Disclaimer: This document is a DRAFT document that has not received final approval from the Department of Environment, Great Lakes, and Energy (EGLE). This document was prepared pursuant to a governmental administrative order. The opinions, findings, and conclusions expressed are those of the authors and not those of the EGLE.

ZF Active Safety US Inc.

PROGRESS REPORT NO. 13

Former Kelsey-Hayes Company Site Milford, Michigan

Administrative Order for Response Activity EGLE Docket No. AO-RRD-22-001

May 15, 2023

PROGRESS REPORT NO. 13 FORMER KELSEY-HAYES COMPANY MILFORD, MICHIGAN ADMINISTRATIVE ORDER FOR RESPONSE ACTIVITY EGLE DOCKET NO. AO-RRD-22-001

This progress report has been prepared and is being submitted pursuant to Section XII of the Administrative Order for Response Activity, Docket No. AO-RRD-22-001 (AO) issued by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) to ZF Active Safety US Inc. (ZF or Respondent) on March 16, 2022 (effective date), with respect to the former Kelsey-Hayes Company site in Milford, Michigan. This progress report provides information regarding response activities and other matters related to the AO that occurred from April 14, 2023, through May 14, 2023.

Chronological Description of Activities Conducted During the Specified Reporting Period

- Observation wells OW-16D2R1 and OW-16D2R2 and compromised observation well OW-16D2 were sampled on April 12, 2023. The samples were submitted to Eurofins Canton, Ohio (Eurofins) for analysis of volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Test Method 8260D. Laboratory analytical results and field sampling logs were submitted to EGLE and the Village of Milford (VOM) on April 21, 2023. Vinyl chloride was not detected at or above the reporting limit of 1.0 microgram per liter (µg/L) in any of the April 12, 2023 samples. The laboratory analytical report and field sampling logs are included in **Attachment 1**.
- On April 14, 2023, ZF submitted a request to modify Paragraph 5.2 of the AO to remove the 365-day completion requirement for the installation of the water treatment system. A copy of the request is included in **Attachment 2**.
- On April 20, 2023, EGLE granted the Second Modification of the AO (Second Modification) which updated the provisions of Paragraphs 5.2 and 5.3 to remove the 365-day completion requirement for the installation of the water treatment system and to discontinue sampling compromised observation well OW-16D2. The Second Modification provides that ZF should continue monthly sampling of observation wells OW-16D2R1 and OW-16D2R2. Paragraph 5.3 of the Second Modification also included a requirement to remove compromised observation well OW-16D2 from the ground within 30 days of the effective date (April 20, 2023) of the Second Modification. A copy of the Second Modification is included in Attachment 3.
- As a follow-up to the requirement to remove compromised observation well OW-16D2, on April 26, 2023, Arcadis provided an update to EGLE via electronic mail regarding the process to abandon compromised observation well OW-16D2, including potential complicating factors associated with attempting to remove OW-16D2 and inspecting well casing and screen materials. On May 4, 2023, EGLE responded via electronic mail ("EGLE's May 4th Email") that it had no concerns with the proposed process and requested that EGLE be notified when the abandonment is scheduled and if any difficulties are encountered, including if the work will extend beyond the 30-day deadline specified in the Second Modification. As a follow-up to EGLE's May 4th Email, Arcadis responded via electronic

mail that a work plan would be submitted for EGLE's review and also provided an initial notification that the abandonment work would be conducted after May 29th, based on driller availability. A copy of the electronic mail correspondence is included in **Attachment 4**.

- On May 8, 2023, ZF submitted a Work Plan to document proposed activities for the abandonment of compromised observation well OW-16D2. The Work Plan included a request to extend the deadline to complete the abandonment work set forth in Paragraph 5.3 of the Second Modification to and including June 9, 2023, based on driller availability and scheduling of the work (2 days) around other activities going on with the Village of Milford. A copy of the Work Plan is included in Attachment 5.
- Observation wells OW-16D2R1 and OW-16D2R2 were sampled on May 12, 2023. The samples were submitted to Eurofins for analysis of VOCs using USEPA Test Method 8260D. Laboratory analytical results will be submitted to EGLE and VOM when available.

Results of Sampling and Tests and Other Data

- The laboratory analytical report and field sampling logs for samples collected on April 12, 2023, from observation wells OW-16D2R1 and OW-16D2R2 and compromised observation well OW-16D2 were submitted to EGLE and VOM on April 21, 2023 and are included in Attachment 1. Vinyl chloride was not detected at or above the reporting limit of 1.0 μg/L in any of the April 12, 2023 samples.
- The summary tables of laboratory analytical results of samples and field parameters collected from observation wells OW-16D2R1 and OW-16D2R2 and compromised observation well OW-16D2 were updated to include the laboratory analytical results and field parameters from the April 12, 2023, sampling event and are included in **Attachment 6.**

Status of Access Issues

• There were no issues with access during the reporting period.

Scheduled for the Next Reporting Period

- Conduct monthly sampling at observation wells OW-16D2R1 and OW-16D2R2, with analysis of VOCs using USEPA Test Method 8260D by Eurofins within 10 to 14 days.
- Abandon compromised observation well OW-16D2 in accordance with the Work Plan.
- Continue to work with Ms. Yusko-Kotimko on VOM's Permit Application for Water Supply Systems pursuant to Act 399 for construction of the VOM treatment system improvements.

Other Relevant Information

• ZF and EGLE are working on an Administrative Order by Consent (AOC) which, when put into effect, would replace the AO. On April 25, 2023, EGLE provided a draft of the AOC for ZF review and comment. On May 5, 2023, ZF responded with its comments and proposed revisions on the draft AOC.

Attachments

- 1. Laboratory Analytical Report and Field Sampling Logs (Observation Wells OW-16D2R1 and OW-16D2R2 and Compromised Observation Well OW-16D2)
- 2. Request to Modify Paragraph 5.2 of the Administrative Order
- 3. Second Modification of the Administrative Order, Effective April 20, 2023
- 4. Email Correspondence OW-16D2 Well Abandonment
- 5. OW-16D2 Well Abandonment Work Plan
- 6. Summary Tables of Analytical Results of Samples and Field Parameters (Observation Wells OW-16D2R1 and OW-16D2R2 and Compromised Observation Well OW-16D2)

ATTACHMENT 1

Laboratory Analytical Report and Field Sampling Logs (Observation Wells OW-16D2R1 and OW-16D2R2 and Compromised Observation Well OW-16D2)

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Scott Detwiler ZF Active Safety and Electronics LLC Tech 2 12025 Tech Center Drive Livonia, Michigan 48150 Generated 4/21/2023 7:20:47 AM

JOB DESCRIPTION

TRW Milford

JOB NUMBER

240-183524-2

Eurofins Canton 180 S. Van Buren Avenue Barberton OH 44203

See page two for job notes and contact information.

Eurofins Canton

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

ww

Generated 4/21/2023 7:20:47 AM 5

12 13

Authorized for release by Michael DelMonico, Project Manager I Michael.DelMonico@et.eurofinsus.com (330)497-9396

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	19
QC Sample Results	20
QC Association Summary	23
Lab Chronicle	24
Certification Summary	25
Chain of Custody	26

Qualifiers

Qualifiers		3
GC/MS VOA Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	Ō
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

Job ID: 240-183524-2

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-183524-2

Receipt

The samples were received on 4/14/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

Receipt Exceptions

The following sample was listed on the Chain of Custody (COC); however, no sample was received: MS/MSD on sample 1 of the COC.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) associated with batch 240-569960 recovered above the upper control limit for Dichloro-difluoromethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: OW_16D2_041223 (240-183524-9), OW_16D2R1_041223 (240-183524-10), OW_16D2R2_041223 (240-183524-11), TRIP_BLANK_01 (240-183524-12), FIELD_BLANK_01_041323 (240-183524-13), (CCV 240-569960/4), (CCVIS 240-569960/3), (LCS 240-569960/5), (LCS 240-569960/6), (MB 240-569960/8), (240-183626-B-1), (240-183626-E-1 MS) and (240-183626-F-1 MSD).

Method 8260D: The continuing calibration verification (CCV) analyzed in batch 240-569960 was outside the method criteria for the following analyte: 1,1,2,2-Tetrachloroethane. An MRL standard at or below the reporting limit (RL) was analyzed with the affected samples: OW_16D2_041223 (240-183524-9), OW_16D2R1_041223 (240-183524-10), OW_16D2R2_041223 (240-183524-11), TRIP_BLANK_01 (240-183524-12), FIELD_BLANK_01_041323 (240-183524-13), (CCV 240-569960/4), (CCVIS 240-569960/3), (LCS 240-569960/5), (LCS 240-569960/6), (MB 240-569960/8), (240-183626-B-1), (240-183626-E-1 MS) and (240-183626-F-1 MSD) and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: ZF Active Safety and Electronics LLC Project/Site: TRW Milford

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CAN
5030C	Purge and Trap	SW846	EET CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Sample Summary

Client: ZF Active Safety and Electronics LLC Project/Site: TRW Milford

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-183524-9	OW_16D2_041223	Water	04/12/23 09:10	04/14/23 08:00
240-183524-10	OW_16D2R1_041223	Water	04/12/23 10:00	04/14/23 08:00
240-183524-11	OW_16D2R2_041223	Water	04/12/23 11:00	04/14/23 08:00
240-183524-12	TRIP_BLANK_01	Water	04/12/23 00:00	04/14/23 08:00
240-183524-13	FIELD_BLANK_01_041323	Water	04/13/23 11:05	04/14/23 08:00

Detection Summary

Job ID: 240-183524-2

Project/Site: TRW Milford								
Client Sample ID: OW_1	6D2_04122	3			Lab Sa	ample ID: 2	40-183524-9	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	
1,1-Dichloroethane	3.6		1.0	ug/L	1	8260D	Total/NA	
cis-1,2-Dichloroethene	17		1.0	ug/L	1	8260D	Total/NA	
trans-1,2-Dichloroethene	1.3		1.0	ug/L	1	8260D	Total/NA	5
Client Sample ID: OW_1	6D2R1_041	223			Lab Sar	nple ID: 24	0-183524-10	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	-7
1,1-Dichloroethane	2.3		1.0	ug/L	1	8260D	Total/NA	
cis-1,2-Dichloroethene	19		1.0	ug/L	1	8260D	Total/NA	
trans-1,2-Dichloroethene	1.0		1.0	ug/L	1	8260D	Total/NA	8
Client Sample ID: OW_1	6D2R2_041	223			Lab Sa	mple ID: 24	0-183524-11	9
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	10
cis-1,2-Dichloroethene	9.2		1.0	ug/L	1	8260D	Total/NA	
Client Sample ID: TRIP_	BLANK_01				Lab Sar	nple ID: 24	0-183524-12	
No Detections.								
Client Sample ID: FIELD	BLANK_0	1_041323			Lab Sar	nple ID: 24	0-183524-13	
No Detections.								13

This Detection Summary does not include radiochemical test results.

