	-07	7/06/2021	1855	GW	TW-21-013			1	x			58
"	-08	7/07/2021	0835	GW	TW-21-009			1	x			59
1	-09	7/07/2021	1010	GW	TW-21-010			I	x			60
	_											
0	1	BY: (SIGNA	2	DATE/TI 7.14. DATE/TI	.21 0812	loon	: (SIGNATUR	later	Procure	ment # PR210708	COMMENTS 317	
		2 11 (010111	,				V			ORIGINAL T	O LAB COPY TO	O CUSTOMER

BRIGHTON ANALYTICAL, LLC

QUALITY ASSURANCE/QUALITY CONTROL

REPRESENTATIVE BATCH QUALITY CONTROL Accuracy & Precision

Analyst: RG

Parameter: TOC/DOC

Analysis Date: 7/21/2021

Method Reference: EPA 415.1/SM5310B/9060

		SPIKE - ACC	URACY		
Laboratory ID	Spike level PPB	Background PPB	Recoveries (%)	Acceptable Range (%)	Method Blank Concentration
CP01676	TV=10000	3300	92/93	80 - 120	ND
Laboratory ID	Observed A PPB	Observed B PPB	RPD (%)	Acceptable Range(%)	
CP01676	12500	12600	0.80	<u>< 20</u>	
		MISCELLA	NEOUS		
		Standard ID #	%Recoveries		
ndependent Secondar	y Reference Material:	#4295	97		
Method Standard (Lab	o. Control Spike):	#3046.4	103		

COMMENTS:

Appendix A-9

FS Remedial Response Area Groundwater Analytical Data

Appendix A-9 FS Remedial Response Area Groundwater Analytical Data D.E. Karn Generating Facility Consumers Energy

		Location	MW-08	MW-10	MW-12	MW-14
	Sam	ple Type	N	N	N	N
Parameter		Units				
General Parameters						
Alkalinity, bicarbonate, as CaCO3		ug/l	389000	547000	462000	392000
Alkalinity, carbonate, as CaCO3		ug/l				
Alkalinity, total, as CaCO3		ug/l	389000	547000	462000	392000
Carbon, total organic		ug/l	2500	3900	3800	3100
Chloride		ug/l	54400	69400	65900	29000
Nitrogen, ammonia, as N		ug/l	1260	1780	1200	1120
Nitrogen, nitrate, as N		ug/l	<100U	<100U	<100U	250
Nitrogen, nitrite, as N		ug/l	<100U	<100U	<100U	<100U
Solids, total dissolved		ug/l	1260000	891000	1270000	1620000
Sulfate, as SO4		ug/l	333000	54900	201000	1220000
Sulfide, as S ² -		ug/l	<40U	<40U	<40U	<40U
Dissolved Metals						
Arsenic		ug/l	94	770	261	55
Iron		ug/l	6620	4200	2040	323
Manganese		ug/l	311	205	682	1200
Total Metals						
Arsenic		ug/l	84	589	384	47
Boron		ug/l	4130	5210	3030	1300
Calcium		ug/l	191000	159000	179000	366000
Iron		ug/l	9150	2780	2900	245
Magnesium		ug/l	35900	41800	34500	145000
Manganese		ug/l	273	214	642	1100
Potassium		ug/l	13300	12200	10300	15300
Selenium		ug/l	2		2	8
Sodium		ug/l	46500	57200	51100	43700
Field Parameters						
pН		s.u.	7.12	7.29	7.28	6.96
Oxidation Reduction Potential		mV	-104.5	-106.1	-92.3	95
Conductivity		mS/sec	1521	1358	1506	2660

Groundwater analytical data are from sampling events in August 2020, October 2020, and July 2021. For each location, the most recent data available for each parameter is shown.

Footnotes

N Sample Type: Normal

 ${\boldsymbol{\mathsf{U}}}$ The analyte was analyzed for, but was not detected.

Collection Date July 2021 October 2020 August 2020

Appendix A-10

FS Remedial Response Area Soil Analytica Data

	Location Date Depth ple Type	20001 7/14/2020 22 - 25 ft	DEK-SB- 20002 7/14/2020 21 - 23 ft N	DEK-SB- 20003 7/14/2020 15 - 17 ft N	DEK-SB- 20004 7/14/2020 17 - 19 ft N	DEK-SB- 20005 7/15/2020 19 - 21 ft N	DEK-SB- 20006 7/15/2020 11 - 13 ft N	DEK-SB- 20007 7/15/2020 14 - 16 ft N	DEK-SB- 20008 7/15/2020 17 - 19 ft N	DEK-SB- 20009 7/15/2020 15 - 17 ft N	DEK-SB- 20010 7/15/2020 9 - 12 ft N
Parameter	Units										
General Parameters											
Biochemical Oxygen Demand (5-day)	mg/l	< 20.0 U	< 20.0 U	24.0	< 20.0 U	< 20.0 U					
Carbon, total organic	mg/kg	2160	2230	3580	1430	3100	2040	1980	2650	2410	2210
Chemical Oxygen Demand	mg/l	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U	< 10.0 U
Moisture	%	14.4	19.5	20.0	13.3	16.8	10.8	20.7	14.3	12.3	16.8
рН	pH units	8.1 H	7.9 H	8.1 H	8.3 H	8.5 H	8.5 H	8.5 H	8.3 H	8.1 H	8.3 H
Redox (oxidation potential)	mV	370	345	378	375	395	479	456	452	428	443
Solids, percent	%	85.6	80.5	80.0	86.7	83.2	89.2	79.3	85.7	87.7	83.2
Metals											
Arsenic	mg/kg	4.65	7.02	9.81	3.89	9.81	16.6	12.8	6.10	2.76	3.84
Iron	mg/kg	2780	2830	5180	2620	3750	3690	7010	3280	5420	4210

LEGEND

Detections are presented in **bold**.

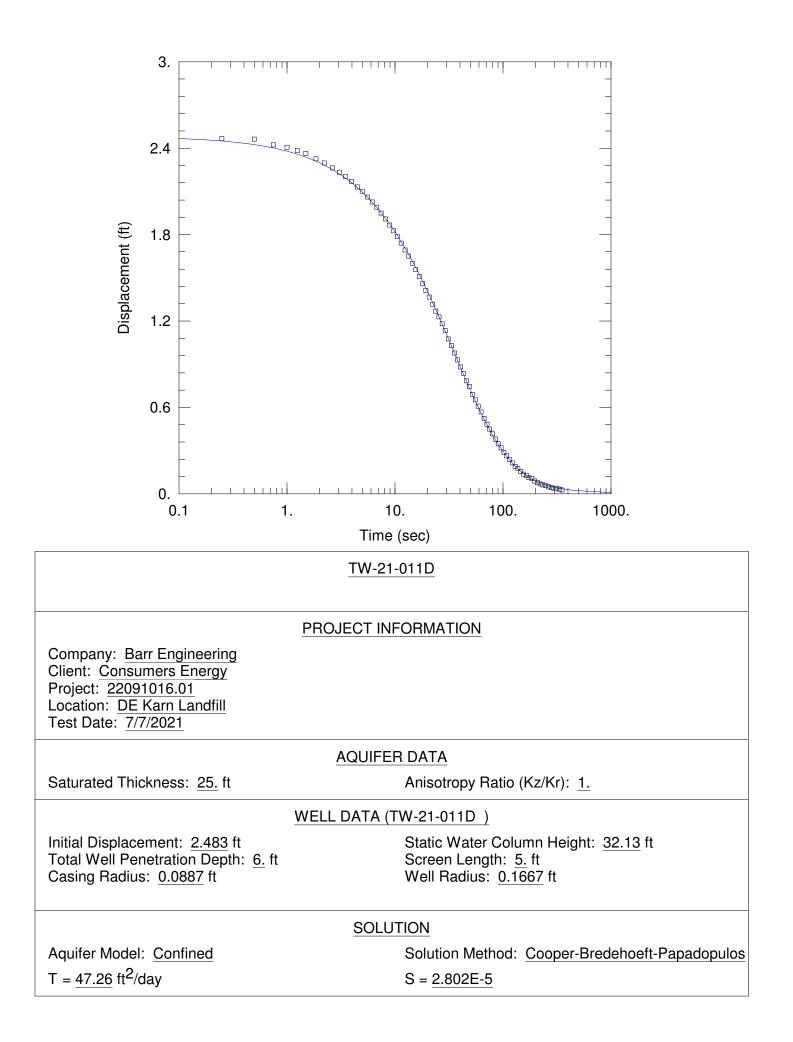
Footnotes

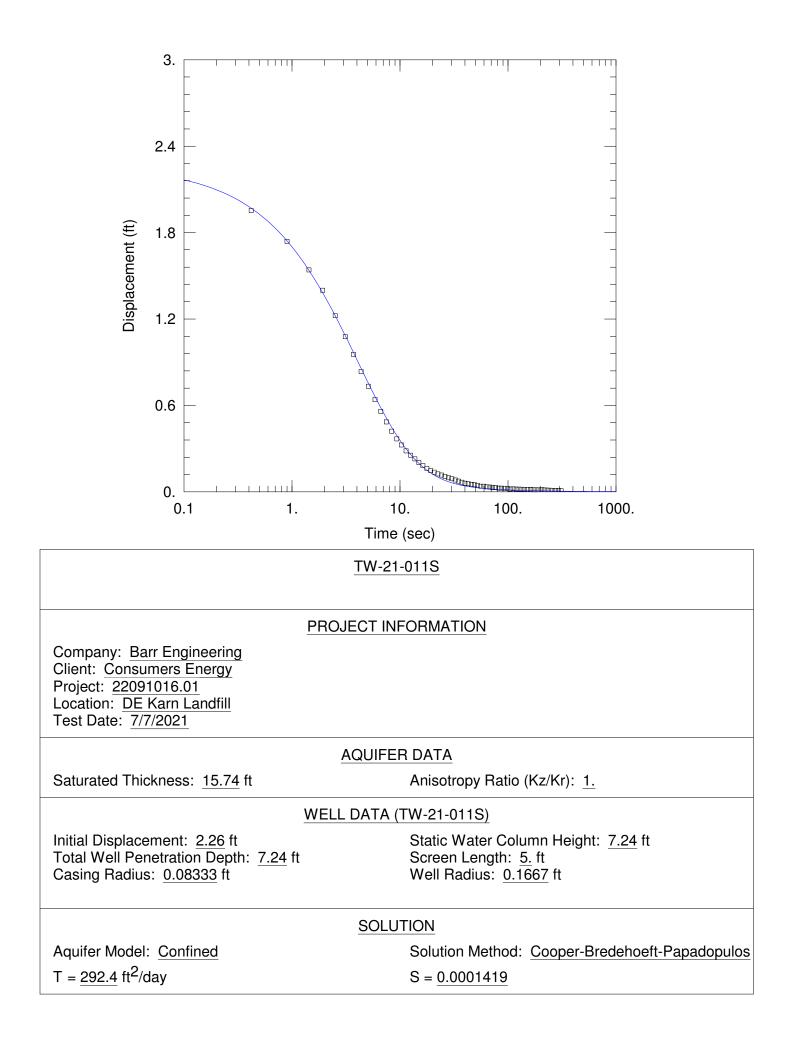
N Sample Type: Normal H Recommended sample

