SITE INSPECTION REPORT

FOR

C & H TAMARACK OPERATIONS

HUBBELL, MICHIGAN 49934

U.S. EPA ID NO.: MIN000510835

MARCH 10, 2015

SIGNATURE PAGE

FOR

SITE INSPECTION REPORT

FOR

C & H TAMARACK OPERATIONS

HUBBELL, MICHIGAN 49934

U.S. EPA ID NO .: MIN000510835

Prepared by:

DATE:

John E. Spielberg, Investigation Team Leader Michigan Department of Environmental Quality

Reviewed and approved by:

Jough Waluch DATE: 3/10/15

Joseph Walczák, Superfund Site Assessment Program Manager Michigan Department of Environmental Quality

Reviewed and approved by:

101 DATE: 3-10-2015

Daria W. Devantier, Chief Site Assessment and Site Management Unit Michigan Department of Environmental Quality

Reviewed and approved by:

DATE:

Site Assessment Manager United States Environmental Protection Agency, Region 5

TABLE OF CONTENTS

SECTION	TITLE		PAGE
1	EXECU	TIVE SUMMARY	1
2	SITE BA 2.1 2.2 2.3 2.4 2.5	ACKGROUND INTRODUCTION SITE LOCATION AND DESCRIPTION SITE OPERATIONAL HISTORY SUMMARY OF PREVIOUS INVESTIGATIONS WASTE CHARACTERISTICS	3 3 3 4 4 6
3	SITE RI 3.1 3.2	EGULATORY HISTORY INTRODUCTION REGULATORY HISTORY	7 7 7
4	RECON 4.1 4.2 4.3	NAISSANCE ACTIVITIES INTRODUCTION SITE REPRESENTATIVE INTERVIEWS RECONNAISSANCE INSPECTION OBSERVATIONS	8 8 8 9
5	FIELD II 5.1 5.2	NSPECTION SAMPLING PROCEDURES INTRODUCTION SAMPLING PROCEDURES 5.2.1 X-RAY FLUORESCENCE SOIL SCREENING 5.2.2 WASTE SAMPLES 5.2.3 SURFICIAL SOIL SAMPLES 5.2.4 SOIL BORING SAMPLES 5.2.5 GROUNDWATER MONITORING WELL SAMPLES 5.2.6 MEDIA NOT SAMPLED	11 11 13 13 13 14 14 16
6	ANALYT 6.1 6.2	TICAL RESULTS INTRODUCTION SAMPLE ANALYTICAL RESULTS 6.2.1 X-RAY FLUORESCENCE SOIL SCREENINGS 6.2.2 SURFICIAL SOIL SAMPLES 6.2.3 SOIL BORING SAMPLES 6.2.4 GROUNDWATER MONITORING WELL SAMPLES	17 17 17 17 17 17 18
7	DISCUS 7.1 7.2 7.3 7.4 7.5	SION OF MIGRATION PATHWAYS INTRODUCTION GROUNDWATER SURFACE WATER SOIL EXPOSURE AIR	19 19 19 21 21 22
8	BIBLIOG	GRAPHY	23

FIGURE TITLE

- 2-1 SITE LOCATION
- 2-2 SITE OPERATIONAL HISTORY: 1928 SANBORN MAPS
- 2-3 SITE OPERATIONAL HISTORY: 1948 TOPOGRAPHIC MAP
- 2-4 SITE OPERATIONAL HISTORY: 1954 AERIAL PHOTOGRAPH
- 2-5 PREVIOUS INVESTIGATIONS
- 4-1 SITE FEATURES
- 5-1 XRF SCREENING LOCATIONS: OCTOBER 2012
- 5-2 XRF SCREENING LOCATIONS: NOVEMBER 2012
- 5-3 SURFICIAL SOIL SAMPLE LOCATIONS
- 5-4 SOIL BORING SAMPLE LOCATIONS
- 5-5 TEMPORARY MONITORING WELL SAMPLE LOCATIONS
- 5-6 RELATIVE WATER TABLE ELEVATION CONTOURS

TABLE TITLE WASTE SAMPLE RESULTS 2-1 XRF SCREENING DESCRIPTIONS AND RESULTS 5-1 5-2 SURFICIAL SOIL AND WASTE SAMPLE DESCRIPTIONS 5-3 SOIL BORING LITHOLOGY AND SAMPLE LOG 5-4 **GROUNDWATER MONITORING WELL SAMPLE DESCRIPTIONS** 5-5 GROUNDWATER MONITORING WELL DATA KEY SURFICIAL SOIL SAMPLE ANALYTICAL RESULTS 6-1 6-2 KEY GROUNDWATER MONITORING WELL SAMPLE ANALYTICAL RESULTS 7-1 KEY GROUNDWATER MONITORING WELL SAMPLE SUMMARY

7-2 KEY SURFICIAL SOIL SAMPLE SUMMARY

LIST OF APPENDICES

APPENDIX TITLE

- A SITE 4-MILE RADIUS MAP
- B SITE 15-MILE SURFACE WATER TARGET DISTANCE LIMIT MAP
- C SITE INSPECTION PHOTOGRAPHS
- D FIELD LOG BOOK
- E CHEMICAL ANALYSIS DATA OF SITE INSPECTION SAMPLES
- F AREA WELL LOGS
- G MICHIGAN NATURAL FEATURES INVENTORY SURVEY RESULTS

1. EXECUTIVE SUMMARY

The United States Environmental Protection Agency (U.S. EPA) has been authorized to conduct assessments of sites of environmental concern under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (jointly referred to as CERCLA) and the federal Water Pollution Control Act, as amended through P.L. 107-303 of 2002 (commonly known as the Clean Water Act [CWA]). Details regarding the CERCLA site assessment process are found in the National Oil and Hazardous Substances Pollution Contingency Plan which is established pursuant to Section 105 of CERCLA and Section 311 of the CWA. CERCLA site assessment activities in the State of Michigan are conducted by the Michigan Department of Environmental Quality (MDEQ) under the authority of a cooperative agreement (CA) with the U.S. EPA. This report summarizes the results of a Site Inspection (SI) of the C & H Tamarack Operations site (Site) conducted by the MDEQ as part of the site assessment activities designated in the CA.

Approval was given to the MDEQ by the U.S. EPA to conduct an SI of the Site on March 26, 2012, the date when the CA grant was approved. Authority for conducting the SI is given under Section 104 of CERCLA. The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) identification number for the Site is MIN000510835.

The Site is located on M-26 in south Hubbell, Houghton County, Michigan. The location coordinates for the Site are 47.1638° north latitude and -088.4425° west longitude.

The Site was initially discovered into the CERCLA Pre-Remedial process on October 31, 2012. The MDEQ submitted a Pre-CERCLIS Screening report to the U.S. EPA on September 5, 2012. The U.S. EPA subsequently entered the Site into CERCLIS on October 31, 2012. The Site was initially evaluated in the form of a Preliminary Assessment (PA) that was submitted to the U.S. EPA, Region 5. The PA was prepared by John E. Spielberg of the MDEQ and was dated November 2, 2012.

The MDEQ prepared an SI work plan for the Site on November 2, 2012. The SI field work for the Site was conducted November 5, 6, and 8, 2012. The SI included: phone interviews with Site representatives; a reconnaissance inspection of the Site; x-ray fluorescence (XRF) screening of suspect materials for metals content; the installation of temporary groundwater monitoring wells; the collection of soil, groundwater, and blank samples; using a Global Positioning System (GPS) to obtain sample location coordinates; and the collection of photographs of samples, sample locations, and Site conditions.

The purposes of SIs have been developed by the U.S. EPA, Region 5 in response to U.S. EPA Administration Guidance outlining Pre-Remedial Program strategies. The program plan provides that all eligible sites will receive an SI to meet the investigative requirements of CERCLA Section 105 to provide sufficient data for National Priorities List (NPL) or No Further Remedial Action Planned (NFRAP) decisions and/or to support the need for time critical or non-time critical actions. If an NPL decision is made, the SI will: 1) collect additional data beyond the PA to enable a more refined preliminary Hazard

Ranking System (HRS) score, 2) establish priorities among sites most likely to qualify for the NPL, and 3) identify the most critical data requirements for NPL listing. Based on the refined preliminary HRS score, the SI, and other technical judgment factors, the Site will then either be designated as NFRAP or carried forward as an NPL listing candidate. A candidate NPL site will not automatically be placed on the NPL. First, the Site will go through a management evaluation to determine whether it can be addressed by another authority. Sites that are designated NFRAP or deferred to other statutes are not candidates for further investigation or action in the Superfund Program.

The scope and objectives of the SI are designed to address all the data requirements of the revised HRS using field screening and NPL-level data quality objectives. It may also provide needed data in a format to support remedial investigation work plan development.

The Site consists of waste and contaminated soils on about 11 acres of approximately 51 acres of land in the SI project area. The Site still contains the remains of several former stamp mills and a former reclamation plant. Lands surrounding the Site are mixed residential/commercial/industrial areas within Hubbell. The Site is located adjacent to the Torch Lake Superfund site but none of the Site is part of the Superfund site.

Mining-related operations at the Site, which included stamping copper-containing ores and reprocessing stamp sands, were originally conducted by several companies beginning about 1885. By 1917 or earlier, the Calumet & Hecla Mining Company (C & H) had taken over operations. Operations on the Site ceased at various times with final C & H operations ending in approximately 1969.

The findings of this SI include impacts to shallow soils and shallow groundwater, which can be attributable to past operations at the Site. Widespread shallow soil contamination, significantly above background and above state standards protective of direct contact risks in the southern part of the Site, is present. Shallow groundwater in the vicinity of a former reclamation plant in the southern part of the Site was also found to be significantly above background for several metals.

2. SITE BACKGROUND

2.1 Introduction

This section includes information obtained from the Site Inspection (SI) work plan preparation, file review, and Site representative interviews for the C & H Tamarack Operations site (Site). Individual subsections address the Site location, description, geology, operational history, previous investigations, and waste characteristics.

2.2 Site Location and Description

The Site is located along state highway M-26 on the western shore of Torch Lake in a mostly residential area within the unincorporated community of Hubbell, Osceola Township, Houghton County, Michigan (T.55 N., R.33 W., section 13). The Site location is shown in Figure 2-1. The location coordinates for the Site at a driveway entrance to the middle of the southern area of the Site, in decimal degrees, are latitude 47.1638° and longitude -088.4425°. This report has retained the division of the Site into three subareas - A, B, and C - as was the case in the Preliminary Assessment (PA) report. These divisions have no regulatory implication. The three subareas are shown in Figures 2-2 through 4-1.

The Site consists of waste and contaminated soils on about 11 acres of approximately 51 acres of land in the SI project area. The Site still contains the remains of several former stamp mills and a former reclamation plant. Two target distance limit (TDL) maps in the appendices show the extent of potential impacts from the Site being considered during this SI. To show potential groundwater impacts, the 4-Mile Radius Map of the Site is provided in Appendix A. To show potential surface water impacts, the 15-Mile Surface Water TDL map is provided in Appendix B.

Lands surrounding the Site are mixed residential/commercial/industrial areas within Hubbell. The Site is located adjacent to the Torch Lake Superfund site but none of the Site is part of the Superfund site.

The geology of the area within the 4-mile groundwater TDL consists of bedrock at the surface in places and shallow glacial deposits overlying bedrock [1-3]¹. The glacial deposits are relatively thin ground moraines typically consisting of coarse-textured glacial till, only 0 to 50 feet thick to the east and west of the Site. Some thicker lacustrine sand and gravel deposits are found to the north, up to 200 feet thick. The depth of these deposits in the general area of the Site is approximately 11 to 50 feet. The bedrock in the area of the Site consists of Jacobsville sandstone to the southeast and the Portage Lake Lava Series to the west and northwest. These glacial deposits and underlying bedrock are capable of producing limited supplies of groundwater.

¹ Numbers in brackets refer to numbered sources of information in the Bibliography section.

It appears that since the glacial deposits consist mainly of coarse and permeable materials, any aquifers in the glacial deposits are likely interconnected with the bedrock aquifer. Residents in the area are served by a combination of municipal systems and private water wells, both of which utilize groundwater for their drinking water.

2.3 Site Operational History

Mining-related operations at the Site, which included stamping copper-containing ores and reprocessing stamp sands, were originally conducted by several companies beginning about 1885 [4, 5]. The Osceola Consolidated Mining Company began operations on the Site in 1885 or earlier and continued to at least 1908, during which time it operated stamp mills throughout the Site. The Tamarack Mining Company operated from at least 1900 to 1908 or later, including stamp mills in Subarea C. By 1917 or earlier, the Calumet & Hecla Mining Company (1917 Sanborn) (C & H) had taken over operations. C & H did the same for the Ahmeek Stamp Mill in Subarea A by 1928 or earlier, after it had changed its name to Calumet & Hecla Consolidated Copper Company (1928 Sanborn). The 1928 Sanborn map is the first time the Tamarack Reclamation Plant appears in the northern part of Subarea C. See Figures 2-2, 2-3, and 2-4 for a 1928 Sanborn map, a 1946 topographic map, and a 1954 aerial photograph, respectively. Operations on the Site ceased at various times with final C & H operations ending in approximately 1969 [6]. No buildings remained at the former Tamarack Reclamation Plant by 1978 but only foundations, according to a 1978 aerial photograph from Michigan State University's Geographic Information Systems (GIS) & Remote Sensing archive.

2.4 Summary of Previous Investigations

The following environmental investigations were completed at the Site:

- In the fall of 2001, a consultant conducted a Baseline Environmental Assessment (BEA) [7] on behalf of Osceola Township for the former Ahmeek Stamp Mill [6, 8]. That BEA included the collection of five shallow soil samples.
- In June of 2002, the Michigan Department of Environmental Quality (MDEQ) conducted a Brownfield Redevelopment Assessment (BFRA) of the former Ahmeek Stamp Mill. The results were summarized in a December 2002 report [9].
- In 2005, Weston Solutions, Inc. (Weston) conducted a review of the BEA and BFRA to evaluate conditions at the former Ahmeek Stamp Mill, according to the report below [6], which states their results were reported in 2005 [10].
- In September 2007, U.S. EPA contractor, Weston, undertook field activities to assess various areas of concern around Torch Lake identified by the U.S. EPA and the MDEQ. Two of their areas of investigation (AOIs) were within the Site: the Tamarack City Stamp Mill (Ahmeek Stamp Mill) (AOI #20) and the former Tamarack Reclamation Plant (part of

AOI #19). Weston summarized existing data from MDEQ sources for both AOIs. Results are summarized in a December 2007 report [6].

The above investigations provide documentation that source areas exist at the Site and releases to the environment have occurred at the Site. See Figure 2-5 for a summary of locations where these investigations occurred and the overall results, which demonstrate soil and groundwater contamination that poses a risk to the surface waters of Torch Lake. The table below summarizes what each investigation found:

Investigation	Results
2001 BEA	All five soil samples exceeded state Groundwater Surface Water Interface (GSI) Protection Criteria (GSIPC) for nine metals and three semi-volatile organic compounds. The highest concentrations were significantly above the GSIPC. Arsenic was found up to 470 parts per million (ppm) (5.8 ppm GSIPC), copper up to 240,000 ppm (32 ppm GSIPC), and mercury up to 1.1 ppm (0.13 ppm GSIPC). The semi-volatiles carbazole, fluoranthene, and phenanthrene also exceeded GSIPC.
2002 MDEQ BFRA	MDEQ collected shallow and subsurface soil samples and groundwater samples, and conducted x-ray fluorescence (XRF) screening of surficial materials. The primary exposure pathway of concern seems to be surface water due to potential impacts from contaminated groundwater venting into Torch Lake (mostly copper, but also barium, beryllium, lead, manganese, mercury, and vanadium). Mercury, a bioaccumulative metal in surface water, was found up to 0.65 ppm in surficial soil samples, up to 250 ppm in XRF screenings, and up to 0.25 ppm in soil boring samples (0.13 ppm GSIPC). In groundwater samples, five metals including mercury were found to be significantly above background levels and all exceeded GSI levels, which are protective of surface water impacts. In addition, 23 out of 25 shallow soil samples revealed concentrations of semi-volatile or inorganic contaminants significantly above background. Ten of these samples also exceeded direct contact standards.
2005 Weston	Surface soils and standing structures were the main concern, based on contaminant concentrations at the surface above Residential Direct Contact Criteria and Particulate Soil Inhalation Criteria.
2007 Weston	The report reviewed data from the BEA, BFRA, and 2007 MDEQ sampling. Based on XRF screening results and one waste sample submitted to the MDEQ Environmental Laboratory, the former leach plant was found to contain surface soils with antimony, arsenic, copper, lead, and mercury at concentrations exceeding GSIPC. Mercury was detected at 340 ppm (0.13 ppm GSIPC).