Eurofins Canton

Client Sample ID: OW_16D2_041223 Date Collected: 04/12/23 09:10 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-9

Matrix: Water

Analyce Result Qualifier RL Unit. D Prepared Analyzed DII Fac 1.12Troihorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.12Troihorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.12Troihorosethane 3.0 U 1.0 ugit. 04/19/23 19:18 1 1.12Troihorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.12Chichorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.2Chichorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.2Chichorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.2Dichorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.2Dichorosethane 1.0 U 1.0 ugit. 04/19/23 19:18 1 1.2Dichorosethane 1.0 U <t< th=""><th>Method: SW846 8260D - Volat</th><th>ile Organic</th><th>Compound</th><th>s by GC/MS</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Method: SW846 8260D - Volat	ile Organic	Compound	s by GC/MS						
1,1,T-Inducation 1.0 1.0 ugL 0.4/1923 19:18 1 1,1,2-Trichloroschane 1.0 0 0.0 ugL 0.4/1923 19:18 1 1,1,2-Trichloroschane 1.0 0 0.0 ugL 0.4/1923 19:18 1 1,1-Dichloroschane 1.0 0 0.0 ugL 0.4/1923 19:18 1 1,1-Dichloroschane 1.0 0 0.0	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,2,2-Taltachioroethane 1.0 ugL 04/1923 19-18 1 1,1,2-Traitorio-1,2-Z-Hulauroethane 1.0 0 0.0 <t< td=""><td>1,1,1-Trichloroethane</td><td>1.0</td><td>U</td><td>1.0</td><td>ug/L</td><td></td><td></td><td>04/19/23 19:18</td><td>1</td><td></td></t<>	1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.1.2-Trichlorosethane 1.0 ugL 0.4/19/23 19-18 1 1.1.2-Trichlorosethane 3.6 1.0 ugL 0.4/19/23 19-18 1 1.1.2-Trichlorosethane 1.0 U 1.0 ugL 0.4/19/23 19-18 1 1.1.2-Trichlorosethane 1.0 U 1.0 ugL 0.4/19/23 19-18 1 1.2-Dichlorosethane 1.0 U 1.0 ugL 0.4/19/23 19-18 1 1.2-Dichlorosethane 1.0 U 1.0 ugL 0.4/19/23 19-18 1 1 1.2-Dichlorosethane 1.0 U 1.0 ugL 0.4/19/23 19-18 1 1 1 1.2-Dichlorosethane 1.0 U 1.0 ugL 0.4/19/23 19-18 1 1 1 1 1 1 1 1 2 2 2 0.4/19/23 19-18 1	1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.1.2 Tuchloroethane 1.0 ugL 04/1923 1918 1 1.4 Dichloroethane 1.0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 0.0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 0.0 ugL 04/1923 1918 1 1.2. Dichloroethane 1.0 0.0 ugL 04/1923 1918 1 1.3. Dichloroethane 1.0 0.0 ugL 04/1923 1918 1 2. Haxmone 1.0 0.0 1.0 ugL 04/1923 1918 1 2. Haxmone 1.0 0.0 1.0 ugL 04/1923 1918 1 2. Haxmone 1.0 0.0 ugL 04/1923 1918 1 Dichloroethane 1.0 ugL <td>1,1,2-Trichloro-1,2,2-trifluoroethane</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/19/23 19:18</td> <td>1</td> <td></td>	1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.4-Dichlorosthane 3.6 1.0 ugL 0.4/1923 19:18 1 1.2.4-Tichlorobenzene 10 U 1.0 ugL 0.4/1923 19:18 1 1.2.4-Tichlorobenzene 10 U 1.0 ugL 0.4/1923 19:18 1 1.2.4-Dibrone-3-Chloropropane 2.0 U 2.0 ugL 0.4/1923 19:18 1 1.2.0-Diblorobenzene 1.0 U 1.0 ugL 0.4/1923 19:18 1 1.2.0-Diblorobenzene 1.0 U 1.0 ugL 0.4/1923 19:18 1 1.2.0-Diblorobenzene 1.0 U 1.0 ugL 0.4/1923 19:18 1 1.3.0-Diblorobenzene 10 U 1.0 ugL 0.4/1923 19:18 1 1.4.0-Diblorobenzene 10 U 1.0 ugL 0.4/1923 19:18 1 2-Butanone (MIBK) 10 U 1.0 ugL 0.4/1923 19:18 1 2-Butanone (MIBK) 10 U 1.0 ugL 0.4/1923 19:18 1 2-Butanone (MIBK) 10 U 1.0 ugL	1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1,1-Dichloroethene 10 10 10 0,0	1,1-Dichloroethane	3.6		1.0	ug/L			04/19/23 19:18	1	
1.2.4-Tichlorobenzene 1.0 1.0 ugL 04/1923 19:18 1 Ehlyten Distomide 1.0 1.0 ugL 04/1923 19:18 1 1.2.Dichlorobenzene 1.0 1.0 ugL 04/1923 19:18 1 1.4.Dichlorobenzene 1.0 1.0 ugL 04/1923 19:18 1 1.4.Dichlorobenzene 1.0 1.0 ugL 04/1923 19:18 1 2.Hexanore 1.0 1.0 ugL 04/1923 19:18 1 2.Hexanore 1.0 1.0 ugL 04/1923 19:18 1 3.extone 1.0 1.0 ugL 04/1923 19:18 1 4.Methy-2pentance (MBK) 10 1.0 ugL 04/1923 19:18 1 Benzene 1.0 1.0 ugL 04/1923 19:18 1 Carbon disul	1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 19:18	1	8
1.2-Dichorom-3-Chloropropane 2.0 ug/t 04/19/23 19:18 1 1.2-Dichoromia 1.0 U 1.0 ug/t 04/19/23 19:18 1 1.2-Dichoromia 1.0 U 1.0 ug/t 04/19/23 19:18 1 1.2-Dichoromia 1.0 U 1.0 ug/t 04/19/23 19:18 1 1.2-Dichorophane 1.0 U 1.0 ug/t 04/19/23 19:18 1 1.3-Dichorophane 1.0 U 1.0 ug/t 04/19/23 19:18 1 1.4-Dichorobenzene 1.0 U 1.0 ug/t 04/19/23 19:18 1 2-Hexanone 1.0 U 1.0 ug/t 04/19/23 19:18 1 4-Methyl-2-pentance (MIBK) 1.0 U 1.0 ug/t 04/19/23 19:18 1 Benzene 1.0 U 1.0 ug/t 04/19/23 19:18 1 Dichlorobenzene 1.0 U 1.0 ug/t 04/19/23 19:18 1 Dichlorobenzene 1.0 U 1.0 ug/t 04/19/23 19:18 1	1,2,4-Trichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Ethylene Dibromide 1.0 1.0 ugl. 04/19/23 19:18 1 1.2. Dichloroberzne 1.0 U 1.0 ugl. 04/19/23 19:18 1 1.2. Dichloroberzne 1.0 U 1.0 ugl. 04/19/23 19:18 1 1.2. Dichloroberzne 1.0 U 1.0 ugl. 04/19/23 19:18 1 1.3. Dichloroberzne 1.0 U 1.0 ugl. 04/19/23 19:18 1 2-Butanone (MEK) 10 U 1.0 ugl. 04/19/23 19:18 1 2-Hexanone 10 U 1.0 ugl. 04/19/23 19:18 1 2-Hexanone 10 U 1.0 ugl. 04/19/23 19:18 1 2-Hexanone 1.0 U 1.0 ugl. 04/19/23 19:18 1 2-Hexanone 1.0 U 1.0 ugl. 04/19/23 19:18 1 Dichlorobromomethane 1.0 U 1.0 ugl. 04/19/23 19:18 1	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	ug/L			04/19/23 19:18	1	0
1.2-Dichlorobenzene 1.0 1.0 ugL 0.4/19/23 19:18 1 1.2-Dichlorobenzene 1.0 1.0 ugL 0.4/19/23 19:18 1 1.3-Dichlorobenzene 1.0 1.0 1.0 ugL 0.4/19/23 19:18 1 1.3-Dichlorobenzene 1.0 1.0 1.0 ugL 0.4/19/23 19:18 1 2-Butanone (MEK) 1.0 1.0 1.0 ugL 0.4/19/23 19:18 1 2-Hoxanone 1.0 1.0 1.0 ugL 0.4/19/23 19:18 1 2-Hoxanone 1.0 1.0 1.0 ugL 0.4/19/23 19:18 1 2-Hoxanone 1.0 1.0 ugL 0.4/19/23 19:18 1 Acetone 1.0 1.0 ugL 0.4/19/23 19:18 1 Benzene 1.0 1.0 ugL 0.4/19/23 19:18 1 Carbon disulfde 1.0 1.0 ugL 0.4/19/23 19:18 1 Carbon disulfde 1.0 1.0 ugL 0.4/19/23 19:18 1 Carbon disulfde 1.0 1.0 ugL </td <td>Ethylene Dibromide</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/19/23 19:18</td> <td>1</td> <td></td>	Ethylene Dibromide	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.2-Dichlorosthane 1.0 U 1.0 uglL 04/19/23 19:18 1 1.2-Dichlorosthane 1.0 U 1.0 uglL 04/19/23 19:18 1 1.4-Dichlorosthazene 1.0 U 1.0 uglL 04/19/23 19:18 1 1.4-Dichlorosthazene 1.0 U 1.0 uglL 04/19/23 19:18 1 2-Haxanne (MEK) 10 U 10 uglL 04/19/23 19:18 1 2-Haxanne (MEK) 10 U 10 uglL 04/19/23 19:18 1 2-Haxanne (MEK) 10 U 1.0 uglL 04/19/23 19:18 1 2-Haxanne (MEK) 10 U 1.0 uglL 04/19/23 19:18 1 Benzme 1.0 U 1.0 uglL 04/19/23 19:18 1 Dichlorobromethane 1.0 U 1.0 uglL 04/19/23 19:18 1 Carbon disulfie 0.0 U 1.0 uglL 04/19/23 19:18 1 Chlorosthane 1.0 U 1.0 uglL 04/19/23 19:18 </td <td>1,2-Dichlorobenzene</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/19/23 19:18</td> <td>1</td> <td></td>	1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.2-Dichloropropane 1.0 1.0 ug/L 04/19/23 19:18 1 1.3-Dichlorobenzene 1.0 1.0 ug/L 04/19/23 19:18 1 2-Butanone (MEK) 10 10 ug/L 04/19/23 19:18 1 2-Bexanone 10 10 ug/L 04/19/23 19:18 1 Acetone 10 10 ug/L 04/19/23 19:18 1 Dichlorobromomethane 1.0 1.0 ug/L 04/19/23 19:18 1 Bromothine 1.0 1.0 ug/L 04/19/23 19:18 1 Carbon tetrachloride 1.0 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 1.0 ug/L 04/19/23 19:18 1 Chlorobenzen	1,2-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.3-Dichlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 1.4-Dichlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 2-Hexanone (MEK) 10 U 10 ug/L 04/19/23 19:18 1 2-Hexanone (MEK) 10 U 10 ug/L 04/19/23 19:18 1 2-Hexanone (MEK) 10 U 10 ug/L 04/19/23 19:18 1 Acetone 10 U 1.0 ug/L 04/19/23 19:18 1 Benzene 10.0 1.0 ug/L 04/19/23 19:18 1 Bromoform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon distifie 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon distifie 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chiorobinane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chiorobinane 1.0 U 1.0 ug/L 04/19/23 19:18 1	1,2-Dichloropropane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
1.4-Dichlorobenzene 1.0 U 1.0 ugl. 04/19/23 19:18 1 2-Butanone (MEK) 10 U 10 ugl. 04/19/23 19:18 1 2-Butanone (MEK) 10 U 10 ugl. 04/19/23 19:18 1 4-Methyl-2-pentanone (MIBK) 10 U 10 ugl. 04/19/23 19:18 1 Benzene 10 U 1.0 ugl. 04/19/23 19:18 1 Bromofom 1.0 U 1.0 ugl. 04/19/23 19:18 1 Bromofom 1.0 U 1.0 ugl. 04/19/23 19:18 1 Carbon tetrachore 1.0 U 1.0 ugl. 04/19/23 19:18 1 Carbon tetrachore 1.0 U 1.0 ugl. 04/19/23 19:18 1 Chorobenzene 1.0 U 1.0 ugl. 04/19/23 19:18 1 Chiorobenzene 1.0 U 1.0 ugl. 04/19/23 19:18 1 Chiorobenzene 1.0 U 1.0 ugl. 04/19/23 19:18 1	1,3-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
2-Butanone (MEK) 10 ug/L 04/19/23 19:18 1 2-Hoxanone 10 0 ug/L 04/19/23 19:18 1 4-Methyl-2-pentanone (MBK) 10 ug/L 04/19/23 19:18 1 Benzene 10 0 ug/L 04/19/23 19:18 1 Benzene 10 0 ug/L 04/19/23 19:18 1 Dichiorobromethane 10 0 ug/L 04/19/23 19:18 1 Bromoform 10 0 ug/L 04/19/23 19:18 1 Carbon disulfide 10 0 ug/L 04/19/23 19:18 1 Carbon disulfide 10 0 ug/L 04/19/23 19:18 1 Chiorobenzene 10 0 ug/L 04/19/23 19:18 1 Chiorobenzene 10 0 ug/L 04/19/23 19:18 1 Chiorobenzene 10 0 ug/L 04/19/23 19:18 1 Chioroberne 10 0 ug/L 04/19/23 19:18 1 Chioroberne 10 0 ug/L 04/19/23 19	1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
2-Hexanone 10 10 ug/L 04/19/23 19:18 1 4-Methyl-2-pentanone (MIBK) 10 10 0 ug/L 04/19/23 19:18 1 Benzene 10 0 10 ug/L 04/19/23 19:18 1 Benzene 10 0 10 ug/L 04/19/23 19:18 1 Bromoform 10 0 ug/L 04/19/23 19:18 1 Bromoform 10 0 ug/L 04/19/23 19:18 1 Carbon tetrachoride 10 0 ug/L 04/19/23 19:18 1 Carbon tetrachoride 10 0 ug/L 04/19/23 19:18 1 Chiorobenzene 10 0 ug/L 04/19/23 19:18 1 Chiorob	2-Butanone (MEK)	10	U	10	ug/L			04/19/23 19:18	1	
4-Methyl-2-pentanone (MIBK) 10 10 ug/L 04/19/23 19:18 1 Acetone 10 U 10 ug/L 04/19/23 19:18 1 Dickitorobromomethane 10 U 10 ug/L 04/19/23 19:18 1 Bromomethane 10 U 10 ug/L 04/19/23 19:18 1 Bromomethane 10 U 10 ug/L 04/19/23 19:18 1 Carbon disulfide 10 U 10 ug/L 04/19/23 19:18 1 Carbon disulfide 10 U 10 ug/L 04/19/23 19:18 1 Chioroberzene 10 U 10 ug/L 04/19/23 19:18 1 Chiorobertane 10 U 10 ug/L 04/19/23 19:18 1	2-Hexanone	10	U	10	ug/L			04/19/23 19:18	1	
Actone 10 U 10 ug/L 04/19/23 19:18 1 Benzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromoform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromoform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromoform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon disulfde 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon disulfde 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chiorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chiorobenane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ch	4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/19/23 19:18	1	
Benzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichorobromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromoform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon disulfide 1.0 U 1.0 ug/L 04/19/23 19:18 1 Choroberzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobertane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobertane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobertane 1.0 U 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloroethene 1.7 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cy	Acetone	10	U	10	ug/L			04/19/23 19:18	1	
Dichlorobromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromoderm 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon disulfide 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon tetrachloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorothane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorothane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorothromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclorexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclorexane 1.0 U 1.0 ug/L 04/19/23 19:18 1	Benzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Bromoform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Bromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon disulfide 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon tetrachloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodirboropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodirboromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Di	Dichlorobromomethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Bromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon disulfide 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon tetrachloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobertzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobertzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroothane 1.0 U 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloroothene 1.7 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloroothene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1	Bromoform	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Carbon disulfide 1.0 U 1.0 ug/L 04/19/23 19:18 1 Carbon tetrachloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cis-1,2-Dichlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cis-1,2-Dichlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobfilloromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1	Bromomethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Carbon tetrachloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cis-1,2-Dichloroethene 17 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloropopene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl actata 0 U 1.0 ug/L 04/19/23 19:18 1	Carbon disulfide	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Chlorobenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloroethene 1.7 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl tert-bulyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1	Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Chloroethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloroofrom 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloroethene 1.7 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Lisopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyl ter/bulyi terher 1.0 U 1.0 ug/L 04/19/23 19:18 1 <td>Chlorobenzene</td> <td>1.0</td> <td>U</td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/19/23 19:18</td> <td>1</td> <td></td>	Chlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Chloroform 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chloromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloroethene 17 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyleyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1	Chloroethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Chloromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 cis-1,2-Dichloroethene 17 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloroppene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodibromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1	Chloroform	1.0	U	1.0	ug/L			04/19/23 19:18	1	
cis-1,2-Dichloroethene 17 1.0 ug/L 04/19/23 19:18 1 cis-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodibromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methylecyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1	Chloromethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
cis-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodibromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylcochexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylcochexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylcochexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/1	cis-1,2-Dichloroethene	17		1.0	ug/L			04/19/23 19:18	1	
Cyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Chlorodibromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1	cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Chlorodibromomethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 1.0 ug/L 04/19/23 19:18 1 Methyl cert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tolene 1.0 U 1.0 ug/L 04/19/23 19:18 1 <	Cyclohexane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Dichlorodifluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 10 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 10 ug/L 04/19/23 19:18 1 Methyl cether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl colohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1	Chlorodibromomethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Ethylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 10 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 10 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylcyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18	Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Isopropylbenzene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl acetate 10 U 10 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:1	Ethylbenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Methyl acetate 10 U 10 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylcyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19	Isopropylbenzene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Methyl tert-butyl ether 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylcyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 <td>Methyl acetate</td> <td>10</td> <td>U</td> <td>10</td> <td>ug/L</td> <td></td> <td></td> <td>04/19/23 19:18</td> <td>1</td> <td></td>	Methyl acetate	10	U	10	ug/L			04/19/23 19:18	1	
Methylcyclohexane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloroptopene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 <	Methyl tert-butyl ether	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Methylene Chloride 5.0 U 5.0 ug/L 04/19/23 19:18 1 Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloroptopene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18	Methylcyclohexane	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Styrene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Tetrachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1	Methylene Chloride	5.0	U	5.0	ug/L			04/19/23 19:18	1	
Terachloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloroptopene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes. Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	Styrene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
Toluene 1.0 U 1.0 ug/L 04/19/23 19:18 1 trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes. Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	Tetrachloroethene	1.0	U	1.0	ua/L			04/19/23 19:18	1	
trans-1,2-Dichloroethene 1.3 1.0 ug/L 04/19/23 19:18 1 trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes, Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	Toluene	1.0	U	1.0	ug/L			04/19/23 19:18	1	
trans-1,3-Dichloropropene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes, Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	trans-1.2-Dichloroethene	1.3		1.0	ua/L			04/19/23 19:18		
Trichloroethene 1.0 U 1.0 ug/L 04/19/23 19:18 1 Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes. Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	trans-1,3-Dichloropropene	1 0	U	1.0	ua/L			04/19/23 19:18	1	
Trichlorofluoromethane 1.0 U 1.0 ug/L 04/19/23 19:18 1 Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes. Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	Trichloroethene	1.0	U	1.0	ua/L			04/19/23 19:18	1	
Vinyl chloride 1.0 U 1.0 ug/L 04/19/23 19:18 1 Xvlenes. Total 2.0 U 2.0 ug/L 04/19/23 19:18 1	Trichlorofluoromethane	1.0	U	1.0	<u>-</u>			04/19/23 19.18	· · · · · · · · 1	
Xvlenes. Total 20 U 20 un/l 04/19/23 19/18 1	Vinvl chloride	1.0	Ŭ	1.0	ua/l			04/19/23 19:18	1	
	Xvlenes. Total	2.0	Ŭ	20	<u>-</u>			04/19/23 19:18	1	

