
SITE INVESTIGATION REPORT

ABANDONED MINING WASTES – TORCH LAKE NON-SUPERFUND SITE

JULIO PROPERTIES – DOLLAR BAY

HOUGHTON COUNTY, MICHIGAN

SITE ID# 31000098

DETROIT PUBLISHING CO., COPYRIGHT CLAIMANT, AND PUBLISHER DETROIT PUBLISHING CO.

LAKE SUPERIOR SMELTER AND DOCK, DOLLAR BAY, MICH. PHOTOGRAPH.

RETRIEVED FROM THE LIBRARY OF CONGRESS, <WWW.LOC.GOV/ITEM/2016801153/>.

APRIL 2024

PREPARED FOR:

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY
REMEDIATION AND REDEVELOPMENT DIVISION
CALUMET FIELD OFFICE

EXECUTIVE SUMMARY

The Mannik & Smith Group, Inc. (MSG) has prepared this Site Investigation (SI) Report as part of the Abandoned Mining Wastes – Torch Lake non-Superfund Site (Project) <u>EGLE Abandoned Mining Waste</u> (Site ID: 31000098). This report summarizes Michigan Department of Environment, Great Lakes, and Energy (EGLE) investigations completed in the Julio Properties – Dollar Bay area (the Site) in Dollar Bay, Houghton County, Michigan. The SI was prepared in accordance with the *Indefinite Scope Indefinite Delivery (ISID) Discretionary Proposal for FS and Remedial Action Activities* (24 February 2016) as amended, prepared by MSG in response to a request from the EGLE, Remediation and Redevelopment Division (RRD), Calumet Field Office under MSG's 2015 Environmental Services ISID Contract Number 00538 with the State of Michigan.

The Project is characterized by the risks posed by chemical containers and residues historically discarded in or near Torch Lake and along the north shoreline of the Portage Canal. These concerns are distinct and separate from the risks historically addressed under the U.S. Environmental Protection Agency's (EPA's) Superfund program. The RRD Superfund Section (SFS) has stated that the EPA defines the Torch Lake Superfund Site as the upper six inches (in.) of stamp sand and slag in certain areas of Houghton County and any soil cap and vegetative cover applied to such areas.

The remaining concerns at Torch Lake, the Portage Canal, and the surrounding areas identified by EGLE include known or suspected impacts to groundwater, surface water, sediments, and upland media that were not addressed under the Superfund program. Environmental impacts that were evaluated as part of the SI were assessed under the guidance of the following objectives:

- Investigate and document unidentified, significant in-lake and/or terrestrial sources of contamination including polychlorinated biphenyls (PCBs);
- Investigate and document bulk disposal areas, including made lands, stamp sand deposits, slag dumps, and landfills; and,
- Investigate and document industrial ruins including coal storage areas, underground storage tanks (USTs), asbestos containing materials (ACM), residual process materials (RPM), and any other waste materials identified during investigations.

Environmental impairments within Torch Lake and along the shorelines from Lake Linden to the Portage Lake Lift Bridge resulting from historical mining era industrial operations:

- Present potential exposure risk to human and ecological receptors;
- Limit the recovery of the Torch Lake and Portage Canal ecosystems;
- Create uncertainty over safe and beneficial reuse of the land; and,
- Delay delisting of Torch Lake as an Area of Concern (AOC) under the Great Lakes Water Quality Agreement due to Beneficial Use Impairments (BUIs) related to restrictions on fish and wildlife consumption because of the on-going presence of PCBs and mercury in fish and degradation of benthos because of metals contaminated sediments.

As such, the investigation was largely driven by documented observations of abandoned containers and/or other waste and debris locations in the lake and in upland areas, supported by documented historic operations.

Taking into account the specific objectives outlined above, the principal goal of this portion of the Project was to support a comprehensive management approach that will guide EGLE's decision making process in addressing potential human health and environmental risks present in the Julio Properties – Dollar Bay portion of the Quincy Mining Company Portage Operations Area (QMCP). The primary focus of the Project is to ascertain the source, nature, and

extent of contaminants (including PCBs) in all affected environmental media (soil, groundwater, surface water, and sediments) within the Project study area, including the Julio Properties – Dollar Bay area.

This SI Report assimilates information from multiple data sources into a logical and thorough narrative focused on the Julio Properties – Dollar Bay that consist of two non-contiguous parcels in Dollar Bay along the north shoreline of the Portage Canal. The parcels are:

- Julio Company/Former Amoco Bulk Fuel Terminal (48721 6th Street); and,
- Julio Marine (48735 Main Street).

The locations of the parcels are depicted on *Figure 1-1*, *Project Location Map*.

The findings presented herein were developed using the conclusions derived from historical operations research, investigation and response activities, and the investigation of data gaps or known or suspected impacts to groundwater, surface water, sediments, and upland media in and around the north side of the Portage Canal in Dollar Bay.

Due to the sizeable nature of the QMCP, this SI Report has been organized to present organizational and procedural steps that were common to the investigation in the first four sections of the document. Following these discussions that are broadly applicable to the Project as a whole, the SI Report transitions to a presentation of detailed findings specific to the Julio Properties – Dollar Bay within the QMCP. Remaining subareas addressed as part of the Project within the QMCP footprint are discussed in other SI reports. The SI Report then closes with a comprehensive summary of conclusions and recommendations. The following provides a brief overview of the SI Report's organization.

Section 1 of this SI Report defines the overall objectives and the organizational structure of the Project. Section 2 provides Project background information and its significance as it relates to each of the Site parcels. Section 3 provides a summary of the stepwise approach used to evaluate historical operational and analytical data, and its incorporation into the field procedures and sample collection activities prescribed in the Sampling and Analysis Plan (SAP) for the Project. Section 4 includes a summary of the relevant exposure criteria and pathways used to evaluate the analytical findings from the investigation. Section 5 through Section 7 provide detailed findings reports of the study areas included in the Julio Properties – Dollar Bay portion of the QMCP. Section 8 includes a summary of conclusions and recommendations. Section 9 includes references utilized in the development of this SI Report.

The submittal of the Julio Properties – Dollar Bay SI Report marks a significant milestone in the assessment of environmental impairments within the Portage Canal and industrial areas along the shoreline caused by historical mining and industrial operations not addressed under the EPA Superfund Program.

Environmental impacts at the Julio Properties – Dollar Bay are generally characterized by detections of organic and inorganic contaminants in soil, sediment, groundwater, and pore water; repercussions of mining era operations in the region. The following provides a summary of findings derived from the assessment of the Julio Properties – Dollar Bay with respect to the goals and objectives for the Project relative to the EGLE criteria at the time of Project completion:

Terrestrial sources of contamination are present in the form of inorganic chemicals of concern (COCs), semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), and asbestos in the study area. Light non-aqueous phase liquid (LNAPL) was identified within 50 feet of the Portage Canal;

- In-lake sources of contamination in the form of inorganic COCs and SVOCs in the study area sediments and inorganic COCs in some areas of pore water. The detection of SVOCs in sediment may be indicative of a terrestrial source area:
- No in-lake or terrestrial uncharacterized waste deposits were identified in the study area;
- PCBs exceeded EGLE Residential and Nonresidential Direct Contact Criteria (DCC) in a surface soil sample at Julio Marine. No groundwater, pore water, or sediment samples analyzed for PCBs exceeded criteria or screening values in the study area; and,
- ACM was identified at numerous locations at Julio Marine. Four of the five ACM samples were friable and exposed to the elements.

The following is an outline of options for managing potential exposure risks at the Julio Properties – Dollar Bay and the Portage Canal:

- Section 20107a of Part 201 of Michigan's Natural Resources and Environmental Protection Act, being Public Act (PA) 451 of 1994, as amended (NREPA) describes the duties of owners or operators of a Facility, regardless of their liability, including: prevent unacceptable exposures, prevent exacerbation, and take reasonable precautions against the foreseeable actions of third parties. Some exceptions may apply; in any case, owners and operators of contaminated properties should become familiar with Section 20107a and the associated Rules.
- Future property users could conduct a risk assessment based on current and anticipated future land-use to help identify remedial goals for properties where potential risks may be present. Assessment based on current and future land-use contributes to the beneficial and safe re-use and potential redevelopment of any given property by clarifying applicability of regulatory statutes, as traditional property zoning (residential versus nonresidential) is generally undefined in the study area.
- Once property-specific exposure risks have been evaluated, remedial objectives can be established with appropriate land use restrictions that minimize or eliminate potential exposure risks. These land-use restrictions, or administrative controls, could be employed to ensure that exposures are reliably restricted by a restrictive covenant, institutional control, or other mechanism allowed for under Part 201.
- By copy of this SI Report, the Project findings were provided to the Remediation and Redevelopment Division Superfund Section (RRD SFS) which is responsible for monitoring EPA's remedy for the Torch Lake Superfund Site. RRD SFS should evaluate whether any remedy modifications are necessary in the Portage Canal and Dollar Bay or terrestrial areas previously addressed by EPA in light of the additional information provided by the Project.
- EGLE should continue to provide new study data to governmental stakeholders responsible for implementation and monitoring EPA's remedy for the terrestrial and in-lake portion of the Torch Lake Superfund Site so they can determine if any remedy modifications are necessary in light of the additional information provided by the Project. Responsible stakeholders should verify that administrative controls for areas that have been previously remediated by the EPA have been employed to ensure that EPA's selected remedy is performing as designed and those institutional controls, where required, have been recorded and are being enforced.
- Additionally, EGLE should continue to provide new study data to property owners and governmental stakeholders responsible for assessing potential public health impacts and making recommendations to the public, property owners, and other state agencies.

TABLE OF CONTENTS Site Investigation Report Julio Properties – Dollar Bay (Site ID: 31000098) Houghton County, Michigan

<u>SEC</u>	TION:		PAGE NO.:
EXE	CUTIVE S	UMMARY	I
1.	INTRO	DUCTION	1-1
	1.1	PROBLEM DEFINITION	
	1.2	PROJECT ORGANIZATION	
		Project Team	1-3
		Project Structure	1-3
2.	PROJE	ECT DESCRIPTION	2-1
	2.1	SITE LOCATION AND DESCRIPTION	2-1
		2.1.1 Portage Canal	2-1
	2.2	SITE BACKGROUND	2-1
		2.2.1 Site History	2-1
		2.2.2 Topography and Local Geology	
		2.2.3 Local Hydrogeology	2-3
		2.2.4 Groundwater Conditions	
		2.2.5 Overview of Regulatory Investigations and Response Actions	2-4
3.	FIELD	PROCEDURES AND SAMPLE COLLECTION	
	3.1	PLANNING AND COORDINATION	
		3.1.1 Historical Research and Data Compilation	
		3.1.2 Data Compilation Technical Memorandum	
		3.1.3 Offshore Mapping and Procedural Testing	
	2.0	3.1.4 Sampling and Analysis Plan Development	3-3
	3.2	FIELD PROCEDURES AND SAMPLE COLLECTION	
		3.2.1 Potential Physical and Health Hazard Inventory	
		3.2.2 Bulk Material Sampling	
		3.2.3 Surface Soil Sampling	
		3.2.4 Subsurface Soil Sampling	
		3.2.6 Sediment Sampling	
		3.2.7 Decontamination Procedures and Management of Investigative Derived Waste	
		3.2.8 Sample Handling, Tracking, and Custody Procedures	
		3.2.9 QA/QC	
Δ	FXPO	SURE ASSESSMENT	4-1
••	4.1	EGLE FACILITY DEFINITION.	
	4.2	APPLICABLE SCREENING CRITERIA	
		4.2.1 Non-Evaluated Exposure Pathways	
		4.2.2 Non-Applicable Exposure Pathways	
		4.2.3 Relevant Exposure Pathways Where Applicable Criteria Are Not Exceeded	
		4.2.4 Relevant Exposure Pathways Where Criteria Are Exceeded, But Pathway Is	
		Incomplete	4-3

		4.2.5 4.2.6	Relevant Exposure Pathways Where Applicable Criteria Are Exceeded and Pathway is Complete				
	4.3	CONC	EPTUAL SITE MODEL	4-5			
5.	DETAIL 5.1	SITE IN 5.1.1	INGS – JULIO COMPANY/FORMER AMOCO BULK FUEL TERMINALSPECTION AND INVESTIGATION RESULTSSite Inspection	5-1			
	5.2	5.1.2 NATUR 5.2.1 5.2.2	Site Investigation RE AND EXTENT OF CONTAMINATION Comprehensive Exposure Assessment Extent of Contamination	. 5-3 5-4			
	5.3		LUSIONS AND RECOMMENDATIONS	5-9			
	LIST O	F FIGUR	ES				
	Figure 5-1 Figure 5-2 Figure 5-3		ACM Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Groundwater Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)	ı			
	LIST O	F TABLE	:S				
	Table 5 Table 5 Table 5	5-2	Summary of ACM Analytical Results (Julio Company/Former Amoco Bulk Fuel Term Summary of Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Termi Summary of Groundwater Analytical Results (Julio Company/Former Amoco Bul Terminal)	nal)			
6.	DETAILED FINDINGS – JULIO MARINE						
	6.1	6.1.1	SITE InspectionSite Inspection	6-1 6-1			
	6.2	6.1.2 NATUR 6.2.1	Site Investigation RE AND EXTENT OF CONTAMINATION Comprehensive Exposure Assessment	6-2 6-4 6-4			
		6.2.2	Extent of Contamination.	6-8			
	6.3		LUSIONS AND RECOMMENDATIONS				
		6.3.1 6.3.2	ConclusionsRecommendations				
	LIST O	LIST OF FIGURES					
	Figure 6-1 Figure 6-2 Figure 6-3		ACM Analytical Results (Julio Marine) Soil Analytical Results (Julio Marine) Groundwater Analytical Results (Julio Marine)				
	LIST O	LIST OF TABLES					
	Table 6 Table 6 Table 6 Table 6	5-2 5-3 5-4	Summary of ACM Analytical Results (Julio Marine) Summary of Soil Analytical Results (Julio Marine) Monitoring Well Construction and Elevation Data (Julio Marine) Summary of Groundwater Analytical Results (Julio Marine) Summary of Vat Water Analytical Results (Julio Marine)				
7.			INGS - PORTAGE CANAL AND DOLLAR BAY				
	7.1	ULLOL	IORE INVESTIGATION RESULTS	/-I			

	7.2	7.2.1	Portage Canal and Dollar BayE AND EXTENT OF CONTAMINATION	. 7-2 . 7-2		
	7.3	7.2.2 CONCL 7.3.1 7.3.2	Portage Canal and Dollar Bay Extent of Contamination	7-4 7-4		
	LIST O	F FIGURI	ES			
	Figure	7-1	Sediment and Pore Water Analytical Results			
	LIST 0	F TABLE	S			
	Table :	7-1	Sediment and Pore Water Analytical Results			
8.	CONCL 8.1 8.2	CONCL	AND RECOMMENDATIONSUSIONS	8- 8- 4		
9.	REFER	EFERENCES				
FIGURE Figure Figure	<u></u> 1		cation Map ures Map Julio Properties – Dollar Bay			
TABLE: Table 2 Table 3	-1		of Historic Operations and Analysis Summary			
<u>APPEN</u>						
Append			Sonar Imagery			
Appendix B Appendix C		Underwater Videos Site Inspections – Reconnaissance Logs, Targeted Inspections & Physical Hazards Inventory				
Append	dix D	Photograp	phic Log			
Append		Boring Log				
Append Append			Core Logs y Analytical Reports			
Append		_	al Site Model – Exposure Pathway Evaluation			

1. INTRODUCTION

The Mannik & Smith Group, Inc. (MSG) has prepared this Site Investigation (SI) Report as part of the Abandoned Mining Wastes – Torch Lake non-Superfund Site (Project) <u>EGLE Abandoned Mining Waste</u> (Site ID: 31000098). This SI Report summarizes Michigan Department of Environment, Great Lakes, and Energy (EGLE) investigations completed in the Julio Properties – Dollar Bay area (the Site) in Dollar Bay, Houghton County, Michigan.

The SI was prepared in accordance with the *Indefinite Scope Indefinite Delivery (ISID) Discretionary Proposal for FS and Remedial Action Activities* (24 February 2016), as amended, prepared by MSG in response to requests from the EGLE, Remediation and Redevelopment Division (RRD), Calumet Field Office under MSG's 2015 Environmental Services ISID Contract Number 00538 with the State of Michigan.

This SI Report assimilates information from multiple data sources into a logical and thorough narrative focused on two non-contiguous Site parcels in Dollar Bay along the north shoreline of the Portage Canal. The parcels are:

- Julio Company/Former Amoco Bulk Fuel Terminal (48721 6th Street); and,
- Julio Marine (48735 Main Street).

The locations of the parcels are depicted on *Figure 1-1*, *Project Location Map*.

This Site is within the former Quincy Mining Company (QMC) copper mining and processing operations which includes copper processing facilities in Dollar Bay (former smelter and wire mill), and the Ripley Waterfront (Quincy Smelting Works and associated supporting industries along Portage Lake and the Portage Canal). This area is defined by EGLE as the QMC Portage Operations Area (QMCP). The findings presented herein were developed using the conclusions derived from historical operations research, investigation activities, and the investigation of data gaps or known or suspected impacts to groundwater, surface water, sediments, and upland media in and around the north side of the Portage Canal in Dollar Bay.

Due to the sizeable nature of the QMCP, this SI Report has been organized to present organizational and procedural steps that were common to the investigation in the first four sections of the document. Following these discussions that are broadly applicable to the Project as a whole, the SI Report transitions to a presentation of detailed findings specific to the upland and in-lake Julio Properties – Dollar Bay Site parcels. These "Detailed Findings Reports" are presented as standalone sections, complete with summary tables and figures that summarize analytical results, conclusions, and recommendations specific to each study area that can be detached from the main document. The SI Report then closes with a comprehensive summary of conclusions and recommendations. Remaining study areas addressed as part of the AMW project within the QMCP footprint are discussed in other SI Reports. The following provides a brief overview of the SI Report's organization.

Section 1 of this SI Report defines the overall objectives and the organizational structure of the Project. Section 2 provides Project background information and its significance as it relates to each of the Site parcels. Section 3 provides a summary of the stepwise approach used to evaluate historical operational and analytical data, and its incorporation into the field procedures and sample collection activities prescribed in the Sampling and Analysis Plan (SAP) for the Project. Section 4 includes a summary of the relevant exposure criteria and pathways used to evaluate the analytical findings from the investigation. Section 5 through Section 7 provide detailed findings reports of the study areas included in the Julio Properties – Dollar Bay portion of the QMCP. Section 8 includes a summary of conclusions and recommendations. Section 9 includes references utilized in the development of this SI Report.

1.1 PROBLEM DEFINITION

The Project is characterized by the risks posed by chemical containers and residues historically discarded in or near Torch Lake and along the north shoreline of the Portage Canal. These concerns are distinct and separate from the risks historically addressed under the U.S. Environmental Protection Agency's (EPA's) Superfund program. The RRD Superfund Section (SFS) has stated that the EPA defines the Torch Lake Superfund Site as the upper six inches (in.) of stamp sand and slag in certain areas of Houghton County and any soil cap and vegetative cover applied to such areas.

The remaining concerns at Torch Lake, the Portage Canal, and the surrounding areas identified by EGLE include known or suspected impacts to groundwater, surface water, sediments, and upland media that were not addressed under the Superfund program. Environmental impacts that were evaluated as part of the SI were assessed under the guidance of the following objectives:

- Investigate and document unidentified, significant in-lake and/or terrestrial sources of contamination including polychlorinated biphenyls (PCBs);
- Investigate and document bulk disposal areas, including made lands, stamp sand deposits, slag dumps, and landfills; and,
- Investigate and document industrial ruins including coal storage areas, underground storage tanks (USTs), asbestos containing materials (ACM), residual process materials (RPM), and any other waste materials identified during investigations.

Environmental impairments within Torch Lake and along the shorelines from Lake Linden to the Portage Lake Lift Bridge resulting from historical mining era industrial operations:

- Present potential exposure risk to human and ecological receptors;
- Limit the recovery of the Torch Lake and Portage Canal ecosystems;
- Create uncertainty over safe and beneficial reuse of the land; and,
- Delay delisting of Torch Lake as an Area of Concern (AOC) under the Great Lakes Water Quality Agreement due to Beneficial Use Impairments (BUIs) related to restrictions on fish and wildlife consumption because of the on-going presence of PCBs and mercury in fish and degradation of benthos because of metals contaminated sediments.

As such, the investigation was largely driven by documented observations of abandoned containers and/or other waste and debris locations in the lake and in upland areas, supported by documented historic operations.

Taking into account the specific objectives outlined above, the principal goal of this portion of the Project was to support a comprehensive management approach that will guide EGLE's decision making process in addressing potential human health and environmental risks present in the Julio Properties – Dollar Bay portion of QMCP. The primary focus of the Project is to ascertain the source, nature, and extent of contaminants (including PCBs) in all affected environmental media (soil, groundwater, surface water, and sediments) within the Project study area, including the Site parcels that consist of former mining era industrial areas in Dollar Bay along the north shoreline of the Portage Canal. Due to the varying nature of historical operations at the Site parcels, each parcel was treated as a subarea as part of this SI work.

The locations of the subareas are depicted on *Figure 1-2*, *Area Features Map Julio Properties – Dollar Bay*.

1.2 PROJECT ORGANIZATION

Performance of the work required that both the Project team and the Project structure were focused and deliberate. The phased approach of the work required that data was processed and reported between team members to facilitate the next phase of work. The following subsections describe the Project team and the Project structure, as it relates to management and implementation.

Project Team

The Project was developed and implemented by EGLE, building on the existing partnerships and stakeholder engagement in the local community. Field activities were completed by EGLE's Geological Services Section (GSS) (formerly the Geological Services Unit) and MSG. Analytical services were provided by EGLE's Environmental Laboratory or approved laboratories within the Contract Laboratory program.

Project Structure

The Project area is located along the shoreline and in Torch Lake and the Portage Canal, Houghton County, Michigan and copper processing facilities in Dollar Bay (former smelter and wire mill), Ripley Waterfront (Quincy Smelting Works and associated supporting industries along Portage Lake and the Portage Canal), the 270+ acre Centennial Mine, and other areas congruent with the Torch Lake Superfund Site where the response action has been limited to the application of vegetative cover or eliminating the area from further consideration.

Due to the complex nature and geographic expanse, RRD subdivided the Project into study areas based on past use and known issues. Dividing the regional operations into smaller manageable study areas allowed for prioritization of the proposed investigative approach, while also establishing a phased process for assessing environmental concerns regionally.

The aforementioned subareas that comprise the Julio Properties – Dollar Bay and major historical industrial operations within each subarea addressed in this SI Report are depicted on *Figure 1-2, Area Features Map Julio Properties – Dollar Bay* and described further in **Section 2**.

2. PROJECT DESCRIPTION

Hard rock mining operations were prevalent throughout Houghton and Keweenaw Counties for nearly a century, primarily spanning an era between the mid-1800s and the mid-1900s. As mining activities declined in the region, a majority of the mine holdings, including surface and underground operations were abandoned, scrapped, and remnants otherwise left in-place. The following subsections summarize both the operational and investigative history within the QMCP while also presenting the underlying rationale for the performance of the investigative activities.

2.1 SITE LOCATION AND DESCRIPTION

As previously discussed, the QMCP encompasses the former QMC copper mining and processing operations along the north shoreline of the Portage Canal on the south side of Highway M-26 from Dollar Bay, Michigan to the Portage Lake Lift Bridge in Hancock, Michigan. The QMCP consists of approximately 320 acres of land, much of which is madelands, extending approximately 4.5 miles along the shoreline of the Portage Canal and incorporates multiple parcels and property owners. Residential (single-family residences)/commercial/vacant, undeveloped forested lands, industrial (capped made lands) properties, and the Portage Canal border the QMCP. Due to the varying nature of historical operations within the QMCP, the SI was organized by subareas within the footprint that have been subject to or associated with historic mining practices. In the case of this report, specific to the Julio Properties in Dollar Bay.

2.1.1 Portage Canal

The subareas described in **Section 1** are located along the shoreline of the Portage Canal in Dollar Bay. Each of these former industrial operations relied on the waters of the Portage Canal for shipping, process water, and/or waste discharge. In addition, the communities established around these industrial facilities also used the lake for similar purposes, historically discharging sewage and other wastes into the lake.

One of the goals of the SI was to assess the potential presence of abandoned containers and wastes on the bottom of the Portage Canal in the QMCP and to more fully characterize the nature and extent of potential on-land contaminant sources. The evaluation of potential PCB sources and areas of PCB contamination in and around the Portage Canal were an integral component of the SI that will support the long-term protection and rehabilitation of the interconnected waterways.

2.2 SITE BACKGROUND

This Section provides an overview of the historical industrial operations, the local topography, geology, and hydrogeology, and past investigations and response actions in the QMCP and specifically, the Site parcels.

2.2.1 Site History

Copper mining was extensive in the Keweenaw and formed the backbone of the regional economy and society. Copper ore milling and smelting operations were conducted from the mid-1860s to the 1960s, including the importation, reprocessing, and smelting of various scrap metals in the later years of operation. Consistent with past industrial practices, Torch Lake and the Portage Canal served as dumping grounds for virtually all mining industry related wastes, including tailings, slag, and various chemicals.

Based on a review of Sanborn Fire Insurance maps, prior QMCP land uses consisted of a combination of industrial operations including, but not limited to, foundry, machining, coal and coke handling, bulk fuel handling, and boiler works. Simultaneously with industrial development, made lands were created as indicated by the approximate 1865

shoreline depicted on *Figure 1-2*, *Area Features Map Julio Properties – Dollar Bay*. This is of importance as to the nature of the underlying fill material relative to the current areas of environmental interest.

Review of EGLE file information identified subareas of the QMCP footprint that have been subject to or associated with historic mining practices. Due to the varying nature of historical land uses, the following list provides an overview of known historic operations based on available Sanborn Maps and/or other resources for each of the Julio Properties – Dollar Bay subareas identified on *Figure 1-2*, *Area Features Map Julio Properties – Dollar Bay*.

- Julio Company/Former Amoco Bulk Fuel Terminal This area was not identified on available Sanborn Maps; however, according to Monette's Dollar Bay, Michigan, Fifty-Fourth of a Local History Series (Monette, 2000), Dollar Bay Terminal Company erected three 840,000 gallon welded steel gasoline storage tanks onsite in May of 1945. Three additional tanks were added to the site, which increased storage for kerosene, diesel fuel, and three grades of gasoline. In May 1984, the owner/operator Amoco Oil Company closed the facility, selling the property to Julio Contracting Company of Ripley. Other historic land use and/or mining operations are unknown. The current usage of the area is unknown, although it appears to be inactive. There is one building at the north corner on the property that includes a garage. Semi-tractor trailers, heavy equipment, fuel tanks of varying sizes, and construction material are staged throughout the property.
- Julio Marine This area was identified as Tamarack and Osceola Copper Manufacturing Company on the 1907 Sanborn Map. It was the location of John A. Roebling's Sons Copper Manufacturing and Foley Copper Products Company Copper Wire Mill in 1928 and 1949, respectively. The property includes portions of the former wire mill operations. Many mining-era buildings, some that appear to be used for boat storage, are present in the central portion of the property. Additional boats, heavy equipment, and other vehicles are located north of the property buildings. Abandoned containers with unknown contents, fuel tanks of various sizes, including a tanker trailer along the shoreline, are also observed both inside and outside of property buildings.

A summary of historical findings is presented in *Table 2-1*, *Summary of Historic Operations*.

Dollar Bay Torch Lake EPA Superfund Site as-built drawings (USDA NRCS 2004) indicate that the vegetated cap in Dollar Bay was placed as part of the Torch Lake Superfund Site Dollar Bay remedial action. A portion of the subject vegetated cap was constructed on the Julio Marine parcel as part of the remedial actions. The capped areas are subject to an on-going EGLE operation and maintenance plan. The approximate limits of capping are depicted on *Figure 1-2*, *Area Features Map Julio Properties – Dollar Bay*.

2.2.2 Topography and Local Geology

The Site parcels are located along the north shore of the Portage Canal in Dollar Bay, Osceola Township, Houghton County, Michigan. The shoreline in this area was historically characterized by industrial operations that included copper smelting, a wire mill, and other related operations.

At a mean elevation of approximately 600 feet (ft) Above Mean Sea Level (AMSL) at the shoreline of the Portage Canal, the land gently slopes upward to the north from the shoreline to an approximate elevation of 630 ft AMSL along Highway M-26. The vicinity of Highway M-26 is characterized by the community of Dollar Bay which features residential and commercial developments that are generally located to the west of a small inlet of the Portage Canal, Dollar Bay. Beyond this centrally developed area, the grade continues to increase towards the north, away from the canal, reaching elevations up to 1,200 ft AMSL along Highway U.S. 41. Numerous residential properties are scattered across the hillside along rural roads that connect the upper and lower highways.

Julio Properties – Dollar Bay is located within the Lake Superior Basin and the Keweenaw Peninsula Watershed. There are small creeks and streams that discharge to the Portage Canal near Dollar Bay. The largest is the Gooseneck Creek which discharges to the designated wetland area located northeast of Dollar Bay.

According to the *Soil Survey of Houghton County Area, Michigan* issued in October 1991 by the United States Department of Agriculture (USDA) – Soil Conservation Service (SCS), the near surface geology closer to the shore of the Portage Canal near the Julio Properties – Dollar Bay Site generally consists of soils that have been covered by fill. Areas of sand are more predominant within the community of Dollar Bay.

- For soils at the Site parcels, the USDA generally describes the soils as being in "...areas that have been covered with fill. In some areas the upper one to two feet of the original soil material has been removed for use as topsoil. The texture ranges from sand to clay loam. In most areas the soils are somewhat excessively drained to moderately well drained, but in some areas they are somewhat poorly drained or poorly drained. Many of these areas are old copper mill sites and contain numerous foundations and abandoned railroad grades."
- For soils located in areas within the developed community of Dollar Bay, the USDA generally describes the soils as "deep, nearly level and gently sloping soils on knolls and broad plains." The soils are somewhat excessively to excessively drained. The soils are typically comprised of about 1 inch of black, partially decomposed forest littler on the surface and include surface layers that are reddish gray or brown sand in thickness of 3 to 6 inches. Subsoils are typically dark reddish sands and dark brown gravelly coarse sands.
- Additional sandy soils located near Highway M-26 within the developed community of Dollar Bay are described by the USDA as "very deep, nearly level moderately well drained soil on broad plains and in small depressions.
 Typically the surface layer is very dark gray sand about 1 inch thick and includes subsoil that is brown and reddish yellow loose sand.

According to the map Quaternary Geology of Michigan (compiled in 1982 by W.R. Farrand and published by the Michigan Geological Survey), the near surface fill material and sands are underlain by native soils described as "lacustrine sand and gravel." The bedrock in the area of the Site consists of Jacobsville Sandstone described as red, brown, and white quartzose sandstone according to the *Bedrock Geology of Michigan* (R.L. Milstein, 1987).

Soil observations during the SI activities indicate that the subsurface at the Site parcels are generally comprised of sand and gravel to 3 feet (ft) below ground surface underlain by fine to medium brown sand to the end of boring which was typically 5 to 9 ft below ground surface. In areas without topsoil or fill material, surface soils were generally observed as fine to coarse brown sand, saturated between 2 and 7 ft below ground surface (bgs).

2.2.3 Local Hydrogeology

According to EGLE's Water Well Viewer, drinking water in the area is obtained entirely from groundwater sources. The community of Dollar Bay is served by two municipal wells located at the end of Horner Street in Dollar Bay. The municipal wells are 44 feet and 64 feet deep and were constructed in 1958 and 1979, respectively. Two municipal wells that were both 100 feet deep were located at the former Quincy Smelting Works in Ripley, west of Dollar Bay. Three additional municipal wells located approximately 1 mile southwest of the Project area on the south shore of Portage Lake provide drinking water to approximately 7,500 residents of the City of Houghton. Residential wells are used to provide water to the remainder of the population within the four-mile radius of the Site, while the Michigan American Water Company operates public water supply wells outside of the four-mile search radius. Please note that the search results are not a detailed representation of every potential groundwater receptor, nor did the search include a comprehensive assessment of water service in Dollar Bay.

As noted in the preceding subsection, several small streams drain to Portage Lake/Portage Canal near the Site parcels. The Portage Canal and the Keweenaw Waterway connect to Lake Superior.

During the SI activities, saturated soil conditions were generally encountered between depths of 2 ft and 7 ft bgs. However, some borings did not encounter groundwater at depths up to 5 ft bgs where refusal was encountered.

2.2.4 Groundwater Conditions

Groundwater was encountered at the Julio Marine property area in unconfined sand units at varying depths, ranging from approximately two (2) to seven (7) ft bgs. Static water levels measured prior to groundwater sampling in October 2019 ranged from one (1) to five (5) ft below top of casing (TOC). To assess the groundwater flow potential direction and velocity for the Site, GSS converted static water levels to top of groundwater elevations which were used to generate groundwater contours for the October 2019 event. Groundwater surface elevations and contours for the November 2021 monitoring event are depicted on *Figure 6-3 Groundwater Analytical Results (Julio Marine)*.

Groundwater velocity for select monitoring events was calculated using Darcy's equation:

 $V_{gw} = Ki/n$

Where: $V_{gw} = groundwater velocity$

K = average hydraulic conductivity in feet per day (ft/day)i = horizontal hydraulic gradient in feet per foot (ft/ft)

n = effective porosity

A hydraulic conductivity value of 2.8 ft/day and an effective porosity of 30% (0.3) were used for the purpose of determining groundwater velocity. These values are estimated and are based on values for fine grained sand taken from *Groundwater* (Freeze and Cherry, 1979).

The groundwater surface elevations for MW-12 (603.48) and MW-8 (603.18) as measured on October 16, 2019, were used to determine the horizontal hydraulic gradient of 0.00057 between the two wells. As a result, groundwater flow velocity was calculated to be 0.00532 ft/day (1.94 feet per year) to the south.

2.2.5 Overview of Regulatory Investigations and Response Actions

The Project area, including the lands and waterways throughout the Keweenaw Peninsula, were the location of copper milling and beneficiation activities beginning in circa 1868. The environmental legacy resulting from over 100 years of mining led to Torch Lake and its western shoreline, and surrounding water bodies and former mining era industrial properties throughout Houghton County to be designated as a Superfund site by the EPA Torch Lake Superfund Site and Torch Lake as a Great Lakes Area of Concern by the U.S. government (in consultation with the States) under the Great Lakes Water Quality Agreement Torch Lake AOC. The EPA undertook cleanup activities to address some of the byproducts of the mining industry while others were not addressed or left to recover through natural processes. Through a series of studies EPA concluded the Torch Lake Superfund Site posed actual or threatened releases of hazardous substances that may present an imminent and substantial endangerment to public health, welfare, or the environment. Given the complexity of the region wide issue, the EPA's 1992 Record of Decision (ROD) divided the Torch Lake Site into three Operable Units (OUs):

- OU 1 includes surface tailings, drums, and slag pile/beach on the western shore of Torch Lake. These tailing
 piles include stamp sands in Lake Linden, Hubbell/Tamarack City, and Mason, while a slag pile/beach is
 located in Hubbell;
- **OU 2** includes groundwater, surface water, submerged tailings and sediments in Torch Lake, Portage Lake, the Portage Canal, and other water bodies; and,

• OU 3 includes tailings and slag deposits located in the north entry of Lake Superior, Michigan Smelter, Quincy Smelter, Calumet Lake, Isle-Royale, Boston Pond, and Grosse-Point.

The OU 1 and OU 3 remedy selected and implemented by the EPA required that stamp sands, tailings, and slag piles be covered with soil and vegetation, and that use restrictions be put in place to protect the covered materials' long-term integrity. Through these measures it was concluded that the following Remedial Action Objectives (RAO) would be met:

- Reduce or minimize potential future risks to human health associated with the inhalation of airborne contaminants from the tailings and/or slag;
- Reduce or minimize potential future risks to human health associated with direct contact with and/or the ingestion of the tailings and/or the slag;
- Reduce or minimize the release of contaminants in tailings to the groundwater through leaching; and,
- Reduce or minimize the release of contaminants in tailings to the surface water and sediment by soil erosion and/or air deposition.

The EPA selected a "No Action" remedy in their 1994 ROD for OU 2. To meet the RAO, the remedy selected for OU 2 took into consideration and relied upon:

- The reduction of stamp sand loading to surface water bodies expected as a result of the remedial action taken at OU 1 and OU 3;
- Ongoing natural sedimentation and detoxification such as that which is occurring in other surface water bodies in the area;
- Institutional programs and practices controlling potential future exposure to site-affected groundwater which are administered at the county and state level; and,
- The long-term monitoring and the five-year review process monitoring requirements of the remedy selected for OU 1 and OU 3 under the 1992 ROD.

The QMCP study area is located within the Torch Lake Superfund Site footprint; however, the properties south of M-26 identified for assessment were not included in the Torch Lake Superfund Site OU1, nor were remedies put in place to mitigate environmental conditions on the properties except as described in **Section 2.2.1** above for certain Dollar Bay locations and at the Quincy Smelting Works which was not further investigated during the QMCP SI since environmental concerns at that property are being addressed by other entities. OU2, for which EPA selected a no-action alternative, includes groundwater, surface water, submerged tailings (stamp sands), and sediment that were also investigated.

Numerous environmental investigations and response activities have been completed within the QMCP by state and federal agencies as well as private parties. The investigations were conducted on and along the north shoreline of the Portage Canal with various purposes, often specific to a particular property or investigative focus. Although often referenced in individual reports, a comprehensive approach consolidating the findings of these investigations had not been completed to date.

The data and information derived from these investigations were assimilated and compiled by EGLE and summarized by MSG in a document entitled *Historical Data Review and Compilation Technical Memorandum Abandoned Mining Wastes – Torch Lake Non-Superfund Site – Quincy Mining Company Portage Operations Area* dated August 2018 and discussed further in **Section 3**. The findings of these investigations and the conclusions derived from the performance of each assessment were selected to assist in the identification of historic areas of contamination or data gaps requiring further assessment.

Response actions completed in the QMCP include the aforementioned capping activities completed by the EPA. "The stabilization and covering of contaminated mine tailings and slag material in areas of Torch Lake or surrounding water bodies also reportedly included the recording of institutional controls, the natural recovery of area water bodies, and long-term monitoring of area water bodies and groundwater (EPA, 2008)." The capped area of the Quincy Smelting Works within the QMCP was delisted from the (National Priorities List) Torch Lake Superfund Site in 2013, while the capped portion of The Torch Lake Superfund Site in Dollar Bay has not been deleted from the NPL. EGLE has taken responsibility for operation and maintenance activities in those areas where remedial actions have been implemented, regardless of listing.

Investigations in the QMCP have identified elevated levels of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), being predominantly polynuclear aromatics (PNAs), PCBs, and inorganic contaminants. Areas with concerns along the shoreline of the Portage Canal, identified by EGLE and others, include known or suspected impacts to groundwater, surface water, sediments, and upland media that were not addressed under the Superfund program.

3. FIELD PROCEDURES AND SAMPLE COLLECTION

The field procedures and sample collection activities that were implemented in the QMCP were used to evaluate the presence of contaminated environmental media in the industrial areas described in **Section 2**. This Section describes the phased approach for reviewing and assessing each area and the subsequent field sampling and laboratory analysis that followed.

3.1 PLANNING AND COORDINATION

The assessment and investigation of the QMCP included several steps that served as the foundation for the Sampling and Analysis Plan for the Abandoned Mining Wastes Torch Lake Non-Superfund Site, Quincy Mining Company Portage Operations Area, Houghton County, Michigan (SAP) prepared by MSG in August 2018 and periodically amended based on interim SI findings. The following subsections describe the research, mapping, and testing procedures that were utilized during SAP development to ensure that the investigative activities were not redundant and focused on the goals and objectives established by EGLE.

3.1.1 Historical Research and Data Compilation

The implementation of the investigative portion of the SI was closely linked to the collaborative efforts of the Project team, described in **Section 1**. The review of EGLE file information, including available Sanborn Maps and/or other resources for each area was critical to the development of the SAP since the findings specifically identified the location of facilities and operational areas that were historically subject to or associated with historic mining practices. The following provides a summary of the activities completed by EGLE and summarized by MSG that were used to support SAP development:

- Identification of potential sources of contaminants of concern (COCs), including PCBs, through the evaluation of previously collected data.
- Investigation of resources related to buildings and/or operations of environmental concerns by subarea.
- Completion of mapping activities based on collected historic data, and field inspections noting the location of foundations and building remnants.

A summary of historical findings is presented in *Table 2-1*, *Summary of Historic Operations*.

3.1.2 Data Compilation Technical Memorandum

As outlined in **Section 2**, the comprehensive nature of the SI entailed not only a historical operational perspective, but also required that the results of previous investigative activities be incorporated. The evaluation and interpretation of analytical results and findings from previous key investigations was completed to create a baseline understanding of conditions in the QMCP and along the Portage Canal. The incorporation of these findings into the sampling program not only minimized redundancies in data collection, but also created a more comprehensive approach for assessing potential environmental impacts.

The following is a list of the key documents summarized in the *Historical Data Review and Compilation Technical Memorandum Abandoned Mining Wastes – Torch Lake Non-Superfund Site – Quincy Mining Company Portage Operations Area* dated August 2018:

Michigan Department of Transportation M-DOT M-26, Ripley, Houghton County Hydrogeological Investigation
 April 18, 1991. Prepared by M-DOT Geoenvironmental Services Unit Materials & Technology Division.

- 1st Preliminary Report Dollar Bay Wells March 31, 1995. Prepared by Traverse Engineering Services.
- Letter of Notice Re: Complaint Inspection, Julio Construction Property Adjacent to Keweenaw Canal, Ripley, Houghton County – December 12, 1995. Prepared by Michigan Department of Environmental Quality (MDEQ, now EGLE).
- Phase II Hydrogeological Investigation Report, Houghton County Road Commission Ripley Garage August 1998. Prepared for Houghton County Road Commission. Prepared by SCA Environmental.
- Brownfield Redevelopment Assessment Report for Hancock/Ripley Trail Property November 25, 2002.
 Prepared by MDEQ.
- Summary Report for the Torch Lake Area Assessment, Torch Lake NPL Site and Surrounding Area, Keweenaw Peninsula, Michigan – December 13, 2007. Prepared by Weston Solutions, Inc.
- Letter of Notice Re: Dollar Bay Well Field, Dollar Bay, Houghton County, Site ID: 31000089 August 4, 2010.
 Prepared by Department of Natural Resources and Environment (DNRE, now EGLE).
- Baseline Environmental Assessment: Royce Road Marina, Royce Road, Franklin Township, Houghton County, MI 49930 – October 26, 2015. Prepared by TriMedia Environmental & Engineering (TriMedia).
- Correspondence between Horner Flooring Co. Inc. and MDEQ April 3, 1995.
- Quincy Mining Company Portage, Houghton County, Site ID #31000098, Bathymetric Investigation-Side Scan Sonar – January 9, 2018. Prepared be MDEQ.

In support of developing a comprehensive approach for evaluating risks, the analytical results from the investigations summarized above were compiled and compared to the same regulatory criteria. Consistent with this approach, the same regulatory criteria were used to evaluate the analytical results collected during the SI. The regulatory criteria utilized for evaluating analytical results from surface soil, subsurface soil, groundwater, sediment, surface water, building materials, and waste deposits are discussed in detail in **Section 4**.

The analytical results from these key investigations were used to characterize the QMCP and contributed to the horizontal and vertical placement of the proposed sampling locations presented in the SAP. Consequently, the review and evaluation of the summarized reports resulted in the preparation of a SAP that built upon existing analytical results and focused on potential risks posed to human health and ecological receptors. In addition, the SI was also guided by the documented observations of drum and/or other debris locations as well as consideration related to historic operations and potential PCB presence.

3.1.3 Offshore Mapping and Procedural Testing

Without available analytical results from surface water and sediment samples, it could not be determined whether contaminants emanating from documented contamination on land were impacting the nearshore aquatic environment of the Portage Canal. The visual confirmation of the underwater targets was a key component to the Project, distinguishing it from previous investigations by eliminating the concept of "blind" sampling and focusing sample locations on specific waste deposits.

Evaluation of these underwater features as part of the SI required the use of advanced technological methods to identify specific targets for sample collection. Completion of these tasks again relied upon the collaborative efforts of the Project team to conduct underwater mapping and video surveillance of the lake bottom.

In 2017, EGLE's GSS conducted a side scan sonar survey of the three investigative lake bottom areas located in the Portage Canal offshore from the communities of Ripley and Dollar Bay. Areas were scanned using a Hummingbird 797c² equipped with an external global positioning (GPS) antenna, results were interpreted, and areas where targets were most likely to be present were identified. The intent of the assessment was to collect qualitative data that could be used to develop a plan for more traditional investigation, sampling, and assessment of potential offshore contaminant sources. The side scan sonar images generated by EGLE's GSS are included in *Appendix A*, *Side Scan Sonar Imagery*.

The next step of the investigation included visual confirmation of the targets that were identified through the interpretation of the side-scan sonar imagery. EGLE's GSS deployed their Remotely Operated Vehicle (ROV) at select locations to investigate and provide visual evidence of potential drum locations and similar anomalous underwater features. Underwater images and videos obtained from the ROV are included in *Appendix B*, *Underwater Videos*.

3.1.4 Sampling and Analysis Plan Development

The development of the SAP for the QMCP was focused on ensuring that it considered relevant historic operational and investigative findings. Identification of buildings and facility operations provided an understanding of potential chemicals and waste streams that may have been used or disposed of on a given property. For example, PCBs are often regarded as an oil or fluid used in electrical generating facilities, but PCBs were also used for their fire retardant properties in electrical cables.

With an understanding of the historical operations, the findings of previous terrestrial analytical data were evaluated. Data was assessed with regard to the historical operations, but also to evaluate whether concentrations of specific COCs were present. If identified, the horizontal and vertical distribution was then evaluated. The evaluation considered whether additional data was needed to further delineate the extent of contamination or evaluate whether a potential source of contamination was contributing to the detection of contaminants. Similarly, the lack of analytical data in the study area, such as any available offshore analytical data, was also considered to determine if data gaps were present.

The risks posed to human health and the environment resulting from historical mining era industrial operations in the QMCP:

- Present potential exposure risk to human and ecological receptors;
- Limit the recovery of the Portage Canal ecosystem; and,
- Create uncertainty over safe and beneficial reuse of the land.

As such, the investigation was largely driven by documented historic operations and potential PCB concentrations in terrestrial portions of the QMCP. The prevailing COCs in the QMCP generally include organic and inorganic contaminants in surface and subsurface soils, groundwater, sediment, surface water, waste, and RPM. In addition, observed waste deposits and building materials were suspected to contain asbestos in addition to organic and inorganic contaminants. As a result, the SAP identified key analytes in environmental media for assessment during the SI. Although PCBs were prescribed for analysis in all environmental media, the selection of remaining analytes were subject to field observations and the judgment of the field teams collecting the samples. The following provides a summary of the target analytes defined in the SAP with respect to the investigated environmental media:

Surface Soils/Waste Deposits (0 to 6 inches bgs)

- Inorganic COCs (Metals and Available Cyanide) by EPA Methods 6010/200.7, 6020/200.8, 7471/245.5, and ASTM D7284;
- VOCs by EPA Method 8260;

- PCBs by EPA Methods 8081/8082;
- SVOCs by EPA Method 8270; and,
- Asbestos by Polarizing Light Microscopy (PLM) California Air Resource Board (CARB) 435 1,000 point count – analytical sensitivity 0.1 percent (%).

Subsurface Soils (> 6 inches bgs)

- Inorganic COCs (Metals and Available Cyanide) by EPA Methods 6010/200.7, 6020/200.8, 7471/245.5, and ASTM D7284;
- VOCs by EPA Method 8260;
- PCBs by EPA Methods 8081/8082; and,
- SVOCs by EPA Method 8270.

Groundwater

- Inorganic COCs (Metals) by EPA Methods 6010/200.7, 6020/200.8, and 7471/245.5;
- VOCs by EPA Method 8260;
- PCBs by EPA Methods 8081/8082; and,
- SVOCs by EPA Method 8270.

Sediment

- Inorganic COCs (Metals) by EPA Methods 6010/200.7, 6020/200.8, and 7471/245; and,
- PCBs by EPA Methods 8081/8082.

Surface Water

- Inorganic COCs (Metals) by EPA Methods 6010/200.7, 6020/200.8, 7471/245.5;
- PCBs by EPA Methods 8081/8082; and,
- SVOCs by EPA Method 8270.

<u>Drums, Containers, Building Materials, Bulk Asbestos, Waste Deposits and Residual Process Materials – Not Associated with Sediment/Depositional Wastes</u>

- Inorganic COCs (Metals) by EPA Methods 6010/200.7, 6020/200.8, 7471/245.5;
- PCBs by EPA Methods 8081/8082;
- Bulk Asbestos by PLM Method 600/R-93/116; and,
- Waste Characteristics by various methods.

Inorganic COCs were selected for analysis based on an assessment of historical exceedances of applicable regulatory criteria. Eleven inorganic COCs and cyanide were initially selected for analyses. The following provides a list of the selected inorganic analytes evaluated during the SI:

- Arsenic
- Barium
- Cadmium
- Chromium
- Copper
- Cyanide
- Lead

- Manganese
- Mercury
- Selenium
- Silver
- 7inc.

The species of chromium, trivalent versus hexavalent, was assessed and determined for environmental media during previous investigations in the area. The *Public Health Assessment for Evaluation of Inhalation of Airborne Stamp Sands in the Torch Lake Superfund Site and Surrounding Area* (Michigan Department of Community Health (MDCH), 2014 noted that "one would not expect the hexavalent chromium form to occur in stamp sands because the trivalent chromium is typically the predominant form of chromium in the environment." Therefore, samples analyzed during the SI were not further assessed for hexavalent chromium and regulatory criteria for trivalent chromium were utilized in the subsequent evaluation of data (both historical and current) derived from the QMCP.

3.2 FIELD PROCEDURES AND SAMPLE COLLECTION

Similar to SAP development, the implementation of field activities in the QMCP were conducted in several terrestrial and offshore phases to ensure that sufficient data was available to adequately characterize the potential human health and environmental risks present in each study area. Field sampling activities were generally completed during mobilizations in September 2018.

The following subsections summarize the procedures and methodologies used during the SI.

3.2.1 Potential Physical and Health Hazard Inventory

The evaluation of the QMCP included a physical inspection of the properties within the study area. Field inspections were conducted on properties where written access was granted to EGLE. In the cases where access was not requested based on historic operational and investigative findings, or access was not obtained, property conditions were evaluated from a neighboring property where access was obtained, or public right of way. The inspections included the locating and inventory of historical structures and artifacts associated with the former mining era operations within the QMCP. Each property or subarea was also inspected for potential physical and health hazards. Such hazards included potentially abandoned drums and containers, suspect asbestos containing materials (SACM), stained or oily soils, and similar observed environmental conditions. Potential physical hazards, including waste deposits, metal debris, and similar conditions were also recorded in areas accessed.

The effort included the development of field inspection tables that incorporated photographic documentation and written descriptions of identified features. Reconnaissance activities were completed at all of the properties in the QMCP. A Reconnaissance Log was used to document the general characteristics of the property including the inventory and documentation of mining era features, if any, for each property. The form was also used to document potential physical and health hazards identified on the property that warranted further inspection or sampling to adequately characterize potential risks. Completed Reconnaissance Logs specific to the Site parcels are included in *Appendix C*, *Site Inspections – Reconnaissance Logs, Targeted Inspections & Physical Hazards Inventory*.

The findings of the reconnaissance activities were used to facilitate the next phase of inspection. Targeted inspections included revisiting documented hazards and collecting samples to better characterize the perceived risks documented during reconnaissance. It should be noted that targeted inspection activities did not occur in all QMCP subareas due to site inspection reconnaissance evaluation. The following provides a summary of the various media that either were sampled or were considered for sampling during the targeted inspection activities at the Site parcels:

- Documented SACM was sampled by a State of Michigan licensed asbestos inspector. Sampled media included tar paper, tank insulation, pipe insulation, asphaltic brick siding, asphaltic roofing, shingles, mastic, and fibers observed in a burn pile.
- Documented abandoned containers were not opened and sampled due to health and safety considerations; however, exposed contents or surface soils adjacent to the containers were considered for sampling.
- Documented abandoned container contents and RPM were considered for sampling.
- Soil and groundwater were sampled to characterize Site conditions based on historic use and observation of potentially contaminated areas.

3.2.2 Bulk Material Sampling

An MSG State of Michigan licensed asbestos inspector collected 18 bulk SACM samples during the Fall 2018 sampling event. The sample locations were based on documented SACM and included several roofing, siding, and insulating materials observed at Julio Company/Former Amoco Bulk Oil Terminal and Julio Marine. In accordance with the SAP, MSG utilized dedicated sampling equipment for each sample to prevent potential cross contamination of asbestos fibers and samples were placed in sealable plastic bags/containers. Each sample bag was labeled with the unique sample identifier, date, and time of sampling following sample collection. Sampling data—including sample analyses, sample collection times and dates—were recorded on laboratory chain-of-custody forms. The samples were submitted under chain-of-custody to Eurofins TestAmerica, Inc. North Canton, Ohio for analysis of asbestos content by PLM analyses.

The sampled locations were located with a GPS unit with sub-meter accuracy and photographed. A summary of the targeted inspection sampling, including descriptions, requested analyses, and other relevant information is included on *Table 3-1*, *Sampling and Analysis Summary*. Findings are provided in **Section 5** and **Section 6** of this SI Report.

3.2.3 Surface Soil Sampling

Proposed surface soil sampling locations were predetermined in the SAP based on the evaluations and assessments presented in **Section 3.1**.

Surface soil samples were collected from proposed surface soil (0-3 in. and 0-6 in.) sampling locations from throughout the Site parcels. A total of 45 surface soil samples (SS and SB designations), including quality assurance (QA)/quality control (QC) samples, were collected. Disposable (dedicated) scoops were used to collect soil from a depth of 0 to 3 inches below the ground surface while samples from 0 to 6 inches below the ground surface were collected from soil cores as described in Section 3.2.4. Samples were placed in laboratory-supplied, 8-ounce glass jars in accordance with the SAP. Sample labels containing the unique sample identifier, date and time of sampling were attached to each 8-oz jar prior to sample collection. Sampling data—including sample analyses, sample collection times and dates—were recorded on laboratory chain-of-custody forms. The samples were submitted under chain-of-custody to EGLE's Environmental Laboratory in Lansing, Michigan for analysis as outlined in the SAP. Each of the sample locations were located with a GPS unit with sub-meter accuracy and a description of the sampled material was documented on a field log. A photographic log documenting sample collection activities is included in *Appendix D*, *Photographic Log*. A summary of the samples collected, including their descriptions, requested analyses, and other relevant information is included in *Table 3-1*, *Sampling and Analysis Summary*. Sampling locations, analytical results, and findings are included in Section 5 and Section 6 of this SI Report.

3.2.4 Subsurface Soil Sampling

Proposed subsurface soil sampling locations were predetermined in the SAP based on the evaluations and assessments presented in **Section 3.1**.

Prior to subsurface investigative activities, proposed investigative locations were cleared of potential underground utility lines or other anomalies prior to mobilization. MSG staked the investigative locations, Michigan's one-call system was notified of the scheduled work in accordance with *Public Act 174, Miss Dig Underground Facility Damage Prevention and Safety Act*, a joint utility meeting was conducted, and utility lines within were marked by the respective utility companies. Additionally, GSS performed ground penetrating radar (GPR) activities at proposed boring locations to identify any additional underground anomalies prior to the commencement of fieldwork.

Subsurface soil samples were collected from throughout the Site parcels. A total of 14 subsurface soil samples (SB designation), including QA/QC samples, were collected from the Site parcels in accordance with the SAP. EGLE's GSS utilized a track-mounted direct-push drill rig to retrieve continuous soil cores from the subsurface by advancing a 5-foot long, 1.5-inch diameter Macro-Core sampler to the desired depth. Borings were advanced into the groundwater table and subsurface soil samples collected for laboratory analysis were selected based on field screening results and visual or olfactory indication that contamination may be present. The lithology for each boring was classified by the field geologist in accordance with the Unified Soil Classification System (USCS) and recorded on the field log and screened with a photoionization detector (PID). Subsurface soil samples were collected from the vadose zone and select borings were chosen for the collection of groundwater samples based on field observations.

The samples were submitted under chain-of-custody to EGLE's Environmental Laboratory in Lansing, Michigan for analysis as outlined in the SAP. Each of the sample locations were located with a GPS unit with sub-meter accuracy and a description of the sampled material was documented on a field log. A photographic log, documenting sample collection activities, is included in *Appendix D*, *Photographic Log*. Completed boring logs are included in *Appendix E*, *Boring Logs*. A summary of the samples collected during the investigation, including their descriptions, requested analyses, and other relevant information is included on *Table 3-1*, *Sampling and Analysis Summary*. Sampling locations, analytical results, and findings are included in **Section 5** and **Section 6** of this SI Report.

3.2.5 Groundwater Sampling

Certain soil boring locations were selected to include the installation of a temporary groundwater sampling point or permanent monitoring well. Groundwater samples were collected either from the newly installed monitoring wells or utilizing a Screen-Point-16 (SP-16) stainless steel screen reusable sampling rod and were collected from throughout the Site parcels. A total of 28 groundwater samples (GW or MW designation), including QA/QC samples, were collected from the Site parcels in accordance with the SAP.

During sample collection using the SP-16, the downhole sampling tools were advanced into the water-bearing zone in the boring and the outer rod was withdrawn to expose the internal stainless steel screen. A low-flow peristaltic pump with disposable Teflon tubing was used to collect a grab groundwater sample from the screened sample interval of the SP-16 or permanent monitoring well. Field parameters for dissolved oxygen (DO), pH, oxidation reduction potential (ORP), conductivity, temperature, and turbidity were measured with a water-quality monitoring instrument equipped with a flow-through cell at the time of groundwater sample collection. Groundwater samples were pumped directly into laboratory-provided sample jars. Sample jars were then labeled and placed in a cooler on ice for transportation under chain of custody to EGLE's Environmental Laboratory in Lansing, Michigan for analysis as outlined in the SAP.

Each of the sample locations were located with a GPS unit with sub-meter accuracy and a description of the sample interval documented on a field log. A photographic log documenting sample collection activities is included in *Appendix D*, *Photographic Log*. GSS-completed boring logs documenting the temporary well screen interval are included in

Appendix E, Boring Logs. A summary of the samples collected during the investigation, including their descriptions, requested analyses, and other relevant information is included on **Table 3-1**, Sampling and Analysis Summary. Sampling locations, analytical results, and findings are included in **Section 5** and **Section 6** of this SI Report.

3.2.6 Sediment Sampling

Select sediment sampling locations were predetermined in the SAP based on the evaluations and assessments presented in **Section 3.1**. Other sediment sampling locations presented in the SAP were subject to change based on the findings of the underwater surveillance. These locations were moved with the intent of collecting material from the interior of submerged containers or from identified waste deposits based on GSS's underwater imagery targeting, a key element of the SI distinguishing it from previous investigations.

Sediment samples were collected from the north shoreline of the Portage Canal and Dollar Bay. A total of 12 sediment samples (SD designation), including QA/QC samples, were collected in accordance with the SAP. Sediment samples were collected utilizing the EGLE GSS's vibracore sampler. Polycarbonate tubing was advanced into the sediment using the vibrating drive head. The extracted sample core was opened, the sediment column logged, samples were collected using the prescribed intervals in the SAP or visual observations, including physical characteristics and staining, or olfactory evidence of contamination within the sediment sample core. The lithology for each sediment core was classified by the field geologist in accordance with the USCS and recorded on the field log. Sediment samples were transferred directly into laboratory-provided sample jars. Sample jars were then labeled and placed in a cooler on ice for transportation to the analytical laboratory under chain of custody. Offshore samples were maintained separately from terrestrial samples.

Each of the sample locations were located with a GPS unit with sub-meter accuracy and a description of the sample core was documented on a field log. A photographic log, documenting sample collection activities, is included in *Appendix D*, *Photographic Log*. Completed sediment logs are included in *Appendix F*, *Sediment Core Logs*. A summary of the samples collected during the SI, including their descriptions, requested analyses, and other relevant information is included on *Table 3-1*, *Sampling and Analysis Summary*. Sampling locations, analytical results, and findings are included in **Section 7** of this SI Report.

3.2.7 Decontamination Procedures and Management of Investigative Derived Wastes

Investigative-derived wastes (IDW) include the byproducts of the field activities, including excess sample media, spent sampling supplies, and expendable personal protective equipment (PPE). The following paragraphs describe the procedures used during the SI to manage IDW and decontaminate equipment used during the investigation.

During implementation of the terrestrial investigation, soil cuttings, purge water, and decontamination water were generated. Soil cuttings, following logging, screening, and sampling, were returned to the boring by EGLE. For locations where groundwater samples were collected, the soil cuttings were temporarily staged until all samples were collected and the sampling equipment was extracted from the boring. Excess groundwater generated during sample collection was discharged to the ground surface by EGLE. Following groundwater sampling, the boring was backfilled with the staged soil cuttings. Expendable groundwater sampling materials were containerized in a trash bag for disposal as non-hazardous municipal solid waste by EGLE at the end of the project phase. Reusable equipment, including the stainless steel sampling screen, was decontaminated between boring locations. Decontamination water generated through washing and rinsing was discharged to the ground surface in the vicinity of the sampling locations. Spray bottles of wash and rinse water were used to minimize the volume of decontamination fluids generated by the soil boring and well installation activities.

Implementation of the offshore sampling activities resulted in the generation of similar waste streams. Spent polycarbonate tubing used in the collection of vibracore sediment samples, spent sampling supplies, and PPE were

temporarily staged on the sampling vessel until the vessel returned to the dock. Upon returning to shore, the staged waste was transferred to a dumpster by EGLE for disposal. Excess sediment, debris, and surface water generated as a result of the sampling activities were returned to the lake in the vicinity of the sample location by EGLE.

Reusable equipment was decontaminated on board the sampling vessel using an Alconox[™] wash and rinse. Spray bottles of wash and rinse water were used to minimize the volume of decontamination fluids generated during the sediment sampling activities. Decontamination water generated through washing and rinsing was discharged to the lake in the vicinity of the sample location.

3.2.8 Sample Handling, Tracking, and Custody Procedures

All samples were identified, handled, shipped, tracked, and maintained under chain of custody as prescribed in the SAP. The following paragraphs summarize the sample management and tracking activities utilized during implementation of the SI.

Samples collected during the SI were given a unique sample identification (ID) number that was project- and location-specific. A record of sample ID numbers was kept with the field records and recorded on chain-of-custody forms. Sample labels using the nomenclature defined in the SAP were affixed to sample containers. After labeling, each sample was placed in a cooler with ice for transportation to the specified laboratory. Field documentation, including sampling forms, maps, and field logs were maintained in a field binder maintained by EGLE and MSG field personnel.

The field team used laboratory-provided sample custody forms to maintain and document sample integrity during sample collection, transportation, and storage. The chain of custody forms were used to document samples collected and the analyses requested. Chain of custody procedures documented the possession of individual samples from the time of collection in the field to the time of acceptance at the laboratory. Copies of the chain of custody records and the air bills (as needed) were retained and placed in the EGLE project file.