2.5 Waste Characteristics

Documented sources include contaminated soils or waste.

Contaminated Soils at the Former Ahmeek Plant (2001 and 2002 sampling):

Inorganic and semi-volatile releases were documented in a 2001 BEA and a 2002 BFRA. Contaminated soils were found to be widespread across the former stamp mill property in Subarea A. The area of soil contamination, as calculated using ArcView 9.3 GIS software, is an estimated 200,000 square feet, based on shallow soil sampling and XRF screening in the 2002 BFRA. Since this area has now been covered over with potentially clean fill, the direct contact and particulate inhalation risks previously believed to exist from contamination in shallow soils may no longer pose an unacceptable risk. However, the same contaminants can still leach into groundwater at concentrations posing a potential risk to the surface waters of Torch Lake and potentially to Dover Creek, which empties into Torch Lake. No sampling was conducted in Subarea A during the SI.

Contaminated Soils and Waste at the former Tamarack Reclamation Plant:

This source in Subarea C was first documented in a 2007 report by Weston, which is based on the sampling and XRF screening of soils or possible waste materials by MDEQ staff in 2007. Six inorganic analytes – antimony, arsenic, copper, iron, lead, and mercury – exceeded their state cleanup criteria. The estimated area of this contamination, equivalent to the approximate footprint of the former reclamation plant, is about 600,000 square feet. The southern part of the former leach plant, where the samples were screened or sampled, is now filled with potentially clean fill. This could mean that direct contact and particulate inhalation risks previously believed to exist may no longer be relevant. However, the buried waste could still leach into shallow groundwater and migrate to Torch Lake at concentrations injurious to the lake. Five metals were found to exceed GSIPC standards, especially mercury, which is a bioaccumulative metal in surface waters.

During the SI, XRF screening and shallow soil sampling documented contaminated soils. The area of the contaminated soil was calculated to be about 300,000 square feet. Two waste samples were also collected: W-1 and W-2. The results are found in Table 2-1.

3. SITE REGULATORY HISTORY

3.1 Introduction

This section presents information regarding the regulatory history of the Site. This information was obtained through file review and Site representative interviews.

3.2 Regulatory History

Osceola Township currently owns the former Ahmeek Stamp Mill property in Subarea A where the township has completed some response actions (personal communications with Mr. Steven Karpiak and Mr. Steve Rouser; see section 4.2). The township completed and submitted a BEA to the MDEQ in November 2001 for the former stamp mill property [8]. The township received a Coastal Restoration Grant, which it used to cover and vegetate the western part of the former Ahmeek Stamp Mill portion of the Site in 2004 [11]. They used clean soil to cover areas along the west side where high levels of metals in shallow soils posed a human health risk. This work included developing the western part of the former stamp mill into a park. The township also utilized these funds to cover debris piles along the former stamp mill foundations. The property is targeted for historical preservation and potential use as an interpretive center for tourists [6] and is considered a "site of interest" for the Keweenaw National Historic Park (personal communication with Mr. Steven Karpiak; see section 4.2). The National Park Service cannot own the individual properties that would make up the national park.

The MDEQ completed several regulatory actions only for the former Ahmeek Stamp Mill in Subarea A. The MDEQ completed a BFRA of the former stamp mill property in December 2002 [9]. In 2003, MDEQ district staff scored the stamp mill property for inclusion in its state list of contaminated sites, scoring 38 out of a possible 48 [12]. The property was later listed on the state list, which at that time placed responsibilities on owners and operators for conducting response activities at the property. From 2004 to 2005, the MDEQ made Clean Michigan Initiative bond funding available for work plan preparation and bidding to stabilize the stamp mill site, but bids received were over budget and interim response actions were delayed [11].

4. RECONNAISSANCE ACTIVITIES

4.1 Introduction

This section outlines procedures and observations of the reconnaissance work portion of the SI for the Site. Individual subsections address the Site representative interviews and reconnaissance inspection observations.

4.2 Site Representative Interviews

This subsection contains phone conversations the Team Leader had with individuals pertinent to this SI.

9/11/2012: Telephone conversation with Mr. Steven Karpiak, Osceola Township Supervisor. He was asked about granting the MDEQ access to the former Ahmeek Stamp Mill property in Subarea A. He said that no special access is needed; the property has public access. Also: rebar and concrete waste has been largely covered (with fill) around the concrete pillars (remaining foundations from former mill); the property is a "site of interest" for the Keweenaw National Historic Park; part of the property is now a public park; the Western UP Planning and Development Region (WUPPADR) may have parcel information (used for development of an SI work plan).

9/11/2012: Telephone call with Ms. Rene Cunningham, Osceola Township Treasurer. She was asked about availability of maps. She suggested contacting WUPPADR for parcel boundary maps.

9/11/2012: Telephone conversation with Mr. Steve Rouser, WUPPADR. He said they have parcel shape files usable in GIS that he could send the MDEQ.

9/17/2012: Spoke by telephone with Mr. Doug Pascoe, District Engineer, MDEQ Resource Management Division, Upper Peninsula District. He was asked about the extent and reach of public water supplies near the Site. He said that Tamarack City is the farthest south that the Michigan American Water Company supply reaches, and the same supply also reaches to the Houghton County airport. He also said that a water supply from Dollar Bay reaches to Mason.

10/3/2012: Spoke by phone with the owner of the property in the middle of Subarea C. He said that his property still contains the remains of the Osceola Mill and a railroad grade. In addition, he said some older remains are still present in the northern part of his property. He added that public water supplies reach all three of his properties and some other properties to the south of his land. He agreed to provide access to the MDEQ for his properties.

10/4/2012: Phone conversation with a property owner in the north part of Subarea C. He said he has lived in the area since he was an infant and remembers some of the C & H operations in the area. He stated that surplus dirt

from recent road construction projects had been moved into a portion of subarea C.

10/5-11/2012: Heard from several property owners, who agreed to provide access to the MDEQ for sampling activities.

For copies of original notes from the personal communications above, see Appendix D, Field Log Book.

4.3 Reconnaissance Inspection Observations

On October 11, 2012, the investigation team, composed of two MDEQ project managers, conducted a reconnaissance inspection of the Site and surrounding area in accordance with MDEQ Health and Safety guidelines. The inspection confirmed that Subareas A and B of the Site are located within the unincorporated community of Hubbell in Houghton County and Subarea C is at the south end of Hubbell. See Figure 2-1 for a location map.

The investigation team only observed Subarea C during the October reconnaissance inspection. This area consists of several privately-owned properties, including one house used as a residence near the middle of Subarea C. The team took some photographs of potential areas of concern, screened some suspect surficial materials with an XRF unit, and recorded GPS locations of XRF readings. No physical samples were collected during this inspection. The northern property of Subarea C contained the remains of at least three buildings. This property was being used to store scrap metal from former underground storage tanks and other uses, including some old trucks. Scrap tires were also being stored between the remaining concrete foundations of the former reclamation plant closest to M-26 at its north end, where the recent fill dirt had not yet filled in between the concrete foundations. The southern part of this plant is filled in with what looked like recently moved fill dirt, completely covering portions of the former plant.

During November 2012 MDEQ field activities, Subarea A was found to still contain large concrete structures from the former stamp mill and included one rusted metal structure that was once a stamp that crushed copper-containing ores. The MDEQ investigated this area in 2002 as part of a BFRA. A small public park now exists next to the remains of the former stamp mill. The park was not present in 2002. Much of the former debris scattered about Subarea A in 2002 is now covered with fill dirt. The Team Leader decided that because much of Subarea A had been covered with what appeared to be clean fill, there was no need to sample surficial materials during the SI. See Figure 4-1 for a Site Features map.

The natural topography of the area is quite variable. Subarea A has a topographic relief of about 20 to 30 feet difference from the area along state highway M-26 to areas closer to Torch Lake. Subarea B is fairly flat and of lower elevation than the other two subareas, while Subarea C includes steep terrain with elevation differences of 40 feet or more.

The areas around the Site consist of primarily residential properties, along with some small businesses. Residential properties are found to the northwest along Osceola Road, D Street, and Oneco Road, in the northern part of Subarea C, and to the northeast into Hubbell/Tamarack City. Several small businesses are found along M-26 through Hubbell. Recreational uses would include the township park in Subarea A and a number of recreational uses associated with Torch Lake.

The immediate drainage pattern for the Site is to the southeast, in the direction of the adjacent stamp sands and Torch Lake. The Probable Point of Entry (PPE) of this shallow groundwater would be an area along the shoreline of Torch Lake as seen in Appendix B.

5. FIELD INSPECTION SAMPLING PROCEDURES

5.1 Introduction

This section outlines the sampling procedures of the SI of the Site. Individual subsections address the media specific sampling procedures. Rationale for specific activities is also provided. The SI was conducted in accordance with the U.S. EPA approved work plan dated November 2, 2012. Photographs of the samples obtained during the SI and the sample locations are provided in Appendix C. The Team Leader's field log book for the field inspection activities is provided in Appendix D.

5.2 Sampling Procedures

Samples were collected at the Site by the investigation team from November 5 to 6, 2012. These samples were collected to determine potential contaminant source areas, the presence or impacts of Site wastes, background concentrations in the target media, and observed releases to two of the four pathways (groundwater and soil) used by the U.S. EPA to evaluate sites.

The team collected 14 surficial soil, 12 soil boring, 4 groundwater samples, and 2 waste samples, along with 2 field blanks and 1 pump blank. In addition, field staff collected 4 duplicate samples and screened surficial materials with a hand-held XRF unit. Split samples were offered to property owners but were declined.

Standard MDEQ sample collection, preservation, and decontamination procedures, as outlined in the work plan, were followed for all samples except as noted in the next paragraph. Sample collection and preservation followed the MDEQ Remediation and Redevelopment Division (RRD) Operational Memorandum No. 2, Attachments 4-6. Soil samples analyzed for volatile organic compounds (VOCs) were field preserved with methanol. Soil samples collected for other analyses were not chemically preserved. Water samples analyzed for VOCs were field preserved with hydrochloric acid. Water samples analyzed for semi-volatile organic compounds (SVOCs), pesticides, and polychlorinated biphenyl (PCB) compounds were not field preserved. Water samples analyzed for total metals were field preserved with nitric acid to a hydrogen ionization potential (pH) of less than 2 and water samples analyzed for cyanide were field preserved with sodium hydroxide to a pH of more than 12.

Exceptions for field activities compared to the approved work plan are noted below:

 Six groundwater samples were planned according to the approved work plan, but four, plus a duplicate, were collected only at lower elevations. Monitoring wells were difficult to install, especially at higher elevations, due to frequent refusal of the drive point at bedrock while attempting well installation.

- 2. The work plan called for monitoring the water level drawdown while collecting a sample and limiting the drawdown to four inches, in accordance with low-flow protocols. Well TMW-01 purged dry with slow recharge, but this well water eventually cleared up before sampling.
- 3. The work plan called for soil sampling to take place throughout the Site, but soil sampling was only conducted in Subarea C. This was due to the fact that much of the previous surficial material thought to pose a health risk in Subarea A was now covered with what appeared to be clean fill. However, the thickness of the fill was not determined during this SI. Subarea B did not appear to contain any observable areas of concern.
- 4. Thirty-three soil samples were planned, but only 26 were collected. This reduction of planned sampling is partially due to the elimination of samples in Subareas A and B.

Field staff adhered to standard MDEQ decontamination procedures during the collection of all samples. Prior to mobilizing to the field, this included the scrubbing of all hand trowels with a tri-sodium phosphate and tap water solution and rinsing with tap and deionized water. In the field, all used sampling equipment was power washed with a steam cleaner before reusing for further sampling.

All samples were processed in accordance with U.S. EPA and MDEQ required procedures. The volatile fraction of soil samples was sent to the MDEQ Laboratory. Remaining soil samples and organic water samples were labeled and placed in individual protective bubble plastic bags. Inorganic water samples were labeled and placed in individual zip-lock bags. All samples were placed in shipping coolers. The interiors of the coolers were kept at a temperature of approximately 4° Celsius with ice. A small glass water-filled bottle was placed in each cooler and marked "TEMPERATURE," for use by the laboratory to measure temperature. The coolers were sent by UPS next-day delivery to the laboratories assigned to the project by the U.S. EPA Contract Laboratory Program (CLP) or to the MDEQ Laboratory. Sample identity, security, and chain of custody procedures specified by the CLP and MDEQ were followed. Samples were analyzed by the MDEQ Laboratory or by a CLP laboratory. The U.S. EPA approved of the volatile fraction analysis of soil samples to be completed at the MDEQ Laboratory. The U.S. EPA directed which CLP laboratories to use for the rest of the analyses. The table below summarizes which laboratory completed the required parameter analysis.

		Soil/S Sa	Sediment mples	t	Water Samples					
Laboratory	V	SV	PCB/P	IN	V	SV	PCB/P	IN		
MDEQ Laboratory	x							X		
3350 N. Martin Luther King Blvd.										
Bldg. 44, 3rd Floor										
Lansing, MI 48909										
KAP Technologies Inc.		Х	х		x	x	х			
9391 Grogans Mill Road										
Suite A2										
The Woodlands, TX 77380										
A4 Scientific, Inc.				х				Х		
1544 Sawdust Road										
Suite 505										
The Woodlands, TX 77380										

V = volatile; SV = semi-volatile; PCB/P = polychlorinated biphenyls/pesticides; IN = inorganic

5.2.1 X-Ray Fluorescence Soil Screening

XRF screening of surficial soil and other materials was conducted in October and also during the November field event. During November, this screening was conducted in conjunction with the surficial soil sampling. The sampling team first screened a suspect area with the XRF unit, and if high levels of metals were found, a surficial soil sample was also collected at or near that location. XRF screening descriptions and results are shown in Table 5-1. XRF screening locations are shown in Figures 5-1 and 5-2.

5.2.2 Waste Samples

Two waste samples were collected. These were determined to be waste by either visual observation or by XRF screening. The waste was sampled in the same manner as surficial soil samples, as described below.

5.2.3 Surficial Soil Samples

Fourteen surficial soil samples, along with two duplicates, were collected from Subarea C of the Site by the investigation team from November 5 to 6, 2012. Sample SS-01 was designated the background sample, due to its location being somewhat removed from the areas where milling and reclamation took place. Thus, sample SS-01 would be expected to be less impacted by past Site operations. The locations of these samples are shown on Figure 5-3. Location information and sample descriptions for the surficial soil samples can be found in Table 5-2.

The surficial soil samples were obtained using stainless steel trowels at depths ranging from 0 to 8 inches below the ground surface. The volatile portions of the surficial soil samples were collected with the use of a dedicated syringe. An

approximate 10 gram sample of soil was collected in the syringe directly from the hole created by collecting the sample. This soil was then immediately placed in a 40 milliliter (ml) glass vial and preserved with 10 ml of methanol. The remainder of the soil sample was transferred from the sample location to an aluminum pan where all visible debris (stones, roots, etc.) was removed. The sample was then thoroughly mixed and transferred to the appropriate sample containers using a stainless steel trowel.

5.2.4 Soil Boring Samples

Twelve deep soil samples were collected from 11 individual boring locations around the Site by the investigation team on November 5 or 6, 2012. These samples were collected in order to find buried waste, if present. The locations of these samples are shown on Figure 5-4. Location information, soil boring lithology, and sample descriptions for the soil boring samples can be found in Table 5-3.