Eurofins Canton

Client Sample ID: OW_16D2_041223 Date Collected: 04/12/23 09:10 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-9

Matrix: Water

5 6

8 9

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		78 - 122	—		04/19/23 19:18	1
Dibromofluoromethane (Surr)	94		73 - 120			04/19/23 19:18	1
4-Bromofluorobenzene (Surr)	86		56 - 136			04/19/23 19:18	1
1,2-Dichloroethane-d4 (Surr)	107		62 - 137			04/19/23 19:18	1

Client Sample ID: OW_16D2R1_041223 Date Collected: 04/12/23 10:00 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-10

Matrix: Water

Method: SW846 8260D - Volatil	e Organic	Compounds	by GC/MS						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,1-Dichloroethane	2.3		1.0	ug/L			04/19/23 19:43	1	
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 19:43	1	8
1,2,4-Trichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	0
1,2-Dibromo-3-Chloropropane	2.0	U	2.0	ug/L			04/19/23 19:43	1	0
Ethylene Dibromide	1.0	U	1.0	ug/L			04/19/23 19:43	1	3
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,3-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
2-Butanone (MEK)	10	U	10	ug/L			04/19/23 19:43	1	
2-Hexanone	10	U	10	ug/L			04/19/23 19:43	1	
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/19/23 19:43	1	
Acetone	10	U	10	ug/L			04/19/23 19:43	1	
Benzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Dichlorobromomethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Bromoform	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Bromomethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Carbon disulfide	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Chlorobenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Chloroethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Chloroform	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Chloromethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
cis-1,2-Dichloroethene	19		1.0	ug/L			04/19/23 19:43	1	
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Cyclohexane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Chlorodibromomethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Ethylbenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Isopropylbenzene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Methyl acetate	10	U	10	ug/L			04/19/23 19:43	1	
Methyl tert-butyl ether	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Methylcyclohexane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Methylene Chloride	5.0	U	5.0	ug/L			04/19/23 19:43	1	
Styrene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Tetrachloroethene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Toluene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
trans-1,2-Dichloroethene	1.0		1.0	ug/L			04/19/23 19:43	1	
trans-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Trichloroethene	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Trichlorofluoromethane	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Vinyl chloride	1.0	U	1.0	ug/L			04/19/23 19:43	1	
Xylenes, Total	2.0	U	2.0	ug/L			04/19/23 19:43	1	

Eurofins Canton

Client Sample ID: OW_16D2R1_041223 Date Collected: 04/12/23 10:00 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-10 Matrix: Water

5 6

8 9

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		78 - 122		04/19/23 19:43	1
Dibromofluoromethane (Surr)	99		73 - 120		04/19/23 19:43	1
4-Bromofluorobenzene (Surr)	86		56 - 136		04/19/23 19:43	1
1,2-Dichloroethane-d4 (Surr)	106		62 - 137		04/19/23 19:43	1

Client Sample ID: OW_16D2R2_041223 Date Collected: 04/12/23 11:00 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-11