Laboratory chain-of-custody began with sample receipt and continues until samples are discarded. Sample coolers were generally hand delivered to the laboratory where a designated sample custodian received the incoming samples. The laboratory sample custodian recorded pertinent information associated with the samples, including the person(s) delivering the samples, the date and time received, and sample condition at the time of receipt (sealed, unsealed, or broken container; temperature; and other relevant remarks).

Investigative samples were delivered by a courier or shipped under chain of custody to the laboratories listed in the table below.

Matrix	Laboratory Name	Laboratory Address	Laboratory Contact Name	Laboratory Phone Number
Surface Soil Subsurface Soil Groundwater Surface Water Sediment	EGLE Environmental Laboratory	3350 N. Martin Luther King Blvd. Lansing, MI 48906- 2933	EGLE Laboratory Services Section Kirby Shane	(517) 335-9800
Bulk Asbestos and Asbestos in Soil	Eurofins TestAmerica, Inc.	4101 Shuffel Street NW North Canton, OH 44720	Kris Brooks	(330) 966-9790

The EGLE Environmental Laboratory does not perform asbestos analyses. As a result, the samples were shipped under chain of custody and managed by the EGLE Environmental Laboratory to a contract laboratory under the Contract Laboratory program.

3.2.9 QA/QC

All samples were collected and analyzed using the field and laboratory quality control procedures prescribed in the SAP. The following paragraphs summarize the field and laboratory quality control procedures utilized during implementation of the SI.

QC samples were collected to evaluate the field sampling methods and the overall reproducibility of the laboratory analytical results. Field duplicate samples were collected, processed, stored, packaged, and analyzed by the same methods as the investigative samples. QC for analytical procedures were performed in accordance with the laboratories' standard operating procedures (SOP).

Matrix spike/matrix spike duplicate (MS/MSD) samples were not collected during the implementation of field activities. Alternatively, MS/MSD samples were selected by the laboratory and "batched". As such, MS/MSD samples were not necessarily derived from investigative samples from the Project, but may have come from another sample set at the laboratory. MS/MSD results were reported with investigative sample results.

The EGLE Environmental Laboratory and their contracted laboratories provided analytical results in electronic data deliverable (EDD) and report formats, with QA/QC data included (case narrative, investigated data results summary, and QC sample summary results). Laboratory-generated data was imported to the Project database for mapping, reporting, and archival activities. Laboratory analytical reports are included in *Appendix G*, *Laboratory Analytical Reports*.

4. EXPOSURE ASSESSMENT

This Section presents the human health and ecological exposure criteria that are applicable to the QMCP. The discussions included in the following subsections will assist in framing the results presented in the detailed findings included in **Section 5** and **Section 6** with respect to the current land use and the anticipated future land use within the QMCP.

4.1 EGLE FACILITY DEFINITION

As defined in Section 20101(1)(s) of Part 201 of Michigan's Natural Resources and Environmental Protection Act (NREPA), being Public Act (PA) 451 of 1994, as amended, a "Facility" means any area, place, parcel or parcels of property, or portion of a parcel of property where a hazardous substance in excess of the concentrations that satisfy the cleanup criteria for unrestricted residential use has been released, deposited, disposed of, or otherwise comes to be located. Facility does not include any area, place, parcel or parcels of property, or portion of a parcel of property where any of the following conditions are satisfied:

- (i) Response activities have been completed under this part or the Comprehensive Environmental Response, Compensation, and Liability Act, 42 United States Code (USC) 9601 to 9675, that satisfy the cleanup criteria for unrestricted residential use.
- (ii) Corrective action has been completed under the resource conservation and recovery act, 42 USC 6901 to 6992k, part 111, or part 213 that satisfies the cleanup criteria for unrestricted residential use.
- (iii) Site-specific criteria that have been approved by the department for application at the area, place, parcel of property, or portion of a parcel of property are met or satisfied and hazardous substances at the area, place, or property that are not addressed by site-specific criteria satisfy the cleanup criteria for unrestricted residential use.
- (iv) Hazardous substances in concentrations above unrestricted residential cleanup criteria are present due only to the placement, storage, or use of beneficial use by-products or inert materials at the area, place, or property in compliance with part 115.
- (v) The property has been lawfully split, subdivided, or divided from a facility and does not contain hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use.
- (vi) Natural attenuation or other natural processes have reduced concentrations of hazardous substances to levels at or below the cleanup criteria for unrestricted residential use.

Note that in Section 20101(1)(x) of Part 201, hazardous substance does not include by definition stamp sands, which are defined as "finely grained crushed rock resulting from mining, milling, or smelting of copper ore and includes native substances contained within the crushed rock and any ancillary material associated with the crushed rock." Section 20101c goes on to further state that "Property onto which stamp sands have been deposited is not subject to regulation under this part unless the property otherwise contains hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use."

From a terrestrial standpoint, chemical concentrations detected in soil and groundwater in the QMCP exceed residential exposure criteria for one or more COCs. Analytical results and their implications on facility status are described further in the detailed findings in **Section 5** and **Section 6**, which documents the Julio Properties – Dollar Bay Site parcels as being facilities.

4.2 APPLICABLE SCREENING CRITERIA

In support of developing a comprehensive approach for evaluating risks, the analytical results from previous investigations and this SI were compiled and compared to the following regulatory screening criteria that were in place at the time of Project completion:

- Part 201 of NREPA, being PA 451 of 1994, as amended Residential and Nonresidential Cleanup Criteria for Response Activity (updated, June 25, 2018).
 - Surface Soil:
 - Subsurface Soil;
 - Abandoned Container Contents;
 - RPM¹
 - Groundwater; and,
 - Asbestos.
- EPA, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 CFR, Part 61, Subpart M) (EPA 1984).
 - Asbestos.
- EPA, Region 4, Ecological Screening Values (ESVs) (EPA 2018).
 - Sediment: and.
 - Surface Water.
- EGLE Rule 57 Water Quality Values, Surface Water Assessment Section (February 2020).
 - Surface Water.
- Sediment Quality Guidelines, Threshold Effect Concentrations (TECs) and Probable Effect Concentrations (PECs) (MacDonald, et al, 2000).
 - Sediment.

It should be noted that while EGLE's Media-Specific Volatilization to Indoor Air Interim Action Screening Levels (MSSLs) were used for screening purposes in evaluating the limits of contamination, they were not used for evaluation of exposure pathway exceedances in the Detailed Findings in **Section 5** and **Section 6**, are not promulgated rules, and cannot be used for a "Facility" determination, compliance, or for obtaining closure of a release. The regulatory screening criteria summarized above may be applicable to all or select portions of the QMCP. Limiting factors in the assessment of the applicability of these criteria may include, but are not limited to, specific environmental media (as noted above), current and anticipated future land use categories, and relevant exposure pathways for human and ecological receptors. Assessment of these factors requires that the analytical results of the SI and the respective geological and hydrogeological characteristics of the Project area be evaluated to determine generally which exposure pathways, risks, and conditions are relevant and applicable. The following subsections present the criteria assessment rationale and applicability determinations for identified exposure pathways in the QMCP.

4.2.1 Non-Evaluated Exposure Pathways

The following exposure pathway was not evaluated at the Julio Properties – Dollar Bay:

Risks to aesthetic characteristics of the affected media.

Although contaminated media has the potential to have impacts on aesthetics, this pathway was not assessed because assessment of potential risks to flora, fauna, the food chain, and aesthetics was beyond the scope of the evaluation. The comprehensive evaluation presented in this SI is aimed at determining if a release has occurred and whether or not human health and ecological risks are posed by any such release as they relate to current land use within the Site parcels.

4.2.2 Non-Applicable Exposure Pathways

The following exposure pathways are not applicable at the Julio Properties – Dollar Bay Site parcels:

None.

No non-applicable exposure pathways have been identified at the Julio Properties – Dollar Bay Site parcels.

4.2.3 Relevant Exposure Pathways Where Applicable Criteria Are Not Exceeded

The following exposure pathways are relevant at the Julio Properties – Dollar Bay Site parcels, but the maximum detected contaminant concentrations do not exceed applicable exposure criteria:

- Risks posed by hazardous substances in groundwater that may result in flammable or explosive conditions to be present in both residential and nonresidential settings.
- Risks posed by hazardous substances in soil and the potential for the substances to be inhaled if they are emitted as particulates and dispersed in ambient air in both residential and nonresidential settings.

4.2.4 Relevant Exposure Pathways Where Criteria Are Exceeded, But Pathway Is Incomplete

The following exposure pathways are relevant at the Julio Properties – Dollar Bay Site parcels, but the exposure pathway is currently incomplete:

- Risks posed by hazardous substances that are covered or capped with soil and or a vegetative cover.
 - A portion of the Julio Marine property features capped and vegetated areas along the shoreline of the Portage Canal. These areas include vacant industrial or commercial property that may or may not have been included in previous remedial actions in the area. Risks may be present in these areas where cap material has covered potential hazardous materials.

4.2.5 Relevant Exposure Pathways Where Applicable Criteria Are Exceeded and Pathway is Complete

The following exposure pathways are relevant at the Julio Properties – Dollar Bay and the exposure pathways are potentially complete:

- Risks posed by hazardous substances in soil and the potential for the substances to leach to groundwater that could be used as a drinking water source in both residential and nonresidential settings.
- Risks posed by hazardous substances in soil and the potential for the substances to leach to groundwater that could vent to surface water.
- Risks posed by hazardous substances in soil and the potential for direct contact with these soils in both residential and nonresidential settings.
- Risks posed by hazardous substances in soil that may result in the volatilization of contaminants to indoor air in residential and nonresidential settings.
- Risks posed by hazardous substances in soil that may result in the volatilization of contaminants to ambient air in residential and nonresidential settings.
- Risks posed by hazardous substances in groundwater and the potential for that groundwater to be used as a drinking water source in both residential and nonresidential settings.
- Risks posed by hazardous substances in groundwater and the potential for that groundwater to vent to surface water.
- Risks posed by hazardous substances in groundwater that may result in the volatilization of contaminants to indoor air in both residential and nonresidential settings.
- Risks due to free-phase liquids.
- Risks posed by hazardous substances in pore water and sediments that have the potential to have toxic effects on aquatic biota and/or enter the food chain.

Although relevant, EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil and groundwater evaluation in the detailed findings included in **Section 5** and **Section 6**. The rationale for this exclusion is twofold:

- The Project investigation and anticipated response actions are being undertaken pursuant to Part 201 of Michigan's NREPA, being PA 451 of 1994, as amended. The concentrations of metals in excess of EGLE drinking water and surface water pathway criteria are ubiquitous in the study area and are predominantly the result of the presence of stamp sands. Stamp sands are not defined as a hazardous substance nor are they subject to regulation under Part 201 unless the property otherwise contains hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use; and,
- The study area is part of OU 2 for which the EPA ROD remedy called for No Action. The EPA's ROD OU 2 includes groundwater, surface water, submerged tailings and sediments in Torch Lake, Portage Lake, the Portage Canal, and other area water bodies. Note that EPA's No Action determination relies on the following to mitigate the effects of stamp sand to the extent practicable:

- The reduction of stamp sand loading to surface water bodies expected as a result of the remedial action taken at OU 1 and OU 3.
- Ongoing natural sedimentation and detoxification.
- Institutional programs and practices controlling potential future exposure to site-affected drinking water that were intended to be administered at the county and state level.
- The long-term monitoring and the five-year review process monitoring requirements of the remedy selected for OU 1 and OU 3 under the 1992 ROD.

Note that metals criteria for other relevant pathways, and organic and cyanide contaminants for all pathways were included in the evaluation.

EGLE's MSSLs may be applicable to all or a select portion of the Site parcels; however, due to limiting factors as discussed in **Section 4.2**, including unknown anticipated future land use and conditions, the screening levels were excluded from the exposure assessment for each subarea. As noted above, the screening levels are not promulgated rules and cannot be used for "Facility" determination or compliance.

4.2.6 Relevant Cleanup Criteria for Hazardous Substances in Contaminated Environmental Media Not Accounted for by Other Rules

To assure that hazardous substances in contaminated environmental media do not pose unacceptable risks not accounted for by other rules in Part 201, the concentration of a hazardous substance in a given environmental medium shall meet cleanup criteria based on sound scientific principles and determined by EGLE to be necessary to protect the public health, safety, and welfare and the environment.

The following, not accounted for by other rules in this part, are relevant at the Site parcels:

- Risks posed by physical hazards.
- Risks posed by hazardous substances in surface soil that may result from the direct transport or runoff of hazardous substances in soil into surface water.
- Risks posed by hazardous substances in waste and abandoned containers that may result from the direct transport or runoff of hazardous substances into soil, groundwater, and surface water.

4.3 CONCEPTUAL SITE MODEL

The applicable regulatory criteria and the relevant exposure pathways assessed in the preceding subsections indicate that COCs are present in various environmental media at the Site parcels. COCs have been identified in surface and vadose zone soils, groundwater, pore water, and sediment that have the potential to affect human and ecological receptors, as well as recreational users or consumers of the natural resources of Portage Canal. Further, ACM was identified in deteriorating building materials exposed to the elements and Light non-aqueous phase liquid (LNAPL) was measured in multiple monitoring wells, including near the shore of the Portage Canal.

The current and foreseeable land use at the Site parcels includes nonresidential uses; historical documentation indicates that this area was highly industrialized through the 1960s. The extent of these operations included both terrestrial and offshore operations that included the discharge of wastes and debris to the Portage Canal. The eventual end of mining era operations and the generally undocumented transition of these properties to alternative uses likely resulted in the redistribution of surface soils and potentially contaminants along the shoreline. Further, physical hazards are also posed by residual mining era related conditions.

A Conceptual Site Model (CSM) was developed for the general QMCP to graphically present the relevant exposure pathways summarized in **Section 4.2** and their relationship to the distribution of contaminants in the nearshore (terrestrial and offshore) environment throughout the QMCP. While the CSM was developed for the QMCP, each individual parcel identified and addressed as part of the SI investigation is unique and may require a property-specific risk assessment based on current and anticipated future land-use. The QMCP CSM represented in *Appendix H*, *Conceptual Site Model – Exposure Pathway Evaluation* depicts these relationships under both residential and nonresidential land use scenarios.

5. DETAILED FINDINGS – JULIO COMPANY/FORMER AMOCO BULK FUEL TERMINAL

This Section summarizes the results and subsequent findings for the Julio Company/Former Amoco Bulk Fuel Terminal parcel within the Julio Properties – Dollar Bay portion of QMCP derived from implementation of the SAP. The narrative follows the systematic investigative approach outlined in **Section 3**, while providing specific details about the potential human health and ecological risks associated with the historical mining operations in this subarea of QMCP.

5.1 SITE INSPECTION AND INVESTIGATION RESULTS

The implementation of the site inspection and investigation activities provided critical lines of evidence that link the historical documentation and the current environmental conditions in and around Dollar Bay. The following subsections present the findings of the inspection and investigation activities and provide correlation of mining era operations and their potential impacts on the nearshore environment of the Portage Canal and Dollar Bay.

5.1.1 Site Inspection

The site inspection at each subarea included the inventory and locating of historical structures and similar surficial artifacts associated with the former industrial operations in the area. Each subarea was also inspected for potential physical and health hazards that were documented, photographed, and located with a GPS unit. The inventoried hazards were then qualitatively assessed for potential human health and environmental risks to determine if analytical sampling was warranted during the targeted inspection phase of the work.

On September 27, 2018, MSG field team personnel performed reconnaissance activities at the Julio Company/Former Amoco Bulk Fuel Terminal. The property parcel, totaling approximately 17.5 acres, was visually inspected and observations were recorded while traversing the property. The qualitative assessment of the reconnaissance findings at the Julio Company/Former Amoco Bulk Fuel Terminal warranted the performance of limited targeted inspection activities. The following provides a summary of the findings associated with the reconnaissance activities. A copy of the reconnaissance findings is provided in *Appendix C*, *Site Inspections – Reconnaissance Logs*, *Targeted Inspections & Physical Hazards Inventory* of this SI Report.

5.1.1.1 Reconnaissance

The reconnaissance activities identified multiple 55-gallon drums, 13 fuel tanks of various sizes, tar paper and insulation material that was SACM, evidence of a suspect UST, electrical components, batteries, pipes, and evidence of two potential releases.

5.1.1.2 Targeted Inspection

The qualitative assessment of the reconnaissance findings at the Julio Company/Former Amoco Bulk Fuel Terminal warranted the performance of limited targeted inspection activities. Bulk materials samples for asbestos analysis were collected on September 28, 2018 by a MSG field team. The following subsections summarize the findings of these sampling efforts.

5.1.1.2.1 Bulk Material Sampling

Based on the SACM hazards noted during the reconnaissance activities a limited asbestos survey was conducted as part of the SI to identify suspect potentially friable ACM. The asbestos survey was limited to SACMs in open areas of the property and within debris piles, and included black tar paper with fibers and tank insulation.

Four bulk samples were collected from the two SACMs as part of the SI. Laboratory analysis indicated that neither of the material samples contained greater than 1% asbestos.

The samples were analyzed in accordance with EPA Method 600/R-93/116, "Method for the Determination of Asbestos in Bulk Building Materials" using Polarized Light Microscopy (PLM). This laboratory analytical method identifies the presence and estimated concentration of asbestos fibers in sampled building materials. The location of the bulk asbestos sampling location collected during the targeted inspection activities are depicted on *Figure 5-1*, *ACM Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)*. A detailed summary of bulk asbestos sample analytical results collected from the Julio Company/Former Amoco Bulk Fuel Terminal during the targeted inspection are provided in *Table 5-1*, *Summary of ACM Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)*.

5.1.2 Site Investigation

The SI for the Julio Properties – Dollar Bay was developed based on a variety of data and information as outlined in **Section 3**. In addition to the historical accounts and documentation, current land use and potential exposure pathways were also taken into consideration when selecting the sampling locations specific to Julio Company/Former Amoco Bulk Fuel Terminal. The following subsections present the outcomes of investigative activities completed at the Julio Company/Former Amoco Bulk Fuel Terminal by summarizing the laboratory analytical results and characterizing their impacts on the environmental media in which they were detected.

5.1.2.1 Terrestrial Investigation

Intrusive investigation activities at the Julio Company/Former Amoco Bulk Fuel Terminal were generally guided by the findings of historical research and field observations. From a historical standpoint, the area was the location of a fuel storage facility operated by Amoco Oil Company and was later used for storage of various equipment and debris.

COCs in the study area were not generally understood nor previously investigated to fully characterize or address potential organic and inorganic contaminants in soil and groundwater. The following subsections present a summary of the field observations and analytical results derived from the terrestrial sampling activities at the Julio Company/Former Amoco Bulk Fuel Terminal.

5.1.2.1.1 Field Observations – Soil and Groundwater

Five borings were advanced by GSS on the property to 4 to 11 ft bgs. Boring locations are depicted on *Figure 5-2*, *Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)*. Soil observations documented on field logs indicate that the subsurface at Julio Company/Former Amoco Bulk Fuel Terminal is generally comprised of fine to medium brown sand.

During groundwater sampling, temporary well points were established at 4-ft intervals starting from 5 ft bgs to the boring terminus. One groundwater sample was blind drilled and sampled from 22 to 24 ft bgs. Saturated soil conditions were encountered at a depths of 4.5 and 7 ft bgs. Groundwater quality parameters, including temperature, conductivity, DO, and pH, measured at the time of sample collection were generally considered normal.

5.1.2.1.2 Soil Sampling Results

Terrestrial soil investigation activities were completed at Julio Company/Former Amoco Bulk Fuel Terminal on September 9, 2018. An additional surface soil sample was collected on September 28, 2018 (QMCP-SS56). During the mobilizations a total of ten soil samples were collected from six (6) sampling locations. Soil boring locations are depicted on *Figure 5-2*, *Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)*. Investigative methodologies and soil sampling techniques were conducted using the procedures outlined in **Section 3**.

Soil sampling included five shallow soil sampling intervals, generally from 0 to 3 inches or 0 to 6 inches in depth. The balance of the subsurface soil samples ranged from 0.5 ft to 6 ft in depth. The samples were analyzed for the parameters identified on *Table 3-1*, *Sampling and Analysis Summary* of this SI Report. The selection of analytical parameters was generally based upon potential environmental impacts associated with mining era operations in the vicinity of the sampling location or field observations.

The shallow and subsurface soil analytical results for the Julio Company/Former Amoco Bulk Fuel Terminal did not contain any COCs with concentrations at or above applicable regulatory criteria and MSSLs.

A detailed summary of soil analytical results for Julio Company/Former Amoco Bulk Fuel Terminal is provided in *Table 5-2*, *Summary of Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal*). Soil boring logs are included in *Appendix E*, *Boring Logs* of this SI Report.

5.1.2.1.3 Groundwater Sampling Results

During the installation of soil borings at the Julio Company/Former Amoco Bulk Fuel Terminal, temporary groundwater sampling locations were established to characterize groundwater in the area. The temporary monitoring points were installed and sampled using the methodologies presented in **Section 3**. The screened intervals in the groundwater sampling locations were established at 5 to 9 ft, 7 to 11 ft, and 22 to 24 ft bgs respectively. Three groundwater samples were collected. Temporary groundwater sampling locations are depicted on *Figure 5-3*, *Groundwater Analytical Results* (Julio Company/Former Amoco Bulk Fuel Terminal).

The collected groundwater samples were analyzed for the parameters identified on *Table 3-1*, *Sampling and Analysis Summary*. The selection of analytical parameters was generally based on potential environmental impacts associated with mining era operations in the vicinity of the sampling location or field observations. Several VOCs and SVOCs in one sample (QMCP-GW60) were detected at concentrations exceeding Groundwater Surface Water Interface Criteria (GSIC) and MSSLs.

A detailed summary of groundwater analytical results collected from the Julio Company/Former Amoco Bulk Fuel Terminal is provided in *Table 5-3*, *Summary of Groundwater Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal*). Groundwater analytical results are depicted on *Figure 5-3*, *Groundwater Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal*). Soil boring logs are included in *Appendix E*, *Boring Logs* of this SI Report.

5.2 NATURE AND EXTENT OF CONTAMINATION

Utilizing the established regulatory criteria presented in **Section 4** for various land use categories and exposure pathways, the laboratory analytical results for the Julio Company/Former Amoco Bulk Fuel Terminal were reviewed and compared to EGLE Cleanup Criteria Requirements for Response Activity as applicable for the sampled environmental media.

5.2.1 Comprehensive Exposure Assessment

The comparison was completed to determine which ecological and human exposure pathways, risks, and conditions are relevant at Julio Company/Former Amoco Bulk Fuel Terminal. Although not inclusive of relevant pathways where regulatory criteria were not exceeded, the following exposure pathways were determined to be relevant at Julio Company/Former Amoco Bulk Fuel Terminal:

- Risks posed by hazardous substances in groundwater and the potential for that groundwater to be used as a drinking water source in both residential and nonresidential settings.
- Risks posed by hazardous substances in groundwater that may result in the volatilization of contaminants to indoor air in both residential and nonresidential settings.
- Risks posed by hazardous substances in groundwater and the potential for that groundwater to vent to surface water.

As discussed in **Section 4.2.5**, EGLE drinking water and groundwater/surface water pathway criteria exceedances for metals were excluded from the soil and groundwater evaluation. The rationale for this exclusion is twofold:

- The Project investigation and anticipated response actions are being undertaken pursuant to Part 201 of NREPA, being PA 451 of 1994, as amended. The concentrations of metals in excess of the EGLE drinking water and groundwater/surface water interface pathway criteria are ubiquitous in the study area and are predominantly the result of the presence of stamp sands. Stamp sands are not defined as a hazardous substance nor are subject to regulation under Part 201 unless the property otherwise contains hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use; and,
- The study area is part of OU 2 for which the EPA ROD remedy called for No Action. The EPA's ROD OU 2 includes groundwater, surface water, submerged tailings and sediments in Torch Lake, Portage Lake, the Portage Canal, and other area water bodies. Note that EPA's No Action determination relies on the following to mitigate the effects of stamp sand to the extent practicable:
 - The reduction of stamp sand loading to surface water bodies expected as a result of the remedial action taken at OU 1 and OU 3.
 - Ongoing natural sedimentation and detoxification.
 - Institutional programs and practices controlling potential future exposure to site-affected drinking water which were intended to be administered at the county and state level.
 - The long-term monitoring and the five-year review process monitoring requirements of the remedy selected for OU 1 and OU 3 under the 1992 ROD.

Note that metals criteria for other relevant pathways, and PCB and organic contaminants for all pathways were included in the evaluation.

Furthermore, as discussed in **Section 4.2.5**, EGLE's MSSLs were not included in the exposure pathway assessment due to unknown anticipated future land use and conditions and because the screening levels are not promulgated rules. The MSSLs were considered for screening and delineation purposes only.

5.2.1.1 Building Materials and Containers

During the targeted inspection activities completed at Julio Company/Former Amoco Bulk Fuel Terminal, two SACMs were identified and samples were collected from the building and insulation materials.

The following table provides an aggregate summary of the sample locations with respect to the total number of samples and how they compare to applicable regulatory criteria. The table is based solely on the total number of samples, inclusive of historical samples, collected from the Julio Company/Former Amoco Bulk Fuel Terminal. It lists only the number of samples for a specific analytical suite that contained one or more exceedance of a given criterion. Bulk asbestos samples were compared to applicable NESHAP standards and EGLE Particulate Soil Inhalation Criteria (PSIC).

		alytica mmar			tandard for Hazardous Air Ilutants
Building Materials Analytical Result Summary Table	Total Number of Samples	Detected Analytes	Total Exceedances	Friable Asbestos Material	Non-Friable Asbestos Material
Asbestos (Bulk)	4	0	0	0	0
COCs exceeding ap		regu	latory	Not applicable	

During the reconnaissance activities completed at Julio Company/Former Amoco Bulk Fuel Terminal, four intact drums, two empty drum carcasses, and a number of tanks were identified. None of the drums were sampled; however surface soil sample QMCP-SS56 was collected at an area where a petroleum and tar release was observed adjacent to one of the tanks.

5.2.1.2 Soil Exposure Pathway Assessment

Laboratory analysis of soil samples from the Julio Company/Former Amoco Bulk Fuel Terminal did not detect COC concentrations that were at or above concentrations that trigger a "Facility" designation as defined in Section 20101(1)(s) of the NREPA. The following tables provide a summary of the soil sample locations with respect to the total number of samples and how they compare to the applicable EGLE Cleanup Criteria for Response Activity under both Residential and Nonresidential exposure scenarios.

The tables are based solely on the total number of samples collected from Julio Company/Former Amoco Bulk Fuel Terminal. They list only the number of samples for a specific analytical suite that contained one or more exceedance of a given criterion.

					Cleanup	Criteria Requ	irements fo	r Respons	e Activity	– Residen	tial**	
Soil	Analy	rtical Sumn	nary	Groundwa	ter Protection	Indoor Air		Ambie	nt Air		Conta ct	Csat
Analytical Result Summary Table	Total Number of Samples	Detected Analytes*	Total Exceedances*	Residential Drinking Water Protection Criteria	Groundwater Surface Water Interface Protection Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Infinite Source Volatile Soil Inhalation Criteria (VSIC)	Finite VSIC for 5 Meter Source Thickness	Finite VSIC for 2 Meter Source Thickness	Particulate Soil Inhalation Criteria	Direct Contact Criteria	Soil Saturation Concentration Screening Levels
Inorganics	9	7	0	NA*	NA*	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0	0	0	0	0	0
VOCs	9	0	0	0	0	0	0	0	0	0	0	0
SVOCs	10	7	0	0	0	0	0	0	0	0	0	0
Asbestos	0	0	0	0	0	0	0	0	0	0	0	0
Total PCBs	1	0	0	0	0	0	0	0	0	0	0	0
Pesticides	0	0	0	0	0	0	0	0				
COCs exceedii in one or more	ng applicable samples	regulatory	rcriteria	NOT APPL	LICABLE							

 NA^* = The EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil evaluation as explained in Section 4.2.5.

Total exceedance column does not include MSSLs or non-applicable criteria (Drinking Water Protection Criteria [DWPC] and Groundwater/Surface Water Interface Protection Criteria [GSIPC] for metals).

^{*}Denotes total number of specific instances of an analyte being detected or exceeding criteria, can be multiple within one sample location.

^{**}Denotes total number of samples exceeding criteria, cannot be multiple within one sample location.

					Cleanup C	riteria Requi	rements fo	r Response	Activity –	Nonreside	ntial**	
Soil	Analy	rtical Summ	nary	Groundwate	er Protection	Indoor Air		Ambie	ent Air		Contact	Csat
Analytical Result Summary Table	Total Number of Samples	Detected Analytes*	Total Exceedances*	Nonresidential Drinking Water Protection Criteria	Groun Infini Inh:		Particulate Soil Inhalation Criteria	Direct Contact Criteria	Soil Saturation Concentration Screening Levels			
Inorganics	9	7	0	NA*	NA*	0	0	0	0	0	0	0
Cyanide	0	0	0	0	0	0	0	0	0	0	0	0
VOCs	9	0	0	0	0	0	0	0	0	0	0	0
SVOCs	10	7	0	0	0	0	0	0	0	0	0	0
Asbestos	0	0	0	0	0	0	0	0	0	0	0	0
Total PCBs	1	0	0	0	0	0	0	0	0	0	0	0
Pesticides	0	0	0	0	0	0	0					
COCs exceedi in one or more		e regulatory	r criteria	NOT APPLI	CABLE							

 NA^* = The EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil evaluation as explained in Section 4.2.5.

Total exceedance column does not include MSSLs or non-applicable criteria (DWPC and GSIPC for metals).

5.2.1.3 Groundwater Exposure Pathway Assessment

Groundwater analytical results from Julio Company/Former Amoco Bulk Fuel Terminal identified COC concentrations in groundwater that were at or above concentrations that trigger a "Facility" designation as defined in Section 20101(1)(s) of the NREPA. Similar to the preceding soil tables, the following table provides a summary of the aforementioned sample locations with respect to the total number of samples and how they compare to the applicable EGLE Cleanup Criteria for Response Activity under both Residential and Nonresidential exposure scenarios.

^{*}Denotes total number of specific instances of an analyte being detected or exceeding criteria, can be multiple within one sample location.

^{**}Denotes total number of samples exceeding criteria, cannot be multiple within one sample location.

	Analytica	l Summary	1	Clear	nup Criteria		nts for Respo Nonresidentia	onse Activity - al**	Resident	ial and
Groundwater Analytical Result Summary Table	Total Number of Samples	Total Number of Detected Analytes*	Total Exceedances*	Residential Drinking Water Criteria	Nonresidential Drinking Water Criteria	Groundwater Surface Water Interface Criteria	Residential Groundwater Volatilization to Indoor Air Inhalation Criteria	Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria	Water Solubility	Flammability and Explosivity Screening Levels
Inorganics	3	7	0	NA*	NA*	NA*	0	0	0	0
Cyanide	0	0	0	0	0	0	0	0	0	0
VOCs	3	15	4	0	0	1	0	0	0	0
SVOCs	3	4	1	0	0	1	0	0	0	0
Total PCBs	1	0	0	0	0	0	0	0	0	0
Pesticides	0	0	0	0	0	0	0	0	0	0
COCs exceeding applicable sample	OCs exceeding applicable regulatory criteria in one or more						ETHYLNAPH HALENE (SV	THALENE (VO	C), NAPHT	HALENE

NA* = The EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil evaluation as explained in Section 4.2.5.

Total exceedance column does not include MSSLs or non-applicable criteria (Drinking Water Criteria [DWC] and Groundwater/Surface Water Interface Criteria [GSIC] for metals).

5.2.2 Extent of Contamination

The comparison of analytical results to applicable regulatory criteria indicates that potential human health and ecological risks are present in groundwater at the Julio Company/Former Amoco Bulk Fuel Terminal. Recalling the goals and objectives of the SI, the following subsections describe the extent of contamination in environmental media in the study area.

5.2.2.1 Building Materials and Containers Extent of Contamination

Reconnaissance activities and asbestos analytical results for the sampled building and insulation materials did not confirm that ACM is present at the Julio Company/Former Amoco Bulk Fuel Terminal. Analytical results for surface soil sample QMCP-SS56 collected at the spilled petroleum and tar material adjacent to a tank did not identify detections of COCs exceeding EGLE criteria.

^{*}Denotes total number of specific instances of an analyte being detected or exceeding criteria, can be multiple within one sample location.

^{**}Denotes total number of samples exceeding criteria, cannot be multiple within one sample location.

5.2.2.2 Soil Extent of Contamination

Soil analytical results did not exceed applicable EGLE criteria for organic or inorganic contaminants in either residential or nonresidential scenarios.

Samples were collected from surface and subsurface soil intervals throughout the Julio Company/Former Amoco Bulk Fuel Terminal. The sampling locations were generally within approximately 700 to 1,200 ft of the shoreline of the Portage Canal.

5.2.2.3 Groundwater Extent of Contamination

Groundwater analytical results for VOCs and SVOCs exceeded GSIC and MSSLs at QMCP-GW60, collected from 7 to 11 ft bgs. No other analyzed constituents were detected above applicable criteria with the exception of metals, which were not evaluated further as discussed in **Section 4.2.5**. The groundwater sampling locations were established within the Julio Company/Former Amoco Bulk Fuel Terminal parcel approximately 640 to 1,200 ft from the shoreline of the Portage Canal at depths of 5 to 9 ft, 7 to 11 ft, and 22 to 24 ft bgs.

5.3 CONCLUSIONS AND RECOMMENDATIONS

The analytical results and interpretation summarized in the preceding subsections document potential human health and ecological risks that are present at the Julio Company/Former Amoco Bulk Fuel Terminal. The following subsections provide a synopsis of these findings and a recommended path forward for mitigating these risks.

5.3.1 Conclusions

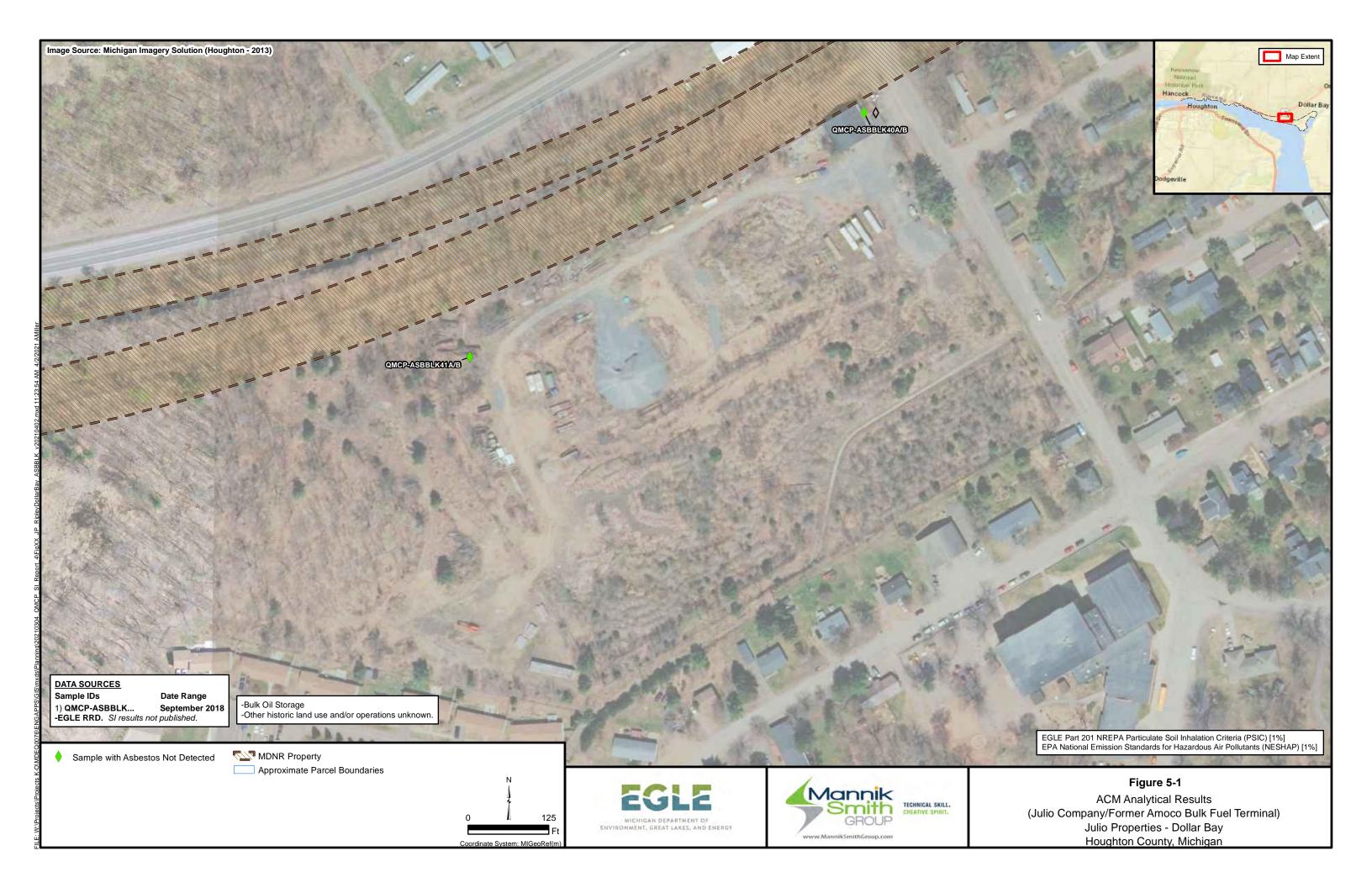
Environmental impacts at the Julio Company/Former Amoco Bulk Fuel Terminal are generally characterized by detections of organic contaminants in groundwater. Although specific sources of these contaminants may not be fully understood, research related to the historical operations provided substantive evidence for assessing specific operational areas and selecting target analytes anticipated to be present within the study area.

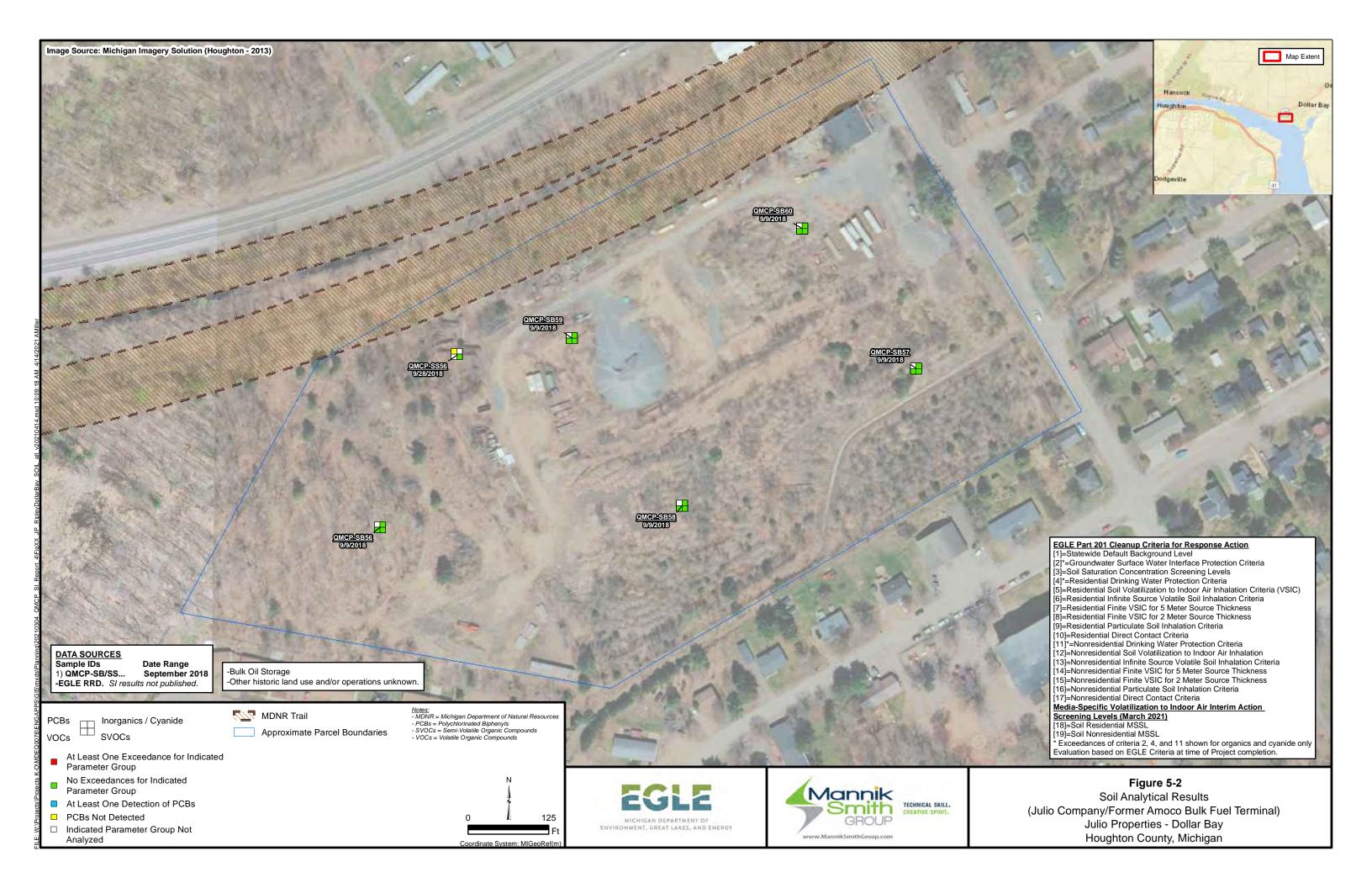
The analytical results summarized above provide sufficient analytical data and lines of evidence to conclude that the Julio Company/Former Amoco Bulk Fuel Terminal parcel is a Facility as defined in Section 20101(1)(s) of the NREPA. The following table provides a summary of the affected environmental media, applicable regulatory criteria, and potential receptors.

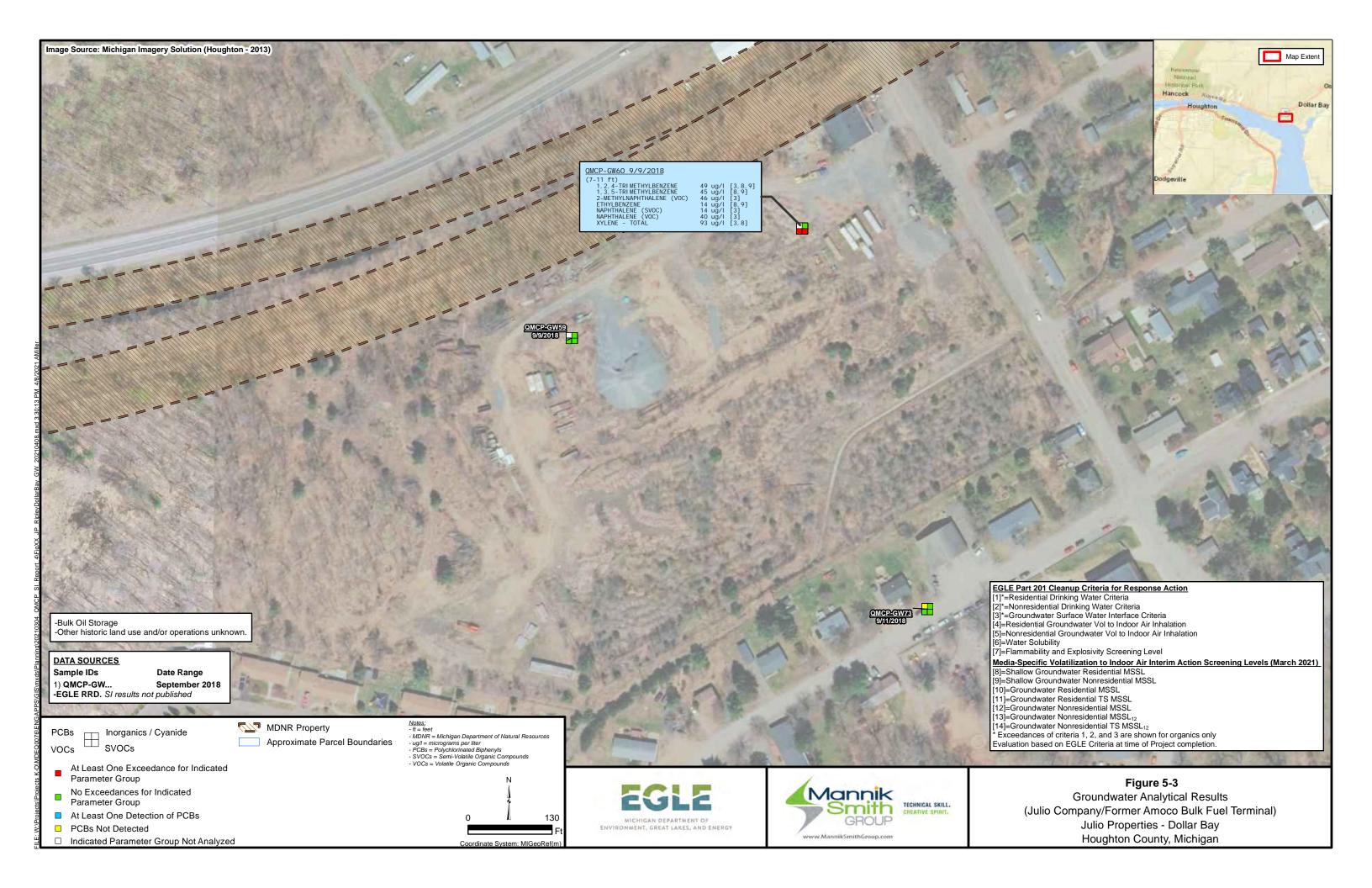
Julio Co	ompany	y/Former	· Amo	co Bul	k Fuel To	erminal	– Me	dia, Cri	teria, Pot	entia	l Red	ceptor	Summ	ary	
Media		Soil			Groundwate	r		Air	Sediment	Surf Wa	face iter	Building and Al	g Materia bandoned	ls, Asbe d Conta	estos, iners
Criteria	Drinking Water Protection	Groundwater Surface Water Interface	Direct Contact	Orinking Water Protection	Groundwater Surface Water Interface	Flammability and Explosivity	Volatilization	Particulate Inhalation	Ecological	Ecological	Human Health	Particulate Inhalation	Flammability and Explosivity	Environmental	Human Health
Potential Receptor	Drii	Ground	Dir	Drii	Gr Sur	Flam	N	а –		В	뮈	д –	Flam	En	뮈
Residential Human					✓										
Nonresidential Human					✓										
Water Column Organism															
Benthic Organism															
	COCs exceeding applicable regulatory criteria in one or more sample					ENZENE, ALENE (SV		HYLNAPHT	THALENE (VC	OC), NA	APHTH.	ALENE (\	/OC), XY	LENE	

The following provides a summary of findings derived from the assessment of the Julio Company/Former Amoco Bulk Fuel Terminal with respect to the goals and objectives for the Project:

- Terrestrial sources of contamination are present in the form of VOCs and SVOCs in groundwater in the study area. The extent of contamination at the Julio Company/Former Amoco Bulk Fuel Terminal has not been fully defined or addressed.
- Groundwater impacts on the property exceeded GSIC and MSSLs for residential and nonresidential scenarios but did not exceed solubility or flammability/explosivity screening levels.


5.3.2 Recommendations


The conclusions outlined in the preceding subsection establish that the Julio Company/Former Amoco Bulk Fuel Terminal parcel is a Part 201 Facility. Section 20107a of Part 201 of NREPA describes the duties of owners or operators of a Facility, regardless of their liability, including: prevent unacceptable exposures, prevent exacerbation, and take reasonable precautions against the foreseeable actions of third parties. Some exceptions may apply; in any case, owners and operators of contaminated properties should become familiar with Section 20107a and the associated Rules.


FIGURES

DETAILED FINDINGS REPORT – JULIO COMPANY/FORMER AMOCO BULK FUEL TERMINAL

TABLES

DETAILED FINDINGS REPORT –
JULIO COMPANY/FORMER AMOCO BULK FUEL TERMINAL

TABLE 5-1 Summary of ACM Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Julio Properties - Dollar Bay **Houghton County, Michigan**

Sample	Field	Sample	Asbestos		Friable/	Sample Description	Sample Notes
Location	Sample ID	Date	1	Non-friable		Campio 2000 i puoli	Gampio Notos
Julio Company/Former	Amoco Bulk Fuel Terminal						
QMCP-ASBBLK40	QMCP-ASBBLK40A-092818	9/28/2018	ND		friable	Black tar paper with fibers	
QMCP-ASBBLK40	QMCP-ASBBLK40B-092818	9/28/2018	ND	-	friable	Black tar paper with fibers	
QMCP-ASBBLK41	QMCP-ASBBLK41A-092818	9/28/2018	ND	-	friable	Tank insulation	
QMCP-ASBBLK41	QMCP-ASBBLK41B-092818	9/28/2018	ND	ND		Tank insulation	

^{-- =} Not Analyzed

ND = Not detected

EGLE = Michigan Department of Environment, Great Lakes, and Energy

Results greater than the National Emissions Standard for Hazardous Air Pollutants (NESHAP) and EGLE Particulate Soil Inhalation Criteria of 1% are highlighted yellow.

Evaluation based on EGLE Criteria at time of Project completion.

TABLE 5-2 Summary of Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Julio Properties - Dollar Bay Houghton County, Michigan

Location Code								EGLE Part	201 Generic Cle	eanup Criteria							Indoor Air I	Volatilization to nterim Action ng Levels			Ju	ilio Compan	y/Former A	moco Bulk	Fuel Termin	nal	
Station Name	CAS Number																			QMCF	P-SB56		QMCP	-SB57		QMCP	SB58
Field Sample ID																			QMCP-S	B56 0-6in	QMCP-S	B56 6in-4ft	QMCP-S	B57 0-4ft	QMCP-SB	58 0-6in	QMCP-SB58 6in-5ft
Sample Date		[2] Groundwater	[4]	[5] Residential	[6] Residential	[7] Residential	[8] Residential	[9]	[40]	[11]	[12] Nonresidential	[13] Nonresidential	[14] Nonresidential	[15] Nonresidential	[16]	r471		[40]	9/9/	2018	9/9	/2018	9/9/2	2018	9/9/20	018	9/9/2018
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Soil Volatilization	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential Particulate	[10] Residential	Nonresidential Drinking Water	Soil Volatilization	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Nonresidential Particulate Soil	[17] Nonresidential	[18] Soil Residentia	Soil	0 - 0	0.5 ft	0.5	- 4 ft	0 -	4 ft	0 - 0.5	5 ft	0.5 - 5 ft
Sample Description		Interface Protection Criteria	Protection Criteria	to Indoor Air Inhalation Criteria	Volatile Soil Inhalation Criteria	Criteria - 5	Criteria - 2 Meter Source Thickness	Soil Inhalation Criteria	Direct Contact Criteria	Protection Criteria	to Indoor Air Inhalation Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Inhalation Criteria	Direct Contact Criteria		Nonresidential MSSL	SAND, Fin medium, b saturated a	rown,	SAND, Fin medium, b saturated a	rown,	SAND, Fine medium, br		SAND, Fine the medium, brown		SAND, Fine to medium, brown, dry
																			Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result Exceeds
Inorganics - Metals (mg/kg)	•		'	•			'		,	,	'			•			·										
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	NLV	100,000 (B)	400 (B)	700 (B)	NLV	NLV	NLV	NLV	44,000 (B)	900 (B,DD)	NA	NA	4.7		1.3	-	1.3		7.6	-	<1.0 U
Organics - PCBs (ug/kg)																				•							
TOTAL PCBS	1336-36-6	NLL	NLL	3.00E+6 (J,T)	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	5.20E+6 (J,T)	1,000 (J,T)	NLL	1.60E+7 (J,T)	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	6.50E+6 (J,T)	1,000 (J,T)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM
Organics - SVOCs (ug/kg)																											
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	NLV	ID	20,000 (Q)	NLL	NLV	NLV	NLV	NLV	ID	80,000 (Q)	NA	NA	<220 U	-	<220 U	-	<210 U	-	<210 U	-	<210 U
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	ID	ID	80,000 (Q)	NA	NA	<450 U	-	<440 U	-	<430 U	-	<410 U	-	<420 U
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	ID	ID	8.00E+6 (Q)	NA	NA	<220 U	-	<220 U	-	<210 U	-	<210 U	-	<210 U
FLUORANTHENE	206-44-0	5,500	730,000	1.00E+9 (D)	7.40E+08	7.40E+08	7.40E+08	9.30E+09	4.60E+07	730,000	1.00E+9 (D)	8.90E+08	8.80E+08	8.80E+08	4.10E+09	1.30E+08	NA	NA	<220 U	-	<220 U	-	<210 U	-	<210 U	-	<210 U
PHENANTHRENE	85-01-8	2,100	56,000	2.80E+06	1.60E+05	1.60E+05	1.60E+05	6.70E+06	1.60E+06	1.60E+05	5.10E+06	1.90E+05	1.90E+05	1.90E+05	2.90E+06	5.20E+06	NA	NA	<220 U	-	<220 U	-	<210 U	-	<210 U	-	<210 U
PYRENE	129-00-0	ID	4.80E+05	1.00E+9 (D)	6.50E+08	6.50E+08	6.50E+08	6.70E+09	2.90E+07	4.80E+05	1.00E+9 (D)	7.80E+08	7.80E+08	7.80E+08	2.90E+09	8.40E+07	NA	NA	<220 U	-	<220 U	-	<210 U	-	<210 U	-	<210 U
Organics - VOCs (ug/kg)																											
TOTAL VOCS	_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	-	ND	-	ND	-	ND	-	ND

Note: Analytical and Criteria Footnotes are included on the last page of the table.

TABLE 5-2 Summary of Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Julio Properties - Dollar Bay Houghton County, Michigan

Location Code								EGLE Part	201 Generic Cle	eanup Criteria							Indoor Air I	Volatilization to nterim Action ng Levels			Jι	ılio Compan	ny/Former A	umoco Bulk	r Fuel Termin	nal		
Station Name	CAS Number																			QMCF	P-SB59			QMCF	P-SB60		QMCP-SS	56
Field Sample ID																			QMCP-S	B59 0-6in	QMCP-S	B59 6in-4ft	QMCP-S	B60 0-6in	QMCP-SB	60 6in-6ft	QMCP-SS56-	-0-3in
Sample Date		[2] Groundwater	[4]	[5] Residential	[6]	[7] Residential	[8] Residential	[9]	r401	[11]	[12] Nonresidential	[13]	[14] Nonresidential	[15] Nonresidential	[16]	r471		[40]	9/9/	2018	9/9	/2018	9/9/	2018	9/9/2	.018	9/28/2018	8
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Soil Volatilization	Residential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential Particulate	[10] Residential	Nonresidential Drinking Water	Soil Volatilization	Nonresidential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Nonresidential Particulate Soil	[17] Nonresidential	[18] Soil Residential	[19] Soil	0 - (0.5 ft	0.5	i - 4 ft	0 - 0).5 ft	0.5 -	6 ft	0 - 0.25 ft	ft
Sample Description		Interface Protection Criteria	Protection Criteria	to Indoor Air Inhalation Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Soil Inhalation Criteria	Direct Contact Criteria	Protection Criteria	to Indoor Air Inhalation Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Inhalation Criteria	Direct Contact Criteria	Contact Meei Nonreside	Nonresidential MSSL	SAND, Fin- medium, bi saturated a	rown,	SAND, Fir medium, b saturated		SAND and	GRAVEL	SAND, Fine medium, bro saturated at	own,	Stained soil nea tank	ar fuel
																			Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result Exc	xceeds
Inorganics - Metals (mg/kg)	,		,					•					•														•	
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	NLV	100,000 (B)	400 (B)	700 (B)	NLV	NLV	NLV	NLV	44,000 (B)	900 (B,DD)	NA	NA	1.4	-	<1.0 U	-	16	-	27	-	NM	-
Organics - PCBs (ug/kg)																												
TOTAL PCBS	1336-36-6	NLL	NLL	3.00E+6 (J,T)	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	5.20E+6 (J,T)	1,000 (J,T)	NLL	1.60E+7 (J,T)	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	6.50E+6 (J,T)	1,000 (J,T)	NA	NA	NM	-	NM	-	NM		NM	-	ND	-
Organics - SVOCs (ug/kg)																												
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	NLV	ID	20,000 (Q)	NLL	NLV	NLV	NLV	NLV	ID	80,000 (Q)	NA	NA	<220 U	-	<220 U	-	<1100 U	-	300	-	<32000 U	-
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	ID	ID	80,000 (Q)	NA	NA	<430 U	-	<440 U	-	<22000 U	-	440 J	-	<63000 U	-
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	ID	ID	8.00E+6 (Q)	NA	NA	<220 U	-	<220 U	-	<1100 U	-	300	-	<32000 U	-
FLUORANTHENE	206-44-0	5,500	730,000	1.00E+9 (D)	7.40E+08	7.40E+08	7.40E+08	9.30E+09	4.60E+07	730,000	1.00E+9 (D)	8.90E+08	8.80E+08	8.80E+08	4.10E+09	1.30E+08	NA	NA	<220 U	-	<220 U	-	<1100 U	-	750	-	<32000 U	-
PHENANTHRENE	85-01-8	2,100	56,000	2.80E+06	1.60E+05	1.60E+05	1.60E+05	6.70E+06	1.60E+06	1.60E+05	5.10E+06	1.90E+05	1.90E+05	1.90E+05	2.90E+06	5.20E+06	NA	NA	<220 U	-	<220 U	-	<1100 U	-	530	-	<32000 U	
PYRENE	129-00-0	ID	4.80E+05	1.00E+9 (D)	6.50E+08	6.50E+08	6.50E+08	6.70E+09	2.90E+07	4.80E+05	1.00E+9 (D)	7.80E+08	7.80E+08	7.80E+08	2.90E+09	8.40E+07	NA	NA	<220 U	-	<220 U	-	<1100 U	-	550	-	64,000	
Organics - VOCs (ug/kg)																											•	
TOTAL VOCS	_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	-	ND	-	ND	-	ND	-	NM	-

Note: Analytical and Criteria Footnotes are included on the last page of the table.

TABLE 5-2

Summary of Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Julio Properties - Dollar Bay **Houghton County, Michigan**

- EGLE Part 201 residential and non-residential and non-residential generic cleanup criteria and screening levels criteria were originally promulgated December 20, 2002 within the Administrative Rules for Part 201, as amended. This table reflects revisions to the criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 30, 2013. Updated June 2018.

[11] - Nonresidential Drinking Water Protection Criteria

[16] - Nonresidential Particulate Soil Inhalation Criteria [17] - Nonresidential Direct Contact Criteria

[18] - Soil Residential MSSL

[19] - Soil Nonresidential MSSL

PCBs = Polychlorinated biphenyls

VOC = Volatile organic compound

ug/kg = Micrograms per kilogram

% = Percentage

SVOC = Semi-volatile organic compound

[12] - Nonresidential Soil Volatilization to Indoor Air Inhalation Criteria (VIAC)

MSSL = Media-Specific Volatilization to Indoor Air Interim Action Screening Level

[13] - Nonresidential Infinite Source Volatile Soil Inhalation Criteria (VSIC) [14] - Nonresidential Finite VSIC for 5 Meter Source Thickness

[15] - Nonresidential Finite VSIC for 2 Meter Source Thickness

- Only detected analytes are listed Gray rows indicate requested analyses. If no analytes are listed below a gray row then all analytes of that group were either not analyzed or not detected.
- Bold values are concentrations detected above the laboratory reporting limit.
- Bold/Shaded cells indicate analyte concentration exceeded applicable criteria. EGLE Part 201 criteria exceeded is indicated by the footnote in [brackets] following the result value and defined below:
 - [2] Groundwater Surface Water Interface Protection Criteria
 - [3] Soil Saturation Concentration Screening Levels
 - [4] Residential Drinking Water Protection Criteria
 - [5] Residential Soil Volatilization to Indoor Air Inhalation Criteria (VIAC)
 - [6] Residential Infinite Source Volatile Soil Inhalation Criteria(VSIC)
 - [7] Residential Finite VSIC for 5 Meter Source Thickness
 - [8] Residential Finite VSIC for 2 Meter Source Thickness
 - [9] Residential Particulate Soil Inhalation Criteria
 - [10] Residential Direct Contact Criteria

Evaluation based on EGLE Criteria at time of Project completion.

Samples described in this evaluation may actually refer to stamp sands or to other mining waste from the historic mining and reclamation processes conducted in the area.

-- = No Exceedances

NM = Not Measured ND = Not Detected

bgs = Below ground surface

ft = Feet

in = Inches

mg/kg = Milligrams per kilogram.

Criteria Footnotes:

ID = Insufficient data to develop criterion.

NA = A criterion or value is not available

NLL = Hazardous substance is not likely to leach under most soil conditions. NLV = Hazardous substance is not likely to volatilize under most conditions.

- (B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.
- (D) = Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent or 1.0E+9 parts per billion (ppb).
- (DD) = Hazardous substance causes developmental effects. Residential direct contact criteria are protective for a pregnant adult receptor.
- (G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water. The final chronic value (FCV) for the FCV calculation. The FCV formula provides values in units of ug/L or ppb. The generic GSI criterion is the lesser of the calculated FCV, the wildlife value (WV), and the surface water human non-drinking water value (HNDV). The soil GSI criterion or the GSI criterion or the GSI criterion is the lesser of the calculated FCV, the wildlife value (WV), and the surface water human non-drinking water value (HNDV). The soil GSI protection criteria developed with the procedure described in this footnote. A spreadsheet that may be used to calculate GSI and GSI protection criteria for (G)-footnoted hazardous substances is available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site. A hardness value of 47.5 CaCO₃/L and pH of 7, derived from the Michigan Department of Environmental Quality Draft Site Inspection Report for Lake Linden Operations dated 3/29/13, was used in the footnote G calculation spreadsheet.
- (J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.
- (Q) = Criteria for carcinogenic polycyclic aromatic hydrocarbons were developed using relative potential potencies to benzo(a)pyrene.
- (T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. §761, Subpart D and Subpart G, to determine the applicability of TSCA cleanup standards. purchased, at a cost as of the time of adoption of these rules of \$55, from the Superintendent of Documents, Government Printing Office, Washington, DC 20401, or from the EGLE, RRD, 525 West Allegan Street, Lansing, Michigan 48933, at cost. Alternatives to compliance with the TSCA standards listed below are possible under 40 C.F.R. §761 Subpart D. New releases may be subject to the standards (X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)

Laboratory Footnotes:

- J = The result is an estimated quantity.
- U = Analyte analyzed for but not detected above the reported sample reporting limit.