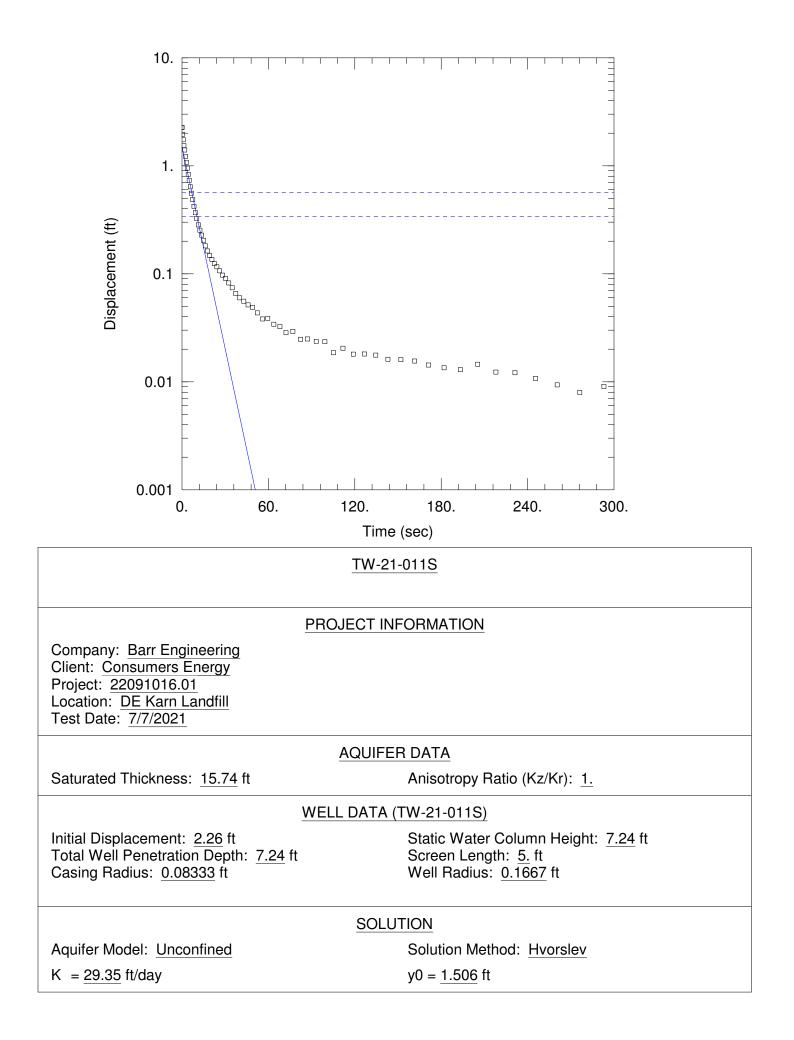
preservation, extraction, or analysis

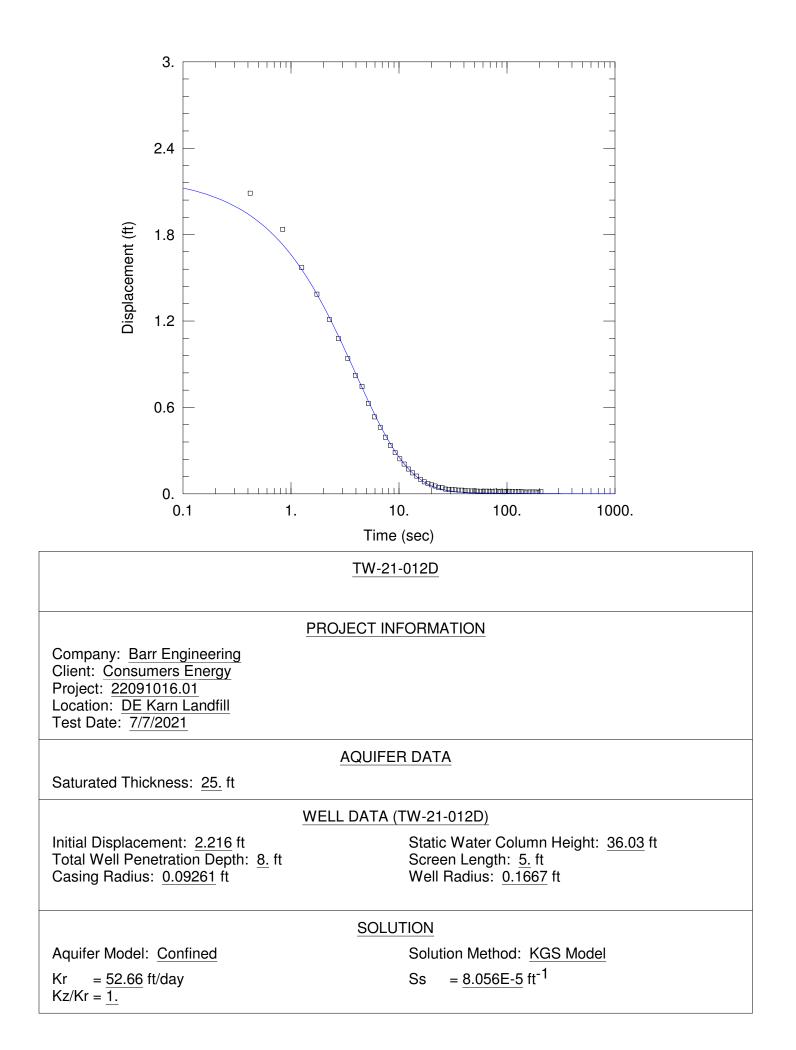
U The analyte was analyzed for, but was not detected.

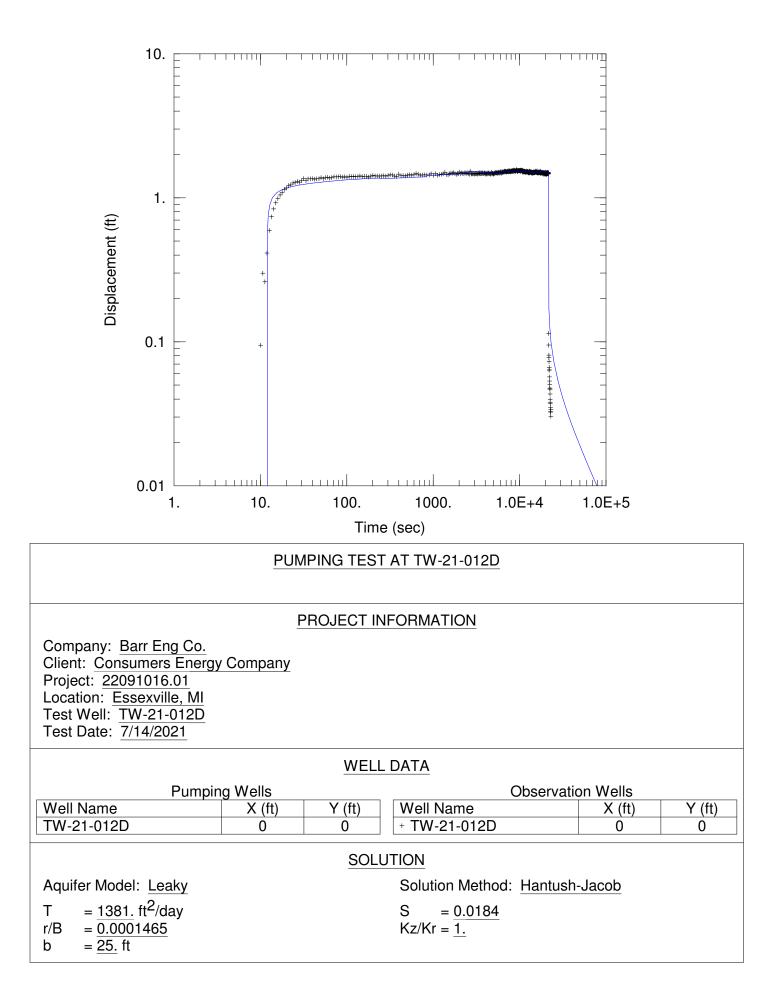
Appendix A-10 FS Remedial Response Area Soil Analytical Data D.E. Karn Generating Facility Consumers Energy Company


Appendix B


Slug Testing and Pumping Tests


Appendix B-1


Slug Tests



Appendix B-2

Pumping Test

Data Set: P:\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\PRB Additional Extent Evaluation' Title: Pumping Test at TW-21-012D Date: 09/03/21 Time: 13:44:47

PROJECT INFORMATION

Company: Barr Eng Co. Client: Consumers Energy Company Project: 22091016.01 Location: Essexville, MI Test Date: 7/14/2021 Test Well: TW-21-012D

AQUIFER DATA

Saturated Thickness: 25. ft Anisotropy Ratio (Kz/Kr): 1. Aquitard Thickness (b'): 8. ft Aquitard Thickness (b"): 1. ft

PUMPING WELL DATA

No. of pumping wells: 1

Pumping Well No. 1: TW-21-012D

X Location: 0. ft Y Location: 0. ft

Casing Radius: 0.08333 ft Well Radius: 0.08333 ft

Partially Penetrating Well Depth to Top of Screen: 3. ft Depth to Bottom of Screen: 8. ft

No. of pumping periods: 12

	Pumping Pe	eriod Data	
Time (sec)	Rate (gal/min)	Time (sec)	Rate (gal/min)
12.	3.339	6180.	3.401
60.	3.339	9660.	3.339
240.	3.289	1.314E+4	3.261
840.	3.363	1.686E+4	3.344
2580.	3.476	2.046E+4	3.341
3720.	3.304	2.168E+4	0.

OBSERVATION WELL DATA

No. of observation wells: 1

Observation Well No. 1: TW-21-012D

X Location: 0. ft Y Location: 0. ft

Radial distance from TW-21-012D: 0. ft

Partially Penetrating Well Depth to Top of Screen: 3. ft Depth to Bottom of Screen: 8. ft

No. of Observations: 480

	Observatio	on Data	
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0.251	-0.00303	8688.	1.536

<u>Time (sec)</u>	Displacement (ft)	<u>Time (sec)</u>	Displacement (ft)
0.501	-0.00449	8748.	1.556
0.751	-0.00917	8808.	1.543
1.001	0.00301	8868.	1.545
1.251	-0.00486	8928.	1.54
1.501	-0.00812	8988.	1.527
1.751	-0.0004	9048.	1.537
2.001	-0.00828	9108.	1.559
2.251	-0.00516	9168.	1.543
2.501	-0.0035	9228.	1.567
2.751	-0.00585	9288.	1.562
3.001	-0.00684	9348.	1.544
3.251	-0.0001	9408.	1.532
3.501 3.751 4.001 4.251	-0.00326 -0.00266 0.00127	9468. 9528. 9588.	1.548 1.517 1.554 1.542
4.501 4.751	-0.00139 -0.00554 0.00203 -0.00692	9648. 9708. 9768. 9828.	1.542 1.547 1.541 1.548
5.001 5.251 5.501 5.751	-0.00123 -0.00025 -0.00115	9828. 9888. 9948. 1.001E+4	1.548 1.542 1.546
6.001	-0.00025	1.007E+4	1.547
6.361	0.00036	1.013E+4	1.535
6.721	-0.00606	1.019E+4	1.551
7.141	0.00021	1.025E+4	1.56
7.561	-0.00721	1.031E+4	1.525
7.98	0.00431	1.037E+4	1.542
8.461	-0.00493	1.043E+4	1.551
9.001	0.00149	1.049E+4	1.553
9.48	0.00272	1.055E+4	1.534
10.08	0.09468	1.061E+4	1.542
10.68	0.2997	1.067E+4	1.551
11.28 11.94 12.66	0.2997 0.2616 0.4134 0.5937	1.073E+4 1.079E+4 1.085E+4	1.557 1.523 1.514
13.44	0.7391	1.091E+4	1.542
14.22	0.8379	1.097E+4	1.504
15.06	0.9232	1.103E+4	1.526
15.96	0.9881	1.109E+4	1.539
16.92	1.045	1.115E+4	1.513
17.88	1.093	1.121E+4	1.523
18.96	1.145	1.127E+4	1.526
20.1	1.17	1.133E+4	1.515
21.3	1.218	1.139E+4	1.519
22.56	1.228	1.145E+4	1.523
23.88	1.268	1.151E+4	1.536
25.32	1.276	1.157E+4	1.503
26.82	1.3	1.163E+4	1.51
28.38	1.285	1.169E+4	1.505
30.06	1.319	1.175E+4	1.51
31.86	1.361	1.181E+4	1.523
33.72	1.312	1.187E+4	1.507
35.76	1.353	1.193E+4	1.534
35.76 37.86 40.08 42.48	1.353 1.354 1.358 1.346 1.355	1.193E+4 1.199E+4 1.205E+4 1.211E+4 1.217E+4	1.534 1.528 1.513 1.509
45.	1.355	1.217E+4	1.522
47.64	1.357	1.223E+4	1.505
50.46	1.382	1.229E+4	1.512
53.46	1.359	1.235 <u>E</u> +4	1.516
56.64	1.382	1.241E+4	1.526
60.	1.389	1.247E+4	1.524
63.6	1.371	1.253E+4	1.509
67.2	1.382	1.259E+4	1.513
71.4	1.401	1.265E+4	1.49
75.6	1.395	1.271E+4	1.513

			r amping root a
Time (sec) 79.8 84.6 90. 94.8 100.8 112.8 119.4 126.6 134.4 142.2 150.6 159.6 201. 213. 225.6 238.8 201. 213. 225.6 238.8 205.6 238.8 205.6 238.8 253.2 268.2 283.8 300.6 318.6 337.2 357.6 378.6 400.8 424.8 450. 476.4 504.6 534.6 566.4 600. 636. 672. 714. 756. 798. 846. 900. 948. 1008. 128.	Displacement (ft) 1.399 1.402 1.39 1.398 1.39 1.411 1.402 1.409 1.399 1.403 1.418 1.404 1.411 1.411 1.411 1.394 1.414 1.432 1.419 1.416 1.415 1.418 1.425 1.416 1.43 1.445 1.416 1.43 1.445 1.425 1.416 1.439 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.424 1.425 1.426 1.426 1.426 1.421 1.426 1.426 1.438 1.449 1.473 1.466 1.433 1.447 1.468 1.433 1.447 1.468 1.433 1.449 1.443 1.447 1.468 1.431 1.468 1.433 1.441 1.468 1.433 1.441 1.468 1.433 1.441 1.468 1.433 1.441 1.468 1.433 1.441 1.468 1.433 1.445 1.468 1.433 1.445 1.465 1.505 1.449 1.474 1.473 1.468 1.477 1.474 1.474 1.474 1.474 1.474 1.474 1.475 1.469 1.474 1.474 1.475 1.469 1.474 1.474 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.475 1.469 1.475 1.469 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.475 1.469 1.469 1.475 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.469 1.475 1.469 1	Time (sec) 1.277E+4 1.283E+4 1.289E+4 1.295E+4 1.301E+4 1.301E+4 1.313E+4 1.313E+4 1.325E+4 1.325E+4 1.331E+4 1.343E+4 1.343E+4 1.367E+4 1.367E+4 1.367E+4 1.367E+4 1.367E+4 1.373E+4 1.385E+4 1.391E+4 1.403E+4 1.403E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.427E+4 1.469E+4 1.469E+4 1.505E+4 1.505E+4 1.505E+4 1.523E+4 1.524E+4 1.524E+4 1.524E+4 1.524E+4 1.524E+4 1.524E+4 1.524E+4 1.524E+4 1.5	Displacement (ft) 1.495 1.494 1.535 1.492 1.508 1.493 1.529 1.5 1.504 1.517 1.526 1.507 1.499 1.506 1.492 1.486 1.499 1.477 1.502 1.499 1.477 1.502 1.499 1.486 1.502 1.498 1.515 1.512 1.498 1.515 1.512 1.498 1.515 1.512 1.493 1.515 1.512 1.493 1.515 1.512 1.493 1.506 1.493 1.506 1.493 1.506 1.493 1.506 1.508 1.506 1.513 1.506 1.513 1.506 1.513 1.506 1.508 1.508 1.506 1.513 1.512 1.506 1.508 1.508 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.506 1.513 1.512 1.541 1.515 1.541 1.541 1.495 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.496 1.513
1968. 2028.	1.47 1.509	1.637E+4 1.643E+4	1.494 1.496

Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
2388.	1.484	1.679E+4	1.501
2448.	1.48	1.685E+4	1.493
2508.	1.492	1.691E+4	1.502
2568.	1.468	1.697E+4	1.511
2628.	1 457	1 703E 1	1.502
2688.	1.457 1.531	1.703E+4 1.709E+4	1.512
2748.	1.468	1.715E+4	1.499
2808.	1.464	1.721E+4	1.501
2868.	1.47	1.727E+4	1.517
2928.	1.477	1.733 <u>E</u> +4	1.51
2920.	1.467		1.498
		1.739E+4 1.745E+4	1.490
3048.	1.463 1.475		1.53
3108.		1.751E+4	1.00
3168. 3228.	1.468	1.757E+4 1.763E+4	1.485
3220.	1.478		1.488
3288.	1.46	1.769E+4	1.491
3348.	1.477	1.775E+4	1.494
3408.	1.489	1.781E+4	1.484
3468.	1.473	1.787E+4 1.793E+4	1.493
3528.	1.471		1.495
3588.	1.481	1.799E+4	1.505
3648.	1.472	1.805E+4	1.504
3708.	1.488	1.811E+4	1.495
3768.	1.471	1.817E+4	1.489
3828.	1.474	1.823E+4	1.493
3888.	1.484	1.829E+4	1.495
3948.	1.487	1.835E+4	1.491
4008.	1.461	1.84 <u>1</u> E+4	1,485
4068.	1.487	1.847E+4	1.5
4128.	1.481	1.853E+4	1.478
4188.	1.464	1.859E+4	1.502
4248.	1.485	1.865E+4	1.485
4308.	1.466	1.871E+4	1.495
4368.	1.476	1.877E+4	1.483
4428.	1.497	1.883E+4	1.491
4488.	1.471	1.889E+4	1.487
4548.	1.472	1.895E+4	1.484
4608.	1.465	1.901E+4	1.458
4668.	1.458	1.907E+4	1.479
4728.	1.508	1.913E+4 1.919E+4	1.498
4788.	1.48	1.919E+4	1.499
4848.	1.482	1.925E+4	1.484
4908.	1.476	1.931E+4	1.477
4968.	1.475	1.937E+4	1.487
5028.	1.456	1.943E+4	1.477
5088.	1.487	1.949E+4	1.489
5148.	1.479	1.955E+4	1.494
5208.	1.498	1.961E+4	1.476
5268.	1.499	1.967E+4 1.973E+4	1.46
5328.	1.485		1.474
5388.	1.49	1.979E+4	1.459
5448. 5508.	1.498 1.488	1.985E+4 1.991E+4	1.471 1.47
5569			1.47
5568.	1.481	1.997E+4	1.491
5628. 5688.	1.5 1.488	2.003E+4 2.009E+4	1.507 1.474
5000.			
5748.	1.508	2.015E+4	1.492
5808. 5868	1.487 1.485	2.021E+4 2.027E+4	1.475
5868.		2.U2/E+4 2.022E · 4	1.498
5928.	1.507	2.033E+4	1.45
5988. 6048.	1.515 1.492	2.039E+4 2.045E+4	1.455
	1.492		1.481
6108. 6168	1.509	2.051E+4	1.462
6168.	1.516	2.057E+4	1.478
6228.	1.476	2.063E+4	1.486
6288.	1.497	2.069E+4	1.472
6348.	1.513	2.075E+4	1.482

Time (sec) 6408. 6468. 6528. 6588. 6648. 6708. 6768. 6828. 6888. 6948. 7008. 7068. 7128. 7188. 7248. 7308. 7368. 7428. 7488. 7548. 7668. 7728. 7788. 7668. 7728. 7788. 7848. 7908. 7968. 8028	$\begin{array}{r} \underline{\text{Displacement (ft)}} \\ 1.511 \\ 1.508 \\ 1.508 \\ 1.516 \\ 1.525 \\ 1.512 \\ 1.525 \\ 1.512 \\ 1.528 \\ 1.528 \\ 1.526 \\ 1.52 \\ 1.526 \\ 1.52 \\ 1.521 \\ 1.523 \\ 1.511 \\ 1.523 \\ 1.511 \\ 1.542 \\ 1.521 \\ 1.523 \\ 1.512 \\ 1.528 \\ 1.512 \\ 1.523 \\ 1.512 \\ 1.528 \\ 1.512 \\ 1.523 \\ 1.512 \\ 1.521 \\ 1.521 \\ 1.531 \\ 1.541 \\ 1.533 \\ 1.521 \\ 1.521 \\ 1.521 \\ 1.531 \\ 1.541 \\ 1.533 \\ 1.521 \\ 1.523 \\ 1.525 \\ 1.523 \\ 1.525 \\ 1.523 \\ 1.525 \\ 1.523 \\ 1.525 \\ 1.523 \\ 1.525 \\ 1.555 \\$	Time (sec) 2.081E+4 2.093E+4 2.099E+4 2.105E+4 2.105E+4 2.111E+4 2.123E+4 2.123E+4 2.129E+4 2.135E+4 2.141E+4 2.147E+4 2.153E+4 2.159E+4 2.165E+4 2.165E+4 2.171E+4 2.177E+4 2.183E+4 2.183E+4 2.201E+4 2.201E+4 2.225E+4 2.225E+4 2.231E+4 2.243E+4 2.243E+4 2.243E+4 2.255E+4 2.255E+4 2.267E+4 2.273E+4 2.2	$\begin{array}{r} \underline{\text{Displacement (ft)}}\\ 1.472\\ 1.501\\ 1.483\\ 1.474\\ 1.502\\ 1.481\\ 1.475\\ 1.495\\ 1.477\\ 1.48\\ 1.467\\ 1.499\\ 1.481\\ 1.467\\ 1.499\\ 1.481\\ 1.46\\ 1.485\\ 0.1145\\ 0.09478\\ 0.08081\\ 0.07755\\ 0.07299\\ 0.06374\\ 0.06647\\ 0.06369\\ 0.057\\ 0.05341\\ 0.04757\\ 0.05062\\ 0.04765\\ 0.04682\\ 0.04765\\ 0.04682\\ 0.04334\\ 0.03977\\ 0.03723\\ 0.03723\\ 0.03249\\ 0.0$
8508.	1.559	2.291E+4	0.03249
8568.	1.555	2.297E+4	0.03381
8628.	1.524	2.303E+4	0.03038

SOLUTION

Pumping Test Aquifer Model: Leaky Solution Method: Hantush-Jacob

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter T S r/B	Estimate 1381. 0.0184 0.0001465	ft ² /day
Kz/Kr b	1. 25.	ft

$\begin{array}{l} {\sf K} = T/b = 55.24 \ \text{ft/day} \ (0.01949 \ \text{cm/sec}) \\ {\sf Ss} = S/b = 0.0007361 \ 1/\text{ft} \\ {\sf K'/b'} = 4.94\text{E-8 sec}^{-1} \\ {\sf K'} = 0.03415 \ \text{ft/day} \end{array}$

AUTOMATIC ESTIMATION RESULTS

Estimated Parameters

T 1381. 6.381 $+/-12.54$ 216.4 ft ² /day	Parameter	Estimate 1381.	Std. Error 6.381	Approx. C.I. +/- 12.54	t-Ratio 216.4	ft ² /day	
---	-----------	-------------------	---------------------	---------------------------	------------------	----------------------	--

ft

+/- 0.00565

S	0.0184	0.002876
r/B	0.0001465	not estimated
Kz/Kr	1.	not estimated
b	25.	not estimated

C.I. is approximate 95% confidence interval for parameter t-ratio = estimate/std. error No estimation window

 $\begin{array}{l} {\sf K} = T/b = 55.24 \ ft/day \ (0.01949 \ cm/sec) \\ {\sf Ss} = S/b = 0.0007361 \ 1/ft \\ {\sf K'/b'} = 4.94E\text{-}8 \ sec^{-1} \\ {\sf K'} = 0.03415 \ ft/day \end{array}$

Parameter Correlations

T S	T 1.00 -0.92	S -0.92 1.00
3	-0.92	1.00

Residual Statistics

for weighted residuals

Sum of Squares 1.374 ft ² Variance 0.002874 ft ² Std. Deviation 0.05361 ft Mean 0.001011 ft	
No. of Residuals	

Appendix C

Groundwater Flow Model Files

Model input and output files are enclosed on a separate compressed (i.e., .zip) file. Tables C1, C2, and C3 in this document summarize and describe the calibration, Feasibility Study predictive simulation, and Feasibility Study Addendum predictive simulation model files, respectively. Predictive simulation files use the calibrated parameter values unless specified otherwise.

Calibration	Model Files: FS_modflow_calib_files.zip
File Name	Description
Simulation Calling 2010, 2016, and 2019	Conditions
mfsim.nam	Simulation file used by MODFLOW 6
de_karn_2010.ims	MODFLOW 6 input file - Iterative Model Solution (IMS6) Package
mfsim.lst	ASCII output file for simulation
2010 Conditions	· · ·
de_karn_2010.nam	Name file used by MODFLOW 6
de_karn_2010.tdis	MODFLOW 6 input file – Temporal Discretization (TDIS) Package
de_karn_2010.lst	ASCII output file
de_karn_2010.dis	MODFLOW 6 input file - Structured Discretization (DIS) Package
de_karn_2010.ic6	MODFLOW 6 input file – Initial Conditions (IC6) Package
de_karn_2010.oc6	MODFLOW 6 input file – Output Control (OC6) Package
de_karn_2010.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
de_karn_2010.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2010.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2010_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2010.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2010_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_2010.ghb	MODFLOW 6 input file – General-Head Boundary (GHB) Package
de_karn_2010.rch	MODFLOW 6 input file – Recharge (RCH) Package
de_karn_2010_initial.hds	MODFLOW 6 binary input file – Initial Heads
de_karn_2010.dis.grb	MODFLOW 6 binary output file – Binary Grid File
de_karn_2010.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_2010.hds	MODFLOW 6 binary output file – Heads
de_karn_2010_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
	observations
de_karn_2010_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
2016 Conditions	
de_karn_2016.nam	Name file used by MODFLOW 6
de_karn_2016.tdis	MODFLOW 6 input file – Temporal Discretization (TDIS) Package
de_karn_2016.lst	ASCII output file
de_karn_2016.dis	MODFLOW 6 input file - Structured Discretization (DIS) Package
de_karn_2016.ic6	MODFLOW 6 input file – Initial Conditions (IC6) Package
de_karn_2016.oc6	MODFLOW 6 input file – Output Control (OC6) Package
de_karn_2016.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
de_karn_2016.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2016.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2016_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2016.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2016_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_2016.ghb	MODFLOW 6 input file – General-Head Boundary (GHB) Package
de_karn_2016.rch	MODFLOW 6 input file – Recharge (RCH) Package
de_karn_2016_initial.hds	MODFLOW 6 binary input file – Initial Heads

Table C1 Calibration Model Files

P:\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\PRB Additional Extent Evaluation\Feasibility Study Addendum\Appendices\Appendix C - Groundwater Flow Model Files\Appendix C-1.docx

de_karn_2016.dis.grb	MODFLOW 6 binary output file – Binary Grid File
de_karn_2016.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_2016.hds	MODFLOW 6 binary output file - Heads
de karn 2016 chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
de_kam_2010_cnd.003.csv	observations
de_karn_2016_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
2019 Conditions	
de karn 2019.nam	Name file used by MODFLOW 6
de_karn_2019.tdis	MODFLOW 6 input file – Temporal Discretization (TDIS) Package
de_karn_2019.lst	ASCII output file
de_karn_2019.dis	MODFLOW 6 input file - Structured Discretization (DIS) Package
de_karn_2019.ic6	MODFLOW 6 input file – Initial Conditions (IC6) Package
de karn 2019.oc6	MODFLOW 6 input file – Output Control (OC6) Package
de_karn_2019.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
de_karn_2019.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_2019.ghb	MODFLOW 6 input file – General-Head Boundary (GHB) Package
de_karn_2019.wel	MODFLOW 6 input file – Well (WEL) Package
de_karn_2019_wel.obs	MODFLOW 6 input file – Observations file for WEL Package
de_karn_2019.rch	MODFLOW 6 input file – Recharge (RCH) Package
de_karn_2019_initial.hds	MODFLOW 6 binary input file – Initial Heads
de_karn_2019.dis.grb	MODFLOW 6 binary output file – Binary Grid File
de_karn_2019.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_2019.hds	MODFLOW 6 binary output file - Heads
de_karn_2019_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
	observations
de_karn_2019_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
de_karn_2019_wel.obs.csv	MODFLOW 6 comma-separated values file – WEL Package
	observations

Table C2 Feasibility Study Predictive Simulation Model Files

Predictive Simulation Model Files: FS_modflow_pred_files.zip	
File Name	Description
Input Files for All Predictive Simulations	
de_karn_2019.ims	MODFLOW 6 input file - Iterative Model Solution (IMS6) Package
de_karn_2019.tdis	MODFLOW 6 input file – Temporal Discretization (TDIS) Package
de_karn_2019.dis	MODFLOW 6 input file - Structured Discretization (DIS) Package
de_karn_2019.ic6	MODFLOW 6 input file – Initial Conditions (IC6) Package
de_karn_2019.oc6	MODFLOW 6 input file – Output Control (OC6) Package
de_karn_2019.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
de_karn_2019.ghb	MODFLOW 6 input file – General-Head Boundary (GHB) Package
de_karn_2019.rch	MODFLOW 6 input file – Recharge (RCH) Package
de_karn_2019_initial.hds	MODFLOW 6 binary input file – Initial Heads
Output File for All Predictive Simulations	
de_karn_2019.dis.grb	MODFLOW 6 binary output file – Binary Grid File
Groundwater Extraction with Six Wells Scenario	
mfsim_existing_wells.nam	Simulation file used by MODFLOW 6