The deep soil boring samples were collected utilizing a Geoprobe[®] rig with a high density polyethylene (HDPE) lined Macro-Core[®] sampler at depths ranging from 1 to 8 feet below the ground surface according to the procedures outlined in the work plan. Borings were drilled to total depths of 4 to 16 feet, depending on the location. These procedures included screening the core with a photoionization detector to help determine the presence of VOCs and potential sampling points within the cores. Upon screening of the core, the volatile portion of the sample was collected with the use of a dedicated syringe. An approximate 10 gram sample of soil was collected in the syringe directly from the core. This soil was then immediately placed in a 40 ml glass vial and preserved with 10 ml of methanol. The remainder of the soil boring sample was transferred from the core to an aluminum pan where all visible debris (stones, roots, etc.) was removed. The sample was then thoroughly mixed and transferred to the sample containers using a stainless steel spoon.

All soil boring boreholes were properly abandoned following an approved standard operating procedure. This procedure entailed slowly filling the abandoned borehole with bentonite chips to within six inches of the surface, then topping off the borehole with immediate surrounding material.

5.2.5 Groundwater Monitoring Well Samples

Five groundwater monitoring well samples were collected from four temporary monitoring wells to determine whether organic and inorganic contaminants had migrated into the glacial aquifer underlying the Site. The monitoring well sample locations are shown in Figure 5-5. Location information, some basic groundwater parameters, and sample descriptions for the groundwater samples can be found in Table 5-4. Field staff attempted to install background wells northwest of the former regrinding plant, but could not do so due to bedrock refusal of the Geoprobe bit. The Team Leader directed field staff to install a background well hydraulically

upgradient from TMW-05 at a location near the existing building at the Whiteman property.

The four temporary monitoring wells were installed using a Geoprobe[®] rig. The Geoprobe[®] rig is a truck mounted hydraulic/pneumatic rig that installs small diameter monitoring wells by driving a well screen and casing into the aquifer system. Upon installing these wells, readings were taken using a photoionization meter. No readings above background levels were detected at any of the temporary wells. Static water level readings and well depths were recorded for each temporary well to determine the standing water elevation and the volume of standing water in the wells. These measurements were made with an electronic water level indicator.

The temporary wells were developed using tubing and a peristaltic pump until a steady low-flow rate of water free of heavy suspended solids was established. Conductivity, pH, temperature, oxidation reduction potential, and total dissolved solids measurements were taken of the purge water at regular intervals to ensure that the wells had been purged properly and that fresh groundwater was entering the wells. The same pump used to purge the well was used to sample the well. The volatile portion of the sample was collected first with the pump set at a low-flow rate to minimize bubble formation and sparging. The remaining portions of the sample were then collected by pumping the water directly into the sample bottles.

Since disposable tubing was used for collecting the temporary well samples, there was no need to decontaminate any of the sampling equipment. All well screens, casing, and Geoprobe rods are steam cleaned prior to each use. Two deionized water field blank samples, and one deionized water pump blank sample were also collected in accordance with the U.S. EPA quality assurance/quality control requirements.

After installation of the temporary monitoring wells, the top of casing (TOC) and ground elevations for all wells were surveyed in using a survey level and rod to the nearest 0.01 foot. Due to the temporary nature of the monitoring wells, an arbitrary benchmark of 100.00 feet was set at the top of casing for TMW-01 and the wells were surveyed in to that point. To determine depth to groundwater, static water levels were measured for each well from the TOC with an electronic water level meter. The static water level measurements were taken on November 8, 2012, to let the wells equilibrate to aquifer pressure. Static water level elevations were then determined using these measurements. Table 5-5 contains the groundwater elevation data. Based on the static water level elevation appears to be flowing to the southeast, toward Torch Lake. Figure 5-6 displays the groundwater contours and elevation data.

After the final static water level elevations were collected, the temporary monitoring wells were removed and the boreholes were properly abandoned following an approved standard operating procedure. This procedure entailed

slowly filling the abandoned borehole with bentonite chips to within six inches of the surface then topping off the borehole with immediate surrounding material.

5.2.6 Media Not Sampled

Surface water and sediment were not sampled during this SI. The reason for this is that Torch Lake Superfund Site stamp sands are located between the C & H Tamarack Operations Site and Torch Lake. These stamp sand wastes, and any other wastes found associated with the stamp sands, were generated at the Site and directly deposited into Torch Lake by C & H. The presence of these wastes in Torch Lake is documented evidence by direct observation of an observed release to the surface water pathway.

6.1 Introduction

This section includes results of chemical analysis of all samples collected during this assessment. Laboratory analytical data with the laboratory narratives for the water and soil sample analyses are provided in Appendix E.

6.2 Sample Analytical Results

Key sample analytical results are summarized in the appropriate tables for each of the following media when the sample analytical results met either of the following criteria: the sample concentration is greater than three times the background concentration, or the sample concentration is greater than the detection limit when the background sample concentration was not detected at the laboratory reporting limit. These key sample results are an indication of what is considered an "observed release" for Hazard Ranking System scoring for the Site.

6.2.1 X-Ray Fluorescence Soil Screenings

XRF screening results were not used to determine observed releases as are the surficial soil samples that were analyzed at the laboratories. Instead, the XRF screening results were compared to appropriate direct contact and soil protection criteria to aid in the determination of the extent of surficial soil contamination. See Table 5-1 for the results of XRF screening conducted in October and November 2012.

6.2.2 Surficial Soil Samples

Analysis of the surficial soil samples revealed the presence of SVOCs, inorganic analytes, and PCB compounds (Aroclors) as observed releases. The key surficial soil sample analytical results for all these samples are provided in Table 6-1. All the samples collected contained contaminants at high enough concentrations to be considered observed releases.

6.2.3 Soil Boring Samples

Analysis of the soil boring samples revealed the lack of any obvious waste.

6.2.4 Groundwater Monitoring Well Samples

Analysis of the groundwater monitoring well samples revealed the presence of arsenic, copper, and manganese at concentrations significantly above background. The key groundwater monitoring well sample analytical results for all these samples are provided in Table 6-2. Observed release samples were limited to samples TMW-02 and TMW-03, located in the vicinity of the former leach plant. No observed release was found associated with sample TMW-05.

7. DISCUSSION OF MIGRATION PATHWAYS

7.1 Introduction

This section discusses data and information that apply to possible contaminant migration pathways and possible sources of contamination that may be attributable to the Site. The four migration pathways of concern discussed are groundwater, surface water, soil exposure, and air.

7.2 Groundwater

The analysis of groundwater samples collected during this SI investigation has indicated an observed release of contaminants to the groundwater in the area of the Site. The key sample results are summarized in Table 7-1. To determine an inherent risk, this table also compares the contaminant concentration ranges to Michigan's Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Part 201), cleanup criteria (Criteria). Copper, iron, and manganese exceeded Criteria for drinking water. Iron and manganese exceeded their aesthetic drinking water criteria, while only iron exceeded its health-based drinking water criteria. Copper also exceeded its GSI criterion.

Observed releases in groundwater were only found in the two groundwater monitoring wells installed closest to the former reclamation facility leach plant. Groundwater in this area flows under the remains of the former reclamation plant, possibly picking up contaminants that may have leached out of contaminated soils or waste, and then flows past the two monitoring wells, TMW-02 and TMW-03. Sample TMW-03 had the highest concentration of copper, possibly the result of copper leaching out of the now-buried waste in the south end of the former leach plant, in combination with copper leaching out of copper-containing contaminated soils prevalent in the area.

This contamination in the groundwater is attributable to the Site because arsenic and copper in particular were found in high concentrations in contaminated soils and source areas. This contamination is documented to include much of the area that includes the remains of the three buildings that were part of the former reclamation plant. There is also a potential for continued migration of contaminants from the Site to groundwater based on the following information:

- There are no engineered caps or liners in the source area or areas to inhibit infiltration and migration to groundwater;
- Some of the soils on the Site have shown elevated levels of contaminants, especially arsenic and copper;
- There is no containment in the areas of contaminated soils;
- The soils in the area are comprised of highly permeable sands; and
- The groundwater is located near the surface at depths of less than approximately 20 feet.

The geology in the area of the Site is described in Section 2.2, consisting essentially of shallow coarse-grained glacial deposits overlying bedrock. Representative drinking water well logs for the surrounding area can be found in Appendix F. Many of the drinking water wells in the area are set in bedrock. Clay layers are present in some of these wells, but the clay is either thin (less than 10 feet) or interbedded/mixed with sand or gravel. Because of these characteristics and no continuous clay layer throughout the area, it is believed the shallow glacial aquifer is interconnected with the bedrock aquifers in the area.

All area residents utilize groundwater for their drinking water. Many Hubbell residents who live along M-26 get their drinking water from the Michigan American Water Company, which has its water supply wells outside the 4-Mile TDL [13] on the north shore of Lake Superior. However, some residents who live away from M-26 have their own drinking water wells. Residents of Mason, about 1 to 2 miles southwest of the Site, use drinking water from Dollar Bay wells [13] but also get drinking water from two public water supply wells located in Mason [14]. The Dollar Bay municipal wells are just outside the 4-Mile TDL. Residents of the village of Lake Linden obtain their drinking water from three municipal wells operated by the village. These wells are located in the northeast part of the village limits, less than three miles north-northeast of the Site. The total population served by these wells is approximately 1,081, based on 2000 census data. The remainder of the population located within the 4-Mile radius of the Site utilizes residential wells and the Michigan American Water Company supply outside the TDL. Many of the more populated areas within four miles of the Site, for example along M-26 from Laurium to Lake Linden to Hubbell, are served by the north shore wells, according to a personal communication with Mr. Steve Dlubala, contact person for the Michigan American Water Company, which owns and operates the north shore wells. For this reason, the population numbers for the groundwater migration pathway are smaller than the population numbers for the air migration pathway. See Appendix A for a 4-Mile Site Radius Map. The approximate population served by groundwater within four miles of the Site by radius ring is listed in the table below:

Distance from Site	Estimated population served by residential wells	Estimated population served by municipal wells
0 – ¼ Mile	67	
1⁄4 - 1⁄2 Mile	17	
1⁄2 - 1 Mile	79	
1 – 2 Mile	237	
2 – 3 Mile	437	1218
3 – 4 Mile	545	890
Total	1382	2108

7.3 Surface Water

The surface water pathway is an exposure pathway of concern for this Site. The Site is located within 500 feet of Torch Lake. Contaminants are likely entering the lake from contaminated soil source areas and from waste piles on land, leaching through coarse-grained soils into groundwater, and discharging to the lake. The ground surface topography is sloped steeply towards Torch Lake and this also causes the groundwater gradient to be sloped similarly towards the lake. Groundwater contaminants, especially copper, have been documented in the shallow groundwater just east and north of M-26, where groundwater was also documented to be flowing towards Torch Lake.

In addition, past operations at the Site have been documented to deposit stamp sands and related wastes directly into Torch Lake. The presence of these wastes in Torch Lake adjacent to the Site is documentation by direct observation of an observed release to the surface water pathway.

The 15-Mile TDL for the surface water pathway lies within all of Torch Lake proper and reaches into portions of Portage Lake, but does not reach into Lake Superior. The PPE of contaminants into the surface water pathway is near the north end of the Site in Subarea A and along the lakeshore in Subarea C. Endangered and threatened species were documented through a search of the Michigan Natural Features Inventory database, the results of which can be found in Appendix G. Sensitive resources along the TDL include wetlands and state-designated threatened species. Wetlands frontage along the TDL is about 15 miles, based on calculations made in a GIS. Two state-designated threatened species are known within the TDL in at least three public land survey sections: lake sturgeon and the common loon. MDEQ personnel observed a family of common loons on June 23, 2011, in Torch Lake waters just north of the Site. See Appendix B.

There are no known surface water intakes along the TDL but the waters of Torch and Portage Lakes are connecting waters of the Great Lakes and are designated by the state for use as drinking water. The flow rate of the Trap Rock River into Torch Lake averages about 43 cubic feet per second [15]. Several other small creeks also discharge into Torch Lake. The only outlet for this water is through the connection to Portage Lake. These waters are also used for numerous other purposes. According to a 2007 MDEQ report, "Torch Lake is used for fishing, boating, limited contact recreation (swimming, jet skis, and water skis), non-contact cooling water supply, treated municipal waste assimilation, and wildlife habitat" [16]. Similar activities are known to be common on Portage Lake.

7.4 Soil Exposure

According to state and local file information reviewed, there is no documentation of an incident of direct contact with contaminants at the Site. However, numerous organic and inorganic contaminants have been documented in shallow soils of Subarea C during this SI, posing potential risks from direct contact. Access to areas of contaminated soil or waste is not reliably restricted, although one area in the southern part of Subarea C has a cable across the entrance drive to limit access.

The soil samples collected during this SI investigation indicate that an observed release is documented in all the samples collected. Numerous SVOCs and inorganic analytes were detected at concentrations significantly above background. These contaminants are summarized in Table 7-2. Several of the inorganic analytes exceeded concentrations deemed to be safe for direct contact.

Vehicular and pedestrian access to the Site is not reliably restricted. The Site is located in a mixed residential and commercial area of Hubbell and there is no fencing to restrict access to the areas where surface contamination is present. There are no schools located within close proximity (less than 200 feet) of the Site. A total of approximately 781 people live within a one-mile radius of the Site. The total population living within the various distance rings is summarized in the table below.

Distance from	Estimated
Site	population
0 – ¼ Mile	356
1⁄4 - 1⁄2 Mile	203
1⁄2 - 1 Mile	222
Total	781

7.5 Air

There is a potential for migration of Site contaminants through the air pathway, primarily by particulate migration. As noted above, significant surficial soil contamination with inorganic constituents is found in Subarea C. The approximate population affected by the air exposure pathway within a four-mile radius of the Site is detailed in the table below:

Distance from	Estimated
Site	population
0 – ¼ Mile	356
1⁄4 - 1⁄2 Mile	203
1⁄2 - 1 Mile	222
1 – 2 Mile	865
2 – 3 Mile	1037
3 – 4 Mile	1485
Total	4168

8. BIBLIOGRAPHY

- 1. Schwenner, C., Soil survey of Houghton County area, Michigan, 1991, Michigan. Dept. of Agriculture. United States. Soil Conservation Service. Michigan State University. Agricultural Experiment Station. Michigan Technological University.: Washington, D.C.
- 2. Rheaume, S.J., Hydrologic provinces of Michigan by S.J. Rheaume; prepared in cooperation with the Michigan Department of Natural Resources Geological Survey Division. Water-resources investigations report. 1991, Lansing, MI; Denver, CO: U.S Dept. of the Interior.
- 3. Curran, D.L., L.J. Miller, and D.N. Leske, Hydrogeologic Atlas of Michigan, Western Michigan University Department of Geology and the United States Environmental Protection Agency, Editors. 1981.
- 4. USGS, 1946 topographic map, the Laurium quadrangle, 1946, U.S. Geological Survey (USGS).
- 5. The Sanborn Map Company, LLC, Sanborn Library. Accessed via ProQuest at Michigan State University, September 13, 2012. Observed maps that included the Site dated 1885, 1888, 1900, 1908, 1917, and 1928.
- Weston Solutions, Inc., Summary Report for the Torch Lake Area Assessment, Torch Lake NPL Site and Surrounding Areas, Keweenaw Peninsula, Michigan, December 13, 2007.
- U.P. Engineers & Architects, Inc., BASELINE ENVIRONMENTAL ASSESSMENT OF THE AHMEEK (TAMARACK CITY) STAMP MILL IN PORTIONS OF SECTION 13, T55N, R33W, OSCEOLA TOWNSHIP, HOUGHTON COUNTY, MICHIGAN. Prepared For: Osceola Township, Mr. Dave Wiitanen, Supervisor, P.O. Box 437, Dollar Bay, Michigan 49922. Prepared By: U.P. Engineers & Architects, Inc., 100 Portage Street, Houghton, Michigan 49931, November 8, 2001.
- 8. MDEQ, BEA Master Data Form, Ahmeek (Tamarack City) Stamp Mill site, BEA ID B200100213UP, completed November 8, 2001 by Osceola Township and submitted to the MDEQ, received November 14, 2001. Environmental Response Networked Information Exchange (ERNIE), Version 5.3, BEA database, accessed September 6, 2012.
- MDEQ, Brownfield Redevelopment Assessment Report for Tamarack City Stamp Mill, M-26 Highway, Hubbell, Michigan, MIB00000084, December 19, 2002. 2002, Remediation and Redevelopment Division: Lansing, Michigan.
- 10. Weston Solutions, Inc., Technical Memorandum Tamarack City Stamp Mill Site Analytical Data Review and Evaluation, March 2005. Cited in Weston, 2007.
- 11. MDEQ, Site History for Tamarack City Stampmill site, Site ID # 31000056, completed August 30, 2010. Environmental Response Networked Information Exchange (ERNIE), Version 5.3, sites database.
- 12. MDEQ, Site Scoring Sheet, Tamarack City Stampmill, 2013. Environmental Response Networked Information Exchange (ERNIE), Version 5.3, scoring database.