Table 5-3 Table 5-2_Julio Company_Soil_v20240119.xlsx Page 3 of 4 1/19/2024

TABLE 5-2
Summary of Soil Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)
Julio Properties - Dollar Bay
Houghton County, Michigan

	Part 201 Generic Cleanup Criteria Evaluated	Exceedance
	[2] - Groundwater Surface Water Interface Protection Criteria	NO
	[3] - Soil Saturation Concentration Screening Levels	NO
	[4] - Residential Drinking Water Protection Criteria	NO
	[5] - Residential Soil Volatilization to Indoor Air Inhalation Criteria (VIAC)	NO
	[6] - Residential Infinite Source Volatile Soil Inhalation Criteria (VSIC)	NO
	[7] - Residential Finite VSIC for 5 Meter Source Thickness	NO
	[8] - Residential Finite VSIC for 2 Meter Source Thickness	NO
EGLE Part 201 Generic Cleanup Criteria	[9] - Residential Particulate Soil Inhalation Criteria	NO
(June 2018)	[10] - Residential Direct Contact Criteria	NO
	[11] - Nonresidential Drinking Water Protection Criteria	NO
	[12] - Nonresidential Soil Volatilization to Indoor Air Inhalation	NO
	[13] - Nonresidential Infinite Source Volatile Soil Inhalation Criteria	NO
	[14] - Nonresidential Finite VSIC for 5 Meter Source Thickness	NO
	[15] - Nonresidential Finite VSIC for 2 Meter Source Thickness	NO
	[16] - Nonresidential Particulate Soil Inhalation Criteria	NO
	[17] - Nonresidential Direct Contact Criteria	NO
Media-Specific Volatilization to Indoor Air Interim	[18] - Soil Residential Media-Specific Screening Level (MSSL)	NO
Action Screening Levels (March 2021)	[19] - Soil Nonresidential MSSL	NO

TABLE 5-3
Summary of Groundwater Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal)
Julio Properties - Dollar Bay
Houghton County, Michigan

Location Code		EGLE Part	t 201 Generic Clean	up Criteria	Indoor Air Interim	Volatilization to Action Screening vels	J	ulio Compa	ny/Former A	moco Bulk	Fuel Termir	nal
Station Name	CAS Number						QMCP	-GW59	QMCP	-GW60	QMCP	P-GW73
Field Sample ID		[1]	[2]	[3]	[8]	[9]	QMCP-0	SW59 5-9	QMCP-G	W60 7-11	QMCP-G	W73 22-24
Sample Date		Residential Drinking Water	Nonresidential Drinking Water	Groundwater Surface Water	Shallow Groundwater	Shallow Groundwater	9/9/	2018	9/9/	2018	9/11	/2018
Sample Interval (bgs)		Criteria	Criteria	Interface Criteria	Residential MSSL	Nonresidential MSSL	5 -	9 ft	7 -	11 ft	22 -	24 ft
							Result	Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (ug/l)	,											
ARSENIC	7440-38-2	10 (A)	10 (A)	10	NA	NA	NM	-	NM		5.9	-
CHROMIUM	7440-47-3	100 (A,B,H)	100 (A,B,H)	40 (B,G,H,X)	NA	NA	NM	-	NM		27	-
COPPER	7440-50-8	4.0 (B,E)	4.0 (B,E)	14 (B,G)	NA	NA	NM	-	NM		240	[3]
LEAD	7439-92-1	4.0 (B,L)	4.0 (B,L)	14 (B,G,X)	NA	NA	<1.0 U	-	11	[1,2]	4.9	[1,2]
SILVER	7440-22-4	34 (B)	98 (B)	0.2 (B,M)	NA	NA	NM	-	NM		0.6	[3]
ZINC	7440-66-6	2,400 (B)	5,000 (B,E)	63 (B,G)	NA	NA	NM	-	NM		24	-
Organics - PCBs as Aroclors (ug/l)												
TOTAL PCBS	1336-36-6	0.5 (A,J,T)	0.5 (A,J,T)	0.2 (J,M,T)	NA	NA	NM	-	NM		ND	-
Organics - SVOCs (ug/l)	·											
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	260	750	19	NA	NA	<5.0 U	-	9.3	-	<5.1 U	-
FLUORENE	86-73-7	880	2,000 (S)	12	NA	NA	<1.0 U	-	1.4	-	<1.0 U	-
NAPHTHALENE (SVOC)	91-20-3S	520	1,500	11	NA	NA	<1.0 U	-	14	[3]	<1.0 U	-
PHENANTHRENE	85-01-8	52	150	2.0 (M); 1.7	NA	NA	<1.0 U	-	1.1		<1.0 U	-
Organics - VOCs (ug/l)												
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	43 (JT)	67 (JT)	<1.0 U	-	34		<1 UJ	-
1,2,4-TRIMETHYLBENZENE	95-63-6	63 (E,I)	63 (E,I)	17 (I)	25 (JT)	44 (JT)	<1.0 U	-	49	[3,8,9]	<1 UJ	-
1,3,5-TRIMETHYLBENZENE	108-67-8	72 (E,I)	72 (E,I)	45 (I)	18 (JT)	30 (JT)	<1.0 U	-	45	[8,9]	<1 UJ	-
2-METHYLNAPHTHALENE (VOC)	91-57-6V	260	750	19	NA	NA	<5.0 U	-	46	[3]	<5 UJ	-
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	<5.0 U	-	33	-	<5 UJ	-
ETHYLBENZENE	100-41-4	74 (E,I)	74 (E,I)	18 (I)	2.8	7.6	<1.0 U	-	14	[8,9]	<1 UJ	-
HEXANE	110-54-3	3,000	8,600	NA	29	85	<1.0 U		10		<1 UJ	-
ISOPROPYLBENZENE	98-82-8	800	2,300	28	NA	NA	<1.0 U	-	2.1		<1 UJ	-
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	<2.0 U	-	46		<2 UJ	-
NAPHTHALENE (VOC)	91-20-3V	520	1,500	11	NA	NA	<5.0 U	-	40	[3]	<5 UJ	_
N-PROPYLBENZENE	103-65-1	80 (I)	230 (I)	ID	43	83	<1.0 U	-	1.9		<1 UJ	-
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	<1.0 U		47		<1 UJ	-
SEC-BUTYLBENZENE	135-98-8	80	230	ID	NA	NA	<1.0 U		1.5		<1 UJ	-
TOLUENE	108-88-3	790 (E,I)	790 (E,I)	270 (I)	300	570	<1.0 U		3		<1 UJ	-
XYLENE - TOTAL	-	280 (E,I)	280 (E,I)	49 (I)	75 (J)	120 (J)	ND		93	[3,8]	ND	-
Water Quality Parameters												
TEMPURATURE (°C)		NA	NA	NA	NA	NA	15.5		16.3		15.0	
CONDUCTIVITY (mS/cm)		NA	NA	NA	NA	NA	0.036		0.600		0.219	
DISSOLVED OXYGEN (%)	-	NA	NA	NA	NA	NA	54.3		3.7		51.1	
рН	_	NA	NA	NA	NA	NA	6.30		6.39		6.75	_

Note: Analytical and Criteria Footnotes are included on the last page of the table.

TABLE 5-3

Summary of Groundwater Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Julio Properties - Dollar Bay Houghton County, Michigan

Groundwater Table Footnotes:

- EGLE Part 201 residential and non-residential generic cleanup criteria and screening levels criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. This table reflects revisions to the criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 21, 2020.

[8] Shallow Groundwater Residential MSSL

[10] Groundwater Residential MSSL[11] Groundwater Residential TS MSSL

[12] Groundwater Nonresidential MSSL[13] Groundwater Nonresidential MSSL₁₂

[14] Groundwater Nonresidential TS MSSL

mS/cm = MilliSiemens per centimeter

ug/l = Micrograms per liter

mg/l = Milligrams per liter

pH = pH acid-base scale

°C = Degrees Celsius

% = Percentage

[9] Shallow Groundwater Nonresidential MSSL

- Only detected analytes are listed Gray rows indicate requested analyses. If no analytes are listed below a gray row then all analytes of that group were either not analyzed or not detected.
- Bold values are concentrations detected above the laboratory reporting limit.
- Bold/Shaded cells indicate analyte concentration exceeded applicable criteria. EGLE Part 201 criteria exceeded is indicated by the footnote in [brackets] following the result value and defined below:
 - [1] Residential Drinking Water Criteria
 - [2] Nonresidential Drinking Water Criteria
 - [3] Groundwater Surface Water Interface Criteria
 - [4] Water Solubility
 - [5] Residential Groundwater Volatilization to Indoor Air Inhalation Criteria
 - [6] Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria
 - [7] Flammability and Explosivity Screening Level
- Evaluation based on EGLE Criteria at time of Project completion.
- -- = No Exceedances
- NM = Not Measured
- ND = Not Detected
- bgs = Below ground surface
- ft = Feet
- PCBs = Polychlorinated biphenyls
- SVOC = Semi-volatile organic compound
- VOC = Volatile organic compound

Groundwater Table Footnotes:

- ID = Insufficient data to develop criterion.
- NA = A criterion or value is not available
- (A) = Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.
- (B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.
- (E) = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA). A notice of aesthetic impact may be employed as an institutional control mechanism if groundwater concentrations exceed the aesthetic drinking water criterion, but do not exceed the applicable health-based drinking water value provided in a table available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information)

MSSL = Media-Specific Volatilization to Indoor Air Interim Action Screening Level

TS MSSL = Time Specific Media-Specific Volatilization to Indoor Air Interim Action Screening Level

- (G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water. The final chronic value (FCV) for the protection of aquatic life shall be calculated based on the pH or water hardness, or both, of the receiving surface water. Where water hardness exceeds 400 mg CaCO₃/L, use 400 mg CaCO₃/L for the FCV formula provides values in units of ug/L or ppb.

 The generic GSI criterion is the lesser of the calculated FCV, the wildlife value (WV), and the surface water human non-drinking water value (HNDV). The soil GSI protection criteria developed with the procedure described in this footnote. A spreadsheet that may be used to calculate GSI and GSI protection criteria for (G)-footnoted hazardous substances is available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site. A hardness value of 47.5 CaCO₃/L and pH of 7, derived from the Michigan Department of Environmental Quality Draft Site Inspection Report for Lake Linden Operations dated 3/29/13, was used in the footnote G calculation spreadsheet.
- (H) = Valence-specific chromium data (Cr III and Cr VI) shall be compared to the cleanup criteria for Cr VI. Cr III soil clean
- (I) = Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. §261.21 (revised as of July 1, 2001), which is adopted by reference in these rules of \$45, from the Superintendent of documents, Government Printing Office, Washington, DC 20401 (stock number 869-044-00155-1), or from the EGLE, Remediation and Redevelopment Division (RRD), 525 West Allegan Street, Lansing, Michigan 48933, at cost.
- (J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.
- (L) = Criteria for lead are derived using a biologically based model, as allowed for under Section 20120a(9) of the NREPA, and are not calculated using the algorithms and assumptions specified in pathway-specific rules. The generic residential drinking water criterion of 4 ug/L is linked to the generic residential soil direct contact criterion of 400 mg/kg. A higher concentration in the drinking water, up to the state action level of 15 ug/L, may be allowed as a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific criterion is approved based on this subdivision, a notice shall be filed on the deed for all property where the groundwater concentrations will exceed 4 ug/L to provide notice of the potential for unacceptable risk if soil or groundwater concentrations increase. Acceptable combinations of site-specific soil and drinking water concentrations are presented in a table available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site (See R 299.49 Footnotes for generic cleanup criteria tables for additional information).
- (M) = Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.
- $\hbox{(S) = Criterion defaults to the hazardous substance-specific water solubility limit.} \\$
- (T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. §761, Subpart D and Subpart G of 40 C.F.R. §761, Subpart D and Subpart G of 40 C.F.R. §761, Subpart D and Subpart G of 40 C.F.R. §761, Subpart D and Subpart D and Subpart G of 40 C.F.R. §761, Subpart D and Subpart G of 40 C.F.R. §761, Subpart D and Subpart G of 40 C.F.R. §761, Subpart D and Subpart G of 40 C.F.R. §761, Subpart D of 40 C.F.R. §761, Subpart G of 40 C.F.R. §
- (X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)

MSSL Footnotes

- J = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations must be added together for comparison to screening level.
- JT = Hazardous substance may be present in several isomer forms. Screening levels may be used for the individual isomer provided that it is the sole isomer detected in a medium, the isomer-specific concentrations must be added together and compared to the most restrictive screening level of the detected isomers.

Laboratory Footnotes:

- U = Analyte analyzed for but not detected above the reported sample reporting limit.
- UJ = Analyte analyzed for but not detected above the reported sample reporting limit and is an estimated quantity.

TABLE 5-3 Summary of Groundwater Analytical Results (Julio Company/Former Amoco Bulk Fuel Terminal) Julio Properties - Dollar Bay Houghton County, Michigan

	Part 201 Generic Cleanup Criteria Evaluated	Exceedance
	[1] Residential Drinking Water Criteria	YES
	[2] Nonresidential Drinking Water Criteria	YES
FOLE Boot 204 Consult Classics Critoria	[3] Groundwater Surface Water Interface Criteria	YES
EGLE Part 201 Generic Cleanup Criteria (December 2020)	[4] Residential Groundwater Volatilization to Indoor Air Inhalation Criteria	NO
(December 2020)	[5] Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria	NO
	[6] Water Solubility	NO
	[7] Flammability and Explosivity Screening	NO
	[8] Shallow Groundwater Residential Media-Specific Screening Level (MSSL)	YES
	[9] Shallow Groundwater Nonresidential MSSL	YES
Media-Specific Volatilization to Indoor Air	[10] Groundwater Residential MSSL	NO
Interim Action Screening Levels	[11] Groundwater Residential Time Sensitive Media-Specific Screening Level (TS MSSL)	NO
(March 2021)	[12] Groundwater Nonresidential MSSL	NO
	[13] Groundwater Nonresidential MSSL ₁₂	NO
	[14] Groundwater Nonresidential TS MSSL ₁₂	NO

6. DETAILED FINDINGS – JULIO MARINE

This Section summarizes the results and subsequent findings for the Julio Marine parcel within the Julio Properties – Dollar Bay portion of QMCP derived from implementation of the SAP. The narrative follows the systematic investigative approach outlined in **Section 3**, while providing specific details about the potential human health and ecological risks associated with the historical mining operations in this subarea of QMCP.

6.1 SITE INSPECTION AND INVESTIGATION RESULTS

The implementation of the site inspection and investigation activities provided critical lines of evidence that link the historical documentation and the current environmental conditions in and around Dollar Bay. The following subsections present the findings of the inspection and investigation activities and provide correlation of mining era operations and their potential impacts on the nearshore environment of the Portage Canal and Dollar Bay.

6.1.1 Site Inspection

The site inspection at each subarea included the inventory and locating of historical structures and similar surficial artifacts associated with the former industrial operations in the area. Each subarea was also inspected for potential physical and health hazards that were documented, photographed, and located with a GPS unit. The inventoried hazards were then qualitatively assessed for potential human health and environmental risks to determine if analytical sampling was warranted during the targeted inspection phase of the work.

On September 26, 2018, December 3, 2019, and November 4, 2020, MSG field team personnel performed reconnaissance activities at Julio Marine. The property parcel, totaling approximately 11.9 acres, was visually inspected and observations were recorded while traversing the property. The qualitative assessment of the reconnaissance findings at Julio Marine warranted the performance of targeted inspection activities. The following provides a summary of the findings associated with the reconnaissance activities.

6.1.1.1 Reconnaissance

The reconnaissance activities identified over 200 drums and containers with varying contents, 49 ASTs and USTs, building debris piles that were SACM, compressed gas cylinders, pipe wrap, three large vats, electrical components, one transformer with suspect PCBs, and other scrap/debris items. A copy of the reconnaissance log is provided in *Appendix C*, *Site Inspections – Reconnaissance Logs, Targeted Inspections & Physical Hazards Inventory* of this SI Report.

6.1.1.2 Targeted Inspection

The qualitative assessment of the reconnaissance findings at Julio Marine warranted the performance of targeted inspection activities. Bulk materials samples for asbestos analysis were collected on October 1, 2018 by a MSG field team. The following subsections summarize the findings of these sampling efforts.

6.1.1.2.1 Bulk Material Sampling

Based on the SACM hazards noted during the reconnaissance activities a limited asbestos survey was conducted as part of the SI to identify suspect potentially friable ACM. The asbestos survey was limited to SACMs in open areas of the property and within debris piles.

Thirty-two bulk samples were collected from 16 SACMs as part of the SI. Laboratory analysis indicated that five of 16 SACMs contained greater than 1% asbestos. Four of the ACMs were friable. ACM identified within the Julio Marine

parcel included white thermal system insulation (TSI) on piping, silver painted mastic, silver painted roofing, silver coated roofing, and brown insulation observed inside a drum.

The samples were analyzed in accordance with EPA Method 600/R-93/116, "Method for the Determination of Asbestos in Bulk Building Materials" using Polarized Light Microscopy (PLM). This laboratory analytical method identifies the presence and estimated concentration of asbestos fibers in sampled building materials. The location of the bulk asbestos samples collected during the targeted inspection activities are depicted on *Figure 6-1*, *ACM Analytical Results (Julio Marine)*. A detailed summary of bulk asbestos sample analytical results collected from Julio Marine during the targeted inspection are provided in *Table 6-1*, *Summary of ACM Analytical Results (Julio Marine)*.

6.1.2 Site Investigation

The SI for the Julio Properties – Dollar Bay was developed based on a variety of data and information as outlined in **Section 3**. In addition to the historical accounts and documentation, current land use and potential exposure pathways were also taken into consideration when selecting the sampling locations specific to Julio Marine. The following subsections present the outcomes of investigative activities completed at Julio Marine by summarizing the laboratory analytical results and characterizing their impacts on the environmental media in which they were detected.

6.1.2.1 Terrestrial Investigation

Intrusive investigation activities at Julio Marine were generally guided by the findings of historical research and field observations. From a historical standpoint, the area was the location of operations subject to or associated with historic mining practices such as the Tamarack and Osceola Copper Manufacturing Company, John A. Roebling's Sons Copper Manufacturing, and Foley Copper Products Company Copper Wire Mill. It is currently the location of Julio Marine.

COCs in the study area were not generally understood nor previously investigated to fully characterize or address potential organic and inorganic contaminants in soil and groundwater. The following subsections present a summary of the field observations and analytical results derived from the terrestrial sampling activities at Julio Marine.

6.1.2.1.1 Field Observations – Soil and Groundwater

Nine borings on the property were advanced by GSS to between 4 and 14 ft bgs. Boring locations are depicted on *Figure 6-2, Soil Analytical Results (Julio Marine)*. Soil observations documented on field logs indicate that the subsurface at Julio Marine is generally comprised of fine to coarse brown sand.

During groundwater sampling, temporary well points were established at 4 ft intervals from between 2 and 13 ft bgs to the boring terminus, while permanent monitoring wells were screened from 3.5 to 8.5 ft bgs. Saturated soil conditions were encountered at depths of 2 to 9 ft bgs. Groundwater quality parameters, including temperature, conductivity, DO, and pH, measured at the time of sample collection were generally considered normal.

6.1.2.1.2 Soil Sampling Results

Terrestrial soil investigation activities were completed at Julio Marine on September 6, 10, and 26, 2018. Additional surface soil samples were collected on October 1, 2018, August 17, 2019, and September 24, 2020. During the mobilizations a total of 49 soil samples were collected from 40 sampling locations. Soil boring locations are depicted on *Figure 6-2*, *Soil Analytical Results (Julio Marine)*. Investigative methodologies and soil sampling techniques were conducted using the procedures outlined in **Section 3**.

Soil sampling included 40 surface soil sampling intervals, from 0 to 3 inches or 0 to 6 inches in depth. The remaining nine (9) subsurface soil samples ranged up to 14 ft in depth. The samples were analyzed for the parameters identified on *Table 3-1*, *Sampling and Analysis Summary* of this SI Report. The selection of analytical parameters was generally based upon potential environmental impacts associated with mining era operations in the vicinity of the sampling location or field observations.

The surface and subsurface soil analytical results for Julio Marine contained inorganics, PCBs, VOCs, and SVOCs at or above applicable residential and nonresidential regulatory criteria and several COCs above MSSLs.

A detailed summary of soil analytical results for Julio Marine is provided in *Table 6-2*, *Summary of Soil Analytical Results (Julio Marine*). Soil boring logs are included in *Appendix E*, *Boring Logs* of this SI Report.

6.1.2.1.3 Groundwater Sampling Results

During the advancement of soil borings at Julio Marine, nine (9) temporary groundwater sampling locations were established to characterize groundwater in the area. The temporary sampling points were installed and sampled using the methodologies presented in **Section 3**. The screened intervals in the groundwater sampling locations were established between 2 to 6 ft bgs and 13 to 17 ft bgs. In addition, on August 19 and 20, 2019, GSS installed nine (9) permanent monitoring wells with screened intervals from 3.5 ft to 8.5 ft bgs. GSS sampled these monitoring wells in October 2019 and again in September 2020. An additional water level and LNAPL gauging event occurred in November 2021. A summary of monitoring well construction and gauging results is provided in *Table 6-3*, *Monitoring Well Construction and Elevation Data (Julio Marine)*. A total of 25 groundwater sample were collected. Temporary groundwater and permanent monitoring well sampling locations are depicted on *Figure 6-3*, *Groundwater Analytical Results (Julio Marine)*.

Collected groundwater samples were analyzed for the parameters identified on *Table 3-1*, *Sampling and Analysis Summary* of this SI Report. The selection of analytical parameters was generally based upon potential environmental impacts associated with mining era operations in the vicinity of the sampling location or field observations. A few COCs, predominantly SVOCs, were detected at concentrations exceeding Groundwater/Surface Water Interface Criteria (GSIC) in groundwater collected from temporary well points QMCP-GW43, QMCP-GW45, and QMCP-GW46. PCBs were not detected in groundwater at Julio Marine, nor were any other COCs detected in groundwater above applicable criteria with the exception of metals, which were not evaluated further as discussed in **Section 4.2.5**.

A detailed summary of groundwater analytical results from Julio Marine is provided in *Table 6-4*, *Summary of Groundwater Analytical Results (Julio Marine)*. Groundwater analytical results are depicted on *Figure 6-3*, *Groundwater Analytical Results (Julio Marine)*. Soil boring logs are included in *Appendix E*, *Boring Logs* of this SI Report.

LNAPL was measured floating on top of the groundwater in QMCP-MW9 and QMCP-MW10 in October 2019. LNAPL was again observed in QMCP-MW10 in September 2020 and approximately 2-ft of LNAPL was identified in QMCP-MW10 in November 2021. During advancement of QMCP-SB48, LNAPL was observed in the groundwater sample

collected from 7 to 9 ft bgs. A fingerprint analysis on the collected LNAPL sample from QMCP-SB48 indicated motor oil and mineral oil.

6.2 NATURE AND EXTENT OF CONTAMINATION

Utilizing the established regulatory criteria presented in **Section 4** for various land use categories and exposure pathways, the laboratory analytical results summarized in the preceding section for Julio Marine were reviewed and compared to EGLE Cleanup Criteria Requirements for Response Activity as applicable for the sampled environmental media.

6.2.1 Comprehensive Exposure Assessment

The comparison was completed to determine which ecological and human exposure pathways, risks, and conditions are relevant at Julio Marine. Although not inclusive of relevant pathways where regulatory criteria were not exceeded, the following exposure pathways were determined to be relevant at Julio Marine:

- Risks posed by hazardous substances in soil and the potential for the substances to leach to groundwater that could be used as a drinking water source in both residential and nonresidential settings.
- Risks posed by hazardous substances in soil and the potential for the substances to leach to groundwater that could vent to surface water.
- Risks posed by hazardous substances in soil that may result in the volatilization of contaminants to indoor air in residential and nonresidential settings.
- Risks posed by hazardous substances in soil that may result in the volatilization of contaminants to ambient air in residential and nonresidential settings.
- Risks posed by hazardous substances in soil and the potential for direct contact with these soils in both residential and nonresidential settings.
- Risks posed by hazardous substances in groundwater and the potential for that groundwater to be used as a drinking water source in both residential and nonresidential settings.
- Risks posed by hazardous substances in groundwater and the potential for that groundwater to vent to surface water.
- Risks posed by hazardous substances in groundwater that may result in the volatilization of contaminants to indoor air in both residential and nonresidential settings.
- Risks posed by free-phase liquids in groundwater.

As discussed in **Section 4.2.5**, the EGLE drinking water and groundwater/surface water pathway criteria exceedances for metals were excluded from the soil and groundwater evaluation. The rationale for this exclusion is twofold:

The Project investigation and anticipated response actions are being undertaken pursuant to Part 201 of NREPA, being PA 451 of 1994, as amended. The concentrations of metals in excess of the EGLE drinking water and groundwater/surface water pathway criteria are ubiquitous in the study area and are predominantly the result of the presence of stamp sands. Stamp sands are not defined as a hazardous substance nor are

subject to regulation under Part 201 unless the property otherwise contains hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use; and,

- The study area is part of OU 2 for which the EPA ROD remedy called for No Action. The EPA's ROD OU 2 includes groundwater, surface water, submerged tailings and sediments in Torch Lake, Portage Lake, the Portage Canal, and other area water bodies. Note that EPA's No Action determination relies on the following to mitigate the effects of stamp sand to the extent practicable:
 - The reduction of stamp sand loading to surface water bodies expected as a result of the remedial action taken at OU 1 and OU 3.
 - Ongoing natural sedimentation and detoxification.
 - Institutional programs and practices controlling potential future exposure to site-affected drinking water which were intended to be administered at the county and state level.
 - The long-term monitoring and the five-year review process monitoring requirements of the remedy selected for OU 1 and OU 3 under the 1992 ROD.

Note that metals criteria for other relevant pathways, and cyanide and organic contaminants for all pathways were included in the evaluation.

Furthermore, as discussed in **Section 4.2.5**, EGLE's MSSLs were not included in the exposure pathway assessment due to unknown anticipated future land use and conditions. The MSSLs were considered for screening and delineation purposes only.

6.2.1.1 Building Materials and Containers

During the targeted inspection activities completed at Julio Marine, 16 SACMs were identified and two samples of each SACM were collected for analysis from the building and insulating materials.

The following table provides an aggregate summary of the sample locations with respect to the total number of samples and how they compare to applicable regulatory criteria. The table is based solely on the total number of samples collected from Julio Marine. It lists only the number of samples for a specific analytical suite that contained one or more exceedance of a given criterion. Bulk asbestos samples were compared to applicable NESHAP standards and EGLE PSIC.

		alytica mmar			tandard for Hazardous Air Ilutants
Building Materials Analytical Result Summary Table	Total Number of Samples	Detected Analytes	Total Exceedances	Friable Asbestos Material	Non-Friable Asbestos Material
Asbestos (Bulk)	32	5	5	4	1
COCs exceeding ap		regu	latory	Asbestos (chrysotile)	

During the targeted inspection activities completed at Julio Marine, numerous tanks and drums were identified. Water samples were collected and analyzed from an observed vat. No other containers were sampled. The analysis results detected inorganics, VOCs, and SVOCs but the concentrations did not exceed regulatory criteria. PCBs were not detected in the vat water. A detailed summary of vat water analytical results from Julio Marine is provided in *Table 6-5*, *Summary of Vat Water Analytical Results (Julio Marine)*

6.2.1.2 Soil Exposure Pathway Assessment

Soil analytical results from Julio Marine identified COC concentrations in soil that were at or above concentrations that trigger a "Facility" designation as defined in Section 20101(1)(s) of the NREPA. The following tables provide an aggregate summary of the soil sample locations with respect to the total number of samples and how they compare to the applicable EGLE Cleanup Criteria for Response Activity under both Residential and Nonresidential exposure scenarios. The tables are based solely on the total number of samples collected from Julio Marine. They list only the number of samples for a specific analytical suite that contained one or more exceedances of a given criterion.

				Cleanup Criteria Requirements for Response Activity – Residential**									
Soil Analytical Result Summary Table	Analytical Summary			Groundwater Protection		Indoor Air	Ambient Air				Contact	Csat	
	Total Number of Samples	Detected Analytes*	Total Exceedances*	Residential Drinking Water Protection Criteria	Groundwater Surface Water Interface Protection Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Infinite Source Volatile Soil Inhalation Criteria (VSIC)	Finite VSIC for 5 Meter Source Thickness	Finite VSIC for 2 Meter Source Thickness	Particulate Soil Inhalation Criteria	Direct Contact Criteria	Soil Saturation Concentration Screening Levels	
Inorganics	38	210	30	NA*	NA*	0	0	0	0	0	24	0	
Cyanide	10	1	0	0	0	0	0	0	0	0	0	0	
VOCs	15	58	16	3	3	0	0	0	0	0	0	0	
SVOCs	39	233	45	3	12	0	1	1	1	0	5	0	
Asbestos	0	0	0	0	0	0	0	0	0	0	0	0	
Total PCBs	28	4	1	0	0	0	0	0	0	0	1	0	
Pesticides	0	0	0	0	0	0	0	0	0	0	0	0	
COCs exceedi in one or more		e regulato	y criteria	ARSENIC, COPPER, LEAD, TOTAL PCBS, 1,2,4-TRIMETHYLBENZENE, 1,3,5,-TRIMETHYLBENZENE, 2-METHYLNAPHTHALENE (VOC), BENZENE, ETHYLBENZENE, NAPHTHALENE (VOC), N-BUTYLBENZENE, N-PROPYLBENZENE, SEC-BUTYLBENZENE, XYLENE-TOTAL, 2-METHYLNAPHTHALENE (SVOC), ACENAPHTHYLENE, BENZO(A)ANTHRACENE, BENZO(A)PYRENE, BENZO(B)FLUORANTHENE, DIBENZO(A,H)ANTHRACENE, FLUORATHENE, FLUORENE, INDENO(1,2,3-CD)PYRENE, NAPHTHALENE (SVOC), PHENANTHRENE									

NA* = The EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil evaluation as explained in Section 4.2.5.

Total exceedance column does not include MSSLs or non-applicable criteria (DWPC and GSIPC for metals)

^{*}Denotes total number of specific instances of an analyte being detected or exceeding criteria, can be multiple within one sample location.

^{**}Denotes total number of samples exceeding criteria, cannot be multiple within one sample location.

				Cleanup Criteria Requirements for Response Activity – Nonresidential**										
Soil Analytical Result Summary Table	Analytical	Summary		Groundwate	er Protection	Indoor Air	Ambient Air				Contact	Csat		
	Total Number of Samples	Detected Analytes*	Total Exceedances*	Nonresidential Drinking Water Protection Criteria	Groundwater Surface Water Interface Protection Criteria	Soil Volatilization to Indoor Air Inhalation Criteria	Infinite Source Volatile Soil Inhalation Criteria (VSIC)	Finite VSIC for 5 Meter Source Thickness	Finite VSIC for 2 Meter Source Thickness	Particulate Soil Inhalation Criteria	Direct Contact Criteria	Soil Saturation Concentration Screening Levels		
Inorganics	38	210	5	NA*	NA*	0	0	0	0	0	4	0		
Cyanide	10	1	0	0	0	0	0	0	0	0	0	0		
VOCs	15	58	15	3	3	0	0	0	0	0	0	0		
SVOCs	39	233	37	1	12	0	1	1	1	0	4	0		
Asbestos	0	0	0	0	0	0	0	0	0	0	0	0		
Total PCBs	28	4	1	0	0	0	0	0	0	0	1	0		
Pesticides	0	0	0	0	0	0	0	0	0	0	0	0		
ARSENIC, COPPER, LEAD, TOTAL PCBS, 1,2,4-TRIMETHYLBENZENE, 1,3,5,-TRIMETHYLBENZENE, 2-METHYLNAPHTHALENE (VOC), BENZENE, ETHYLBENZENE, NAPHTHALENE (VOC), NBUTYLBENZENE, N-PROPYLBENZENE, XYLENE-TOTAL, 2-METHYLNAPHTHALENE (SVOC), BENZO(A)ANTHRACENE, BENZO(A)PYRENE, BENZO(B)FLUORANTHENE, FLUORATHENE, FLUORENE, NAPHTHALENE (SVOC), PHENANTHRENE										OC), N- (SVOC),				

NA* = The EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil evaluation as explained in Section 4.2.5.

Total exceedance column does not include MSSLs or non-applicable criteria (DWPC and GSIPC for metals)

6.2.1.3 Groundwater Exposure Pathway Assessment

Groundwater analytical results from Julio Marine identified COC concentrations in groundwater that were at or above concentrations that trigger a "Facility" designation as defined in Section 20101(1)(s) of the NREPA. Similar to the preceding soil tables, the following table provides a summary of the aforementioned sample locations with respect to the total number of samples and how they compare to the applicable EGLE Cleanup Criteria for Response Activity under both Residential and Nonresidential exposure scenarios.

^{*}Denotes total number of specific instances of an analyte being detected or exceeding criteria, can be multiple within one sample location.

^{**}Denotes total number of samples exceeding criteria, cannot be multiple within one sample location.

	Analytica	Cleanup Criteria Requirements for Response Activity – Residential and Nonresidential**								
Groundwater Analytical Result Summary Table	Total Number of Samples	Total Number of Detected Analytes*	Total Exceedances*	Residential Drinking Water Criteria	Nonresidential Drinking Water Criteria	Groundwater Surface Water Interface Criteria	Residential Groundwater Volatilization to Indoor Air Inhalation Criteria	Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria	Water Solubility	Flammability and Explosivity Screening Levels
Inorganics	7	56	0	NA*	NA*	NA*	0	0	0	0
Cyanide	0	0	0	0	0	0	0	0	0	0
VOCs	25	4	0	0	0	0	0	0	0	0
SVOCs	25	18	3	0	0	3	0	0	0	0
Total PCBs	11	0	0	0	0	0	0	0	0	0
Pesticides	0	0	0	0	0	0	0	0	0	0
COCs exceeding applicable sample	FLUORANTHENE, PHENANTHRENE									

NA* = The EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil evaluation as explained in Section 4.2.5.

Total exceedance column does not include MSSLs or non-applicable criteria (DWC and GSIC for metals)

6.2.2 Extent of Contamination

The comparison of analytical results to applicable regulatory criteria indicates that potential human health and ecological risks are present in building materials, soil, and groundwater at Julio Marine. Recalling the goals and objectives of the SI, the following subsections describe the extent of contamination in environmental media in the study area.

6.2.2.1 Building Materials and Containers Extent of Contamination

Reconnaissance activities and asbestos analytical results confirmed that ACM is present at Julio Marine. Materials containing more than 1% friable chrysotile asbestos included white TSI on piping, silver painted roofing, silver coated roofing, and brown drum insulation. Material containing more than 1% non-friable chrysotile asbestos included silver painted mastic. These results exceed the NESHAP and EGLE PSIC.

^{*}Denotes total number of specific instances of an analyte being detected or exceeding criteria, can be multiple within one sample location.

^{**}Denotes total number of samples exceeding criteria, cannot be multiple within one sample location.

6.2.2.2 Soil Extent of Contamination

Soil analytical results exceeded GSIPC, residential and nonresidential DWPC, residential and nonresidential VSIC, residential and nonresidential DCC, and/or soil MSSLs for VOCs, SVOCs, inorganic compounds, and/or PCBs at multiple sample locations.

Most samples were collected from surface and subsurface soil intervals from areas that are generally inaccessible to the public, but are accessible to workers inside the current perimeter fence at Julio Marine.

The extent of soil contamination has not been delineated at Julio Marine. Soils with elevated levels of inorganic COCs are ubiquitous in the area, which becomes a limiting factor when evaluating potential exposure pathways. In the case of Julio Marine, elevated concentrations of inorganic and organic contaminants potentially include exposure risks related to inhalation pathways and direct contact in residential and nonresidential scenarios, which must be a consideration when evaluating land use, property accessibility, and the extent of contamination in surface and near surface soils that could be encountered through normal use of the property.

The remaining exposure risks are generally related to the leaching of contaminants to groundwater and their potential impacts on drinking water (if used as a drinking water source) and surface water. These risks pose a long-term threat to the overall environmental health of the watershed. The widespread distribution of inorganic COCs throughout the region limit determinations related to the extent of contamination at Julio Marine. Nevertheless, risks posed to groundwater and surface water are relevant and are a factor when evaluating the extent of soil contamination.

6.2.2.3 Groundwater Extent of Contamination

Groundwater analytical results exceeded GSIC at three locations for SVOCs. In addition, QMCP-MW10 contained between 0.6 ft and 2 ft of LNAPL over the course of monitoring, QMCP-MW9 contained 0.21 ft of LNAPL in 2019, and LNAPL was also observed in the water sample collected at QMCP-SB48. Neither the extent of groundwater contamination nor the extent of LNAPL have been delineated at Julio Marine. The groundwater sampling locations were approximately 30 to 800 ft from the shoreline of the Portage Canal at depths of approximately 2 ft to 17 ft bgs. The LNAPL measured in QMCP-MW9 was within 50 ft of the Portage Canal.

The potential risks associated with groundwater as a drinking water source as well as it's connectivity to nearby surface water bodies should be a consideration in determinations related to the extent of contamination at Julio Marine. Of particular concern are the monitoring wells (QMCP-MW9 and QMCP-MW10) where LNAPL has been observed. These wells are approximately 50 feet and 130 feet respectively from the Portage Canal, so migration to surface water and/or pore water is a risk.

6.3 CONCLUSIONS AND RECOMMENDATIONS

The analytical results and interpretation summarized in the preceding subsections document potential human health and ecological risks that are present at Julio Marine. The following subsections provide a synopsis of these findings and a recommended path forward for mitigating these risks.

6.3.1 Conclusions

Environmental impacts at Julio Marine are generally characterized by detections of organic and inorganic contaminants in soil and groundwater. Although specific sources of these contaminants may not be fully understood, historical research related to the operations provided substantive evidence for assessing specific operational areas and selecting target analytes anticipated to be present within the study area.

The analytical results summarized above provide sufficient analytical data and lines of evidence to conclude that the study area is a "Facility" as defined in Section 20101(1)(s) of the NREPA. The following table provides a summary of the affected environmental media, applicable regulatory criteria, and potential receptors within Julio Marine.

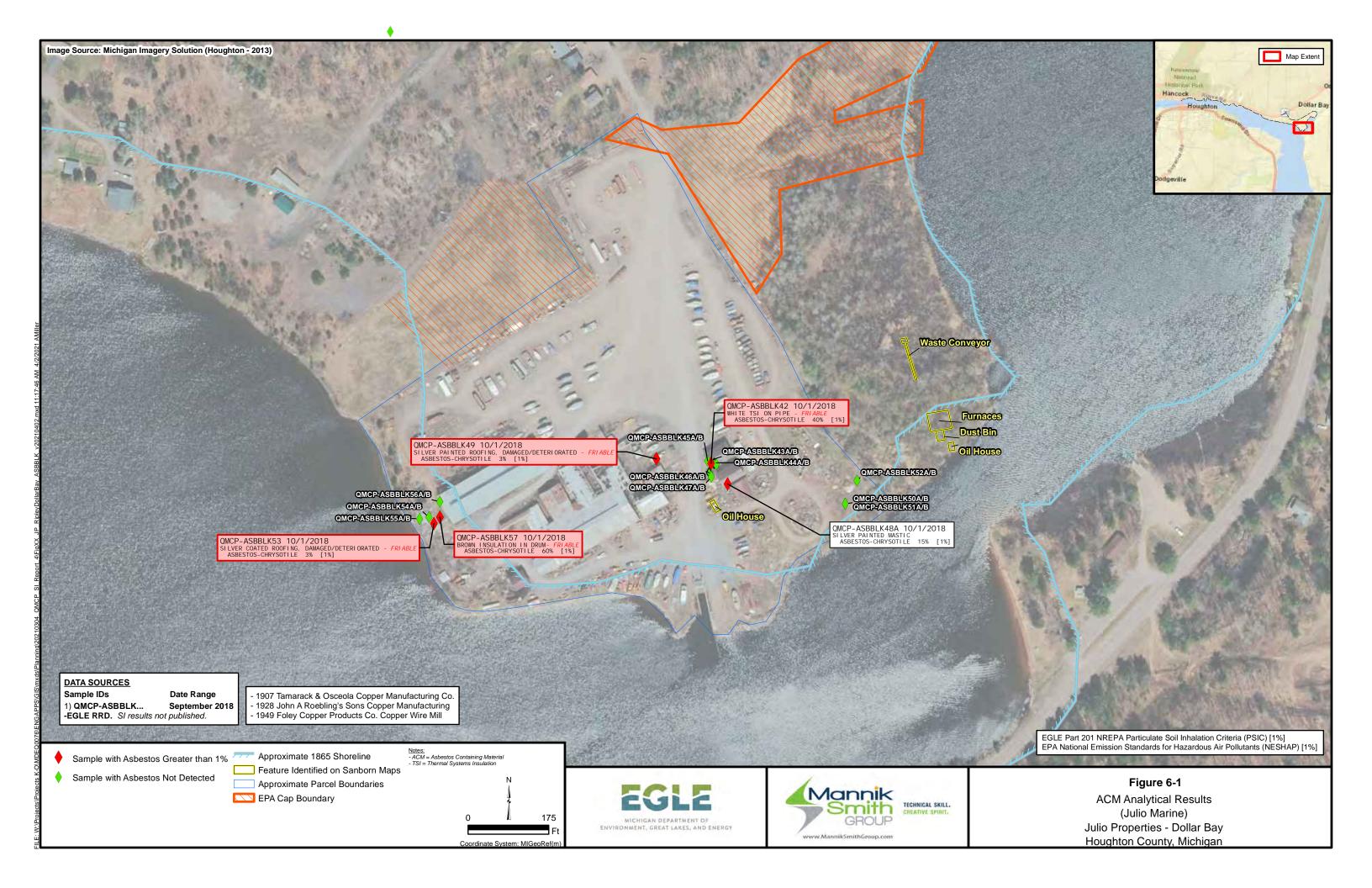
		Juli	o Mar	ine – N	ledia, Cr	iteria, F	Poten	tial Rec	eptor Su	mma	ry				
Media	Soil		Groundwater			Air		Air Sediment		Pore Water		Building Materials, Asbestos, and Abandoned Containers			
Criteria	Drinking Water Protection	Groundwater Surface Water Interface	Direct Contact	Orinking Water Protection	Groundwater Surface Water Interface	Flammability and Explosivity	Volatilization	Particulate Inhalation	Ecological	Ecological	Human Health	Particulate Inhalation	Flammability and Explosivity	Environmental	Human Health
Potential Receptor	Dri	Groun	lΙΟ	Dri	ns !9	Flan)/	1	1]	nΗ	4	Flan	En	뮈
Residential Human	~	√	\	√	✓		✓					✓			✓
Nonresidential Human	√	√	√	✓	✓		✓					✓			✓
Water Column Organism															
Benthic Organism															
ASBESTOS, ARSENIC, COPPER, LEAD, TOTAL PCBS, 1,2,4-TRIMETHYLBENZENE, 1,3,5 TRIMETHYLBENZENE, 2-METHYLNAPHTHALENE (VOC), BENZENE, ETHYLBENZENI NAPHTHALENE (VOC), N-BUTYLBENZENE, N-PROPYLBENZENE, SEC-BUTYLBENZENI XYLENE-TOTAL, 2-METHYLNAPHTHALENE (SVOC), ACENAPHTHYLENI BENZO(A)ANTHRACENE, BENZO(A)PYRENE, BENZO(B)FLUORANTHENI BENZO(K)FLUORANTHENE, CHRYSENE, DIBENZO(A,H)ANTHRACENE, FLUORATHENI FLUORENE, INDENO(1,2,3-CD)PYRENE, NAPHTHALENE (SVOC), PHENANTHRENI PYRENE, MANGANESE, SILVER, ZINC									ENE, ENE, ENE, IENE, IENE,						

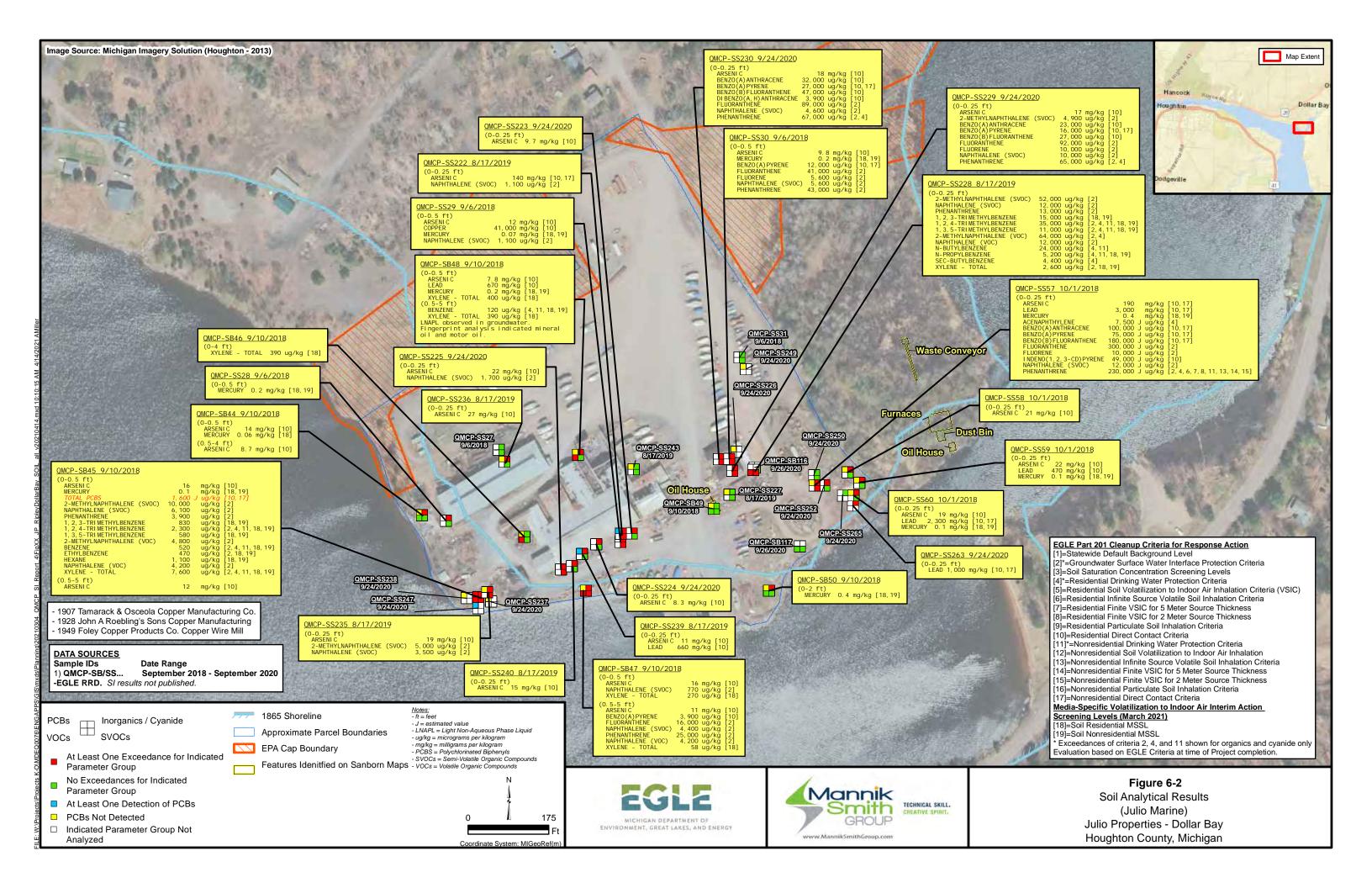
In addition to the evaluation of analytical results from Julio Marine, the following provides a summary of findings derived from the assessment of Julio Marine with respect to the goals and objectives for the Project:

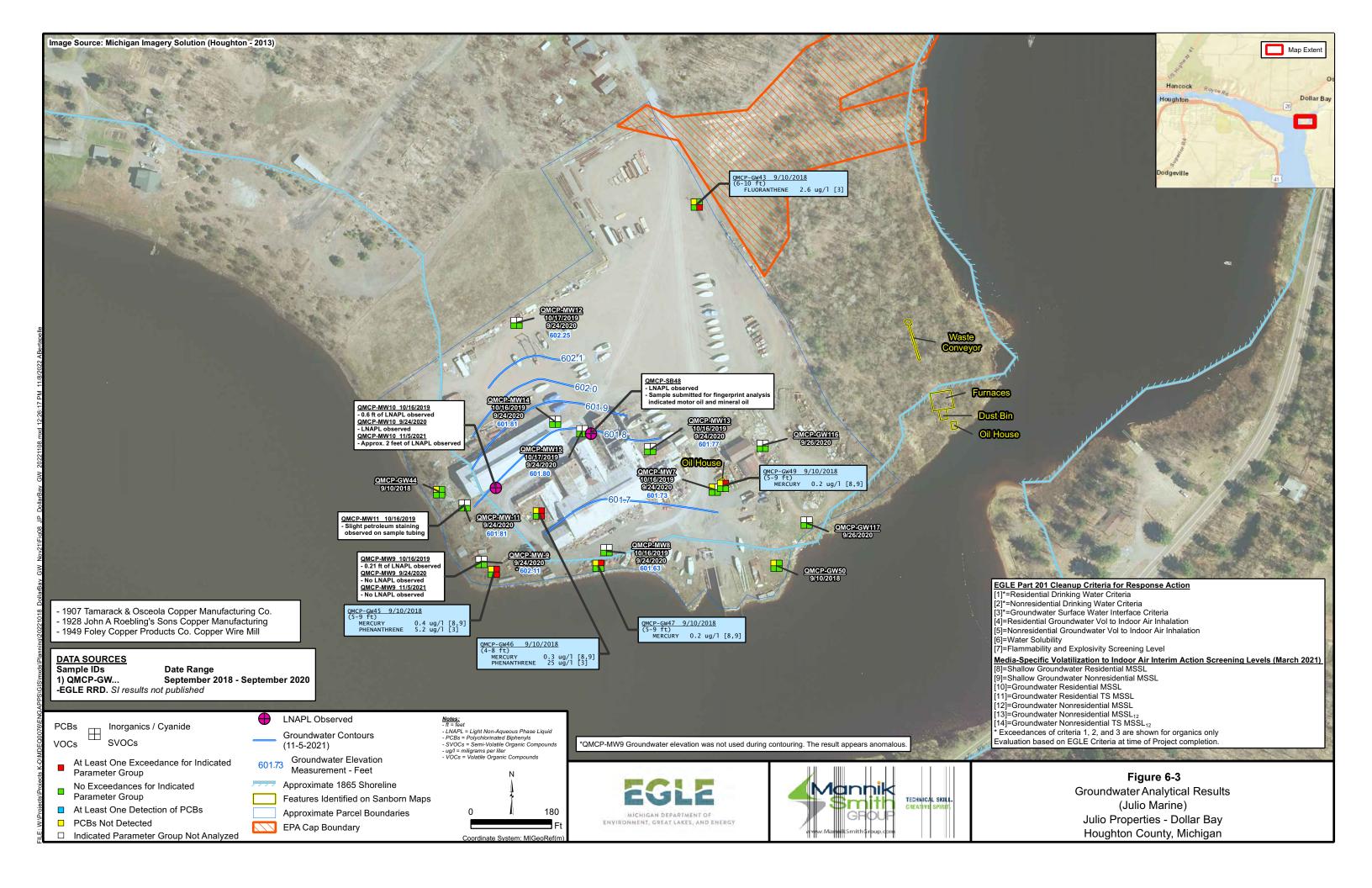
- Terrestrial sources of contamination are present in the form of inorganic COCs, VOCs, SVOCs, PCBs, and asbestos in the study area. Due the limited availability of analytical data, the extent of contamination at Julio Marine has not been fully defined or addressed.
- The source and limits of LNAPL have not been identified. LNAPL was measured in a monitoring well within 50 ft of the Portage Canal.

6.3.2 Recommendations

The conclusions outlined in the preceding subsection establish that Julio Marine is a Part 201 Facility. Section 20107a of Part 201 of NREPA describes the duties of owners or operators of a Facility, regardless of their liability, including: prevent unacceptable exposures, prevent exacerbation, and take reasonable precautions against the foreseeable actions of third parties. Some exceptions may apply; in any case, owners and operators of contaminated properties should become familiar with Section 20107a and the associated Rules.


To date, limited actions to further monitor and/or delineate the extent of impact, and thus address the environmental issues, have occurred at Julio Marine. Additional new study data, collected from existing monitoring wells, and/or down


gradient from known impacts, could be evaluated to determine if environmental issues remain. LNAPL delineation and recoverability assessment is recommended based on the proximity of detected LNAPL to surface water.



DETAILED FINDINGS REPORT – JULIO MARINE

DETAILED FINDINGS REPORT – JULIO MARINE

TABLE 6-1 Summary of ACM Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

Sample Field Sample Ashestes Friable/ Sample Sample Sample Ashestes												
· ·	•		A	sbestos		Sample Description	Sample Notes					
Location	Sample ID	Date			Non-friable							
Julio Marine	TOMOR A ORBITANA ASSAULT	40/4/00/40	100/	O	6.11	harry was						
QMCP-ASBBLK42	QMCP-ASBBLK42A-100118	10/1/2018	40%	Chrysotile	friable	White TSI on pipe						
QMCP-ASBBLK42	QMCP-ASBBLK42B-100118	10/1/2018			friable	White TSI on pipe	Not analyzed due to prior positive series					
QMCP-ASBBLK43	QMCP-ASBBLK43A-100118	10/1/2018	ND		non-friable	Red roofing on ground						
QMCP-ASBBLK43	QMCP-ASBBLK43B-100118	10/1/2018	ND		non-friable	Red roofing on ground						
QMCP-ASBBLK44	QMCP-ASBBLK44A-100118	10/1/2018	ND		non-friable	Tan/red brick siding						
QMCP-ASBBLK44	QMCP-ASBBLK44B-100118	10/1/2018	ND		non-friable	Tan/red brick siding						
QMCP-ASBBLK45	QMCP-ASBBLK45A-100118	10/1/2018	ND		friable	Black tar paper with multi-colored specks						
QMCP-ASBBLK45	QMCP-ASBBLK45B-100118	10/1/2018	ND		friable	Black tar paper with multi-colored specks						
QMCP-ASBBLK46	QMCP-ASBBLK46A-100118	10/1/2018	ND		non-friable	Tan brick siding						
QMCP-ASBBLK46	QMCP-ASBBLK46B-100118	10/1/2018	ND		non-friable	Tan brick siding						
QMCP-ASBBLK47	QMCP-ASBBLK47A-100118	10/1/2018	ND		friable	Black tar paper						
QMCP-ASBBLK47	QMCP-ASBBLK47B-100118	10/1/2018	ND		friable	Black tar paper						
QMCP-ASBBLK48	QMCP-ASBBLK48A-100118	10/1/2018	15%	Chrysotile	non-friable	Silver painted mastic						
QMCP-ASBBLK48	QMCP-ASBBLK48B-100118	10/1/2018			non-friable	Silver painted mastic	Not analyzed due to prior positive series					
QMCP-ASBBLK49	QMCP-ASBBLK49A-100118	10/1/2018	3%	Chrysotile	friable	Silver painted roofing	Damaged/deteriorated					
QMCP-ASBBLK49	QMCP-ASBBLK49B-100118	10/1/2018			friable	Silver painted roofing	Not analyzed due to prior positive series					
QMCP-ASBBLK50	QMCP-ASBBLK50A-100118	10/1/2018	ND		non-friable	Black shingle	Burn pile, 10SF					
QMCP-ASBBLK50	QMCP-ASBBLK50B-100118	10/1/2018	ND		non-friable	Black shingle	Burn pile, 10SF					
QMCP-ASBBLK51	QMCP-ASBBLK51A-100118	10/1/2018	ND		non-friable	Black tar paper	10SF					
QMCP-ASBBLK51	QMCP-ASBBLK51B-100118	10/1/2018	ND		non-friable	Black tar paper	10SF					
QMCP-ASBBLK52	QMCP-ASBBLK52A-100118	10/1/2018	ND		friable	White fibers in burn pile						
QMCP-ASBBLK52	QMCP-ASBBLK52B-100118	10/1/2018	ND		friable	White fibers in burn pile						
QMCP-ASBBLK53	QMCP-ASBBLK53A-100118	10/1/2018	3%	Chrysotile	friable	Silver coated roofing	Damaged/deteriorated					
QMCP-ASBBLK53	QMCP-ASBBLK53B-100118	10/1/2018			friable	Silver coated roofing	Not analyzed due to prior positive series					
QMCP-ASBBLK54	QMCP-ASBBLK54A-100118	10/1/2018	ND		non-friable	Red roofing	Damaged/deteriorated					
QMCP-ASBBLK54	QMCP-ASBBLK54B-100118	10/1/2018	ND		non-friable	Red roofing	Damaged/deteriorated					
QMCP-ASBBLK55	QMCP-ASBBLK55A-100118	10/1/2018	ND		non-friable	Green roofing	Ť					
QMCP-ASBBLK55	QMCP-ASBBLK55B-100118	10/1/2018	ND		non-friable	Green roofing						
QMCP-ASBBLK56	QMCP-ASBBLK56A-100118	10/1/2018	ND		non-friable	Building concrete						
QMCP-ASBBLK56	QMCP-ASBBLK56A-100118	10/1/2018	ND		non-friable	Building concrete						
QMCP-ASBBLK57	QMCP-ASBBLK57A-100118	10/1/2018	60%	Chrysotile	friable	Brown insulation in drum						
QMCP-ASBBLK57	QMCP-ASBBLK57B-100118	10/1/2018			friable	Brown insulation in drum	Not analyzed due to prior positive series					
GMOI / NODDLINOI	Tamor AODDEROID TOOTTO	10/1/2010			HIGDIC	Diomi inodiation in diam	prot analyzou and to prior positive sories					

-- = Not analyzed TSI = Thermal Systems Insulation

ND = Not detected % = Percentage

SF = Square feet EGLE = Michigan Department of Environment, Great Lakes, and Energy

Results greater than the National Emissions Standard for Hazardous Air Pollutants (NESHAP) and EGLE Particulate Soil Inhalation Criteria of 1% are highlighted yellow.