	ACCULATION OF CONTRACTOR
mfsim_existing_wells.lst	ASCII output file for simulation
de_karn_existing_wells.nam	Name file used by MODFLOW 6
de_karn_existing_wells.lst	ASCII output file
de_karn_2019.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_existing_wells.wel	MODFLOW 6 input file – Well (WEL) Package
de_karn_existing_wells_wel.obs	MODFLOW 6 input file – Observations File for WEL Package
de_karn_existing_wells.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_existing_wells.hds	MODFLOW 6 binary output file - Heads
de_karn_existing_wells_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
	observations
de_karn_existing_wells_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
de_karn_existing_wells_wel.obs.csv	MODFLOW 6 comma-separated values file – WEL Package
	observations
Groundwater Extraction with Seven W	
mfsim_7new_wells.nam	Simulation file used by MODFLOW 6
mfsim_7new_wells.lst	ASCII output file for simulation
de_karn_7new_wells.nam	Name file used by MODFLOW 6
de_karn_7new_wells.lst	ASCII output file
de_karn_2019.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_7new_wells.wel	MODFLOW 6 input file – Well (WEL) Package
de_karn_7new_wells_well.obs	MODFLOW 6 input file – Observations File for WEL Package
de_karn_7new_wells.obs	MODFLOW 6 input file – Observations File for Model
de_karn_7new_wells.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_7new_wells.hds	MODFLOW 6 binary output file - Heads
de_karn_7new_wells_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package observations
de_karn_7new_wells_ddn.obs.csv	MODFLOW 6 comma-separated values file – Model observations
de_karn_7new_wells_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
de_karn_7new_wells_wel.obs.csv	MODFLOW 6 comma-separated values file – WEL Package
de_kum_/new_wens_wenobs.csv	observations
Groundwater Extraction with Seven W	ells and a Low-Permeability Barrier Scenario
mfsim_7new_wells_barrier.nam	Simulation file used by MODFLOW 6
mfsim_7new_wells_barrier.lst	ASCII output file for simulation
de_karn_7new_wells_barrier.nam	Name file used by MODFLOW 6
de_karn_7new_wells_barrier.lst	ASCII output file
de_karn_barrier_wall.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_7new_wells.wel	MODFLOW 6 input file – Well (WEL) Package
de_karn_7new_wells.obs	MODFLOW 6 input file – Observations File for WEL Package
de_karn_7new_wells.obs	MODFLOW 6 input file – Observations File for Model
de_karn_7new_wells_barrier.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows

de_karn_7new_wells_barrier.hds	MODFLOW 6 binary output file - Heads
de_karn_7new_wells_barrier_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
	observations
de_karn_7new_wells_barrier_ddn.obs.csv	MODFLOW 6 comma-separated values file – Model observations
de_karn_7new_wells_barrier_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
de_karn_7new_wells_barrier_wel.obs.csv	MODFLOW 6 comma-separated values file – WEL Package
	observations
	al Well and a Low-Permeability Barrier Scenario
mfsim_Hwell.nam	Simulation file used by MODFLOW 6
mfsim_Hwell.lst	ASCII output file for simulation
de_karn_Hwell.nam	Name file used by MODFLOW 6
de_karn_Hwell.lst	ASCII output file
de_karn_barrier_wall.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_Hwell.drn	MODFLOW 6 input file – Drain (DRN) Package
de_karn_Hwell_drn.obs	MODFLOW input file – Observations File for DRN Package
de_karn_Hwell.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_Hwell.hds	MODFLOW 6 binary output file - Heads
de_karn_Hwell_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
	observations
de_karn_Hwell_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
de_karn_Hwell_drn.obs.csv	MODFLOW 6 comma-separated values file – DRN Package
	observations
Permeable Reactive Barrier with Half-len	
mfsim_half_barrier_prb.nam	Simulation file used by MODFLOW 6
mfsim_half_barrier_prb.lst	ASCII output file for simulation
de_karn_half_barrier_prb.nam	Name file used by MODFLOW 6
de_karn_half_barrier_prb.lst	ASCII output file
de_karn_half_barrier_prb.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_half_barrier_prb.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_half_barrier_prb.hds	MODFLOW 6 binary output file - Heads
de_karn_half_barrier_prb_chd.obs.csv	MODFLOW 6 comma-separated values file – CHD Package
· · · · · · · · · · · · · · · · · · ·	observations
de_karn_half_barrier_prb_riv.obs.csv	MODFLOW 6 comma-separated values file – RIV Package observations
Permeable Reactive Barrier with Extende	
mfsim_ext_barrier_prb.nam	Simulation file used by MODFLOW 6
mfsim_ext_barrier_prb.lst	ASCII output file for simulation
de_karn_ext_barrier_prb.nam	Name file used by MODFLOW 6
de_karn_ext_barrier_prb.lst	ASCII output file
de_karn_ext_barrier_prb.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_2019_chd.obs	MODFLOW 6 input file – Observations File for CHD Package
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_2019_riv.obs	MODFLOW 6 input file – Observations File for RIV Package
de_karn_ext_barrier_prb.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows

MODFLOW 6 binary output file - Heads
MODFLOW 6 comma-separated values file – CHD Package
observations
MODFLOW 6 comma-separated values file – RIV Package observations
ction with Seven Wells and High Saginaw Bay Water Level
Simulation file used by MODFLOW 6
ASCII output file for simulation
Name file used by MODFLOW 6
ASCII output file
MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
MODFLOW 6 input file – Constant-Head (CHD) Package
MODFLOW 6 input file – River (RIV) Package
MODFLOW 6 input file – Well (WEL) Package
MODFLOW 6 input file – Observations File for WEL Package
MODFLOW 6 input file – Observations File for Model
MODFLOW 6 binary output file – Cell-by-cell Flows
MODFLOW 6 binary output file - Heads
MODFLOW 6 comma-separated values file – Model observations
MODFLOW 6 comma-separated values file – WEL Package
observations
ction with Seven Wells and Low Saginaw Bay Water Level
Simulation file used by MODFLOW 6
ASCII output file for simulation
Name file used by MODFLOW 6
ASCII output file
MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
MODFLOW 6 input file – Constant-Head (CHD) Package
MODFLOW 6 input file – River (RIV) Package
MODFLOW 6 input file – Well (WEL) Package
MODFLOW 6 input file – Observations File for WEL Package
MODFLOW 6 input file – Observations File for Model
MODFLOW 6 binary output file – Cell-by-cell Flows
MODFLOW 6 binary output file - Heads
MODFLOW 6 comma-separated values file – Model observations
MODFLOW 6 comma-separated values file – WEL Package observations
B and High Saginaw Bay Water Level
Simulation file used by MODFLOW 6
ASCII output file for simulation
Name file used by MODFLOW 6
ASCII output file
MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
MODFLOW 6 input file – Constant-Head (CHD) Package
MODFLOW 6 input file – River (RIV) Package
MODFLOW 6 binary output file – Cell-by-cell Flows
MODFLOW 6 binary output file – Cell-by-cell Flows MODFLOW 6 binary output file - Heads
MODFLOW 6 binary output file – Cell-by-cell Flows MODFLOW 6 binary output file - Heads B and Low Saginaw Bay Water Level
MODFLOW 6 binary output file – Cell-by-cell Flows MODFLOW 6 binary output file - Heads B and Low Saginaw Bay Water Level Simulation file used by MODFLOW 6
MODFLOW 6 binary output file – Cell-by-cell Flows MODFLOW 6 binary output file - Heads B and Low Saginaw Bay Water Level Simulation file used by MODFLOW 6 ASCII output file for simulation
MODFLOW 6 binary output file – Cell-by-cell Flows MODFLOW 6 binary output file - Heads B and Low Saginaw Bay Water Level Simulation file used by MODFLOW 6

de_karn_low_bay.chd	MODFLOW 6 input file – Constant-Head (CHD) Package
de_karn_low_bay.riv	MODFLOW 6 input file – River (RIV) Package
de_karn_prb_low_bay.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
de_karn_prb_low_bay.hds	MODFLOW 6 binary output file - Heads

Table C3 Feasibility Study Addendum Predictive Simulation Model Files

Predictive Simulation Model Files: FS_Addendum_modflow_pred_files.zip		
File Name	Description	
Input Files for All Predictive Simulations	· ·	
de_karn_2019.ims	MODFLOW 6 input file - Iterative Model Solution (IMS6) Package	
de_karn_pred.tdis	MODFLOW 6 input file – Temporal Discretization (TDIS) Package	
de_karn_2019.dis	MODFLOW 6 input file - Structured Discretization (DIS) Package	
de_karn_2019.ic6	MODFLOW 6 input file – Initial Conditions (IC6) Package	
de_karn_2019.chd	MODFLOW 6 input file – Constant-Head (CHD) Package	
de_karn_2019.riv	MODFLOW 6 input file – River (RIV) Package	
de_karn_2019.ghb	MODFLOW 6 input file – General-Head Boundary (GHB) Package	
de_karn_2019.rch	MODFLOW 6 input file – Recharge (RCH) Package	
de_karn_2019_initial.hds	MODFLOW 6 binary input file – Initial Heads	
Output File for All Predictive Simulations		
de_karn_2019.dis.grb	MODFLOW 6 binary output file – Binary Grid File	
Existing Conditions Scenario		
mfsim_Scn0.nam	Simulation file used by MODFLOW 6	
mfsim Scn0.lst	ASCII output file for simulation	
Karn_pred_Scn0.nam	Name file used by MODFLOW 6	
Karn_pred_Scn0.lst	ASCII output file	
Karn_pred_Scn1.oc6	MODFLOW 6 input file – Output Control (OC6) Package	
Karn_pred_Scn1.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package	
Karn_pred_Scn0.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package	
Karn_pred_Scn0.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows	
Karn_pred_Scn0.hds	MODFLOW 6 binary output file - Heads	
	diate Silt/Clay Layer with Calibrated Upper Native Sand Hydraulic	
Conductivity Scenario		
mfsim_Scn1.nam	Simulation file used by MODFLOW 6	
mfsim_Scn1.lst	ASCII output file for simulation	
 Karn_pred_Scn1.nam	Name file used by MODFLOW 6	
Karn_pred_Scn1.lst	ASCII output file	
Karn_pred_Scn1.oc6	MODFLOW 6 input file – Output Control (OC6) Package	
Karn_pred_Scn1.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package	
Karn_pred_Scn1.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package	
Karn_pred_Scn1.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows	
Karn_pred_Scn1.hds	MODFLOW 6 binary output file - Heads	
	mediate Silt/Clay Layer with Calibrated Upper Native Sand Hydraulic	
Conductivity Scenario		
mfsim_Scn1b.nam	Simulation file used by MODFLOW 6	
mfsim_Scn1b.lst	ASCII output file for simulation	
 Karn_pred_Scn1b.nam	Name file used by MODFLOW 6	
Karn_pred_Scn1b.lst	ASCII output file	
Karn_pred_Scn1.oc6	MODFLOW 6 input file – Output Control (OC6) Package	
Karn_pred_Scn1.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package	

Karn_pred_Scn1_prb_highK.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
Karn_pred_Scn1b.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
Karn_pred_Scn1b.hds	MODFLOW 6 binary output file - Heads
	Intermediate Silt/Clay Layer with Calibrated Upper Native Sand Hydraulic
Conductivity Scenario	······································
mfsim_Scn1a.nam	Simulation file used by MODFLOW 6
mfsim_Scn1a.lst	ASCII output file for simulation
Karn_pred_Scn1a.nam	Name file used by MODFLOW 6
Karn_pred_Scn1a.lst	ASCII output file
Karn_pred_Scn1.oc6	MODFLOW 6 input file – Output Control (OC6) Package
Karn_pred_Scn1.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
Karn_pred_Scn1_prb_lowK.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
Karn_pred_Scn1a.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
Karn_pred_Scn1a.hds	MODFLOW 6 binary output file - Heads
Partially Fouled PRB Keyed into Gla	cial Till with Calibrated Upper Native Sand Hydraulic Conductivity
Scenario	
mfsim_Scn2.nam	Simulation file used by MODFLOW 6
mfsim_Scn2.lst	ASCII output file for simulation
Karn_pred_Scn2.nam	Name file used by MODFLOW 6
Karn_pred_Scn2.lst	ASCII output file
Karn_pred_Scn2.oc6	MODFLOW 6 input file – Output Control (OC6) Package
Karn_pred_Scn1.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
Karn_pred_Scn2.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
Karn_pred_Scn2.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
Karn_pred_Scn2.hds	MODFLOW 6 binary output file - Heads
	ermediate Silt/Clay Layer with Upper Native Sand Hydraulic Conductivity
from 2021 Slug Tests Scenario	
mfsim_Scn5.nam	Simulation file used by MODFLOW 6
mfsim_Scn5.lst	ASCII output file for simulation
Karn_pred_Scn5.nam	Name file used by MODFLOW 6
Karn_pred_Scn5.lst	ASCII output file
Karn_pred_Scn5.oc6	MODFLOW 6 input file – Output Control (OC6) Package
Karn_pred_Scn5.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
Karn_pred_Scn1.hfb	
Karn_pred_Scn5.cbb Karn_pred_Scn5.hds	MODFLOW 6 binary output file – Cell-by-cell Flows
	MODFLOW 6 binary output file - Heads cial Till with Upper Native Sand Hydraulic Conductivity from 2021 Slug
Tests Scenario	cial fill with opper Native Sand Hydraulic Conductivity from 2021 Slug
mfsim_Scn6.nam	Simulation file used by MODFLOW 6
mfsim_Scn6.lst	ASCII output file for simulation
Karn_pred_Scn6.nam	Name file used by MODFLOW 6
Karn_pred_Scn6.lst	ASCII output file
Karn_pred_Scn6.oc6	MODFLOW 6 input file – Output Control (OC6) Package
Karn_pred_Scn5.npf	MODFLOW 6 input file – Node Property Flow (NPF) Package
Karn_pred_Scn2.hfb	MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
Karn_pred_Scn6.cbb	MODFLOW 6 binary output file – Cell-by-cell Flows
Karn_pred_Scn6.hds	MODFLOW 6 binary output file - Heads
•	ermediate Silt/Clay Layer with Two Zones of Upper Native Sand Hydraulic
Conductivity Scenario	
mfsim_Scn7.nam	Simulation file used by MODFLOW 6
 mfsim_Scn7.lst	ASCII output file for simulation
 Karn_pred_Scn7.nam	Name file used by MODFLOW 6

ASCII output file
MODFLOW 6 input file – Output Control (OC6) Package
MODFLOW 6 input file – Node Property Flow (NPF) Package
MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
MODFLOW 6 binary output file – Cell-by-cell Flows
MODFLOW 6 binary output file - Heads
ill with Two Zones of Upper Native Sand Hydraulic Conductivity
Simulation file used by MODFLOW 6
ASCII output file for simulation
Name file used by MODFLOW 6
ASCII output file
MODFLOW 6 input file – Output Control (OC6) Package
MODFLOW 6 input file – Node Property Flow (NPF) Package
MODFLOW 6 input file – Horizontal Flow Barrier (HFB) Package
MODFLOW 6 binary output file – Cell-by-cell Flows
MODFLOW 6 binary output file - Heads

Attachment D

Continuous Flow-Through Column Testing Summary

Technical Memorandum

To:	JR Register, Consumers Energy Company
From:	Mike Ellis, PE and Christopher Miron, PE
Subject:	D.E. Karn Zero-Valent Iron Continuous Flow-Through Column Testing
Date:	December 14, 2021
Project:	22091015.01
C:	Caleb Batts and Bradley Runkel, Consumers Energy Company;
	Tom Boom and Katy Lindstrom, Barr Engineering Co.

1 Introduction

The purpose of this technical memorandum is to provide a summary of accelerated flow-through column testing (column testing) completed by Barr Engineering Co. (Barr) to further evaluate a zero-valent iron (ZVI) amended permeable reactive barrier (PRB) as a corrective action for mitigation of arsenic-impacted groundwater venting to Saginaw Bay potentially related to Consumer's Energy Company's (Consumers') closed 171-acre, Type III, low-hazard industrial landfill (Karn Landfill) in Essexville, Michigan. Results from batch testing conducted as part of the feasibility study (FS) (reference (1)) indicate that attenuation through direct contact with ZVI was an effective means to remove arsenic from impacted groundwater. Batch testing was completed to assess the efficacy of direct contact with ZVI to remove arsenic. Column testing was conducted to further assess the technology by more fully replicating conditions associated with full-scale implementation of a PRB, including using an actively supplied source of site groundwater to feed the columns.