Matrix: Water

Method: SW846 8260D - Volatile	• Organic	Compound	ls by GC/MS						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 20:08	1	8
1,2,4-Trichlorobenzene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,2-Dibromo-3-Chloropropane	2.0	U	2.0	ug/L			04/19/23 20:08	1	C
Ethylene Dibromide	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,3-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
2-Butanone (MEK)	10	U	10	ug/L			04/19/23 20:08	1	
2-Hexanone	10	U	10	ug/L			04/19/23 20:08	1	
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/19/23 20:08	1	
Acetone	10	U	10	ug/L			04/19/23 20:08	1	
Benzene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Dichlorobromomethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Bromoform	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Bromomethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Carbon disulfide	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Chlorobenzene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Chloroethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Chloroform	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Chloromethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
cis-1,2-Dichloroethene	9.2		1.0	ug/L			04/19/23 20:08	1	
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Cyclohexane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Chlorodibromomethane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/19/23 20:08		
Ethylbenzene	1.0	0	1.0	ug/L			04/19/23 20:08	1	
Isopropylbenzene	1.0	0	1.0	ug/L			04/19/23 20:08	1	
Methyl acetate	10	U	10	ug/L			04/19/23 20:08	1	
Methyl tert-butyl ether	1.0	0	1.0	ug/L			04/19/23 20:08	1	
Methylcyclonexane	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Methylene Chloride	5.0	U	5.0	ug/L			04/19/23 20:08		
Styrene	1.0	0	1.0	ug/L			04/19/23 20:08	1	
Tetrachloroethene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
	1.0	U	1.0	ug/L			04/19/23 20:08		
trans-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
trans-1,3-Dicnioropropene	1.0	U	1.0	ug/L			04/19/23 20:08	1	
	1.0	U	1.0	ug/∟			04/19/23 20:08	1	
	1.0	U	1.0	ug/L			04/19/23 20:08	1	
vinyi chioride	1.0	U	1.0	ug/L			04/19/23 20:08	1	
Ayienes, Iotal	2.0	U	2.0	ug/L			04/19/23 20:08	1	

Eurofins Canton

Client Sample ID: OW_16D2R2_041223 Date Collected: 04/12/23 11:00 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-11 Matrix: Water

Matrix: Water

5 6 7

8 9

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	88		78 - 122		04/19/23 20:08	1
Dibromofluoromethane (Surr)	98		73 - 120		04/19/23 20:08	1
4-Bromofluorobenzene (Surr)	89		56 - 136		04/19/23 20:08	1
1,2-Dichloroethane-d4 (Surr)	107		62 - 137		04/19/23 20:08	1

Client Sample ID: TRIP_BLANK_01 Date Collected: 04/12/23 00:00 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-12

Matrix: Water

Method: SW846 8260D - Volati	e Organic	Compound	s by GC/MS						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 15:32	1	8
1,2,4-Trichlorobenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,2-Dibromo-3-Chloropropane	2.0	U	2.0	ug/L			04/19/23 15:32	1	C
Ethylene Dibromide	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,3-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
2-Butanone (MEK)	10	U	10	ug/L			04/19/23 15:32	1	
2-Hexanone	10	U	10	ug/L			04/19/23 15:32	1	
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/19/23 15:32	1	
Acetone	10	U	10	ug/L			04/19/23 15:32	1	
Benzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Dichlorobromomethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Bromoform	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Bromomethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Carbon disulfide	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Chlorobenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Chloroethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Chloroform	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Chloromethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Cyclohexane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Chlorodibromomethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Ethylbenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Isopropylbenzene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Methyl acetate	10	U	10	ug/L			04/19/23 15:32	1	
Methyl tert-butyl ether	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Methylcyclohexane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Methylene Chloride	5.0	U	5.0	ug/L			04/19/23 15:32	1	
Styrene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Tetrachloroethene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Toluene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
trans-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
trans-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Trichloroethene	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Trichlorofluoromethane	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Vinyl chloride	1.0	U	1.0	ug/L			04/19/23 15:32	1	
Xylenes, Total	2.0	U	2.0	ug/L			04/19/23 15:32	1	

Eurofins Canton

Client Sample ID: TRIP_BLANK_01 Date Collected: 04/12/23 00:00 Date Received: 04/14/23 08:00

ï

Lab Sample ID: 240-183524-12

Matrix: Water

5 6 7

8 9

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		78 - 122		04/19/23 15:32	1
Dibromofluoromethane (Surr)	94		73 - 120		04/19/23 15:32	1
4-Bromofluorobenzene (Surr)	88		56 - 136		04/19/23 15:32	1
1,2-Dichloroethane-d4 (Surr)	105		62 - 137		04/19/23 15:32	1

Client Sample ID: FIELD_BLANK_01_041323 Date Collected: 04/13/23 11:05 Date Received: 04/14/23 08:00

Lab Sample ID: 240-183524-13

Matrix: Water

Method: SW846 8260D - Volati	le Organic	Compound	s by GC/MS						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	6
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 14:41	1	9
1,2,4-Trichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	U
1,2-Dibromo-3-Chloropropane	2.0	U	2.0	ug/L			04/19/23 14:41	1	0
Ethylene Dibromide	1.0	U	1.0	ug/L			04/19/23 14:41	1	3
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,3-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
2-Butanone (MEK)	10	U	10	ug/L			04/19/23 14:41	1	
2-Hexanone	10	U	10	ug/L			04/19/23 14:41	1	
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/19/23 14:41	1	
Acetone	10	U	10	ug/L			04/19/23 14:41	1	
Benzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Dichlorobromomethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Bromoform	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Bromomethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Carbon disulfide	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Chlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Chloroethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Chloroform	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Chloromethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Cyclohexane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Chlorodibromomethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Ethylbenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Isopropylbenzene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Methyl acetate	10	U	10	ug/L			04/19/23 14:41	1	
Methyl tert-butyl ether	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Methylcyclohexane	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Methylene Chloride	5.0	U	5.0	ug/L			04/19/23 14:41	1	
Styrene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Tetrachloroethene	1.0	U	1.0	ua/L			04/19/23 14:41	1	
Toluene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
trans-1.2-Dichloroethene	1.0	U	1.0	ua/L			04/19/23 14:41		
trans-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Trichloroethene	1.0	U	1.0	ug/L			04/19/23 14:41	1	
Trichlorofluoromethane	1.0	U	1.0	ua/L			04/19/23 14:41		
Vinyl chloride	1.0	U	1.0	ua/L			04/19/23 14:41	1	
- Xylenes, Total	2.0	U	2.0	ug/L			04/19/23 14:41	1	
-				5					

Eurofins Canton

Client Sample ID: FIELD_BLANK_01_041323 Date Collected: 04/13/23 11:05 Date Received: 04/14/23 08:00

Eurofins Canton

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 88 78 - 122 04/19/23 14:41 1 Dibromofluoromethane (Surr) 95 73 - 120 04/19/23 14:41 1 86 4-Bromofluorobenzene (Surr) 56 - 136 04/19/23 14:41 1 1,2-Dichloroethane-d4 (Surr) 103 62 - 137 04/19/23 14:41

4/21/2023

Lab Sample ID: 240-183524-13 Matrix: Water

Job ID: 240-183524-2

Surrogate Summary

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Water

			Pe	ercent Surro	ogate Reco
		TOL	DBFM	BFB	DCA
Lab Sample ID	Client Sample ID	(78-122)	(73-120)	(56-136)	(62-137)
240-183524-9	OW_16D2_041223	86	94	86	107
240-183524-10	OW_16D2R1_041223	86	99	86	106
240-183524-11	OW_16D2R2_041223	88	98	89	107
240-183524-12	TRIP_BLANK_01	86	94	88	105
240-183524-13	FIELD_BLANK_01_041323	88	95	86	103
LCS 240-569960/5	Lab Control Sample	90	95	96	102
MB 240-569960/8	Method Blank	87	95	86	102

Surrogate Legend

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Canton

10

1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 240-569960/8

Matrix: Water Analysis Batch: 569960

Xylenes, Total

Client Sample ID: Method Blank Prep Type: Total/NA

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,2,4-Trichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,2-Dibromo-3-Chloropropane	2.0	U	2.0	ug/L			04/19/23 14:16	1
Ethylene Dibromide	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,3-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
2-Butanone (MEK)	10	U	10	ug/L			04/19/23 14:16	1
2-Hexanone	10	U	10	ug/L			04/19/23 14:16	1
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/19/23 14:16	1
Acetone	10	U	10	ug/L			04/19/23 14:16	1
Benzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Dichlorobromomethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Bromoform	1.0	U	1.0	ug/L			04/19/23 14:16	1
Bromomethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Carbon disulfide	1.0	U	1.0	ug/L			04/19/23 14:16	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/23 14:16	1
Chlorobenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Chloroethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Chloroform	1.0	U	1.0	ug/L			04/19/23 14:16	1
Chloromethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 14:16	1
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Cyclohexane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Chlorodibromomethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Ethylbenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Methyl acetate	10	U	10	ug/L			04/19/23 14:16	1
Methyl tert-butyl ether	1.0	U	1.0	ug/L			04/19/23 14:16	1
Methylcyclohexane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Methylene Chloride	5.0	U	5.0	ug/L			04/19/23 14:16	1
Styrene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Toluene	1.0	U	1.0	ug/L			04/19/23 14:16	1
trans-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/23 14:16	1
trans-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Trichloroethene	1.0	U	1.0	ug/L			04/19/23 14:16	1
Trichlorofluoromethane	1.0	U	1.0	ug/L			04/19/23 14:16	1
Vinyl chloride	1.0	U	1.0	ug/L			04/19/23 14:16	1

Eurofins Canton

04/19/23 14:16

2.0

ug/L

2.0 U

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Prep Type: Total/NA

1 2 3 4 5 6 7 8

10

Lab Sample ID: MB 240-569960/8 Matrix: Water

Analysis Batch: 569960

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	I Dil Fac
Toluene-d8 (Surr)	87		78 - 122	04/19/23 14	:16 1
Dibromofluoromethane (Surr)	95		73 - 120	04/19/23 14	:16 1
4-Bromofluorobenzene (Surr)	86		56 - 136	04/19/23 14	:16 1
1,2-Dichloroethane-d4 (Surr)	102		62 - 137	04/19/23 14	:16 1

Lab Sample ID: LCS 240-569960/5 Matrix: Water

Analysis Batch: 569960

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.5		ug/L		97	64 - 131	
1,1,2,2-Tetrachloroethane	20.0	15.8		ug/L		79	58 - 157	
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	19.8		ug/L		99	51 - 146	
ne								
1,1,2-Trichloroethane	20.0	18.2		ug/L		91	70 - 138	
1,1-Dichloroethane	20.0	19.1		ug/L		96	72 - 127	
1,1-Dichloroethene	20.0	17.1		ug/L		85	63 - 134	
1,2,4-Trichlorobenzene	20.0	18.4		ug/L		92	44 - 147	
1,2-Dibromo-3-Chloropropane	20.0	14.8		ug/L		74	53 - 135	
Ethylene Dibromide	20.0	18.6		ug/L		93	71 - 134	
1,2-Dichlorobenzene	20.0	18.2		ug/L		91	78 - 120	
1,2-Dichloroethane	20.0	21.5		ug/L		107	66 - 128	
1,2-Dichloropropane	20.0	19.1		ug/L		96	75 - 133	
1,3-Dichlorobenzene	20.0	18.4		ug/L		92	80 - 120	
1,4-Dichlorobenzene	20.0	19.0		ug/L		95	80 - 120	
2-Butanone (MEK)	40.0	41.6		ug/L		104	54 - 156	
2-Hexanone	40.0	42.4		ug/L		106	43 - 167	
4-Methyl-2-pentanone (MIBK)	40.0	41.0		ug/L		102	46 - 158	
Acetone	40.0	39.3		ug/L		98	50 - 149	
Benzene	20.0	18.5		ug/L		93	77 - 123	
Dichlorobromomethane	20.0	20.6		ug/L		103	69 - 126	
Bromoform	20.0	19.4		ug/L		97	57 - 129	
Bromomethane	20.0	19.4		ug/L		97	36 - 142	
Carbon disulfide	20.0	18.2		ug/L		91	43 - 140	
Carbon tetrachloride	20.0	21.6		ug/L		108	55 - 137	
Chlorobenzene	20.0	19.3		ug/L		96	80 - 121	
Chloroethane	20.0	19.1		ug/L		95	38 - 152	
Chloroform	20.0	19.1		ug/L		95	74 - 122	
Chloromethane	20.0	23.1		ug/L		115	47 - 143	
cis-1,2-Dichloroethene	20.0	17.4		ug/L		87	77 - 123	
cis-1,3-Dichloropropene	20.0	17.8		ug/L		89	64 - 130	
Cyclohexane	20.0	17.7		ug/L		89	58 - 146	
Chlorodibromomethane	20.0	19.3		ug/L		96	70 - 124	
Dichlorodifluoromethane	20.0	20.2		ug/L		101	34 - 153	
Ethylbenzene	20.0	19.5		ug/L		97	80 - 121	
Isopropylbenzene	20.0	18.7		ug/L		94	74 - 128	
Methyl acetate	40.0	37.4		ug/L		93	42 - 169	
Methyl tert-butyl ether	20.0	17.0		ug/L		85	65 - 126	
Methylcyclohexane	20.0	16.4		ug/L		82	62 - 136	