- 13. Pascoe, D., Personal phone communication with Mr. Doug Pascoe, District Engineer, MDEQ Resource Management Division, U.P. District, September 17, 2012.
- 14. MDEQ, Houghton County GIS shapefiles and related attribute files (e.g., Wells.dbf, dated June 16, 2010).
- 15. USGS, 04043050 TRAP ROCK RIVER NEAR LAKE LINDEN, MI Water-Data Report 2013, http://wdr.water.usgs.gov/wy2013/pdfs/04043050.2013.pdf, 2013.
- 16. MDEQ, Biennial Remedial Action Plan Update for the Torch Lake Area of Concern, 2007.

FIGURES

Sources: Feature layers from Michigan Geographic Data Library website; 1928 Sanborn fire insurance maps from previous MDEQ work done on Torch Lake; site specific information from MDEQ files and local governments

Sources: Feature layers from Michigan Geographic Data Library website; some information is taken from 1928 Sanborn maps; 1948 topographic map from USGS (1948); site specific information from MDEQ files and local governments

Sources: Feature layers from Michigan Geographic Data Library website; some information from 1928 Sanborn maps; 1954 aerial photograph from MSU Aerial Archive; site specific information from MDEQ files and local governments

Sources: Feature layers from Michigan Geographic Data Library website; site specific information from MDEQ files and local governments; XRF screening locations and associated data from MDEQ field activities, Oct 11, 2012.

Sources: Feature layers from Michigan Geographic Data Library website; site specific information from MDEQ files and local governments; XRF screening locations and associated data from MDEQ field activities, November 5-6, 2012.

Sources: Feature layers from Michigan Geographic Data Library website; site specific information from MDEQ files and local governments; surficial soil sample locations and associated data from GPS data collected by MDEQ staff during field activities, November 5-6, 2012.

Sources: Feature layers from Michigan Geographic Data Library website; site specific information from MDEQ files and local governments; soil boring sample locations and associated data from GPS data collected by MDEQ staff during field activities, November 8, 2012.

Sources: Feature layers from Michigan Geographic Data Library website; site specific information from MDEQ files and local governments; soil boring sample and temporary monitoring well sample locations and associated data from GPS data collected by MDEQ staff during field activities, November 8, 2012.

Sources: Temporary monitoring well water table data collected by MDEQ staff during field activities, November 8, 2012.

Figure 5-6: Relative Water Table Elevation Contours

TABLES

TABLE 2-1

WASTE SAMPLE RESULTS

SAMPLE #	CONTAMINANT	RESULT	FLAG
W-1	Semi-volatile	µg/Kg dry	
	Isophorone	260	5
	Inorganic	mg/kg dry	
	Antimony - Sediment	10	
	Arsenic - Sediment	120	
	Barium - Sediment	51	
	Beryllium - Sediment	0.57	
	Cadmium - Sediment	4.3	
	Chromium - Sediment	4,600	
	Cobalt - Sediment	53	
	Copper - Sediment	76,000	
	Iron - Sediment	210,000	D
	Lead - Sediment	35	
	Manganese - Sediment	1,900	
	Mercury - Sediment	0.40	3
	Molybdenum - Sediment	74	
	Nickel - Sediment	260	
	Selenium - Sediment	4.3	
	Silver - Sediment	49	
	Vanadium - Sediment	87	
	Zinc - Sediment	170	
W-2	Inorganic	mg/kg dry	
	Antimony - Sediment	1.1	
	Arsenic - Sediment	1,300	
	Barium - Sediment	29	
	Beryllium - Sediment	0.48	
	Cadmium - Sediment	0.42	· · · · · · · · · · · · · · · · · · ·
	Chromium - Sediment	35	
	Cobalt - Sediment	69	
	Copper - Sediment	36,000	
	Iron - Sediment	75,000	D
	Lead - Sediment	15	
	Manganese - Sediment	560	
	Mercury - Sediment	0.38	3
	Molybdenum - Sediment	140	
	Nickel - Sediment	500	
	Silver - Sediment	220	
	Vanadium - Sediment	65	
	Zinc - Sediment	41	

For flag descriptions, see the MDEQ Environmental Laboratory results, page 106, Appendix E.

Site Inspection Report C & H Tamarack Operations XRF results, 10/11/12

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

			Molybdenum		Strontium		Lead Arser		senic	nic Zinc		Copper (С	obalt	Iron	n Manganes		janese Chromium		Vanadium			
# Medi	a Description	Units	Мо	Ma Error	Sr	Sr Error	Pb	Pb Error	As	As Error	Zn	Zn Error	Cu	Cu Error	Co	Co Error	Fe	Fe Error	Мп	Mn Error	Cr	Cr Error	V	V Error
55 soil	brown/black sand	ppm	< LOD	9.4	247	11.96	226.04	23.49	< LOD	27.78	71	22.34	821	64.48	< LOD	234.3	25,505	524.9	139	89.38	< LOD	31.21	< LOD	51.05
56 soil	black soil	ppm	< LOD	6.7	108	6.07	30.09	7.92	11	6.48	37	12.14	322	31.21	< LOD	127.34	13,623	286.12	144	59.16	59	25.34	< LOD	73.07
57 soil	red soil	ppm	< LOD	6.8	55	4.7	21	7.51	< LOD	8.57	< LOD	14.95	114	23.14	< LOD	115.02	10,090	255.97	97	55.96	< LOD	38.85	< LOD	54.82
58 soil	tan sand pile	ppm	< LOD	6.9	167	7.97	12	6.78	< LOD	7.65	< LOD	14.82	45	20.15	< LOD	88.63	4,859	185.9	131	58.62	83	24.54	< LOD	52.51
59 soil	reddish brown soil	ppm	< LOD	7.7	70	5.78	721	34.27	< LOD	37.69	422	41.09	9144	168.54	< LOD	133.37	10,960	294.1	215	75.28	89	23.47	< LOD	69.04
60 rock	blue/green heavy rock	ppm	18	3 7.7	68	8.4	26	13.81	58.49	15.14	< LOD	181.68	98056	799.25	< LOD	453.12	62,059	1015.79	1255	233.7	< LOD	45.65	< LOD	92.01
61 soil	Fill dirt at south end of former reclamation plant	ppm	10) 4.7	62	4.92	19	7.24	< LOD	8.07	17	10.38	240	28.92	< LOD	86.2	5,483	188.03	< LOD	70.94				
62 rock	white, soft rock	ppm	< LOD	9.0	84	7.38	17	9.56	< LOD	9.97	< LOD	22.59	106	34.19	< LOD	56.8	967	110.96	< LOD	89.48	89	18.71	37	22.42
63 soil	brown medium to coarse sand w gravel fill, south end and west of former leach plant	ppm	< LOD	7.6	80	5.98	30	8.98	< LOD	10.53	27	13.67	461	41.35	< LOD	147.37	14,528	332.45	291	79.53	91	23.87	< LOD	63.89
64 waste	e stamp sand pile	ppm	< LOD	9.1	120	8.63	23	10.29	< LOD	12.99	70	24.51	1608	87.34	396	202.49	41,072	671.14	616	134.09	< LOD	42.93	< LOD	102.16
65 soil	red sand pile covered with vegetation	ppm	< LOD	6.9	68	5.05	13	6.61	< LOD	7.43	30	10.99	59	19.37	< LOD	94.16	6,433	202.06	182	59.59	< LOD	64.51	< LOD	117.04
66 soil	reddish brown soil pile	ppm	< LOD	13	61	9.57	< LOD	21.53	< LOD	17.54	< LOD	33.91	165	50,4	< LOD	233.4	9,990	495.47	214	125.24	·			
67 soil	reddish brown soil pile	ppm	< LOD	7.1	60	4.91	30	8.17	< LOD	9.35	38	12.54	140	24.71	< LOD	112.94	10,046.67	256.84	171	62.12				
68 soil	tan/brown fine sand pile	ppm	< LOD	408	< LOD	47.13	< LOD	52.43	< LOD	40.9	< LOD	114.16	< LOD	260,81	< LOD	1000.67	< LOD	9387,98	< LOD	385.7				
RDCC: NDCC: GSIPC: Default b Conclusio	ackground (= criterion if >C): n of risk based on screening levels	5:	2,600 9,600 64 NA none		330,000 1,000,000 420 NA none		400 900 2,100 21 a]	7.6 37 4.6 5.8 a, b]	170,000 630,000 65 47 b	Į	20,000 73,000 29 32 b		2,600 9,000 2.0 6.8 b		160,000 580,000 NA 12,000		25,000 90,000 21 440 b		2,500 9,200 NA 18		750 5,500 190 NA	

Notes:

All readings were obtained by XRF on 10/11/12. Rock - no cleanup criteria Exceeds RDCC Exceeds GSIPC RDCC = Residential Direct Contact Criteria

NDCC = Nonresidential Direct Contact Criteria

GSIPC = Groundwater Surface Water Interface Protection Criteria

NA = not available or not applicable >C = greater than health-based cleanup criteria or criterion (e.g., RDC or GSIPC) Some element data are hidden: 1) if not detected, or 2) if no criteria are available.

Conclusions of risk:

a If used for nonresidential use, no problem found b Potential risk to surface water (Torch Lake)

Sita Inspection Report C & H Temarack Operations XRF Results, 11/8-5/12

TABLE 5-1

A ANALY MALEY WARD OF THE OWN NYME I THEY A REPORT OWNER OF ALL WAS DONE

NAMES OF TAXABLE AND ADDRESS OF TAXABLE ADDRESS OF

XRF SCREENING DESCRIPTIONS AND RESULTS

					ħ	lolybder	иm	Strontium		Lead		Arsenic		Inc		Capper		Coba	t 🔤
	Sample Type	U nits	Collocated Surficial Spi Sample No	Sculice Ayes	s.Ac.iyod	univer.	Mic Error	Strantium	St Erret		På Error	Arsanie	As Error	Zne	in the	Coeper Coeper	cu siner	Cobalt	Co Error
1	Shutter Cal.	сря		NA	. 10		22 3	X 10 12 3											
<u>4</u> 3	Biana; SARST (Kinh	DOM:		NA NA	< 100	13.88	0.4 Ř.09	58.01 282.9	5.04 12.45	9.4 #547	8.14 96.19	<100	8.74 77.7%	<100 8443	11.68 174 84	7753	18.43 97.38	<100 <100	224.69
4	5001	pow		Soll	<10D		7.41	340.69	11.58	41	10.11	10000000023	8.72	<lod< td=""><td>20.63</td><td></td><td>49.7</td><td>373</td><td>141.84</td></lod<>	20.63		49.7	373	141.84
5	SCAL	ppzn		Şall		8.27	4.43	90.58	5,6	25	7.58	<10D	8.78	8E	12.07	302	30.7	< LOQ	107.15
6	501L	DP fil		Sall	ł	8,91	4.61	70.19	5.2	31	8.71	< 100	8.75	32	11.7	A23	96,4	194	91.43
7	SOIL	ppm	19	<u>Soll</u>	<u> </u>	6.42	4.25	101	5.71	35	8.12	< 100	9,21	171	39.03	221	26,12	103	67.69 reer
д. g	SOIL	ppm. mom		sai) Sail	e (nn	30,3	4.11 652	192,73	56,6 1 k	19	5,05 6 80	<000	1.20 7.60	29/20/030/01/199 #1	19.04	141	29,20 24 FC	עע איז איז איז און און איז איז און און איז	39,32 81,46
10	SOIL	gpm	17 Martinian (Martinian)	Soll	< 100	appartition to be	6,89	181-04	7.96	55	10:08	<100	11.8	54	14.81	302	31,75	<100	124.58
11	şqil.	ppm.	·····	P ilie	1	7,27	4.82	119.38	10.77	42	9.73	EL (() () ()	B.15	40	14.98	Januar 840	41.74	84000001 77	109.45
12	İs⊂iL	ppm.		File	< 100		7.07	235.46	9,15	32	8,82	1. de 19 a - 19 19	7,40	32	12.43	287	30,91	4100	191.98
13	<u> </u>	<u>epm</u>		Pla	_	8,68	4.71	103.7	6,14	179	15.82	< 100	10,16	- 114	14.19	676	43,97	<u> - 134</u>	82.37
14	501L	<u>pbw</u>	22 11	Fig	1000		8,51	105.78	7.49	35	10,5	< 100	11,94	42	22,29		102.05	1000 AU	185.70
10	SUIL	ppm	55×02.	PAC DE-	15 LC20		7.11 7.16	134.58	7.53	181	15.5	12 LOD.	33,35	542 03	20,95	550	43,38	e LOO	3.29.04
17		oom l		Soli		8 .96	4.37	121.79	6.04	20	80.5 R.13	e Lao.	8.69 9.69	120	18.61	115	30,03 Jr.rt	< LOD < LOD	90.79
18	soji	ppm		Soil	<100		6.88	168.D)	7.79	34	8.71	< 100	9,32	19860300115	18.41	669	44.20	< LÓØ)	119.01
39	501L	ppm	1	50il	< LOD		Q,79	194,14	\$ 75	476	05.86	<100	41.78	< 100	42.01	410	59,51	2241	489,44
20	ŚCIL	ppm		इल्प	< LOD		8,6	108.47	7.9	29	10.3	i < 100	12,15	i < LO0	30,98	1818	88.4	≮100	281.64
23	<u>sail</u>	<u>ppm</u>		<u>\$50</u>	< LOD		6,57	43.90	4.24	117	â0.23	 <:LO D	34.03	945	<u>31.09</u>	1178	55,03	< 100	109,43
12	30IL	<u>bbus</u>		<u>RRs</u>	-LOD		8.24	133.77	9.2	57	32:33	<100	33.78	72	22.95	1279	92.53	×LOD	255.42
1.4.3	SUAL,			508		713	5.73	41.03	5.1	104	1 7.00	· [* LL265	1 14.45		24,94	140	139.13 TA 14	14 M3N	03 KU
25	SOIL	BDMM		Soll	<100	Pador	7.15	62.10	i artera	221	<u>3.05</u>	i clog	9.22	101	11.75	781	32.11	E Several 1	69.65
25	SON.	ppm		Sofi	< LOD		<u>6.67</u>	49.19	4,4	17	6.4	1<1030	6.E	19	9.52	56	19.03	I ~ LCD	87.86
27	SCHL	ppm		501	< LOD		7.43	108.5	6.6	i ii	7.1	1 Li	6.4!	s < LOD	21.41	1165	60.39	e lod	197.23
22 2	SCAL	ppm,		li ç2		9,05	4,44	49.3	4.3	\$1	11.1	I < LO0	121	1	38.75	364	329		75,75
12	<u> 50%</u>	Plant		Sell	<10b		6.29	101.4	5.7.	93	11.48	i < LCXD	13.2	2	37.38	308	29.7	7 103	65.05
342	<u>3001.</u>	PPm PPm		5011 6all	-	13.53	3.89	38.7	3,4	14	5.56		6.1	5	19,3	751	316.73	i san dia bi	1.42.53
32	501	2007		290 Dila	~ ****	17.87	451	50.20	4 033 6 8 8	100 1	58.6	aton	27.7	2 2 X M M M M M M M M M M	18.32	BLE BLE	45.7		50.43
33	soii.	ppm		5oll	100	407 897	8.03	71.	B 6,01	1	9.7	4	1 1.0	5 54	18.50	846	58.7	1<10D	208.74
34	501	pom		Pile	*100		7.87	136.1	1. 7,8	47	10.5	7 <100	11	9	19.06	1057	61.R	S <lod< td=""><td>207.49</td></lod<>	207.49
35	50IL	rom		Pile	⊀100		7.8	134.5	S 7.8	7 50	11.2	š ≺tób	12.9	š – Š4	20.23	2109	85.2	s rop	2019
36	SOIL	pam	55-03	Soll	····	11.i3	4.44	61,3	1 4.7	6 137	13.6	4 < 100	15.1	2 CELENS 140	39.25	i 1042	51.9	a <u>nicinia in</u> 10	F \$9.45
37	5011	ppm		501	1.144	12,56	3.85	<u>0,0</u>	9 <u>]</u> 7,1	6 <u> 2 </u>	6,2	1 <100	6.7	65	11.5	162	21.1	915 LOD - LOD	47.4
120		Prin P		Sall	14100 A105		1 0.00	1 53.Q	21 4,5 4 7 7	9 <u>1 51</u>	(<u>95</u> 1 10 <i>2</i>	314100	11.0	7 4100	19,58 54.43	1	35.		173.14
140	SOIL	in the second	1	Soli	61.00		7.1	105.7	n 6.1	7 11	10,0		15.8	7 54	10 30		9,4.1 9,4.1		166.8
41	SOIL SOIL	pom	1	Sall	1	9,71	5.2	2 90.2	5.3	4 4	10.4	8 < 100	12.0	2	19.9	1028	58.	7 < 100	180.8
42	SOIL	ppiñ		Piló	< Lòð		B.)	7 Š4.G	ź ś.ď	1 9	4 14.7	9 < 100	17.0	4 5	21.7	7	88.4	6 < LDD	211.4
43	SOIL	ppm	55-04	1a2	< 100		15,4	8 67.5	8 12.0	1	148.6	1 <100	171.1	3 600	162.1	1 33.22M	1902,6	9 < 100	322.4