Evaluation based on EGLE Criteria at time of Project completion.

												ton ooun																
Location Code						EGLE Part 2	01 Generic Cle	anup Criteria					Indoor Air I	Volatilization to nterim Action ng Levels							Julio Ma	arine						
Station Name	CAS Number															QMCP	P-SB44			QMCP-S	SB45		QMCF	P-SB46		QMC	CP-SB47	
Field Sample ID						l									QMCP-	-SB44 0-6in	QMCP-S	B44 6in-4ft	QMCP	-SB45 0-6in	QMCP-S	SB45 6in-5ft	QMCP-S	B46 0-4ft	QMCP-	SB47 0-6in	QMCP-S	SB47 6in-5ft
Sample Date		[2]	[4]	[6]	[7] Residential	[8] Residential	[40]	[11]	[13]	[14] Nonresidential	[15] Nonresidential	[47]		[40]	9/1	0/2018	9/10)/2018	9/	10/2018	9/10	0/2018	9/10	/2018	9/10	0/2018	9/10	0/2018
Sample Interval (bgs)		Groundwater Surface Water	Residential Drinking Water	Residential Infinite Source	Finite Volatile Soil Inhalation		Residential	Nonresidential Drinking Water	Nonresidential Infinite Source	Finite volatile	Finite Volatile Soil Inhalation	[17] Nonresidential	[18] Soil Residential	[19] Soil	0 -	- 0.5 ft	0.5	- 4 ft	0	- 0.5 ft	0.5	5 - 5 ft	0 -	4 ft	0 -	- 0.5 ft	0.5	5 - 5 ft
Sample Description		Interface Protection Criteri a	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	SAND, Med coarse, bro at 4 feet Result	dium to own, saturated	SAND, Medi coarse, brov at 4 feet	vn saturated		um to coarse, ated at 4 feet Exceeds		lium to coarse, rated at 4 feet Exceeds	SAND, Med coarse, bro saturated a	wn,	SAND, Med coarse, bro at 5 feet Result	dium to own, saturated	SAND, Mediu brown, satura Result	
Inorganics - Metals (mg/kg)																												
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	14	[2,4,10,11]	8.7	[2,4,10,11]	16	[2,4,10,11]	12	[2,4,10,11]	5.4	[2,4,11]	16	[2,4,10,11]	11	[2,4,10,11]
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV	NLV	1.3E+5 (B)	NA	NA	NM	-	NM	-	NM	-	NM		NM	-	NM	-	NM	
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA	NA	<0.2 U		<0.2 U		0.8	-	<0.2 U		0.5		0.3		<0.2 U	
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H)	NLV	NLV	NLV	1.00E+6 (B,D,H)	NA	NA	66		69		58		19		29		59	-	84	
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV	NLV	73,000 (B)	NA	NA	6,500	[2,4,11]	6,300	[2,4,11]	2,300	[2]	180	[2]	710	[2]	7,300	[2,4,11]	9,700	[2,4,11]
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA	NA	27	-	19		90	-	3.4		20		43	-	34	
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA	470	[2,4,11]	420		430	-	270		260	-	410	-	590	[2,4,11]
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	0.06	[18]	<0.06 U	-	0.1	[18,19]	<0.05 U		<0.05 U	-	<0.05 U	-	<0.05 U	
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA	NM		NM	-	NM	-	NM		NM	-	NM	-	NM	
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	1.7	[2]	1.3	[2]	0.9	-	<0.1 U		0.4	-	1.4	[2]	0.9	
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	73	[2]	59		120	[2]	36		130	[2]	79	[2]	78	[2]
Inorganics - Cyanide (mg/kg)	,		,			•		•	•	,			,															
CYANIDE	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	NM		NM		NM	-	NM		NM	-	NM		NM	
Organics - PCBs (ug/kg)																												
AROCLOR-1254	11097-69-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<120 U	-	<120 U	-	1,600	-	<110 U	-	<540 U	-	<110 U	- '	<510 U	-
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	ND	-	ND	-	1,600 J	[10,17]	ND	-	ND	-	ND	-	ND	-
Organics - SVOCs (ug/kg)																												
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	<600 U		<580 U	-	10,000	[2]	<530 U		800		<540 U	-	2,700	-
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	<240 U		<230 U	-	<220 U	-	<210 U	-	<220 U	-	<220 U	-	1,300	-
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	<240 U		<230 U	-	<220 U	-	<210 U	-	<220 U		210 J	-	980	-
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	<240 U		<230 U	-	<220 U	-	<210 U	-	<220 U		<220 U	-	2,300	-
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	460	-	<230 U	-	540	-	<210 U	-	330		<220 U	-	4,600	-
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<480 U		<460 U		<440 U		<430 U	_	<430 U		<430 U		3,900	[10]
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	830		<460 U		730	-	<430 U		970	-	<430 U		6,300	
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA	<480 U		<460 U	-	<440 U	1	<430 U		<430 U		<430 U	-	940	-
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	<480 U		<460 U		<440 U	-	<430 U		<430 U	-	<430 U	-	2,300	-
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	440		<230 U	-	830	-	<210 U	-	600		<220 U	-	4,600	
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<480 U		<460 U		<440 U	-	<430 U		<430 U		<430 U	-	<410 U	
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	890		<230 U	-	750	-	<210 U	-	660		<220 U	-	16,000	[2]
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	<240 U		<230 U		<220 U	-	<210 U		<220 U		<220 U		1,800	
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<480 U		<460 U		<440 U	-	<430 U		<430 U		<430 U		1,100	
NAPHTHALENE (SVOC)	91-20-3S	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	<240 U		<230 U		6,100	[2]	<210 U		560		770	[2]	4,400	[2]
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	380		<230 U	-	3,900	[2]	<210 U	-	680		340		25,000	[2]
PYRENE	129-00-0	ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05	7.80E+08	7.80E+08	7.80E+08	8.40E+07	NA	NA	840		<230 U		740	-	<210 U		520		220		14,000	

Location Code						EGLE Part 20	01 Generic Clea	nup Criteria					Media-Specific Indoor Air In	terim Action							Julio Ma	rine						
Station Name	CAS Number												Corceniii	g Levelo		QMCI	P-SB44			QMCP-S	SB45		QMCP	-SB46		QMC	CP-SB47	
Field Sample ID															QMCP-	SB44 0-6in	QMCP-S	SB44 6in-4ft	QMCF	P-SB45 0-6in	QMCP-SE	345 6in-5ft	QMCP-S	B46 0-4ft	QMCP-	-SB47 0-6in	QMCP-S	SB47 6in-5ft
Sample Date		[2] Groundwater	[4]	[6] Residential	[7] Residential	[8] Residential	[10]	[11]	[13] Nonresidential	[14] Nonresidential	[15] Nonresidential	[17]		[19]	9/10	0/2018	9/1	0/2018	9/	10/2018	9/10/	2018	9/10/	2018	9/10	0/2018	9/10	0/2018
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential	Nonresidential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Nonresidential	[18] Soil Residential	Soil	0 -	0.5 ft	0.9	5 - 4 ft	() - 0.5 ft	0.5 -	- 5 ft	0	4 ft	0 -	- 0.5 ft	0.5	5 - 5 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	SAND, Med coarse, broat 4 feet		0.5 - 4 ft SAND, Medium to coarse, brown, satu at 4 feet			um to coarse, rated at 4 feet	SAND, Mediu brown, satura	1	SAND, Medi coarse, brow saturated at	wn,	SAND, Med coarse, brow at 5 feet	own saturated	SAND, Mediu brown, satura	
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																												
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	<70 U		<68 U		830	[18,19]	<60 U		<57 U	-	<58 U	-	<53 U	-
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	<70 U		<68 U		2,300	[2,4,11,18,19]	<60 U		130	-	96	-	72	
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	<70 U	-	<68 U	-	580	[18,19]	<60 U		<57 U	-	<58 U	- '	<53 U	-
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)	NA	NA	<350 U	-	<340 U		570	-	<300 U		<290 U	•	<290 U	- '	<260 U	
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	<350 U	-	<340 U		4,800	[2]	<300 U		310		<290 U	-	2,200	-
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	<70 U	-	<68 U		520	[2,4,11,18,19]	<60 U	-	<57 U		<58 U	-	<53 U	-
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<350 U	-	<340 U		3,600	-	<300 U		<290 U	-	<290 U	-	<260 U	-
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	<70 U		<68 U		470	[2,18,19]	<60 U		<57 U	-	<58 U	-	<53 U	
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	<70 UJ		<68 UJ		1,100	[18,19]	<60 UJ		<57 U	-	<58 U	-	<53 U	-
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	<70 U		<68 U		250	-	<60 U		<57 U	-	<58 U	-	<53 U	-
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<140 U		<140 U		4,600	-	<120 U		230		150	-	<110 U	-
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	<350 U	-	<340 U	-	4,200	[2]	<300 U	-	<290 U	-	<290 U	-	4,200	[2]
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	<70 U	•	<68 U		190	-	<60 U	-	<57 U	•	<58 U	-	<53 U	
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	<70 U	-	<68 U	-	310	-	<60 U	-	<57 U	-	<58 U	-	<53 U	
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<70 U		<68 U		3,000	-	<60 U	-	160	-	120	-	58	-
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	<70 U	-	<68 U		100	-	<60 U	-	<57 U	-	<58 U	-	<53 U	-
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	<70 U	-	<68 U		3,300	-	59 J	-	180		82	-	<53 U	
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	ND		ND		7,600	[2,4,11,18,19]	ND	-	390	[18]	270	[18]	58	[18]

Location Code						FGI F Part 2	201 Generic Clea	nun Criteria						Volatilization to								Julio I	Marine						
ESSAUGH SOUC				ı	ı	1	1 1			1		T	Indoor Air In Screenin																
Station Name	CAS Number																P-SB48			QMCF				P-SB50	QMCP-SB116		P-SB117		P-SS27
Field Sample ID		ro1		rea	[7]	[8]			7401	[14]	[15]				QMCP-	-SB48 0-6in	QMCP-S	B48 6in-5ft	QMCP-SE	B49 0-6in	QMCP-SE	B49 6in-4ft	QMCP-S	SB50 0-2ft	QMCP-SB 116-5-6.5ft	QMCP-SB	117-13-14ft	t QMCP-S	SS-27-0-6in
Sample Date		[2] Groundwater	[4] Residential	[6] Residential	Residential Finite Volatile	Residential Finite Volatile	[10]	[11] Nonresidential	[13] Nonresidential	Nonresidential Finite Volatile	Nonresidential Finite Volatile	[17]	[18]	[19]	9/1	0/2018	9/10	0/2018	9/10/2	2018	9/10/	/2018	9/10)/2018	9/26/2020	9/26	5/2020	9/6	/2018
Sample Interval (bgs)		Surface Water Interface	Drinking Water	Infinite Source Volatile Soil	Soil Inhalation	Soil Inhalation	Residential Direct Contact	Drinking Water	Infinite Source Volatile Soil	Soil Inhalation	Soil Inhalation	Nonresidential Direct Contact	Soil Residential	Soil Nonresidentia	0	- 0.5 ft	0.5	- 5 ft	0 - 0).5 ft	0.5	- 4 ft	0 -	- 2 ft	5 - 6.5 ft		- 14 ft	0 -	0.5 ft
Sample Description		Protection Criteria	Protection Criteria	Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Criteria	Protection Criteria	Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Criteria	MSSL	MSSL	SAND, Me coarse, br saturated	own,	SAND, Med coarse, brov at 4 feet		SAND and 0 with debris	GRAVEL	SAND and with debris		SAND, Med coarse, bro saturated a	own,	Fine to coarse gravel with large cobble at 6 feet, brown to reddish brown, wet at 6.5	Fine to med brown, wet		SAND with gravel and	slag
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (mg/kg)					l	l	I I			I		l	l		 	I			I I			I		T T		1		T	
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	7.8	[2,4,10,11]	4	-	3.5	-	3.2		1.7	-	NM	NM	-	6.6	[2,4,11]
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV	NLV	1.3E+5 (B)	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	NM	-	6.1	-
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA	NA	0.8	-	<0.2 U		0.3	-	0.2	-	0.3	-	NM	NM	-	0.4	-
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H)	NLV	NLV	NLV	1.00E+6 (B,D,H)	NA 	NA	33		24		78		30		8.5	-	NM	NM	-	94	
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV	NLV	73,000 (B)	NA	NA	4,300	[2]	3,200	[2]	890	[2]	2,200	[2]	1,000	[2]	NM	NM	-	1,100	[2]
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA 	NA	670	[10]	76		15		48	-	170	-	NM	NM	-	4.3	
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA	320		330		510	[2,4,11]	360	-	140	-	NM	NM	-	900	[2,4,11]
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	0.2	[2,18,19]	<0.05 U		<0.05 U	-	<0.05 U	-	0.4	[2,18,19]	NM	NM	-	<0.05 U	-
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA	NM	-	NM		NM		NM	-	NM	-	NM	NM	-	<0.2 U	-
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	2.5	[2]	1.4	[2]	0.6		0.9		0.5		NM	NM	-	1.6	[2]
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	1,000	[2]	78	[2]	72	[2]	70	[2]	120	[2]	NM	NM		74	[2]
Inorganics - Cyanide (mg/kg)				ı	ı	ı				1		ı	1				1 1					ı				1		T	
CYANIDE Organics - PCBs (ug/kg)	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	NM		NM		NM		NM		NM	-	NM	NM		<0.11 U	
AROCLOR-1254	11097-69-1	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	l NA	NA	<2700 U	Ι	<1100 U		<110 U		<110 U	-	<580 U	T	NM	NM	T	NM	T
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	ND	-	ND		ND		ND	_	ND	-	NM	NM	-	NM	
Organics - SVOCs (ug/kg)					, , , ,	, , , ,	, , , , ,		, , ,	, , ,	, , ,																		
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	<530 U	Ι	540 J		<540 U		<540 U	_	<580 U	-	<280 U	<1100 U	-	<530 U	
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	<210 U		<210 U		<220 U	-	<210 U	-	<230 U	-	<110 U	<430 U	-	<210 U	-
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	<210 U		<210 U		<220 U	-	<210 U	-	<230 U	-	<110 U	<430 U	-	<210 U	-
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	<210 U		<210 U		<220 U	-	<210 U	-	<230 U	-	<110 U	<430 U	-	<210 U	-
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	320	۱.	910 J		<220 U		390		420	-	170	<430 U	-	<210 U	-
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<430 U		<4300 U		<430 U	-	430	-	<470 U	-	<220 U	<860 U	-	<420 U	-
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	660	-	<4300 U	-	<430 U		830		660	-	240	<860 U	-	<420 U	-
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA	<430 U	-	<4300 U	-	<430 U		<430 U	-	<470 U	-	<220 U	<860 U	-	<420 U	-
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	<430 U	-	<4300 U	-	<430 U	-	<430 U	-	<470 U	-	<220 U	<860 U	-	<420 U	-
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	380	-	1,500 J		<220 U	-	460	-	470	-	180	<430 U	-	<210 U	-
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<430 U	-	<4300 U	-	<430 U	-	<430 U	-	<470 U	-	<220 U	<860 U		<420 U	-
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	640	† -	1,100 J		270		810		1,100	-	380	<430 U		<210 U	-
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	<210 U	-	<210 U		<220 U		<210 U	-	<230 U	-	<110 U	<430 U		<210 U	-
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<430 U	-	<4300 U		<430 U	-	<430 U	-	<470 U	-	<220 U	<860 U		<420 U	-
NAPHTHALENE (SVOC)	91-20-3\$	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	220	 -	310 J	-	<220 U	-	<210 U	-	260		110	<430 U	-	<210 U	-
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	440	-	940 J	-	<220 U		420		1,300	-	370	<430 U	-	<210 U	-
PYRENE	129-00-0	ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05	7.80E+08	7.80E+08	7.80E+08	8.40E+07	NA	NA	490	†	5,900 J	-	230	-	790		850	-	440	<430 U	-	<210 U	

Location Code						EGLE Part 2	201 Generic Clea	nup Criteria					Indoor Air I	: Volatilization to nterim Action ng Levels								Julio	Marine							
Station Name	CAS Number															QMC	P-SB48			QMC	P-SB49		QMC	P-SB50	QMC	CP-SB116	QMCP-	-SB117	QMCP-	-SS27
Field Sample ID					[77]	ro1				1441	[45]				QMC	CP-SB48 0-6in	QMCP-S	B48 6in-5ft	QMCP-S	B49 0-6in	QMCP-SB4	49 6in-4ft	QMCP-S	SB50 0-2ft	QMCP-S	SB 116-5-6.5ft	QMCP-SB	117-13-14ft	QMCP-SS-	-27-0-6in
Sample Date		[2] Groundwater	[4]	[6] Residential	[7] Residential	Residential	[10]	[11]	[13] Nonresidential	Nonresidential	[15] Nonresidential	[17]		[19]	9	9/10/2018	9/10	/2018	9/10	/2018	9/10/2	1018	9/10	/2018	9/2	26/2020	9/26/2	2020	9/6/2	.018
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential	Nonresidential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Nonresidential	[18] Soil Residential	Soil		0 - 0.5 ft	0.5	- 5 ft	0 - 0	0.5 ft	0.5 -	4 ft	0 -	2 ft	5	- 6.5 ft	13 -	14 ft	0 - 0.	.5 ft
Sample Description		Interface Protection Criteri a	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	coarse,	brown,	SAND, Med coarse, brov at 4 feet	n saturated	SAND and with debris	GRAVEL	SAND and G with debris	RAVEL	SAND, Mer coarse, bro saturated a	wn,	large cobb	rse gravel with le at 6 feet, eddish brown,	Fine to medi brown, wet	lium sand,	Brown to gre SAND with s gravel and sl	some
															Resu	It Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																														
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	<56 L	J	<60 U		<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U		NM	-
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	130		110		<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U	'	NM	
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	<56 L	J	<60 U		<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U	'	NM	
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)) NA	NA	<280	U	<300 U		<290 U		<300 U	-	<330 U	-	<320 U	-	<2000 U		NM	
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	280		330		<290 U		<300 U	-	<330 U	-	<320 U	-	<2000 U	-	NM	
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	<56 L	J	120	[4,11,18,19]	<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U	-	NM	
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<280	U	<300 U		<290 U		<300 U	-	<330 U	-	<320 U	-	<2000 U	-	NM	-
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	<56 L	J	<60 U		<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U	-	NM	-
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	<56 U	JJ	<60 UJ		<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U	- '	NM	-
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	<56 L	J	<60 U		<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U	'	NM	
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	230		250		<110 U		<120 U	-	<130 U	-	<130 U	-	<790 U	'	NM	
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	<280	U	<300 U		<290 U		<300 U	-	<330 U	-	<320 U	-	<2000 U	<u> </u>	NM	
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	<56 L	J	<60 U	-	<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U		NM	
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	<56 L	J	<60 U	-	<57 U		<60 U	-	<66 U	-	<63 U	-	<390 U		NM	-
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170	-	140	-	<57 U	-	<60 U	-	<66 U	-	<63 U	-	<390 U		NM	-
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	<56 L	J	<60 U	-	<57 U	-	<60 U	-	<66 U	-	<63 U	-	<390 U		NM	-
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	160	-	300	-	<57 U	-	<60 U	-	<66 U	-	<63 U	-	<390 U	-	NM	-
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	400	[18]	390	[18]	ND	-	ND	-	ND	-	ND	-	ND	-	NM	

Location Code						EGLE Part 2	201 Generic Clea	nup Criteria					Indoor Air I	Volatilization to sterim Action							Jul	io Marine						
Station Name	CAS Number												Corcenii	IS LEVELD	QMCF	P-SS28		QMCP-	SS29			QMCP-	-SS30			QN	MCP-SS31	
Field Sample ID															QMCP-S	S-28-0-6in	QMCP-S	SS-29-0-6in	QMCP-SS	29-0-6in	QMCP-S	S-30-0-6in	QMCP-S	S30-0-6in	QMCP-S	S-31-0-6in	QMCP-SS-31	1-0-6in DUP 4
Sample Date		[2] Groundwater	[4]	[6]	[7] Residential	[8] Residential	[40]	[11]	[13]	[14] Nonresidential	[15] Nonresidential	[47]		r401	9/6/	2018	9/6	/2018	9/6/2	018	9/6/	2018	9/6/2	2018	9/6/	2018	9/6/;	/2018
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Residential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[10] Residential	Nonresidential Drinking Water	Nonresidential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[17] Nonresidential	[18] Soil Residential	[19] Soil	0 - 0	0.5 ft	0 -	0.5 ft	0 - 0.	5 ft	0 -	0.5 ft	0 - 0).5 ft	0 - 0	0.5 ft	0 - 0	0.5 ft
Sample Description		Interface Protection Criteri a	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	Brown med with some o	IIUM SAND	Black fine s oily residue odor	3in down,	Black fine sta SAND, oily re down, odor	esidue 3in	Black fine S. some grave		Black fine S some grave		Brown fine SAND with 6in black	to coarse gravel, 5-	Brown fine to co with gravel, 5-6	coarse SAND -6in black
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (mg/kg)																												
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	2.5	-	12	[2,4,10,11]	NM	-	9.8	[2,4,10,11]	NM	-	4.2	-	4.2	
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV	NLV	1.3E+5 (B)	NA	NA	41	-	64		NM	-	50		NM		91	-	64	
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA	NA	<0.2 U	-	<0.2 U		NM	-	0.3	-	NM	-	<0.2 U	-	<0.2 U	-
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H)	NLV	NLV	NLV	1.00E+6 (B,D,H)	NA	NA	14		<200 U		NM	-	27	-	NM	_	19	-	12	
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV	NLV	73,000 (B)	NA	NA	220	[2]	41,000	[2,4,10,11]	NM		1,600	[2]	NM	_	1,100	[2]	780	[2]
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA	NA	83	-	110	-	NM	-	68	-	NM	-	15	-	11	
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA	200	-	280	-	NM	-	290	-	NM	-	240	-	190	-
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	0.2	[2,18,19]	0.07	[18,19]	NM		0.2	[2,18,19]	NM	-	<0.05 U	-	<0.06 U	-
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA	<0.2 U	-	<0.2 U	-	NM	-	<0.2 U	-	NM	-	<0.2 U	-	<0.2 U	-
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	0.3	-	4.6	[2,4]	NM	-	1.7	[2]	NM	-	0.6	-	0.4	
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	70	[2]	160	[2]	NM	-	110	[2]	NM	-	33	-	25	
Inorganics - Cyanide (mg/kg)			,		,					,	•	•								·								
CYANIDE	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	<0.11 U	-	<0.11 U		NM	-	<1.1 U		NM	-	<0.11 U	-	<0.11 U	
Organics - PCBs (ug/kg)			,		•					•																		
AROCLOR-1254	11097-69-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM		NM	- [NM	-	NM		NM	-	NM	-
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	-
Organics - SVOCs (ug/kg)			•	•	,					•	•	•																
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	<550 U	-	1,500	-	NM	-	2,100	-	NM	-	<550 U	-	<550 U	-
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	<220 U	-	<220 U		NM	-	2,000	-	NM	-	<220 U	-	<220 U	-
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	<220 U	-	<220 U		NM	-	1,200	-	NM	-	<220 U	-	<220 U	-
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	<220 U	-	<220 U		NM	-	6,300		NM	-	<220 U	-	<220 U	
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<220 U	-	540	-	NM		16,000	-	NM	-	<220 U	-	<220 U	
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<440 U	-	<440 U	-	NM		12,000	[10,17]	NM	-	<440 U	-	<440 U	-
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	<440 U	-	1,200	-	NM	- 1	20,000	-	NM	-	<440 U	-	<440 U	
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA	<440 U	-	<440 U		NM		2,300	-	NM	-	<440 U	-	<440 U	
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	<440 U	-	<440 U		NM	-	7,800	-	NM	-	<440 U	-	<440 U	
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	<220 U	-	780	_	NM		16,000	-	NM	-	<220 U	-	<220 U	
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<440 U	-	<440 U	-	NM	-	1,100	-	NM	-	<440 U	-	<440 U	-
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	<220 U	-	800	-	NM	-	41,000	[2]	NM	-	<220 U	-	<220 U	_
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	<220 U	-	<220 U	-	NM	-	5,600	[2]	NM	-	<220 U	-	<220 U	_
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<440 U	 	<440 U		NM	- 1	3,000	-	NM	_	<440 U	-	<440 U	
NAPHTHALENE (SVOC)	91-20-3S	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	<220 U	-	1,100	[2]	NM		5,600	[2]	NM	-	580	-	650	
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	<220 U	-	1,000	-	NM		43,000	[2]	NM	-	270	-	240	
PYRENE	129-00-0	ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05	7.80E+08	7.80E+08	7.80E+08	8.40E+07	NA	NA	<220 U	 	710		NM	-	27,000	-	NM	_	<220 U	-	<220 U	

Location Code						EGLE Part 2	01 Generic Clea	nup Criteria					Media-Specific Indoor Air In Screenin	terim Action							Juli	o Marine						
Station Name	CAS Number														QMC	P-SS28		QMCF	-SS29			QMCP	-SS30			QN	MCP-SS31	
Field Sample ID					r=,	ro1					145				QMCP-S	S-28-0-6in	QMCP-	SS-29-0-6in	QMCP-S	S29-0-6in	QMCP-SS	S-30-0-6in	QMCP-S	S30-0-6in	QMCP-S	SS-31-0-6in	QMCP-SS-3	11-0-6in DUP 4
Sample Date		[2] Groundwater	[4]	[6] Residential	[7] Residential	[8] Residential	[10]	[11]	[13] Nonresidential	[14] Nonresidential	[15] Nonresidential	[17]		[19]	9/6	/2018	9/6	/2018	9/6/2	2018	9/6/2	2018	9/6/	2018	9/6/	i/2018	9/6:	/2018
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential	Nonresidential Drinking Water	Infinite Source		Finite Volatile Soil Inhalation	Nonresidential	[18] Soil Residential	Soil	0 -	0.5 ft	0 -	0.5 ft	0 - 0	0.5 ft	0 - 0).5 ft	0 - 0	0.5 ft	0 - 0	0.5 ft	0 -	0.5 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	Brown med with some		Black fine soily residue odor	stamp SAND, e 3in down,	Black fine s SAND, oily down, odor	residue 3in	Black fine SA some gravel		Black fine S some grave		Brown fine SAND with 6in black		Brown fine to o	
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																												
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM		NM	-
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	NM	-	NM	-	NM	-	NM	-	NM	-	NM	T -	NM	

Location Code						EGLE Part 2	01 Generic Clea	anup Criteria					Indoor Air Ir	Volatilization to nterim Action ng Levels						Julio Ma	rine					
Station Name	CAS Number														(QMCP-SS57	QMC	CP-SS58	QMC	:P-SS59	QMO	CP-SS60	QN	MCP-SS222	QMC	P-SS223
Field Sample ID															QM	MCP-SS57-0-3in	QMCP-	SS58-0-3in	QMCP-	SS59-0-3in	QMCP-	-SS60-0-3in	QMCF	P-SS 222-0-3in	QMCP-S	SS 223-0-3in
Sample Date		[2]	[4]	[6]	[7] Residential	[8] Residential	r401	[11]	[13]	[14] Nonresidential	[15] Nonresidential	r471		F401		10/1/2018	10/	1/2018	10/	1/2018	10.	/1/2018	8	3/17/2019	9/2/	24/2020
Sample Interval (bgs)		Groundwater Surface Water	Residential Drinking Water	Residential Infinite Source	Finite Volatile Soil Inhalation		[10] Residential	Nonresidential Drinking Water	Nonresidential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[17] Nonresidential	[18] Soil Residential	[19] Soil		0 - 0.25 ft	0 -	0.25 ft	0 -	0.25 ft	0 -	0.25 ft	(0 - 0.25 ft	0 -	· 0.25 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	Black soot		Burn pile re	esidue	Burn pile re	sidue	Burn pile res	sidue				
Inorganics - Metals (mg/kg)															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	190	[2,4,10,11,17]	21	[2,4,10,11]	22	[2,4,10,11]	19	[2,4,10,11]	140	[2,4,10,11,17]	9.7	[2,4,10,11]
	-			<u> </u>		 						1.3E+5 (B)	NA NA										NM	[2,4,10,11,17]	NM	
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV NLV	NLV			NA NA	180	[2]	440	[2]	350	[2]	600	[2]		-	+ +	-
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA NA	NA NA	61	[2,4,11]	6.7	[2,4,11]	2.2	[2]	2.1	[2]	NM	-	NM	
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H)	NLV	NLV	NLV	1.00E+6 (B,D,H)	NA NA	NA NA	<200 U	 Fat	38		43		44		NM	-	NM	
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV NLV	NLV	73,000 (B)	NA NA	NA NA	520	[2]	650	[2]	1,200	[2]	810	[2]	NM	-	NM	
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA	NA 	3,000	[2,4,10,11,17]	270		470	[10]	2,300	[4,10,11,17]	140	-	NM	
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA a sas	790	[2,4,11]	570	[2,4,11]	420		710	[2,4,11]	NM	-	NM	-
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	0.4	[2,18,19]	<0.07 U	-	0.1	[18,19]	0.1	[18,19]	NM	-	NM	-
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA 	2.8	[2]	<0.2 U	-	<0.2 U	-	<0.2 U		NM	-	NM	
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	2.9	[2]	0.6	-	0.5		0.5		NM	-	NM	-
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	920	[2]	730	[2]	790	[2]	1,000	[2]	NM		NM	-
Inorganics - Cyanide (mg/kg)		0.4 (5.5)		I		I	40.75.51			I I		()		l		T		ı					l			
CYANIDE CYANIDE	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	2	-	<0.75 U		<0.84 U		<0.79 U		NM	-	NM	-
Organics - PCBs (ug/kg)	44007.00.4		l ,,,	T	T	T		l		I I				l	.0000011	T	1 45011	I	470.11		400.11		1 040			
AROCLOR-1254	11097-69-1	NA 	NA 	NA NA	NA	NA	NA	NA 	NA NA	NA	NA NA	NA	NA 	NA 	<20000 U	-	<150 U	-	<170 U	-	<160 U		240	-	NM	
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	ND		ND		ND		ND		240	-	NM	-
Organics - SVOCs (ug/kg)						T								l		I	l	ı								
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA 	NA 	3,400 J	-	<750 U	-	<840 U	-	<790 U		1,400	-	430	
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	2,000 J	-	<300 U	-	<340 U	-	<320 U		<110 U	-	<170 U	
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	7,500 J	[4]	<300 U	-	<340 U	-	<320 U		<110 U	-	<170 U	
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	24,000 J	-	<300 U	-	<340 U	-	<320 U		<110 U	-	<170 U	
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA 	NA 	100,000 J	[10,17]	<300 U	-	490		470		560	-	280	
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA 	75,000 J	[10,17]	<600 U	-	<6700 U	-	<6300 U		<2200 U		<3500 U	-
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	180,000 J	[10,17]	<600 U	<u> </u>	<6700 U	-	<6300 U		<2200 U		<3500 U	
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA 	30,000 J	-	<600 U	-	<6700 U	-	<6300 U		<2200 U		<3500 U	
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	39,000 J	-	<600 U	<u> </u>	<6700 U	-	<6300 U		<2200 U		<3500 U	
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	150,000 J	-	<300 U	<u> </u>	670		610		920	-	410	
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<26000 U	-	<600 U		<6700 U		<6300 U		<2200 U		<3500 U	
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	300,000 J	[2]	550	- -	880		970		1,300	-	700	
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	10,000 J	[2]	<300 U	-	<340 U	-	<320 U		<110 U	-	<170 U	
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	49,000 J	[10]	<600 U	-	<6700 U	-	<6300 U		<2200 U		<3500 U	-
NAPHTHALENE (SVOC)	91-20-3S	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	12,000 J	[2]	570		490		300 J	-	1,100	[2]	320	
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	230,000 J	[2,4,6,7,8,11,13,14,15]	690	-	550	-	610		1,200	-	530	
PYRENE	129-00-0	ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05	7.80E+08	7.80E+08	7.80E+08	8.40E+07	NA	NA	230,000 J	-	520	-	930	-	990	-	1,100	-	1,000	

Location Code						EGLE Part 2	201 Generic Clea	nup Criteria					Indoor Air I	Volatilization to nterim Action ng Levels						Julio M	arine					
Station Name	CAS Number														(QMCP-SS57	QMC	P-SS58	QMC	CP-SS59	QM	MCP-SS60	QN	MCP-SS222	QMC	CP-SS223
Field Sample ID		1			[7]	roı				[4.4]	[45]				QM	CP-SS57-0-3in	QMCP-S	S58-0-3in	QMCP-	SS59-0-3in	QMCF	P-SS60-0-3in	QMCF	P-SS 222-0-3in	QMCP-(-SS 223-0-3in
Sample Date		[2] Groundwater	[4]	[6] Residential	[7] Residential	[8] Residential	[10]	[11]	[13] Nonresidential	[14] Nonresidentia	[15] Nonresidential	[17]		[19]		10/1/2018	10/1	/2018	10/	1/2018	10	0/1/2018	3	8/17/2019	9/2	24/2020
Sample Interval (bgs)		Surface Water Interface	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential Direct Contact	Nonresidential Drinking Water	Infinite Source Volatile Soil	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Nonresidential Direct Contact	[18] Soil Residential	Soil Nonresidential		0 - 0.25 ft	0 - 0).25 ft	0 -	0.25 ft	0	- 0.25 ft	(0 - 0.25 ft	0 -	- 0.25 ft
Sample Description		Protection Criteria	Protection Criteria	Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Criteria	Protection Criteria	Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Criteria	MSSL	MSSL	Black soot		Burn pile res	idue	Burn pile re	sidue	Burn pile re	esidue				
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																										
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	NM		NM	-	NM	-	NM	-	NM	-	NM	
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	NM		NM	-	NM	-	NM		NM	-	NM	
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	NM		NM	-	NM	-	NM		NM	-	NM	
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)	NA	NA	NM		NM	-	NM	-	NM		NM	-	NM	
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	NM		NM	-	NM	-	NM		NM	-	NM	-
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	NM		NM	-	NM	-	NM		NM	-	NM	-
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM		NM	-	NM	-	NM	-	NM	-	NM	
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	NM		NM	-	NM	-	NM		NM	-	NM	
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	NM		NM	-	NM	-	NM		NM	-	NM	
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	NM		NM	-	NM	-	NM	-	NM	-	NM	
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM		NM	-	NM	-	NM	-	NM	-	NM	
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	NM		NM	-	NM	-	NM	-	NM	-	NM	
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM		NM	-	NM	-	NM		NM	-	NM	-
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	NM		NM	-	NM		NM	-	NM	-	NM	
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM		NM	-	NM	-	NM	-	NM	-	NM	
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM		NM	-	NM	-	NM	-	NM	-	NM	
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	NM		NM	-	NM	-	NM	-	NM	-	NM	
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	NM		NM	-	NM	-	NM		NM	-	NM	-

													•															
Location Code						EGLE Part 2	201 Generic Clea	anup Criteria					Indoor Air I	Volatilization to nterim Action ng Levels							Jι	ılio Marine						
Station Name	CAS Number														QM	CP-SS224	QMC	P-SS225	QMCP	-SS226	QMCP-	SS227	QM	CP-SS228	QMCI	P-SS229	QMCF	P-SS230
Field Sample ID															QMCP-	-SS 224-0-3in	QMCP-S	S 225-0-3in	QMCP-SS	3 226-0-3in	QMCP-SS	227-0-3in	QMCP	-SS 228-0-3in	QMCP-S	S 229-0-3in	QMCP-S	S 230-0-3in
Sample Date		[2]	[4]	[6] Residential	[7] Residential	[8] Residential	r401	[11]	[13]	[14] Nonresidential	[15] Nonresidential	[47]		[40]	9/	24/2020	9/24	4/2020	9/24	/2020	8/17/	2019	8	/17/2019	9/24	1/2020	9/24	4/2020
Sample Interval (bgs)		Groundwater Surface Water	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential	Nonresidential Drinking Water	Nonresidential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[17] Nonresidential	[18] Soil Residential	[19] Soil	0	- 0.25 ft	0 -	0.25 ft	0 - 0).25 ft	0 - 0	.25 ft	0	- 0.25 ft	0 -	0.25 ft	0 - 0	0.25 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	Result	Exceeds	Result	 Exceeds	Result	Exceeds	Result	Exceeds	Result	 Exceeds	Result	Exceeds	Result	 Exceeds
Inorganics - Metals (mg/kg)																												
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	8.3	[2,4,10,11]	22	[2,4,10,11]	NM	-	1.3		NM		17	[2,4,10,11]	18	[2,4,10,11]
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV	NLV	1.3E+5 (B)	NA	NA	NM		NM	_	NM		NM	-	NM		NM		NM	-
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA	NA	NM	 _	NM	_	NM	-	NM	_	NM		NM		NM	-
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H)	NLV	NLV	NLV	1.00E+6 (B,D,H)	NA	NA	NM	 	NM		NM	-	NM	_	NM		NM		NM	
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV	NLV	73,000 (B)	NA	NA	NM	 	NM	-	NM	-	NM	_	NM		NM		NM	
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA	NA	NM	-	NM		NM		20	-	NM		NM		NM	
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM		NM	
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	NM	-	NM	-	NM	-	NM	-	NM		NM		NM	
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA	NM	<u> </u>	NM	-	NM	-	NM	_	NM		NM		NM	
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	NM	<u> </u>	NM	-	NM	-	NM	_	NM		NM		NM	
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	NM	-	NM	-	NM	-	NM		NM	-	NM		NM	-
Inorganics - Cyanide (mg/kg)																												
CYANIDE	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	NM	T	NM	-	NM	-	NM		NM		NM		NM	
Organics - PCBs (ug/kg)					•																				•			
AROCLOR-1254	11097-69-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM		NM	-	<150 U		<120 U		NM		NM		NM	
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	NM	-	NM	-	ND		ND	-	NM		NM		NM	-
Organics - SVOCs (ug/kg)																									•			
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	<320 U		2,600		NM	-	<310 U		52,000	[2]	4,900	[2]	<2800 U	
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	<130 U		<110 U		NM	-	<120 U	-	<11000 U		4,500		1,900	
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	<130 U		150		NM	-	<120 U	-	<11000 U		1,300		1,600	
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	<130 U		<110 U	-	NM	-	<120 U	-	<11000 U	-	12,000		9,400	
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<130 U		510		NM	-	<12000 U	-	<1100 U	-	23,000	[10]	32,000	[10]
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<2500 U	-	530		NM	-	<25000 U	-	<2200 U	-	16,000	[10,17]	27,000	[10,17]
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	<2500 U	-	2,200	-	NM	-	<25000 U	-	<2200 U	-	27,000	[10]	47,000	[10]
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA	<2500 U	-	220 J		NM	-	<25000 U	-	<2200 U	-	980		9,900	
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	<2500 U	-	570	-	NM	-	<25000 U	-	<2200 U	-	8,700		13,000	
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	220	-	1,100	-	NM	-	<12000 U	-	<1100 U	-	22,000		33,000	-
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<2500 U	-	<220 U		NM	-	<25000 U		<2200 U		520		3,900	[10]
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	150	-	1,300	-	NM	-	<120 U	-	<11000 U	-	92,000	[2]	89,000	[2]
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	<130 U	-	<110 U	-	NM	-	<120 U	-	<11000 U	-	10,000	[2]	4,700	
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<2500 U	-	260		NM	-	<25000 U		<2200 U	-	1,400		11,000	
NAPHTHALENE (SVOC)	91-20-3S	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	150		1,700	[2]	NM		<120 U		12,000	[2]	10,000	[2]	4,600	[2]
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	220		1,700		NM	-	<120 U		13,000	[2]	65,000	[2,4]	67,000	[2,4]
		ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05			7.80E+08		NA	NA	210		1,100		NM	1	<12000 U		5,200		45,000		57,000	

Location Code						EGLE Part 2	01 Generic Clea	nup Criteria					Indoor Air Ir	Volatilization to							Jı	ulio Marine						
Station Name	CAS Number														QMC	CP-SS224	QMC	P-SS225	QMCP	-SS226	QMCP-	-SS227	QM	CP-SS228	QMC	P-SS229	QMC	:P-SS230
Field Sample ID															QMCP-	SS 224-0-3in	QMCP-	SS 225-0-3in	QMCP-SS	S 226-0-3in	QMCP-SS	3 227-0-3in	QMCP	-SS 228-0-3in	QMCP-S	S 229-0-3in	QMCP-S	SS 230-0-3in
Sample Date		[2] Groundwater	[4]	[6] Residential	[7] Residential	[8] Residential	[10]	[11]	[13] Nonresidential	[14] Nonresidential	[15] Nonresidential	[17]		[19]	9/2	24/2020	9/2	24/2020	9/24	/2020	8/17/	/2019	8	17/2019	9/2	4/2020	9/2	24/2020
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Residential	Nonresidential Drinking Water	Infinite Source		Finite Volatile Soil Inhalation	Nonresidential	[18] Soil Residential	Soil	0 -	- 0.25 ft	0 -	0.25 ft	0 - 0).25 ft	0 - 0	.25 ft	C	- 0.25 ft	0 -	0.25 ft	0 -	0.25 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL							-							
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																												
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	NM	-	NM	-	NM	-	NM	-	15,000	[18,19]	NM	-	NM	-
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	NM	-	NM	-	NM	-	NM	-	35,000	[2,4,11,18,19]	NM		NM	
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	NM	-	NM		NM	-	NM	-	11,000	[2,4,11,18,19]	NM		NM	
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)	NA	NA	NM	-	NM	-	NM	-	NM	-	<6100 U		NM	-	NM	-
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	NM	-	NM	-	NM	-	NM	-	64,000	[2,4]	NM	-	NM	-
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	NM	-	NM	-	NM	-	NM	-	<1200 U		NM	-	NM	-
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM	-	NM	-	<6100 U		NM	-	NM	-
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	NM	-	NM	-	NM	-	NM	-	<1200 U		NM	-	NM	-
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	NM	-	NM	-	NM	-	NM	-	<1200 U		NM	-	NM	-
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	NM	-	NM	-	NM	-	NM	-	<1200 U		NM	-	NM	-
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM	-	NM	-	<2500 U		NM	-	NM	-
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	NM	-	NM	-	NM	-	NM	-	12,000	[2]	NM	-	NM	-
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	24,000	[4,11]	NM	-	NM	-
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	NM	-	NM	-	NM	-	NM	-	5,200	[4,11,18,19]	NM		NM	
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM	-	NM	-	2,600		NM		NM	
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	4,400	[4]	NM		NM	
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	NM	-	NM	-	NM	-	NM	-	<1200 U	-	NM		NM	
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	NM		NM		NM		NM	-	2,600	[2,18,19]	NM		NM	

												on County,																
Location Code						EGLE Part 2	01 Generic Cle	anup Criteria					Indoor Air I	: Volatilization to nterim Action ng Levels							Julio	Marine						
Station Name	CAS Number													19 201010	QMC	CP-SS235	QMC	P-SS236	QMCP-	SS237	QMCP-	SS238	QMCF	-SS239	QMCP	P-SS240	QMCP	P-SS243
Field Sample ID		1													QMCP-S	SS 235-0-3in	QMCP-S	S 236-0-3in	QMCP-SS	237-0-3in	QMCP-SS	238-0-3in	QMCP-S	S 239-0-3in	QMCP-S	S 240-0-3in	QMCP-SS	3 243-0-3in
Sample Date		[2]	[4]	[6]	[7] Residential	[8] Residential		[11]	[13]	[14] Nonresidential	[15] Nonresidential				8/1	17/2019	8/1	7/2019	9/24/	2020	9/24/	2020	8/17	/2019	8/17	7/2019	8/17	/2019
Sample Interval (bgs)		Groundwater Surface Water	Residential	Residential Infinite Source	Finite Volatile	Finite Volatile	[10] Residential	Nonresidential	Infinite Source	Finite Volatile	Finite Volatile	[17] Nonresidential	[18]	[19] Soil	0 -	- 0.25 ft	0 -	0.25 ft	0 - 0.	25 ft	0 - 0.	25 ft	0 - 0).25 ft	0 - 0	0.25 ft	0 - 0	.25 ft
Sample Description		Interface Protection Criteria	Drinking Water Protection Criteria	Volatile Soil Inhalation Criteria	Soil Inhalation Criteria - 5 Meter Source Thickness	Soil Inhalation Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Drinking Water Protection Criteria	Volatile Soil Inhalation Criteria	Soil Inhalation Criteria - 5 Meter Source Thickness	Soil Inhalation Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Soil Residential MSSL	Nonresidential MSSL	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	 Exceeds	Result	Exceeds	- Result	Exceeds
Inorganics - Metals (mg/kg)															rtooun		T T T T T T T T T T T T T T T T T T T	ZXXXXX	rtooun	ZAGGGGG	1 toodit	ZACCOGG	rtocuit	2,00000	rtoduk	ZXXXXX	resour	
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	19	[2,4,10,11]	27	[2,4,10,11]	NM	-	NM	-	11	[2,4,10,11]	15	[2,4,10,11]	1.8	
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV	NLV	1.3E+5 (B)	NA	NA	NM	-	NM		NM	-	NM	-	NM		NM		NM	-
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA	NA	NM		NM		NM	-	NM	-	NM		NM		NM	-
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H) NLV	NLV	NLV	1.00E+6 (B,D,H)	NA	NA	NM		NM		NM	-	NM		NM		NM		NM	
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV	NLV	73,000 (B)	NA	NA	NM		NM	_	NM	-	NM	-	NM		NM	-	NM	-
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA	NA	340		31	_	NM	-	NM	-	660	[10]	55	-	28	-
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA	NM		NM	_	NM	-	NM	-	NM		NM	-	NM	_
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	NM		NM		NM	-	NM		NM		NM		NM	_
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA	NM		NM	_	NM	-	NM	-	NM		NM	-	NM	-
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	NM		NM		NM	-	NM	-	NM		NM	-	NM	-
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	NM		NM		NM	-	NM	-	NM		NM		NM	-
Inorganics - Cyanide (mg/kg)																												
CYANIDE	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	NM		NM		NM	-	NM	-	NM		NM	- '	NM	
Organics - PCBs (ug/kg)									·																			
AROCLOR-1254	11097-69-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1200 U	-	<120 U		<110 U		<120 U		120		NM	- '	<110 U	
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	ND		ND		ND		ND		120		NM	-	ND	
Organics - SVOCs (ug/kg)			•	_	•				•																			
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	5,000	[2]	750		NM	-	NM	-	<2500 U	-	<2600 U		<270 U	
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	<1200 U		<120 U		NM	-	NM	-	<1000 U		<1000 U		<110 U	
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	<1200 U	-	<120 U		NM	-	NM	-	<1000 U	-	<1000 U		<110 U	
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	<1200 U		<120 U		NM	-	NM	-	<1000 U		<1000 U		<110 U	
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<1200 U		<120 U		NM	-	NM	-	980 J		<1000 U		<110 U	
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<2300 U		<230 U		NM	-	NM	-	<20000 U		<20000 U		<220 U	
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	<2300 U		<230 U		NM		NM		<20000 U		<20000 U		<220 U	
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA	<2300 U		<230 U		NM		NM		<20000 U		<20000 U	-	<220 U	
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	<2300 U		<230 U		NM	-	NM	-	<20000 U		<20000 U		<220 U	
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	<1200 U		140		NM	-	NM	-	<1000 U		1,200		<110 U	-
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	<2300 U		<230 U	-	NM	-	NM	-	<20000 U		<20000 U		<220 U	
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	<1200 U		130		NM	-	NM	-	1,000 J		1,500		<110 U	-
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	<1200 U	-	<120 U		NM	-	NM	-	<1000 U		<1000 U		<110 U	
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	<2300 U	-	<230 U		NM	-	NM	-	<20000 U		<20000 U		<220 U	
NAPHTHALENE (SVOC)	91-20-3S	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	3,500	[2]	550		NM		NM		<1000 U		<1000 U		<110 U	
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	2,100		450		NM	-	NM		<1000 U		<1000 U		<110 U	
PYRENE	129-00-0	ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05	7.80E+08	7.80E+08	7.80E+08	8.40E+07	NA	NA	<1200 U		130		NM	-	NM	-	2,300 J		1,400		<110 U	

Location Code						EGLE Part 2	01 Generic Clea	nup Criteria					Indoor Air Ir	Volatilization to nterim Action ng Levels							Julio	Marine						
Station Name	CAS Number														QMCI	P-SS235	QMC	P-SS236	QMCP	-SS237	QMCP	-SS238	QMC	:P-SS239	QMC	P-SS240	QMCP	-SS243
Field Sample ID					[7]	101				1441	[45]				QMCP-S	S 235-0-3in	QMCP-9	SS 236-0-3in	QMCP-SS	3 237-0-3in	QMCP-SS	3 238-0-3in	QMCP-	SS 239-0-3in	QMCP-S	SS 240-0-3in	QMCP-SS	3 243-0-3in
Sample Date		[2] Groundwater	[4]	[6] Residential	Residential	[8] Residential	[10]	[11]	[13] Nonresidential	[14] Nonresidential	[15] Nonresidential	[17]		[19]	8/17	7/2019	8/1	7/2019	9/24/	/2020	9/24	/2020	8/1	7/2019	8/1	7/2019	8/17	/2019
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Soil Inhalation	Residential	Nonresidential Drinking Water	Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	Nonresidential	[18] Soil Residential	Soil	QMCP-SS 235-0-3 8/17/2019 0 - 0.25 ft		0 -	0.25 ft	0 - 0	.25 ft	0 - 0	.25 ft	0 -	0.25 ft	0 -	0.25 ft	0 - 0	.25 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL	0 - 0.25 ft				-	-							-	-
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																												
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	NM		NM	-	NM		NM	-	NM		NM	-	NM	-
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	NM		NM	-	NM	-	NM	-	NM		NM		NM	-
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)	NA	NA	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM		NM	-	NM		NM	-	NM		NM	-	NM	-
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM	-	NM	-
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	NM		NM	-	NM		NM	-	NM		NM	-	NM	-
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM		NM	-	NM		NM	-	NM	-
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM		NM	-	NM		NM	-	NM	-	NM	-	NM	-
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	NM		NM	-	NM		NM	-	NM		NM	-	NM	-
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	NM		NM	-	NM	-	NM	-	NM		NM	-	NM	-

			EGLE Part 201 Generic Cleanup Criteria Media-Specific Volatilization to Indoor Air Interim Action																									
Location Code						EGLE Part 2	201 Generic Clea	nup Criteria					Indoor Air I									Julio N	larine					
Station Name	CAS Number														QMCP	P-SS247		QMC	CP-SS249		QMCF	P-SS250	QMCI	P-SS252	QMr	ICP-SS263	QMC	CP-SS265
Field Sample ID															QMCP-SS	S 247-0-3in	QMCP-SS	S 249-0-3in	QMCP-SS 2	49-DUPE-0-3in	QMCP-SS	S 250-0-3in	QMCP-S	S 252-0-3in	QMCP-	2-SS 263-0-3in	QMCP-S	SS 265-0-3in
Sample Date		[2]	[4]	[6]	[7] Residential	[8] Residential	7401	[11]	[13]	[14] Nonresidential	[15] Nonresidential	1471		7401	9/24	1/2020	9/24	/2020	9/24	1/2020	9/24	/2020	9/24	1/2020	9/	/24/2020	9/2	24/2020
Sample Interval (bgs)		Groundwater Surface Water	Residential Drinking Water	Residential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[10] Residential	Nonresidential Drinking Water	Nonresidential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[17] Nonresidential	[18] Soil Residential	[19] Soil	0 - 0	0.25 ft	0 - 0).25 ft	0 -	0.25 ft	0 - 0).25 ft	0 -	0.25 ft	0) - 0.25 ft	0 -	- 0.25 ft
		Interface Protection	Protection	Volatile Soil Inhalation	Criteria - 5	Criteria - 2	Direct Contact Criteria	Protection	Volatile Soil Inhalation	Criteria - 5	Criteria - 2	Direct Contact Criteria	MSSL	Nonresidential MSSL														
Sample Description		Criteria	Criteri a	Criteria	Meter Source Thickness	Meter Source Thickness	0.110.12	Criteri a	Criteria	Meter Source Thickness	Meter Source Thickness	- C.I.O.I			Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (mg/kg)																					•		•					
ARSENIC	7440-38-2	4.6	4.6	NLV	NLV	NLV	7.6	4.6	NLV	NLV	NLV	37	NA	NA	NM	-	NM	-	NM	-	3.6	-	6.4	[2,4,11]	NM	_	NM	-
BARIUM	7440-39-3	130 (B,G)	1,300 (B)	NLV	NLV	NLV	37,000 (B)	1,300 (B)	NLV	NLV	NLV	1.3E+5 (B)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM	-	NM	-
CADMIUM	7440-43-9	1.6 (B,G,X)	6.0 (B)	NLV	NLV	NLV	550 (B)	6.0 (B)	NLV	NLV	NLV	2,100 (B)	NA	NA	NM	-	NM	-	NM	-	NM	_	NM	-	NM		NM	-
CHROMIUM	7440-47-3	1.2E+6 (B,G,H,X)	1.0E+6 (B,D,H)	NLV	NLV	NLV	7.90E+5 (B,H)	1.00E+6 (B,D,H)	NLV	NLV	NLV	1.00E+6 (B,D,H)	NA	NA	NM	-	NM	_	NM	-	NM	-	NM	-	NM	-	NM	-
COPPER	7440-50-8	32 (B,G)	5,800 (B)	NLV	NLV	NLV	20,000 (B)	5,800 (B)	NLV	NLV	NLV	73,000 (B)	NA	NA	NM	-	NM	-	NM		NM	-	NM		NM	-	NM	
LEAD	7439-92-1	2,500 (B,G,X)	700 (B)	NLV	NLV	NLV	400 (B)	700 (B)	NLV	NLV	NLV	900 (B,DD)	NA	NA	NM	-	NM		NM		36	-	26		1,000	[4,10,11,17]	77	
MANGANESE	7439-96-5	440 (B,G,X)	440 (B)	NLV	NLV	NLV	25,000 (B)	440 (B)	NLV	NLV	NLV	90,000 (B)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM	1 -	NM	-
MERCURY	7439-97-6	0.13 (B,Z)	1.7 (B,Z)	52 (B,Z)	52 (B,Z)	52 (B,Z)	160 (B,Z)	1.7 (B,Z)	62 (B,Z)	62 (B,Z)	62 (B,Z)	580 (B,Z)	0.022 (M)	0.066	NM	-	NM		NM		NM	-	NM		NM	-	NM	
SELENIUM	7782-49-2	0.41 (B)	4.0 (B)	NLV	NLV	NLV	2,600 (B)	4.0 (B)	NLV	NLV	NLV	9,600 (B)	NA	NA	NM	-	NM		NM		NM	-	NM		NM	1 -	NM	
SILVER	7440-22-4	1.0 (B,M)	4.5 (B)	NLV	NLV	NLV	2500 (B)	13 (B)	NLV	NLV	NLV	9,000 (B)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM	-	NM	-
ZINC	7440-66-6	62 (B,G)	2,400 (B)	NLV	NLV	NLV	1.70E+5 (B)	5,000 (B)	NLV	NLV	NLV	6.30E+5 (B)	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM	-	NM	-
Inorganics - Cyanide (mg/kg)										_			•			_					•							
CYANIDE	57-12-5	0.1 (P,R)	4.0 (P,R)	NLV	NLV	NLV	12 (P,R)	4.0 (P,R)	NLV	NLV	NLV	250 (P,R)	NA	NA	NM	-	NM	-	NM		NM	-	NM		NM	T	NM	-
Organics - PCBs (ug/kg)													•															
AROCLOR-1254	11097-69-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	430		<100 U		<100 U		NM	-	NM		NM	T -	NM	-
TOTAL PCBS	1336-36-6	NLL	NLL	2.40E+5 (J,T)	7.90E+6 (J,T)	7.90E+6 (J,T)	1,000 (J,T)	NLL	8.10E+5 (J,T)	2.80E+7 (J,T)	2.80E+7 (J,T)	1,000 (J,T)	NA	NA	430		ND		ND		NM	-	NM		NM	-	NM	-
Organics - SVOCs (ug/kg)													•								•							
2-METHYLNAPHTHALENE (SVOC)	91-57-6S	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	NM	-	NM	-	NM		<320 U	-	<270 U		NM	Τ-	NM	-
ACENAPHTHENE	83-32-9	8,700	3.00E+05	8.10E+07	8.10E+07	8.10E+07	4.10E+07	8.80E+05	9.70E+07	9.70E+07	9.70E+07	1.30E+08	NA	NA	NM	-	NM	-	NM	-	<130 U	-	<110 U		NM	-	NM	-
ACENAPHTHYLENE	208-96-8	ID	5,900	2.20E+06	2.20E+06	2.20E+06	1.60E+06	17,000	2.70E+06	2.70E+06	2.70E+06	5.20E+06	NA	NA	NM	-	NM	-	NM	-	<130 U	-	<110 U		NM	—	NM	-
ANTHRACENE	120-12-7	ID	41,000	1.40E+09	1.40E+09	1.40E+09	2.30E+08	41,000	1.60E+09	1.60E+09	1.60E+09	7.30E+08	NA	NA	NM	-	NM	-	NM		<130 U	-	<110 U	-	NM	T -	NM	
BENZO(A)ANTHRACENE	56-55-3	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	NM	-	NM	-	NM	-	<130 U		240		NM	-	NM	-
BENZO(A)PYRENE	50-32-8	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	NM	-	NM	-	NM		<260 U	-	280		NM	-	NM	-
BENZO(B)FLUORANTHENE	205-99-2	NLL	NLL	ID	ID	ID	20,000 (Q)	NLL	ID	ID	ID	80,000 (Q)	NA	NA	NM	-	NM	-	NM		<260 U		610		NM	1 -	NM	-
BENZO(G,H,I)PERYLENE	191-24-2	NLL	NLL	NLV	NLV	NLV	2.50E+06	NLL	NLV	NLV	NLV	7.00E+06	NA	NA	NM	-	NM	-	NM		<260 U	-	<220 U		NM	-	NM	-
BENZO(K)FLUORANTHENE	207-08-9	NLL	NLL	NLV	NLV	NLV	2.00E+5 (Q)	NLL	NLV	NLV	NLV	8.00E+5 (Q)	NA	NA	NM	-	NM	-	NM	-	<260 U		<220 U		NM	—	NM	-
CHRYSENE	218-01-9	NLL	NLL	ID	ID	ID	2.00E+6 (Q)	NLL	ID	ID	ID	8.00E+6 (Q)	NA	NA	NM	-	NM	-	NM	-	<130 U		310		NM	-	NM	-
DIBENZO(A,H)ANTHRACENE	53-70-3	NLL	NLL	NLV	NLV	NLV	2,000 (Q)	NLL	NLV	NLV	NLV	8,000 (Q)	NA	NA	NM	-	NM	-	NM	-	<260 U	-	<220 U	-	NM	-	NM	-
FLUORANTHENE	206-44-0	5,500	730,000	7.40E+08	7.40E+08	7.40E+08	4.60E+07	730,000	8.90E+08	8.80E+08	8.80E+08	1.30E+08	NA	NA	NM	-	NM	-	NM	-	180	-	600		NM	-	NM	-
FLUORENE	86-73-7	5,300	390,000	1.30E+08	1.30E+08	1.30E+08	2.70E+07	890,000	1.50E+08	1.50E+08	1.50E+08	8.70E+07	NA	NA	NM	-	NM	-	NM	-	<130 U	-	<110 U	-	NM	-	NM	-
INDENO(1,2,3-CD)PYRENE	193-39-5	NLL	NLL	NLV	NLV	NLV	20,000 (Q)	NLL	NLV	NLV	NLV	80,000 (Q)	NA	NA	NM	-	NM		NM		<260 U	_	<220 U	_	NM	—	NM	-
NAPHTHALENE (SVOC)	91-20-3S	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	NM	-	NM	-	NM		<130 U		<110 U	-	NM		NM	†
PHENANTHRENE	85-01-8	2,100	56,000	1.60E+05	1.60E+05	1.60E+05	1.60E+06	1.60E+05	1.90E+05	1.90E+05	1.90E+05	5.20E+06	NA	NA	NM	_	NM	_	NM		<130 U	_	250		NM	_	NM	-
PYRENE	129-00-0	ID	4.80E+05	6.50E+08	6.50E+08	6.50E+08	2.90E+07	4.80E+05	7.80E+08	7.80E+08	7.80E+08	8.40E+07	NA	NA	NM	_	NM	_	NM	_	150	_	460		NM	_	NM	-
	120 00-0	הי	7.002100	0.00L 100	0.002.00	0.00L 100	2.00L 101	7.00L 100	7.00L100	7.00L.00	1.00L100	0.40L101	11/7	11/1/	14171		14141		1 4141	l			1 700		1 1111	1	. 4141	1 -

Location Code						EGLE Part 2	01 Generic Clea	nup Criteria					Indoor Air I	Volatilization to								Julio N	larine					
Station Name	CAS Number		Π	Ι	Ι	Π	Ι			Ι			Screenin	lg Levels	QMCF	P-SS247		QM	CP-SS249		QMCP	P-SS250	QMCP	-SS252	QMC	CP-SS263	QMCF	P-SS265
Field Sample ID															QMCP-SS	S 247-0-3in	QMCP-SS	S 249-0-3in	QMCP-SS 2	49-DUPE-0-3in	QMCP-SS	S 250-0-3in	QMCP-SS	252-0-3in	QMCP-	SS 263-0-3in	QMCP-S!	S 265-0-3in
Sample Date		[2] Groundwater	[4]	[6]	[7] Residential	[8] Residential	[40]	[11]	[13]	[14] Nonresidential	[15] Nonresidential	[47]		[40]	9/24	1/2020	9/24	/2020	9/2	4/2020	9/24	/2020	9/24	2020	9/2	24/2020	9/24	4/2020
Sample Interval (bgs)		Surface Water	Residential Drinking Water	Residential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[10] Residential	Nonresidential Drinking Water	Nonresidential Infinite Source	Finite Volatile Soil Inhalation	Finite Volatile Soil Inhalation	[17] Nonresidential	[18] Soil Residential	[19] Soil	0 - 0	0.25 ft	0 - 0).25 ft	0 -	0.25 ft	0 - 0	0.25 ft	0 - 0	.25 ft	0 -	- 0.25 ft	0 - 0	0.25 ft
Sample Description		Interface Protection Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	Protection Criteria	Volatile Soil Inhalation Criteria	Criteria - 5 Meter Source Thickness	Criteria - 2 Meter Source Thickness	Direct Contact Criteria	MSSL	Nonresidential MSSL										-				
															Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Organics - VOCs (ug/kg)																												
1,2,3-TRIMETHYLBENZENE	526-73-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 (JT)	800 (JT)	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
1,2,4-TRIMETHYLBENZENE	95-63-6	570 (I)	2,100 (I)	2.10E+7 (I)	5.00E+8 (I)	5.00E+8 (I)	3.2E+07 (C,I)	2,100 (I)	2.50E+7 (I)	6.00E+8 (I)	6.00E+8 (I)	1.00E+8 (C,I)	150 (JT)	430 (JT)	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	-
1,3,5-TRIMETHYLBENZENE	108-67-8	1,100 (I)	1,800 (I)	1.6 E+7 (I)	3.80E+8 (I)	3.80E+8 (I)	3.2E+07 (C)	2,100 (I)	1.90E+7 (I)	4.60E+8 (I)	4.60E+8 (I)	1.00E+8 (C,I)	100 (JT)	300 (JT)	NM	-	NM		NM		NM	-	NM	-	NM	-	NM	-
2-BUTANONE (MEK)	78-93-3	44,000 (I)	2.60E+5 (I)	2.90E+7 (I)	2.90E+7 (I)	3.50E+7 (I)	1.2E+8 (C,I,DD)	7.70E+5 (I)	3.50E+7 (I)	3.50E+7 (I)	3.60E+7 (I)	7.00E+8 (C,I,DD)	NA	NA	NM	-	NM		NM		NM	-	NM	•	NM	-	NM	-
2-METHYLNAPHTHALENE (VOC)	91-57-6V	4,200	57,000	1.50E+06	1.50E+06	1.50E+06	8.10E+06	1.70E+05	1.80E+06	1.80E+06	1.80E+06	2.60E+07	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
BENZENE	71-43-2	240 (I,X)	100 (I)	13,000 (I)	34,000 (I)	79,000 (I)	1.8E+5 (I)	100 (I)	45,000 (I)	99,000 (I)	2.30E+5 (I)	8.40E+5 (C,I)	1.7 (M)	7.9 (M)	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
CYCLOHEXANE	110-82-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	-
ETHYLBENZENE	100-41-4	360	1,500	720,000	1.00E+06	2.20E+06	2.20E+07	1,500	2.40E+06	3.10E+06	6.50E+06	7.10E+07	12 (M)	57	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	-
HEXANE	110-54-3	NA	1.8E+5 (C)	3.00E+06	3.20E+08	6.20E+06	9.2E+7 (C)	5.10E+5 (C)	3.50E+06	3.50E+06	6.40E+06	3.00E+8 (C)	25	74	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	-
ISOPROPYLBENZENE	98-82-8	3,200	91,000	1.70E+06	1.70E+06	2.80E+06	2.50E+7 (C)	2.60E+05	2.00E+06	2.00E+06	3.00E+06	8.00E+7 (C)	NA	NA	NM	-	NM		NM	-	NM	-	NM	-	NM	-	NM	-
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM		NM		NM	-	NM	-	NM	-	NM	-
NAPHTHALENE (VOC)	91-20-3V	730	35,000	3.00E+05	3.00E+05	3.00E+05	1.60E+07	1.00E+05	3.50E+05	3.50E+05	3.50E+05	5.20E+07	NA	NA	NM	-	NM		NM	-	NM	-	NM		NM	-	NM	-
N-BUTYLBENZENE	104-51-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	NM		NM	-	NM	-
N-PROPYLBENZENE	103-65-1	ID	1,600 (I)	ID	ID	ID	2.50E+6 (I)	4,600	ID	ID	ID	8.00E+06	1,800	3,500	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
O-XYLENE	95-47-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	
SEC-BUTYLBENZENE	135-98-8	ID	1,600	ID	ID	ID	2.50E+06	4,600	ID	ID	ID	8.00E+06	NA	NA	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
TOLUENE	108-88-3	5,400 (I)	16,000 (I)	2.80E+6 (I)	5.10E+6 (I)	1.20E+07 (I)	5E+07 (C,I)	16,000 (I)	3.30E+6 (I)	3.60E+7 (I)	3.60E+7 (I)	1.60E+8 (C,I)	3,700	11,000	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
XYLENE - TOTAL	1330-20-7	980 (I)	5,600 (I)	4.60E+7 (I)	6.10E+7 (I)	1.30E+8 (I)	4.1E+08 (C,I)	5,600 (I)	5.40E+7 (I)	6.50E+7 (I)	1.30E+8 (I)	1.00E+9 (C,D,I)	280 (J)	830 (J)	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-

TABLE 6-2

Summary of Soil Analytical Results (Julio Marine) Julio Propeties - Dollar Bay Houghton County, MI

Soil Table Footnotes:

- EGLE Part 201 residential and non-residential and non-residential generic cleanup criteria and screening levels criteria were originally promulgated December 20, 2002 within the Administrative Rules for Part 201, as amended. This table reflects revisions to the criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 30, 2013. Updated June 2018.

[11] - Nonresidential Drinking Water Protection Criteria

[16] - Nonresidential Particulate Soil Inhalation Criteria [17] - Nonresidential Direct Contact Criteria

[18] - Soil Residential MSSL

[19] - Soil Nonresidential MSSL

PCBs = Polychlorinated biphenyls VOC = Volatile organic compound

ug/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogram.

% = Percentage

SVOC = Semi-volatile organic compound

[14] - Nonresidential Finite VSIC for 5 Meter Source Thickness

[15] - Nonresidential Finite VSIC for 2 Meter Source Thickness

[12] - Nonresidential Soil Volatilization to Indoor Air Inhalation Criteria (VIAC)

[13] - Nonresidential Infinite Source Volatile Soil Inhalation Criteria (VSIC)

- Only detected analytes are listed - Gray rows indicate requested analyses. If no analytes are listed below a gray row then all analytes of that group were either not analyzed or not detected.

- Bold values are concentrations detected above the laboratory reporting limit.

- Bold/Shaded cells indicate analyte concentration exceeded applicable criteria. EGLE Part 201 criteria exceeded is indicated by the footnote in [brackets] following the result value and defined below:

[2] - Groundwater Surface Water Interface Protection Criteria

[3] - Soil Saturation Concentration Screening Levels

[4] - Residential Drinking Water Protection Criteria

[5] - Residential Soil Volatilization to Indoor Air Inhalation Criteria (VIAC)

[6] - Residential Infinite Source Volatile Soil Inhalation Criteria (VSIC)

[7] - Residential Finite VSIC for 5 Meter Source Thickness

[8] - Residential Finite VSIC for 2 Meter Source Thickness

[9] - Residential Particulate Soil Inhalation Criteria

[10] - Residential Direct Contact Criteria

Evaluation based on EGLE Criteria at time of Project completion

Samples described in this evaluation may actually refer to stamp sands or to other mining waste from the historic mining and reclamation processes conducted in the area.