Eurofins Canton

5

10

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 240-569960/5 Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Methylene Chloride			20.0	18.4		ug/L		92	71 - 125
Styrene			20.0	18.8		ug/L		94	80 - 135
Tetrachloroethene			20.0	20.8		ug/L		104	76 - 123
Toluene			20.0	18.7		ug/L		93	80 - 123
trans-1,2-Dichloroethene			20.0	19.4		ug/L		97	75 - 124
trans-1,3-Dichloropropene			20.0	17.8		ug/L		89	57 - 129
Trichloroethene			20.0	18.9		ug/L		95	70 - 122
Trichlorofluoromethane			20.0	22.4		ug/L		112	30 - 170
Vinyl chloride			20.0	21.2		ug/L		106	60 - 144
Xylenes, Total			40.0	37.4		ug/L		94	80 - 121
m-Xylene & p-Xylene			20.0	18.7		ug/L		93	80 - 120
o-Xylene			20.0	18.7		ug/L		94	80 - 123
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Toluene-d8 (Surr)	90		78 - 122						
Dibromofluoromethane (Surr)	95		73 - 120						
4-Bromofluorobenzene (Surr)	96		56 - 136						
1,2-Dichloroethane-d4 (Surr)	102		62 - 137						

QC Association Summary

Client: ZF Active Safety and Electronics LLC Project/Site: TRW Milford Job ID: 240-183524-2

GC/MS VOA

Analysis Batch: 569960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-183524-9	OW_16D2_041223	Total/NA	Water	8260D	
240-183524-10	OW_16D2R1_041223	Total/NA	Water	8260D	
240-183524-11	OW_16D2R2_041223	Total/NA	Water	8260D	
240-183524-12	TRIP_BLANK_01	Total/NA	Water	8260D	
240-183524-13	FIELD_BLANK_01_041323	Total/NA	Water	8260D	
MB 240-569960/8	Method Blank	Total/NA	Water	8260D	
LCS 240-569960/5	Lab Control Sample	Total/NA	Water	8260D	

Eurofins Canton

Job ID: 240-183524-2

Client: ZF Activ Project/Site: T	ve Safety and RW Milford	I Electronics LLC						Job IE): 240-183524-2
Client Sam Date Collecte	ple ID: OW d: 04/12/23 0	/_16D2_04122 9:10	23				Lab	Sample ID: 2	240-183524-9 Matrix: Water
Date Received	a: 04/14/23 0	8:00							4
	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	5
Total/NA	Analysis	8260D		1	569960	SAM	EET CAN	04/19/23 19:18	
Client Sam	ple ID: OW	16D2R1 04	1223				Lab S	ample ID: 24	0-183524-10
Date Collecte	d: 04/12/23 1	0:00							Matrix: Water
Date Receive	d: 04/14/23 0	8:00							
	Batch	Batch		Dilution	Batch			Prepared	8
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D			569960	SAM	EET CAN	04/19/23 19:43	9
Client Sam	ple ID: OW	16D2R2 04	1223				Lab S	ample ID: 24	0-183524-11
Date Collecte	d: 04/12/23 1	1:00							Matrix: Water
Date Receive	d: 04/14/23 0	8:00							1
Г	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	1
Total/NA	Analysis	8260D		1 _	569960	SAM	EET CAN	04/19/23 20:08	
Client Sam	ple ID: TRI	P BLANK 01	1				Lab S	ample ID: 24	0-183524-12
Date Collecte	d: 04/12/23 0	0:00							Matrix: Water
Date Receive	d: 04/14/23 0	8:00							
	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1	569960	SAM	EET CAN	04/19/23 15:32	
Client Sam	ple ID: FIE	LD BLANK	01 0413	23			Lab S	ample ID: 24	0-183524-13
Date Collecte	d: 04/13/23 1	1:05	_						Matrix: Water
Date Receive	d: 04/14/23 0	8:00							
Г —	Batch	Batch		Dilution	Batch			Prepared	_
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analvzed	
Total/NA	Analysis	8260D		1	569960	SAM	EET CAN	04/19/23 14:41	

Laboratory References:

EET CAN = Eurofins Canton, 180 S. Van Buren Avenue, Barberton, OH 44203, TEL (330)497-9396

Client: ZF Active Safety and Electronics LLC Project/Site: TRW Milford

Job ID: 240-183524-2

Laboratory: Eurofins Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-27-23 *
Connecticut	State	PH-0590	06-29-23
Florida	NELAP	E87225	06-30-23
Georgia	State	4062	02-28-24
Illinois	NELAP	200004	07-31-23
lowa	State	421	06-01-23
Kentucky (UST)	State	112225	02-27-23 *
Kentucky (WW)	State	KY98016	12-31-23
Michigan	State	9135	02-27-23 *
Minnesota	NELAP	039-999-348	12-31-23
Minnesota (Petrofund)	State	3506	08-01-23
New Jersey	NELAP	OH001	06-30-23
New York	NELAP	10975	04-01-24
Ohio	State	8303	02-27-24
Ohio VAP	State	ORELAP 4062	02-27-24
Oregon	NELAP	4062	02-28-24
Pennsylvania	NELAP	68-00340	08-31-23
Texas	NELAP	T104704517-22-17	08-31-23
Virginia	NELAP	460175	09-14-23
West Virginia DEP	State	210	12-31-23

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

0.4/0.4

TL North Canton													-			-						L	AB USE ONLY
01 Shuffel Drive NW							Chain (Of Cu	stod	v/A	naly	sis	Ree	aue	st						1	aboratory	ID No. (Lot No.)
orth Canton, OH 44720						_				5											T		
tn: Michael DelMonico				Privileged & Con	sfidential		Yes			Site Nam	r: (Milfo	rd		1				325				
roject Type:	Groundw	vater Sam	ipling - IZ	TRW PO No.	30046730 0000	Z				Site Loca	tion:		Milford	l Mich	ugan								
tW PM: (name, company, addres	ss, e-mail)			Database Manag	er: (name, comp	any, addre	is, E-mail)							Pres	ærv ati	ves Co	te (see	below)					
Bleazard				Christina Weave	r and Sharon Cl	ouse					1	1	1	L	1	1							
202 East Germann Road				28550 Caber Drive, S	inte 500								~										
sa, AZ 85212				Novi, MI 48377								â	0 D			Ì							
bleazard@trw.com				christina weaver	@arcadis.com		john meinn	nis@arcadis	com			2601	826					1.1					
				sclouse@arcadi	s-us com						1093	8	ene	8	826	5							
ilysis Level	Level 1 (N	toutine Re	port)	Sampler	Scotti	11914	K Lott	LJLY		i i i	e (X.	hen	eth	826	ane	00							
	10 Busine	ss Days (S	tandard - Level 1)	Deliverable	EDD/PDF (e-m	ail)		1		ê	han	roel	llore	cne	er,	0 0							
		Sa	mple Identification ar	nd Informa	tion					or Con	hloroet	-Dichlo	.2-Dich	loroeth	nchloro	lamaoi							
Location ID	Surt Depth (ft)	End Depth (ft)	Field Sample ID	Sample Date	Sample Time	Sample Type	Sample Matrix	Sample Purpose	No. of Cont.	Grab Field I	1.1-Dic	Cis-1.2	Trans-I	Tetrach	1.1.1-1	1 Incrito						Lab	Sample Numbers
OW-31-22			OW-31-22 041223	\$112 23	1205	GW	WATER	REG	9	G	x	x	x	x	x y	«							
OW-32-22			OW-32-22_041213	11/12/23	1400	GW	WATER	REG	3	G	x	x	x	x	x y	« 🗌							
OW-33-22			OW-33-22 04 323	475/23	1040	GW	WATER	REG	3	G	x	x	x	x	x 🤈	<							
OW-34-22			OW-34-22_041223	4/123	1515	GW	WATER	REG	3	G	x	x	x	x	x y	«							
OW-35-22			OW-35-22_04(223	4/12/23	1245	GW	WATER	REG	3	G	x	x	x	x	x ?	«					Λ		. 18
OW-36-22			OW-36-22 04 1523	4/13/23	1015	GW	WATER	REG	3	G	x	x	x	x	x)	«			_			1	00
DUP-01			DUP-01_041223	4/12/23		GW	WATER	REG	3	G	x	x	x	x	x 7	<							70
Trip Black	-1-		TripBlank-02						-	\vdash	$\left \right $	_		-+	+	1			+	+	\rightarrow		
,											+		-	+	+	+				+			
cial Instructions	10.20							Sector.						-		122				<u> </u>			
nquished by	\cap	,	AAC ADIS			Received b	y			Company	-1+	F	Т			Con	dition	Т		Custor	dy Scale	s Intact	
Litter	fm		Date/Tyny 1.2/42 1125			R	Port	FD		Date/Taux	1	2	11	113	-	Coo	ler Ten	m		-			
nquished by	LT.		Company GETA	·		Received h		n		Congains	HZ.	5 - []	始	4)	an	1. Con	dition	-		Custor	dy Scat	s Intact	
Cra	IAT	\cup	Date/Time 4/13/23 1/45			Ne	m	Voy	a	Date/Tanc	14- 1	3	\rightarrow			Coo	ler Tem	φ					
nquished by:			Company T			Received b	C) – (Company						Con	dition			Custor	dy Seal	s Intact	
			Company			Received b				Date/Time			_			Coo	ler Teir	φ		Curto	da Scal	s Intact	
inquished by			company			i cecenteu b				C Ching Anni						N.01				IC 0300			