¢

Site Inspection Report C & H Tamarack Operations XRF Results, 11/5-6/12

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

					Iren		Menga	néše	Chroni	iin.	V.	ruđi	/mi	Barkan	
200 V			Colocited									QÇS.	123.70		Ale I
4	Sample Type	Upas	Section Soll.	Source Area	lron v	Fe Error	Manganese	Mn Error	Chromiem	CrEmor	Vanadion	n i i Naji	W Erner	Barlom	Ba Emer
1	Shutter Cal	CDI		NA		and the second second second	2007 AL 2018 AL 2018	ationari Mille						48,84,447,244,839,87	CIPECCERS:
2	Blank	PORI		NA.	319	52.34	<100	57.34	101	21.13	< LOD		34.52	< 100	950.41
3	MIST High	ppm		NA.	24925	507.65	7561	361.1	53	26.61	< LOD		77.73	< 100	1508.N
à.	SOIL	ब्रि जना		Soll	32181	489.27	199	79,11	73	27.5		105	54.21	< 1.00	616.43
5	50il	PSPATI		Sail	9271	<u>196.41</u>	189	50,36	92	24.23	< LOD		60.05	< LOO	628.2
5	SOIL	perm		Soll	17530	296.05	252	69.38	78	25.1		78	45.86	<100	715.07
7	SOIL	pepen		Soll	E447	119.63	128	53,69	53	25,23	< 100		59.19	< 100	781.44
8	SOIL	pem	:	Sóll	6882	190.69	128	50,34	70	24.62	< 100		54,64	<100	622.85
9	SOIL	ppm	· · · · · · · · · · · · · · · · · · ·	5oll	5353	179.77	128	53,13	70	22.78	<100		53.96	<100	759.14
10	SCIL	pom		5011	11539	273.09	130	58.55	100	24.84	< LOD		53.49	< LDD	866.51
11	SCAL	E E E E E E E E E E E E E E E E E E E	:	Pile	16511	340.07	142	54.5	80	25.8			73.91		702.02
12	SAR .	Fern	î	8198 844 -	1,0800	271.33	11/	59,74	14	23.15	< 100		54.45		091.83
13	SEUL.	FIGUETI		Viiii Oile	111.0	152.84 <u>5</u> 13.343	55% 	443.7	119	20,29	<100		79,99	< [00	112.31
1155 1156		100 miles	FC-03	Plice	347273	784.76	518	113.2	4×4 4×1	23,9/ 30 3#			73.09	< 100 2100	1613 36
42 12	500		33-08	File	44194	291.49	593 074	143.23	44. A	47,44 0 C C C	5 <u>100</u>		50/9/ 50/9/	5 U.W.	1944446
179 179	501.	ppen	·····	F114	10200	4/12134 3454 3	140	113-95 113-51		42.20 74.50			#4.4.k 46:6.4		Bod 11
	571L	DOM:		Soil Soil	18571	160 dT	160	51.18	74 74	24122 73.86		9.2 7.2	456.04 80.60		643.00
10	SOIL	DOM		Soil	203425	1502.3	1011	714.83	-100	38.97	<100		64.37	<100	752.25
** 20	SCAL	Engenan	<u></u>	Soll	30743	579.5	645	129.0	20	25.96	5 4.52.62	83	56.47	e i Circh	741.47
21	501	EXCORT		Sail	0140	241.25	161	59.43	60	23.79		80	34.37	<100	736.41
22	5011.	pom.		Pile.	35771	S75.38	457	109.77	73	26.31		ES	53.03	<100	1377.13
23	SOIL	eem.		Seil	1584	\$7.15	70	38,13	<100	34,69	<100		46.08	<100	344,45
24	scal	pçen		Sall	12463	303.4	à07	79.34	56	22.33	< LÓĎ	ľ	54.06	≮ LCND	775.15
2 \$	SOIL	ppm	:	Šall	7067	221.47	219	66.67	71	21.91	≼ LOD		57.49	< LOID	719.55
25 25	SOIL.	ppen		Salí	4969	175.12	119	53.19	82	23.85	< LOD		52.23	<100	675.7£
27	SCAL	म्ब्रह्ल्या संबद्धव्य		Šall	13387	312.38	176	67.81	70	23.16	< 100	ŀ	6 3. 6	< 100	646.92
28	501L	FERTI		Soll	9898	245.14	226	64.06	112	25.75	< LÓD		58,49	< 100	567.33
29	SOIL	ppm		Soll	7701	209.83	114	52.14	75	24.22	<100		59.57	<100	651.77
340	SOIL	pom		Sall	1237	104.32	85	40,79	56	24.19	< LOD		50.11	< 100	446.04
31	<u>5011.</u>	Interio		Soll	20165	198.67	268	80.93	72	23.02	<100		63.34	<100	915.44
32	SOIL	। दूह€∏		Pile	6305	195.35	219	6157	75	29.81	< 100		54.92	< 100	608.72
<u> 33</u>	SCAL	ppm		501	25,090	466.01	405	98,44	73	24,44	<100		73.16	< 100	1883.57
34	5011	P Pm	:	Pile	25191	461.09	435	\$1B,44	<u> </u>	25,49	270 6	123	51.81	€100	970.76
<u>83</u>	SCAL	PENT	page and	Pile	Z4679	451.39	276	86,96	52	24.44		92	49.62	< 100	928.62
30	SCAL		1042	5011	2493	114.51	185 	59.7 59.85	54	22.32	<u>4000</u> 	÷	57,49	≪.LL¥U 	625.68
31 35	501			106 105	53453 105.40	147 TT	* U.U.	00,00 07.78	20	29,43	S LUU		94,09 57 83		31Z.11
>0 39	SCAL.	Markett Markett		Sati	13346	147.14C 887 94	107 107	70,04 72,01		28,97	× 1111		03.6/ 30.94		10.200
40 40	500	Citizani		Soll 1	19138	370.45	237	80 29	655 109	25 58		381	15 00	2100	1128.31
4 1	501	DESTI		Sall L	20975	401.47	jin.		1.04 107	70.R	< 100		73.31	< LDD	750.61
42	SOIL	DER I		Pile	25604	451.8	336	97.31	106	24.78	< 100		73.93	< 1.00	862.85
43	SOIL	com	55-04	Soll	4/348	1113.71	501	285.01	119	24.84	< 100		76.03	2555	991.65

Site Inspection Report C & H Temerack Operations XRF Results, 11/5-6/12

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

.

				[1¢	Molybdenum Strontium		Level		arren)s		žinc		Copper		Cabal	t		
in in the second				onne kappen	110.000	desard l	STREES IN	000000000000000000000000000000000000000	No. of the second second	KRADEBUULT	1011523		2169336	NAMES OF COMPANY	a de la caractería de la c			in Still Pitching	2010-1226-0
MARS	Statione Trutt	dina I	ALT IN ALL	Seruma Anea	Mahrbaa	num	Ma Erroe	Strontium	S Error Len		Po Error	Artenic	As Error	Zer	ZnEmor	Cocoar	al Error	Colean	CO Error
	Sin faid in		Sample No.		quest had		i i sere	and the set			的潮潮	e in the trail	151		Takens				
44	SOIL	pçam		Soll	< 100	Ĩ	B.45	99,52	7.21	43	11.11	<10D	12,49	3 2	10.01	1059	79.9	305 205	170.47
45	SOIL	ppm		Pilo		75.5	11.84	64.99	9.58	41	1 9.01	28	17.24	< 100	103.38	15167	389.EŻ	< LOD	1237.11
46	soil	ppm.		Šoli	< LOŎ		7.37	128.86	7.26	88	12.78	< 100	14.57	49	1954	2071	89.54	186	119
47	SOIL	<u>apm</u>		Sall	< 100		8,2	186,84	9,55	B a	14,40	< រូលា	17.24	51	21.07	3751	81,55	10-01-025	176,1
48	ji ce	ppm.		50il	* LOD		7,22	182.10	8.47	195	\$7,82	< LOD	20.88	. 125	20.58	916	59,62	11.2012.0214	117,65
49	SÓIL	ppm		Soll	< LOD		13.95	211.73	16.4	32	16.42	< 100	21.74	< LOID	72.87	3611	285.27	<100	1604.17
\$0	SOIL	ppm.		Waste	< LOĐ		B.47	126.34	9.Ĉ	142	17.53	Frid 2019	14.9B	147	28 <i>4</i> 7	3114	107.62	328	181.45
51	SOIL	ppm		Waste		9.01	5.2	57.75	\$. 2 2	50	10.65	< LOD	11.82	53	18.14	1469	69.49	előð	111.05
52	50jL	ppm		soti		7,8	5.06	\$5,26	5.47	265	21.06	4 (4) 4 35	16,81	B12	31,37	2721	92.04	<lob< td=""><td>140.41</td></lob<>	140.41
53	Sait	ppns		Ple		45.57	8.19	155.12	11.35	< 100	15,23	QBE I I I	28.15	≺LOD	76:95	18187	329.39	1130	520.75
54	SÖL	ppins		Pile	≤LOD		8.9	70.8S	6.79	17	ėr.e	<100	11.07	R6	26.91	Sile 1687	ža ji	< LÓD	363.D1
55	SOIL,	ppm		Scal	<lõd< td=""><td></td><td>9.68</td><td>170.85</td><td>10,65</td><td>343</td><td>ÌĎ</td><td>14-51-6 JE 3B</td><td>23.74</td><td>370</td><td>54,63</td><td>24566</td><td>3423</td><td>473</td><td>289.52</td></lõd<>		9.68	170.85	10,65	343	ÌĎ	14-51-6 JE 3B	23.74	370	54,63	24566	3423	473	289.52
56	\$0(),	pprm	\$5.05	şođ	<lod< td=""><td></td><td>\$,73</td><td>181.09</td><td>10.82</td><td>417</td><td>32,40</td><td>77</td><td>26.A6</td><td>370</td><td>69.75</td><td>27158</td><td>355.44</td><td>< LOD</td><td>427.32</td></lod<>		\$,73	181.09	10.82	417	32,40	77	26.A6	370	69.75	27158	355.44	< LOD	427.32
37	<u> 3011</u>	ppm		Seil	≪ LCID		7.53	4E.89	4,99	743	34.66	i li se 🕻 103	27.89	*LOD	29:92	4933	116.65	< 100	198.54
58	SCAL	ppero		Sail	<100		7.Z	124.24	7.61	235	201.75	57 65 65 57	17.16	Ne storige St	25.99	4360	120.9	<100	196.51
59	SCHL	ppm		Soli		11.49	4.37	30.16	4.27	69	10.19	< LOD	11.55	123	17.19	2020 599	39.1	< LOD	81.25
60	ŚCIL	ppro		5all		8.84	3.93	37.82	3.57	11	5.42	< UD0	7.51	65	12.11	155	25,27	<100	57.17
61	SCAL	P ##n		501		16,24	4.29	J9.68	9.75	32	7.54	< top	8,77	65	12.84	204 Cont 204	24,66	<100	59.82
<u>67</u>	<u>\$C01.</u>	RPDI		Pile	<100		6,65	68.23	4,96	24	7,34	<100	直通	21	10.1	184	21.03	< LOD	89.32
63	<u>500).</u>	ine fei		Soll		10.78	4.24	69.31	4.57	54	9.01	< 600	10.96	51	1114	156	23.23	e LOD	79.53
64	SCIII.	ppm		Soll		12.53	4,75	75.05	5,32	30	6,23	3248 Bloke D	6,71	128	20,26	1515	61.51	10.117	100.45
65	Scil	p pmi		.Sajl	< UDD		8,41	80,51	6,83	99	15,45	University PO	16,01	1533	46.54	4138	129.81	<100	356,46
66	<u>sül</u>	ព្រា		Suli	< LOO		7.68	137:95	7,75	558	37,95	< 100	37,91	100000315	31.34	3814	77.76	212	142.67
67	SOIL	ppm		Soll	= 100		7.39	102.88	7.13	160	17.80	首次 法 市 13	14.34	1.1.105	26.12	C (1997) 9580	112.06	326	160.95
<u>6</u> Ø	SOIL	ppm		Šoli		19,43	4.07	58:62	4.25	B9	10.SS	< uob	11.65	1 97	14.2	245	25,43	<100	75.4B
69	SOIL	p pm		Sol	I	11.91	3,95	68.81	4,46	<u>X</u> 4	6,1	100	7,83	41	10.54	239	24,34	< 100	63,45
70	SOIL	ppm		Soll		16,87	4,23	67,89	4.67	39	7.93	< LOD	8,85	10.5000-194	19.3	924	29,1	1<100	65,07
121	SOIL	ppm.		Soli	× LOAD		6.96	282.8	9,82	53	\$0.05	a standar 17	8.24	34	13.A	659	49.60	218	102.38
125	SOIL	ppm:		Pila:	< LOO		7.06	137.75	7.28	26	8.	< 100	9.8:	14100	20.8	1278	68.26	i < 100	159.24
79	SOIL	ppm	·	Sail	1-100		7,10	173,18	7.07	109	19,1	4<100	16.28	57	18.4	1811	73,81	1<100	176,39
74	<u> \$016</u>	ppink		504	1<100		9,65	89.19	8.15	180	23,34	<100	27,01	1<100	134.	10:4/	591.4		256.00
10	1 201L	<u>Ppm</u> k		591	l.	9.3	4,89	99.59	6.47	109	33.7	100	16.03	picronesine?	18.4	5 <u>- 1</u> 354	64,3	i < LOO	148.76
(10)		bbuy	ļ	Pilit	1 CLOB		7,33	65.54	5.43	*16	100	< 00	335	b]	1 <u>317</u> ,8	1 1.001	55,K		3312.47
11	2016 8/06	<u>PPIR</u>	1	0.900 0.8	1 CUU		1.2	1.2.09	3.63	1 44 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3,60		11.0	91 	19/8	1	30.1		
74	1 3000 1 100	L H KIRI		ACBANY FREIL	- britt	NH-11010-12785	7 57	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.00	1 35	11.03		10.21		48.	0.051010.00	20.0	LA LOID	406.45
20	Scite.	P P P P P P P P P P P P P P P P P P P	<u> </u>	Gall	~ 100D		7.64	114031	1 7.94	20- 20- 24-	3694 1614	ris Data Le LOM	12.4		1 1760 1 1811	7	200 AT 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	384.34
£1	SOIL	1000		See .	- Christ	16.14	1.03	4.4.0.4.0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.71	32			140 2 T		101A 19.1	5 103	70 Å		43.65
82	5038	nom	Abouted Test	NA		12.34	4 66	45.14	6	101	126		14 2	235000000000000000000000000000000000000	1 16.4	1 20685	728.4	Settin	57.04
83	501	1 DEM		Sall		14 58	450	40.11	1 10	111	12.9	(Leton	1111	R 2 I M R	516	A AANG ISAN	57% £	1 cinn	65 86
84	50%	neen	† · · · · · · · · · · · · · · · · · · ·	Sell	2100		83	30.81	8.31	1968	515	Leion	1 157.7	3 5	1 38.5	A SHORE	147.5	C AN ALL ALL ALL ALL ALL ALL ALL ALL ALL	771.00
RS	Silver	in the second	<u> </u>	Soll.	-100		* ***	1.43.14		1 77	110		14.1		31 31 8	0 2691	111.4	5-10D	212.43
85	Shifter	F F	1	NA NA	1.386.6	****	i and		<u>مرد م</u>	f	1	1222		7 [#]		A JANGBERS AND A DATE		a cables	
117	SOIL	Dom		Sall	S LDD		34	195 94	9.0	57	12 3	14100	13.7	2 4	5 39.9	4	111.4	6<100	247.8
88	5011.	i com		Sall		17.57	4.6	¥ 72.R	5.2	16	15.1	1 - 100	12.1	7 8 8 9 20	12.6	6 3171	58.	3 1 1 1 1 1 1 1 1 1 1 1 1 1	92.29
89	SON.	pen		l Soll	<100		80	82.1	6.4	4	10.6	91<100	12.3	4 10	20.7	9 821	58.2	4 25	5 130.32
90	5011.	pom	55-06	Soli		11.33	4.8	69.4	5.3	6 48E	35	51<100	30.	5 71	40.	3 941	52.D	5	111.83
91	SOIL	gipum		Suil	< 100	and the second	8.4	6 83.31	5.8	6 33	10.5	4 CLOD	12.4	8 5	2 19	9	6 3 .8	3 < 100	239.28
97	SOIL	5 BRM		501	<100	and the street of	H.A	2 94,4	2.3	1	8.2	11<100	9.9	8 3	0 17.3	2 0 758	57,0	3 < 100	233.47