2 Experimental Design and Overview

The following describes the experimental design parameters and how each were developed.

• **Test Duration.** The accelerated flow-through column testing was designed to mimic the equivalent number of pore water volume flushes a PRB would experience over a service life of 10 years. The number of pore water volume flushes a full-scale PRB would experience over 10 years was estimated based on the assumptions that a full-scale PRB would have a width of 1.5 feet, a porosity of 0.3, and the average groundwater velocity of 0.027 feet per day, which is based on the velocity predicted by Barr's groundwater modeling results in the area of installation (reference (1)). These assumptions suggest that a PRB of above-referenced characteristics would experience approximately 220 pore water volume exchanges during a 10-year service life. That number of pore water volume exchanges was used to establish the initial test duration (30 days) based on flow rate through the column.

After a test duration representative of 10 years was completed, results did not show arsenic breakthrough, which is further described in the Results and Interpretation section, so the test was extended to a quantity of pore volume exchanges consistent with a 30-year PRB service life.

- **ZVI Amendment Rates.** ZVI amendment rates were based on results from batch testing (reference (1)) which suggested that, from a stoichiometric standpoint, a 1.5-foot thick PRB containing 30% ZVI by mass could reduce arsenic concentrations in groundwater by approximately 90% or more over a 45-year service life. Because the 30% ZVI content used in the batch testing was anticipated to maintain treatment effectiveness for a period longer than the post-closure period for the corrective action, a ZVI content of 30% was established as the high-end ZVI content for use in the column testing. Lesser ZVI contents of 5% and 15% were based on anticipated effectiveness at lower amendment rates and industry-standard amendment rates (references (2); (3)).
- Target Empty Bed Contact Time (EBCT) and Column Flow Rate. An EBCT of 9 hours was selected based on previous batch testing (reference (1)), which suggested a reaction time of less than 9 hours was adequate to achieve acceptable reductions in arsenic concentrations (i.e., concentrations of arsenic were 0 to 10 micrograms per liter [µg/L] after 9 hours).
- Selecting an EBCT of 9 hours established the flow rate based on the volume of the test columns. Consistent with design guidance for accelerated column tests design (reference (4)), replicating the number of pore water volume exchanges in a column study that would be realized in fullscale implementation, while passing groundwater at a faster rate through the column than what would occur in full-scale implementation, is an efficient means of evaluating the longevity of a reactive medium.
- **Column Sizing.** The general size of the columns was constrained to fit within an existing water treatment building to allow the test to operate in a climate-controlled environment over a period of several months. The final column size design was based on achieving an EBCT of 9 hours while allowing for a flow rate that was measurable and controllable within the experimental constraints (i.e., measuring and controlling the flow rate with needle valve on a rotameter).
- **ZVI Source.** Reactive ZVI media was 8/50 ZVI and was procured from Peerless Metal Power & Abrasives Company of Melvindale, Michigan. 8/50 ZVI is produced for use in environmental applications.
- **Aggregate Source.** Off-site sands used in the experimental columns (i.e., C2, C3, and C4) were Michigan Department of Transportation (MDOT) Class II sands obtained from a Stoneco stockpile in Ann Arbor, Michigan. MDOT Class II sands were selected because sands of this type are readily available throughout Michigan and are representative of materials anticipated to be suitable for a full-scale PRB installation.

3 Experimental Setup

The column test was conducted from December 1, 2020 through March 2, 2021, which allowed for a porevolume throughput equivalent to approximately 30 years of service life of a full-scale PRB that is under consideration for use at the Karn Landfill. The column test was conducted using four columns, designated C1 through C4. The columns were each four inches in diameter by approximately 54 inches high and constructed of solvent-welded polyvinyl chloride pipe. Each column was constructed with intermediate sampling ports located approximately one-third and two-thirds of the height of the column, referred to as the 33% and 66% sampling ports respectively, and an effluent sampling port. Groundwater from the existing groundwater extraction system was fed to the columns from the influent line in the existing on-site groundwater treatment building. Groundwater flow to each column was regulated through periodic adjustment of a needle valve on a dedicated rotameter. Treated groundwater was discharged to an on-site tank associated with the existing groundwater extraction and treatment system.

The control column, C1, contained site sands and was not amended with ZVI. The experimental columns C2, C3, and C4 contained MDOT Class II sand amended with ZVI at ZVI/sand mass ratios of 5%/95%, 15%/85%, and 30%/70%, respectively.

4 Sampling Protocols

Sampling was conducted throughout the test to assess the efficacy of arsenic removal and to assess other ramifications of ZVI treatment of extracted groundwater. More frequent sampling occurred during the first five weeks of the column test and less frequent sampling occurred for the remaining eight weeks. Generally, samples collected for laboratory analysis were analyzed for alkalinity, hardness, pH, sulfate, arsenic, calcium, iron, and magnesium, and select samples were analyzed for arsenic speciation. In addition to laboratory analyses, field parameters (dissolved oxygen, pH, oxidation reduction potential, specific conductance, temperature, turbidity, and pressure drop across the columns) were recorded during each event and a Hach® field test kit for arsenic was used to evaluate real-time arsenic concentrations, which allowed for timely results evaluation and adjustments to the experimental procedure based on real-time results.

One sample was collected from the source water immediately prior to bench testing for laboratory analysis. Sampling protocols for the first five weeks included collecting samples from each sampling port (effluent and intermediate sampling ports) on all columns on a weekly basis. At each sampling event, a sample was collected from each of three sample ports located at equal intervals along the column's treatment path (i.e., 33% of its length, 66% of its length, and the effluent).

During the remaining eight weeks of the test, sampling was conducted every-other week and was focused on column C2 (containing a 5%/95% ratio of ZVI/sand). Sampling was limited to this column because that amendment ratio was considered most probable for full-scale PRB implementation.

Solid-phase sampling for arsenic was conducted following completion of the test by splitting the columns into an influent, middle, and effluent sections, each weighing approximately 18-pounds (lb), and creating composite samples from those sections. Solid-phase samples were analyzed to evaluate the mass balance of arsenic in the column test system, and toxicity characteristic leaching procedure (TCLP) testing was

To:	JR Register, Consumers Energy Company
From:	Mike Ellis, PE and Christopher Miron, PE
Subject:	D.E. Karn Zero-Valent Iron Continuous Flow-Through Column Testing
Date:	December 14, 2021
Page:	4

performed on a composite sample from the media in each experimental column to evaluate if the spent media constitutes a hazardous waste based on the toxicity characteristic.

5 Results and Interpretation

A summary of field data collected during the test is summarized in Table 1 and a photolog of the column test is attached as Exhibit A.

5.1 Dissolved-Phase Sampling Results

Results of effluent sampling from C2, C3, and C4 showed that total and dissolved arsenic concentrations were consistently less than the site-specific chronic mixing zone-based groundwater-surface water interface (GSI) criterion of 100 μ g/L for the duration of the test. Dissolved arsenic was not detected in a vast majority of effluent samples from C2, C3, and C4, and the detections of dissolved arsenic in effluent samples from C2, C3, and C4, and the detections of dissolved arsenic in effluent samples from C2, C3, and C4 were from samples collected from C2. Detections of dissolved arsenic in samples from the C2 effluent were estimated detections based on the sample not meeting laboratory quality control criteria or the result being between the laboratory's detection and quantitation limits. Total arsenic was detected in select samples collected from the effluent of C2, C3, and C4, but results were less than 10 μ g/L, which is more than an order of magnitude lower than the GSI criterion of 100 μ g/L.A comparison of analytical results to GSI criteria is included in Table 2.1 through Table 2.4.

Influent dissolved arsenic concentrations varied over the duration of the experiment from 69 µg/L to 760 µg/L. Figure 1 shows the dissolved arsenic effluent concentrations over the duration of the column test as a percentage of the influent concentrations. Figure 1 indicates that C1 effluent arsenic concentrations were generally consistent with influent arsenic concentrations except for the December 29, 2020 sampling event where results from C1 effluent were nearly 300% greater than the influent arsenic concentrations. The difference between the C1 influent and effluent concentrations observed during this sampling event could be an effect of the variable influent arsenic concentrations between samples and recent variations in the influent concentrations not being realized at the effluent of C1 prior to the sampling event. Figure 1 also indicates that arsenic was well attenuated in columns C2, C3, and C4 which is exhibited by effluent concentrations from those columns being less than 2% of the influent arsenic concentrations throughout the duration of the test.

Arsenic was detected in every sampling event from the intermediate C1 sampling ports. Arsenic concentrations at the intermediate C1 sampling ports are generally consistent with concentrations at the C1 effluent and influent. Figure 2 summarizes dissolved arsenic concentrations in C1 as a percentage of the influent concentrations over the duration of the column test. The results indicate that the control column did not attenuate arsenic, and therefore, attenuation of arsenic in the experimental columns should be considered a result of the ZVI within those columns.

In columns containing ZVI, analytical results indicate that concentrations of total arsenic were similar to results for dissolved arsenic, suggesting that ZVI is effective at sequestering arsenic in both the dissolved

and suspended phases. These results generally agree with the continuously stirred batch reactor experiment conducted as part of the FS (reference (1)).

Arsenic was not detected in samples collected from the intermediate sample ports of C3 and C4 aside from an estimated detected value observed in the sample collected from the 33% sample port of C3 on December 8, 2020. The arsenic concentrations in the C3 and C4 intermediate sample ports are not included on a figure for this reason. Arsenic was routinely detected in samples collected from the intermediate sample ports of C2, but results were not indicative of breakthrough, as arsenic results from the intermediate 33% sample port were higher during the test's early stages and generally decreased over the test duration with the exception of the March 2, 2021 sampling event.¹ Figure 3 summarizes dissolved arsenic concentrations in C2 as a percentage of the influent concentration over the duration of the column test. Figure 3 shows that less than 30% of the influent arsenic concentration was detected at the 33% sample port throughout the duration of the test and that percentage decreased at the 66% and effluent sampling ports during most sampling events. These results indicate that arsenic attenuation occurred throughout the length of the column, and in consideration with results from C3 and C4, indicates that arsenic attenuation is a function of the mass of ZVI that has contacted the impacted groundwater.

The concentration of aqueous-phase sulfate did not appear to be affected by flow through column C2, with similar concentrations in the influent and effluent. Reductions in sulfate concentration were observed in columns C3 and C4 during some sampling events. Further interpretation of aqueous-phase sulfate results is included in the solid-phase sampling results section because consideration of sulfate in both the aqueous and solid-phases is needed to assess the fate of sulfate within the experimental columns.

5.2 Solid-Phase Sampling Results

Following the tests conclusion, solid-phase sampling was conducted on the column media to approximate an arsenic mass-balance, for waste characterization purposes, to assess the fate of sulfate in the column test, and to assess carbonate-based fouling. The analytical results of solid-phase sampling are summarized in Table 3.

Solid-phase sampling results for arsenic were used along with aqueous phase results from column effluent sampling to evaluate the mass balance of arsenic in the column test system. A depiction of the arsenic mass-balance is shown on Figure 4. Mass balances for columns C1 and C3 are most nearly closed with respect to total influent arsenic (i.e., the total arsenic mass is within 15% of the expected total). Results from evaluating the arsenic mass balance for columns C2 and C4 show that sample results were further from closing the arsenic mass balance, despite effluent samples from both columns having arsenic concentrations below or near the detection limit for the duration of the test. The unclosed mass balances

¹ The observed reduction in arsenic concentrations over the life of the column test is considered likely to be the result of entrained solids contained in earlier samples collected from this sampling port or some other, similar sampling anomaly.

of C2 and C4 are attributed to the variability of influent arsenic concentrations, the relative infrequency of sampling relative to test duration, and the limitations of solid-phase sampling methods. As shown in Table 2.1 through Table 2.4, influent dissolved arsenic concentrations varied by nearly an order of magnitude during the test (69 to 760 μ g/L). The variability of the influent arsenic concentration means there is less confidence in the total influent arsenic mass calculated. Sample jars for the solid-phase sampling allowed for collection of approximately 1.5 lbs of material which is much less than the 18 lbs of material generated from each section of the column. It is possible that even with significant mixing in each internal section, sampling resulted in imprecise representation of the column media. Despite the potential bias in these results, the mass balance indicates that most of the arsenic was captured by the experimental column media across all columns.

Analytical results from TCLP testing indicate that the column media did not constitute a hazardous waste based on the toxicity characteristic.

Solid-phase sulfur was sampled, and the results are summarized in Table 3. Solid-phase sulfur results from the column media indicate that sulfur-containing compounds were removed from groundwater as a result of contact with the ZVI, with sulfur concentrations in the column media consistently increasing with increasing ZVI content. The fate of sulfur-bearing compounds will be examined further in the detailed design phase.

Solid-phase samples were also collected to provide data that would be used to evaluate carbonate-based fouling during potential future geochemical evaluations. The following field observations related to fouling were noted:

- pressure increased at the system influent over time to maintain column flow rate and overcome increased pressure drop attributed to a reduction in available flow channels in the column media;
- during deconstruction, some sections of the experimental columns had been hardened into dark-colored, dense, cohesive material that was difficult to separate; and
- during deconstruction, influent screens of the experimental columns were observed to have a build-up of rust-colored deposits.

6 Conclusions

Experimental columns consistently removed arsenic to below site-specific chronic mixing zone-based concentration values of 100 μ g/L for the duration of the test. The experimental column C2 had the lowest ZVI-to-sand mass ratio (5% to 95%) of the three columns evaluated during the testing and therefore, would represent the most cost-effective amendment ratio evaluated for use in a full-scale PRB. A ZVI-to-sand mass ratio of 5% to 95% is recommended for further evaluation in the detailed design phase.

Results from the column test suggest that the preliminary 10-year design life assumed in the FS was conservative, and a longer service life is reasonable to assume from the perspective of the PRB's ability to reduce arsenic concentrations in groundwater to less than its site-specific chronic mixing zone-based GSI criterion. Based on literature and observations from the column testing, factors other than ZVI oxidation or passivation (e.g., fouling/decreased barrier permeability) may drive the lifespan of a full-scale PRB. Geochemical modeling, to be completed in final design, should be employed to assess these factors in detail.