14

144

Л

4/21/2023

Eurofins - Canton San	able Receipt Form/Nar	rative	Login #		
Barberton Facility					
Client TKW		Site Name		Cooler un	packed by:
Cooler Received on 4	-14-23	Opened on	1-14-23	Na	m Voya
FedEx: 1 st Grd Exp	UPS FAS Clipper	Client Drop Off	Eurofins Courier O	ther	O V
Receipt After-hours: Dr	op-off Date/Time		Storage Location		
Eurofins Cooler #	Form Box	Client Cooler Bo	x Other		
Packing material use	Wat los Rive los	am Plastic Bag	None Other		
1. Cooler temperature a	non receipt	Divice water	See Multiple Cooler Fr	07771	
TR GUN #	L (CF +0.0 °C)	Observed Cooler	Temp. Ox 4 °C	Corrected Cool	er Temp. O. Y °C
				5	
2. Were tamper/custody	seals on the outside of the	ne cooler(s)? If Yes	Quantity	No No	Tests that are not
-Were temper/cust	the outside of the cooler(,	s) signed & dated?	MeHa)?	NO INA	checked for pH by
-Were tamper/cust	dy seals intact and uncor	npromised?	Ne Ne	No NA	Kecelving:
3. Shippers' packing slip	attached to the cooler(s)	?	Ye	s No	VOAs
4. Did custody papers a	company the sample(s)?		Ye	s) No	Oil and Grease
5. Were the custody pap	ers relinquished & signed	I in the appropriate p	lace?	No	100
6. Was/were the person	(s) who collected the sam	ples clearly identifie	on the COC?	s No	
7. Did all bottles arrive	in good condition (Unbro	Ken)?	TRUE	No	^
9. For each sample, doe	s the COC specify preserve	vatives (Y/N), # of c	ntainers (VN), and s	ample type of a	rab/comp(Y/N)?
10. Were correct bottle(s) used for the test(s) indic	ated	Ŭ ŰŹŶ	No	<u> </u>
11. Sufficient quantity re	ceived to perform indicate	ed analyses?		s Na	
12. Are these work share	samples and all listed on	the COC?	Ye	s No	
If yes, Questions 13-	17 have been checked at a	the originating labor	tory.	6	
13. Were all preserved sa	mple(s) at the correct pH	upon receipt?	A B	No NA P	H Strip Lot# HC203864
14. Were vir bubbles >6	mm in any VOA vials?	Larger the	n this Ve	NONA	
16. Was a VOA trip bla	h present in the cooler(s)	? Trip Blank Lot #	42225 (Ye	No	
17. Was a LL Hg or Me	Hg trip blank present?		Ye	s No	
Contacted PM	Date	by	via Verbal \	/oice Mail Oth	er
Concerning					_
18. CHAIN OF CUST	DDY & SAMPLE DISC	REPANCIES D	dditional next page	Samples pro	cessed by:
0101-21	- 11 00				
	- 22 - 110	m5 or	MSD		
		······································			
19. SAMPLE CONDIT	ION				
Sample(s)		were received after t	ne recommended hold	ing time had ex	pired.
Sample(s)			were received	l in a broken co	ntainer.
Sample(s)		were received	with bubble >6 mm i	n diameter. (No	otify PM)
20. SAMPLE PRESER	VATION				
Semula(a)					in the laboratory
Time preserved	Preservative(s) add	ded/Lot number(s)	were fur	uier preserved	In the faboratory.
proserved					
VOA Sample Preservation	on - Date/Time VOAs Fro	zen:			

Page 27 of 27

BY...SF.......DATE4-12-2023.SHEET NO..1...OF.1... CHKD. BY. CW...DATE4-12-2023 JOB NO..30136112 SUBJECT. Frmr K-H Milford

ARCADIS

cw-1(Dr (3.3	0/103.30)		0825	5-0905/	0910	
TIME	TEMP	D.0	SPC	PH	orp	NTN	lina
5	13.6	0.89	1.08	138	36.0	25.2	4.41
19	13.5	0,85	1.09	7.38	24.5	10.4	5.57
15	12.4	0,70	1,10	7.38	0,21	4.96	6.50
Zo	13.4	0.81	1.10	7.38	-13.5	4.44	7.41
25	13.5	0.77	1.10	7.39	-23.0	4.62	8.29
30	13.5	0.77	1.19	7.38	- 23.9	4.00	9.17
૩૬	13.6	0.78	1.10	7.39	-24.2	3.71	10.05
40	13.4	0.78	1.10	7.39	-24.1	3.36	10,99
040-16	ozri (o.	71/90.25)		0920 -	- 0955 /	1000	
5	131	0,50	1.07	7.27	-55.5	12.6	0.71
10	13,2	0,60	1.07	7,27	-60.1	+.84	0.71
15	13.1	0.39	1.07	7,26	- 18.1	4.00	0.71
Zo	13.2	0,33	1.07	7,26	-71.4	3.39	0.71
25	13.3	0.28	1.07	7.26	-74.0	3.10	150
30	13.3	0.30	1.07	7.26	- 74.6	2.96	0.71
35	13.4	0.31	1.07	7.26	- 74.8	2.77	0.71
	1	1					
00 - 1	6DZR2 (0.	25/100.40) I	015 - 10	55 / 110	0	
5	13.2	2.26	1.12	7.48	-94.4	10.1	0.15
10	13.2	1.28	1.12	7.50	- 58.5	4.21	0.25
15	13.3	1.35	1.14	7.46	- 70.9	3.96	1.11
20	13.8	1.22	1.13	7.47	-74.1	3.22	1.20
25	13.3	0.42	1.15	7.43	-91.7	3.16	1.20
205	13.3	0.91	1.15	7.42	- 94.0	2.96	1.20
36	13.3	0.55	1.15	7-42	-94.0	2.70	1.20
40	13.3	0.55	1.15	7~2	-94.1	3.08	1.20

ATTACHMENT 2

Request to Modify Paragraph 5.2 of the Administrative Order

VIA EMAIL: <u>AlgerB@michigan.gov</u> AND CERTIFIED MAIL Department: From: Phone: Email: Date: Environmental, Health and Safety Scott Detwiler +1 480-722-4139 <u>Scott.Detwiler@zf.com</u> April 14, 2023

Brandon Alger, Project Manager Warren District Office, Remediation and Redevelopment Division Michigan Department of Environment, Great Lakes, and Energy ("EGLE") 27700 Donald Court Warren, Michigan 48092

RE: Administrative Order for Response Activity, EGLE Docket No. AO-RRD-22-001; Facility Id. No. 63000952.

Dear Mr. Alger,

This letter is intended to confirm ZF Active Safety US Inc.'s (ZF's) understanding and request the Department of Environment, Great Lakes, and Energy's (EGLE's) concurrence regarding the current status of the requirements in Section 5.2 of the Administrative Order for Response Activity ("AO"), EGLE Docket No. AO-RRD-22-001 ("AO").

As you know, ZF first submitted a Technical Summary Report and cover letter to EGLE on August 9, 2022, requesting EGLE concurrence to withdraw the AO and suspend the requirements under the AO while it considers ZF's request. Since the initial submittal of the Technical Summary Report and letter, ZF and EGLE have actively worked together to refine the Report and the latest update of the Technical Summary Report was submitted by ZF on January 20, 2023.

In addition, since the Effective Date of the AO, ZF has complied with the requirements of Section 5.2 of the AO and has participated in design meetings with the Village of Milford and the EGLE Drinking Water and Environmental Health Division ("DWEHD"), provided design plans and specifications for review, and prepared and submitted a complete application for an Act 399 construction permit for a water treatment system for the Village of Milford. ZF, DWEHD, and the Village of Milford continue to work together on the details of the Act 399 permit. ZF has also continued to collect monthly samples from the OW-16D2 observation wells in accordance with Section 5.3 of the AO. Furthermore, ZF and EGLE have had regular communication through email and online meetings since March 2022 regarding the AO, including about the status of the items in Section 5.2.

However, Section 5.2 of the AO states, "Pursuant to the schedule below, Respondent shall diligently provide for and fully cooperate with the Village of Milford to design, install, implement, and maintain and operate the packed tower air stripper consistent with the Scope of Work no later than 365 days after the Effective Date of this Order." Given the Effective Date of the AO of April 16, 2022 and in light of the current status of the items in Sections 5.2.d. through 5.2.f. of the AO, ZF requests EGLE's response to this letter concurring that the parties are actively working together on the AO requirements and the development of a document to replace the AO and therefore, the requirements in Section 5.2 noted above have been suspended and Section 5.2 shall be modified or waived until such time that the AO has been terminated and replaced.

ZF appreciates EGLE's attention to this matter. Please include this letter in the administrative record for the AO and the Facility.

If you have any questions, please contact me at the phone number listed in the header on the first page of this letter, or Mr. Robert Bleazard – ZF Senior EHS Manager, Environmental Remediation at 480-722-4866.

Sincerely,

Salt & Ditt

Scott Detwiler Senior Regional Manager ZF Environmental, Health and Safety

Cc:

Mr. Robert Bleazard, ZF Ms. Kelly Martorano, ZF Mr. John McInnis, Arcadis Mr. Troy Sclafani, Arcadis Mr. Grant Gilezan, Dykema Mr. Paul Stewart, Dykema Mr. Christian Wuerth, Village Manager, Village of Milford Ms. Danielle Allison-Yokom, Michigan Department of Attorney General Mr. Michael Neller, EGLE - Remediation and Redevelopment Division Director Mr. Josh Mosher, EGLE - Remediation and Redevelopment Assistant Director Mr. Dan Yordanich, EGLE Ms. Mary Miller, EGLE Mr. Darren Bowling, EGLE Mr. Paul Owens, EGLE Ms. Cheryl Wilson, EGLE Ms. Lyndsey Hagy, EGLE Ms. Katie Noetzel, EGLE

ATTACHMENT 3

Second Modification of the Administrative Order, Effective April 20, 2023

Second Modification of the Administrative Order for Response Activity Former Kelsey-Hayes Company 101 Oak Street, Milford, Oakland County, Michigan EGLE Docket No. AO-RRD-22-001

WHEREAS, DWEHD has not yet issued the Act 399 construction permit; and

WHEREAS, EGLE reviewed the November 14, 2022, Updated Technical Summary Report, submitted by Respondent, which concluded that the unique construction of monitoring well OW-16D2, consisting of galvanized steel in both the casing and the screen, caused fouling, and created isolated conditions conducive to the presence of in-well vinyl chloride; and

WHEREAS, EGLE reviewed the groundwater analytical field parameters from June 2022 through February 2023, submitted to EGLE by Respondent on February 14, 2023, and determined the drawdown and other parameters to be supportive of the conclusions of the November 14, 2022, Updated Technical Summary Report; and

WHEREAS, monitoring well OW-16D2 has therefore been determined to no longer be an effective monitoring well due to its unique construction, and associated tendency to foul; and

WHEREAS, Respondent has installed monitoring wells OW-16D2R1 and OW-16D2R2, intended to replace monitoring well OW-16D2; and

WHEREAS, the EGLE RRD Director is authorized to modify any required response activities pursuant to Section XIII of the Administrative Order for Response Activity, AO-RRD-22-001 (Order).

NOW, THEREFORE, in consideration of Respondents findings and EGLE's review, the following modifications to the Order shall take effect upon the date of the EGLE RRD Director's signature:

Paragraphs 5.2 and 5.3 of the Order are modified as follows:

5.2 **Installation of Air Stripper.** Pursuant to the schedule below, Respondent shall diligently provide for and fully cooperate with the Village of Milford to design, install, implement, and maintain and operate the packed tower air stripper consistent with the Scope of Work. All work shall be conducted in accordance with the requirements of this Order.

5.3 **Increase monitoring well sampling frequency.** Beginning 15 days after the effective date of this Second Modification to the Order, and continuing monthly until this Order is terminated, Respondent shall sample monitoring wells OW-16D2R1 and OW-16D2R2. Collected samples shall be analyzed for VOCs with results reported to EGLE in the progress reports pursuant to Section XII. Within 30 days of the effective date of this Second Modification to the Order, Respondent shall remove monitoring well OW-16D2 from the ground, in accordance with the American Society for Testing and Materials Standard ASTM D5299/D5299M-18, and provide to EGLE written and photographed documentation of the steps that were taken to remove the monitoring well and the condition of the monitoring well (whether fouling is present, the extent of fouling, the condition of the casing, and any other notable concerns).