-- = No Exceedances ND = Not Detected

NM = Not Measured

bas = Below around surface

ft = Feet in = Inches

MSSL = Media-Specific Volatilization to Indoor Air Interim Action Screening Level

Criteria Footnotes:

ID = Insufficient data to develop criterion.

NA = A criterion or value is not available

NLL = Hazardous substance is not likely to leach under most soil conditions.

NLV = Hazardous substance is not likely to volatilize under most conditions.

(B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.

(C) = The criterion developed under R 299.20 to R 299.20 exceeds the chemical-specific soil saturation screening level (Csat). The person proposing or implementing response activity is required to control free-phase liquids or NAPL to protect against risks associated with free-phase liquids by using methods appropriate for the free-phase liquids. present. Development of a site-specific Csat or methods presented in R 299.24(5), and R 299.26(8) may be conducted for the relevant exposure pathways.

(D) = Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent or 1.0E+9 parts per billion (ppb).

(DD) = Hazardous substance causes developmental effects. Residential direct contact criteria are protective of both prenatal and postnatal exposure. Nonresidential direct contact criteria are protective for a pregnant adult receptor.

(G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water. The final chronic value (FCV) for the protection of aquatic life shall be calculated based on the pH or water hardness of the receiving surface water. Where water hardness exceeds 400 mg CaCO₃/L, use 400 mg CaCO₃/L for the FCV calculation. The FCV formula provides values in units of ug/L or ppb. The generic GSI criterion or the GSI soil-water partition values using the GSI criteria developed with the procedure described in this footnote. A spreadsheet that may be used to calculate GSI and GSI protection criteria for (G)-footnoted hazardous substances is available on the Department of Environmental Quality Draft Site Inspection Report for Lake Linden Operations dated 3/29/13, was used in the footnote G calculation spreadsheet.

(H) = Valence-specific chromium data (Cr III and Cr VI) shall be compared to the corresponding valence-specific cleanup criteria for Cr VI. Cr III soil cleanup criterion of 100 ug/L. If analytical data are provided for total chromium only, they shall be compared to the compared to the cleanup criteria for Cr VI. Cr III soil cleanup criterion for protection of drinking water can only be used at sites where groundwater is prevented from being used as a public water supply, currently and in the future, through an approved land or resource use restriction.

(I) = Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. §261.21 (revised as of July 1, 2001), which is adopted by reference in these rules of \$45, from the Superintendent of documents, Government Printing Office, Washington, DC 20401 (stock number 869-044-00155-1), or from the EGLE, Remediation and Redevelopment Division (RRD), 525 West Allegan Street, Lansing, Michigan 48933, at cost.

(J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.

(M) = Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.

(P) = Amenable cyanide methods or method OIA-1677 shall be used to quantify cyanide concentrations for compliance with all groundwater criteria. Total cyanide methods or method OIA-1677 shall be used to quantify cyanide concentrations for compliance with soil criteria. Nonresidential direct contact criteria may not be protective of the potential for release of hydrogen cyanide gas. Additional land or resource use restrictions may be necessary to protect for the acute inhalation concerns associated with hydrogen cyanide gas.

(Q) = Criteria for carcinogenic polycyclic aromatic hydrocarbons were developed using relative potential potencies to benzo(a)pyrene.

(R) = Hazardous substance may exhibit the characteristic of reactivity as defined in 40 C.F.R. §261.23 (revised as of July 1, 2001), which is adopted by reference in these rules of the regulation may be purchased, at a cost as of the time of adoption of these rules of \$45, from the Superintendent of Documents, Government Printing Office, Washington, DC 20401 (stock number 869-044-00155-1), or from the EGLE, RRD, 525 West Allegan Street, Lansing, Michigan 48933, at cost.

(T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. \$761, Subpart D and 50 C.F.R. \$761, Su

purchased, at a cost as of the time of adoption of these rules of \$55, from the Superintendent of Documents, Government Printing Office, Washington, DC 20401, or from the EGLE, RRD, 525 West Allegan Street, Lansing, Michigan 48933, at cost. Alternatives to compliance with the TSCA standards listed below are possible under 40 C.F.R. §761 Subpart D. New releases may be subject to the standards identified in 40 C.F.R. \$761, Subpart G. Use Part 201 soil direct contact cleanup criteria in the published table if TSCA standards are not applicable.
(X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)

(Z) = Mercury is typically measured as total mercury. The generic cleanup criteria, however, are based on data for different species of mercury. Specifically, data for elemental mercury, chemical abstract service (CAS) number 7439976, serve as the basis for the soil volatilization to indoor air criteria, groundwater volatilization to indoor air, and soil inhalation criteria. Data for methyl mercury, CAS number 22967926, serve as the basis for the GSI criterion; and data for mercuric chloride, CAS number 7487947, serve as the basis for the drinking water, groundwater protection criteria. Comparison to criteria shall be based on species-specific analytical data only if sufficient facility characterization has been conducted to rule out the presence of other species of

J = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations must be added together for comparison to screening level.

JT = Hazardous substance may be present in several isomer forms. Screening levels may be used for the individual isomer provided that it is the sole isomers are detected in a medium, the isomer-specific concentrations must be added together and compared to the most restrictive screening level of the detected isomers.

M = The screening level may be below target detection limits (TDL).

Laboratory Footnotes:

J = The result is an estimated quantity.

U = Analyte analyzed for but not detected above the reported sample reporting limit.

Table 6-2 Table 6-2_Julio Marine_Soil_v20240119.xlsx Page 15 of 16 1/19/2024

TABLE 6-2
Summary of Soil Analytical Results (Julio Marine)
Julio Propeties - Dollar Bay
Houghton County, MI

	Part 201 Generic Cleanup Criteria Evaluated	Exceedance
	[2] - Groundwater Surface Water Interface Protection Criteria	YES
	[3] - Soil Saturation Concentration Screening Levels	NO
	[4] - Residential Drinking Water Protection Criteria	YES
	[5] - Residential Soil Volatilization to Indoor Air Inhalation Criteria (VIAC)	NO
	[6] - Residential Infinite Source Volatile Soil Inhalation Criteria (VSIC)	YES
	[7] - Residential Finite VSIC for 5 Meter Source Thickness	YES
	[8] - Residential Finite VSIC for 2 Meter Source Thickness	YES
EGLE Part 201 Generic Cleanup Criteria	[9] - Residential Particulate Soil Inhalation Criteria	NO
(June 2018)	[10] - Residential Direct Contact Criteria	YES
	[11] - Nonresidential Drinking Water Protection Criteria	YES
	[12] - Nonresidential Soil Volatilization to Indoor Air Inhalation	NO
	[13] - Nonresidential Infinite Source Volatile Soil Inhalation Criteria	YES
	[14] - Nonresidential Finite VSIC for 5 Meter Source Thickness	YES
	[15] - Nonresidential Finite VSIC for 2 Meter Source Thickness	YES
	[16] - Nonresidential Particulate Soil Inhalation Criteria	NO
	[17] - Nonresidential Direct Contact Criteria	YES
Media-Specific Volatilization to Indoor Air	[18] - Soil Residential Media-Specific Screening Level (MSSL)	YES
Interim Action Screening Levels (March 2021)	[19] - Soil Nonresidential MSSL	YES

TABLE 6-3
Monitoring Well Construction and Elevation Data (Julio Marine)
Julio Properties - Dollar Bay
Houghton County, Michigan

Well ID	Latitude	Longitude	Top of Casing Elevation (feet amsl, GSS survey**)	Ground Surface Elevation (feet amsl)	Screen Length (feet)	Ton of Caroon	Top of Screen Elevation (feet)	Top of Screen Elevation (feet amsl)	Total Depth of Well from TOC (feet)	Measurement Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet amsl)	Depth to LNAPL (feet below TOC)	LNAPL Elevation (feet amsl)	LNAPL Thickness (feet)
										10/16/2019	2.84	603.30			
MW-7	47.11428088	-88.49874875	606.14	606.44	5	3.5	96.5	602.6	8.5	9/23/2020	3.14	603.00			
										11/5/2021	4.41	601.73			
										10/16/2019	3.68	603.18			
MW-8	47.11389012	-88.49970038	606.86	607.40	5	3.5	97.2	603.4	8.5	9/24/2020	3.96	602.90			
										11/5/2021	5.23	601.63			
										10/16/2019	3.31	603.37	3.68	603.00	0.21
MW-9	47.11379384	-88.50081834	606.68	606.89	5	3.5	97.0	603.2	8.5	9/24/2020	3.58	603.10			
										11/5/2021	4.57	602.11			
										10/16/2019			4.60	603.33	0.6
MW-10	47.11425795	-88.50071037	607.93	607.96	5	3.5	98.3	604.4	8.5	9/24/2020			NA	NA	NA
										11/5/2021			NA	NA	~2
										10/16/2019	3.80	603.36			
MW-11	47.11413534	-88.50098528	607.16	607.42	5	3.5	97.5	603.7	8.5	9/24/2020	4.04	603.12			
										11/5/2021	5.35	601.81			
										10/17/2019	1.98	603.48			
MW-12	47.11526003	-88.50057222	605.46	605.80	5	3.5	95.8	602.0	8.5	9/23/2020	2.31	603.15			
										11/5/2021	3.21	602.25			
										10/16/2019	5.10	603.27			
MW-13	47.11451588	-88.49933747	608.37	608.80	5	3.5	98.7	604.9	8.5	9/24/2020	5.32	603.05			
										11/5/2021	6.60	601.77			
										10/16/2019	4.68	603.32			
MW-14	47.11466418	-88.50019712	608.00	608.48	5	3.5	98.4	604.5	8.5	9/24/2020	4.92	603.08			
										11/5/2021	6.19	601.81			
										10/17/2019	5.11	603.37			
MW-15	47.11461151	-88.49995152	608.48	608.77	5	3.5	98.8	605.0	8.5	9/24/2020	5.40	603.08			
										11/5/2021	6.68	601.80			

Notes:

-- = Not Measured

amsl = Above Mean Sea Level

NA = LNAPL was observed but measurement data was not available

TOC = Top of Casing

LNAPL = Light Non-Aqueous Phase Liquid

Water level measurements and groundwater elevations are referenced to the TOC of MW-7 with an arbitrary elevation of 100.00 feet.

*Ground surface and TOC elevations were updated in September 2020. Ground surface elevations for MW-8 and MW-12 were updated from 101.22 and 99.82, respectively.

Groundwater Elevations measured on 11/5/2021 are depicted on Figure 6-3, Groundwater Analytical Results (Julio Marine).

^{**} TOC elevations were surveyed relative to USGS by Geological Services Section in 2021.

TABLE 6-4 Summary of Groundwater Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

					Media-Specific	Volatilization to																										
Location Code		EGLE Part	201 Generic Clean	up Criteria		nterim Action ng Levels														Julio Marin	ne											
Station Name	CAS Number						QMCP	-GW43	QMCP-	-GW44	QMCP	-GW45	QMCP	-GW46	QMCF	P-GW47	QMCP	-GW49	QMCF	P-GW50	QMCP	-GW116	QMCP	P-GW117		QMC	P-MW7			QMC	P-MW8	
Field Sample ID		[1]	[2]	[3] Groundwater	[8] Shallow	[9] Shallow	QMCP-G	W43 6-10	QMCP-G\	W44 4-8ft	QMCP-G	W45 5-9	QMCP-G	W46 4-8ft	QMCP-0	GW47 5-9	QMCP-0	9W49 5-9	QMCP-0	GW50 2-6	QMCP-GV	V 116-6-10ft	QMCP-GW	V 117-13-17ft	: QMC	P-MW7	QMC	P-MW-7	QMCF	P-MW8	QMCF	P-MW 8
Sample Date		Residential Drinking Water	Nonresidential Drinking Water	Surface Water	Groundwater	Groundwater	9/10/	/2018	9/10/2	2018	9/10/	2018	9/10/	2018	9/10	/2018	9/10	/2018	9/10)/2018	9/26	6/2020	9/26	6/2020	10/1	6/2019	9/23	3/2020	10/16	6/2019	9/24	/2020
Sample Interval (bgs)		Criteria	Criteria	Interface Criteria	Residential MSSL	Nonresidential MSSL	6 - 1	10 ft	4 - 8	8 ft	5 -	9 ft	4 -	8 ft	5 -	9 ft	5 -	9 ft	2 -	- 6 ft	6 -	10 ft	13 -	- 17 ft	3.5	- 8.5 ft	3.5	- 8.5 ft	3.5 -	- 8.5 ft	3.5 -	8.5 ft
							Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (ug/l)																																
ARSENIC	7440-38-2	10 (A)	10 (A)	10	NA	NA	7.6		4.4	-	9.9	-	32	[1,2,3]	4.2	-	9.3		9.5	-	NM		NM		NM	-	NM		NM	-	NM	-
CADMIUM	7440-43-9	5.0 (A,B)	5.0 (A,B)	1.3 (B,G,X)	NA	NA	<0.2 U	-	0.3	-	0.5	-	0.9	-	<0.2 U	-	0.3		<0.2 U		NM		NM		NM	-	NM		NM	-	NM	-
CHROMIUM	7440-47-3	100 (A,B,H)	100 (A,B,H)	40 (B,G,H,X)	NA	NA	1.9		9.3	-	22	-	32		6.4	-	120	[1,2,3]	3.4	-	NM		NM		NM	-	NM		NM	-	NM	-
COPPER	7440-50-8	4.0 (B,E)	4.0 (B,E)	14 (B,G)	NA	NA	75	[3]	250	[3]	2,400	[1,2,3]	2,800	[1,2,3]	2,800	[1,2,3]	3,800	[1,2,3]	1,300	[1,2,3]	NM	-	NM		NM	-	NM		NM	-	NM	-
LEAD	7439-92-1	4.0 (B,L)	4.0 (B,L)	14 (B,G,X)	NA	NA	1.8		3.0	-	7.0	[1,2]	16	[1,2,3]	15	[1,2,3]	73	[1,2,3]	67	[1,2,3]	NM		NM		NM		NM		NM		NM	
MANGANESE	7439-96-5	50 (B,E)	50 (B,E)	1,000 (B,G,X)	NA	NA	560	[1,2]	650	[1,2]	490	[1,2]	420	[1,2]	540	[1,2]	2,000	[1,2,3]	1,500	[1,2,3]	NM	-	NM		NM	_	NM	-	NM		NM	
MERCURY	7439-97-6	2.0 (A,B,Z)	2.0 (A,B,Z)	0.0013 (B,Z)	0.088	0.14	<0.2 U	-	<0.2 U	-	0.4	[3,8,9]	0.3	[3,8,9]	0.2	[3,8,9]	0.2	[3,8,9]	<0.2 U	-	NM		NM		NM	-	NM		NM		NM	
SILVER	7440-22-4	34 (B)	98 (B)	0.2 (B,M)	NA	NA	<0.2 U	-	0.3	[3]	1.7	[3]	2.4	[3]	2.9	[3]	3.1	[3]	0.7	[3]	NM		NM		NM		NM		NM		NM	
ZINC	7440-66-6	2,400 (B)	5,000 (B,E)	63 (B,G)	NA	NA	11	-	7.6	-	18	-	27	-	16	-	160	[3]	43		NM		NM		NM		NM		NM		NM	
Organics - PCBs as Aroclors (ug/l)																•						•		•	•							
TOTAL PCBS	1336-36-6	0.5 (A,J,T)	0.5 (A,J,T)	0.2 (J,M,T)	NA	NA	ND	-	ND	-	ND	-	ND	-	ND	-	ND		ND		NM		NM		ND	-	ND	-	ND	-	NM	-
Organics - SVOCs (ug/l)																																
ACENAPHTHENE	83-32-9	1,300	3,800	38	NA	NA	<1.0 U	-	<1.0 U	-	1.4	-	<10 U	-	<1.0 U	-	<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
ANTHRACENE	120-12-7	43 (S)	43 (S)	ID	NA	NA	<1.0 U	-	<1.0 U	-	1.4	-	<10 U	-	<1.0 U	-	<1.0 U		<1.0 U	-	<1 U	-	<1 U	-	<1 U		<1 U		<1 U		<1 U	-
BENZO(A)ANTHRACENE	56-55-3	2.1 (Q)	8.5 (Q)	ID	NA	NA	1.4		<1.0 U	-	<1.0 U	-	<10 U	-	<1.0 U	-	<1.0 U		<1.0 U	-	<1 U	-	<1 U	-	<1 U		<1 U		<1 U		<1 U	-
BENZO(A)PYRENE	50-32-8	5.0 (A,Q)	5.0 (A,Q)	ID	NA	NA	1.2		<1.0 U	-	<1.0 U	-	<10 U	-	<1.0 U	-	<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U		<1 U	-
BENZO(B)FLUORANTHENE	205-99-2	1.5 (Q,S,AA)	1.5 (Q,S,AA)	ID	NA	NA	1.4	-	<1.0 U	-	<1.0 U	-	<10 U	-	<1.0 U	-	<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
CHRYSENE	218-01-9	1.6 (Q,S)	1.6 (Q,S)	ID	NA	NA	1.1		<1.0 U	-	<1.0 U	-	<10 U	-	<1.0 U	-	<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
FLUORANTHENE	206-44-0	210 (S)	210 (S)	1.6	NA	NA	2.6	[3]	<1.0 U	-	<1.0 U	-	<10 U	-	<1.0 U	-	1		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
FLUORENE	86-73-7	880	2,000 (S)	12	NA	NA	<1.0 U	-	<1.0 U	-	2	-	11		<1.0 U	-	<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
NAPHTHALENE (SVOC)	91-20-3S	520	1,500	11	NA	NA	<1.0 U	-	<1.0 U	-	<1.0 U	-	<10 U	-	1.1	-	<1.0 U		<1.0 U	-	<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
PHENANTHRENE	85-01-8	52	150	2.0 (M)	NA	NA	<1.0 U	-	<1.0 U	-	5.2	[3]	25	[3]	0.96 J		<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U	-	<1 U	-
PYRENE	129-00-0	140 (S)	140 (S)	ID	NA	NA	2.1	-	1.2	-	4.4	ı	17		<1.0 U	-	<1.0 U		<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U		<1 U	
Organics - VOCs (ug/l)																																
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	<2.0 U	-	<2.0 U	-	<2.0 U	-	<2.0 U	-	<2.0 U	-	<2.0 U	-	<2.0 U		<2 U	-	<2 U	-	<2 U		<2 U		<2 U		<2 U	
N-BUTYLBENZENE	104-51-8	80	230	ID	NA	NA	<1.0 U	-	<1.0 U	-	<1.0 U	_	1	-	<1.0 U	-	<1.0 U	-	<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U		<1 U	
TOLUENE	108-88-3	790 (E,I)	790 (E,I)	270 (I)	300	570	9.4		<1.0 U	-	<1.0 U	-	1.7	-	<1.0 U	-	<1.0 U	-	<1.0 U		<1 U	-	<1 U	-	<1 U		<1 U		<1 U		<1 U	-
XYLENE - TOTAL	-	280 (E,I)	280 (E,I)	49 (I)	75 (J)	120 (J)	ND	-	ND	-	ND	ı	ND	-	ND	-	ND	-	ND		ND	-	ND	-	ND		<0 U		ND	-	ND	-
Water Quality Parameters																																
TEMPURATURE (°C)	NA	NA	NA	NA	NA	NA	14.1		14.4	-	18.6	-	15.3		14.8		15.6		17.6		NM		NM		13.0		16.1		11.9		13.4	-
CONDUCTIVITY(mS/cm)	NA	NA	NA	NA	NA	NA	0.308	-	0.225	-	0.076	-	0.101	-	0.295	-	0.257		0.233		NM		NM		0.293		0.316	-	0.147		0.225	_
DISSOLVED OXYGEN (%)	NA	NA	NA	NA	NA	NA	25.6		1.8	-	1.4	-	3.0	-	2.6		10.5		2.5		NM		NM		2.5		2.9		10.4		3.2	
рН	NA	NA	NA	NA	NA	NA	6.09		6.22	-	5.63	-	6.20	-	6.37		6.60		6.13		NM		NM		6.62		4.11		6.54		4.09	-
TURBIDITY (nTu)	NA	NA	NA	NA	NA	NA	NM		NM		NM		NM		NM	-	NM		NM		NM	-	NM		28.0		11.7		4.16		4.14	-

TABLE 6-4 Summary of Groundwater Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

Location Code		EGLE Part	201 Generic Clea	nup Criteria	Indoor Air Ir	Volatilization to nterim Action ng Levels												Julio N	larine											
Station Name	CAS Number							QMC	P-MW9			QMCF	P-MW11			QMCI	P-MW12			QMCP	-MW13			QMC	P-MW14			QMCI	P-MW15	
Field Sample ID		[1]	[2]	[3]	[8]	[9]	QMCF	P-MW9	QMC	P-MW 9	QMCF	P-MW11	QMCP	-MW 11	QMCP	P-MW12	QMCF	P-MW 12	QMCP	-MW13	QMCP-	-MW 13	QMCF	P-MW14	QMCF	-MW 14	QMC	P-MW15	QMCP	-MW 15
Sample Date		Residential Drinking Water	Nonresidential	Groundwater Surface Water	Shallow Groundwater	Shallow Groundwater	10/16	/2019	9/24	/2020	10/1	6/2019	9/24	/2020	10/17	7/2019	9/24	/2020	10/16	6/2019	9/24/	2020	10/10	6/2019	9/24	/2020	10/1	7/2019	9/24	/2020
Sample Interval (bgs)		Criteria	Criteria	Interface Criteria	Residential MSSL	Nonresidential MSSL	3.5 -	8.5 ft	3.5	- 8.5 ft	3.5 -	- 8.5 ft	3.5 -	8.5 ft	3.5 -	- 8.5 ft	3.5 -	- 8.5 ft	3.5 -	8.5 ft	3.5 -	8.5 ft	3.5 -	- 8.5 ft	3.5	- 8.5 ft	3.5	- 8.5 ft	3.5 -	- 8.5 ft
						""	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (ug/l)																														
ARSENIC	7440-38-2	10 (A)	10 (A)	10	NA	NA	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	-
CADMIUM	7440-43-9	5.0 (A,B)	5.0 (A,B)	1.3 (B,G,X)	NA	NA	NM	_	NM		NM		NM		NM		NM		NM		NM		NM		NM	-	NM		NM	-
CHROMIUM	7440-47-3	100 (A,B,H)	100 (A,B,H)	40 (B,G,H,X)	NA	NA	NM	_	NM		NM	-	NM		NM		NM		NM		NM		NM		NM	-	NM		NM	-
COPPER	7440-50-8	4.0 (B,E)	4.0 (B,E)	14 (B,G)	NA	NA	NM	_	NM		NM	-	NM		NM		NM		NM		NM		NM		NM	-	NM		NM	
LEAD	7439-92-1	4.0 (B,L)	4.0 (B,L)	14 (B,G,X)	NA	NA	NM		NM		NM	-	NM		NM		NM		NM		NM		NM		NM	-	NM		NM	-
MANGANESE	7439-96-5	50 (B,E)	50 (B,E)	1,000 (B,G,X)	NA	NA	NM		NM	-	NM		NM		NM	-	NM		NM		NM		NM	-	NM	-	NM		NM	
MERCURY	7439-97-6	2.0 (A,B,Z)	2.0 (A,B,Z)	0.0013 (B,Z)	0.088	0.14	NM		NM		NM	-	NM		NM		NM		NM		NM		NM		NM	_	NM		NM	-
SILVER	7440-22-4	34 (B)	98 (B)	0.2 (B,M)	NA	NA	NM	_	NM	-	NM	-	NM		NM		NM		NM		NM		NM		NM	_	NM		NM	
ZINC	7440-66-6	2,400 (B)	5,000 (B,E)	63 (B,G)	NA	NA	NM	_	NM		NM	_	NM		NM	_	NM		NM		NM		NM	-	NM	_	NM		NM	
Organics - PCBs as Aroclors (ug/l)																									-					
TOTAL PCBS	1336-36-6	0.5 (A,J,T)	0.5 (A,J,T)	0.2 (J,M,T)	NA	NA	ND	-	NM	_	NM	l	NM		NM		NM		NM		NM		NM	T	NM		NM		NM	
Organics - SVOCs (ug/l)																														
ACENAPHTHENE	83-32-9	1,300	3,800	38	NA	NA	<1 U		<1 U	_	<1 U	l	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	T	<1 U		<1 U		<1 U	-
ANTHRACENE	120-12-7	43 (S)	43 (S)	ID	NA	NA	<1 U		<1 U	_	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U	-	<1 U	-	<1 U	
BENZO(A)ANTHRACENE	56-55-3	2.1 (Q)	8.5 (Q)	ID	NA	NA	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
BENZO(A)PYRENE	50-32-8	5.0 (A,Q)	5.0 (A,Q)	ID	NA	NA	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
BENZO(B)FLUORANTHENE	205-99-2	1.5 (Q,S,AA)	1.5 (Q,S,AA)	ID	NA	NA	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
CHRYSENE	218-01-9	1.6 (Q,S)	1.6 (Q,S)	ID	NA	NA	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
FLUORANTHENE	206-44-0	210 (S)	210 (S)	1.6	NA	NA	<1 U		<1 U	-	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
FLUORENE	86-73-7	880	2,000 (S)	12	NA	NA	<1 U		<1 U	-	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
NAPHTHALENE (SVOC)	91-20-3S	520	1,500	11	NA	NA	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
PHENANTHRENE	85-01-8	52	150	2.0 (M)	NA	NA	<1 U		<1 U	_	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	- 1
PYRENE	129-00-0	140 (S)	140 (S)	ID	NA	NA	<1 U		<1 U	-	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	
Organics - VOCs (ug/l)			•																											
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	<2 U		<2 U	-	<2 U		<2 U		<2 U		<2 U		<2 U		<2 U		<2 U	-	<2 U		<2 U		<2 U	
N-BUTYLBENZENE	104-51-8	80	230	ID	NA	NA	<1 U		<1 U	-	<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	-	<1 U		<1 U		<1 U	-
TOLUENE	108-88-3	790 (E,I)	790 (E,I)	270 (I)	300	570	<1 U		<1 U	-	1.8		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U		<1 U	
XYLENE - TOTAL	-	280 (E,I)	280 (E,I)	49 (I)	75 (J)	120 (J)	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-
Water Quality Parameters			•			·																	_							
TEMPURATURE (°C)	NA NA	NA NA	NA NA	NA	NA	NA NA	12.3		14	-	11.7	T	13.3	-	11.7	-	14.6	-	11.2		13.7		12.2	T -	14.3		10.8	-	13.6	
CONDUCTIVITY(mS/cm)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.121		0.143	_	0.277		0.425	-	0.179	-	0.317	_	0.138		0.159		0.317	_	0.277	-	0.129	_	0.094	
DISSOLVED OXYGEN (%)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.9		3.7	_	1.0	-	3.3	-	8.4	_	5	_	16.8		25.6		27.5	-	4	-	29.9	_	23.8	
pH	NA	NA	NA	NA	NA	NA	6.33		3.59	_	6.28	-	3.72	-	6.98	-	4.05		6.72		6.74		6.07	-	6.43		5.49	-	5.29	
TURBIDITY (nTu)	NA NA	NA	NA	NA	NA	NA	49.4		39.4		5.92		7.88	-	5.06		3.85		5.56		1.79		3.05	<u> </u>	3.38	-	4.16		2.04	

TABLE 6-4

Summary of Groundwater Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

Groundwater Table Footnotes:

- EGLE Part 201 residential and non-residential generic cleanup criteria and screening levels criteria were originally promulgated December 20, 2010 within the Administrative Rules for Part 201, as amended. This table reflects revisions to the criteria pursuant to the December 20, 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 20, 2013. Updated December 21, 2020.

[8] Shallow Groundwater Residential MSSL

[11] Groundwater Residential TS MSSL

[12] Groundwater Nonresidential MSSL

[13] Groundwater Nonresidential MSSL₁₂

[14] Groundwater Nonresidential TS MSSL

mS/cm = MilliSiemens per centimeter

nTu = Nephelometric Turbidity Unit

MSSL = Media-Specific Volatilization to Indoor Air Interim Action Screening Level

TS MSSL = Time Sensitive Media-Specific Volatilization to Indoor Air Interim Action Screening Level

ug/l = Micrograms per liter

°C = Degrees Celsius

% = Percentage

[9] Shallow Groundwater Nonresidential MSSL[10] Groundwater Residential MSSL

- Only detected analytes are listed Gray rows indicate requested analyses. If no analytes are listed below a gray row then all analytes of that group were either not analyzed or not detected.
- Bold values are concentrations detected above the laboratory reporting limit.
- Bold/Shaded cells indicate analyte concentration exceeded applicable criteria. EGLE Part 201 criteria exceeded is indicated by the footnote in [brackets] following the result value and defined below:

[1] - Residential Drinking Water Criteria

[2] - Nonresidential Drinking Water Criteria

[3] - Groundwater Surface Water Interface Criteria

[4] - Water Solubility

[5] - Residential Groundwater Volatilization to Indoor Air Inhalation Criteria

[6] - Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria

[7] - Flammability and Explosivity Screening Level

Evaluation based on EGLE Criteria at time of Project completion.

-- = No Exceedances

ND = Not Detected

NM = Not Measured

bgs = Below ground surface

ft = Feet

PCBs = Polychlorinated biphenyls

SVOC = Semi-volatile organic compound

VOC = Volatile organic compound

Groundwater Table Footnotes:

ID = Insufficient data to develop criterion

NA = A criterion or value is not available

(A) = Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.

(AA) = Use 10,000 ug/l where groundwater enters a structure through the use of a water well, sump or other device. Use 28,000 ug/l for all other uses.

(B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.

(E) = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA). A notice of aesthetic drinking water criterion, but do not exceed the applicable health-based drinking water value provided in a table available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site. (See R 299.49 Footnotes for additional information)

(G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water. The final chronic value (FCV) for the protection of aquatic life shall be calculated based on the pH or water hardness exceeds 400 mg $CaCO_3/L$, use 400 mg $CaCO_3/L$ for the FCV calculation. The FCV or the protection of aquatic life shall be calculated based on the pH or water hardness of the receiving surface water. Where water hardness exceeds 400 mg $CaCO_3/L$ for the FCV calculation. The FCV formula provides values in units of ug/L or ppb. The generic GSI criterion is the lesser of the calculated FCV, the wildlife value (WV), and the surface water human non-drinking water value (HNDV). The soil GSI protection criteria for these hazardous substances are the greater of the 20 times the GSI criterion or the GSI soil-water partition values using the GSI criteria developed with the procedure described in this footnote. A spreadsheet that may be used to calculate GSI and GSI protection criteria for (G)-footnoted hazardous substances is available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site. A hardness value of 47.5 $CaCO_3/L$ and pH of 7, derived from the Michigan Department of Environmental Quality Draft Site Inspection Calculation spreadsheet.

(H) = Valence-specific chromium data (Cr III and Cr VI) shall be compared to the corresponding valence-specific cleanup criteria for Cr VI. Cr III soil cleanup criteria for Cr VI. Cr III soil cleanup criterion of drinking water criterion of drinking water criterion of 100 ug/L. If analytical data are provided for total chromium only, they shall be compared to the cleanup criteria for Cr VI. Cr III soil cleanup criteria for Cr VI. Cr III soil cleanup criterion of drinking water criterion of drinking water can only be used at sites where groundwater is prevented from being used as a public water supply, currently and in the future, through an approved land or resource use restriction.

(I) = Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. §261.21 (revised as of July 1, 2001), which is adopted by reference in these rules of \$45, from the Superintendent of documents, Government Printing Office, Washington, DC 20401 (stock number 869-044-00155-1), or from the EGLE, Remediation and Redevelopment Division (RRD), 525 West Allegan Street, Lansing, Michigan 48933, at cost.

(J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.

(L) = Criteria for lead are derived using a biologically based model, as allowed for under Section 20120a(9) of the NREPA, and are not calculated using the algorithms and assumptions specified in pathway-specific rules. The generic residential drinking water criterion of 4 ug/L is linked to the generic residential soil direct contact criterion of 400 mg/kg. A higher concentration in the drinking water, up to the state action level of 15 ug/L, may be allowed as a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific criterion is approved based on this subdivision, a notice shall be filed on the deed for all property where the groundwater concentrations will exceed 4 ug/L to provide notice of the potential for unacceptable risk if soil or groundwater concentrations increase. Acceptable combinations of site-specific soil and drinking water concentrations are presented in a table available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site (See R 299.49 Footnotes for generic cleanup criteria tables for additional information).

(M) = Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.

(Q) = Criteria for carcinogenic polycyclic aromatic hydrocarbons were developed using relative potential potencies to benzo(a)pyrene.

(S) = Criterion defaults to the hazardous substance-specific water solubility limit.

(T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. §761, Subpart G and 50 C.F.R. §761, Subpart G and 50

(X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)

(Z) = Mercury is typically measured as total mercury. The generic cleanup criteria, however, are based on data for different species of mercury, CAS number 7439976, serve as the basis for the soil volatilization to indoor air, and soil inhalation criteria. Data for methyl mercury, CAS number 7439976, serve as the basis for the soil volatilization to indoor air, and data for mercuric chloride, CAS number 7487947, serve as the basis for the drinking water, groundwater contact, and the groundwater contact, soil direct contact, and the groundwater protection criteria. Comparison to criteria shall be based on species of mercury.

MSSL Footnotes:

J = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations must be added together for comparison to screening level.

Laboratory Footnotes:

J = The result is an estimated quantity.

U = Analyte analyzed for but not detected above the reported sample reporting limit.

Table 6-4_Julio Marine_GW_v20240119.xlsx Page 3 of 4

TABLE 6-4 Summary of Groundwater Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

	Part 201 Generic Cleanup Criteria Evaluated	Exceedance
	[1] Residential Drinking Water Criteria	YES
	[2] Nonresidential Drinking Water Criteria	YES
COLE Dout 204 Comonio Classics Critoria	[3] Groundwater Surface Water Interface Criteria	YES
EGLE Part 201 Generic Cleanup Criteria (December 2020)	[4] Residential Groundwater Volatilization to Indoor Air Inhalation Criteria	NO
(December 2020)	[5] Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria	NO
	[6] Water Solubility	NO
	[7] Flammability and Explosivity Screening	NO
	[8] Shallow Groundwater Residential Media-Specific Screening Level (MSSL)	YES
	[9] Shallow Groundwater Nonresidential MSSL	YES
Media-Specific Volatilization to Indoor Air	[10] Groundwater Residential MSSL	NO
Interim Action Screening Levels	[11] Groundwater Residential Time Sensitive Media-Specific Screening Level (TS MSSL)	NO
(March 2021)	[12] Groundwater Nonresidential MSSL	NO
	[13] Groundwater Nonresidential MSSL ₁₂	NO
	[14] Groundwater Nonresidential TS MSSL ₁₂	NO

TABLE 6-5 Summary of Vat Water Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

Location Code				EGLE Part 201 Gen	eric Cleanup Criteria	1			Media-Specific \	/olatilization to Indoo	or Air Interim Action	Screening Levels				Julio	Marine		
Station Name	CAS Number				[4]	[5]			[9]					QMCP-ea	st vat water	QMCP-mid	dle vat water	QMCP-wes	est vat water
Field Sample ID		[1] Residential	[2] Nonresidential	[3] Groundwater	Residential Groundwater	Nonresidential Groundwater	[6]	[8] Shallow	Shallow	[10] Groundwater	[11] Groundwater	[12] Groundwater	[13] Groundwater	QMCP-ea	st vat water	QMCP-mid	dle vat water	QMCP-we	est vat water
Sample Date		Drinking Water Criteria	Drinking Water Criteria	Surface Water Interface Criteria	Volatilization to Indoor Air	Volatilization to Indoor Air	Water Solubility	Groundwater Residential MSSL	Groundwater Nonresidential	Residential MSSL	Residential TS MSSL	Nonresidential MSSL	Nonresidential MSSL ₁₂	8/20	/2019	8/20	/2019	8/20	0/2019
			21112112		Inhalation Criteria				MSSL					Result	Exceeds	Result	Exceeds	Result	Exceeds
Inorganics - Metals (ug/l)																			
ARSENIC	7440-38-2	10 (A)	10 (A)	10	NLV	NLV	NA	NA	NA	NA	NA	NA	NA	21	-	15	-	4.3	-
BARIUM	7440-39-3	2,000 (A,B)	2,000 (A,B)	200 (B,G)	NLV	NLV	NA	NA	NA	NA	NA	NA	NA	13	-	16	-	12	-
CADMIUM	7440-43-9	5.0 (A,B)	5.0 (A,B)	1.3 (B,G,X)	NLV	NLV	NA	NA	NA	NA	NA	NA	NA	0.6	-	<0.2 U	-	<0.2 U	
COPPER	7440-50-8	4.0 (B,E)	4.0 (B,E)	14 (B,G)	NLV	NLV	NA	NA	NA	NA	NA	NA	NA	19	-	2.1		<1 U	
LEAD	7439-92-1	4.0 (B,L)	4.0 (B,L)	14 (B,G,X)	NVL	NLV	NA	NA	NA	NA	NA	NA	NA	3.4	-	9.6		<1 U	
ZINC	7440-66-6	2,400 (B)	5,000 (B,E)	63 (B,G)	NLV	NLV	NA	NA	NA	NA	NA	NA	NA	150	-	170		45	
Organics - PCBs as Aroclors (ug/l)																			
TOTAL PCBS	1336-36-6	0.5 (A,J,T)	0.5 (A,J,T)	0.2 (J,M,T)	45 (J,S,T)	45 (J,S,T)	44.7 (J,T)	NA	NA	NA	NA	NA	NA	ND	-	ND	-	ND	
Organics - SVOCs (ug/l)																			
NAPHTHALENE (SVOC)	91-20-3S	520	1,500	11	31,000 (S)	31,000 (S)	31,000	NA	NA	NA	NA	NA	NA	<10 U	-	1.1		<1 U	
Organics - VOCs (ug/l)																			
1,2,4-TRIMETHYLBENZENE	95-63-6	63 (E,I)	63 (E,I)	17 (I)	56,000 (I,S)	56,000 (I,S)	55,890 (I)	25 (JT)	44 (JT)	440 (JT)	1,300 (JT)	1,300 (JT)	2,600 (JT)	2.3	-	<1 U	-	<1 U	
2-BUTANONE (MEK)	78-93-3	13,000 (I)	38,000 (I)	2,200 (I)	240,000,000	240,000,000	240,000,000	NA	NA	NA	NA	NA	NA	5.7	-	<5 U	-	<5 U	-
2-PROPANONE (ACETONE)	67-64-1	730 (I)	2,100 (I)	1,700 (I)	1,000,000,000	1,000,000,000	1,000,000,000	50,000	62,000	1.20E+07	1.20E+07	2.50E+07	2.50E+07	26	-	<20 U	-	<20 U	-
M,P-XYLENE	1330-20-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1		<2 U		<2 U	
XYLENE - TOTAL	-	280 (E,I)	280 (E,I)	49 (I)	190,000 (I,S)	190,000 (I,S)	186,000 (I)	75 (J)	120 (J)	1,200 (J)	3,600 (J)	3,500 (J)	7,100 (J)	2.1	-	ND		ND	-

TABLE 6-5

Summary of Vat Water Analytical Results (Julio Marine) Julio Properties - Dollar Bay Houghton County, Michigan

Groundwater Table Footnotes:

- EGLE Part 201 residential and non-residential generic cleanup criteria and screening levels criteria were originally promulgated December 21, 2002 within the Administrative Rules for Part 201, Environmental Protection Act, 1994 PA 451, as amended. This table reflects revisions to the criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 30, 2013. Updated December 21, 2020.
- Only detected analytes are listed Gray rows indicate requested analyses. If no analytes are listed below a gray row then all analytes of that group were either not analyzed or not detected.
- Bold values are concentrations detected above the laboratory reporting limit.
- Bold/Shaded cells indicate analyte concentration exceeded applicable criteria. EGLE Part 201 criteria exceeded is indicated by the footnote in [brackets] following the result value and defined below:
 - [1] Residential Drinking Water Criteria [8] Shallow Groundwater Residential MSSL
 - [2] Nonresidential Drinking Water Criteria [9] Shallow Groundwater Nonresidential MSSL
 - [3] Groundwater Surface Water Interface Criteria [10] Groundwater Residential MSSL
 - [4] Water Solubility [11] Groundwater Residential TS MSSL [5] Residential Groundwater Volatilization to Indoor Air Inhalation Criteria [12] Groundwater Nonresidential MSSL
 - [6] Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria [13] Groundwater Nonresidential MSSL₁₂ [7] Flammability and Explosivity Screening Level [14] Groundwater Nonresidential TS MSSL

Evaluation based on EGLE Criteria at time of Project completion.

-- = No Exceedances SVOC = Semi-volatile organic compound

ND = Not Detected VOC = Volatile organic compound

ug/l = Micrograms per liter

MSSL = Media-Specific Volatilization to Indoor Air Interim Action Screening Level

PCBs = Polychlorinated biphenyls

TS MSSL = Time Sensitive Media-Specific Volatilization to Indoor Air Interim Action Screening Level

Groundwater Table Footnotes:

NA = A criterion or value is not available

NLV = Hazardous substance is not likely to volatilize under most conditions.

- (A) = Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.
- (B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.
- (E) = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA). A notice of aesthetic drinking water criterion, but do not exceed the applicable health-based drinking water value provided in a table available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information)
- (G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or water hardness of the receiving surface water. Where water hardness or the pH or hardness of the receiving surface water. The final chronic value (FCV) for the pH or hardness or the pH or hardness or the pH or hardness of the receiving surface water. The final chronic value (FCV) for the pH or hardness of the receiving surface water. The final chronic value (FCV) for the pH or hardness or the pH or hardness of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. The final chronic value (FCV) for the pH or hardness, or both, of the receiving surface water. Where water hardness, or both, of the pH or hardness or both, of the
- (I) = Hazardous substance may exhibit the characteristic of ignitability as defined in 40 C.F.R. §261.21 (revised as of July 1, 2001), which is adopted by reference in these rules of \$45, from the Superintendent of documents, Government Printing Office, Washington, DC 20401 (stock number 869-044-00155-1), or from the EGLE, Remediation and Redevelopment Division (RRD), 525 West Allegan Street, Lansing, Michigan 48933, at cost.
- (J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.
- (L) = Criteria for lead are derived using a biologically based model, as allowed for under Section 20120a(9) of the NREPA, and are not calculated using the algorithms and assumptions specified in pathway-specific rules. The generic residential drinking water criterion of 4 ug/L is linked to the generic residential soil direct contact criterion of 4 ug/L is linked to the generic residential soil direct contact criterion of 4 ug/L is linked to the generic residential drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations will exceed 4 ug/L to provide notice of the potential for unacceptable risk if soil or groundwater concentrations increase. Acceptable combinations of site-specific soil and drinking water concentrations are presented in a table available on the Department of Environment, Great Lakes, and Energy (EGLE) internet web site (See R 299.49 Footnotes for generic cleanup criteria tables for additional information).
- (M) = Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.
- (S) = Criterion defaults to the hazardous substance-specific water solubility limit.
- (T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. §761, Subpart D and 40 C.F.R. §761, Subpart D and 40 C.F.R. §761, Subpart D and Subpart G, to determine the applicability of TSCA cleanup standards. Subpart D and Subpart G, to determine the applicability of TSCA cleanup standards. Subpart D and Subp
- (X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)

MSSL Footnotes:

- J = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations must be added together for comparison to screening level.
- JT = Hazardous substance may be present in several isomer forms. Screening levels may be used for the individual isomer provided that it is the sole isomers are detected in a medium, the isomer-specific concentrations must be added together and compared to the most restrictive screening level of the detected isomers.

Laboratory Footnotes:

U = Analyte analyzed for but not detected above the reported sample reporting limit.

TABLE 6-5 Summary of Vat Water Analytical Results (Julio Marine) Julio Properties - Dollar Bay

Houghton County, Michigan

	Part 201 Generic Cleanup Criteria Evaluated	Exceedance
	[1] Residential Drinking Water Criteria	NO
	[2] Nonresidential Drinking Water Criteria	NO
FOLE Bort 204 Comorio Classics Critoria	[3] Groundwater Surface Water Interface Criteria	NO
EGLE Part 201 Generic Cleanup Criteria	[4] Residential Groundwater Volatilization to Indoor Air Inhalation Criteria	NO
(December 2020)	[5] Nonresidential Groundwater Volatilization to Indoor Air Inhalation Criteria	NO
	[6] Water Solubility	NO
	[7] Flammability and Explosivity Screening	NO
	[8] Shallow Groundwater Residential Media-Specific Screening Level (MSSL)	NO
	[9] Shallow Groundwater Nonresidential MSSL	NO
Media-Specific Volatilization to Indoor Air	[10] Groundwater Residential MSSL	NO
Interim Action Screening Levels	[11] Groundwater Residential Time Sensitive Media-Specific Screening Level (TS MSSL)	NO
(March 2021)	[12] Groundwater Nonresidential MSSL	NO
	[13] Groundwater Nonresidential MSSL ₁₂	NO
	[14] Groundwater Nonresidential TS MSSL ₁₂	NO

7. DETAILED FINDINGS – PORTAGE CANAL AND DOLLAR BAY

This Section summarizes the results and subsequent findings of the offshore sampling components of the SAP at the Julio Properties – Dollar Bay portion of QMCP. Although critical to the understanding of contaminant migration into the Portage Canal and Dollar Bay, the terrestrial portion of the investigation is emphasized in the preceding detailed findings reports for each subarea. This Section provides a comprehensive assessment of the Portage Canal and Dollar Bay using analytical results derived from the SI. The narrative follows the offshore investigative approach outlined in **Section 3**, while providing specific details about the potential human health and ecological risks associated with mining era operations as they relate to the Portage Canal and Dollar Bay.

The offshore investigation included sediment and pore water sampling from the Portage Canal and the connecting waters of Dollar Bay. The following subsections present a summary of the analytical results derived from offshore sampling activities.

7.1 OFFSHORE INVESTIGATION RESULTS

Similar to the terrestrial investigation, the offshore investigation activities for the Julio Properties – Dollar Bay were also guided by several factors. Since in-lake historical analytical data was not available, terrestrial historical and analytical data was evaluated to determine if adequate characterization data was available in each study area to assess the overall sediment and surface water quality in the Portage Canal and Dollar Bay. In addition, underwater surveillance of the area, as described in **Section 3**, was used to locate and assess potential offshore waste deposits. Lastly, field observations, both terrestrial and offshore, were used to position sampling locations. Sediment and pore water sampling completed as part of the SI were conducted in accordance with the sampling methods described in **Section 3**. The following subsections present the outcomes of offshore investigative activities completed in the Portage Canal and Dollar Bay connecting waters by summarizing the laboratory analytical results and characterizing their impacts on the environmental media in which they were detected.

7.1.1 Portage Canal and Dollar Bay

Offshore sediment and pore water samples were collected, but surface water samples were not collected from the Portage Canal or Dollar Bay during the SI. The following subsections present a summary of the analytical results derived from offshore sampling activities.

7.1.1.1 Sediment Sampling Results

Sediment sampling activities were completed on September 6 and 7, 2018. During this time, a total of four sediment samples were collected from two sampling locations (QMCP-SD10 and QMCP-SD14) offshore from the Julio Properties – Dollar Bay parcels.

Sediment sampling included two surficial sediment samples, ranging from 0 to 1 ft or less in depth. The investigation also included two deeper sediment samples collected from depths up to 3 ft. All samples were analyzed for inorganic compounds, PCBs, and SVOCs as identified in *Table 3-1*, *Sampling and Analysis Summary* of this SI Report.

The analytical results for sediment samples collected during the SI identified concentrations of copper that exceeded applicable screening levels in two of the four samples. SVOCs were detected at concentrations that exceeded applicable screening levels at one location (QMCP-SD10). Total PCBs were not detected in any of the sediment samples collected.

A detailed summary of sediment analytical results collected from the Portage Canal and Dollar Bay connecting waters is provided in *Table 7-1*, *Sediment and Pore Water Analytical Results* and depicted in *Figure 7-1*, *Sediment and Pore Water Analytical Results*.

7.1.1.2 Pore Water Sampling Results

No surface water samples were collected from the Portage Canal or Dollar Bay during implementation of the SI; however, two pore water samples (QMCP-PS10 and QMCP-PS45) were collected on September 10, 2018 from near sediment sample locations that indicated signs of contamination (sheen and/or odor) and offshore from QMCP-MW9 that contained LNAPL. Both samples were analyzed for VOCs, and QMCP-PS10 was also analyzed for PCBs and inorganic constituents.

The pore water analytical results for the samples identified multiple inorganic COCs at concentrations above regulatory criteria and/or screening values in QMCP-PS10. Total PCBs and VOCs were not detected in any of the pore water samples collected from the Portage Canal.

A detailed summary of pore water analytical results collected from the Portage Canal and Dollar Bay connecting waters is provided in *Table 7-1*, *Sediment and Pore Water Analytical Results* and depicted in *Figure 7-1*, *Sediment and Pore Water Analytical Results*.

7.2 NATURE AND EXTENT OF CONTAMINATION

Utilizing the established regulatory criteria presented in **Section 4**, the laboratory analytical results summarized in the preceding section were reviewed and compared to the following criteria as applicable for the sampled environmental media:

- EGLE Rule 57 Water Quality Values;
- EGLE Part 201 Cleanup Criteria for Response Action Residential and Nonresidential DWC and GSIC;
- EPA Ecological Screening Values (ESVs); and,
- Sediment Quality Guidelines, Threshold Effect Concentrations (TECs) and Probable Effect Concentrations (PECs), MacDonald, et al, 2000.

7.2.1 Comprehensive Exposure Assessment

The comparison was completed to determine which ecological and human exposure pathways, risks, and conditions are relevant in the Portage Canal and Dollar Bay connecting waters. Although not inclusive of relevant pathways where criteria were not exceeded, the following exposure pathways were determined to be relevant in the Portage Canal and Dollar Bay connecting waters as it pertains to the offshore investigative activities completed during the SI:

Risks due to hazardous substances in sediments and pore water.

7.2.1.1 Portage Canal and Dollar Bay – Exposure Pathway Assessment

Sediment analytical results from the Portage Canal and Dollar Bay connecting waters identified COC concentrations that were at or above concentrations that pose potential risks to sediment dwelling species, and consequently the food chain. The following table provides a summary of the sample locations. The table lists only the number of samples for a specific analytical suite that contained one or more exceedance of a given criterion.

	Analytica	l Sumn	nary	EPA, Region IV, Freshwater Sediment Ecological Screening Values (March 2018)	Consensus Based Sedi	iment Quality Guidelines
Sediment Analytical Result Summary Table	Total Number of Samples	Detected Analytes	Total Exceedances	Ecological Screening Values	Threshold Effect Concentration (TEC)	Probable Effect Concentration (PEC)
Inorganics	4	25	2	2	2	2
Cyanide	0	0	0	0	0	0
VOCs	0	0	0	0	0	0
SVOCs	4	2	2	1	1	0
Total PCBs	4	0	0	0	0	0
COCs exceeding applicable regulato more sample	ry criteria ir	n one d	or	COPPER, FLUORANTHENE, PY	RENE	

The pore water analytical results from the Portage Canal and Dollar Bay connecting waters identified COC concentrations that were at or above concentrations that pose potential risks to ecological receptors, and consequently the food chain. The following table provides a summary of the sample locations. The table lists only the number of samples for a specific analytical suite that contained one or more exceedance of a given criterion.

	Analytic	al Sum	mary		Criteria Requ Response Ac		EPA Re Surface Ecological Values (M	Water Screening	EGLE Rule	57 Water Qu	ality Values
Pore Water Analytical Result Summary Table	Total Number of Samples	Detected Analytes	Total Exceedances	Residential Drinking Water Criteria	Nonresidential Drinking Water Criteria	Groundwater Surface Water Interface Criteria	Region IV Freshwater Ecological Screening Value - Acute	Region IV Freshwater Ecological Screening Value - Chronic	Human Non-Cancer Value - Drinking Water Source	Human Cancer Value - Drinking Water Source	Wildlife Value
Inorganics	1	6	4	1	1	1	1	1	0	0	0
Cyanide	0	0	0	0	0	0	0	0	0	0	0
VOCs	2	0	0	0	0	0	0	0	0	0	0
SVOCs	0	0	0	0	0	0	0	0	0	0	0
Total PCBs	1	0	0	0	0	0	0	0	0	0	0
COCs exceeding applicable in one or more sample	e regulator	ry crite	ria	COPPER	, LEAD, MA	ANGANESE	, SILVER				

7.2.2 Portage Canal and Dollar Bay Extent of Contamination

The comparison of analytical results to applicable regulatory criteria indicates that potential human health and ecological risks are present in the form of contaminated sediment and pore water in the Portage Canal and Dollar Bay connecting waters. The following subsections describe the extent of contamination.

7.2.2.1 Sediment – Extent of Contamination

Sediment sampling analytical results exceeded applicable screening levels for copper from both samples at the QMCP-SD10 location. Results also exceeded applicable screening levels for SVOCs in the surficial sediment sample at this location. The limits of sediment contamination have not been defined.

As previously stated, metals are prevalent in the region and the related inorganic constituent exceedances, although potentially detrimental to aquatic biota, remain a consistent finding in sediment samples collected from across the Project area. Nevertheless, exceedances of inorganic COC screening values in sediment should be considered when evaluating the extent of contamination at Julio Marine – Dollar Bay.

The detection of SVOCs in sediment samples is likely indicative of a nearby contaminant source, versus the ubiquitous nature of the inorganic COCs described above. SVOC contamination in sediment present risks both to benthic organisms and human health due to their close proximity to the shoreline. The potential risks associated with SVOCs in nearshore sediment may be an indication of a terrestrial source of contamination that should be considered when evaluating the extent of sediment contamination at Julio Marine.

7.2.2.2 Pore Water – Extent of Contamination

Analytical results from pore water samples collected offshore from Julio Properties – Dollar Bay identified inorganic impacts exceeding applicable screening values and comparable criteria for one sample (QMCP-PS10). Constituents exceeding criteria or screening levels included copper, lead, manganese, and silver.

Similar to the previously discussed sediment sample results, metals are ubiquitous in the study area and are predominantly the result of the presence of stamp sands. Stamp sands are not defined as a hazardous substance nor are they subject to regulation under Part 201 unless the property otherwise contains hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use. The related exceedances, although potentially detrimental to aquatic biota, remain a consistent finding in samples collected from the Project area. Nevertheless, exceedances of inorganic COCs in pore water should be considered when evaluating the extent of contamination at Julio Marine.

7.3 CONCLUSIONS AND RECOMMENDATIONS

The analytical results and interpretation summarized in the preceding subsections document ecological and potential human health risks that are present in the Portage Canal and Dollar Bay connecting waters and the implications of those findings on environmental conditions throughout connected waterbodies such as Portage Lake. The following subsections provide a synopsis of these findings and a recommended path forward for mitigating these risks.

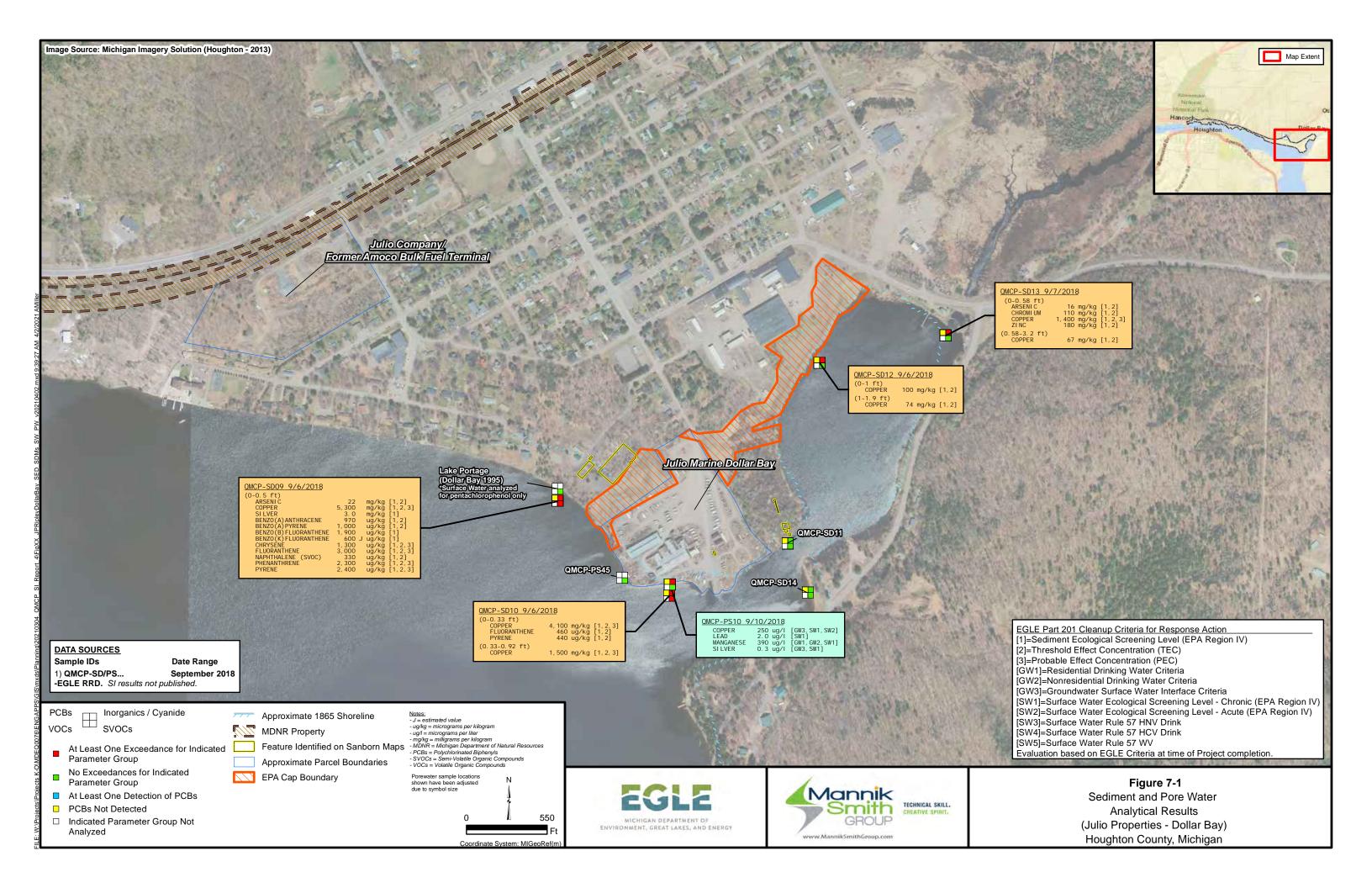
7.3.1 Conclusions

Environmental impacts offshore from the Julio Properties – Dollar Bay are generally characterized by detections of organic and inorganic contaminants in sediment and pore water, repercussions of mining era operations in the region. Although specific sources of these contaminants may not be fully understood, historical research related to the operations, closing, and eventual abandonment/scrapping of mining company operations provided substantive

evidence for assessing specific operational areas and selecting target analytes anticipated to be present in environmental media within the study area. The findings of these investigative activities, specifically as it relates to concentrations of contaminants in sediment and pore water are summarized as follows:

- Sediment Copper and SVOCs were detected at or in excess of applicable screening values offshore from Julio Marine. Copper concentrations exceeded the ESV, TEC, and PEC, while SVOCs exceeded the ESVs and TECs. Sediment results may be indicative of historic offshore waste deposits and/or venting groundwater impacts.
- Pore Water Inorganic COCs were detected at or in excess of applicable screening values offshore from Julio Marine. Concentrations of copper, lead, manganese, and silver exceeded Residential and Nonresidential DWC, GSIC, chronic ESVs, and/.or acute ESVs.

7.3.2 Recommendations


SI results have confirmed that potential ongoing sources of contamination are present in the Portage Canal. For Julio Marine where potential upland sources of these COCs have not previously been addressed, evaluation of remedial alternatives to mitigate concerns related to human health and/or the environment could be conducted.

ELGE should continue to provide new study data to the Remediation and Redevelopment Division Superfund Section (RRD SFS), which is responsible for monitoring EPA's remedy for the terrestrial and lake portions of the Torch Lake Superfund Site. RRD SFS should evaluate whether any remedy modifications are necessary. The EPA and RRD SFS should verify that administrative controls for areas that have been previously remediated by the EPA have been employed to ensure that the selected remedy is performing as designed and those institutional controls, where required, have been recorded and are being enforced.