A REPORT OF A REPORT OF A REPORT OF A REPORT OF A REPORT OF A REPORT OF A REPORT OF A REPORT OF A REPORT OF A R

ALL ACTIVES A REPORT OF SMALL AND PRODUCTION

Sile inspection Report C & H Tamarack Operations XRF Results, 11/5-6/12

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

					Iron		Manga	nese	Chrom	ШП:	Vanad	Ìsan	Barlum	
26.965 NJ			Collocated			aka see		n di Bercik	Contraction of	1.1.2.1.5X	18 ¹⁰ Acts	A	1.2.5.4.5.5.5	G irler
•	Sample Type	Units	Surficial Soll	Source Area	liton .	Fe fucar 😒	Mangalase	Ma Error	Chromium	Cr Empr	Vanadium	V Linor	Barierro	Ballinor
			Sampla No.											and the second
44	soil	ppm		Soll	35541	566.99	513	113,55	6ð	25.57	< 1,00	82.08	<100	1045.19
45	soil	ppm		Pila	837191	2851.21	12751	\$66,95	1741	64.05	<100	59.43	<100	2574,75
4ß	\$01L	ppm		انمز	21188	394,33	310	62,52	<u>58</u>	26.6	< 100	73.04	< LOD	845.22
47	SOIL	ррт		Ścił	38329	<u>586.11</u>	454	109.07	47	25.72	< 100	35.98	i < 100	1000.1
48	SOIL	ppm		Sol	19151	370.05	255	76.73	75	24,35	< LOD	63.99	<000	1527.24
49	SOIL	ppin		Soil	585186	3680.87	61 7	982,15	<100	34,76	<100	50.54	<100	3454,95
50	501	ppm		Waste	40425	604.B	341	107.03	217	31.39	< LC0	75.32	<100	1064.76
51	SOIL	ppm	:	Waste	7650	245.08	153	68.21	100	72.2	< 100	48.66	< LOD	1179.65
52	SOIL	ppm	:	Soil	12882	319.76	270	77.58	76	21.25	64	39.17	<00	690.29
53	SOIL	ppm		Pin	206104	1752,89	261	234,29	< (00	36.24	<lop< td=""><td>64.3</td><td><100</td><td>1297.81</td></lop<>	64.3	<100	1297.81
54	501L	ppm.		Fil a	62150	817,71		163,15	43	77.63	150	65.33	<100	589,95
55	SOIL	ppm		sed	78818	973.02	8 69	197.91	1004	54.DC	144	58.12	< LÓD	2172.2
56	SÓIL	ppm	\$\$-0\$	Sol	90398	970. 7 2	305	175.42	162	32.72	< LOD	81.79	<100	1048.01
\$7	soil	ppm		501	27076	458,63	111	73.11	77	<u>}6,06</u>	< LOD	74.38	< 100	562.29
58	SOIL	ppm.		Seil	29111	439,06	424	98.52	111	Z5.84	< LOD	65.66	<100	715.79
59	SOIL	ppm		Soil	5977	186.51	329	60,93	125	75.57	<100	54.9	<100	655.89
60	SOIL	ppm		ડન્ટ્રી	9065	124,43	76	41.49	34	22.26	< LOD	47.24	<100	448,44
61	SOÍL	ppm		Sovit	3986	147.8	< 100	60.44	Ŝ2	27.91	<lod< td=""><td>49.67</td><td><100</td><td>502.21</td></lod<>	49.67	<100	502.21
62	SOIL	ppm		Pža	aeda	191,93	143	55,55	77	22.95	< LOD	57.35	< 100	\$37.85
63	SDIL	ppm		5cál	6036	182.73	55	47,9	78	24.12	< 100	55,98	< 100	695.99
54	SCIL	ppm		Soil	16978	329.55	745	101.35	45	24.85	< LOD	56.Z2	<100	656.67
65	soil	ppm		Soil	66730	806,45		148.6	120	31.21	125	64.6	<100	1020.61
66	50IL	ppm.		Seal	29162	476,27	520	101,56	49	25.05	104	51,89	<100	777.51
67	SDIL	ppm		Soft	32925	537.39	554	111.27	64	25.77	< 100	74.51	< LOD	1353.52
68	SDIL	ppm		Soil	5447	167.01	171	5177		23.69	< 100	53.53	<100	597.22
69	SOL	ppm		561	3895	139.02	×(0D	56,69	58	24.58	< LO₿	53,44	<100	533.74
70	sait	ppm		Scel	3604	139.86	235	57,26	60	24.01	< LOB	48.2	<100	482.49
71	SOIL	ppm		5:51	17386	334,24	195	66,55	117	27.91	94	52.87	~LOD	638.64
72	SOIL	ppm		Piñe	19013	363.09		67.59	.59	24.84	100	51.05	l≺tāp	786.64
73	SOIL	ppm		Scil	22105	399,91	261	78,89	75	25.96	<lod< td=""><td>75.79</td><td><u>≺LOD</u></td><td>1091.05</td></lod<>	75.79	<u>≺LOD</u>	1091.05
74	SDIL	ppns		500	25280	567.32	303	124.54	97	21.93	<100	59,73	<100	1768.33
75	501	ppne		301	14823	327,98	290	73,19	53	21.88	62	38,99	<100	811.54
/2	<u>2011</u>	ppra		Pitte	11129	288,13	198	09,49		22,23	<100	58,38	< 100	1243.27
33 770	3UIL 200	ppm		SCAL Vašlana Bažaž	15168	450 33		20,08	16. 	14.15	× LUB	10.23	× 100	800.24
119 213	2016 2016	ppmk		THERE WARDEN	105%kk	224,53 224 CA	ચાહ્યાડા નુટાસ	 	/ é p*1	Erala Sector	~ 620	47.13	15 800 2300	1 (1999) Ale
.()# 813	aone Sinn	PR44		्रम्भ रंत्य्व	954/ 16pnc	284,29 283 38	130 712	92,43 91 16	54 30	96	- LOD	59.27	2100	657 53
5.7 5.7	5.016	nnme	1	553	8005C2 86C28	232.35 86 8	218 218	589 2013	00. 58.	23.87	- 100	1 00.07 44 1		217 77
27	SCIE	nom	Abortard Text	Na.	3953	341 66	5.40 (14.0	22.06	Z100	36.75	2000	33 32		T T Comt F
53	sníi	nnos	,	t na	ncer	179 18	STREET.	87 68	100	75 15	~10B	51 61	- 100	\$45 35
53.	<nit< td=""><td>пла</td><td></td><td></td><td>67657</td><td>785.18</td><td>200</td><td>114 194</td><td>5</td><td>70 00</td><td><100</td><td>69.77</td><td>2100</td><td>715.78</td></nit<>	пла			67657	785.18	200	114 194	5	70 00	<100	69.77	2100	715.78
15	súil	nna		5-1	a coord a reac	387 38	273	G1 66	1.01	75 072	12/2	15,07	-10D	and not
<u></u>	Shutter Cal	- Phree		 Na	UL 67-4				201			72.01		
27	SOIL	777 00/m			93993	552.05	Territoria de la competencia de la comp	100.64	tos	26.61	<10N	75.11	<100	1107.04
88	<u>sou</u>	in the second		Scril	74787	306.86	зкя́	}≹I∺	2.44 73	24 34	stop	68.19	< 100	853.17
89	SOIL	DOM		Sof	21646	429,42	367	53.63	65	23.08	81	44,62	100	1274.02
90	SOIL	ppre	\$\$-06	Seil .	20197	170.0	¢52	\$1.24	60	24,94	< LOD	65,01	~10D	1268.79
91	SOIL	ppre		Soil	29660	553.9	±57	110.2	62	22.96	<10D	67.35	<100	980.47
92	šáil	ppm		558	28995	518.43	Soa	111.77	82	24.15	114	48,44	<100	1177.01