All other aspects of the Order as originally issued on March 16, 2022, and as modified September 16, 2022, remain in full force and effect.

This modification became effective on April 20, 2023.

Mike Neller, Director Remediation and Redevelopment Division Michigan Department of Environment, Great Lakes, and Energy <u>April 20, 2023</u> Date

Approved as to form:

Danielle Allison-Yokom

Date

April 20, 2023

Danielle Allison-Yokom Danielle Allison-Yokom Danielle Allison-Yokom Danielle Allison-Yokom Danielle Allison-Yokom Deneral Danielle Allison-Yokom Deneral Danielle Allison-Yokom Daniella Allison-Yokom Daniella Allison-Yokom Daniel

ATTACHMENT 4

Email Correspondence – OW-16D2 Well Abandonment

McInnis, John

From:McInnis, JohnSent:Thursday, May 4, 2023 11:13 AMTo:Alger, Brandon (EGLE)Cc:Detwiler Scott MSA HEEN; Sclafani, TroySubject:RE: Former Kelsey-Hayes Milford - Compromised Well OW-16D2 Removal

Hi Brandon,

Thanks for the feedback. We will keep you updated on the schedule and if we encounter any issues. We are working on a work plan for your review that summarizes the removal process.

Based on Cascade's availability, the earliest we can schedule the well removal is after Memorial Day.

Thanks, John

From: Alger, Brandon (EGLE) <AlgerB@michigan.gov>
Sent: Thursday, May 4, 2023 8:26 AM
To: McInnis, John <John.McInnis@arcadis.com>
Cc: Detwiler Scott MSA HEEN <scott.detwiler@zf.com>; Sclafani, Troy <Troy.Sclafani@arcadis.com>
Subject: RE: Former Kelsey-Hayes Milford - Compromised Well OW-16D2 Removal

Hi John,

No concerns with the proposed process. Please let us know what day you plan for this to occur and if any difficulties are encountered. Additionally, if it appears this will go beyond 30 days, please let us know a weekish in advance.

Thanks, **Brandon Alger | Senior Geologist** Remediation and Redevelopment Division | Warren District Office Michigan Department of Environment, Great Lakes, and Energy 586-623-2839 | AlgerB@Michigan.gov Follow Us | Michigan.gov/EGLE

From: McInnis, John <<u>John.McInnis@arcadis.com</u>>
Sent: Wednesday, May 3, 2023 8:39 AM
To: Alger, Brandon (EGLE) <<u>AlgerB@michigan.gov</u>>
Cc: Detwiler Scott MSA HEEN <<u>scott.detwiler@zf.com</u>>; Sclafani, Troy <<u>Troy.Sclafani@arcadis.com</u>>
Subject: RE: Former Kelsey-Hayes Milford - Compromised Well OW-16D2 Removal

CAUTION: This is an External email. Please send suspicious emails to abuse@michigan.gov

Hi Brandon,

Did you or your team have any questions or concerns with the proposed well abandonment process?

Thanks, John

From: Alger, Brandon (EGLE) <<u>AlgerB@michigan.gov</u>>
Sent: Wednesday, April 26, 2023 2:57 PM
To: McInnis, John <<u>John.McInnis@arcadis.com</u>>
Cc: Detwiler Scott MSA HEEN <<u>scott.detwiler@zf.com</u>>; Sclafani, Troy <<u>Troy.Sclafani@arcadis.com</u>>
Subject: RE: Former Kelsey-Hayes Milford - Compromised Well OW-16D2 Removal

Thanks John,

I will review this with our team and get back to you if we have any questions.

Brandon Alger | Senior Geologist Remediation and Redevelopment Division | Warren District Office Michigan Department of Environment, Great Lakes, and Energy 586-623-2839 | AlgerB@Michigan.gov Follow Us | Michigan.gov/EGLE

From: McInnis, John <<u>John.McInnis@arcadis.com</u>>
Sent: Wednesday, April 26, 2023 1:39 PM
To: Alger, Brandon (EGLE) <<u>AlgerB@michigan.gov</u>>
Cc: Detwiler Scott MSA HEEN <<u>scott.detwiler@zf.com</u>>; Sclafani, Troy <<u>Troy.Sclafani@arcadis.com</u>>
Subject: Former Kelsey-Hayes Milford - Compromised Well OW-16D2 Removal

CAUTION: This is an External email. Please send suspicious emails to abuse@michigan.gov

Hi Brandon,

We had a conversation with Cascade regarding removal of compromised well OW-16D2. They indicated that they have successfully removed entire wells. Because of the depth and age of OW-16D2, they recommend overdrilling the casing with a sonic rig to remove the well.

As you are aware there are several complicating factors associated with attempting to remove OW-16D2, including its age and deteriorated condition, as well as the fact that it was installed with hollow-stem augers in an area of challenging lithology that is likely to have resulted in auger "deflection" and wells that are not perfectly plumb. Since there is the potential for the well to get cut during overdrilling by the sonic tooling or shear off when they pull on it, Cascade recommends pre-grouting the well first before the removal process. This will allow the well to be properly grouted in place if the well does get cut or sheared off during the removal. The concern is that if the well is cut or sheared during the removal then the well would not be properly grouted/sealed in place. The disadvantage of the pre-grouting is that the well materials will be covered with grout if successfully removed so the inspection of the screen and casing may be difficult. Cascade indicated that they would try to carefully remove the grout using rinse water, but there's a possibility that any buildup or corrosion on the well materials that exists in its current state may get dislocated during the grout removal process. We wanted to bring this to your attention as we understand inspection of the well materials to be EGLE's primary reason for requesting well removal for the abandonment.

In addition, to help further document the condition of the well before removal, another down-hole camera survey will be performed prior to the abandonment.

Please let us know if you have any questions or concerns with this procedure.

Thanks, John

John McInnis PE Principal Engineer/Project Manager Arcadis of Michigan, LLC 28550 Cabot Drive Suite 500 | Novi, MI | 48377 | USA T +1 248 994 2285 M +1 248 982 9674 www.arcadis.com

Professional Registration / PE-MI, 6201037207

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

ATTACHMENT 5

OW-16D2 Well Abandonment Work Plan

Work Plan

SUBJECT Former Kelsey-Hayes Milford 101 Oak Street Milford, Michigan EGLE Facility ID No. 63000952

DATE May 8, 2023

DEPARTMENT Environment **TO** Brandon Alger, Senior Geologist Michigan Department of Environment, Great Lakes, And Energy

OUR REF Compromised Well OW-16D2 Abandonment Work Plan

PROJECT NUMBER 30136112

OVERVIEW

On behalf of ZF Active Safety US Inc. (ZF), Arcadis of Michigan, LLC (Arcadis) has prepared this Work Plan to document proposed activities for the abandonment of compromised well OW-16D2 (**Figure 1**). This Work Plan was prepared pursuant to Michigan Department of Environment, Great Lakes, and Energy (EGLE) Second Modification of the Administrative Order for Response Activity Former Kelsey-Hayes Company 101 Oak Street, Milford, Oakland County, Michigan, EGLE Docket No. AORRD-22-001, dated April 20, 2023. This Work Plan describes the process, in accordance with ASTM International Standard D5299/D5299M-18 for abandoning the compromised well OW-16D2 as requested by EGLE.

COMPROMISED WELL OW-16D2 REMOVAL

Field activities associated with the removal of compromised well OW-16D2 will include:

- Performing a camera survey of the well to document the current condition of the screen and the casing immediately prior to the well abandonment.
- Attempting to remove the well screen and casing from the ground using over-drilling with a sonic drill rig.

Monitoring Well Camera Survey

A down-well camera survey will be conducted to provide further documentation of the compromised well OW-16D2 immediately prior to the well abandonment, and to evaluate how the well conditions may have changed over time since the previous camera survey performed on July 21, 2022. A video recording and still photographs of the camera survey will be captured.

Monitoring Well Removal

Arcadis will retain a drilling subcontractor to over-drill and attempt to remove the well casing and screen from the ground. There are several complicating factors associated with attempting to remove OW-16D2, including its age (25 years), galvanized steel materials, and deteriorated condition, as well as the fact that it was installed with hollow-stem augers in an area of challenging lithology that is likely to have resulted in auger "deflection" and wells that are not perfectly plumb. Since there is the potential for the well to get cut during over-drilling by the sonic tooling or shear off when the drill rig pulls on it, the drilling subcontractor recommends pre-grouting the well first before the removal process. This will allow the well to be properly grouted in place if the well does get cut or

Brandon Alger, Senior Geologist Michigan Department Environment, Great Lakes, and Energy May 8, 2023

sheared off during the removal. The concern is that if the well is cut or sheared during the removal then the well would not be properly grouted/sealed in place.

The steps to remove the well are as follows:

Utility clearance will be conducted by calling Michigan OneCall and retaining a private utility locating subcontractor.

The drilling subcontractor will remove the stick-up well cover and concrete pad from the ground. Then, the drilling subcontractor will pre-grout the well with a bentonite grout prior to starting the removal process. The bentonite grout used for the process will be mixed according to manufacturer instructions, using one 50-lb bag of QUICK GROUT® per 24 gallons of water (see **Attachment 1**).

Using sonic drilling, an 8-inch casing will be advanced over the well casing to the bottom of the well (approximately 100 feet below ground surface).

The well casing will be attached to the sonic head or a winch and pulled out of the hole. In the process, the well material will be cut into smaller sections to allow disposal into a dumpster. Water and slurry generated during the drilling process will be captured in a drill-through tub and containerized in 55-gallon drums. The subcontractor will attempt to carefully remove the grout from the well materials using rinse water to facilitate inspection and photographic documentation of screen and casing to the extent possible. However, there is a possibility that any buildup or corrosion on the well materials that exists in its current state may get dislocated during the grout removal process.

Once the well casing has been removed, the borehole will be plugged with bentonite grout as specified above. The grout will be applied from the bottom up using tremie method at the same time as the 8-inch sonic casing is being removed from the ground. The grout will be filled to approximately 3 feet below ground surface. The next 2 feet of the borehole will be filled with dry bentonite chips and the remaining portion of the borehole will be filled flush to surface grade with topsoil and then seeded.

All well materials and other waste will be properly disposed of.

Written and photographic documentation of the steps that were taken to remove OW-16D2 and condition of the well will be provided to EGLE in a letter report following the abandonment.

TARGET SCHEDULE

Arcadis is coordinating with the Village of Milford and its drilling company subcontractor that will be performing the well abandonment work on selecting two consecutive days which are compatible with community activities planned in the park where this work will occur. Based on these coordination activities to date, ZF is aware that this work will not be able to be scheduled to meet the May 20, 2023 completion deadline set forth in Section 5.3 of the Second Modification of the Administrative Order for Response Activity dated April 20, 2023. ZF therefore requests that EGLE agree to a 20-day extension – to and including June 9, 2023 - to complete this work in a manner which accounts for current site access and drilling company subcontractor availability.

Enclosures: Figures and Attachments

Figures 1 - Site Layout Map

Attachments 1 – QUICK GROUT® Manufacturer's Information

Figure

 \bigcirc

Attachment 1

Product Information for Baroid (Halliburton) QUIK-GROUT®.