Visual observations during column deconstruction indicated fouling occurred in the column media; however, flow through the column was maintained during testing. Fouling is partially attributable to the corrosion products of the ZVI spalling from the surface of the ZVI or forming in solution, along with adsorbed or co-precipitated arsenic. Retention of sulfur-bearing compounds in the ZVI also contributed to the visually observed fouling. Characterization of solids subsequent to the column testing confirmed the presence of arsenic removed from groundwater in the sand/ZVI matrix.

7 References

1. Barr Engineering Co. Feasibility Study: D.E. Karn Generating Facility. February 2021.

2. **Department of Earth and Environmental Sciences, University of Waterloo; AECOM.** Laboratory Testing of Reactive Media for Permeable Reactive Barriers to Treat Groundwater Affected by Coal Combustion Residual Leachate. s.l. : Electric Power Research Institute, Inc. (EPRI), 2017. Technical Report 3002010951.

3. **The Interstate Technology and Regulatory Council.** Permeable Reactive Barrier: Technology Update. June 2011.

4. **Battelle Memorial Institute.** Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation. March 2000.

Attachments:

Table 1	Field Data
Table 2.1	Aqueous-Phase Analytical Data - Influent and C1
Table 2.2	Aqueous-Phase Analytical Data – Influent and C2
Table 2.3	Aqueous-Phase Analytical Data – Influent and C3
Table 2.4	Aqueous-Phase Analytical Data – Influent and C4
Table 3	Solid-Phase Sampling Analytical Data
Figure 1	Arsenic Concentrations Normalized to Influent Concentrations over Time
Figure 2	Column C1 Arsenic Concentrations Normalized to Influent Concentrations over Time
Figure 3	Column C2 Arsenic Concentrations Normalized to Influent Concentrations over Time
Figure 4	Arsenic Mass-Balance
Exhibit A	Photolog

Tables

		Location	INFL	INFL	INFL	INFL	INFL	INFL	INFL	INFL	INFL	INFL	INFL	INFL	INFL	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL
		Date	12/08/2020	12/15/2020	12/22/2020	12/29/2020	1/05/2021	1/12/2021	1/19/2021	1/26/2021	2/02/2021	2/09/2021	2/17/2021	2/23/2021	3/02/2021	12/08/2020	12/15/2020	12/22/2020	12/29/2020	1/05/2021	1/12/2021	1/19/2021
	S	ample Type	N	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
	Total or																					
Parameter	Dissolved	Units																				
Field Parameters																						
Arsenic (Hach Method)	Dissolved	ug/l	70 -300	70 - 300	300 - 500	50 - 70	300	300	70 - 300	300 - 500	300 - 500	70 - 300	500+	300 - 500								
Dissolved oxygen	NA	mg/l	1.81	1.76	5.95	2.02	4.97	5.04	2.08	2.31	5.62	3.50	3.40	3.35	5.28	2.03	1.99	7.15	2.71	7.48	7.50	3.36
рН	NA	pH units	7.12	7.23	7.53	6.71	7.47	7.41		7.34	7.45	7.42	7.26	7.37	7.37	7.80	7.88	7.42	7.05	7.44	7.41	
Redox (oxidation potential)	NA	mV	-98.2	-101.8	-105.0	-58.1	-51.2	72.6	-83.7	-104.3	-42.7	-60.8	-45.9	-77.3	-7.0	-72.5	-65.9	-84.0	-63.0	-50.5	-36.3	-110.4
Specific conductance @ 25 °C	NA	umhos/cm	1077	1103	1255	1181	1245	1248	1207	1253	1370	899	1224	1193	1098	1106	995	1225	1358	1240	1252	661
Temperature	NA	deg C	12.1	12.8	12.0	16.2	13.3	11.8	17.3	14.2	12.0	10.9	11.3	16.3	15.6	15.7	15.3	14.2	14.5	14.5	13.5	17.3
Turbidity	NA	NTU	43.5	52.4	18.66	17.8	8.27	33.49	5.06	56.7	37.34	22.6	27.8	24.7	4.74	8.92	9.01	24.96	50.2	57.61	52.13	26.2
Pressure - Arrival	NA	psi								-		7.5	7.5	7.5	8.0	2	3	2	2.5	4.0	4.25	4.00
Pressure - Departure	NA	psi								-		7.5	7.5	7.5	8.0			2		4.2	4.25	4.25

		Location	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL	C1-EFFL	C2-33	C2-66													
		Date	1/26/2021	2/02/2021	2/09/2021	2/17/2021	2/23/2021	3/02/2021	1/05/2021	1/12/2021	1/19/2021	1/26/2021	2/02/2021	2/09/2021	2/17/2021	2/23/2021	1/05/2021	1/05/2021	1/19/2021	1/26/2021	2/02/2021	2/09/2021	2/17/2021
	S	ample Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
	Total or																						
Parameter	Dissolved	Units																					
Field Parameters																							
Arsenic (Hach Method)	Dissolved	ug/l							30 - 50	30 - 50	30 - 50	30 - 50	30		30 - 50	30 - 50	50 -70	50 -70	30 - 50	30 - 50	30		30 - 50
Dissolved oxygen	NA	mg/l	5.40	7.05	6.23	5.75	2.74	7.51															
рН	NA	pH units	7.55	7.55	7.53	7.45	7.45	7.34															
Redox (oxidation potential)	NA	mV	-98.6	-67.6	-113.8	-131.1	-105.5	-6.3															
Specific conductance @ 25 °C	NA	umhos/cm	1235	1237	964	1195	1235	1129															
Temperature	NA	deg C	16.0	17.9	15.9	16.0	16.9	17.1															
Turbidity	NA	NTU	25.8	35.71	18.2	69.3	21.3	55.04															
Pressure - Arrival	NA	psi	4.00	3.5	3.5	5.0	4.5	5.0	-	-													
Pressure - Departure	NA	psi	3.5	4.0	4.0	4.0	5.0	5.0	-	-													

		Location	C2-66	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C2-EFFL	C3-EFFL	C3-EFFL	C3-EFFL	C3-EFFL	C3-EFFL	C3-EFFL
		Date	2/23/2021	12/08/2020	12/15/2020	12/22/2020	12/29/2020	1/05/2021	1/12/2021	1/19/2021	1/26/2021	2/02/2021	2/09/2021	2/17/2021	2/23/2021	3/02/2021	12/08/2020	12/15/2020	12/22/2020	12/29/2020	1/05/2021	1/12/2021
	S	ample Type	N	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Parameter	Total or Dissolved	Units																				
Field Parameters																						
Arsenic (Hach Method)	Dissolved	ug/l	10 - 30	10	< 10	10 - 30	0 -10	10 - 30	10 - 30	10 - 30	10 - 30	10 - 30	10 - 30	10 - 30	10 - 30							
Dissolved oxygen	NA	mg/l		2.84	2.01	6.38	5.09	7.52	6.54	2.39	4.81	6.53	4.39	3.75	2.93	6.57	1.82	1.68	6.89	5.12	7.77	7.89
рН	NA	pH units		7.62	7.71	7.32	7.29	7.45	7.39		7.92	7.46	7.73	7.42	7.63	7.30	7.96	7.84	8.36	7.63	8.59	8.30
Redox (oxidation potential)	NA	mV		-124.8	-117.8	-96.1	-80.9	-42.3	-68.6	-126.8	-117.3	-85.6	-103.5	-134.3	-127.1	0.2	-171.8	-180.2	144.0	-9.8	154.1	183.3
Specific conductance @ 25 °C	NA	umhos/cm		523.9	501	1208	980	1079	1188	656	1189	1133	921	1077	1035	1045	871	792	811	574.2	689	801
Temperature	NA	deg C		16.6	15.0	14.0	13.0	14.0	12.9	17.9	18.9	17.5	14.6	16.9	16.0	16.5	15.6	15.2	13.3	13.1	14.6	12.7
Turbidity	NA	NTU		> 1000	55.6	164.7	229	99.68	199.79	145	242	133.51	126	72.8	109	127.44	75.3	70.1	69.51	39.8	30.96	69.88
Pressure - Arrival	NA	psi		2.5	2.5	1.5	2.5	3.8	4.25	4	4.5	3.25	4.0	5.5	5.5	6.5	3	2.5	2.2	2.5	4.5	4.25
Pressure - Departure	NA	psi				1.25		4	4.25	4	4	5.0	5.0	4.5	5.5	6.25		-	2		3	4.0

		Location	C3-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL	C4-EFFL						
		Date	1/19/2021	1/26/2021	2/02/2021	2/09/2021	2/17/2021	2/23/2021	3/02/2021	12/08/2020	12/15/2020	12/22/2020	12/29/2020	1/05/2021	1/12/2021	1/19/2021	1/26/2021	2/02/2021	2/09/2021	2/17/2021	2/23/2021	3/02/2021
	S	ample Type	N	N	N	N	Ν	N	N	Ν	N	Ν	N	N	N	N	N	N	N	Ν	Ν	N
	Total or																					
Parameter	Dissolved	Units																				
Field Parameters																						
Arsenic (Hach Method)	Dissolved	ug/l																				
Dissolved oxygen	NA	mg/l	2.34	4.33	6.33	3.41	2.08	0.31	7.38	2.78	2.65	7.31	4.26	6.20	7.28	3.16	5.34	8.16	3.08	3.10	0.25	7.64
рН	NA	pH units		7.53	7.63	8.74	7.56	7.68	7.22	8.35	8.01	7.49	7.55	9.09	8.54		8.26	7.89	9.11	7.60	8.17	7.02
Redox (oxidation potential)	NA	mV	-133.7	-88.3	-76.8	38.6	-154.7	-107.8	97.6	-138.8	-129.4	157.5	45.0	123.0	168.4	-83.7	-7.8	117.7	-7.6	-93.6	7.2	216.9
Specific conductance @ 25 °C	NA	umhos/cm	860	999	941	443.9	938	894	929	43.9	58.3	885	607.3	625	821	409.8	801	664	228.7	837	749	933
Temperature	NA	deg C	18.1	16.9	17.0	15.8	17.5	15.7	15.8	15.1	14.9	13.9	15.7	16.8	14.8	18.3	16.7	16.0	15.7	17.1	15.7	15.6
Turbidity	NA	NTU	70.6	69.2	82.81	190	232	201	112.48	114	102	39.88	72.9	31.70	8.70	53.2	222.9	29.55	35.2	36.5	96.3	101.66
Pressure - Arrival	NA	psi	5	4	4.0	4.0	6.0	6.0	5.5	3.5	3	2.5	3.5	3.9	4.0	4.0	4.5	2.5	3.5	5.0	5.0	6.0
Pressure - Departure	NA	psi	5	4	4.0	4.0	4.5	5.5	3.75			2.5		4	4.0	4.5	4	4.5	5.0	5.0	5.5	1.5

Table 2.1 Aqueous-Phase Analytical Data - Influent and C1 D.E. Karn Generating Facility Consumers Energy

	Tota	Parameter Il or Dissolved Units	Alkalinity, total, as CaCO3 NA ug/l	Hardness, as CaCO3 NA ug/l	pH NA pH units	Sulfate, as SO4 NA ug/l	Arsenic Dissolved ug/l	Calcium Dissolved ug/l	Iron Dissolved ug/l	Magnesium Dissolved ug/l	Arsenic III Total ug/I	Arsenic inorganic Total ug/l	Arsenic V Total ug/l
c		Surface Water ace Criteria (1)			6.5 - 9.0		100 (2)						
Location	Date	Sample Type											
INFL	12/08/2020	Ν	340000	580000	8.0 H	240000	430	150000	3000	48000	181	458	278
INFL	12/15/2020	Ν	320000	550000	8.3 H	240000	760	140000	7200	43000	776	932	156
INFL	12/22/2020	Ν	320000	590000	8.2 H	260000	590	160000	4400	49000	641	727	86
INFL	12/29/2020	Ν	280000	580000	7.7	290000	180	150000	1300	48000	138 H	224	85.3
INFL	1/05/2021	Ν	290000	570000	8.3	270000	270	160000	1800	50000	219	267	48.8
INFL	1/19/2021	Ν	280000	520000	8.3	270000	250	150000	1900	48000	236	285	49.2
INFL	2/09/2021	Ν	310000	880000	8.2	270000	120	170000	1200	55000	113	345	231
INFL	3/02/2021	Ν	270000	1200000	8.0	240000	69	140000	390	45000	40.5	127	86.7
C1-33	12/08/2020	Ν	280000	620000	8.1 H	250000	470	160000	6500	51000			
C1-33	12/15/2020	Ν	330000	560000	8.3 H	230000	860	140000	6900	43000			
C1-33	12/22/2020	Ν	320000	580000	8.1 H	260000	630	160000	6600	49000			
C1-33	12/29/2020	N	330000	610000	8.1	270000	260	150000	3900	49000			
C1-33	1/05/2021	N	290000	580000	8.3	280000	230	150000	3800	48000			
C1-33	3/02/2021	Ν	270000	1400000	8.0	230000	120	150000	1800	47000			
C1-66	12/08/2020	N	330000	540000	8.0 H	240000	460	150000	3600	49000			
C1-66	12/15/2020	N	320000	620000	8.3 H	240000	550	160000	5900	48000			
C1-66	12/22/2020	N	320000	590000	8.2 H	260000	710	170000	6400	51000			
C1-66	12/29/2020	Ν	340000	550000	8.1	260000	410	150000	4400	48000			
C1-66	1/05/2021	Ν	300000	570000	8.3	270000	290	150000	2900	48000			
C1-66	3/02/2021	Ν	280000	890000	8.0	230000	140	150000	2000	46000		-	
C1-EFFL	12/08/2020	Ν	320000	580000	8.1 H	250000	500	150000	2000	49000	134	460	326
C1-EFFL	12/15/2020	Ν	320000	560000	8.3 H	240000	460	160000	3600	48000	434	637	203
C1-EFFL	12/22/2020	Ν	310000	580000	8.2 H	260000	600	160000	3800	49000	746	725	< 7.5
C1-EFFL	12/29/2020	Ν	330000	580000	7.8	280000	530	150000	5700	47000	286 H	622	336
C1-EFFL	1/05/2021	Ν	290000	580000	8.3	270000	300	160000	4100	50000	323	310	< 15.0 U
C1-EFFL	1/19/2021	Ν	270000		8.3	270000	450	160000	4600	51000			
C1-EFFL	2/09/2021	Ν	340000	1300000	8.0	250000	180	160000	3200	52000	180	167	< 15.0 U
C1-EFFL	3/02/2021	Ν	260000	1100000	8.2	230000	140	140000	1300	45000	140	218	77.6

Footnotes

N Sample type: Normal

 ${\bf H}$ Recommended sample preservation, extraction or analysis holding time was exceeded.