Site Inspection Report C & H Tamarock Operations XRF Results, 11/5-6/12

XRF SCREENING DESCRIPTIONS AND RESULTS

				Audres	M	ioljoden	មក	Strong	tium	Lopel		Arienic	<u>. </u>	Zinc	: <u> </u>	Сорра	r	Cobai	N
	DECKIPATION	Magai	Collocated	(Self-Red)ed	NUSSA N		KARAP I	NACIMAN ST		TRADA DE L	785 JUST	100000000	GARSNE	SIRGER LINE		1000000000	NAMES OF		<u> </u>
	Semple Type	Unite	Surficul Sall	Sperce Ares	Mohitan	unin i	Wa Lroor	Strandum .	SHERIAR	Leed	Pb Drige	Artenic 🖉	As Erner	Dec.	te frer ?	Coopen	La Breger	Cobilt .	Co Sirer
	0596220162		Simple Ko.	0.01511151515			2006101		SHERING STREET			Salta (Kita)					155 20118	12/11/2010/00	
93	5016	ppm		Śpł	<lod< td=""><td></td><td>6.95</td><td>50.13</td><td>4,65</td><td>27</td><td>8.75</td><td>< LOD</td><td>9.52</td><td>1020 384</td><td>16,95</td><td>1 ZEB</td><td>30,74</td><td>< LOD</td><td>193.33</td></lod<>		6.95	50.13	4,65	27	8.75	< LOD	9.52	1020 384	16,95	1 ZEB	30,74	< LOD	193.33
94	<u>şoil</u>	ppm		Soll	1<100		7.07	57.82	4.98	36	\$	< KOD	10,47	<u> 10 10 10 10 10 10 10 10 10 10 10 10 10 </u>	16.61	16205-01-021	34.27	<100	102.09
95	SOIL	ppm	55-09	Soll	< 000		7.2	68,73	5,92	111	13.58	<u><000</u>	16.17	443	32,98	1410	63.83	×100	10
90 07	SUL		85.97	<u>5511</u>		10.83	5.73	185.3	9.61	48	11.62	< KOB		67	20,5		51.04	19411941994 256	162,87
08	501L	нони на	33-16		Kinh	10.61	1.87	1.1,35	1.33	285	21/03	×100	25/63	67 1	19.52	01177	66.22	< 100	182.05
20 99	301L \$00	none		5nit	<inh< td=""><td>-10045</td><td></td><td>24,98 78 85</td><td>9.2 5 AT</td><td>115</td><td>16.34</td><td>K 200</td><td>125,521 193,521</td><td>1241 (1241) (1241)</td><td>18.42</td><td>24// 24//</td><td>46.16 66.0</td><td>100 000 000 000 000 000 000 000 000 000</td><td>85.21 137 0</td></inh<>	-10045		24,98 78 85	9.2 5 AT	115	16.34	K 200	125,521 193,521	1241 (1241) (1241)	18.42	24// 24//	46.16 66.0	100 000 000 000 000 000 000 000 000 000	85.21 137 0
100	SUIL	DDM		Soli	14100	ł	7.14	82,54	5,70	130	14.90		17.75	105	20 61	1671			188.48
101	\$015	in the second	·	Pila	<100		5,89	43.64	4.3	106	12.92	SLOD	14.87	11.5.1.5.1.1.1.1	18.32	100	27:01	< 100	100.91
102	ŠÖIL.	ppm	1	Šall	1	9.76	4.23	35.39	3.64	42	8.27	<100	9.46	53	14.91	1000 (1 174 0)	62,94	100	84,75
103	50IL	ррят		Soll	stob		B.34	113,6	7,53	144	17,27	<400	20	137	25.44	19/01/21 4725	81.65	<100	230,27
104	\$OIL	स्थित ।	10-01	\$all	<100		9.Zĕ	120.24	8.92	2297	72.38	<100	81.7B	018 6 57 7 9	145.97	9798	232.03	< LOO	343.39
105	SCAL.	PROM		5üll	<100		11.21	112,93	10.07	556	46.52	Maria Se	96.56	<lod< td=""><td>117<i>0</i>9</td><td>170,000,38711</td><td>486.S1</td><td>ezhanelen ASA</td><td>435.04</td></lod<>	117 <i>0</i> 9	170,000,38711	486.S1	ezhanelen ASA	435.04
106	SCIL.	PERI		5pil	<100		9.08	102.21	1.09	298	26.81	<100	30.29	87	27.08	1259	78.7	< 100	422.95
107	scu	PPm		\$all	<100		6,86	47.14	4.18	Ľ B	10.90	¢LÓĎ	12.22	127	19,02	528	40.45	< LOØ	118.58
108	SCHL	Form		Sall	*100		7.35	88.67	6,07	153	15,94	<100	18,18	51	16,91	1364	64,4	<100	148.01
109	<u><u><u></u></u></u>	pen		<u>Sall</u>	1	11.07	5,17	123,45	7.19	107	14.22	<100	16.52	51	19,14	Sec. 2164	62.81	l≮Ľ00	197.62
110	501	B but		Suil	1*100		7.44	60.56	5.45	65	11.78	<100	13.00	1943 - Al / 74	19.72	1084	61.71	12122-01.922	168.07
3474	308L	1 ppm		Warte	1<100		16,19	63,06	12.47	1036 1	96.78	2.300x(4)(21)35	69.65	1104	354,6	1994532	2319.56	<u> ≺100</u>	683.8
1.1.2 4.4%	SAXL FXL	ppim		30(i * "		9,77	5.42	<u>1 99.37</u>	5.83	305	23.82	10002400239	18.99	314 KN 8 X 102	22.83	1824 Content	51.13		171.87
117 114	1 34.18L	1 ppm		5911 ***	100	7.7	4.77	1 63.67	5.15	250	19,47		1 22.6	90	18.38	1045	55.87		159.09
115	50/IL 10/111			suu Kast	21080		7,67	1 21.13	9.60	20	44.94	1 LU31	12.75		10,22	24(V	11,00 ** **	100000000285	101-50
116	SOIL	- spm		i sinii		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.90	152.07	1.34	92 577	18.67	1~ L93:	20 00	19 100000000000000000000000000000000000	10,50 10,50	10	07.73 \$8 \$3	12100	102.03
117	501	0000		L Soll	1<100		cn g	91.75	7 87	TIG	41.45	(2.000) (2.100)	47.66	140 100	36.44 73.03	C	427 11	10000000000000000000000000000000000000	371 96
118	SOIL	1 DDm	55-10	508	KLCO		3,9%	115.17	5.30	TORE DATE	105.58	A COM	81.6%	4947	201321 1997-1	5703	165.35	1200 1987	364 60
119	SOIL	nna l	<u> </u>	Soil	1		891	91.54	7.39	1799	25.16	716	66.72	1764	77.41	7610	172.14		293.24
120	SOIL	ppm	1	1 Sol	SLOD	*****	2.57	88.49	6.31	268	21.28	< LOD	24.51	100	17,28	2462	BE 40	1 <u>~ 1000</u>	1944
121	SOIL	ppm	l	501		\$.77	4,95	74.03	5.69	205	18.29	elop	20.98	118	22,15	1369	65.24	<lod< td=""><td>176.82</td></lod<>	176.82
122	SOIL	ppm	55-11	Sel	<lod< td=""><td></td><td>8.25</td><td>288.32</td><td>11.56</td><td>180</td><td>25.45</td><td><lod< td=""><td>31.21</td><td>385</td><td>28,52</td><td>1955</td><td>84.47</td><td>1<100</td><td>279.95</td></lod<></td></lod<>		8.25	288.32	11.56	180	25.45	<lod< td=""><td>31.21</td><td>385</td><td>28,52</td><td>1955</td><td>84.47</td><td>1<100</td><td>279.95</td></lod<>	31.21	385	28,52	1955	84.47	1<100	279.95
123	50iL	ppm	55-13	501	<lod< td=""><td></td><td>8</td><td>100.44</td><td>7,03</td><td>1505</td><td>50.9</td><td>LINE STATE AND</td><td>30.15</td><td>\$35</td><td>49,45</td><td>2285</td><td>89.11</td><td>i e top</td><td>212.54</td></lod<>		8	100.44	7,03	1505	50.9	LINE STATE AND	30.1 5	\$35	49,45	2285	89.11	i e top	212.54
124	SCIL	ppm,	1	Soll		9.17	\$ 22	90.25	6.36	22	8,38	I < LOD	10.18	25	13,79		3-5:11	1 < 100	135.12
125	SOIL	n n n		501	e LOD		7.97	218.35	9,63	470	28.64	Sector Conde	22.52	205	26,93	1101	67.75	14100	214.92
126	SOIL	ppm		<u>Sol</u>		17.01	3.91	56.88	3,95	46	7.74	< LOD	8.95	64	11.53	209	24.54	14100	45.57
122	<u>Sóil</u>	ppm		Sol		12.6	3.82	20.04	2,71	1.8	5,83	<100	6.03	13	9	155	19.8	t ≤ NOD	38.65
128	<u>soil</u>	ppm		501	<lod< td=""><td></td><td>6,5</td><td>55,28</td><td>N. NE</td><td>48</td><td>9.07</td><td>KOD</td><td>10,81</td><td>56</td><td>13.9</td><td>619</td><td>40,4</td><td>14100</td><td>94.7</td></lod<>		6,5	55,28	N. NE	48	9.07	KOD	10,81	56	13.9	619	40,4	14100	94.7
129	SOIL	1 ppm	.	<u> 501</u>	1<100		6.01	82,47	1 .	18	6.24	I 4 LOD	6.79	40	10.78	······································	21.3	1<10b	74.76
130	SOIL	1 ppms		1 <u>500</u>	<iod< td=""><td></td><td>8.01</td><td>ų<u>65.1</u>2</td><td><u>5,54</u></td><td>1<u>45</u></td><td>10.9</td><td>s 100</td><td>13.42</td><td>41</td><td>18.52</td><td>644</td><td>61.1</td><td><u>)) () () () () () () () () ()</u></td><td>175.07</td></iod<>		8.01	ų <u>65.1</u> 2	<u>5,54</u>	1 <u>45</u>	10.9	s 100	13.42	41	18.52	644	61.1	<u>)) () () () () () () () () ()</u>	175.07
131	5011	P PPm		<u>5011</u>	14100		854	102.66	7,5)	40	11.01	14100	177	50	21.0%	1492	78.5	zi< 100	270.10
120	1 300E	ppm	<u> </u>	50/	<u> < 100</u>		<u> 7.)</u>	<u>106,4</u>	<u>6.91</u>	<u>vg 165</u>	17.4	1<100	20.16	10000000145	12.59	ST 102 SS 1034	48.8		<u>al 190/04</u>
134	anii 1 snii		÷#*>	1 900 1 200	<u> </u>	9,15 10 m	1 thi	<u>1 29</u>	g 9,8) 1	1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.81		8.52	10 180	13.97	2101A11201358	30). 2 4 2		4.34
108	1016	1 HPM		ा ११।।इ हिन्दा		19275 1777	4.0	ن الله الله الله الله الله الله الله الل	<u>4,6</u>	ri 443 ***	1	14100	<u>1 .89,36</u>	1	¥1.84	828 (B28	28,3	u15:000	70.47
122	1 301L 3010	PHIN PHIN		30 	100	<u>1</u> ¥,\$5	1 3.3	1 # ##	<u></u>	15	2.1	NS100	<u>0.04</u>	1 18	13.26	1705	57.5	zję tUU Tetor	94.28
137	4006 3008	Here -	15.01		100		1 2.2	75 00.01 5 X0.01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ci <u>B</u> B (54	<u>43.61</u>	iletinn	<u>1 197,07</u> 71 50	1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120	1368	7.7.5 38 P	175 UJU 175 UJU 176	203.64
138	5r%	Brows Altosi		- Snil	100	*******	1 30	្មី ។នុង្គេ [ពុង ៩។	1	1 <u>11</u> 11	1 10. ar	14100	17 50	1 ED	10 Ki 1	20112 C 10KF	12 K	5 6100	1040
139	501	ppm	1	Sail	< 100		1 63	7 50.04	1 4.2	1 26	7.22	11<100	8,03		15.82	257	17.7	21<100	109.21
possis games	a Tobula and a surger spectrum	11 2 . J. V								- A			A	and the second se	6	- A State of the second second second		This state of the second second	

erest during and and

Site inspection Report C & H Tamarack Operations XRF Results, 11/5-6/12

•

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

					fro.	Γk	Manga	rese	Chromi	um:	Vала	disen	Bariu	m
i an e			Collocated					1000	2010		201212			
H . 201	Sample Type	Units	Sofficial Soll	Source Area	iran	Fe Linor -	Mangameze	Ma Error	Clareenkum	Cr Error	Vanadium	V Error	Barritom	Ba Error
	0.20.222-00	25.24	Sample No.											
93	SOIL	pam		Soil	7449	226.72	217	66.01	\$3	22.48	< LCO	49.63	< LOD	870.93
94	SOIL	<u>ppms</u>		lini	7214	225.53	146	60.96	7.8	21.66	< LOØ	52.73		927.39
55	SOIL	ррпъ	<u>\$5-09</u>	Sod	19544	316.27	460	87,49	48	24.34	< LCAD	74.72	E < LOD	735.75
96	SOIL	ppm		Seci	32234	547.82	405	205,1	61	34.33	<00	67,44	I < 100	1088.78
97	SOIL	ppm	55-12	Seil	18963	402,94	225	81.78	<u>- 66</u>	22.03	<u>6</u>	9 40.16	1851	1236.39
58	1 <u>501L</u>	ppm		Soti	7601	200,93	181	54.86	75	25.46		56.5	< LOD	567.15
59	SUIL	ppm		504	14085	299.31	197	72.71	85	25.49		5 44.3		635,15
200	1 <u>2446</u> 8746	ppm		301 54	4022B	3/1,4/ 55/33	237	/9.13		24,82	1	N 50.00		083.22
14021	56314	ppm.		Pite	7728	224.37	. 305	73.63	66	22.5	×100	<u>62.55</u>		694.9
302	501	nnqq 1	s	50%	5194	100.21 100.21	151	54-85 486-46	/3	19,39	1000 Laion	<u> </u>		243,31
164	soit		CC.0d	Soft	00044 01400			300,20 300,20	99 	***#** *** D3	< 1.000 	124		00/020
445	801L	HH113	12/20	 	21433	1465 SF	1436	113.13	15	23.58 78 44	15.LL381 + 1			340,63
200 466	20015 20015	E bhus		2591 6-3	130033(1902.43	1490	233.42	1122	33.43	11	0 20.24		2523.7
100				208 7.x1	82054	752.11	472	213.21 C7 87	5.000	38.35	KU29	0 38.14	× LOU	010 AD
102	SEUE			المح المع	15605	200.JO 523 50	174	60 33	01 01	43.44 74.54	<u>/</u> 	u 30.34 48.42		8-16/43
100	SOIL	ninere		tai	26760	-923,27 A66 09	107 343	63%29 80 E	970 6.5	24,24 38 kr	< LOG	CP 74		010101
110	SOIL	nom		Sad	74637	560 XR	 \$713	106 53		79 69	5.000			\$146 36
111	SOIL	nom		Minite	6925d	1500.33		ara a	127		-lon	82.22	elon.	1305 27
112	SOIL	656%		Soil	16005	1900-190 387 86		198.5	75	33.61	~ 100 ~ 1 <i>0</i> 5	67.53		843 86
177	SOU	BR/M	<u></u>	Seil	17010	352 44	175	8355	57	73.63	×100	65 10	- LCD	732 63
114	son	ÓD M		Soil	2228A	478.94	780	118.60		27.68	~ 100 W	1 4763	CION	3749-07
115	SOIL	Dams		Soil	22689	407.28	231	77.05	72	24.42	<u>៩</u> រពស	69 19		760.63
126	SOIL	ppm		Soil	8080	210.9	122	55.99	67	25.02	<ld0< td=""><td>65.33</td><td><100</td><td>500.19</td></ld0<>	65.33	<100	500.19
ii 7	SOIL	aam.		Šoil	48156	737.3	642	146.52	gg	27.88	18	1 56.27	<lco< td=""><td>899.13</td></lco<>	899.13
138	SOIL	pam	SS-10	5oil	116510	1211.72	1500	220.11	90	31.65	11	76.87	2153	1269.6
119	SOIL	mqq		Soil	45063	657.7S	635	130.33	109	29.79	e100	99.97	1669	1042.78
120	ŚDIŁ	ppm		Soil	24242	432.52	501	89.22	51	25.63	<100	71.64	< LOD	852.34
171	SOIL	pam		Soil	21043	392.66	297	\$1,85	59	24.52	10	1 45.21	<lod< td=""><td>1068.14</td></lod<>	1068.14
122	SOIL	ppm.	55-11	Sail	46549	615.62	484	112.65	44	26.45	<100	78.15	< LOD	805.03
129	SOIL	pam	55-13	Seil	32298	519.82	311	94,74	87	27.26	≪100	\$3.66	≺LOb	1125,22
124	SOIL	ppm		Soil	11961	305.19	161	68,49	105	23.7	<100	55.0	<lod< td=""><td>1265.76</td></lod<>	1265.76
125	SOIL	ppm		Soul	27882	477.85	. 335	93.18	55	23.51	< 100	67.44	<lc0< td=""><td>1310.14</td></lc0<>	1310.14
125	Sail	pam		Soil	1882	95.23	75	39.56	4 9	23.6	<100	46.04	<lc0< td=""><td>351.29</td></lc0<>	351.29
127	ŚOIL	ppm		Sail	1239	78.1	∢LO D	48,18	<100	35,39	<100	41.81	1×100	425.18
128	SQIL	ppm.		Soil	7441	710.03	117	53,14	64	23.98	10	1 42.62	< LOD	267.71
129	SOIL	ppm		Soll	5203	185. E 5	<u>iiż</u>	48.38	95	25.1ŝ	<100	59.8	< LD00	665.04
130	soil	ppm		Soll	36669	569.41	369	102.1	34	25.16	<100	63.68	< 1000	1480,71
131	SOIL	ppm.		561	38247	605.15	392	109.48	74	24.8	¢LŐO	70.96	< 100	844.82
192	SOIL	ppm		Soil	30629	496.36	340	92.92	58	24.08	< LOØ	66.75	< LOO	889.06
193	sail	ppm		Saíl	8090	267.68	105	49.39	58	24,51	<lod< td=""><td>65,18</td><td>< 1040</td><td>508,49</td></lod<>	65,18	< 1040	508,49
1,34	5 01L	ppm.	55-14	Pila	5616	170.61	157	52.01	105	27.05	×100	79.52	< LO0	585.95
135	5011,	ppm		Seil	1435	85	152	47,16	34	23.16	s LÕÕ	44.43	< LÓØ	443.29
136	SOIL	ppm		Šoíl	\$0934	642.65	2063	155.45	57	25.02	<100	73.82	< 100	1132.18
137	SOIL	ppm	55-01	Soll	8024	Z15.15	197	58.96	58	1 9,6	≮10 0	59,43	<100	662.22
138	SOIL	ppm		Seil	21066	175.25	339	80.92	46	25.97	¢LOÓ	77.4	<100	835.59
139	SOIL	ppm		Soli	10019	238.77	226	61,67	45	24.04	<100	61,47	1<100	601,96

Sile inspection Report C & H Tamarack Operations XRF Results, 11/5-5/12

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

AND THE MANY MARKAGE OF THE STREET AND A DRIVE TO A DRIVE AND A DR

				Ì		um	. Skrantilæn	. <u> </u>	Lesd	iñ.	rsenic	Direc		Copper	Cabel	lt
	Sample Trie	Minita	Collectived Surficial Soli Solito is No.	Science Area	Malyatiliniin .	Mia Linar	Stickelum St Ei	rat	-tala	s Finer Amenic	Au Eiror	Znc s	i Emari - Conser	ClerEcropi	C) and the	CO ETTO/
140	SINL	PP#1		Soll	7.97	4.51	94.81	5.83	Ĵù	10.74 < 100	12.54	63	14.15	367 33	4 -100	101,44
141	5034L	ppm		Soll	9,2	3,96	47,75	3.26	35	7.45 × LOO	8.15	1. 172	17.64	255 25.0	00)×(00	62.06
RDCC NDCC GSIPC Defaul Conclu	t beckground silon of risk b	(≖crite ased o	rian if >G); n screening i	212 6;	2,600 9,600 64 NA <c< td=""><td></td><td>330,000 1,000,000 420 NA <c< td=""><td></td><td>400 900 200 21 8, b</td><td>a, b</td><td>7.6 37 4.6 5.8</td><td>170,009 630,009 (47 c</td><td>29),(73,(8, 6</td><td>200 29 32)</td><td>2,600 8,000 2,0 1,2,0 8,8 1,5 8,6</td><td></td></c<></td></c<>		330,000 1,000,000 420 NA <c< td=""><td></td><td>400 900 200 21 8, b</td><td>a, b</td><td>7.6 37 4.6 5.8</td><td>170,009 630,009 (47 c</td><td>29),(73,(8, 6</td><td>200 29 32)</td><td>2,600 8,000 2,0 1,2,0 8,8 1,5 8,6</td><td></td></c<>		400 900 200 21 8, b	a, b	7.6 37 4.6 5.8	170,009 630,009 (47 c	29),(73,(8, 6	200 29 32)	2,600 8,000 2,0 1,2,0 8,8 1,5 8,6	
Notas: All rea 11/6/1 RDCC NDCC GSIPC Protec NA = r >C = c RDCC	dings were of Exceeds ra contact offe Exceeds G Exceeds C Exceeds C Exc	stained sidenti tis SIPC I Direc I Direc I Direc I Direc Su I Direc Su I Direc I DI I DI I DI I DI I DI I DI I DI I D	i by XRF on 1 al or nonrasi I Contact Grit rect Contact Gace Water I opticable criteria show	115113 or danilai diracti deria Crileria Meriace Meriace Marte (e.g.,												
≺C = I RDCC Boma 2) If n	ess liven clea) or GSIPC) element data o criteria are :	nup cri : ere hl avaìlab	teria shown h ddan: 1) if n le	hara (a.g., al delected, or												
Cone) a b c	usions of risk May not be nonroxident Potential ris Appears to	sale fo ial uso k lo su be sale	r alther resid due to direct rface water (; from direct	enilial or i conliact riška Torch Laka) cortiact riška												

d May be safe from direct contect risks if use is limited to nonresidential

Site Inspection Report C & H Tamarack Operations XRF Results, 11/5-6/12

TABLE 5-1

XRF SCREENING DESCRIPTIONS AND RESULTS

				ken		Manganese		ല്നാനിന്ന		Vanadium		Badum		
	Sample Type	Units	Collocated Surficial Spik Sample No.	Senires Area	1 26	Fa Emprij	elangenese.	Min Emeir	Chromium	Cu Ernar	Venaclearn	y Error	Barium	Ba Cripe
140	<u>ioir</u>	हहना		Soll	8008	233,43	169	60.22	65	22.8	< LOD	55	stoo	618.79
141	5011	ppm		Soll	3466	132,51	:89	43.EA	82	24.29	<lod< td=""><td>57.3</td><td><100</td><td>551.13</td></lod<>	57.3	<100	551.13
RDCC: NDCC:					160,000 560,000		25,000 90,000	no colori cocla - ar - ak	2,500 9,200		750 5,500		37,000	
GSIPC: Default background (= criterion # >C);				NA 12,000		21 201021440		NA 18		190 NA		140 75		
Conch	onclusion of risk based on screening levels:			evels:	d		b		<c< td=""><td></td><td><c< td=""><td></td><td>Ь</td><td></td></c<></td></c<>		<c< td=""><td></td><td>Ь</td><td></td></c<>		Ь	