FIGURES

DETAILED FINDINGS REPORT –
PORTAGE CANAL AND DOLLAR BAY

TABLES

DETAILED FINDINGS REPORT –
PORTAGE CANAL AND DOLLAR BAY

TABLE 7-1
Sediment and Pore Water Analytical Results
Julio Properties - Dollar Bay
Houghton County, Michigan

Location Code		EPA Region IV Sediment ESVs		ent Quality delines		E Part 201 Grou			egion IV Vater ESVs					1100	<u>g</u>	Cour	.				Sedimen	nt - Dollar Bay												Pore Water - D	ollar Bay	
Station Name	CAS Number	Sediment ESVS	Guid	lemes		Coleanup C	Ji iteria	Surface Vi	valer LOVS	QMC	P-SD09		QMC	P-SD10				QMC	:P-SD11			Т	QMCP-SI	D12		QMO	CP-SD13			QMC	P-SD14		QM	CP-PS10	QMCP-P	2S45
Sample ID		1								QMCP-	SD09-0-6"	QMCP-S	SD10-0-4"	T	SD10-4-11"	QMCP-SI	D 11-6-12"	1) 11-6-12" FD	QMCP-S	SD11-0-6"	QMCP-SD 12		MCP-SD 12-1	2-23" QMCF	P-SD 13-0-7	QMCP-	SD 13-7-38"	QMCP-S	D 14-0-12"	QMCP-S	SD 14-12-36"	QM	CP-PS10	QMCP-P	
Sample Date		[1]			[GW1]	[GW2]	[GW3]	[SW1]	[SW2]	-	/2018		2018	9/6	6/2018		2018		6/2018	1	2018	9/6/2018	-	9/6/2018		/7/2018	1	7/2018		/2018		7/2018		10/2018	9/10/20	
Sample Interval (bgs)		Region IV ESV -	[2] Threshold	[3] Probable	Residentia	Nonresidential	Groundwater Surface	Region IV	Region IV	0 -	0.5 ft	0-0	.333 ft	0.333	3 - 0.92 ft	0.5	- 1 ft	0.	5 - 1 ft	0 -	0.5 ft	0 - 1 ft		1 - 1.92 ft	0	- 0.58 ft	0.58	8 - 3.2 ft	0 -	- 1 ft	1	- 3 ft		_	_	
- Campio mice i an (a go)		Freshwater Sediment	Effect Concentration	Effect Concentration	Drinking Water Criteria	Drinking Water Criteria	Water Interface	Freshwater ESV - Chronic	Freshwater ESV - Acute																								I	ar QMCP-SD10	Collected offs	shore of
Sample Description		Gedinent			Ontena	Ontena	Criteria	Ontonic	Acute		-				-	-	-		-							-							I	ents indicated amination (oily	terrestrial loca QMCP-SB45/	
										Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result Exc	eeds R	esult Exce	eds Resu	It Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result	Exceeds	Result E	Exceeds
Inorganics- Metals (mg/kg)																																				
ARSENIC	7440-38-2	9.8	9.79	33	NA	NA	NA	NA	NA	22	[1,2]	4.1		2.5		1.5		1.1	-	1.6		3.9		4.3	16	[1,2]	2.9		1.4		0.6	-	NM		NM	
CADMIUM	7440-43-9	1	0.99	4.98	NA	NA	NA	NA	NA	<0.2 U	-	<0.2 U		<0.2 U		<0.2 U		<0.2 U	-	<0.2 U		0.2		0.3	<0.2	U	0.4		<0.2 U		<0.2 U	-	NM		NM	
CHROMIUM	7440-47-3	43.4	43.4	111	NA	NA	NA	NA	NA	27		11		13		5.0 J	-	4.6 J	-	5.6		14	-	17	110	[1,2]	10		5.0 J		4.8 J	-	NM		NM	
COPPER	7440-50-8	31.6	31.6	149	NA	NA	NA	NA	NA	5,300	[1,2,3]	4,100	[1,2,3]	1,500	[1,2,3]	5.2	-	5.1	-	20		100 [1	,2]	74 [1,	2] 1,400	[1,2,3]	67	[1,2]	14		6.9	-	NM		NM	
LEAD	7439-92-1	35.8	35.8	128	NA	NA	NA	NA	NA	33	-	7.6		3.6	-	1.1	-	1.2	-	3.3		2.2	-	1.9	17	-	1.2	-	1.4		<1.0 U		NM	-	NM	
MANGANESE	7439-96-5	460	NA	NA	NA	NA	NA	NA	NA	200		100		78		29 J	-	32	-	97		120	- 1	120	230	-	130		32		31	-	NM		NM	
MERCURY	7439-97-6	0.18	0.18	1.06	NA	NA	NA	NA	NA	0.1		<0.09 U		<0.07 U		<0.06 U	-	<0.06 U	-	<0.06 U		<0.3 U	<().3 U	<0.11	J	<0.3 U		<0.06 U		<0.06 U	-	NM		NM	-
SILVER	7440-22-4	1	NA	NA	NA	NA	NA	NA	NA	3	[1]	0.4		0.2		<0.1 U	-	<0.1 U	-	<0.1 U	-	0.1	-	0.2	0.4	-	0.1	-	<0.1 U		<0.1 U	-	NM		NM	
ZINC	7440-66-6	121	121	459	NA	NA	NA	NA	NA	72	-	20		12		7.2	_	7.7	-	11		24	-	34	180	[1,2]	21		6.3		5	-	NM		NM	
Inorganics - Metals (ug/l)																																				
ARSENIC	7440-38-2	NA	NA	NA	10 (A)	10 (A)	10	150 ^	340 ^	NM		NM		NM		NM		NM		NM		NM	1	MN	NM	T	NM	-	NM		NM		1.8		T T	
CHROMIUM	7440-47-3	NA	NA	NA	100 (A,B,H)	100 (A,B,H)	40 (B,G,H,X)	NA	NA	NM		NM		NM		NM		NM	-	NM		NM	1	NM	NM	-	NM		NM		NM		5.3	-	-	
COPPER	7440-50-8	NA	NA	NA	1,000 (B,E)	1,000 (B,E)	4.7 (B,G)	4.94 ^ *	6.94 ^ *	NM	-	NM		NM	-	NM	-	NM	-	NM		NM	1	NM	NM	-	NM		NM	_	NM		250	[GW3,SW1,SW2] -	
LEAD	7439-92-1	NA	NA	NA	4.0 (B,L)	4.0 (B,L)	14 (B,G,X)	1.23 ^ *	31.6 ^ *	NM		NM		NM	-	NM		NM	-	NM		NM	1	NM	NM	<u> </u>	NM		NM		NM		2.0	[SW1]	-	
MANGANESE	7439-96-5	NA	NA	NA	50 (B,E)	50 (B,E)	1,000 (B,G,X)	93	1,680	NM		NM		NM		NM		NM	-	NM		NM	1	NM	NM	-	NM		NM		NM	-	390	[GW1,GW2,SW1] -	
SILVER	7440-22-4	NA	NA	NA	34 (B)	98 (B)	0.2 (B,M)	0.06 ^ *	1.05 ^ *	NM		NM		NM		NM		NM	-	NM		NM	1	NM	NM	-	NM		NM		NM	-	0.3	[GW3,SW1]	-	
Organics- PCBs (ug/kg)																																				
TOTAL PCBS	1336-36-3	59.8	59.8	676	NA	NA	NA	NA	NA	ND		ND		ND	-	ND		ND		ND		ND		ND	ND	Τ -	ND	-	ND		ND		NM		NM	
Organics - PCBs (ug/l)																																				
TOTAL PCBS	1336-36-6	NA	NA	NA	0.5 (A,J,T)	0.5 (A,J,T)	0.2 (J,M,T)	0.014	0.014	NM	-	NM		NM	-	NM		NM	-	NM		NM	1	VM	NM	-	NM	-	NM		NM	-	ND		NM	
Organics- SVOCs (ug/kg)																																				
BENZO(A)ANTHRACENE	56-55-3	108	108	1,050	NA	NA	NA	NA	NA	970	[1,2]	<360 U		<280 U		<240 U		<240 U	-	<260 U		<2800 U	<32	200 U	<420	U	<1300 U		<240 U		<240 U	-	NM		NM	
BENZO(A)PYRENE	50-32-8	150	150	1,450	NA	NA	NA	NA	NA	1,000	[1,2]	<710 U		<560 U		<480 U		<480 U	-	<510 U		<5600 U	<6	500 U	<840	U	<2500 U		<470 U		<480 U	-	NM	-	NM	
BENZO(B)FLUORANTHENE	205-99-2	190	NA	NA	NA	NA	NA	NA	NA	1,900	[1]	<710 U		<560 U		<480 U		<480 U	-	<510 U		<5600 U	<6	500 U	<840	U	<2500 U		<470 U		<480 U	-	NM	-	NM	
BENZO(K)FLUORANTHENE	207-08-9	240	NA	NA	NA	NA	NA	NA	NA	600 J	[1]	<710 U		<560 U		<480 U		<480 U	-	<510 U		<5600 U	<6	500 U	<840	U	<2500 U		<470 U		<480 U	-	NM		NM	
CHRYSENE	218-01-9	166	166	1,290	NA	NA	NA	NA	NA	1,300	[1,2,3]	<360 U		<280 U		<240 U		<240 U	_	<260 U		<2800 U	- <32	200 U	<420	+	<1300 U		<240 U		<240 U	-	NM		NM	\equiv
FLUORANTHENE	206-44-0	423	423	2,230	NA	NA	NA	NA	NA	3,000	[1,2,3]	460	[1,2]	<280 U	_	<240 U		<240 U	_	<260 U		<2800 U		200 U	<420		<1300 U	-	<240 U		<240 U	-	NM		NM	ᆿ
NAPHTHALENE (SVOC)	91-20-3S	176	176	561	NA	NA	NA	NA	NA	330	[1,2]	<360 U		<280 U		<240 U		<240 U	_	<260 U		<2800 U		200 U	<420		<1300 U	1	<240 U		<240 U	-	NM		NM	\equiv
PHENANTHRENE	85-01-8	204	204	1,170	NA	NA	NA	NA	NA	2,300	[1,2,3]	-		<280 U		<240 U		<240 U	_	<260 U		 		200 U			<1300 U	-	<240 U		<240 U	-	NM		NM	\equiv
PYRENE	129-00-0	195	195	1,520	NA	NA	NA	NA	NA	2,400	[1,2,3]	440	[1,2]	<280 U	_	<240 U		<240 U	_	<260 U		 		200 U	<420		<1300 U	J	<240 U		<240 U	_	NM		NM	_
Organics - VOCs (ug/l)				.,.22	1					.,	1,=,=1		,-,							1							1									
TOTAL VOCS		NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NM		NM		NM	l	NM		NM		NM		NM	1	NM -	NM	T -	NM	T	NM		NM		ND		ND	
101AL 1000		IV/\	INV.	I IVA	INA	I IVA	INA	''\^	I INA	ININI		I INIVI		INIVI		ININI		INIVI	_	INIVI		1.4161		1171	INIVI		INIVI		ININI		ININI		שאו		שויי	

Note: Analytical and Criteria Footnotes are included on the last page of the table.

Table 7-1_Julio Prop DB_Sed PW_v20240119.xlsx

TABLE 7-1

Sediment and Pore Water Analytical Results Julio Properties - Dollar Bay **Houghton County, Michigan**

Table Footnotes:

- EGLE Part 201 residential and non-residential and non-residential generic cleanup criteria and screening levels criteria were originally promulgated December 21, 2002 within the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. This table reflects revisions to the criteria pursuant to the December 2010 Part 201 amendments and new criteria consistent with the provisions of R299.5706a. Remediation, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. Release Date: December 30, 2013. Updated December 21, 2020.
- EGLE Rule 57 values derived from the Michigan Department of Environment Great Lakes and Energy, Water Bureau, Water Resources Protection, filed with the Secretary of State on January 13, 2006. Part 4 Water Quality Standards, Rule 323.1057 Toxic Substances, as amended. Updated on August 1, 2019.

[SW3] - EGLE Rule 57 Water Quality Value - Human Noncancer Value - Drinking Water Source

[SW4] - EGLE Rule 57 Water Quality Value - Human Cancer Value - Drinking Water Source

- ESVs are adapted from the Environmental Protection Agency Region IV Ecological Risk Assessment Supplemental Guidance, published November 1995, updated March 2018.
- TECs, and PECs are adapted from Appendix A and Appendix B of Michigan Department of Environment, Great Lakes, and Energy (EGLE) Remediation and Redevelopment Division Operational Memorandum No. 4 Attachment 3, Interim Final August 2, 2006.

[SW1] - EPA Region IV Surface Water Freshwater ESV - Chronic

[SW2] - EPA Region IV Surface Water Freshwater ESV - Acute

[SW5] - EGLE Rule 57 Water Quality Value - Wildlife Value

EPA = United States Environmental Protection Agency

PCBs = Polychlorinated biphenyls

VOC = Volatile organic compound

ESV = Ecological Screening Value

PEC = Probable Effect Concentration TEC = Threshold Effect Concentration

RBSL = Risk Based Screening Level

SVOC = Semi-volatile organic compound

- Only detected analytes are listed Gray rows indicate requested analyses.
- Bold values are concentrations detected above the laboratory reporting limit.
- Bold/Shaded cells indicate analyte concentration exceeded applicable criteria. Criteria exceeded is indicated by the footnote in [brackets] following the result value and defined below:

[1] - EPA Region IV Freshwater Sediment ESV

[2] - TECs (MacDonald et al. 2000)

[3] - PECs (MacDonald et al.2000)

[GW1] - EGLE Part 201 Residential Drinking Water Criteria

[GW2] - EGLE Part 201 Nonresidential Drinking Water Criteria

[GW3] - EGLE Part 201 Groundwater Surface Water Interface Criteria

Evaluation based on EGLE Criteria at time of Project completion.

-- = No Exceedances

NM = Not Measured

ND = Not Detected

ft = Feet

bgs = Below ground surface ug/l = Micrograms per liter

mg/kg = Milligrams per kilogram.

ug/kg = Micrograms per kilogram

Critertia Footnotes:

ID = Insufficient data to develop criterion.

NA = A criterion or value is not available

NLV = Hazardous substance is not likely to volatilize under most conditions.

- (A) = Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 PA 399, MCL 325.1005.
- (B) = Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.
- (E) = Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA). A notice of aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (NREPA). applicable health-based drinking water value provided in a table available on EGLE internet web site. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information)
- (G) = Groundwater surface water interface (GSI) criterion depends on the pH or water hardness exceeds 400 mg CaCO₃/L, use 400 mg CaCO₃/L for the FCV calculation. The FCV formula provides values in units of ug/L or ppb. The generic GSI criterion is the lesser of the calculated FCV, the wildlife value (MVV), and the surface water human non-drinking water value (HNDV). The soil GSI protection criteria for these hazardous substances are the greater of the 20 times the GSI criterion or the GSI soil-water partition values using the GSI criterion. developed with the procedure described in this footnote. A spreadsheet that may be used to calculate GSI and GSI protection criteria for (G)-footnoted hazardous substances is available on the EGLE internet web site. A hardness value of 47.5 CaCO₃/L and pH of 7, derived from the Michigan Department of Environmental Quality Draft Site Inspection Report for Lake Linden Operations dated 3/29/13, was used in the footnote G calculation spreadsheet.
- (H) = Valence-specific chromium data (Cr III and Cr VI) shall be compared to the corresponding valence-specific cleanup criteria. If both Cr III and Cr VI are present in groundwater, the total chromium only, they shall be compared to the cleanup criteria for Cr VI. Cr III soil cleanup criterion for protection of drinking water can only be used at sites where groundwater is prevented from being used as a public water supply, currently and in the future, through an approved land or resource use restriction.
- (J) = Hazardous substance may be present in several isomer forms. Isomer-specific concentrations shall be added together for comparison to criteria.
- (L) = Criteria for lead are derived using a biologically based model, as allowed for under Section 20120a(9) of the NREPA, and are not calculated using the algorithms and assumptions specified in pathway-specific rules. The generic residential drinking water criterion of 4 ug/L is linked to the generic residential soil direct contact criterion of 400 mg/kg. A higher concentration in the drinking water, up to the state action level of 15 ug/L, may be allowed as a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use, under Section 20120a(2) and 20120b of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site-specific remedy and still allow for drinking water use a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately lower than 400 mg/kg. If a site of the NREPA if soil concentrations are appropriately where the groundwater concentrations will exceed 4 ug/L to provide notice of the potential for unacceptable risk if soil or groundwater concentrations increase. Acceptable combinations of site-specific soil and drinking water concentrations increase. Acceptable combinations of site-specific soil and drinking water concentrations increase.
- (M) = Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.
- (S) = Criterion defaults to the hazardous substance-specific water solubility limit.
- (T) = Refer to the federal Toxic Substances Control Act (TSCA), 40 C.F.R. §761, Subpart D and Subpart D an Copies of the regulations may be purchased, at a cost as of the time of adoption of these rules of \$55, from the Superintendent of Documents, Government Printing Office, Washington, DC 20401, or from the EGLE, RRD, 525 West Allegan Street, Lansing, Michigan 48933, at cost. Alternatives to compliance with the TSCA standards listed below are possible under 40 C.F.R. §761 Subpart D. New releases may be subject to the standards identified in 40 C.F.R. §761, Subpart G. Use Part 201 soil direct contact cleanup criteria in the published table if TSCA standards are not applicable.
- (X) = The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. (See R 299.49 Footnotes for generic cleanup criteria tables for additional information.)

Rule 57 Footnotes: ID = insufficient data to derive value; NLS = no literature search has been conducted; @ = Bioaccumulative Chemical of Concern; * = the lowest Human Noncancer Value (HCV), or Final Chronic Value (FCV) given for this chemical will adequately protect the uses identified with an ID* or *

EPA Region IV ESV Footnotes: Red font indicates a bioaccumulative chemical; ^- Screening value for total metals in surface water to a screening value for dissolved metals in surface water. CMC (dissolved) = CMC (total) × CF. See Table 1c for screening values for total metals in surface water to a screening value for dissolved metals in surface water. (unfiltered) metals; * - The freshwater screening value is hardness data are unavailable hardness may be estimated as: H = 2.497 × Ca (mg/L) + 4.118 × Mg (mg/L). A site-specific hardness value of 47.5 mg/kg CaCo3 was used to determine values based on equations is Table 1b and 1c for total (unfiltered) metals.

Laboratory Footnotes:

- J = The result is an estimated quantity.
- U = Analyte analyzed for but not detected above the reported sample reporting limit.

Table 7-1_Julio Prop DB_Sed PW_v20240119.xlsx Page 2 of 3 1/19/2024

TABLE 7-1 Sediment and Pore Water Analytical Results Julio Properties - Dollar Bay

Houghton County, Michigan

	Applicable Criteria Evaluated	Exceedance
EPA Region IV Sediment Ecological Screening Values (March 2018)	[1] Region IV Ecological Screening Value - Freshwater Sediment	YES
Sediment Quality Guidelines (August 2006)	[2] Threshold Effect Concentration	YES
	[3] Probable Effect Concentration	YES
EGLE Part 201 Generic Cleanup Criteria (December 2020)	[GW1] Residential Drinking Water Criteria	YES
	[GW2] Nonresidential Drinking Water Criteria	YES
	[GW3] Groundwater Surface Water Interface Criteria	YES
EPA Region IV Surface Water Ecological Screening Values (March 2018)	[SW1] Region IV Freshwater Ecological Screening Value - Chronic	YES
	[SW2] Region IV Freshwater Ecological Screening Value - Acute	YES
EGLE Rule 57 Water Quality Values (August 2019)	[SW3] Human Non-Cancer Value - Drinking Water Source	NO
	[SW4] Human Cancer Value - Drinking Water Source	NO
	[SW5] Wildlife Value	NO

8. CONCLUSIONS AND RECOMMENDATIONS

The analytical results and interpretation summarized in the detailed findings presented in **Section 5** through **Section 7** document potential human health and ecological risks that are present at Julio Properties – Dollar Bay. The following subsections provide a synopsis of these findings and a recommended path forward for mitigating the identified risks.

8.1 CONCLUSIONS

Environmental impacts at the Julio Properties – Dollar Bay are generally characterized by detections of organic and inorganic contaminants in soil, sediment, groundwater, and pore water; repercussions of mining era operations in the region. Although specific sources of these contaminants may not be fully understood, historical research related to the operations, closing, and eventual abandonment/scrapping of mining company operations provided substantive evidence for assessing specific operational areas and selecting target analytes anticipated to be present in environmental media throughout the area.

The findings of these investigative activities are summarized as follows with respect to the goals and objectives for the Project relative to the EGLE criteria at the time of Project completion:

- ACM is present in several areas of the Julio Marine parcel and include white TSI on piping, silver painted mastic, silver painted roofing, silver coated roofing, and brown insulation observed inside a drum. Four of the ACMs were friable. These materials are present in several areas of Julio Marine and are subject to migration via wind and water erosion. Asbestos concentrations in five bulk material samples contained asbestos fibers at concentrations greater than 1 %. The damaged and friable nature of these materials poses a potential risk to human health as it relates to the inhalation pathway. Although soil samples were not collected for analysis of asbestos fibers, the exposed nature of these materials makes them subject to further degradation that could potentially impact surface soils at Julio Marine. ACM was not identified at the Julio Company/Former Amoco Bulk Fuel Terminal parcel.
- PCBs were detected at four locations at Julio Marine and exceeded Residential and Nonresidential DCC in a surface soil sample at one location (QMCP-SB45). PCBs were not detected in soil at Julio Company/Former Amoco Bulk Fuel Terminal. No groundwater, pore water, or sediment samples analyzed for PCBs exceeded criteria or screening values in the study area.
- The shallow and subsurface soil and groundwater analytical results for the Julio Properties Dollar Bay SI contained a number of COCs at concentrations at or above applicable regulatory criteria. Results by subarea include:
 - Julio Company/Former Amoco Bulk fuel Terminal
 - Soil No exceedances.
 - Groundwater Exceeded Residential and Nonresidential DWC and GSIC for inorganics, and GSIC for VOCs and SVOCs.
 - o Julio Marine
 - Soil Exceeded Residential and Nonresidential DWPC, GSIPC, Residential and Nonresidential VSIC, and/or Residential and Nonresidential DCC for VOCs, SVOCs, inorganic compounds, and/or PCBs at multiple sample locations.
 - Groundwater Exceeded Residential and Nonresidential DWC and GSIC (for inorganics) and GSIC for SVOCs. LNAPL was measured and/or observed in multiple monitoring locations.

- At Julio Marine, QMCP-MW10 contained between 0.6 ft and 2 ft of LNAPL over the course of monitoring, QMCP-MW9 contained 0.21 ft of LNAPL in 2019, and LNAPL was also observed in the water sample collected at QMCP-SB48. The source and limits of LNAPL have not been identified. LNAPL was measured in a monitoring wells within 50 ft of the Portage Canal.
- During the targeted inspection activities completed at Julio Marine, numerous tanks and drums were identified.
 Water samples were collected and analyzed from an observed vat. The analysis results detected inorganics,
 VOCs, and SVOCs but the concentrations did not exceed regulatory criteria. PCBs were not detected in the vat water.
- Sediment Copper and SVOCs were detected at or in excess of applicable screening values offshore from Julio Marine. Copper concentrations exceeded the ESV, TEC, and PEC, while SVOCs exceeded the ESVs and TECs. Sediment results may be indicative of historic offshore waste deposits and/or venting groundwater impacts.
- Pore Water Inorganic COCs were detected at or in excess of applicable screening values offshore from Julio Marine. Concentrations of copper, lead, manganese, and silver exceeded Residential and Nonresidential DWC, GSIC, chronic ESVs and/.or acute ESVs.

The analytical results summarized above provide sufficient analytical data and lines of evidence to conclude that the Julio Properties – Dollar Bay parcels are each a Facility as defined in Section 20101(1)(s) of the NREPA. The following table provides a summary of the affected environmental media, applicable regulatory criteria, and potential receptors within the Julio Properties – Dollar Bay.

	Julio	Propertie	s – I	Dollar B	ay – Med	ia, Crite	ria,	Potent	ial Recepto	r Su	mma	ry			
Media		Soil		C	Groundwate	r		Air	Sediment		ore ater		ilding Ma Asbestos Idoned C	s and	
Criteria	Orinking Water Protection	Groundwater Surface Water Interface	Direct Contact	Orinking Water Protection	Groundwater Surface Water Interface	Flammability and Explosivity	Volatilization	Particulate Inhalation	Ecological	Ecological	Human Health	Particulate Inhalation	-lammability and Explosivity	Environmental	Human Health
Potential Receptor	Drin	Gro Surf. Ir	Dire	Drin! Pr	Gro Surf. Ir	Flamr Ex	Vol	Pa In	Ec	Ec	Hum	Pa In	Flamr Ex	Envi	Hum
Residential Human	✓	✓	✓	✓	✓		✓		✓	✓	~	✓			✓
Nonresidential Human	✓	✓	\	√	√		√		√	√	\	✓			✓
Water Column Organism															
Benthic Organism															
COCs exceeding ap			1	TRIMET BENZEI PROPY (SVOC) BENZO DIBENZ	HYLBENZE NE, ETHYLE LBENZENE, , ACENAPH (B)FLUORA	NE, 1,3,5 ENZENE SEC-BU THYLENE, NTHENE, HRACEN	,-TRII , NAF TYLB E, BEI BEN E, FLI	METHYL PHTHALE ENZENE NZO(A)A ZO(K)FL JORATH	Manganese, Benzene, 2- Ene (VOC), N E, Xylene-TC INTHRACENE UORANTHEN HENE, FLUOR E, PYRENE	METH BUTY TAL, , BEN IE, CH	IYLNA 'LBEN 2-MET ZO(A) IRYSE	PHTHAL ZENE, N HYLNAI PYRENE NE,	ENE (VO I- Phthale E,	C), ENE	

Although relevant, EGLE drinking water and groundwater/surface water interface pathway criteria exceedances for metals are excluded from the soil and groundwater evaluation in the detailed findings. The rationale for this exclusion is twofold:

- The Project investigation and anticipated response actions are being undertaken pursuant to Part 201 of Michigan's NREPA, being PA 451 of 1994, as amended. The concentrations of metals in excess of EGLE drinking water and surface water pathway criteria are ubiquitous in the study area and are predominantly the result of the presence of stamp sands. Stamp sands are not defined as a hazardous substance nor are they subject to regulation under Part 201 unless the property otherwise contains hazardous substances in excess of concentrations that satisfy the cleanup criteria for unrestricted residential use; and,
- The study area is part of OU 2 for which the EPA ROD remedy called for No Action. The EPA's ROD OU 2 includes groundwater, surface water, submerged tailings and sediments in Torch Lake, Portage Lake, the Portage Canal, and other area water bodies. Note that EPA's No Action determination relies on the following to mitigate the effects of stamp sand to the extent practicable:
 - The reduction of stamp sand loading to surface water bodies expected as a result of the remedial action taken at OU 1 and OU 3.
 - Ongoing natural sedimentation and detoxification.
 - Institutional programs and practices controlling potential future exposure to site-affected drinking water that were intended to be administered at the county and state level.
 - The long-term monitoring and the five-year review process monitoring requirements of the remedy selected for OU 1 and OU 3 under the 1992 ROD.

Note that metals criteria for other relevant pathways, and organic and cyanide contaminants for all pathways were included in the evaluation.

In addition to the evaluation of analytical results collected from the study area, the following provides a summary of findings derived from the assessment of the Julio Properties – Dollar Bay with respect to the goals and objectives for the Project:

- Terrestrial sources of contamination are present in the form of inorganic COCs, SVOCs, VOCs, and asbestos
 in the study area. LNAPL was identified within 50 feet of the Portage Canal;
- In-lake sources of contamination in the form of inorganic COCs and SVOCs in the study area sediments and inorganic COCs in some areas of pore water. The detection of SVOCs in sediment may be indicative of a terrestrial source area:
- No in-lake or terrestrial uncharacterized waste deposits were identified in the study area;
- PCBs exceeded Residential and Nonresidential DCC in a surface soil sample at Julio Marine. No groundwater, pore water, or sediment samples analyzed for PCBs exceeded criteria or screening values in the study area; and,
- ACM was identified at numerous locations at Julio Marine. Four of the five ACM samples were friable and exposed to the elements.

8.2 RECOMMENDATIONS

The conclusions outlined in the preceding subsection establish that the two parcels within the Julio Properties – Dollar Bay are Facilities. The following is an outline of options for managing potential exposure risks at the Julio Properties – Dollar Bay and the Portage Canal.

Section 20107a of Part 201 of NREPA describes the duties of owners or operators of a Facility, regardless of their liability, including: prevent unacceptable exposures, prevent exacerbation, and take reasonable precautions against the foreseeable actions of third parties. Some exceptions may apply; in any case, owners and operators of contaminated properties should become familiar with Section 20107a and the associated Rules.

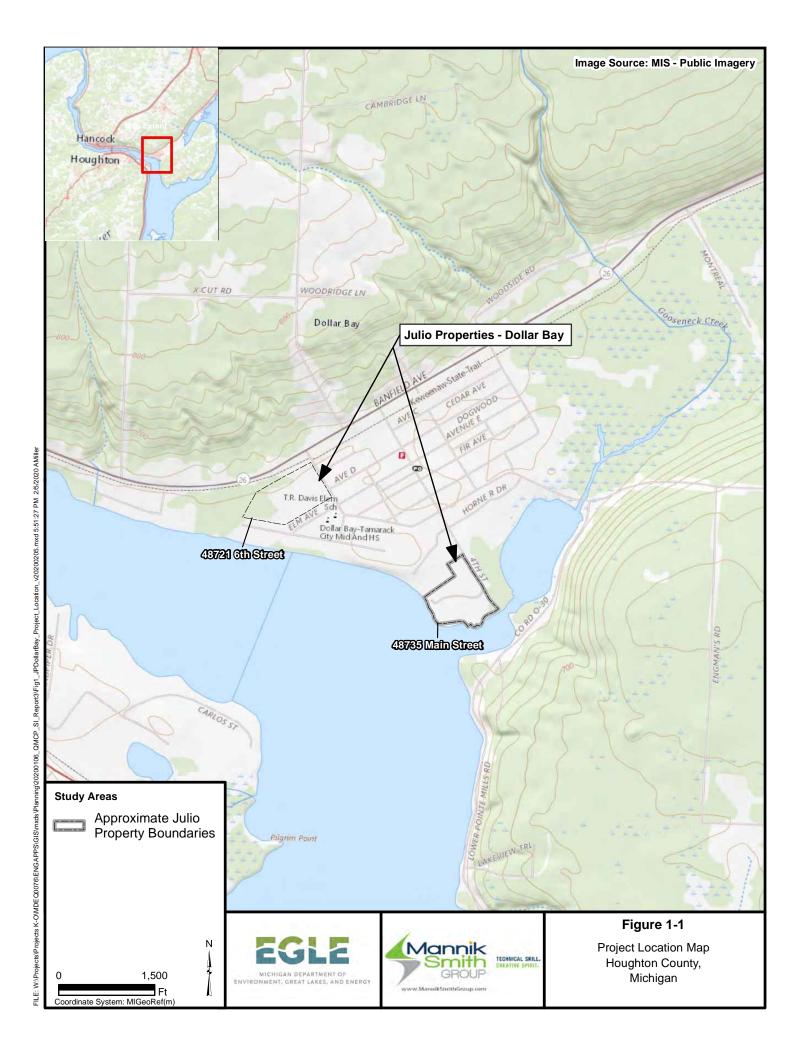
Future property users could conduct a risk assessment based on current and anticipated future land-use to help identify remedial goals for properties where potential risks may be present. Assessment based on current and future land-use contributes to the beneficial and safe re-use and potential redevelopment of any given property by clarifying applicability of regulatory statutes, as traditional property zoning (residential versus nonresidential) is generally undefined in the study area.

Once property-specific exposure risks have been evaluated, remedial objectives can be established with appropriate land use restrictions that minimize or eliminate potential exposure risks. These land-use restrictions, or administrative controls, could be employed to ensure that exposures are reliably restricted by a restrictive covenant, institutional control, or other mechanism allowed for under Part 201.

By copy of this SI Report, the Project findings were provided to RRD SFS which is responsible for monitoring EPA's remedy for the Torch Lake Superfund Site. RRD SFS should evaluate whether any remedy modifications are necessary

in the Portage Canal and Dollar Bay or terrestrial areas previously addressed by EPA in light of the additional information provided by the Project.

EGLE should continue to provide new study data to governmental stakeholders responsible for implementation and monitoring EPA's remedy for the terrestrial and in-lake portion of the Torch Lake Superfund Site so they can determine if any remedy modifications are necessary in light of the additional information provided by the Project. Responsible stakeholders should verify that administrative controls for areas that have been previously remediated by the EPA have been employed to ensure that EPA's selected remedy is performing as designed and those institutional controls, where required, have been recorded and are being enforced.


Additionally, EGLE should continue to provide new study data to property owners and governmental stakeholders responsible for assessing potential public health impacts and making recommendations to the public, property owners, and other state agencies.

REFERENCES

- Department of Natural Resources and Environment. Letter of Notice Re: Dollar Bay Well Field, Dollar Bay, Houghton County, Site ID: 31000089. August 4, 2010.
- 2. MacDonald, D.D., Ingersoll, C.G., and Berger, T.A. *Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems*. January 2000.
- Michigan Department of Environmental Quality (MDEQ). Brownfield Redevelopment Assessment Report for Hancock/Ripley Trail Property. November 25, 2002.
- 4. MDEQ. Correspondence with Horner Flooring Co. Inc. April 3, 1995.
- 5. MDEQ. Letter of Notice Re: Complaint Inspection, Julio Construction Property Adjacent to Keweenaw Canal, Ripley, Houghton County. December 12, 1995.
- 6. MDEQ. Part 201 of Michigan's Natural Resources and Environmental Protection Act (NREPA), being PA 451 of 1994, as amended Cleanup Criteria Requirements for Response Activity (December 30, 2013). http://www.michigan.gov/deg/0,4561,7-135-3311_4109-251790--,00.html. December 30, 2013.
- 7. MDEQ Rule 57 Water Quality Values, Surface Water Assessment Section. March 2018.
- 8. MDEQ. Quincy Mining Company Portage, Houghton County, Site ID #31000098, Bathymetric Investigation-Side Scan Sonar. January 9, 2018.
- Michigan Department of Transportation. Geoenvironmental Services Unit Materials & Technology Division. Michigan Department of Transportation M-DOT M-26, Ripley, Houghton County Hydrogeological Investigation. April 18, 1991.
- 10. Monette, Clarence J., Dollar Bay, Michigan, Fifty-Fourth of a Local History Series. Greenlee Printing Co. Of Calumet Michigan. September 20, 2000.
- 11. SCA Environmental. Phase II Hydrogeological Investigation Work Plan, Houghton County Road Commission Ripley Garage, Prepared for Houghton County Road Commission. August 22, 1996.
- 12. Traverse Engineering Services. 1st Preliminary Report Dollar Bay Wells. March 31, 1995.
- 13. TriMedia Environmental & Engineering. Baseline Environmental Assessment: Royce Road Marina, Royce Road, Franklin Township, Houghton County, MI 49930. October 26, 2015.
- 14. United States Department of Agriculture (USDA), Soil Conservation Service (SCS). *Soil Survey of Houghton County Area, Michigan.* October 1991.
- 15. United States Department of Agriculture Natural Resources Conservation Service. Detail Remedial Plans for Dollar Bay Torch Lake EPA Superfund Site in Cooperation with the U.S. Environmental Protection Agency, MI Department of Environmental Quality, Houghton/Keweenaw Soil and Water Conservation District. March 2, 2004.
- 16. United States Department of Agriculture Natural Resources Conservation Service (USDA NRCS). Detail Remedial Plans for Quincy Smelter Reclamation Project in Cooperation with the U.S. Environmental Protection Agency & MI Department of Environmental Quality & Franklin Township. June 2010.
- 17. USDA NRCS. Dollar Bay Torch Lake EPA Superfund Site As-Built Drawings. February 2004.
- 18. United States Department of Health and Human Services. Public Health Service Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation. Health Consultation, Review of Activity-Based Sampling on the Hancock/Ripley Trail, Former Quincy Smelter Site, Town of Ripley, Houghton County, Michigan. EPA Facility ID: MID980901946. November 27, 2006.

- 19. United States Environmental Protection Agency (EPA). Resource Conservation and Recovery Act (RCRA), Identification and Listing of Hazardous Waste Criteria (40 CFR, Part 261, Subpart C). https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol27/xml/CFR-2012-title40-vol27-part261.xml. July 2012.
- 20. USEPA. Fourth Five-Year Review Report for the Torch Lake Superfund Site, Houghton County, Michigan. March 22, 2018.
- 21. USEPA, Region 5, RCRA, Ecological Screening Levels (ESLs). August 22, 2003.
- 22. USEPA. EPA Superfund Record of Decision: Torch Lake OUs 1 & 3, Houghton County, Michigan. September 1992.
- 23. USEPA. National Emission Standards for Hazardous Air Pollutants (NESHAP), National Emission Standard for Asbestos (40 CFR, Part 61, Subpart M) (EPA 1984). April. https://www.gpo.gov/fdsys/pkg/CFR-2015-title40-vol9-part61-subpartM.pdf. April 1984.
- 24. Weston Solutions, Inc. Summary Report for the Torch Lake Area Assessment, Torch Lake NPL Site and Surrounding Area, Keweenaw Peninsula, Michigan. December 13, 2007.

FIGURES

TABLES

Table 2-1
Summary of Historic Operations
Julio Properties - Dollar Bay
Houghton County, Michigan

Area	Year	Historical Operations	Potential Contaminant Sources
Julio Company/Former Amoco Bulk Fuel Terminal		Bulk Oil Storage Other historic land use and/or operations unknown.	-Potential petroleum contamination from oil storage.
Julio Marine	1907 1917, 1928 1949	3 11 3	 Observations of suspect ACM insulation and roofing material, abandoned containers, compressed gas cylinders, industrial ruins, ASTs, potentially PCB containing transformer Potential for the use of oils and lubricants for maintenance of equipment. A portion of the property was capped as part of the EPA's Torch Lake Superfund Site Dollar Bay remedial action.

Notes:

AST = Above ground storage tank

PCB = Polychlorinated Biphenyls

EPA = United States Environmental Protection Agency

ACM = Asbestos containing material

											Sam	ple Typ	e/Matrix	9	Sample A	nalyses	3	Water	Quality	Parame	ters Du	plicate Ana	ilyses
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil	Groundwater	Sediment Drums, Containers, & SACM	VOCs SVOCs	PCBs Metals	Cyanide Asbestos	Lead Arsenic	(°C)	Conductivity (mS/cm)	5	Turbidity (nTu) VOCs	SVOCs PCBs	Property Ownership
Julio Company	y/Former Am	oco Bulk Fuel Terminal	T	T	T			T		T	1 1		- I	1 1	1 1	_	П			1 1	1	1 1	1 1,
QMCP-SS56	9/28/2018	QMCP-SS56-0-3"	1810006	-88.5116759	47.1190723	Evidence of tank release.	Stained soil near fuel tank			Hand Tools	S X			Х	Х								Lawrence Julio
QMCP-SB56	9/9/2018	QMCP-SB56 0-6"	1809099	-88.5121188	47.1183267	Data Gap - Area L	SAND, Fine to medium, brown, saturated at 4.5 feet		Metal analysis limited to lead only. PCB and cyanide analysis omitted.	Soil Core	Х			хх	х								Lawrence Julio
	9/9/2018	QMCP-SB56 6"-4'	1809099			Data Gap - Area L	SAND, Fine to medium, brown, saturated at 4.5 feet		Metal analysis limited to Lead only. PCB and cyanide analysis and duplicate sample omitted.	Soil Core	х			x x	х								Lawrence Julio
QMCP-SB57	9/9/2018	QMCP-SB57 0-4'	1809099	-88.5088152	47.1190733	Data Gap - Area L	SAND, Fine to medium, brown, dry		Refusal at 4 feet in 3 locations. Metal analysis limited to lead only. PCB and cyanide analysis omitted.	Soil Core	x			х	х								Lawrence Julio
		QMCP-SB57 a ₂ -b ₂ "				Data Gap - Area L			Sample not collected.	Soil Core	х												Lawrence Julio
QMCP-SB58	9/9/2018	QMCP-SB58 0-6"	1809099	-88.5102436	47.1184590	Data Gap - Area L	SAND, Fine to medium, brown, dry		Metal analysis limited to lead only. PCB and cyanide analysis omitted.	Soil Core	х			хх	х								Lawrence Julio
	9/9/2018	QMCP-SB58 6"-5'	1809099			Data Gap - Area L	SAND, Fine to medium, brown, dry		Refusal at 5 feet in 3 locations. Metal analysis limited to Lead only. PCB and cyanide analysis omitted.	Soil Core	x			x x	х								Lawrence Julio
QMCP-SB59	9/9/2018	QMCP-SB59 0-6"	1809099	-88.5109629	47.1191560	Data Gap - Area L	SAND, Fine to medium, brown, saturated at 4.5 feet		Metal analysis limited to lead only. Cyanide and PCB analysis omitted.	Soil Core	х			хх	х								Lawrence Julio
	9/9/2018	QMCP-SB59 6"-4'	1809099			Data Gap - Area L	SAND, Fine to medium, brown, saturated at 4.5 feet		Metal analysis limited to lead only. PCB and cyanide analysis and duplicate sample omitted.	Soil Core	x			x x	х								Lawrence Julio
QMCP-SB60	9/9/2018	QMCP-SB60 0-6"	1809099	-88.5095513	47.1196517	Data Gap - Area L	SAND and GRAVEL		Metal analysis limited to lead only. Cyanide and PCB analysis omitted.	Soil Core	х			хх	х								Lawrence Julio
	9/9/2018	QMCP-SB60 6"-6'	1809099			Data Gap - Area L	SAND, Fine to medium, brown, saturated at 7 feet		Metal analysis limited to lead only. Cyanide and PCB analysis and duplicate sample omitted.	Soil Core	x			x x	х								Lawrence Julio
QMCP-SB70		QMCP-SB70 a ₁ -b ₁ "		-88.5108065	47.1173148	Data Gap - Downgradient from Area L			Location not sampled.	Soil Core	x												Houghton County ROW
		QMCP-SB70 a ₂ -b ₂ "				Data Gap - Downgradient from Area L			Location not sampled.	Soil Core	x												Houghton County ROW
QMCP-SB71		QMCP-SB71 a ₁ -b ₁ "		-88.5100713	47.1172716	Data Gap - Downgradient from Area L			Location not sampled.	Soil Core	х												Houghton County ROW
		QMCP-SB71 a ₂ -b ₂ "				Data Gap - Downgradient from Area L			Location not sampled.	Soil Core	х												Houghton County ROW
QMCP-SB72		QMCP-SB72 a ₁ -b ₁ "		-88.5095796	47.1176712	Data Gap - Downgradient from Area L			Geoprobe rods broke at 16 feet. Sample not collected.	Soil Core	х												Houghton County ROW
		QMCP-SB72 a ₂ -b ₂ "				Data Gap - Downgradient from Area L			Sample not collected.	Soil Core	х												Houghton County ROW

											Sar	mple Tyr	e/Matrix		Sample A	Analyse	s	Wate	r Ouali	tv Para	meter	s Duplic	ate Analys	ses
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil	Subsurface Soil Groundwater	Sediment Drums, Containers, & SACM	VOCs SVOCs	PCBs Metals	Cyanide Asbestos	Lead Arsenic	Temperature (C°)	Conductivity (mS/cm)	Dissolved Oxygen (%)	pH Turbidity (nTu)		PCBs Metals	Property Ownership
Julio Company	/Former Am	oco Bulk Fuel Terminal (Conti	nued)	T	T	1		T		T		Т Т		П	1 1		Т							Hambia
QMCP-SB73		QMCP-SB73 a ₁ -b ₁ "		-88.5086971	47.1180535	Data Gap - Downgradient from Area L			Sample not collected. Groundwater sample only.	Soil Core	1	х												Houghton County ROW
		QMCP-SB73 a ₂ -b ₂ '				Data Gap - Downgradient from Area L			Sample not collected.	Soil Core		x												Houghton County ROW
QMCP-GW56		QMCP-GW56 a ₁ -b ₁ "		-88.5121188	47.1183267	Data Gap - Area L			No groundwater sample collected.	Low-Flow Sampling		Х												Lawrence Julio
QMCP-GW57		QMCP-GW57 a ₁ -b ₁ "		-88.5088152	47.1190733	Data Gap - Area L			Refusal at 4 feet at 3 locations. No groundwater sample collected.	Low-Flow Sampling		х												Lawrence Julio
QMCP-GW58		QMCP-GW58 a ₁ -b ₁ "		-88.5102436	47.1184590	Data Gap - Area L			Refusal at 5 feet at 3 locations. No groundwater sample collected.	Low-Flow Sampling		х												Lawrence Julio
QMCP-GW59	9/9/2018	QMCP-GW59 5-9	1809102	-88.5109629	47.1191560	Data Gap - Area L			Metal analysis limited to lead only. PCB analysis omitted.	Low-Flow Sampling		х		хх	хх			15.5	0.036	54.3 6.	.30 NN	Л		Lawrence Julio
QMCP-GW60	9/9/2018	QMCP-GW60 7-11	1809102	-88.5095513	47.1196517	Data Gap - Area L			Metal analysis limited to lead only. PCB analysis omitted. Duplicate omitted.	Low-Flow Sampling		х		хх	х			16.3	0.600	3.7 6.	.39 NN	Л		Lawrence Julio
QMCP-GW70		QMCP-GW70 a ₁ -b ₁ "		-88.5108065	47.1173148	Data Gap - Downgradient from Area L			Location not sampled.	Low-Flow Sampling		х												Houghton County ROW
QMCP-GW71		QMCP-GW71 a ₁ -b ₁ "		-88.5100713	47.1172716	Data Gap - Downgradient from Area L			Location not sampled.	Low-Flow Sampling		х												Houghton County ROW
QMCP-GW72	9/11/2018	QMCP-GW72 a ₁ -b ₁ "		-88.5095796	47.1176712	Data Gap - Downgradient from Area L			Geoprobe rods broke at 16 feet. Attempted to collect a groundwater sample. Sample not collected.	Low-Flow Sampling		х						NM	NM	NM N	IM NI	Л		Houghton County ROW
QMCP-GW73	9/11/2018	QMCP-GW73 22-24	1809119	-88.5086971	47.1180535	Data Gap - Downgradient from Area L				Low-Flow Sampling		х		хх	хх			15.0	0.219	51.1 6.	.75 NN	Л		Houghton County ROW
QMCP- ASBBLK40	9/28/2018	QMCP-ASBBLK40A-092818	240-102329-1	-88.5091887	47.1201519	Suspect ACM	Black tar paper with fibers	friable		Hand Tools	s		х			х								Lawrence Julio
	9/28/2018	QMCP-ASBBLK40B-092818	240-102329-1			Suspect ACM	Black tar paper with fibers	friable		Hand Tools	s		х			Х								Lawrence Julio
QMCP- ASBBLK41	9/28/2018	QMCP-ASBBLK41A-092818	240-102329-1	-88.5115938	47.1190606	Suspect ACM	Tank insulation	friable		Hand Tools	s		Х			Х								Lawrence Julio
	9/28/2018	QMCP-ASBBLK41B-092818	240-102329-1			Suspect ACM	Tank insulation	friable		Hand Tools	s		Х			Х								Lawrence Julio
Julio Marine				T	T																			
QMCP-SS27	9/6/2018	QMCP-SS-27-0-6"	1808080	-88.5005659	47.1146144	Data Gap - Area N	Brown to grey medium SAND with some gravel and slag			Hand Tools	s X			х	х	Х						\coprod	\coprod	Lawrence Julio
QMCP-SS28	9/6/2018	QMCP-SS-28-0-6"	1808080	-88.5010066	47.1141822	Data Gap - Area N	Brown medium SAND with some gravel			Hand Tools	s X			Х	Х	х								Lawrence Julio
QMCP-SS29	9/6/2018	QMCP-SS-29-0-6"	1808080, 240-100981-1	-88.4994808	47.1140892	Data Gap - Area N	Black fine stamp SAND, oily residue 3" down, odor			Hand Tools	s X			х	Х	хх								Lawrence Julio
QMCP-SS30	9/6/2018	QMCP-SS-30-0-6"	1808080, 240-100981-1	-88.4985553	47.1146037	Data Gap - Area N	Black fine SAND with some gravel		Duplicate omitted.	Hand Tools	s X			х	Х	х								Lawrence Julio

										Sample	Type/Matrix	Sample Anal	lyses	Water Quality	y Param	eters [Ouplicate An	alyses	
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Friable Sample Description Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil	Surface Water Sediment Drums, Containers, & SACM	VOCS SVOCS PCBs Cyanide	Asbestos Lead Arsenic	(m:	Dissolved Oxygen (%)	Turbidity (nTu)	SVOCS PCBs	Ovanide Property	
Julio Marine (Continued)			I	I		Brown fine to coarse SAND with gravel, 5-6"			 				$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$, Lawrence	
QMCP-SS31	9/6/2018	QMCP-SS-31-0-6"	1809081	-88.4984946	47.1152081	Data Gap - Area N	black fine SAND	Duplicate collected: QMCP-SS-31-0-6" DUP4	Hand Tool	s X		X X X		$\perp \downarrow \perp \downarrow$			Х	X X Julio	
QMCP-SS57	10/1/2018	QMCP-SS57-0-3"	1810006	-88.4978044	47.1144618	Apparent burn residue.	Black soot		Hand Tool	s X		x x x x						Lawrenc Julio	9
QMCP-SS58	10/1/2018	QMCP-SS58-0-3"	1810006	-88.4975211	47.1145457	Apparent burn pile.	Burn pile residue		Hand Tool	s X		x x x x						Lawrenc Julio	9
QMCP-SS59	10/1/2018	QMCP-SS59-0-3"	1810006	-88.4974173	47.1144855	Apparent burn pile.	Burn pile residue		Hand Tool	s X		x x x x						Lawrenc Julio	9
QMCP-SS60	10/1/2018	QMCP-SS60-0-3"	1810006	-88.4974631	47.1144100	Apparent burn pile.	Burn pile residue		Hand Tool	s X		x x x x						Lawrenc Julio	е
QMCP-SS221		QMCP-SS221-0-3"		-88.4994808	47.1140892	Resample QMCP-SS29 for PCB analysis		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS222	8/17/2019	QMCP-SS222-0-3"	1908279	-88.4994775	47.1141388	North of QMCP-SS29-0-6in, arsenic, copper, and PNA exceedances	-	PCBs and lead analysis added	Hand Tool	s X		x x	x x					Lawrenc Julio	е
QMCP-SS223		QMCP-SS223-0-3"		-88.4994795	47.1140617	South of QMCP-SS29-0-6in, arsenic, copper, and PNA exceedances		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS224		QMCP-SS224-0-3"		-88.4994406	47.1140900	East of QMCP-SS29-0-6in, arsenic, copper, and PNA exceedances	-	Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS225		QMCP-SS225-0-3"		-88.4995209	47.1140883	West of QMCP-SS29-0-6in, arsenic, copper, and PNA exceedances	-	Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS226		QMCP-SS226-0-3"		-88.4985553	47.1146037	Resample QMCP-SS30 for PCB analysis	-	Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS227	8/17/2019	QMCP-SS227-0-3"	1908280	-88.4985440	47.1143906	North of QMCP-SS30-0-6in, arsenic and PNA exceedances	-	PCBs and lead analysis added	Hand Tool	s X		x x	x x					Lawrenc Julio	е
QMCP-SS228	8/17/2019	QMCP-SS228-0-3"	1908280	-88.4983430	47.1145432	South of QMCP-SS30-0-6in, arsenic and PNA exceedances	fuel oil spill, fresh prod.	Arsenic analysis omitted, VOCs analysis added, "fuel oil spill, fresh prod."	Hand Tool	s X		хх						Lawrenc Julio	е
QMCP-SS229		QMCP-SS229-0-3"		-88.4985152	47.1146045	East of QMCP-SS30-0-6in, arsenic and PNA exceedances	-	Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS230		QMCP-SS230-0-3"		-88.4985955	47.1146028	West of QMCP-SS30-0-6in, arsenic and PNA exceedances		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS231		QMCP-SS231-0-3"		-88.5012183	47.1142389	North of QMCP-SB44 0-6in, arsenic exceedance		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS232		QMCP-SS232-0-3"		-88.5012157	47.1141841	South of QMCP-SB44 0-6in, arsenic exceedance		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS233		QMCP-SS233-0-3"		-88.5011769	47.1142124	East of QMCP-SB44 0-6in, arsenic exceedance		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS234		QMCP-SS234-0-3"		-88.5012572	47.1142106	West of QMCP-SB44 0-6in, arsenic exceedance		Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS235	8/17/2019	QMCP-SS235-0-3"	1908279	-88.5006265	47.1137650	North of QMCP-SB45 0-6in, PCB detection, arsenic, VOC, and PNA exceedances	-	VOCs analysis omitted, lead analysis added	Hand Tool	s X		x x	хх					Lawrenc Julio	е
QMCP-SS236	8/17/2019	QMCP-SS236-0-3"	1908280	-88.5005115	47.1145443	South of QMCP-SB45 0-6in, PCB detection, arsenic, VOC, and PNA exceedances	-	VOCs analysis omitted, lead analysis added	Hand Tool	s X		хх	хх					Lawrenc Julio	е
QMCP-SS237		QMCP-SS237-0-3"		-88.5006634	47.1137357	East of QMCP-SB45 0-6in, PCB detection, arsenic, VOC, and PNA exceedances	-	Location not sampled.	Hand Tool	s X								Lawrenc Julio	е
QMCP-SS238		QMCP-SS238-0-3"		-88.5007437	47.1137340	West of QMCP-SB45 0-6in, PCB detection, arsenic, VOC, and PNA exceedances	-	Location not sampled.	Hand Tool	s X								Lawrenc Julio	е

											Sampl	e Type/Matrix		Sample Anal	yses	Water	Quality Pa	rameters	s Duplic	ate Analys	ses
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil	Groundwater Surface Water Sediment	Urums, containers, & SACMI VOCs SVOCs	PCBs Metals Cyanide	Asbestos Lead	Temperature (C°)	Conductivity (mS/cm) Dissolved Oxygen (%)	pH Turbidity (nTu)	VOCs SVOCs	PCBs Metals	Property Ownership
Julio Marine (Continued)	T	1	T T	T T	L			I		1 1					1 1				1 1 1	
QMCP-SS239	8/17/2019	QMCP-SS239-0-3"	1908279	-88.4998113	47.1140110	North of QMCP-SB47 0-6in, arsenic and PNA exceedances			PCBs and lead analysis added	Hand Tools	s X		х	х	X Z	x					Lawrence Julio
QMCP-SS240	8/17/2019	QMCP-SS240-0-3"	1908279	-88.4998962	47.1139363	South of QMCP-SB47 0-6in, arsenic and PNA exceedances			Lead analysis added	Hand Tools	s X		х	х	X Z	x					Lawrence Julio
QMCP-SS241		QMCP-SS241-0-3"		-88.4997283	47.1137942	East of QMCP-SB47 0-6in, arsenic and PNA exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS242		QMCP-SS242-0-3"		-88.4998086	47.1137924	West of QMCP-SB47 0-6in, arsenic and PNA exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS243	8/17/2019	QMCP-SS243-0-3"	1908279	-88.4993867	47.1145237	North of QMCP-SB48 0-6in, arsenic and lead exceedances			SVOCs and PCBs analysis added.	Hand Tools	s X		х	х	x :	x					Lawrence Julio
QMCP-SS244		QMCP-SS244-0-3"		-88.4998717	47.1145715	South of QMCP-SB48 0-6in, arsenic and lead exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS245		QMCP-SS245-0-3"		-88.4998328	47.1145998	East of QMCP-SB48 0-6in, arsenic and lead exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS246		QMCP-SS246-0-3"		-88.4999131	47.1145980	West of QMCP-SB48 0-6in, arsenic and lead exceedances			Location not sampled.	Hand Tools	s x										Lawrence Julio
QMCP-SS247		QMCP-SS247-0-3"		-88.5005659	47.1146144	Resample QMCP-SS27 for PCB analysis			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS248		QMCP-SS248-0-3"		-88.5010066	47.1141822	Resample QMCP-SS28 for PCB analysis			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS249		QMCP-SS249-0-3"		-88.4984946	47.1152081	Resample QMCP-SS31 for PCB analysis			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS250		QMCP-SS250-0-3"		-88.4978057	47.1144892	North of QMCP-SS57-0-3in, arsenic, lead, and PNA exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS251		QMCP-SS251-0-3"		-88.4978031	47.1144344	South of QMCP-SS57-0-3in, arsenic, lead, and PNA exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS252		QMCP-SS252-0-3"		-88.4977642	47.1144626	East of QMCP-SS57-0-3in, arsenic, lead, and PNA exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS253		QMCP-SS253-0-3"		-88.4978445	47.1144609	West of QMCP-SS57-0-3in, arsenic, lead, and PNA exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS254		QMCP-SS254-0-3"		-88.4975224	47.1145731	North of QMCP-SS58-0-3in, arsenic exceedance			Location not sampled.	Hand Tools	S X										Lawrence Julio
QMCP-SS255		QMCP-SS255-0-3"		-88.4975198	47.1145183	South of QMCP-SS58-0-3in, arsenic exceedance			Location not sampled.	Hand Tools	S X										Lawrence Julio
QMCP-SS256		QMCP-SS256-0-3"		-88.4974810	47.1145465	East of QMCP-SS58-0-3in, arsenic exceedance			Location not sampled.	Hand Tools	S X										Lawrence Julio
QMCP-SS257		QMCP-SS257-0-3"		-88.4975613	47.1145448	West of QMCP-SS58-0-3in, arsenic exceedance			Location not sampled.	Hand Tools	S X										Lawrence Julio
QMCP-SS258		QMCP-SS258-0-3"		-88.4974185	47.1145129	North of QMCP-SS59-0-3in, arsenic, lead, and zinc exceedances			Location not sampled.	Hand Tools	s X										Lawrence Julio
QMCP-SS259		QMCP-SS259-0-3"		-88.4974160	47.1144580	South of QMCP-SS59-0-3in, arsenic, lead, and zinc exceedances			Location not sampled.	Hand Tools	s x										Lawrence Julio
QMCP-SS260		QMCP-SS260-0-3"		-88.4973771	47.1144863	East of QMCP-SS59-0-3in, arsenic, lead, and zinc exceedances			Location not sampled.	Hand Tools	s x										Lawrence Julio
QMCP-SS261		QMCP-SS261-0-3"		-88.4974574	47.1144846	West of QMCP-SS59-0-3in, arsenic, lead, and zinc exceedances			Location not sampled.	Hand Tools	s x										Lawrence Julio
QMCP-SS262		QMCP-SS262-0-3"		-88.4974644	47.1144374	North of QMCP-SS60-0-3in, arsenic and lead exceedances			Location not sampled.	Hand Tools	s x										Lawrence Julio

						_		1																
												Sample T	ype/Mat	rix	Samp	ole Analy	ses	Wate	er Quali	ty Param	eters D	Ouplicate A	inalyses	
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil	Subsurface Soil Groundwater	Surface Water Sediment	Drums, Containers, & SACM VOCs	SVOCs PCBs	Metals Cyanide	Asbestos Lead	Arsenic Temperature (C°)	Conductivity (mS/cm)	Dissolved Oxygen (%)	Turbidity (nTu)	vucs Svocs PCBs		roperty wnership
Julio Marine (C	Continued)	1			T			1	T															
QMCP-SS263		QMCP-SS263-0-3"		-88.4974618	47.1143826	South of QMCP-SS60-0-3in, arsenic and lead exceedances			Location not sampled.	Hand Tools	ols X						$\perp \! \! \perp$					$\perp \! \! \perp$	Lav Juli	awrence
QMCP-SS264		QMCP-SS264-0-3"		-88.4974229	47.1144109	East of QMCP-SS60-0-3in, arsenic and lead exceedances			Location not sampled.	Hand Tools	ols X						$\downarrow \downarrow$						Lav Juli	awrence
QMCP-SS265		QMCP-SS265-0-3"		-88.4975032	47.1144091	West of QMCP-SS60-0-3in, arsenic and lead exceedances			Location not sampled.	Hand Tool:	ols X												Lav Juli	awrence
QMCP-SB43		QMCP-SB43 a ₁ -b ₁ "		-88.4989900	47.1160167	Data Gap - Area N, within historic mining operation location			Location not sampled.	Soil Core	е	Х											Lav Juli	awrence
		QMCP-SB43 a ₂ -b ₂ "				Data Gap - Area N, within historic mining operation location			Location not sampled.	Soil Core	е	Х					Ш						Lav Juli	awrence Ilio
QMCP-SB44	9/10/2018	QMCP-SB44-0-6"	1809100	-88.5012170	47.1142115	Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted.	Soil Core	е	Х		Х	хх	Х							Lav Juli	awrence Ilio
	9/10/2018	QMCP-SB44-6"-4'	1809100			Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted.	Soil Core	е	Х		х	хх	х								awrence Ilio
QMCP-SB45	9/10/2018	QMCP-SB45-0-6"	1809100	-88.5007035	47.1137349	Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted.	Soil Core	е	Х		Х	хх	х							Lav Juli	awrence Ilio
	9/10/2018	QMCP-SB45-6"-5'	1809100			Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted. Duplicate omitted.	Soil Core	е	Х		Х	х	Х							Lav Juli	awrence Ilio
QMCP-SB46	9/10/2018	QMCP-SB46-0-4'	1809100	-88.5003187	47.1141015	Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted.	Soil Core	е	Х		Х	х	х							Lav Juli	awrence ilio
		QMCP-SB46 a ₂ -b ₂ "				Data Gap - Area N, within historic mining operation location			Location not sampled.	Soil Core	е	х											Lav Juli	awrence ilio
QMCP-SB47	9/10/2018	QMCP-SB47 0-6"	1809100	-88.4997684	47.1137933	Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 5 feet		Cyanide analysis omitted.	Soil Core	е	х		Х	х	х								awrence Ilio
	9/10/2018	QMCP-SB47 6"-5'	1809100			Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 5 feet		Cyanide analysis omitted.	Soil Core	е	Х		х	хх	х							Lav Juli	awrence Ilio
QMCP-SB48	9/10/2018	QMCP-SB48 0-6"	1809100	-88.4998730	47.1145989	Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted.	Soil Core	е	Х		Х	хх	х							Lav Juli	awrence Ilio
	9/10/2018	QMCP-SB48 6"-5'	1809100			Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 4 feet		Cyanide analysis omitted.	Soil Core	е	х		Х	хх	х							Lav Juli	awrence Ilio
QMCP-SB49	9/10/2018	QMCP-SB49 0-6"	1809100	-88.4986758	47.1143048	Data Gap - Area N, proximal to historic oil house	SAND and GRAVEL with debris		Cyanide analysis omitted.	Soil Core	е	Х		Х	хх	х							Lav Juli	awrence Ilio
	9/10/2018	QMCP-SB49 6"-4'	1809100			Data Gap - Area N, proximal to historic oil house	SAND and GRAVEL with debris		Cyanide analysis omitted.	Soil Core	е	Х		Х	хх	х							Lav Juli	awrence Ilio
QMCP-SB50	9/10/2018	QMCP-SB50 0-2'	1809100	-88.4981735	47.1138279	Data Gap - Area N, within historic mining operation location	SAND, Medium to coarse, brown, saturated at 2 feet		Cyanide analysis omitted.	Soil Core	е	Х		Х	хх	х								awrence Ilio
		QMCP-SB50 a ₂ -b ₂ "				Data Gap - Area N, within historic mining operation location			Location not sampled.	Soil Core	е	х											Lav Juli	awrence ilio
QMCP-SB94		QMCP-SB94 a ₁ -b ₁ "		-88.5007595	47.1138077	North of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core	е	х											Lav Juli	awrence Ilio
		QMCP-SB94 a ₂ -b ₂ "				North of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core	е	х											Lav Juli	awrence Ilio
QMCP-SB95		QMCP-SB95 a ₁ -b ₁ "		-88.5007660	47.1138475	South of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core	е	х											Lav Juli	awrence Ilio
		QMCP-SB95 a ₂ -b ₂ "				South of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core	е	х											Lav Juli	awrence Ilio