U The analyte was analyzed for, but was not detected.

(1) Groundwater surface water criteria as of 6/25/2018, with exceedances shown in bold text

(2) Site-specific mixing zone criteria

Page 1 of 1

P:\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\RAP\Appendices\Appendix D - Column Testing Summary\02_DE Karn - Column Testing Tables.xlsx

Table 2.2 Aqueous-Phase Analytical Data - Influent and C2 D.E. Karn Generating Facility Consumers Energy

		Parameter al or Dissolved Units	Alkalinity, total, as CaCO3 NA ug/I	Hardness, as CaCO3 NA ug/I	pH NA pH units	Sulfate, as SO4 NA ug/I	Arsenic Dissolved ug/l	Calcium Dissolved ug/l	Iron Dissolved ug/l	Magnesium Dissolved ug/l	Arsenic III Total ug/l	Arsenic inorganic Total ug/l	Arsenic V Total ug/I
G		Surface Water ace Criteria (1)			6.5 - 9.0		100 (2)						
Location	Date	Sample Type											
INFL	12/08/2020	N	340000	580000	8.0 H	240000	430	150000	3000	48000	181	458	278
INFL	12/15/2020	N	320000	550000	8.3 H	240000	760	140000	7200	43000	776	932	156
INFL	12/22/2020	N	320000	590000	8.2 H	260000	590	160000	4400	49000	641	727	86
INFL	12/29/2020	N	280000	580000	7.7	290000	180	150000	1300	48000	138 H	224	85.3
INFL	1/05/2021	N	290000	570000	8.3	270000	270	160000	1800	50000	219	267	48.8
INFL	1/19/2021	N	280000	520000	8.3	270000	250	150000	1900	48000	236	285	49.2
INFL	2/09/2021	N	310000	880000	8.2	270000	120	170000	1200	55000	113	345	231
INFL	3/02/2021	N	270000	1200000	8.0	240000	69	140000	390	45000	40.5	127	86.7
C2-33	12/08/2020	N	290000	550000	8.0 H	250000	110	150000	26000	48000			
C2-33	12/15/2020	N	300000	550000	8.1 H	240000	32	120000	19000	41000			
C2-33	12/22/2020	N	320000	580000	8.1 H	260000	160	160000	14000	50000			
C2-33	12/29/2020	N	310000	590000	8.0	280000	19	150000	10000	49000			
C2-33	1/05/2021	N	270000	580000	8.2	270000	13	140000	11000	48000			
C2-33	1/19/2021	N	280000	570000	8.2	260000	22	150000	11000	50000			
C2-33	2/09/2021	N	270000	1100000	8.2	260000	4.3 J	150000	14000	53000			
C2-33	3/02/2021	N	260000	1100000	8.0	230000	19	130000	9500	46000			
C2-66	12/08/2020	N	270000	520000	8.0 H	240000	2.7 J	140000	25000	49000			
C2-66	12/15/2020	N	260000	500000	8.2 H	230000	< 1.5 U	120000	10000	49000			
C2-66	12/22/2020	N	300000	560000	8.2 H	260000	20	150000	12000	48000			
C2-66	12/29/2020	N	260000	540000	8.1	280000	1.5 J	120000	4400	48000			
C2-66	1/05/2021	N	260000	520000	8.3	270000	< 1.5 U	130000	7600	54000			
C2-66	1/19/2021	N	250000	600000	8.2	260000	< 1.5 U	140000	8900	50000			
C2-66	2/09/2021	N	290000	1200000	8.1	250000	< 1.5 U	140000	6900	59000			
C2-66	3/02/2021	N	260000	880000	7.9	230000	2.3 J	120000	5300	46000			
C2-EFFL	12/08/2020	N	250000	500000	8.1 H	240000	2.3 J	130000	16000	50000	1.28	1.28	< 0.500 U
C2-EFFL	12/15/2020	N	190000	440000	8.3 H	220000	< 1.5 U	100000	2400	43000	0.022 UB	0.550	0.550
C2-EFFL	12/22/2020	N	300000	570000	8.2 H	260000	3.4 J	140000	6600	47000	0.161	7.85	7.689
C2-EFFL	12/29/2020	N	190000	430000	8.1	270000	< 1.5 U	97000	3800	44000	< 1.50 UH	< 3.00 U	< 3.00 U
C2-EFFL	1/05/2021	N	220000	480000	8.3	260000	< 1.5 U	110000	3800	51000	1.30	< 7.50 U	< 7.50 U
C2-EFFL	1/19/2021	N	270000	550000	8.1	260000	< 1.5 U	140000	7100	50000	0.538	1.91	1.37
C2-EFFL	2/09/2021	N	260000	590000	8.1	230000	< 1.5 U	110000	2200	55000	0.647	< 1.50 U	< 1.50 U
C2-EFFL	3/02/2021	N	250000	1000000	8.0	220000	1.3 J	120000	4100	45000	2.18	3.12	0.938

Footnotes

N Sample type: Normal

 ${\bf H}$ Recommended sample preservation, extraction or analysis holding time was exceeded.

J Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quanitation limits.

 $\boldsymbol{\mathsf{U}}$ The analyte was analyzed for, but was not detected.

UB The analyte was detected in one of the associated laboratory, equipment, field or trip blank samples and is considered non-detect at the concentration reported.

(1) Groundwater surface water criteria as of 6/25/2018, with exceedances shown in bold text

(2) Site-specific mixing zone criteria

Table 2.3 Aqueous-Phase Analytical Data - Influent and C3 D.E. Karn Generating Facility Consumers Energy

	Groundwater	Parameter Il or Dissolved Units Surface Water	Alkalinity, total, as CaCO3 NA ug/I	Hardness, as CaCO3 NA ug/I	pH NA pH units	Sulfate, as SO4 NA ug/I	Arsenic Dissolved ug/l	Calcium Dissolved ug/l	Iron Dissolved ug/l	Magnesium Dissolved ug/l	Arsenic III Total ug/I	Arsenic inorganic Total ug/l	Arsenic V Total ug/I
		ace Criteria (1)			6.5 - 9.0		100 (2)						
Location	Date	Sample Type											
INFL	12/08/2020	Ν	340000	580000	8.0 H	240000	430	150000	3000	48000	181	458	278
INFL	12/15/2020	Ν	320000	550000	8.3 H	240000	760	140000	7200	43000	776	932	156
INFL	12/22/2020	Ν	320000	590000	8.2 H	260000	590	160000	4400	49000	641	727	86
INFL	12/29/2020	N	280000	580000	7.7	290000	180	150000	1300	48000	138 H	224	85.3
INFL	1/05/2021	N	290000	570000	8.3	270000	270	160000	1800	50000	219	267	48.8
INFL	1/19/2021	Ν	280000	520000	8.3	270000	250	150000	1900	48000	236	285	49.2
INFL	2/09/2021	N	310000	880000	8.2	270000	120	170000	1200	55000	113	345	231
INFL	3/02/2021	Ν	270000	1200000	8.0	240000	69	140000	390	45000	40.5	127	86.7
C3-33	12/08/2020	Ν	260000	510000	8.0 H	240000	2.3 J	130000	36000	53000			
C3-33	12/15/2020	Ν	200000	630000	8.4 H	230000	< 1.5 U	84000	2800	44000			
C3-33	12/22/2020	Ν	270000	520000	8.2 H	260000	< 1.5 U	130000	12000	52000			
C3-33	12/29/2020	Ν	280000	520000	7.8	290000	< 1.5 U	120000	8400	52000			
C3-33	1/05/2021	Ν	260000	530000	8.1	280000	< 1.5 U	140000	13000	53000			
C3-33	3/02/2021	Ν	260000	950000	7.9	220000	< 0.75 U	120000	10000	45000			
C3-66	12/08/2020	Ν	210000	810000	8.1 H	240000	< 1.5 U	88000	13000	50000			
C3-66	12/15/2020	Ν	130000	300000	8.4 H	210000	< 1.5 U	58000	110 J	35000			
C3-66	12/22/2020	Ν	190000	420000	8.3 H	250000	< 1.5 U	83000	920	51000			
C3-66	12/29/2020	Ν	160000	420000	8.4	260000	< 1.5 U	64000	< 52 U	52000			
C3-66	1/05/2021	Ν	180000	400000	8.4	260000	< 1.5 U	78000	120 J	58000			
C3-66	3/02/2021	Ν	240000	940000	7.9	220000	< 0.75 U	110000	6600	46000			
C3-EFFL	12/08/2020	Ν	160000	360000	8.2 H	250000	< 1.5 U	71000	5800	46000	< 0.500 U	< 0.500 U	< 0.500 U
C3-EFFL	12/15/2020	Ν	98000	270000	8.3 H	140000	< 1.5 U	45000	52 J	29000	0.256	0.493	0.237
C3-EFFL	12/22/2020	Ν	110000	300000	8.5 H	210000	< 1.5 U	51000	< 52 U	49000	0.054	0.519	0.465
C3-EFFL	12/29/2020	Ν	56000	200000	8.3	160000	1.6 J	30000	79 J	29000	< 0.500 UH	0.781	0.781
C3-EFFL	1/05/2021	Ν	82000	220000	8.6	180000	< 1.5 U	30000	59 J	41000	< 0.500 U	< 0.500 U	0.499 J
C3-EFFL	1/19/2021	Ν			8.2		< 1.5 U						
C3-EFFL	2/09/2021	Ν					< 1.5 U						
C3-EFFL	3/02/2021	Ν	220000	1000000	8.0	210000	< 0.75 U	97000	1800	46000	< 0.500 U	< 0.500 U	0.369 J

Footnotes

N Sample type: Normal

 ${\bf H}$ Recommended sample preservation, extraction or analysis holding time was exceeded.

J Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quanitation limits.

 ${\boldsymbol{\mathsf{U}}}$ The analyte was analyzed for, but was not detected.

(1) Groundwater surface water criteria as of 6/25/2018, with exceedances shown in bold text

(2) Site-specific mixing zone criteria

P:\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\RAP\Appendices\Appendix D - Column Testing Summary\02_DE Karn - Column Testing Tables.xlsx

Table 2.4 Aqueous-Phase Analytical Data - Influent and C4 D.E. Karn Generating Facility Consumers Energy

6	Groundwater	Parameter Il or Dissolved Units Surface Water	Alkalinity, total, as CaCO3 NA ug/l	Hardness, as CaCO3 NA ug/I	pH NA pH units	Sulfate, as SO4 NA ug/I	Arsenic Dissolved ug/l	Calcium Dissolved ug/l	Iron Dissolved ug/l	Magnesium Dissolved ug/l	Arsenic III Total ug/I	Arsenic inorganic Total ug/l	Arsenic V Total ug/l
	-	ace Criteria (1)			6.5 - 9.0		100 (2)						
Location	Date	Sample Type											
INFL	12/08/2020	N	340000	580000	8.0 H	240000	430	150000	3000	48000	181	458	278
INFL	12/15/2020	N	320000	550000	8.3 H	240000	760	140000	7200	43000	776	932	156
INFL	12/22/2020	N	320000	590000	8.2 H	260000	590	160000	4400	49000	641	727	86
INFL	12/29/2020	Ν	280000	580000	7.7	290000	180	150000	1300	48000	138 H	224	85.3
INFL	1/05/2021	Ν	290000	570000	8.3	270000	270	160000	1800	50000	219	267	48.8
INFL	1/19/2021	N	280000	520000	8.3	270000	250	150000	1900	48000	236	285	49.2
INFL	2/09/2021	N	310000	880000	8.2	270000	120	170000	1200	55000	113	345	231
INFL	3/02/2021	Ν	270000	1200000	8.0	240000	69	140000	390	45000	40.5	127	86.7
C4-33	12/08/2020	N	250000	430000	8.0 H	240000	< 1.5 U	110000	22000	53000			
C4-33	12/15/2020	N	180000	400000	8.4 H	230000	< 1.5 U	77000	1100	48000			
C4-33	12/22/2020	N	220000	470000	8.2 H	250000	< 1.5 U	100000	7200	49000			
C4-33	12/29/2020	Ν	230000	460000	8.3	280000	< 1.5 U	96000	490	58000			
C4-33	1/05/2021	N	210000	470000	8.3	270000	< 1.5 U	100000	2300	57000			
C4-33	3/02/2021	N	250000	1100000	8.0	220000	3.2 J	120000	7500	44000			
C4-66	12/08/2020	Ν	190000	370000	8.2 H	250000	< 1.5 U	75000	8400	50000			
C4-66	12/15/2020	Ν	110000	330000	8.2 H	240000	< 1.5 U	53000	110 J	36000			
C4-66	12/22/2020	Ν	150000	380000	8.4 H	250000	< 1.5 U	77000	390 J	51000			
C4-66	12/29/2020	Ν	59000	310000	8.6	260000	< 1.5 U	48000	77 J	39000			
C4-66	1/05/2021	Ν	85000	290000	8.7	260000	< 1.5 U	45000	< 52 U	49000			
C4-66	3/02/2021	Ν	220000	1000000	8.0	210000	< 0.75 U	110000	6600	44000			
C4-EFFL	12/08/2020	Ν	140000	410000	8.2 H	250000	< 1.5 U	63000	5000	47000	1.65	1.65	< 0.500 U
C4-EFFL	12/15/2020	Ν	83000	290000	8.1 H	190000	< 1.5 U	46000	< 52 U	32000	0.059	0.490	0.431
C4-EFFL	12/22/2020	Ν	110000	350000	8.3 H	250000	< 1.5 U	64000	< 52 U	50000	< 0.028 UB	0.268	0.268
C4-EFFL	12/29/2020	Ν	24000	210000	7.1	190000	< 1.5 U	42000	< 52 U	23000	< 0.500 UH	< 0.500 U	< 0.500 U
C4-EFFL	1/05/2021	Ν	65000	200000	8.9	170000	< 1.5 U	24000	< 52 U	34000	< 0.500 U	0.666	0.666
C4-EFFL	1/19/2021	Ν			8.4		< 1.5 U						
C4-EFFL	2/09/2021	Ν					< 1.5 U						
C4-EFFL	3/02/2021	Ν	220000	620000	7.9	210000	< 0.75 U	100000	3000	45000	< 0.500 U	< 0.500 U	< 0.500 U

Footnotes

N Sample type: Normal

 ${\bf H}$ Recommended sample preservation, extraction or analysis holding time was exceeded.