QUIK-GROUT®

One-Sack Borehole Grouting and Plugging Material

Description	cription QUIK-GROUT® one-sack grouting and plugging material is a sodium bentonite-based grout designed for grouting water wells, monitoring we and for plugging boreholes. QUIK-GROUT grouting and plugging materi does not contain any polymers.											
Applications/Functions	 Can seal or grout plastic and steel casings Can seal downhole instrumentation in test and observation holes Can plug abandoned boreholes and earthen cavities <u>Not recommended for use as a cement additive</u> 											
Advantages	 Easy-to-use one sack grout Dust-free mixing Can be mixed and pumped using conventional rig equipment Rehydratable No heat of hydration Can develop a 20% active solids slurry weighing 9.4 lb/gal (1.13 g/cm³ with hydrostatic gradient of 0.489 psi/ft (11.1 kPa/meter) Can create a low permeability seal to prevent entry of contaminants from the surface Can develop a permanent, flexible seal to prevent commingling between aquifers NSE/ANSI Standard 60 certified 											
Typical Properties	 Appearance Specific gravity pH (8% slurry) Electrical Resistivity Yield Volume Permeability (in fresh water) 	Beige to tan granules 2.6 8.2 0.98 ohm-meter 26.3 gallons per 50-lb sack 99.5 liters per 23-kg sack 2.5 x 10 ⁻⁸ cm/sec										
Recommended Treatment	For maximum results, pre-treat make-up water with Soda Ash to less than or equal to 100 mg/l total hardness and to a pH range of $8.5 - 9.5$. The recommended mixing rate is one 50-lb (23-kg) sack of QUIK-GROUT grouting and plugging material per 24 gallons (91 liters) of fresh water to create a 20% active solids by weight grout with a density of 9.4 lb/gal or 1.13 g/cm ³ .											

© Copyright 2011 Halliburton

QUIK-GROUT is a registered trademark of Halliburton

Rev. 3/3/2011 · IDP 023

Because the conditions of use of this product are beyond the seller's control, the product is sold without warranty either express or implied and upon condition that purchaser make its own test to determine the suitability for purchaser's application. Purchaser assumes all risk of use and handling of this product. This product will be replaced if defective in manufacture or packaging or if damaged. Except for such replacement, seller is not liable for any damages caused by this product or its use. The statements and recommendations made herein are believed to be accurate. No guarantee of their accuracy is made, however.

Recommended Mixing		Do not over mix a	nd do not use a centrifugal pu	mp.							
Procedure	1.	Using a mixing dev plugging material addition should be	a mixing device, blend one sack of QUIK-GROUT [®] grouting an ing material into 24 gallons (91 liters) of fresh water. Rate o on should be about 20 to 30 seconds per 50-lb (23-kg) bag.								
		<i>Note:</i> The resulting containing unyielde	consistency								
	2.	 Pump slurry through tremie pipe into hole without delay. G should be pumped through tremie pipe from bottom of surface to ensure effective displacement. Maintain subme tremie pipe a minimum of 10-feet within grout column f displacement. 									
Additional Information	• The grouting material and method selected will depend upon the specific subsurface environment including all prevailing geological and hydrological factors and any existing regulatory requirements. The grouting process may not be complete until the grout is static at the desired level.										
	• The use of bentonite may not be appropriate in environments where the formation water chemistry has a total hardness greater than 500 parts per million and/or a chloride content of greater than 1500 parts per million.										
	• If questions arise regarding subsurface environments it is always best to consult your local Baroid IDP representative to determine if the Baroid product of choice is appropriate for the given conditions.										
Packaging	QUIK-GROUT grouting and plugging material is packaged in 50-lb (23-kg) multiwall paper bags, containing 0.7 ft ³ (0.02 m ³).										
Availability	Availability QUIK-GROUT grouting and plugging material can be purchased through any Baroid Industrial Drilling Products Retailer. To locate the retailer nearest you contact the Customer Service Department in Houston or you area IDP Sales Representative.										
		Bar	oid Industrial Drilling Products	5							
		Pro	oduct Service Line, Halliburton								
	3000 N. Sam Houston Pkwy E. Houston, TX 77032										
	Cı	ustomer Service	(800) 735-6075 Toll Free	(281) 871-4612							
	Те	echnical Service	(877) 379-7412 Toll Free	(281) 871-4613							

ATTACHMENT 6

Summary Tables of Analytical Results of Samples and Field Parameters (Observation Wells OW-16D2R1 and OW-16D2R2 and Compromised Observation Well OW-16D2)

Table 1Observation Wells OW-16D2R1 and OW-16D2R2Groundwater Analytical Results and Field ParametersFormer Kelsey-Hayes Milford Plant

Sample Identification:	OW-16D2R1											OW-16D2R2								Residential			
Sample Collection Date:	6/8/2022	7/11/2022	8/8/2022	9/8/2022	10/3/2022	11/3/2022	12/7/2022	1/10/2023	1/26/2023	2/7/2023	3/21/2023	4/12/2023	8/8/2022	9/8/2022	10/3/2022	11/3/2022	12/7/2022	1/10/2023	1/26/2023	2/7/2023	3/21/2023	4/12/2023	Water Criteria
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 (A)
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.0 (A)
cis-1,2-Dichloroethene	21	20	20	22	19	17	19	23	19	21	20	19	11	12	10	8.3	9.2	11	8.8	9.5	9.4	9.2	70 (A)
trans-1,2-Dichloroethene	1.1	1.2	1.3	1.4	1.1	1.0	1.2	1.4	1.2	1.3	1.2	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	100 (A)
1,1-Dichloroethane	2.5	2.2	2.2	2.5	2.1	1.9	2.1	2.3	1.9	2.3	2.1	2.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	880
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0 (A)
Field Parameters																							
Drawdown (feet)	0.21	0.87	0.02	0.89	-0.19	-0.08	-0.06	0.01	0	0.01	0.4	0	1.11	0.84	0.16	0.01	0.01	0.26	0.08	0.02	0.13	0.95	-
Total Elapsed Minutes	54	41	27	29	27	24	40	40	35	35	35	35	57	28	29	21	35	35	35	40	40	40	-
Rate (mL/min)	125	100	125	100	115	125	200	200	200	200	200	200	125	100	125	125	200	200	200	200	200	200	-
First Depth to Water (feet)	1.2	2.18	2.61	2.2	1.98	1.67	1.82	1.55	1.67	2.15	1.20	0.71	1.14	1.76	1.43	1.22	1.42	1.75	2.4	0.68	2.12	0.25	-
Final Depth to Water (feet)	1.41	3.05	2.63	3.09	1.79	1.59	1.76	1.56	1.67	2.16	1.60	0.71	2.25	2.6	1.59	1.23	1.43	2.01	2.48	0.70	2.25	1.20	-
pH (standard units)	7.25	7.3	7.31	7.16	7.34	7.14	7.24	7.16	7.55	7.45	7.02	7.26	7.43	7.24	7.47	7.24	7.4	7.29	7.68	7.56	7.16	7.42	-
Conductivity (milliSiemens per centimenter)	1.047	1.08	1.12	1.12	1.08	1.07	1.05	1.08	1.11	1.09	1.08	1.07	1.09	1.1	1.08	1.13	1.13	1.18	1.23	1.18	1.19	1.15	-
Turbidity (Nephelometric Turbidity Unit)	0.02	0.78	0.02	0.02	0.02	0.02	2.29	2.35	2.76	2.01	1.43	2.77	129	1.96	0.52	0.02	2.67	2.76	2.56	2.53	2.59	3.08	-
Dissolved Oxygen (milligrams per liter)	0.17	0.15	0.17	0.17	0.05	0.13	0.18	0.19	0.19	0.3	0.19	0.31	0.11	0.21	0.04	0.11	0.24	0.27	0.38	0.27	0.25	0.55	-
Temperature (degrees Celsius)	15.3	17.6	17.9	17.5	15.2	13.3	11.8	10.7	6.7	10.1	10.3	13.4	20.4	18.1	15.8	13.6	11.2	10.5	4.8	9.3	10.6	13.3	-
Oxidation Reduction Potential (millivolt)	-287.7	-141.4	-112.3	-139.3	-76.2	-216.5	-20.7	-70.3	37.1	-58.1	-64.0	-74.8	-145.1	-138.1	-98.5	-182.7	-74	-93.4	-3.0	-98.0	-106.0	-94.1	-

Notes:

All volatile organic compound (VOC) concentrations are in micrograms per liter (µg/L).

All samples were analyzed for VOCs via USEPA Method 8260.

Residential drinking water criteria comes from cleanup criteria published in the EGLE Revised Part 201, effective December 30, 2013.

Abbreviations:

< = Below laboratory detection limit

EGLE = Michigan Department of Environment, Great Lakes, and Energy

Qualifiers:

(A) Criterion is the State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act No. 399 of the Public Acts of 1976.

Table 2Compromised Observation Well OW-16D2Groundwater Analytical Results and Field ParametersFormer Kelsey-Hayes Milford Plant

Sample Identification:	(Compromised) OW-16D2												
Sample Collection Date:	6/8/2022	7/11/2022	8/8/2022	9/8/2022	10/3/2022	11/3/2022	12/7/2022	1/10/2023	1/26/2023	2/7/2023	3/21/2023	4/12/2023	
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis-1,2-Dichloroethene	19	18	16	21	17	12	17	20	18	18	18	17	
trans-1,2-Dichloroethene	1.4	<1.0	<1.0	1.8	1.4	<1.0	1.4	1.8	1.5	1.6	1.6	1.3	
1,1-Dichloroethane	3.6	3.5	3.6	3.9	3.2	2.9	3.3	3.8	3.3	3.5	3.3	3.6	
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Field Parameters													
Drawdown (feet)	8.45	8.84	7.2	5.51	5.59	5.19	7.89	14.7	9.02	6.8	6.99	7.69	
Total Elapsed Minutes	53	53	43	42	44	27	45	55	40	40	40	40	
Rate (mL/min)	100	100	110	100	115	125	200	200	200	200	200	200	
First Depth to Water (feet)	27.76	6.32	5.44	6.17	5.68	4.68	5.13	4.26	4.35	3.70	3.71	3.30	
Final Depth to Water (feet)	36.21	15.16	12.64	11.68	11.27	9.87	13.02	18.96	13.37	10.50	10.70	10.99	
pH (standard units)	7.24	7.31	7.38	7.17	7.39	7.35	7.23	7.16	7.67	7.52	7.09	7.39	
Conductivity (milliSiemens per centimenter)	1.085	1.1	1.12	1.16	1.12	1.08	1.09	1.11	1.13	1.16	1.14	1.10	
Turbidity (Nephelometric Turbidity Unit)	46.8	4.39	0.88	1.01	1.29	2.52	2.75	1.25	2.91	2.17	2.95	3.36	
Dissolved Oxygen (milligrams per liter)	11.95	0.99	0.37	0.24	0.07	0.22	0.21	0.29	0.24	0.41	1.13	0.78	
Temperature (degrees Celsius)	13.7	15.7	17	15	13.8	12.5	10.8	9.2	4.5	7.9	9.6	13.6	
Oxidation Reduction Potential (millivolt)	121.2	100.1	-9.9	-36.4	24.5	-96.9	79.7	-2.5	105.1	18.5	-11.9	-24.1	

Notes:

All volatile organic compound (VOC) concentrations are in micrograms per liter (μ g/L).

All samples were analyzed for VOCs via USEPA Method 8260.

Observation Well OW-16D2 has been shown to be in a compromised condition and not performing properly. Therefore, samples collected from the well are not representative of groundwater conditions and not suitable for comparison to EGLE Part 201 cleanup criteria for establishing compliance.

Abbreviations:

< = Below laboratory detection limit

EGLE = Michigan Department of Environment, Great Lakes, and Energy

Arcadis of Michigan, LLC 28550 Cabot Drive, Suite 500 Novi Michigan 48377 Phone: 248 994 2240

www.arcadis.com