											San	nple Type/Ma	trix	Samp	ole Analys	es	Wate	r Quality	Parame	ters Du	uplicate Ar	nalyses	
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil	Groundwater Surface Water	Drums, Containers, & SACM VOCs	SVOCs PCBs	Metals Cyanide	Aspestos Lead	Arsenic Temperature (C°)	Conductivity (mS/cm)	ph pH	Turbidity (nTu) VOCs	SVOCs PCBs		Property Ownership
Julio Marine (0	Continued)	1		1	1		1		1														
QMCP-SB96		QMCP-SB96 a ₁ -b ₁ "		-88.5007164	47.1138544	East of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core)												Julio Lawrence
		QMCP-SB96 a ₂ -b ₂ "				East of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core)	(Lawrence Julio
QMCP-SB97		QMCP-SB97 a ₁ -b ₁ "		-88.5006853	47.1138437	West of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core)	(Lawrence Julio
		QMCP-SB97 a ₂ -b ₂ "				West of QMCP-SB45 6in-5ft, arsenic exceedance			Location not sampled.	Soil Core)	(Lawrence Julio
QMCP-SB98		QMCP-SB98 a ₁ -b ₁ "		-88.4998109	47.1138606	North of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(1 1 1	Lawrence Julio
		QMCP-SB98 a ₂ -b ₂ "				North of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(Lawrence Julio
QMCP-SB99		QMCP-SB99 a ₁ -b ₁ "		-88.4998303	47.1138963	South of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(1 1 1	Lawrence Julio
		QMCP-SB99 a ₂ -b ₂ "				South of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(1 1 1	Lawrence Julio
QMCP-SB100		QMCP-SB100 a ₁ -b ₁ "		-88.4998494	47.1138632	East of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(Lawrence Julio
		QMCP-SB100 a ₂ -b ₂ "				East of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(1 1 1	Lawrence Julio
QMCP-SB101		QMCP-SB101 a ₁ -b ₁ "		-88.4997749	47.1138860	West of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(Lawrence Julio
		QMCP-SB101 a ₂ -b ₂ "				West of QMCP-SB47 6in-5ft, arsenic, VOC, and PNA exceedances			Location not sampled.	Soil Core)	(1 1 1	Lawrence Julio
QMCP-SB102		QMCP-SB102 a ₁ -b ₁ "		-88.4998742	47.1146263	North of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core)	(Lawrence Julio
		QMCP-SB102 a ₂ -b ₂ "				North of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core		(Lawrence Julio
QMCP-SB103		QMCP-SB103 a ₁ -b ₁ "		-88.4998717	47.1145715	South of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core		(Lawrence Julio
		QMCP-SB103 a ₂ -b ₂ "				South of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core)												Lawrence Julio
QMCP-SB104		QMCP-SB104 a ₁ -b ₁ "		-88.4998328	47.1145998	East of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core)												Lawrence Julio
		QMCP-SB104 a ₂ -b ₂ "				East of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core)											L	Lawrence Julio
QMCP-SB105		QMCP-SB105 a ₁ -b ₁ "		-88.4999131	47.1145980	West of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core)	(Lawrence Julio
		QMCP-SB105 a ₂ -b ₂ "				West of QMCP-SB48 6in-5ft, VOC exceedance			Location not sampled.	Soil Core)	(Lawrence Julio
QMCP-SB106		QMCP-SB110 a ₁ -b ₁ "		-88.5011493	47.1143187	North of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core	,	(Lawrence Julio
		QMCP-SB110 a ₂ -b ₂ "				North of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core)												Lawrence Julio
QMCP-SB107		QMCP-SB111 a ₁ -b ₁ "		-88.5011318	47.1143002	East of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core)												Lawrence Julio
		QMCP-SB111 a ₂ -b ₂ "				East of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core)											L	Lawrence Julio

					_															
											Sample Ty	/pe/Matrix	Sample Ana	lyses	Water 0	Quality F	Parame	eters [Ouplicate Ana	lyses
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil Groundwater	Surface Water Sediment Drums, Containers, & SACM VOCs	SVOCs PCBs Metals Cyanide	Asbestos Lead Arsenic	Temperature (C°)		hd	Turbidity (nTu)	VOUS SVOCS PCBS	Property Ownership
Julio Marine (C	Continued)				1															
QMCP-SB108		QMCP-SB112 a ₁ -b ₁ "		-88.5011087	47.1142680	South of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core	х									Lawrence Julio
		QMCP-SB112 a ₂ -b ₂ "				South of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core	Х							Ш		Lawrence Julio
QMCP-SB109		QMCP-SB113 a ₁ -b ₁ "		-88.5011502	47.1142880	West of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core	Х									Lawrence Julio
		QMCP-SB113 a ₂ -b ₂ "				West of QMCP-SB44 0.5-4ft, arsenic exceedance			Location not sampled.	Soil Core	Х									Lawrence Julio
QMCP-GW43	9/10/2018	QMCP-GW43 6-10	1809102	-88.4989900	47.1160167	Data Gap - Area N, within historic mining operation location				Low-Flow Sampling	х	х	x x x		14.1 0.	308 25.	6 6.09	NM		Lawrence Julio
QMCP-GW44	9/10/2018	QMCP-GW44 4-8	1809102	-88.5012170	47.1142115	Data Gap - Area N, within historic mining operation location				Low-Flow Sampling	х	х	x x x		14.4 0.	225 1.8	6.22	. NM		Lawrence Julio
QMCP-GW45	9/10/2018	QMCP-GW45 5-9	1809102	-88.5007035	47.1137349	Data Gap - Area N, within historic mining operation location				Low-Flow Sampling	х	Х	x x x		18.6 0.	076 1.4	5.63	NM		Lawrence Julio
QMCP-GW46	9/10/2018	QMCP-GW46 4-8'	1809102	-88.5003187	47.1141015	Data Gap - Area N, within historic mining operation location				Low-Flow Sampling	х	х	x x x		15.3 0.	101 3.0	6.20	NM		Lawrence Julio
QMCP-GW47	9/10/2018	QMCP-GW47 5-9	1809102	-88.4997684	47.1137933	Data Gap - Area N, within historic mining operation location				Low-Flow Sampling	х	Х	x x x		14.8 0.	295 2.6	6.37	NM		Lawrence Julio
QMCP-GW48	9/10/2018	QMCP-GW 48-7-9'	1809855	-88.4998730	47.1145989	Data Gap - Area N, within historic mining operation location			NAPL present, no sample submitted to MDEQ lab. Fingerprint analysis completed.	Low-Flow Sampling	x				NM N	M NN	MN N	NM		Lawrence Julio
QMCP-GW49	9/10/2018	QMCP-GW49 5-9	1809102	-88.4986758	47.1143048	Data Gap - Area N, proximal to historic oil house				Low-Flow Sampling	х	х	хххх		15.6 0.	257 10.	5 6.60	NM		Lawrence Julio
QMCP-GW50	9/10/2018	QMCP-GW50 2-6	1809102	-88.4981735	47.1138279	Data Gap - Area N, within historic mining operation location			Duplicate omitted.	Low-Flow Sampling	х	Х	хххх		17.6 0.	233 2.5	6.13	NM		Lawrence Julio
MW7	10/16/2019	MW-7	1910241	-88.4987487	47.1142809	Downgradient of QMCP-GW48, free product observation			Previously proposed as QMCP-MW14, PCB analysis added	Low-Flow Sampling	х	Х	хх		13.0 0.	293 2.5	6.62	28.0		Lawrence Julio
MW8	10/16/2019	MW-8	1910241	-88.4997004	47.1138901	Downgradient of QMCP-GW48, free product observation			Previously proposed as QMCP-MW12, PCB analysis added	Low-Flow Sampling	х	Х	хх		11.9 0.	147 10.	4 6.54	4.16		Lawrence Julio
MW9	10/16/2019	MW-9	1910241	-88.5008183	47.1137938	Downgradient of QMCP-GW45, PNA exceedance			Previously proposed as QMCP-MW17, PCB analysis added, 0.21 ft of product measured in well	Low-Flow Sampling	х	х	хх		12.3 0.	121 0.9	6.33	49.4		Lawrence Julio
MW10		MW-10		-88.5007104	47.1142580	Downgradient of QMCP-GW48, free product observation			Previously proposed as QMCP-MW15. Location not sampled: product in well, 0.6 ft of product measured in well	Low-Flow Sampling	х									Lawrence Julio
MW11	10/16/2019	MW-11	1910241	-88.5009853	47.1141353	Downgradient of QMCP-GW48, free product observation			Additional MW installed in Area N. Note from sampling: "11 had slight staining on the tubing in the well"	Low-Flow Sampling	х	х	х		11.7 0.	277 1.0	6.28	5.92		Lawrence Julio
MW12	10/17/2019	MW-12	1910241	-88.5005722	47.1152600	Upgradient of QMCP-GW48, free product observation			Previously proposed as QMCP-MW19	Low-Flow Sampling	х	х	х		11.7 0.	179 8.4	6.98	5.06		Lawrence Julio
MW13	10/16/2019	MW-13	1910241	-88.4993375	47.1145159	In vicinity of observed processing vats and soil staining			Previously proposed as QMCP-MW18	Low-Flow Sampling	х	х	х		11.2 0.	138 16.	8 6.72	5.56		Lawrence Julio
QMCP-MW13		QMCP-MW13		-88.4992603	47.1141693	Downgradient of QMCP-GW48, free product observation			Not installed in planned location	Low-Flow Sampling	х									Lawrence Julio
MW14	10/16/2019	MW-14	1910241	-88.5001971	47.1146642	Downgradient of QMCP-GW48, free product observation			Previously proposed as QMCP-MW16. No product detected w/ product probe	Low-Flow Sampling	х	х	х		12.2 0.	317 27.	5 6.07	3.05		Lawrence Julio

											Sam	ple Typ	e/Matrix		Sample Analyses	Wat	er Qual	ty Paran	neters	Duplica	te Analyse	es
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil	Groundwater	Sediment Drums, Containers, & SACM	VOCS	PCBs Metals Cyanide Asbestos Lead	Arsenic Temperature (C°)	Conductivity (mS/cm)	Dissolved Oxygen (%)	Turbidity (nTu)	VOCs SVOCs	PCBs Metals	Property Ownership
Julio Marine (C	ontinued)		T	I	I			T	A delition of B MAC to a fall of the Association	T	П		1 1	_	 						1 1	
MW15	10/17/2019	MW-15	1910241	-88.4999515	47.1146115	QMCP-GW48, free product observation			Additional MW installed in Area N. No product detected in well w/ product probe. Duplicated collected: MW-15 DUP	Low-Flow Sampling		х		х		10.8	0.129	29.9 5.4	9 4.16	х		Lawrence Julio
QMCP- ASBBLK42	10/01/2018	QMCP-ASBBLK42A-100118	240-102329-1	-88.4987122	47.1145744	Suspect ACM	White TSI on pipe	friable		Hand Tools	s		х		х					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK42B-100118	240-102329-1			Suspect ACM	White TSI on pipe	friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
QMCP- ASBBLK43	10/01/2018	QMCP-ASBBLK43A-100118	240-102329-1	-88.4986861	47.1145737	Suspect ACM	Red roofing on ground	non-friable		Hand Tools	s		Х		х					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK43B-100118	240-102329-1			Suspect ACM	Red roofing on ground	non-friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
QMCP- ASBBLK44	10/01/2018	QMCP-ASBBLK44A-100118	240-102329-1	-88.4986667	47.1145678	Suspect ACM	Tan/red brick siding	non-friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK44B-100118	240-102329-1			Suspect ACM	Tan/red brick siding	non-friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
QMCP- ASBBLK45	10/01/2018	QMCP-ASBBLK45A-100118	240-102329-1	-88.4987431	47.1145884	Suspect ACM	Black tar paper with multi-colored specks	friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK45B-100118	240-102329-1			Suspect ACM	Black tar paper with multi-colored specks	friable		Hand Tools	s		Х		х					Ш		Lawrence Julio
QMCP- ASBBLK46	10/01/2018	QMCP-ASBBLK46A-100118	240-102329-1	-88.4987259	47.1145174	Suspect ACM	Tan brick siding	non-friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK46B-100118	240-102329-1			Suspect ACM	Tan brick siding	non-friable		Hand Tools	s		Х		х					Ш		Lawrence Julio
QMCP- ASBBLK47	10/01/2018	QMCP-ASBBLK47A-100118	240-102329-1	-88.4987075	47.1144933	Suspect ACM	Black tar paper	friable		Hand Tools	s		Х		х					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK47B-100118	240-102329-1			Suspect ACM	Black tar paper	friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
QMCP- ASBBLK48	10/01/2018	QMCP-ASBBLK48A-100118	240-102329-1	-88.4985629	47.1144541	Suspect ACM	Silver painted mastic	non-friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK48B-100118	240-102329-1			Suspect ACM	Silver painted mastic	non-friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
QMCP- ASBBLK49	10/01/2018	QMCP-ASBBLK49A-100118	240-102329-1	-88.4991891	47.1145896	Suspect ACM	Silver painted roofing, damaged/deteriorated	friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
	10/01/2018	QMCP-ASBBLK49B-100118	240-102329-1			Suspect ACM	Silver painted roofing, damaged/deteriorated	friable		Hand Tools	s		Х		x					Ш		Lawrence Julio
QMCP- ASBBLK50	10/01/2018	QMCP-ASBBLK50A-100118	240-102329-1	-88.4975336	47.1143592	Suspect ACM	Black shingle, burn pile, 10SF	non-friable		Hand Tools	s		х		х							Lawrence Julio
	10/01/2018	QMCP-ASBBLK50B-100118	240-102329-1			Suspect ACM	Black shingle, burn pile, 10SF	non-friable		Hand Tools	s		Х		х							Lawrence Julio
QMCP- ASBBLK51	10/01/2018	QMCP-ASBBLK51A-100118	240-102329-1	-88.4975336	47.1143592	Suspect ACM	Black tar paper, 10SF	non-friable		Hand Tools	s		Х		х							Lawrence Julio
	10/01/2018	QMCP-ASBBLK51B-100118	240-102329-1			Suspect ACM	Black tar paper, 10SF	non-friable		Hand Tools	S		Х		х							Lawrence Julio
QMCP- ASBBLK52	10/01/2018	QMCP-ASBBLK52A-100118	240-102329-1	-88.4974372	47.1144986	Suspect ACM	White fibers in burn pile	friable		Hand Tools	s		Х		х							Lawrence Julio
	10/01/2018	QMCP-ASBBLK52B-100118	240-102329-1			Suspect ACM	White fibers in burn pile	friable		Hand Tools	s		Х		х							Lawrence Julio

											Sam	ple Type/	Matrix	Sample	Analyses	١	Water Qua	ality Para	meters	Duplicate	Analyses	
Proposed Sampling Location	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil	Groundwater Surface Water	Sediment Drums, Containers, & SACM	SVOCS PCBs Metals	Cyanide Asbestos	Lead Arsenic	Temperature (C°) Conductivity (mS/cm)	Dissolved Oxygen (%)	рн Turbidity (nTu)	VOCs SVOCs		roperty wnership
Julio Marine (C	ontinued)	T	l	l	ı			1	T T	T		Т			Т Т			Т			1 1 1	
QMCP- ASBBLK53	10/01/2018	QMCP-ASBBLK53A-100118	240-102329-1	-88.5011089	47.1141632	Suspect ACM	Silver coated roofing, damaged/deteriorated	friable		Hand Tools	S		Х		Х							awrence ulio
	10/01/2018	QMCP-ASBBLK53B-100118	240-102329-1			Suspect ACM	Silver coated roofing, damaged/deteriorated	friable		Hand Tools	5		х		Х						1 1 1	awrence ulio
QMCP- ASBBLK54	10/01/2018	QMCP-ASBBLK54A-100118	240-102329-1	-88.5011528	47.1141994	Suspect ACM	Red roofing, damaged/deteriorated	non-friable		Hand Tools	5		х		Х							awrence ulio
	10/01/2018	QMCP-ASBBLK54B-100118	240-102329-1			Suspect ACM	Red roofing, damaged/deteriorated	non-friable		Hand Tools	5		х		Х							awrence ulio
QMCP- ASBBLK55	10/01/2018	QMCP-ASBBLK55A-100118	240-102329-1	-88.5012360	47.1141890	Suspect ACM	Green roofing	non-friable		Hand Tools	5		х		х							awrence ulio
	10/01/2018	QMCP-ASBBLK55B-100118	240-102329-1			Suspect ACM	Green roofing	non-friable		Hand Tools	5		х		Х							awrence ulio
QMCP- ASBBLK56	10/01/2018	QMCP-ASBBLK56A-100118	240-102329-1	-88.5010628	47.1142952	Suspect ACM	Building concrete	non-friable		Hand Tools	5		Х		Х							awrence ulio
	10/01/2018	QMCP-ASBBLK56B-100118	240-102329-1			Suspect ACM	Building concrete	non-friable		Hand Tools	5		х		х							awrence ulio
QMCP- ASBBLK57	10/01/2018	QMCP-ASBBLK57A-100118	240-102329-1	-88.5010596	47.1142030	Suspect ACM	Brown insulation in drum	friable		Hand Tools	5		Х		Х							awrence ulio
	10/01/2018	QMCP-ASBBLK57B-100118	240-102329-1			Suspect ACM	Brown insulation in drum	friable		Hand Tools	5		Х		Х							awrence ulio
QMCP-east vat	8/20/2019	QMCP-east vat water	1908277	-88.4992900	47.1144920	Standing water inside processing vats				Bailers				x x x x								awrence ulio
QMCP-middle vat	8/20/2019	QMCP-middle vat water	1908277	-88.4993330	47.1144750	Standing water inside processing vats				Bailers				x x x x								awrence ulio
QMCP-west vat	8/20/2019	QMCP-west vat water	1908277	-88.4993770	47.1144570	Standing water inside processing vats				Bailers				x x x x								awrence ulio
In Lake - Surfa	ce Water																					
QMCP-SW09		QMCP-SW09 a-b'		-88.5029253	47.1152426	Offshore from Area M			Location not sampled.	Low-Flow Sampling		Х										tate of lichigan
QMCP-SW10		QMCP-SW10 a-b'		-88.4998632	47.1135537	Offshore from Area N			Location not sampled.	Low-Flow Sampling		х										itate of lichigan
QMCP-SW11		QMCP-SW11 a-b'		-88.4965812	47.1144752	Offshore from Area N			Location not sampled.	Low-Flow Sampling		Х										itate of lichigan
QMCP-SW12		QMCP-SW12 a-b'		-88.4959901	47.1179606	Offshore from Area O			Location not sampled.	Low-Flow Sampling		Х										itate of lichigan
QMCP-SW13		QMCP-SW13 a-b'		-88.4925184	47.1184816	Outlet of creek, offshore from Area P			Location not sampled.	Low-Flow Sampling		Х										tate of lichigan
QMCP-SW14		QMCP-SW14 a-b'		-88.4963341	47.1136151	Offshore of beach area			Location not sampled.	Low-Flow Sampling		Х										tate of lichigan

											Sample T	ype/Matrix		Sample Ar	nalyses	Wa	ter Qua	lity Para	meters	Duplicate Ana	lyses
	Sample Date	Field Sample Identification	Laboratory Work Order Number	Longitude	Latitude	Sampling Rationale	Sample Description	Friable/ Non- Friable	Sample Notes	Sampling Method	Surface Soil Subsurface Soil Groundwater	Surface Water Sediment	Drums, Containers, & SACM VOCs	PCBs Metals	Cyanide Asbestos Lead	Arsenic Temperature (C°)	Conductivity (mS/cm)	Dissolved Oxygen (%)	Turbidity (nTu)	VOCS SVOCS PCBS	Property Ownership epinek()
In Lake - Pore V	Vater, Sedin	nents, and Submerged Drum C	Content Samples	S																	
QMCP-PS10	9/12/2018	QMCP-PS10	1809097	-88.49986642	47.11352579	Collected near QMCP-SD10 where sediments indicated signs of contamination (sheen and/or odor)	No odor or anything else remarkable noted (GSU Email)			Low-Flow Sampling	x		x	x x		16.8	224.4	1.3 7.	22 78.4		State of Michigan
QMCP-PS45	9/12/2018	QMCP-PS45	1809097	-88.50117709	47.11380566	Collected offshore of terrestrial location QMCP- SB45/GW45 that indicated potential contamination.	No odor or anything else remarkable noted (GSU Email)			Low-Flow Sampling	х		х	хх		15.8	490	0.8 6.	94 37.6		State of Michigan
QMCP-SD09	9/6/2018	QMCP-SD09-0-6"	1809079	-88.50300745	47.11520776	Offshore from Area M	SANDY GRAVEL, Dark brown, few fines and wood debris			Vibracore Sampler		Х	Х	хх							State of Michigan
		QMCP-SD09 a ₂ -b ₂ '				Offshore from Area M			Sample not collected.	Vibracore Sampler		х									State of Michigan
QMCP-SD10	9/6/2018	QMCP-SD10-0-4"	1809079	-88.499874	47.113501	Offshore from Area N	FINES, Dark brown-black, organics (wood), soft loose		First core attempt in location was abandoned due to poor recovery; however, the fines had oily sheen.	Vibracore Sampler		х	х	хх							State of Michigan
	9/6/2018	QMCP-SD10-4-11"	1809079			Offshore from Area N	SAND, Dark brown, medium grain, well sorted		Metals analysis added. Duplicate omitted.	Vibracore Sampler		х	х	хх							State of Michigan
QMCP-SD11	9/6/2018	QMCP-SD11-0-6"	1809079	-88.49667141	47.11454763	Offshore from Area N	SAND, Dark brown, medium grain, well sorted			Vibracore Sampler		х	х	хх							State of Michigan
	9/6/2018	QMCP-SD11-6-12"	1809082			Offshore from Area N	SAND, Dark brown, medium grain, some organics (roots), well sorted		Duplicate collected: QMCP-SD 11-6-12" FD	Vibracore Sampler		х	х	хх							State of Michigan
QMCP-SD12	9/6/2018	QMCP-SD12-0-12"	1809082	-88.49596223	47.11793862	Offshore from Area O	FINES, Brown, with organics (mostly in top 1 ft), cohesive, nonplastic, loose			Vibracore Sampler		х	х	хх							State of Michigan
	9/6/2018	QMCP-SD12-12-23"	1809082			Offshore from Area O	FINES, Brown, with organics (mostly in top 1 ft), cohesive, nonplastic, loose		Metals analysis added.	Vibracore Sampler		х	х	хх							State of Michigan
QMCP-SD13	9/7/2018	QMCP-SD13-0-7"	1809082	-88.49253192	47.11852565	Outlet of creek, offshore from Area P	SAND, Dark brown, coarse grain, organics, trace gravel			Vibracore Sampler		х	х	хх							State of Michigan
	9/7/2018	QMCP-SD13-7-38"	1809082			Outlet of creek, offshore from Area P	PEAT, Peat-like organics with fines; FINES, dark brown, pudding like texture, organics, cohesive, nonplastic, very soft		Metals analysis added.	Vibracore Sampler		х	х	x x							State of Michigan
QMCP-SD14	9/7/2018	QMCP-SD14-0-12"	1809082	-88.49607782	47.11364307	Offshore of beach area	SAND, Dark brown, medium grain, well sorted, moist			Vibracore Sampler		Х	Х	хх							State of Michigan
	9/7/2018	QMCP-SD14-12-36"	1809082			Offshore of beach area	SAND, Brown, medium grain, well sorted, moist		Metals analysis added.	Vibracore Sampler		х	Х	хх							State of Michigan

Notes

QMCP = Quincy Mining Company Mason Operations Area

PCBs = Polychlorinated Biphenyls

ACM = Suspect Asbestos Containing Material

SVOC = Semi-Volatile Organic Compound

VOC = Volatile Organic Compound

ROW = Right of Way

T U = Nephalometric Turbidity Units

TSI = Thermal Systems Insulation

NM = Not Measured

--- = Not Applicable

in = inches

 $PNA = Polynuclear Aromatic Hydrocarbon \\ X = Completed sample based on the sampling rationale \\ K = Percentage$

°C = Degrees Celsius EGLE = Michigan Department of Environment, Great Lakes, and Energy

mS/cm = millisiemens per centimeter

For the purposes of this investigation, sediments include residues and waste material associated with chemical containers and deposits on the lake bottom historically discarded in Torch Lake and the Canal.

In areas that have been resurfaced or capped, analytical samples were collected from directly beneath the cap/resurfacing medium (i.e. soil cap, beach sand, gravel, etc...) so that samples are representative of historical waste deposits.

Samples described in this evaluation may actually refer to stamp sands or to other mining waste from the historic mining and reclamation processes conducted in the area.

Evaluation based on EGLE Criteria at time of Project completion.

pH = pH acid-base scale

Total Sample Count 18 21 30 0 28 36 43 95 74 76 9 38 7 7 20 20 20 20 10 1 2 1 2 1 Proposed Sample Count 55 66 34 14 31 36

SIDE SCAN SONAR IMAGERY

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

INTEROFFICE COMMUNICATION

TO:

Amy Keranen, Project Manager, Calumet Office

Remediation and Redevelopment Division

FROM:

Brian Eustice, Geologist, Geological Services Unit

Program Support Section, Remediation and Redevelopment Division

DATE:

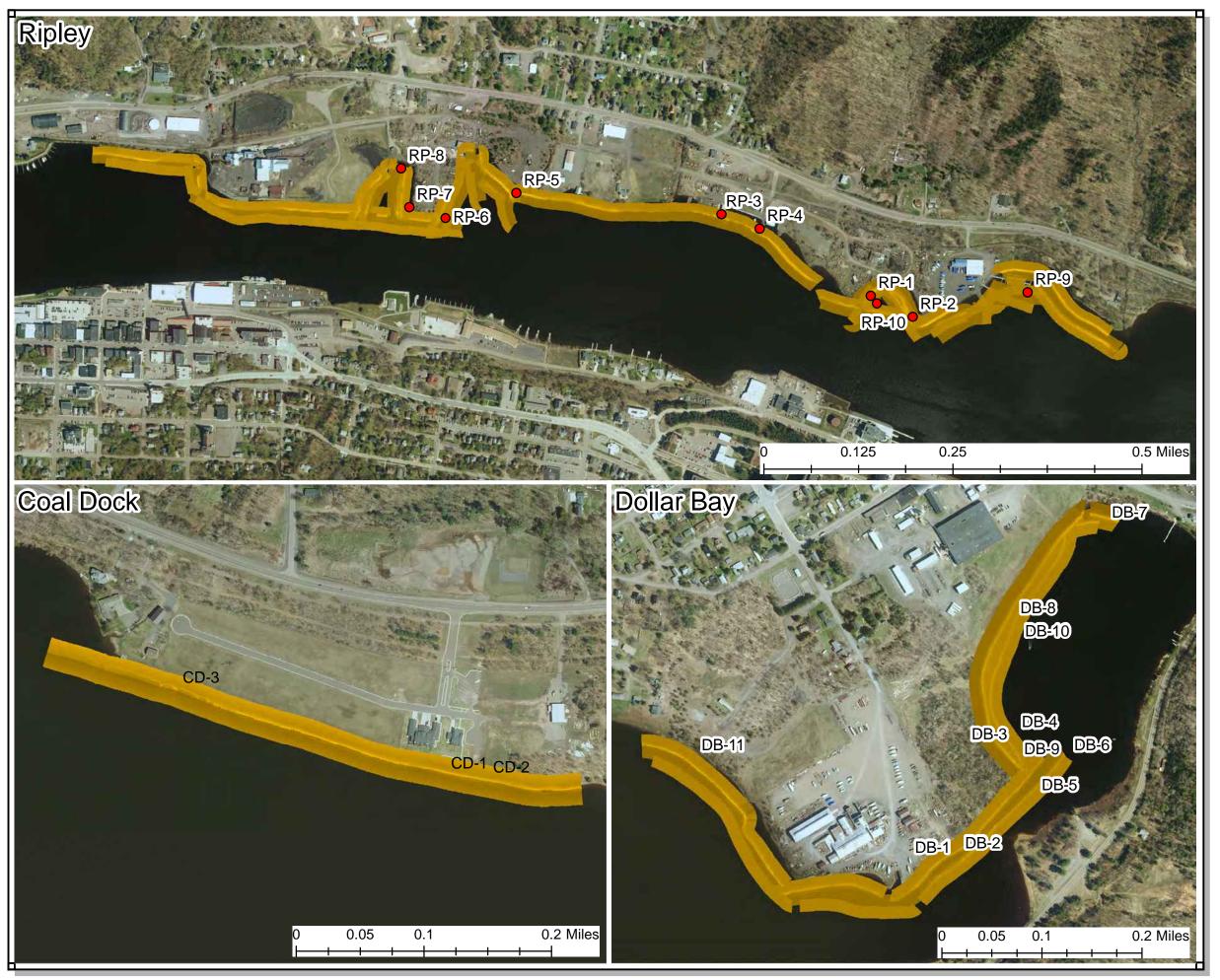
January 9, 2018

SUBJECT:

Quincy Mining Company Portage, Houghton County, SITE ID #31000098

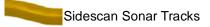
Bathymetric Investigation-Side Scan Sonar

This memorandum summarizes the findings of a marine investigation requested by the Department of Environmental Quality (DEQ), Remediation and Redevelopment Division's (RRD's), Calumet office for the subject site. On August 18, 2017, RRD's Geological Services Unit (GSU) conducted side scan sonar surveys of three areas to identify potential targets for future investigation.


The three investigation areas are located in the Keweenaw Waterway offshore from the communities of Ripley and Dollar Bay, Section 36, T55N-R34W and Sections 31, 32 and 33, T55N-R33W, Houghton County, Michigan (Fig 1).

The GSU collected side scan sonar data using a Humminbird 797c² equipped with an external global positioning system (GPS) antenna. Potential targets were identified and selected during post processing using HYPACK 2016. Target locations for each investigation area are shown on Figure 1 and target coordinates are presented in Table 1.

If you have any questions, contact me at 517-242-1170.


Attachments

cc: Burrell P. Shirey, DEQ

LEGEND

Sidescan Sonar Targets

DATUM - NAD83 PROJECTION: MICHIGAN GEOREF

AERIAL PHOTO SOURCE: MIS PUBLIC IMAGERY BEST AVAILABLE MOSAIC

Sidescan Sonar Survey of Ripley, Dollar Bay, and Former Coal Dock

FRANKLIN & OSCEOLA TOWNSHIPS, HOUGHTON COUNTY T55N R34W SECTION 36, T55N R33W SECTIONS 31, 32, 33

SIDESCAN SONAR TARGET MAP

GEOLOGIST Brian Eustice Seological Services Unit

Division

CREATION DATE January 2018

FIGURE 1

Remediation and Redevelopment

Target ID	X (Michigan GeoRef)	Y (Michigan GeoRef)	Latitude	Longitude
RP-1	25861646.2	857045.8	47.1232818	-88.54664454
RP-2	25861941.6	856900.2	47.12289849	-88.5454468
RP-3	25860596.4	857600.8	47.12474689	-88.55090417
RP-4	25860862.9	857505.2	47.12449913	-88.54982636
RP-5	25859161.2	857731	47.12502666	-88.55667838
RP-6	25858668.2	857548.5	47.12449985	-88.55864392
RP-7	25858413.9	857622.3	47.12468843	-88.55967105
RP-8	25858353.1	857892.7	47.12542635	-88.5599366
RP-9	25862741.2	857083.6	47.1234439	-88.54224994
RP-10	25861690.9	856992.1	47.12313699	-88.54646081
DB-1	25873771.8	853416.9	47.11397278	-88.49767185
DB-2	25873817.1	853439.8	47.1140379	-88.49749169
DB-3	25874109.1	854013.9	47.11562672	-88.49636272
DB-4	25874117.3	854079.3	47.11580641	-88.49633475
DB-5	25874221.9	853745.2	47.114896	-88.49588941
DB-6	25874393.9	853956.4	47.11548383	-88.49521475
DB-7	25874591.22	855186.18	47.11886506	-88.49451551
DB-8	25874107.6	854681.7	47.11745719	-88.49641937
DB-9	25874208	853936.2	47.11541885	-88.4959597
DB-10	25874134	854583.9	47.11719047	-88.49630594
DB-11	25872425.2	853957.3	47.11538423	-88.50312011
CD-1	25868754.4	854711.2	47.11725902	-88.51791806
CD-2	25868850	854693.9	47.11721662	-88.51753284
CD-3	25867565.9	855065.3	47.11816717	-88.52271793

UNDERWATER VIDEOS

Appendix B

The underwater videos are available here: QMCP Torch Lake -
YouTube

PHYSICAL HAZARDS INVENTORY

RECONNAISSANCE, TARGETED SAMPLING, AND POTENTIAL CHEMICAL AND PHYSICAL HAZARDS INVENTORY

APENDIX C Reconnaissance, Targeted Sampling, and Potential Chemical and Physical Hazards Inventory Julio Properties - Dollar Bay

Area:

Property (Common Name):

Julio Company/Former Amoco Bulk Fuel Terminal

Property Identification Number/Owner:

009-033-037-00, 006-032-026-00/Lawrence Julio

Inspection Date:

9/27/2018

General Property Description (Significant Landscape Features, Topography, Cover, Etc.,): Area L was not identified on available Sanborn Maps; however, according to Monette's Dollar Bay, Michigan, Fifty-Fourth of a Local History Series (Monette, 2000), Dollar Bay Terminal Company erected three storage tank onsite in May of 1945. It was reported the welded steel gasoline tanks each had a capacity of 840,000 gallons, with dimensions of forty feet high and sixty feet in diameter. Dikes or firewalls surrounded each tank, while lake tankers were used to transport the product from Chicago refineries. Three additional tanks were added to the site, which increased storage for kerosene, diesel fuel, and three grades of gasoline. In May 1984, the owner/operator Amoco Oil Company closed the facility, selling the property to Julio Contracting Company of Ripley. The six tanks were dismantled in October 1994 after a tug-barge was used to drain the tanks. The tug-barge has also been observed at another Julio property along the Portage Canal. Other historic land use and/or mining operations are unknown. The current usage of the area is unknown, although it appears to be inactive. This property is bound to the south and east by residential properties. The Copper Heritage Trail is located to the north of the property, while an undeveloped wooded lot is located to the west. There is one building at the north corner on the property that includes a garage. Semi-tractor trailers, heavy equipment, fuel tanks of varying sizes and construction material are staged throughout the property. Sand, gravel and stamp sand piles are observed, along with large piles of sandstone construction debris. The topography is relatively flat towards the north; however, undulating hills that appear to be overgrown cobbler/boulder piles are observed to the southeast and central portions of the property. Access to the property is restricted by fencing.

					Po	tentially A	bandoned	Containers								ial					6						
Not Intact = filled with scrap, appears or is visibly empty, carcass, major holes, rusted with holes, split seams		1-25 gallor container		35-40 gallon drums	55		>55 gallon		AST >200	s/USTs gallons	Pressurized Vessel/ Compressed Cylinders	t Fuel Tanks	9	Fire Extinguishers	ns Asbestos ig Material	Process Mater	Potential PCb/Mercury Containing Equipment Waste Pile	Outfalls Soil Staining/	Vegetation Hazards	mple nendation	Field Sampled 2018-2019		Asbestos Friable/Non-friable	r Count per			
Description	Notes:	Intact Not Intact	NOT IMEACT	Intact Not Intact	Intact	Not Intact, carcass	Intact	Intact Not Intact	Intact	Not Intact	Pressur Compres	Auto/Boat	Batteries	FIRE EXTIN	Other Items Suspect Asbes Containing Ma	Residual Proc	Potential Containin Waste Pil	Outfalls Soil Stain	Stressed Vegetati Physical Hazards	Field San	Field Sam	Targeted Sample ID	Asbestos Friable/No		Recon Latitude	Recon Longitude	Observation Number
2- 55 gallon drum, rusted, intact, one split at bottom, bulged at bottom White Transite siding, black tar paper on building, deteriorated and on ground Pipe from building to ground, vent on top of building, suspect UST					2				1						2					N	Y	OMCP-ASBBLK40		3	47.120173	-88.509221	Cont121
1- 200 gallon fuel tank, cut on side, debris, trash inside								1												N	N			1	47.119888	-88.508936	Cont122
3- Electrical components, switches and bulbs on sheet metal, 2 on ground nearby (3 total) Gray metal meter on ground 1- Crushed rusted drum with orange pump at top Potential mercury light on building						1											4			N	N			1	47.119804	-88.508833	SHq005
1- red drum, appears intact, "synthetic blend engine bil" 1- black rectangular fuel tank 2- battery chargers with batteries 2- black 5 gallon pails 1- Empty drum carcass nearby concrete foundation 1- white 55 gallon drum with liquid down driveway	May require characterization	2			2	1		1					2							N	N			6	47.119975		Cont123
3-riveted tanks, 9'x20' approximately 1- red tank with manholes at top Den pipe with tar, releases on ground, soil staining n front, white and black insulation material 1- green 200 gallon diesel fuel tank, release on ground 1- orange tank					2	1		1	4						1				1	Y	Y	OMCP-ASBBLK41 OMCP-SS56	Friable	5	47.119973	-88.511541	Cont124
Fuel tank, 10'x25', appears intact	May require characterization								1											N	N			1	47.118684	-88.511429	Cont125
3- fuel tanks, 25'x10'd 1- green 200 gallon fuel tank on side	Total Item Count:	2 0	0	0 0	4	2	0	1 3 1	3	0	0	0	2 1	0	1 2	0	4 0	0	1 0	N	N	3		4 21	47.118911	-88.511202	

RECONNAISSANCE, TARGETED SAMPLING, AND POTENTIAL CHEMICAL AND PHYSICAL HAZARDS INVENTORY

APPENDIX C Reconnaissance, Targeted Sampling, and Potential Chemical and Physical Hazards Inventory Julio Properties - Dollar Bay

Area:

Property (Common Name):

Julio Marine Dollar Bay

Property Identification Number/Owner:

009-033-055-00/Lawrence Julio

Inspection Date:

9/26/2018, inaccessible areas inspected 12/3/2019 and 11/4/2020.

General Property Description (Significant Landscape Features, Topography, Cover, Etc.,): The parcel was identified as Tamarack and Osceola Copper Manufacturing Company on the 1907 Sanborn Map. It was the location of John A. Roebling's Sons Copper Manufacturing and Foley Copper Products Company Copper Wire Mill in 1928 and 1949, respectively. The EPA as part of the Torch Lake Superfund Site remedial action capped portions of Area M, N, and O. Dollar Bay Torch Lake EPA Superfund Site asbuilt drawings (USDA NRCS, 2004) indicate that the cap was placed as part of the Torch Lake Superfund Site Dollar Bay remedial action. The Fourth Five-Year Review Report for the Torch Lake Superfund Site (USEPA, 2018) indicated that construction was completed in 2002; however, the Dollar Bay parcel has not been deleted from the NPL. The capped areas are subject to an on-going DEQ O&M plan. The balance of the areas were not addressed as part of the Torch Lake Superfund Site remedial action. The area is currently the location of mining-era buildings; however, specific present day use is unknown. The property includes portions of the former wire mill operations. The parcel is bound by the Portage Canal to the west and south, by wooded property to the east and residential and privately owned properties to the north and north-west. Many mining-era buildings, some that appear to be used for boat storage, are present in the central portion of the property. Additional boats, heavy equipment and other vehicles are located north of the property buildings. Suspect asbestos containing materials, including roofing, thermal insulation material are observed throughout. Abandoned containers with unknown contents, fuel tanks of various sizes, including a tanker trailer along the shoreline, are also observed both inside and outside of property buildings. A large pile that appears to be building construction material is located near the shoreline. Topography is relatively flat, sloping gently to the Portage Canal and Lake. Public access to the proper

						Pote	ntially A	Abandon	ed Conta	ainers							ial					6						
Not Intact = filled with scrap, appears or is visibly empty, carcass, major holes, rusted with holes, split seams		1-25 ga conta		35-40 g drur			allon	>55 gallo drums	n AST:	s/USTs) gallons	ASTs/UST >200 gallor	surized Vessel/		Batteries Fire Extinquishers	sm	Suspect Asbestos Containing Material	Residual Process Materia	Potential PCB/Mercury Containing Equipment Waste Pile	nina/	Stressed Vegetation Physical Hazards	mple	mpled 2018-2019		s Von-friable	er Count per			
Description	Notes:	Intact	Not Intact	Intact	Not Intact	Intact	Not Intact, carcass	Intact	Intact	Not Intact	Intact Not Intact	Pressu Compre	Auto/Bo	Batteries Fire Extir	Other Items	Suspect Containi	Residua	Potential Po Containing Waste Pile	Outfalls Soil Stai	Stressed Vega	Field Sar	Field Sampled	Targeted Sample ID	Asbestos Friable/No	Container Obs. Area	Recon Latitude	Recon Longitude	Observation Number
Burn area with tree branch debris, household trash, plastic, roofing, at least one area with white TSI material on ground, evidence of past burn pile with overgrown weeds to the east, darkened coarse soil	SACM, SS															1		1		1	Y	Y	QMCP-SS57 QMCP-SS58 QMCP-SS59 QMCP-SS60 QMCP-ASBBLK50 QMCP-ASBBLK51 QMCP-ASBBLK52	Non-Friable Non-Friable Friable		47.124186	-88.547661	WP005
White fibrous material on ground, deteriorated, 6SF Black tar roofing nearby, 2SF	none															1					Y	N			0	47.113733		SACM035
3- propane tanks 12- 55 gallon drums, appear intact, some gray, some rusted 1- 40 gallon blue drum with holes in top				1		12						3								3	N	N			16	47.113845		Cont106
2 -55 gallon drums as vacuum 1 - white 6000 gallon truck tanker 2 - yellow 500 gallon fuel tanks Black Tar paper SACM on ground, 3SF 1 - green heating oil tank on side 6 - hot water tanks, gray 3 - hot water tanks, white w insulation Black and white deteriorated material attached to board, 100SF Silver mastic on pipe, 3SF 1 - crushed, rusted drum, unknown contents 1 - black and rusted, partially crushed drum 1 - red, rusted drum, appears open at end	Honeycomb piping observed					4	1				4				9	2					N	N			9	47.113772	-88.500516	Cont107
Inside shed: white vacuum vessel, Yellow filter, 100 gallon Oblong tank, 100 gallon Gray smooth sided drum 55 gallon Rusted fuel tank 500 gallon Black tar material on pipe, 9x25' 7- truck fuel tanks, various sizes Rusted drum, appears intact Black w silver roofing on ground and building roof Silver truck tanks White TSI material on ground Crushed drum 3-55 gallon drums, 1-40 gallon drum, appears intact Red roofing on ground Yellow brick siding				1		5	1		2		1		7								Y	N			18	47.114166	-88.500502	Cont108

RECONNAISSANCE, TARGETED SAMPLING, AND POTENTIAL CHEMICAL AND PHYSICAL HAZARDS INVENTORY

APPENDIX C Reconnaissance, Targeted Sampling, and Potential Chemical and Physical Hazards Inventory Julio Properties - Dollar Bay

Area:

Property (Common Name):

Julio Marine Dollar Bay

Property Identification Number/Owner:

009-033-055-00/Lawrence Julio

Inspection Date:

9/26/2018, inaccessible areas inspected 12/3/2019 and 11/4/2020.

General Property Description (Significant Landscape Features, Topography, Cover, Etc.,): The parcel was identified as Tamarack and Osceola Copper Manufacturing Company on the 1907 Sanborn Map. It was the location of John A. Roebling's Sons Copper Manufacturing and Foley Copper Products Company Copper Wire Mill in 1928 and 1949, respectively. The EPA as part of the Torch Lake Superfund Site remedial action capped portions of Area M, N, and O. Dollar Bay Torch Lake EPA Superfund Site asbuilt drawings (USDA NRCS, 2004) indicate that the cap was placed as part of the Torch Lake Superfund Site Dollar Bay remedial action. The Fourth Five-Year Review Report for the Torch Lake Superfund Site (USEPA, 2018) indicated that construction was completed in 2002; however, the Dollar Bay parcel has not been deleted from the NPL. The capped areas are subject to an on-going DEQ O&M plan. The balance of the areas were not addressed as part of the Torch Lake Superfund Site remedial action. The area is currently the location of mining-era buildings; however, specific present day use is unknown. The property includes portions of the former wire mill operations. The parcel is bound by the Portage Canal to the west and south, by wooded property to the east and residential and privately owned properties to the north and north-west. Many mining-era buildings, some that appear to be used for boat storage, are present in the central portion of the property. Additional boats, heavy equipment and other vehicles are located north of the property buildings. Suspect asbestos containing materials, including roofing, thermal insulation material are observed throughout. Abandoned containers with unknown contents, fuel tanks of various sizes, including a tanker trailer along the shoreline, are also observed both inside and outside of property buildings. A large pile that appears to be building construction material is located near the shoreline. Topography is relatively flat, sloping gently to the Portage Canal and Lake. Public access to the proper

				Potentia	ly Abandone	d Containers							İai						6					
Not Intact = filled with scrap, appears or is visibly empty, carcass, major holes, rusted with holes, split seams		1-25 gallon container	35-40 gallon drums	55 gallor drums	>55 gallo			ISTs Ilons	rized Vessel/ sed Cylinders	Auto/Boat Fuel Tanks Satteries	Fire Extinguishers	Other Items Suspect Asbestos Containing Material	Process Mater	Potential PCB/Mercury Containing Equipment	o o	Soil Staining/	Vegetation	Field Sample Recommendation	Field Sampled 2018-2019 Targeted Sample l	Asbestos Friable/Non-friable	er Count per			
Description	Notes:	Intact Not Intact	Intact Not Intact	Intact Not Intact,	carcass	Intact Not Intact	Intact	Not Intact	Pressu	Auto/Boat Batteries	Fire Extir	Other Items Suspect Asl	Residual	Potential Containir	Waste Pile	Soil Stair	Physical Hazards	Field San Recomm	E C C C C C C C C C C C C C C C C C C C	Asbestos Friable/N	Container (Obs. Area	Recon Latitude	Recon Longitude	Observation Number
2-55 gallon drums, one upright with tree, second on side, suspect white SACM filled 2-50 gallon tanks, partially buried	SACM in drum			3								1						Υ	Y QMCP-ASBBLK57	Friable	4	47.114198	-88.501053	Cont109
Area on south end of building used for boat storage, debris piles of building material Black roofing with silver paint Red roofing Black tar paper Concrete side of building												1						Y	QMCP-ASBBLK53 QMCP-ASBBLK54 QMCP-ASBBLK55 Y QMCP-ASBBLK56	Friable Non-Friable Non-Friable Non-Friable		47.114210	-88.500974	SACM036
Fuel tank on shoreline, two open vents, 21'x9'	May require characterization							1										N	N		1	47.114358	-88.501332	Cont110
4 fuel tanks welded together to form two barges, 18'x4.5'dia, sound empty								4										N	N		4	47.115267	-88.500026	Cont111
Silver/gray riveted tank, 10'x3'd 2-Rusted riveted tanks, 19'x4'd, 16'x4'd, 21'x6'd, 5'x2.5'd Silver fuel tank, 200 gallon Yellow fuel tank, 200 gallon Larger rusted, riveted tank, 31'x7'd 2-Rusted fuel tank, 6'x4'd Black rusted fuel tank, 5'x3.5'd Black/silver fuel tank, 18'x64"d Fuel tank w white end, 9'x64" 200 gall fuel tank in concrete Black fuel tank, 20.5'x8', 8000gallon Rusted fuel tank, 23'x10.5'd	May require characterization					3	13											N	N		16	47.114511	-88.500617	Cont112
3- 200 gallon fuel tanks, 1 open at top 1- 100 gallon tank black residue at end 6- 55 gallon drums, 1-200 gallon fuel tank inside building 13- 55 gallon drums, 9 appear intact, unknown contents, rest open or split	Drums may require characterization			15 4		4 1												N	N		24	47.114541	-88.500338	Cont113
31- 55 gallon drums, most appeared intact	Drum may require characterization			31														N	N		31	47.114349	-88.499013	Cont114
2-55 gallon drums, one green with holes, one red bulging "hydraulic"	May require characterization			1 -														N	N		2	47.114698	-88.498739	Cont115
Steam pipe with white TSI coming out of ground, also at west end of building, roofing, siding	SACM											1						N	OMCP-ASBBLK42 OMCP-ASBBLK44 OMCP-ASBBLK44 OMCP-ASBBLK45 OMCP-ASBBLK46 OMCP-ASBBLK47 Y OMCP-ASBBLK49	Friable Non-Friable Non-Friable Friable Non-Friable Friable Friable		47.114650	-88.498539	SACM037

RECONNAISSANCE, TARGETED SAMPLING, AND POTENTIAL CHEMICAL AND PHYSICAL HAZARDS INVENTORY

APPENDIX C Reconnaissance, Targeted Sampling, and Potential Chemical and Physical Hazards Inventory Julio Properties - Dollar Bay

Area:

Property (Common Name):

Julio Marine Dollar Bay

Property Identification Number/Owner:

009-033-055-00/Lawrence Julio

Inspection Date:

9/26/2018, inaccessible areas inspected 12/3/2019 and 11/4/2020.

General Property Description (Significant Landscape Features, Topography, Cover, Etc.,): The parcel was identified as Tamarack and Osceola Copper Manufacturing Company on the 1907 Sanborn Map. It was the location of John A. Roebling's Sons Copper Manufacturing and Foley Copper Products Company Copper Wire Mill in 1928 and 1949, respectively. The EPA as part of the Torch Lake Superfund Site remedial action capped portions of Area M, N, and O. Dollar Bay Torch Lake EPA Superfund Site asbuilt drawings (USDA NRCS, 2004) indicate that the cap was placed as part of the Torch Lake Superfund Site Dollar Bay remedial action. The Fourth Five-Year Review Report for the Torch Lake Superfund Site (USEPA, 2018) indicated that construction was completed in 2002; however, the Dollar Bay parcel has not been deleted from the NPL. The capped areas are subject to an on-going DEQ O&M plan. The balance of the areas were not addressed as part of the Torch Lake Superfund Site remedial action. The area is currently the location of mining-era buildings; however, specific present day use is unknown. The property includes portions of the former wire mill operations. The parcel is bound by the Portage Canal to the west and south, by wooded property to the east and residential and privately owned properties to the north and north-west. Many mining-era buildings, some that appear to be used for boat storage, are present in the central portion of the property. Additional boats, heavy equipment and other vehicles are located north of the property buildings. Suspect asbestos containing materials, including roofing, thermal insulation material are observed throughout. Abandoned containers with unknown contents, fuel tanks of various sizes, including a tanker trailer along the shoreline, are also observed both inside and outside of property buildings. A large pile that appears to be building construction material is located near the shoreline. Topography is relatively flat, sloping gently to the Portage Canal and Lake. Public access to the proper

					Poter	ntially Al	bandoned	I Containers						iai						6						
Not Intact = filled with scrap, appears or is visibly empty, carcass, major holes, rusted with holes, split seams		1-25 gallor container		0 gallon rums	55 ga drui	allon	>55 gallon	ASTs/USTs 25-200 gallons	ASTs/USTs >200 gallons	ized Vessel/ sed Cylinders	Auto/Boat Fuel Tanks	guishers	IIS	Suspect Asbestos Containing Material Residual Process Materia	Potential PCB/Mercury Containing Equipment		Outfalls Soil Staining/	Vegetation	iple endation	Sampled 2018-2019		on-friable	r Count per			
Description	Notes:	Intact Not Intact	Intact	Not Intact	Intact	Not Intact, carcass	Intact	Intact Not Intact	Intact Not Intact	Pressur	Auto/Boa	Batteries Fire Extinguishers	Other Items	Suspect Asbestos Containing Materi Residual Process	Potential Containin	Waste Pile	Outfalls Soil Stain	Physical Hazards	Field Sample Recommendation	Field Sam	Targeted Sample ID	Asbestos Friable/No	Container Obs. Area	Recon Latitude	Recon Longitude	Observation Number
White TSI in pumphouse	Inaccessible													1					N	N			0	47.114550	-88.498687	SACM038
1- green 200 gallon fuel tank 1- silver propane tank Silver painted material on metal building 1- rusted black 200 gallon fuel tank 1- Green/red 200 gallon fuel tank 2- 55 gallon drum, rusted, appear intact 12- 55 gallon drums, 2 open or rusted at top, rest appear intact, newer 4- rusted 200 gallon fuel tank, appear intact 4- Texaco drums, 27"x14" 'Marfak heavy duty 2' 1- black steel tank, 34"x16"x14" 22- 55 gallon drums, appear intact		4	1		34	2		8		1				1				1	N	N			50	47.114556	-88.498376	Cont116
Silver painted material on metal arch building Fan brick and tan an red brick material on adjacent building, with black board underneath Red roofing	SACM													1					Y	Υ	OMCP-ASBBLK48	Non-Friable	0	47.114452	-88.498569	SACM039
	Note to open up													•	1				Y	N	QWOT NOBBERTO	Ttorr r riable	0	47.114355	-88.498615	SPCB017
400 LF - Pipewrap (approximately 100+ LF/foom) Various pieces of roofing among snow Gaskets 2. pallets of gallons of silver BrewerCote roof coating	SACM Drums may require characterization. Stained soils inside warehouse area. Reported-trenches in cement floor area of warehouse have been filled in. Oil running to apparent floor drain in auto shop.																									

RECONNAISSANCE, TARGETED SAMPLING, AND POTENTIAL CHEMICAL AND PHYSICAL HAZARDS INVENTORY

APPENDIX C Reconnaissance, Targeted Sampling, and Potential Chemical and Physical Hazards Inventory Julio Properties - Dollar Bay

Area:

Property (Common Name):

Julio Marine Dollar Bay

Property Identification Number/Owner:

009-033-055-00/Lawrence Julio

Inspection Date:

9/26/2018, inaccessible areas inspected 12/3/2019 and 11/4/2020.

General Property Description (Significant Landscape Features, Topography, Cover, Etc.,): The parcel was identified as Tamarack and Osceola Copper Manufacturing Company on the 1907 Sanborn Map. It was the location of John A. Roebling's Sons Copper Manufacturing and Foley Copper Products Company Copper Wire Mill in 1928 and 1949, respectively. The EPA as part of the Torch Lake Superfund Site remedial action capped portions of Area M, N, and O. Dollar Bay Torch Lake EPA Superfund Site asbuilt drawings (USDA NRCS, 2004) indicate that the cap was placed as part of the Torch Lake Superfund Site Dollar Bay remedial action. The Fourth Five-Year Review Report for the Torch Lake Superfund Site (USEPA, 2018) indicated that construction was completed in 2002; however, the Dollar Bay parcel has not been deleted from the NPL. The capped areas are subject to an on-going DEQ O&M plan. The balance of the areas were not addressed as part of the Torch Lake Superfund Site remedial action. The area is currently the location of mining-era buildings; however, specific present day use is unknown. The property includes portions of the former wire mill operations. The parcel is bound by the Portage Canal to the west and south, by wooded property to the east and residential and privately owned properties to the north and north-west. Many mining-era buildings, some that appear to be used for boat storage, are present in the central portion of the property. Additional boats, heavy equipment and other vehicles are located north of the property buildings. Suspect asbestos containing materials, including roofing, thermal insulation material are observed throughout. Abandoned containers with unknown contents, fuel tanks of various sizes, including a tanker trailer along the shoreline, are also observed both inside and outside of property buildings. A large pile that appears to be building construction material is located near the shoreline. Topography is relatively flat, sloping gently to the Portage Canal and Lake. Public access to the proper

					_											_			_								
					Poten	tially Al	bandoned	Containers	1							rial					19						
Not Intact = filled with scrap, appears or is visibly empty, carcass, major holes, rusted with holes, split seams		1-25 gall contain		-40 gallon drums	55 gal drun	llon :	>55 gallon drums	ASTs/USTs 25-200 gallons	ASTs/ s >200 g	USTs allons	rized Vessel/ sed Cylinders	Auto/Boat Fuel Tanks	guishers	su	Suspect Asbestos Containing Material	Residual Process Material Potential PCB/Mercury Containing Equipment	o l	Outfalls Soil Staining/ Stressed Vecetation	Hazards	որle endation	npled 2018-2019		on-friable	r Count per			
Description	Notes:	Intact	Not Intact	Not Intact	Intact	Not Intact, carcass	Intact	Intact Not Intact	Intact	Not Intact	Pressur Compres	Auto/Boat	Fire Extin	Other Items	Suspect / Containin	Residual Potential Containin	Waste Pile	Outfalls Soil Stain Stressed	Physical Haza	Field Sample Recommenda	Field San	Targeted Sample ID	Asbestos Friable/Nor	Container Obs. Area		Recon Longitude	Observation Number
Boat House: 1 - Transformer, suspect PCBs, may still have power 6 - 55 gallon drums, appear empty 2 - 55 gallon drum with potential contents 2 - gas cans 3 - fire extinguishers 1 - antique spotlight (PCBs?) 3 - large vats from lean-to (reported empty) 2 - 5 gallon buckets, one labeled "aluminum roof coating"	Drums may require characterization	4			2	6				3			3			2								15	47.114425	-88.500630	IA026
Tan Garage: 1- compressed gas cylinder 1 - 55 gallon drum 3 - 35 gallon drums, 1 appears empty 3 - gas cans	Drums may require characterization	4	2	2 1	1	7					1								1					9	47.113858	-88.500353	IA027
White Trailer	No items of environmental concern identified																							0	47.113724	-88.500233	IA028
White Explosives Shed	Explosives removed prior to recon. No items of environmental concern identified.																							0	47.113862	-88.501028	IA029
North Tan Building: 1 - 55 gallon drum, empty 11 - 5 gallon plastic buckets, empty 1 - refrigerator (potential freon) Crushed 9x9" floor tile Approx. 50 - 5 gallon plastic buckets, empty Particle board ceiling, deteriorated			61			1								1	2									62	47.114644	-88.498655	IA030
South Tan Building: Collapsed wood debris in main room Asbestos wrapped pipes, pile of shingles Refrigerator (potential freon), crushed 9x9 floor tile														1	2									0	47.114532	-88.498553	IA031
White House Trailer	No items of environmental concern identified																							0	47.114643	-88.498446	IA032

RECONNAISSANCE, TARGETED SAMPLING, AND POTENTIAL CHEMICAL AND PHYSICAL HAZARDS INVENTORY

APPENDIX C Reconnaissance, Targeted Sampling, and Potential Chemical and Physical Hazards Inventory Julio Properties - Dollar Bay

General Property Description (Significant Landscape Features, Topogr

Julio Marine Dollar Bay

009-033-055-00/Lawrence Julio

9/26/2018, inaccessible areas inspected 12/3/2019 and 11/4/2020.

Property (Common Name):

Inspection Date:

Property Identification Number/Owner:

General Property Description (Significant Landscape Features, Topography, Cover, Etc.,): The parcel was identified as Tamarack and Osceola Copper Manufacturing Company on the 1907 Sanborn Map. It was the location of John A. Roebling's Sons Copper Manufacturing and Foley Copper Products Company Copper Wire Mill in 1928 and 1949, respectively. The EPA as part of the Torch Lake Superfund Site remedial action capped portions of Area M, N, and O. Dollar Bay Torch Lake EPA Superfund Site asbuilt drawings (USDA NRCS, 2004) indicate that the cap was placed as part of the Torch Lake Superfund Site Dollar Bay remedial action. The Fourth Five-Year Review Report for the Torch Lake Superfund Site (USEPA, 2018) indicated that construction was completed in 2002; however, the Dollar Bay parcel has not been deleted from the NPL. The capped areas are subject to an on-going DEQ O&M plan. The balance of the areas were not addressed as part of the Torch Lake Superfund Site remedial action. The area is currently the location of mining-era buildings; however, specific present day use is unknown. The property includes portions of the former wire mill operations. The parcel is bound by the Portage Canal to the west and south, by wooded property to the east and residential and privately owned properties to the north and north-west. Many mining-era buildings, some that appear to be used for boat storage, are present in the central portion of the property. Additional boats, heavy equipment and other vehicles are located north of the property buildings. Suspect asbestos containing materials, including roofing, thermal insulation material are observed throughout. Abandoned containers with unknown contents, fuel tanks of various sizes, including a tanker trailer along the shoreline, are also observed both inside and outside of property buildings. A large pile that appears to be building construction material is located near the shoreline. Topography is relatively flat, sloping gently to the Portage Canal and Lake. Public access to the proper

				Potentially	Abandone	d Containers						a											
Not Intact = filled with scrap, appears or is visibly empty, carcass, major holes, rusted with holes, split seams		1-25 gallor container	35-40 gallon drums	55 gallon drums	>55 gallon		ASTs/USTs >200 gallons	rized Vessel/ sed Cylinders	L L	Fire Extinguishers	Other Items Suspect Asbestos	Containing Material Residual Process Material Potential PCB/Mercury	ng Equipment e	Outfalls Soil Staining/	Vegetation	Field Sample Recommendation	npled 2018-2019		on-friable	r Count per			
Description	Notes:	Intact Not Intact	Intact Not Intact	Intact Not Intact, carcass	Intact	Intact Not Intact	Intact Not Intact	Pressur	Auto/Boat Batteries	ire Extin	Other Items Suspect Asl	Containir Residual	Containing Waste Pile	Outfalls Soil Stain	Physical Hazards	ield San	Field Sampled	Targeted Sample ID	Asbestos Friable/Nor	Container Obs. Area	Recon Latitude	Recon Longitude	Observation Number
Cream Trailer in Parking Lot	No items of environmental concern identified								1 B		0,	<u> </u>	0 2	0,0	,		-	rargetea oampie ib	7 11		Lutitude	Longitude	- Itumber
•	No items of environmental concern identified																						
·	Appears empty																						
Three Sheds - East side of property: Green Shed - includes fiberglass insulation Gray Shingled Shed - includes electrical equipment White Shed w/ Red Shingles - empty	No items of environmental concern identified																						
Silver Trailer - East side of property: 3 - 55 gallon drums (two labeled "oil," "diesel") 4 - 5 gallon metal containers, empty 15 - 5 gallon buckets w/ oil/material (7 felt empty) 4 - empty 5 gallon plastic gas containers 3 - 1 gallon paint cans fire extinguisher insulation on floor 1 gallon tread cutting oil - partially filled		12 15		3						1	1					Y				30			
Brick Pump House Building w/ Silver roofing	Contains insulation, SACM silver roofing										2					Υ							
Wood Shed with Fire Hydrant: fire hose - deteriorated											1												
Open Building Portion: 1 - 55 gallon blue/white drum, contains roofing paper Shingle material, wood debris 5 - 55 gallon drums, empty and crushed or open 1 - 35 gallon drum, unknown contents, open at top 2 yellow fuel boxes, empty 3 toolboxes, empty			1	6												Y				7	,		
Gray Metal Building near north side of property: Approx. 12 Black Meters Electrical switch/breaker boxes												2								,			
	No items of environmental concern identified																						
Red Trailers along north side of property near entrance	No items of environmental concern identified Total Item Count:	F7 7/	25 4	151 38	0	20 1	19 9	32	7 0	4	11 04	2 :		0 2	32			20		409			

PHOTOGRAPHIC LOG

Photo 1: View of debris piles located throughout the property. Photo taken 9/27/2018.

Photo 3: View of 55-gallon drums with potential unknown contents, identified as Observation Number CONT121. Photo taken 9/27/2018.

Photo 2: View of a 55-gallon drum labeled "synthetic blend engine oil," identified as Observation Number CONT123. Photo taken 9/27/2018.

Photo 4: View of a petroleum and tar release sampled as QMCP-SS56. Photo taken 9/28/2018.

Photo 5: View looking down to stained soils, identified as Container Area CONT124. Photo taken 9/27/2018.

Photo 7: View looking northwest to the scrap dump bin outside the gates. Photo taken 09/24/2019.

Photo 6: View of potential mercury containing electrical components, identified as observation SHg005. Photo taken 9/27/2018.

Photo 8: View looking southwest to the area outside the gates closed to access and dumping. Photo taken 10/28/2019.

Photo 1: View of silver roofing material sampled as QMCP-ASBBLK49. Photo taken 10/1/2018.

Photo 3: View of 55-gallon drums with potential unknown contents, identified as Observation Number CONT106. Photo taken 9/26/2018.

Photo 2: View of brown asbestos insulation stored in an open drum sampled as QMCP-ASBBLK57. Photo taken 10/1/2018.

Photo 4: View looking northeast to a tanker with potential unknown contents along the southern shoreline. Photo taken 9/26/2018.

Photo 5: View of debris pile with suspect asbestos containing materials, identified as Observation Number SACM036. Photo taken 9/26/2018.

Photo 7: View of a leaking processing vat and stained soil on the ground. Photo taken 7/25/2019.

Photo 6: View of black soot material sampled as QMCP-SS57. Photo taken 10/1/2018.

Photo 8: View of the "No Dumping" sign placed outside the gate to the property. Photo taken 10/7/2019.