J Estimated detected value. Either certain QC criteria were not met or the concentration is between the laboratory's detection and quanitation limits.

 ${\boldsymbol{\mathsf{U}}}$ The analyte was analyzed for, but was not detected.

(1) Groundwater surface water criteria as of 6/25/2018, with exceedances shown in bold text

(2) Site-specific mixing zone criteria

P:\Ann Arbor\22 MI\09\22091015 DE Karn Corrective Action\WorkFiles\RAP\Appendices\Appendix D - Column Testing Summary\02_DE Karn - Column Testing Tables.xlsx

Table 3 Solid-Phase Sampling Analytical Data D.E. Karn Generating Facility Consumers Energy

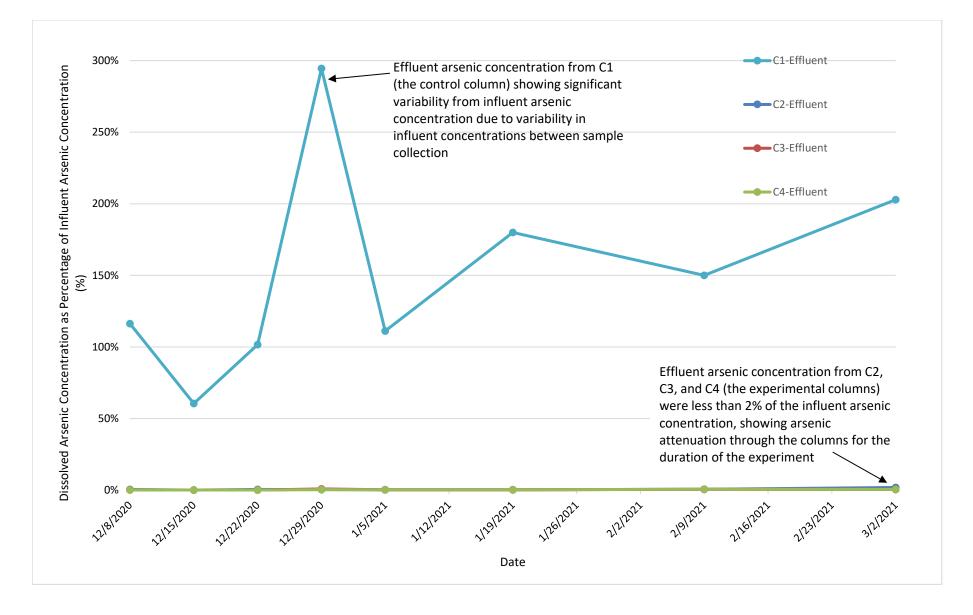
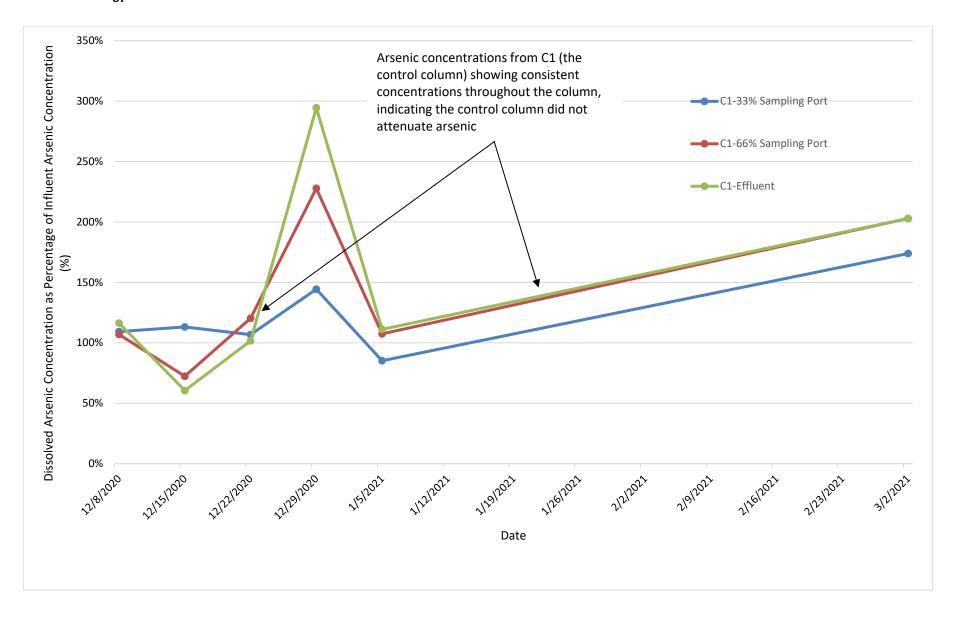

		Location Date	C1- COMPOSITE 3/5/2021	C2- COMPOSITE 3/05/2021	C3- COMPOSITE 3/05/2021	C4- COMPOSITE 3/05/2021	C1- INFLUENT SECTION 3/05/2021	C1- MIDDLE SECTION 3/05/2021	C1- EFFLUENT SECTION 3/05/2021	C2- INFLUENT SECTION 3/05/2021		C2- EFFLUENT SECTION 3/05/2021	-	C3- MIDDLE SECTION 3/05/2021	C3- EFFLUENT SECTION 3/05/2021	C4- INFLUENT SECTION 3/05/2021
		Sample Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Footnotes	Parameter	Units						••		••			••			
N Sample type: Normal	General Parameters	011110														
H Recommended sample preservation, extraction or analysis holding time	Carbon, total inorganic	ug/kg					1200000			14000000			19000000			16000000
was exceeded.	Moisture	%	7.3	4.3	5.2	5.0	13.4	7.3	3.9	5.6	4.6	4.4	7.0	7.1	5.0	6.4
J Estimated detected value. Either certain QC criteria were not met or the	Solids, percent	%	92.7	95.7	94.8	95.0	86.6	92.7	96.1	94.4	95.4	95.6	93.0	92.9	95.0	93.6
concentration is between the laboratory's detection and quanitation limits.	Sulfur, as S	ug/kg	100000	460000	650000	990000								-		
U The analyte was analyzed for, but was not detected.	TCLP General Parameters															
	Alkalinity, total, as CaCO3	ug/l					< 18000 UB			69000			120000	-		150000
equipment, field or trip blank samples and is considered non-detect at the	Metals (Total)															
concentration reported by the laboratory.	Arsenic	ug/kg					2500	2600	2700	53000	21000	5200	130000	5800	15000	55000
	Calcium	ug/kg					600000			12000000			85000000			5600000
	Iron	ug/kg					2500000			61000000			15000000			35000000
	Magnesium	ug/kg					1900000			22000000			23000000			11000000
	Manganese	ug/kg					38000			630000			1200000			2300000
	TCLP Metals															
	Arsenic	mg/l		0.0066 J	< 0.081 U	< 0.0041 U										
	Barium	mg/l		0.11 J	0.13 J	0.16 J										
	Cadmium	mg/l		0.00026 J	< 0.00020 U	< 0.00020 U										
	Chromium	mg/l		< 0.00071 UB	< 0.013 U	< 0.00063 U										
	Lead	mg/l		< 0.0028 U	< 0.0028 U	< 0.0028 U										
	Mercury	mg/l		< 0.00013 U	< 0.00013 U	< 0.00013 U										
	Selenium	mg/l		< 0.0060 U	< 0.12 U	< 0.0081 UB										
	Silver	mg/l		< 0.00062 U	< 0.00062 U	< 0.00062 U										

Table 3 Solid-Phase Sampling Analytical Data D.E. Karn Generating Facility Consumers Energy


	Location Date	SECTION	C4- EFFLUENT SECTION 3/05/2021	KARN- CLASS 2 MEDIA 3/05/2021	KARN-SITE MEDIA 3/05/2021
	Sample Type	N	N	N	N
Parameter	Units				
General Parameters					
Carbon, total inorganic	ug/kg				
Moisture	%	5.0	5.9	2.7	0.5
Solids, percent	%	95.0	94.1	97.3	99.5
Sulfur, as S	ug/kg	-		-	
TCLP General Parameters					
Alkalinity, total, as CaCO3	ug/l				
Metals (Total)					
Arsenic	ug/kg	19000	10000	2300	1600
Calcium	ug/kg				
Iron	ug/kg				
Magnesium	ug/kg				
Manganese	ug/kg				
TCLP Metals					
Arsenic	mg/l				
Barium	mg/l				
Cadmium	mg/l				
Chromium	mg/l				
Lead	mg/l				
Mercury	mg/l				
Selenium	mg/l				
Silver	mg/l				

Figures

Figure 1 Arsenic Concentrations Normalized to Influent Concentrations over Time D.E. Karn Generating Facility Consumers Energy

Figure 2 Column C1 Arsenic Concentrations Normalized to Influent Concentrations over Time D.E. Karn Generating Facility Consumers Energy

Figure 3 Column C2 Arsenic Concentrations Normalized to Influent Concentrations over Time D.E. Karn Generating Facility Consumers Energy

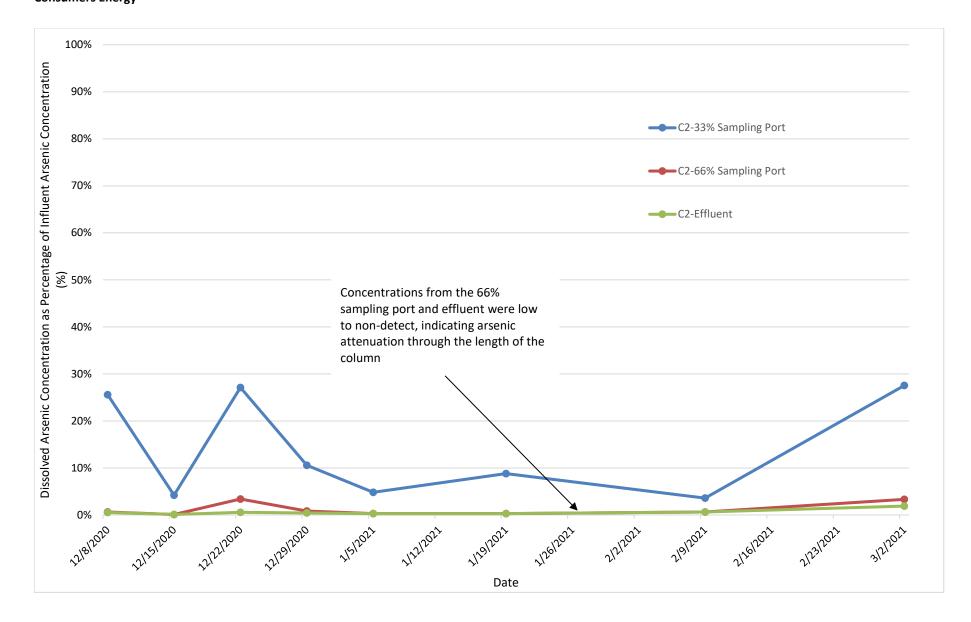


Figure 4 Arsenic Mass-Balance D.E. Karn Generating Facility Consumers Energy

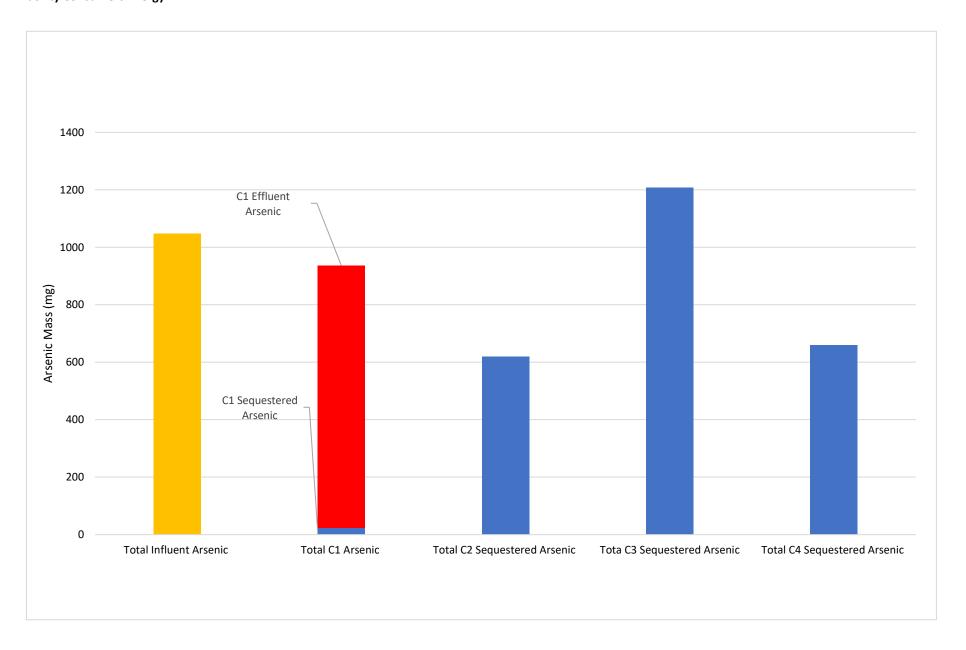


Exhibit A

Photolog

Exhibit 1: Photolog

D.E. Karn Generating Facility Essexville, Michigan December 2020 - March 2021

Photo #	Comments
1	Peerless Metal 8/50 Zero Valent Iron
2	Experimental columns prior to media loading
3	Off-site sand and ZVI mixture
4	Influent manifold including flow meters and sampling ports
5	Experimental columns after media loading
6	Effluent manifold and sample ports
7	33% and 66% sampling ports
8	Off-site sand and ZVI mixture after conclusion of experiment
9	Dark colored, dense cohesive media observed after conclusion of experiment
10	Rust colored build-up on influent screen of an experimental column

Photo 1: Peerless Metal 8/50 Zero Valent Iron

Photo 2: Experimental columns prior to media loading

Photo 3: Off-site sand and ZVI mixture

Photo 4: Influent manifold including flow meters and sampling ports

Photo 5: Experimental columns after media loading

Photo 6: Effluent manifold and sample ports

Photo 7: 33% and 66% sampling ports

Photo 8: Off-site sand and ZVI mixture after conclusion of experiment

Photo 9: Dark colored, dense cohesive media observed after conclusion of experiment

Photo 10: Rust colored build-up on influent screen of an experimental column