Notes;

All readings were obtained by XRF on 11/5/13 or 11/5/13

Exceeds residentiel or nonresidential direct contact criteria

Exceeds GSIPC

RDCC = Residential Direct Contect Criteria

NDCC = Nonresidential Direct Contact Criteria

GSIPC = Groundwater Surface Water Infectace Protection: Criteria

NA = not available or not applicable

>C = greater than cleanup criteria shown here (e.g., RDCC or GSIPC)

<C = less than cleanup criteria shown here (e.g., RDCC or GSIPC)

Some element data are hidden: 1) if not detected, or 2) if no criteria are available

Conclusions of risk:

- May not be safe for either residential or nonresidential use due to direct contact risks
- b Potential risk to surface water (Torch Lake)
- Appears to be selfe from direct contect risks
- May be safe from direct contact risks it use is limited to nonresidentia;

SURFICIAL SOIL AND WASTE SAMPLE DESCRIPTIONS

SAMPLE	LOCATION CO	ORDINATES	DEPTH		SAMPLE INTERVALS
NUMBER	Easting	Northing	(in.)	DESCRIPTION	AND COMMENTS
SS-01	314620.03	737735.75	0-2	Moist, dark brown, sandy topsoil.	Grab sample. Volatile organic analysis
			2-8	Moist, reddish brown, silty, fine to medium sand with some gravel and trace roots.	(VOA) portion of sample collected at 4 in. Remainder of sample collected at 0-8 in.
SS-02	314438.55	737327.29	0-9	Dry, dark brown, silty, fine to medium sand with some ash, wood, slag and roots.	Grab sample. VOA portion of sample collected at 9 in. Remainder of sample collected at 0-9 in. Duplicate sample collected.
SS-03	314532.24	737346.93	0-6	Very moist, black, organic silt and sand with lots of roots.	Grab sample. VOA portion of sample collected at 4 in. Remainder of sample collected at 0-6 in. Matrix Spike/Matrix Spike Duplicate sample collected.
SS-04	314670.27	737495.90	0-½ ½ -1½	Moist, dark reddish brown, silty sand and gravel, crushed mine rock. Moist, greenish gray sludge material with copper wire at surface.	Grab sample. VOA portion of sample collected at 1 in. Remainder of sample collected at 0-1½ in.

SURFICIAL SOIL AND WASTE SAMPLE DESCRIPTIONS

SAMPLE	SAMPLE LOCATION COORDINATES		DEPTH		SAMPLE INTERVALS
NUMBER	Easting	Northing	(in.)	DESCRIPTION	AND COMMENTS
SS-05	314587.33	737508.51	0-5	Very moist, dark brown, silty sand with stamp sand, gravel, crushed mine rock and slag.	Grab sample. VOA portion of sample collected at 2 in. Remainder of sample collected at 0-5 in.
SS-06	314720.87	737579.05	0-3 3-6	Moist, dark brown, silty, fine sand with lots of roots. Moist, reddish brown, silty, fine sand.	Grab sample. VOA portion of sample collected at 3 in. Remainder of sample collected at 0-6 in.
SS-07	314643.00	737571.69	0-8	Moist, dark brown, silty, fine to medium sand with trace gravel and some bricks and roots.	Grab sample. VOA portion of sample collected at 5 in. Remainder of sample collected at 0-8 in.
SS-08	314704.16	737693.90	0-1	Moist, brown, silty, fine to coarse sand with some clay, crushed rock, debris, glass, metal etc. Concrete floor at 1 in.	Grab sample. VOA portion of sample collected at ½ in. Remainder of sample collected at 0-1 in.
SS-09	314752.10	737669.68	0- ½ ½-2	Moist, dark brown silt. Moist, brown, fine sand.	Grab sample. VOA portion of sample collected at 1 in. Remainder of sample collected at 0-2 in.

1 10000 000 2 224 A L 4

MADEL AS ALL

SURFICIAL SOIL AND WASTE SAMPLE DESCRIPTIONS

SAMPLE	LOCATION CO	ORDINATES	DEPTH		SAMPLE INTERVALS
NUMBER	Easting	Northing	(in.)	DESCRIPTION	AND COMMENTS
SS-10	314689.63	737711.34	0-6	Moist, dark brown, silty, fine to medium sand with lots of gravel, mine rock, glass, metal debris and roots.	Grab sample. VOA portion of sample collected at 4 in. Remainder of sample collected at 0-6 in.
SS-11	314708.13	737744.25	0-8	Moist, dark brown, silty, fine to medium sand with some gravel, debris, metal and concrete.	Grab sample. VOA portion of sample collected at 5 in. Remainder of sample collected at 0-8 in.
SS-12	314762.16	737705.95	0-1 1-4 4-8	Moist, dark brown, silty, fine sand with some roots. Moist, dark gray, silty sand and gravel with some slag and crushed mine rock. Moist, reddish brown, silty, fine to medium sand.	Grab sample. VOA portion of sample collected at 5 in. Remainder of sample collected at 0-8 in. Duplicate sample collected.
SS-13	314683.57	737740.85	0-8	Moist, black, silty, fine to medium sand with some gravel, slag, glass and wood.	Grab sample. VOA portion of sample collected at 5 in. Remainder of sample collected at 0-8 in.
SS-14	314597.20	737635.96	0-8	Moist, black, silty, fine to medium sand with mixed fill, slag, brick, glass, metal, shingles etc.	Grab sample. VOA portion of sample collected at 4 in. Remainder of sample collected at 0-8 in.

SURFICIAL SOIL AND WASTE SAMPLE DESCRIPTIONS

SAMPLE	LOCATION CO	OORDINATES	DEPTH		SAMPLE INTERVALS
NUMBER	Easting	Northing	(in.)	DESCRIPTION	AND COMMENTS
W-1	314662.77	737504.92	0-3	Moist, brown, medium to coarse sand with fine gravel and possibly scrap metal (felt heavier than soil).	Grab waste sample.
W-2	314573.48	737515.08	0-4	Moist, gray, ashy material with clayey consistency and oily smell.	Grab waste sample.

Location Coordinates: Michigan Georef North American Datum (NAD) 1983 meters

SAMPLE NUMBER	LOCATION CO	ORDINATES Northing	SPOON INTERVAL (ft.)	RECOVERY (in.)	UNIT THICKNESS (in.)	LITHOLOGICAL DESCRIPTION WITH PHOTOIONIZATION DETECTOR (PID) READING*	SAMPLE INTERVALS AND COMMENTS
SB-01	314662.40	737702.81	0-4 4-8 8-12	23 38 14	0-6 6-23 0-38 0-14	Moist, dark brown/black, medium sand with trace rock. Moist, red, medium sand with trace rock. PID = 0.9 at 12-22 in. Very moist, red, medium sand with trace rock. PID = 0.0 Very moist, red, medium sand with trace rock. Refusal at 14 in. PID = 0.0	Grab sample. Volatile Organic Analysis (VOA) portion of sample collected at 18 in. of 0-4 ft. core. Remaining sample portion taken from 12- 22 in. of 0-4 ft. core.

SAMPLE NUMBER	LOCATION CO	DORDINATES	SPOON INTERVAL (ft.)	RECOVERY (in.)	UNIT THICKNESS (in.)	LITHOLOGICAL DESCRIPTION WITH PHOTOIONIZATION DETECTOR (PID) READING*	SAMPLE INTERVALS AND COMMENTS
SB-02	314466.07	737378.70	0-4 4-8 8-12	46 46 43	0-46 0-46 0-6 6-43	Moist, brown, reddish brown, medium sand/clay. PID = 0.4 Moist, dark brown, medium sand/clay with trace rocks. PID = 0.0 Moist to very moist, dark brown, medium sand with trace rocks. Very moist, reddish brown, medium sand.	Grab sample. VOA portion of sample collected at 28 in. of 0-4 ft. core. Remaining sample portion taken from 22- 34 in. of 0-4 ft. core. Duplicate sample collected.

(2,2), (2,1,2), (2,2),

PLE BER	LOCATION COORDINATES		ON RVAL	OVERY	KNESS		SAMPI F
SAM NUM	Easting	Northing	SPO INTE (ft.)	REC (in.)	UNIT THIC (in.)	WITH PHOTOIONIZATION DETECTOR (PID) READING*	INTERVALS AND COMMENTS
SB-03	314672.13	737495.92	0-4	40	0-40	Moist, reddish brown, medium sand.	Grab sample.
			4-8	38	0-14	Moist, reddish brown, medium sand.	VOA portion of sample collected at 20
					14-38	Moist, dark brown, medium sand.	in. of 0-4 ft. core.
			8-12	30	0-30	Moist, dark brown, medium sand.	Remaining sample
						PID = 0.0	34 in. of 0-4 ft. core.
							Matrix spike/matrix spike duplicate collected.

SAMPLE NUMBER	LOCATION CO	DORDINATES Northing	SPOON INTERVAL (ft.)	RECOVERY (in.)	UNIT THICKNESS (in.)	LITHOLOGICAL DESCRIPTION WITH PHOTOIONIZATION DETECTOR (PID) READING*	SAMPLE INTERVALS AND COMMENTS
SB-04	314669.17	737483.82	0-4	38	0-12	Moist, dark brown, medium sand.	Grab sample.
					12-20	Moist, brown, medium sand with trace rocks.	VOA portion of sample collected at 25 in. of 4-8 ft. core.
					20-38	Moist, dark brown, medium sand with gravel and slag.	Remaining sample portion taken from 22-
			4-8	39	0-39	Moist, dark brown, medium sand.	34 in. of 4-8 ft. core.
			8-12	36	0-20	Moist, reddish brown, medium sand.	
					20-30	Moist, dark brown, medium sand.	
					30-36	Moist, reddish brown, medium sand.	
						PID = 0.0	

- 19 JUE 1 . X 3E A 4 3.00 YY-7 019 KMA SOUND / 1000

SAMPLE NUMBER	LOCATION COORDINATES		ON RVAL	DVERY	KNESS		SAMPI F
	Easting	Northing	SPO(INTE (ft.)	REC (in.)	UNIT THIC (in.)	WITH PHOTOIONIZATION DETECTOR (PID) READING*	INTERVALS AND COMMENTS
SB-05	314730.84	737592.80	0-4	42	0-6	Moist, dark brown, medium sand. PID = 0.0	Grab sample.
					6-42	Moist, reddish brown, medium sand with trace rock. PID = 0.7	VOA portion of sample collected at 33 in. of 0-4 ft. core.
			4-8	43	0-43	Moist, dark brown and reddish brown, medium sand with rocks. PID = 0.0	Remaining sample portion taken from 26- 42 in. of
			8-12	46	0-11	Moist, brown, medium sand.	0-4 ft. core.
					11-46	Saturated, brown, medium sand.	Corresponding well TMW-03.
						PID = 0.0	

SAMPLE NUMBER	LOCATION CO	DORDINATES	SPOON INTERVAL (ft.)	RECOVERY (in.)	UNIT THICKNESS (in.)	LITHOLOGICAL DESCRIPTION WITH PHOTOIONIZATION DETECTOR (PID) READING*	SAMPLE INTERVALS AND COMMENTS
SB-06	314762.30	737647.06	0-4 4-8 8-12	45 46 48	0-45 0-46 0-36 36-48	Moist, reddish brown, medium sand. Moist, reddish brown, medium sand with trace rock. Saturated, reddish brown, medium sand with trace rock. Moist, peat moss, organics. PID = 0.0	Grab sample. VOA portion of sample collected at 32 in. of 0-4 ft. core. Remaining sample portion taken from 22- 45 in. of 0-4 ft. core. Corresponding well TMW-02.
SB-08	314580.79	737489.94	0-4 4-8 8-12	36 42 44	0-34 34-36 0-38 38-42 0-28 28-44	Moist, dark brown, medium sand with trace gravel. Rock fragments. Moist, brown, medium sand. Saturated, brown, medium sand. Saturated, brown, medium sand. Moist, reddish brown, sand/clay and	Grab sample. VOA portion of sample collected at 29 in. of 0-4 ft. core. Remaining sample portion taken from 22- 34 in. of 0-4 ft. core.

AMPLE	LOCATION CO	DORDINATES	POON NTERVAL t.)	ECOVERY n.)	NIT HICKNESS n.)	LITHOLOGICAL DESCRIPTION WITH PHOTOIONIZATION	SAMPLE INTERVALS AND
02	Lasting	Northing	S = E	R i	コトミ	DETECTOR (PID) READING*	COMMENTS
						moist trace gravel.	
						PID = 0.0	
SB-09	314678.44	737627.34	0-4	20	0-14	Moist, dark brown, medium sand with trace rocks. PID = 0.3	Grab sample.
					14-20	Moist, reddish brown, medium sand.	VOA portion of sample collected at 30 in_of 4-8 ft_core
			4-8	40	0-40	Moist, reddish brown, medium sand. PID = 0.7	Remaining sample
			8-12	36	0-22	Moist, reddish brown, medium sand with rock at bottom.	40 in. of 4-8 ft. core.
					22-36	Rock at top, very moist, reddish brown, medium sand.	
						PID = 0.0	
SB-10	314511.82	737291.87	0-4	36	0-10	Moist, dark brown, medium sand.	Grab sample.
					10-16	Rock.	VOA portion of sample collected at 12
					16-36	Moist, dark brown, medium sand with trace rock.	in. of 4-8 ft. core.

SAMPLE NUMBER	LOCATION COORDINATES		ON RVAL	DVERY	KNESS		SAMPI F
	Easting	Northing	SPO(INTE (ft.)	REC((in.)	UNIT THIC (in.)	WITH PHOTOIONIZATION DETECTOR (PID) READING*	INTERVALS AND COMMENTS
			4-8	42	0-22	Moist, dark brown/black, medium sand with trace rock.	Remaining sample portion taken from 0- 22 in. of 4-8 ft. core.
SB-10 Cont.					22-26	Concrete.	
					26-42	Moist, dark brown/black, medium sand with trace gravel.	
			8-12	40	0-15	Moist, dark brown, medium sand with trace gravel.	
					15-40	Moist, brown, medium sand with trace gravel.	
			12-16	45	0-30	Moist, black medium sand with trace gravel.	
					30-33	Moist, brown, medium sand.	
					33-45	Moist, brown, medium sand and clay.	