BORING LOGS

COUNTY: Houghton

TOWNSHIP: Franklin

TOWN: 55N

RANGE: 33W

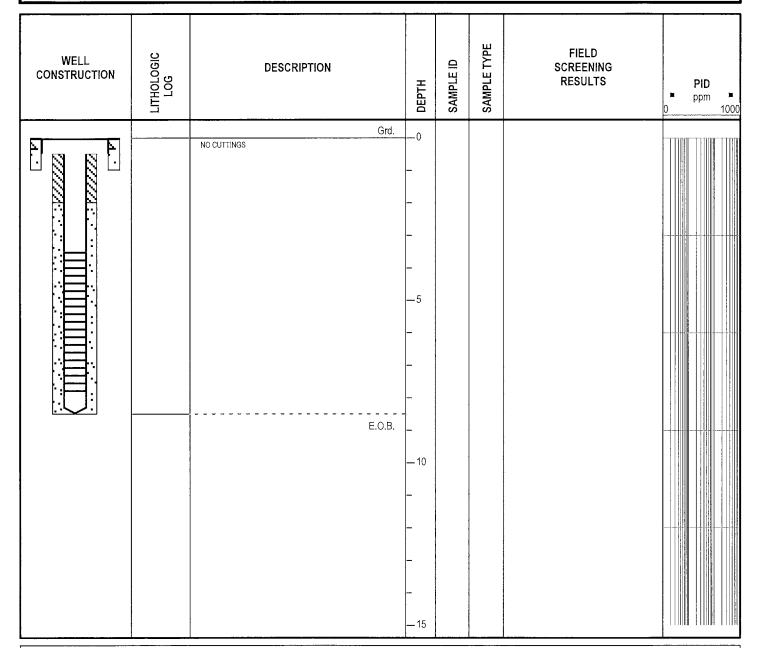
SECTION: 33

BOREHOLE LOG

BORING/WELL: MW-7

SITE: Ripley Waterfront - Julio's Properties

DATE: 8-19-19


DRILLER: Scott Densteadt
GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, east of main building

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 100.3

T.O.C.: 100.00 S.W.L.: NA CASING: 2-inch pvc SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.114280875

LONGITUDE: -88.498748746

DATUM: MichGeoRef NORTHING: 732165.076

EASTING: 310290.297

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

TOWNSHIP: Franklin

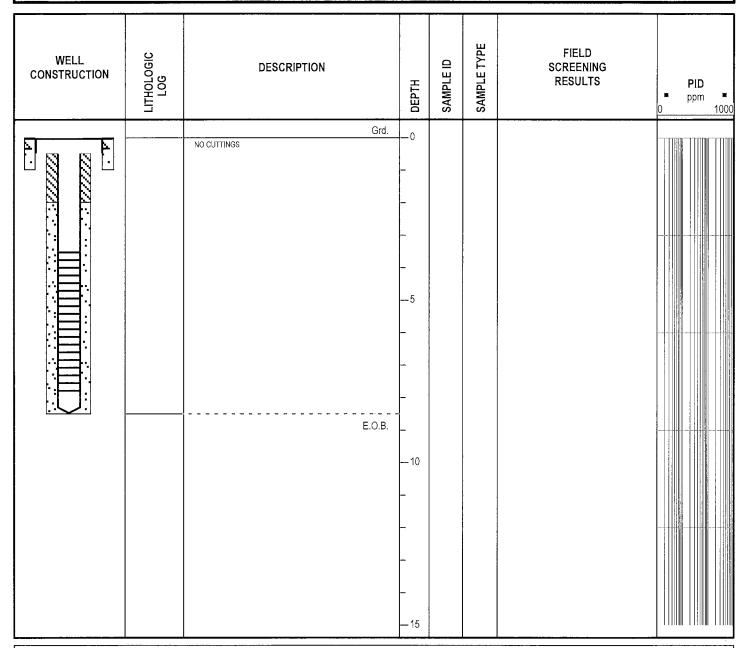
RANGE: 33W

TOWN: 55N

SECTION: 33

DATE: 8-19-19

DRILLER: Scott Densteadt


GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, south of main building

ERNIE#: 31000063

VERTICAL DATUM; Relative to T.O.C. of MW-7

GRD, ELEVATION: 101.22

T.O.C.: 100.72 S.W.L.: NA

CASING: 2-inch pvc SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.113890118

LONGITUDE: -88.499700383

DATUM: MichGeoRef NORTHING: 732123.964

EASTING: 310216.750

SITE: Ripley Waterfront - Julio's Properties

BORING/WELL: MW-9

BOREHOLE LOG

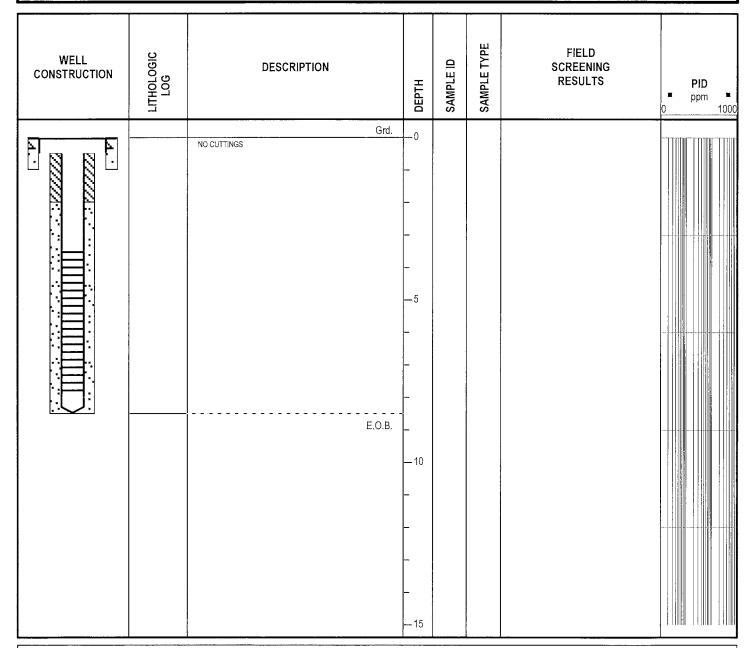
COUNTY: Houghton

TOWNSHIP: Franklin

TOWN: 55N RANGE: 33W

SECTION: 33

DATE: 8-19-19


DRILLER: Scott Densteadt
GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, west of main building

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 100.75 **T.O.C.:** 100.54

S.W.L.: NA
CASING: 2-inch pvc
SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.113793843

LONGITUDE: -88.500818338

DATUM: MichGeoRef NORTHING: 732115.968

EASTING: 310131.631

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

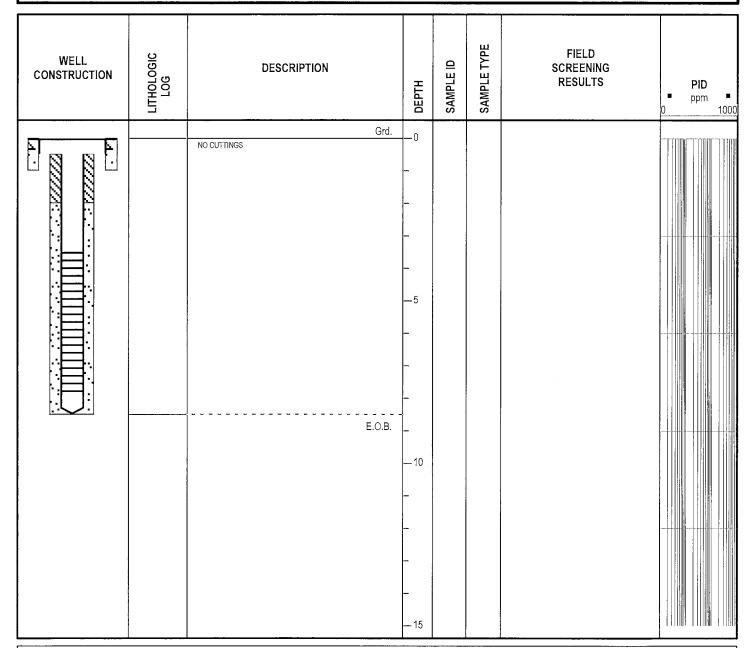
TOWNSHIP: Franklin

TOWN: 55N RANGE: 33W

SECTION: 33

DATE: 8-19-19

DRILLER: Scott Densteadt


GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, south side of north warehouse

ERNIE#: 31000063

VERTICAL DATUM; Relative to T.O.C. of MW-7

GRD. ELEVATION: 101.82

T.O.C.: 101.79 S.W.L.: NA CASING: 2-inch pvc SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.114257953

LONGITUDE: -88.500710366

DATUM: MichGeoRef NORTHING: 732167.263

EASTING: 310141.460

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

DATE: 8-20-19

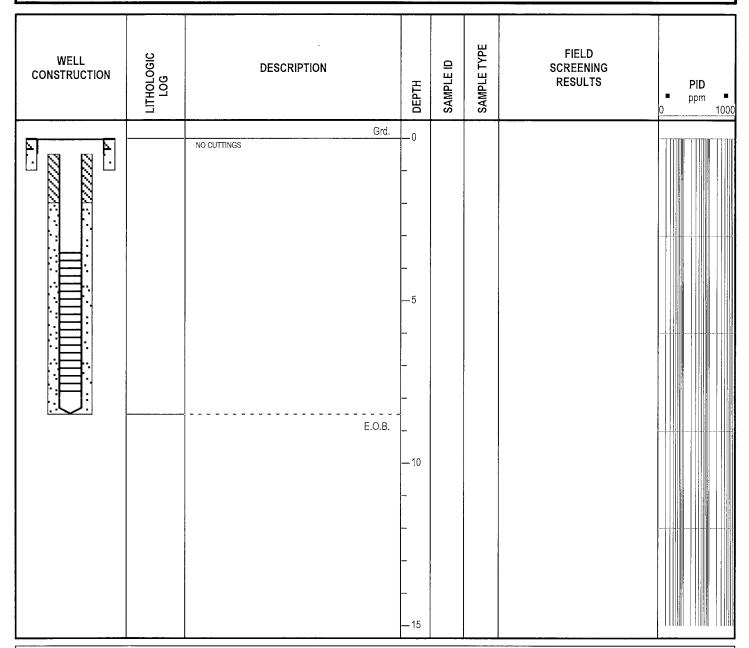
TOWNSHIP: Franklin

DRILLER: Scott Densteadt

TOWN: 55N

GEOLOGIST: Jeff Pincumbe

RANGE: 33W


DRILL METHOD: Geoprobe

SECTION: 33

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, west side of north warehouse

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 101.28 T.O.C.: 101.02

S.W.L.: NA
CASING: 2-inch pvc
SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.114135337

LONGITUDE: -88.500985281

DATUM: MichGeoRef

NORTHING: 732154.306

EASTING: 310120.178

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

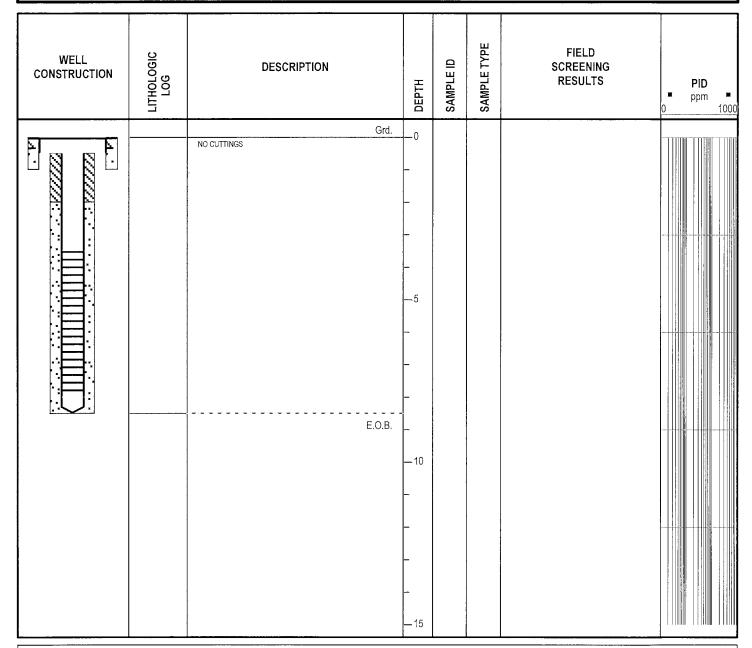
TOWNSHIP: Franklin

RANGE: 33W SECTION: 33

TOWN: 55N

DATE: 8-20-19

DRILLER: Scott Densteadt


GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, center of north fence line

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 99.82

T.O.C.: 99.32 S.W.L.: NA CASING: 2-inch pvc

SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.115260028

LONGITUDE: -88.500572219

DATUM: MichGeoRef NORTHING: 732278.245

EASTING: 310155.479

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

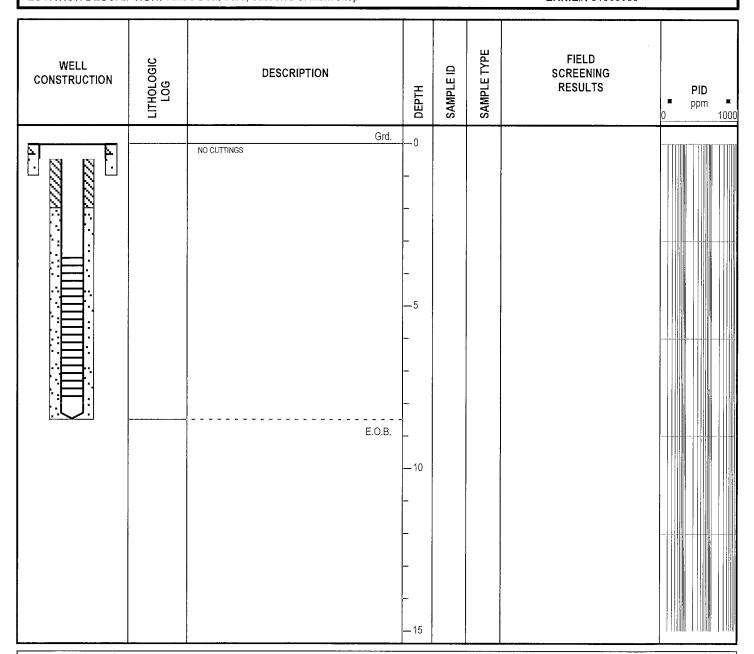
TOWNSHIP: Franklin

TOWN: 55N RANGE: 33W

SECTION: 33

DATE: 8-20-19

DRILLER: Scott Densteadt


GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, east side of main shop

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 102.66

T.O.C.: 102.23 S.W.L.: NA CASING: 2-inch pvc

SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.114515875

LONGITUDE: -88.499337469

DATUM: MichGeoRef NORTHING: 732192.601

EASTING: 310246.483

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

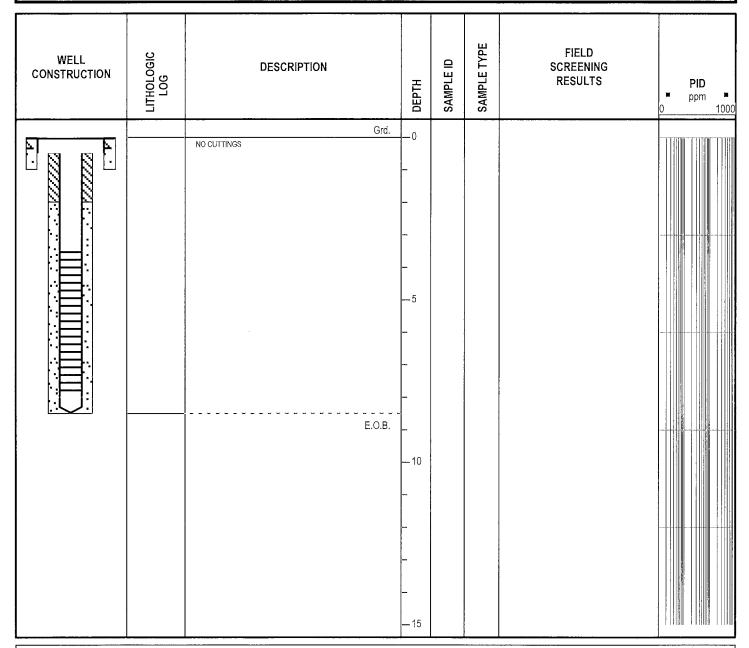
TOWNSHIP: Franklin

TOWN: 55N RANGE: 33W

SECTION: 33

DATE: 8-20-19

DRILLER: Scott Densteadt


GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, east side norh warehouse

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 102.34

T.O.C.: 101.86 S.W.L.: NA CASING: 2-inch pvc SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.114664181

LONGITUDE: -88.500197119

DATUM: MichGeoRef NORTHING: 732211.150

EASTING: 310181.817

SITE: Ripley Waterfront - Julio's Properties

BOREHOLE LOG

COUNTY: Houghton

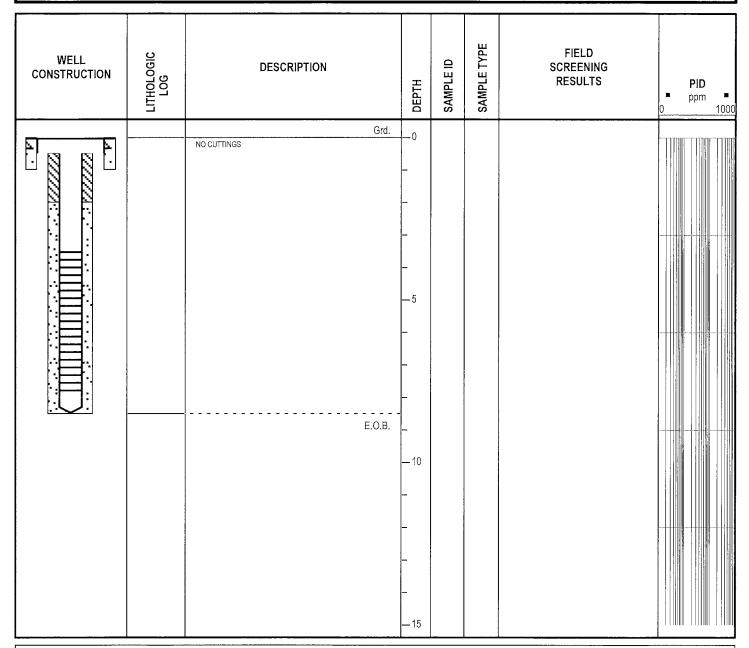
TOWNSHIP: Franklin

TOWN: 55N RANGE: 33W

SECTION: 33

DATE: 8-20-19

DRILLER: Scott Densteadt


GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 8.5 feet

LOCATION DESCRIPTION: Julio's Boat Yard, near NE corner of shop building

ERNIE#: 31000063

VERTICAL DATUM: Relative to T.O.C. of MW-7

GRD. ELEVATION: 102.63

T.O.C.: 102.34 S.W.L.: NA CASING: 2-inch pvc SCREEN: 2-inch x 5-foot pvc

WELL DEPTH: 8.5 feet

COMPLETION NOTES: Sand to 2.5 feet, benseal to 1 foot, flush mount

LATITUDE: 47.114611514

LONGITUDE: -88.499951518

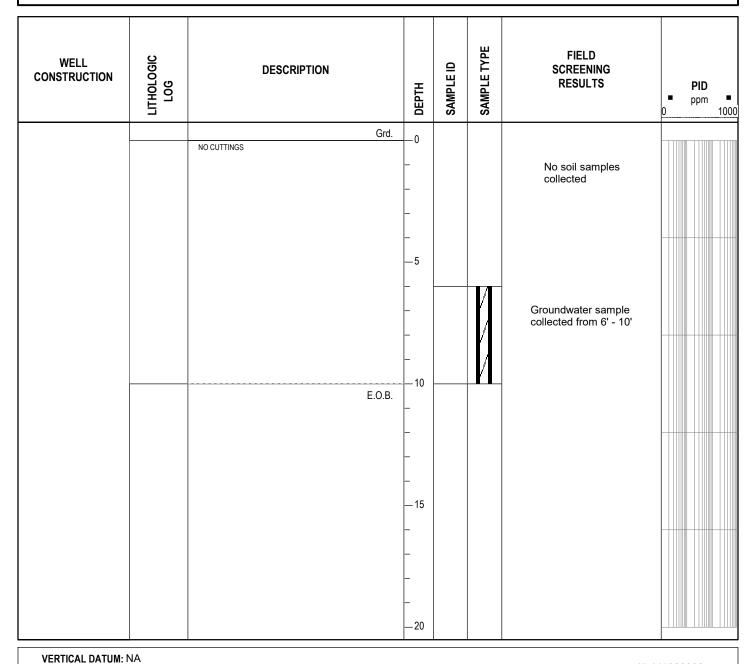
DATUM: MichGeoRef NORTHING: 732204.707

EASTING: 310200.256

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18


DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 10 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

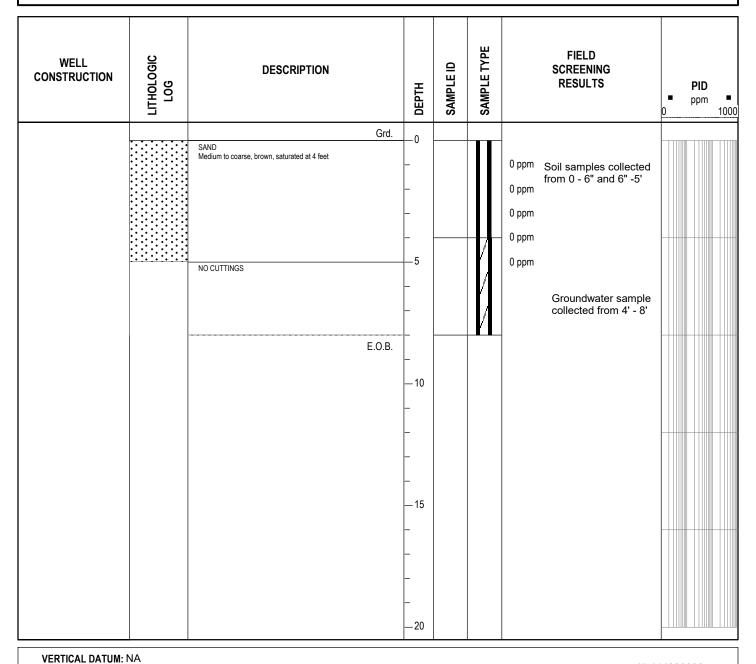
GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.115988300 LONGITUDE: -88.498881837 DATUM: MichGeoRef

NORTHING: 732355.066 EASTING: 310286.238

COUNTY: Houghton

TOWNSHIP: Osceola


TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 8 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.114283990 **LONGITUDE:** -88.501128389

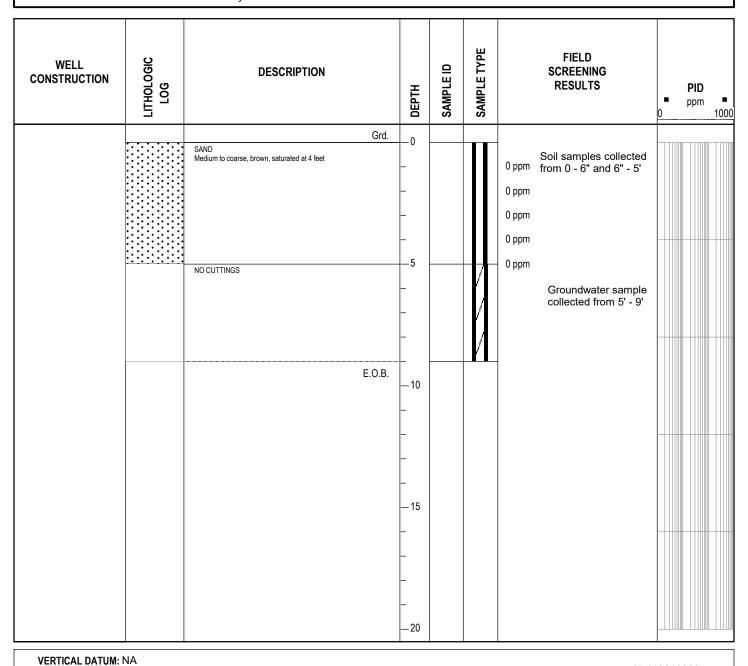
DATUM: MichGeoRef

NORTHING: 732171.165 EASTING: 310109.852

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18


DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 9 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

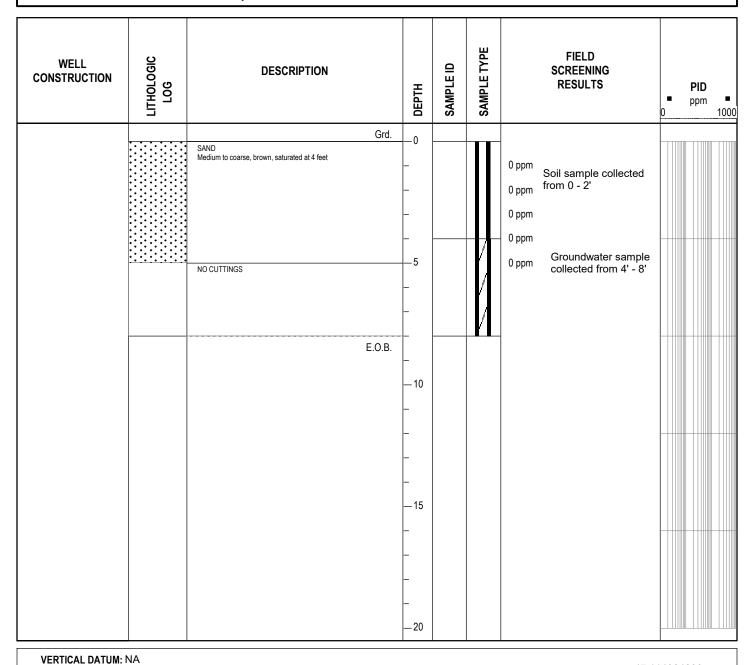
GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.113818060 LONGITUDE: -88.500720932 DATUM: MichGeoRef NORTHING: 732118.423

EASTING: 310139.103

COUNTY: Houghton

TOWNSHIP: Osceola


TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 8 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

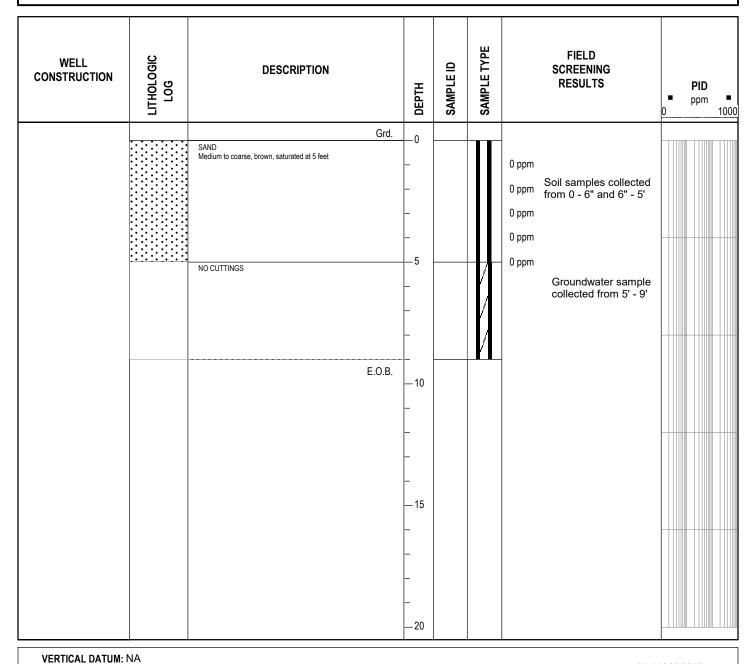
LATITUDE: 47.114064200 **LONGITUDE:** -88.500247928

DATUM: MichGeoRef **NORTHING:** 732144.624

EASTING: 310175.843

COUNTY: Houghton

TOWNSHIP: Osceola


TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 9 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.113866670

LONGITUDE: -88.499808382

DATUM: MichGeoRef

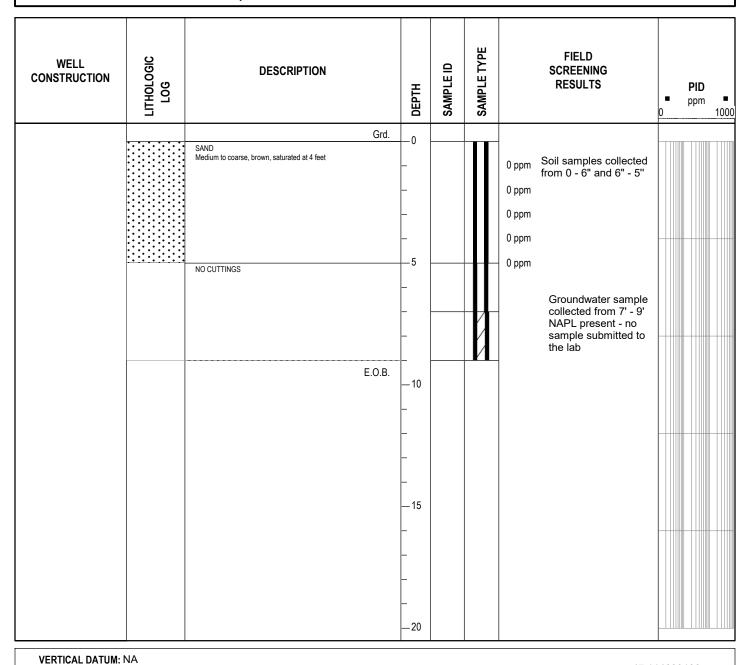
NORTHING: 732121.620

EASTING: 310208.477

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18


DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 9 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

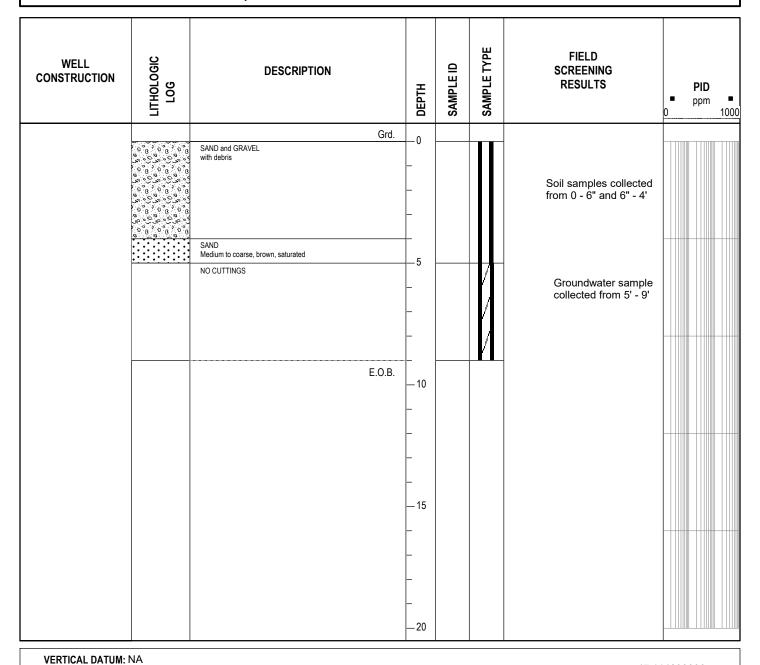
GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.114609100 LONGITUDE: -88.499941477 DATUM: MichGeoRef

NORTHING: 732204.414 EASTING: 310201.009

COUNTY: Houghton

TOWNSHIP: Osceola


TOWN: 55N RANGE: 33W SECTION: 33 **DATE**: 9-10-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 9 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.114293390

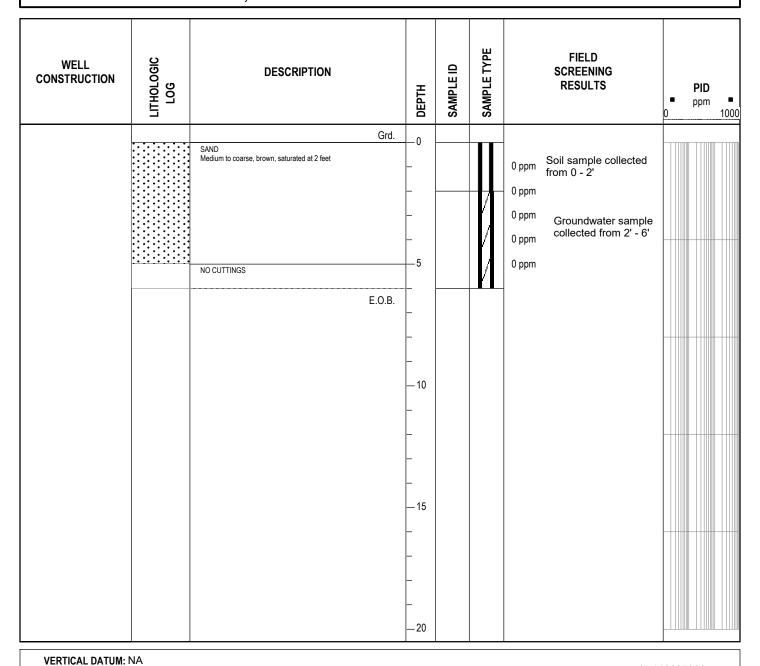
LONGITUDE: -88.498742999

DATUM: MichGeoRef NORTHING: 732166.452 EASTING: 310290.777

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-10-18


DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 6 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Boat Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.113827920 **LONGITUDE:** -88.498173478

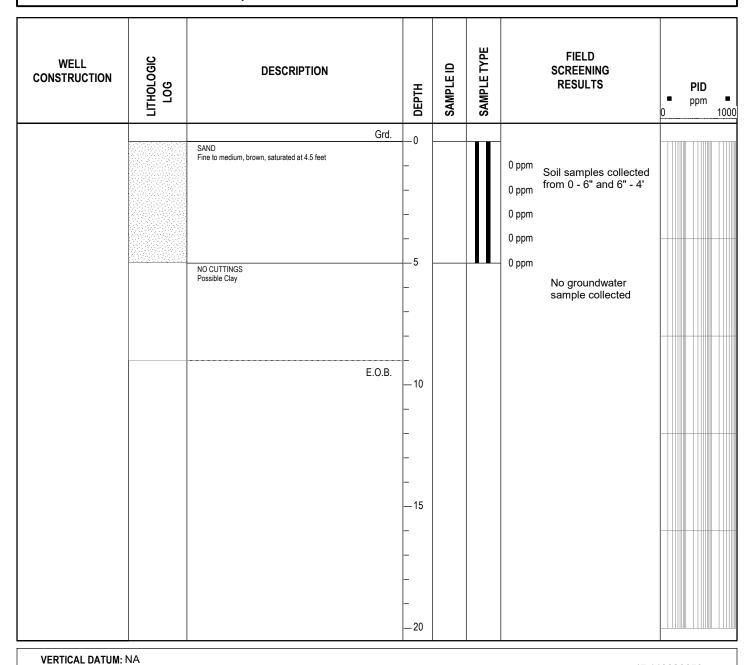
DATUM: MichGeoRef NORTHING: 732113.372 EASTING: 310332.322

COUNTY: Houghton

TOWNSHIP: Franklin **TOWN:** 55N

RANGE: 33W SECTION: 32

DATE: 9-9-18


DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 9 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.118326650 LONGITUDE: -88.512118817 DATUM: MichGeoRef NORTHING: 732747.837

EASTING: 309290.772

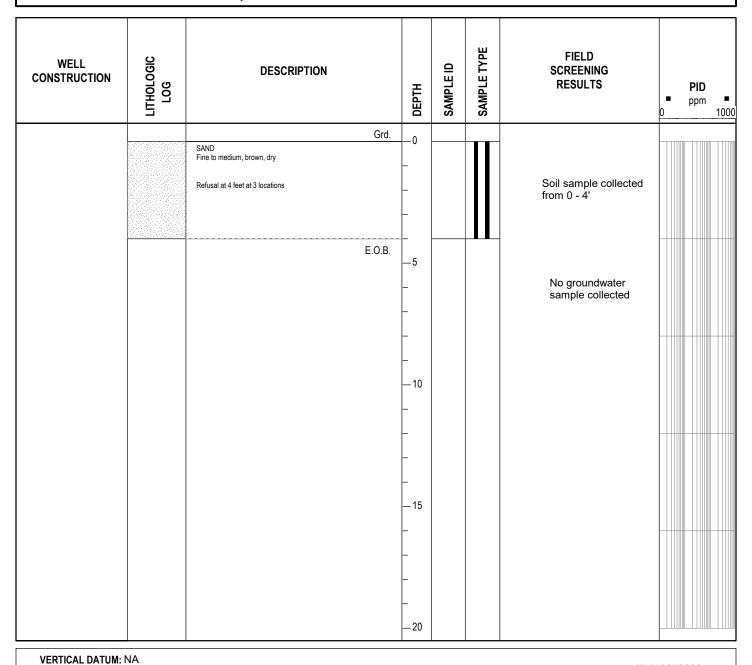
COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N

RANGE: 33W

SECTION: 33


DRILLER: Zack Nichols
GEOLOGIST: Jeff Pincumbe
DRILL METHOD: Hand Auger

TOTAL DEPTH: 4 feet

DATE: 9-9-18

LOCATION DESCRIPTION: Julio's Dollar Bay Yard

ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.119073260

LONGITUDE: -88.508815207

DATUM: MichGeoRef

NORTHING: 732721.768

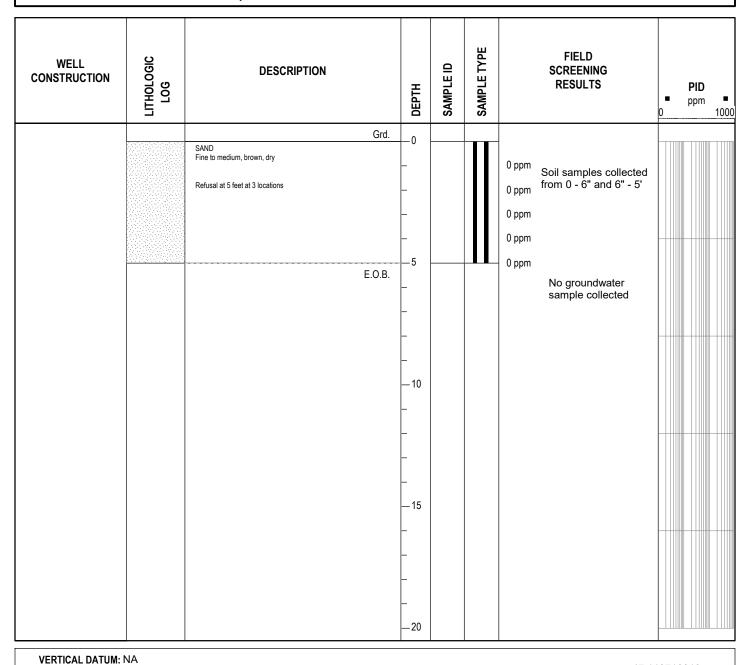
EASTING: 309543.926

COUNTY: Houghton

TOWNSHIP: Franklin **TOWN:** 55N

RANGE: 33W SECTION: 32

DATE: 9-9-18


DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

TOTAL DEPTH: 5 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

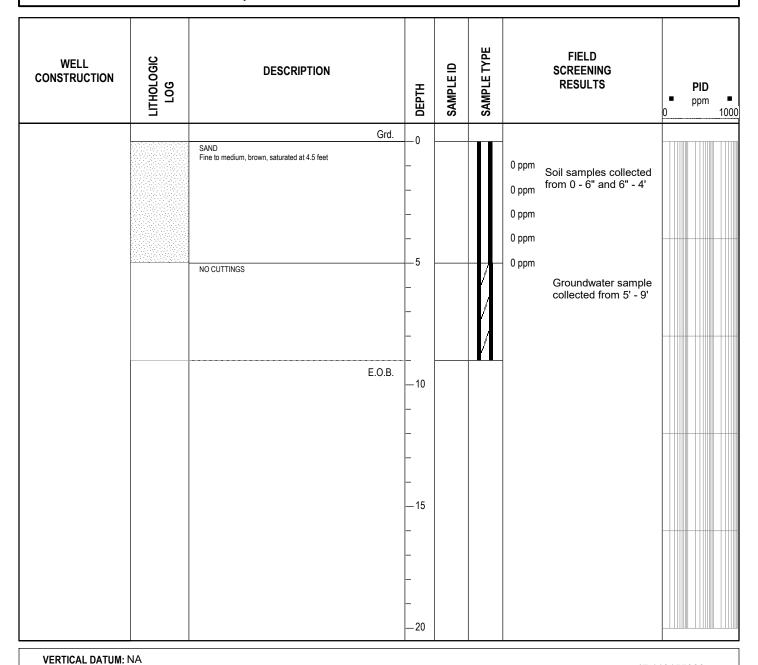
LATITUDE: 47.118716810 LONGITUDE: -88.510405447 DATUM: MichGeoRef NORTHING: 732686.025

EASTING: 309422.078

COUNTY: Houghton

TOWNSHIP: Franklin **TOWN:** 55N

RANGE: 33W SECTION: 32


DATE: 9-9-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 9 feet

LOCATION DESCRIPTION: Julio's Dollar Bay Yard ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.119155980

LONGITUDE: -88.510962921

DATUM: MichGeoRef

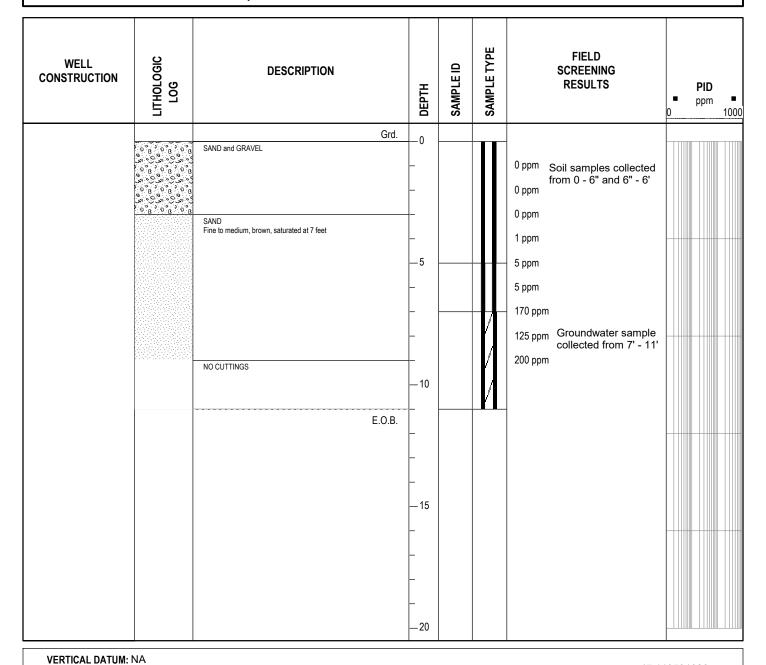
NORTHING: 732736.161

EASTING: 309381.366

COUNTY: Houghton

TOWNSHIP: Osceola
TOWN: 55N
RANGE: 33W
SECTION: 33

LOCATION DESCRIPTION: Julio's Dollar Bay Yard ERNIE#: 31000098


DATE: 9-9-18

DRILLER: Zack Nichols

TOTAL DEPTH: 11 feet

GEOLOGIST: Jeff Pincumbe

DRILL METHOD: Geoprobe

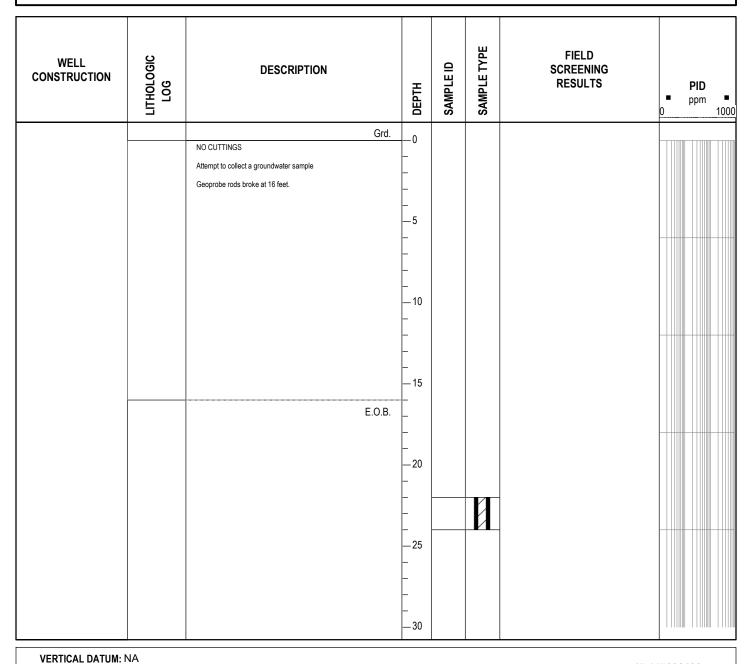
GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.119591020 LONGITUDE: -88.509501087 DATUM: MichGeoRef NORTHING: 732780.945

EASTING: 309493.755

COUNTY: Houghton

TOWNSHIP: Osceola


TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-11-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 16 feet

LOCATION DESCRIPTION: North side of Dollar Bay Schools ERNIE#: 31000098

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

LATITUDE: 47.117696480

LONGITUDE: -88.509587198

DATUM: MichGeoRef

NORTHING: 732570.699

EASTING: 309480.502

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N RANGE: 33W SECTION: 33 **DATE:** 9-11-18

DRILLER: Zack Nichols

GEOLOGIST: Jeff Pincumbe **DRILL METHOD:** Geoprobe

TOTAL DEPTH: 24 feet

LOCATION DESCRIPTION: North side of Dollar Bay Schools ERNIE#: 31000098

WELL CONSTRUCTION	LITHOLOGIC LOG	DESCRIPTION	DEPTH	SAMPLEID	SAMPLETYPE	FIELD SCREENING RESULTS	0	P p	PID pm	1000
		Grd. NO CUTTINGS	-0							
		Groundwater sample only	_							
			_							
			- -5							
			_							
			_ 10							
			_							
			_							
			- - 15							
			_							
			_							
			_ 20							
			_							
		E.O.B.	F		И	Groundwater sample collected from 22' - 24'				
			_ 25			0011001001110111122 24				
			_							
			_							
			_ 30							
			-30					11111 1	11111111	11111

GRD. ELEVATION: NA
T.O.C.: NA
S.W.L.: NA
CASING: NA
SCREEN: NA
WELL DEPTH: NA
COMPLETION NOTES: Backfilled with cuttings and bentonite

VERTICAL DATUM: NA

LATITUDE: 47.118075110

LONGITUDE: -88.508728168

DATUM: MichGeoRef

NORTHING: 732610.678

EASTING: 309546.984

SITE: Abandoned Mining Wastes

COUNTY: Houghton DATE: 9/26/20

TOWNSHIP: DRILLER: Chris Coulter
TOWN: GEOLOGIST: Adam Donne
RANGE: DRILL METHOD: Geoprobe

SECTION: TOTAL DEPTH: 10'

LOCATION DESCRIPTION: Dollar Bay ERNIE#: 31000098

WELL CONSTRUCTION	гое Гиногоеіс	DESCRIPTION	DEPTH	SAMPLEID	SAMPLE TYPE	FIELD SCREENING RESULTS PID Readings PPM	PID ■ ppm ■ 0 1000
		Fine to medium sand with organics, with medium to coarse gravel, brown, moist / Medium sand, some fine sand, with fine to medium gravel, brown, moist	-0			0 0	
		Fine to medium gravel, with fine to medium sand, trace coarse gravel, brown, moist	- 5			0	
		Fine to coarse gravel with large cobble at 6', brown to reddish brown, wet at 6.5'	-			- 0	
		Coarse sand to coarse gravel, brown to reddish brown, wet	_			Groundwater sample collected from 6-10'	
		No recovery - screen pushed to 10'	10			0 0	

VERTICAL DATUM: GRD. ELEVATION:

T.O.C.: S.W.L.: CASING:

SCREEN: Drop-Out Screen, 6-10'

WELL DEPTH: 10'
COMPLETION NOTES:

LATITUDE: 47.114557663

LONGITUDE: -88.498326018

DATUM: MiGeoRef NORTHING: 732194.803 EASTING: 310323.332

SITE: Abandoned Mining Wastes

COUNTY: Houghton

DATE: 9/26/20

TOWNSHIP: **DRILLER:** Chris Coulter TOWN: **GEOLOGIST:** Adam Donne RANGE: **DRILL METHOD:** Geoprobe

SECTION: **TOTAL DEPTH: 17'**

LOCATION DESCRIPTION: Dollar Bay ERNIE#: 31000098

WELL CONSTRUCTION	гос Гітногосіс	DESCRIPTION	DEРТН	SAMPLEID	SAMPLE TYPE	FIELD SCREENING RESULTS PID Readings PPM	PID ■ ppm ■ 0 1000
		Fine silty sand with organics, dark brown, moist Fine to medium poorly sorted sand with silt, some fine to medium gravel. Fine to coarse gravel seam at 2.5', brown to dark brown, moist Fine to medium poorly sorted sand with fine to coarse gravel, brown, moist Fine to medium sand with fine gravel, brown to dark brown, wet (possible perched water) Silty, sandy organic matter (primarily wood), black, moist Organic matter with silty clay, blackish gray, wet Fine to medium sand, brown, wet Fine to medium gravel, brown, wet	0 			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

VERTICAL DATUM: GRD. ELEVATION: T.O.C.: S.W.L.:

CASING: SCREEN: Drop-Out Screen, 13-17'

WELL DEPTH: 17' **COMPLETION NOTES:**

LATITUDE: 47.114098534

LONGITUDE: -88.497910966

DATUM: MiGeoRef NORTHING: 732142.800 **EASTING**: 310353.185

SEDIMENT CORE LOGS

BORING/WELL: QMCP-SD09

SITE: Abandoned Mining Wastes Torch Lake

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N

GEOLOGIST: B. Eustice

RANGE: 33W

DRILL METHOD: Vibecore

SECTION: 33 TOTAL DEPTH: Unknown in 21.4' of water

LOCATION DESCRIPTION: Quincy Mining Company Portage ERNIE ID# 31000098

WELL CONSTRUCTION	LITHOLOGIC LOG	DESCRIPTION	ОЕРТН	SAMPLE TYPE	SAMPLE ID	NOTES	Water Quality Meter
		Lake Bottom	0				
		SANDY GRAVEL Dark brown, few fines and wood debris.			QMCP-SD09-0-6"		
		E.O.B.					
			-				
			-				
			-				
			<u>_</u> 5				

GRD. ELEVATION:
T.O.C.:
S.W.L.:
CASING:
SCREEN:
WELL DEPTH:
COMPLETION NOTES:

VERTICAL DATUM:

LATITUDE: 47.115207764
LONGITUDE: -88.503007450
PROJECTION: MiGeoRef
NORTHING: 732278.321
EASTING: 309970.626

SECTION: 33

BORING/WELL: QMCP-SD10

SITE: Abandoned Mining Wastes Torch Lake

TOTAL DEPTH: 6' in 11.1' of water

COUNTY: Houghton DATE: 9/6/2018

TOWNSHIP: Osceola DRILLER: B. Lower

TOWN: 55N GEOLOGIST: B. Eustice

RANGE: 33W DRILL METHOD: Vibecore

LOCATION DESCRIPTION: Quincy Mining Company Portage ERNIE ID# 31000098

WELL CONSTRUCTION	LITHOLOGIC LOG	DESCRIPTION	DEРТН	SAMPLE TYPE	SAMPLE ID	NOTES	Water Quality Meter
		Lake Bottom	— 0			First core	
		FINES Dark brown - black, organics (wood), soft, loose.		41	QMCP-SD10-0-4"	attempt in location was	
		SAND Dark brown, medium grain, well sorted.		Ш	QMCP-SD10-4-11"	abandoned due poor recovery; however, the	
		No recovery	_			fines had oily sheen.	
			_				
			_				
			_				
			— 5				
			_				
		E.O.B.					

VERTICAL DATUM:
GRD. ELEVATION:
T.O.C.:
S.W.L.:
CASING:
SCREEN:
WELL DEPTH:
COMPLETION NOTES:

LATITUDE: 47.113501 LONGITUDE: -88.4998740 PROJECTION: MiGeoRef NORTHING: 732081.158 EASTING: 310202.208

BORING/WELL: QMCP-SD11

SITE: Abandoned Mining Wastes Torch Lake

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N

GEOLOGIST: B. Eustice

RANGE: 33W

DRILL METHOD: Vibecore

SECTION: 33 TOTAL DEPTH: 0.83' in 6.6' of water

LOCATION DESCRIPTION: Quincy Mining Company Portage ERNIE ID# 31000098

WELL CONSTRUCTION	LITHOLOGIC LOG	DESCRIPTION	DEРТН	SAMPLE TYPE	SAMPLE ID	NOTES	Water Quality Meter
		Lake Bottom	_0				
		SAND Dark brown, medium grain, well sorted.	0		QMCP-SD11-0-6"		
		SAND Dark brown, medium grain, some organics (roots), well sorted.			QMCP-SD11-6-12"		
		E.O.B.					
			_				
			_				
			_				
			<u>-5</u>				

VERTICAL DATUM:
GRD. ELEVATION:
T.O.C.:
S.W.L.:
CASING:
SCREEN:
WELL DEPTH:
COMPLETION NOTES:

LATITUDE: 47.114547625 LONGITUDE: -88.496671411 PROJECTION: MiGeoRef NORTHING: 732189.699 EASTING: 310448.771

SECTION: 33

BORING/WELL: QMCP-SD12

SITE: Abandoned Mining Wastes Torch Lake

TOTAL DEPTH: 5.1' in 7.5' of water

COUNTY: Houghton DATE: 9/6/2018

TOWNSHIP: Osceola DRILLER: B. Lower

TOWN: 55N GEOLOGIST: B. Eustice

RANGE: 33W DRILL METHOD: Vibecore

LOCATION DESCRIPTION: Quincy Mining Company Portage ERNIE ID# 31000098

WELL CONSTRUCTION	гиногоеіс Гиногоеіс	DESCRIPTION	DEРТН	SAMPLE TYPE	SAMPLE ID	NOTES	Water Quality Meter
		Lake Bottom	-0				
		FINES Brown, with organics (mostly in top 1ft), cohesive, nonplastic, loose.			QMCP-SD12-0-12"		
					QMCP-SD12-12-23"		
		No recovery	_				
			_				
			_				
			<u>-5</u>				
		E.O.B.					
			_				

VERTICAL DATUM:
GRD. ELEVATION:
T.O.C.:
S.W.L.:
CASING:
SCREEN:
WELL DEPTH:
COMPLETION NOTES:

LATITUDE: 47.117938616 LONGITUDE: -88.495962233 PROJECTION: MiGeoRef NORTHING: 732564.678 EASTING: 310514.519

BORING/WELL: QMCP-SD13

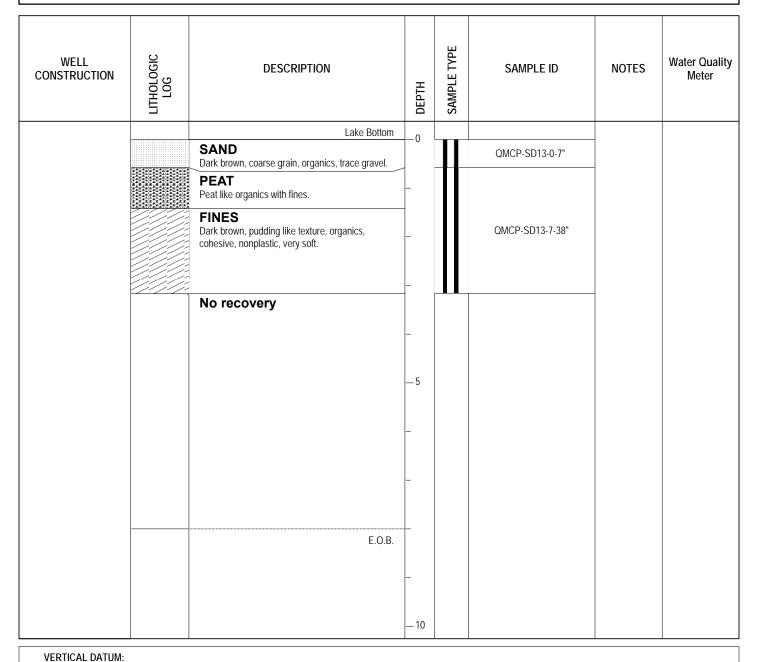
SITE: Abandoned Mining Wastes Torch Lake

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N

DATE: 9/7/2018


DRILLER: B. Lower

GEOLOGIST: B. Eustice

RANGE: 33W DRILL METHOD: Gas Powered Post Pounder

SECTION: 33 TOTAL DEPTH: 8' in 3.8' of water

LOCATION DESCRIPTION: Quincy Mining Company Portage ERNIE ID# 31000098

GRD. ELEVATION:
T.O.C.:
S.W.L.:
CASING:
SCREEN:
WELL DEPTH:
COMPLETION NOTES:

LATITUDE: 47.118525650 LONGITUDE: -88.492531923 PROJECTION: MiGeoRef NORTHING: 732621.630

EASTING: 310776.703

BORING/WELL: QMCP-SD14

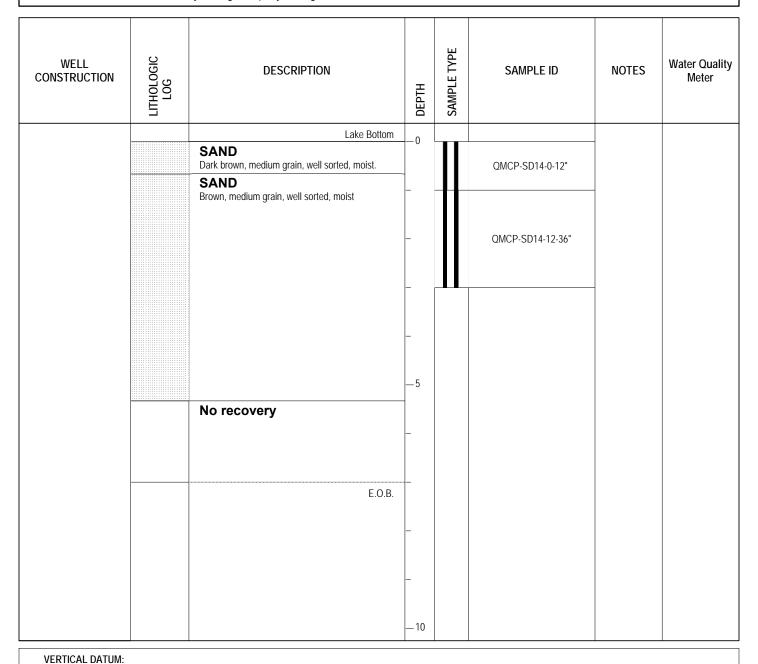
SITE: Abandoned Mining Wastes Torch Lake

COUNTY: Houghton

TOWNSHIP: Osceola

TOWN: 55N

DATE: 9/7/2018


DRILLER: B. Lower

GEOLOGIST: B. Eustice

RANGE: 33W DRILL METHOD: Gas Powered Post Pounder

SECTION: 33 TOTAL DEPTH: 7' in 0.7' of water

LOCATION DESCRIPTION: Quincy Mining Company Portage ERNIE ID# 31000098

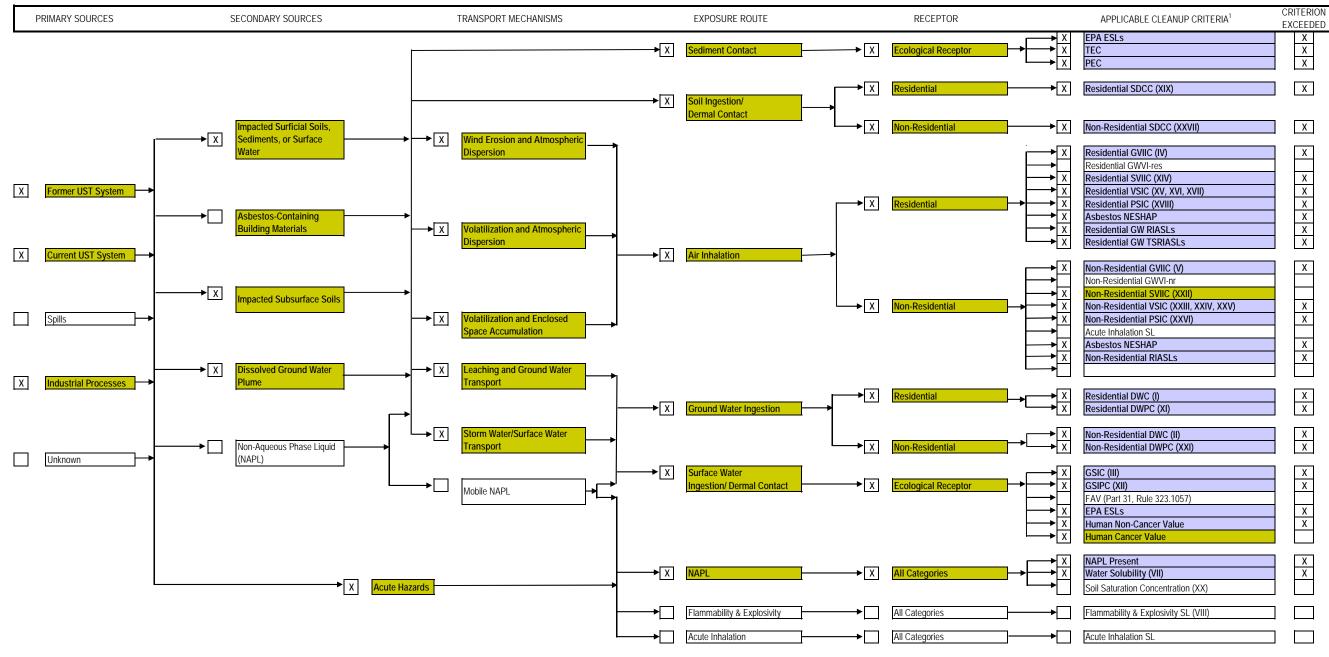
GRD. ELEVATION:
T.O.C.:
S.W.L.:
CASING:
SCREEN:
WELL DEPTH:
COMPLETION NOTES:

LATITUDE: 47.113643073 LONGITUDE: -88.496077822 PROJECTION: MiGeoRef NORTHING: 732087.786 EASTING: 310490.592

LABORATORY ANALYTICAL REPORTS Mannik GROUP

Appendix G

Laboratory Analytical Reports


Bound Separately

CONCEPTUAL SITE MODEL – EXPOSURE PATHWAY EVALUATION

Conceptual Site Model - Exposure Pathway Evaluation

Quincy Mining Company Portage Operations Area Abandoned Mining Wastes - Torch Lake Non-Superfund Site

Notes:

X Indicates this portion of exposure pathway is present at QMCP.

X Indicates this criterion is exceeded at QMCP.

DEQ-RD Op Memo 1 (updated December 30, 2013), unless otherwise noted

Roman numerals indicate EGLE criterion number

² Classification (Adapted from EGLE Op Memo 3)

- 1 Immediate (Exposure is currently occurring).
- 2 Short term threat (between 0 and 2 years until exposure)
- 3 Long term threat (more than 2 years until exposure)
- 4 No demonstratable long-term threat

 $\label{prop:continuous} \mbox{Future Classification - Classification expected if remedy is successful.}$

Drinking water and groundwater/surface water pathway criteria exceedances for metals are excluded from the evaluation.