MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY WATER RESOURCES DIVISION AUGUST 2019

STAFF REPORT

ALGAL TOXIN MONITORING IN MICHIGAN INLAND LAKES: 2016-2018 RESULTS

Introduction

The term "harmful algal bloom (HAB)" generally describes accumulations of cyanobacteria that are aesthetically unappealing and produce algal toxins. In 2015 the Michigan Department of Environment, Great Lakes, and Energy (EGLE), Water Resources Division (WRD), developed the following definition of a HAB (Kohlhepp, 2015): "An algal bloom in recreational waters is harmful if microcystin levels are at or above the 20 micrograms per liter (μ g/L) World Health Organization (WHO) non-drinking water guideline, or other algal toxins are at or above appropriate guidelines that have been reviewed by EGLE-WRD." A key concept of this HAB definition is that while high chlorophyll *a* concentration and visible surface/water column algal accumulations can indicate potential problems, the WRD's focus is on the potential harm that toxins represent. Thus, water samples must be analyzed for the presence of toxins to confirm that a bloom may, in fact, be potentially harmful to humans, pets, or wildlife. Visible appearance of blooms cannot be used as a reliable predictor of toxin content.

Cyanobacteria are one of the oldest life forms on Earth (e.g., Schirrmeister et al., 2016) that can live in terrestrial, marine, and freshwater environments (Chorus and Bartram, 1999). The potential harmful effects of cyanobacteria on animals have been documented as far back as the 19th century (Francis, 1878; Arthur, 1889). More recent work has focused on the potential harmful effects of cyanobacterial toxins on humans and pets (Koreiviene et al., 2014; Trevino-Garrison et al., 2015; Zhang et al., 2015). Incidences of cyanobacterial blooms have increased worldwide in the last several decades (Carmichael, 2008; O'Neil et al., 2012; Taranu et al., 2015; Scholz et al., 2017). Given future climate scenarios and the increased amount of nutrients required for more intensive agricultural practices, the frequency, duration, and magnitude of cyanobacteria blooms are expected to increase worldwide (Jöhnk et al., 2008; Reichwaldt and Ghadouani, 2011; Posch et al., 2012; Michalak et al., 2013; Paerl, 2018).

In Michigan, previous research on inland lake HABs has focused on zebra mussel (*Dreissena polymorpha*) and quagga mussel (*Dreissena bugensis*) invasions and the subsequent increases in cyanobacteria biomass and microcystin production (Raikow et al., 2004; Sarnelle et al., 2005; Wilson et al., 2005; Knoll et al., 2008; Woller-Skar, 2009; Sarnelle et al., 2010; White et al., 2017; Gaskill and Woller-Skar, 2018). Other research has focused on cyanobacteria and microcystin production dynamics in specific water bodies of interest, particularly in west Michigan (Hong et al., 2006; Rediske et al., 2007; Gillett and Steinman, 2011; Xie et al., 2011; Xie et al., 2012; Gillett et al., 2015) and Ford and Belleville Lakes (Washtenaw and Wayne Counties; Lehman, 2007; Lehman et al., 2009; Lehman, 2014). The EGLE has been monitoring the number of citizen and staff complaints regarding nuisance algae and cyanobacteria (Parker, 2014; 2015; 2016a; 2016b; and 2018a) and monitoring the concentration of the cyanobacterial toxins microcystin, anatoxin-a, and cylindrospermopsin in the State of Michigan for the last several years (Holden, 2016; Parker 2017; 2018b).

This report summarizes cyanobacteria toxin monitoring from 2016 through 2018. The purpose of this report is to (1) evaluate the geographical extent of HABS throughout Michigan (i.e., how widespread is the problem?); (2) compare microcystin concentrations between cyanobacterial scums and nearby ambient water; (3) evaluate the efficacy of commercially available test strips for microcystin detection; and (4) explore any patterns that can explain cyanobacterial bloom occurrence and microcystin production throughout the state. Raw data from 2016 and 2017 are available in past reports (Parker 2017; 2018b). Raw data from 2018 are available at the end of this report (Appendix 1).

Sites

The lakes that are assessed in this report can be placed in three broad categories: randomlyselected lakes that were sampled for limnological parameters as part of the Inland Lakes Status and Trend Program (Walterhouse, 2015), targeted lakes that were visited because EGLE staff were aware of previous cyanobacteria blooms that had taken place in them, or because they were sampled as part of Total Maximum Daily Load (TMDL) development, and lakes that EGLE received complaints about either from citizens or staff (Figure 1).

Figure 1. Different types of lakes sampled for cyanobacterial toxins from 2016-2018.

Field Methods

Sampling occurred between early May and late November, with most monitoring occurring in August and September. During a monitoring event at a lake, EGLE-WRD staff typically took pictures of algal conditions, collected general water chemistry in the center of the lake (if accessible by boat), and collected water samples for cyanobacteria toxin analysis from up to four locations around the lake. If a water body was inaccessible by boat, then only shoreline samples were collected for toxin analysis; however, nutrient and chlorophyll samples were not collected. The cyanobacteria toxin samples were analyzed using both Abraxis (Abraxis, Inc., Warminster, Pennsylvania) test strips to assess microcystin presence/absence and tandem liquid chromatography mass spectrometry (LC/MS/MS) for quantitative assessment of a suite of algal toxins including microcystins, cylindrospermopsin, and anatoxin-a (Table 1).

Water Samples - General Chemistry

Water sample parameters collected at the status and trend lakes, targeted lakes, and some response lakes were generally similar. At all lakes, temperature, dissolved oxygen, conductivity, pH, chlorophyll a concentration, chlorophyll relative fluorescence unit, phycocyanin concentration, and phycocyanin relative fluorescence unit were measured using an EXO sonde (YSI Incorporated, Yellow Springs, Ohio). In some cases, with the response lakes, the staff who were available to collect the water samples did not have access to an EXO sonde unit. In those cases, only water samples were collected for the purpose of cyanobacteria toxin analysis. Nutrient surface water samples were collected at approximately 0.5 feet below the water surface using new, 250 milliliter (ml) polypropylene sample bottles that were triple-rinsed with site water. At targeted lakes and response lakes where a boat could be taken to the center of the lake, the following samples were collected: total phosphorus, Kjeldahl nitrogen, nitrate+nitrite, ortho-phosphate, and chlorophyll a. The total phosphorus, Kjeldahl nitrogen, and nitrate+nitrite were preserved with sulfuric acid in the field. Chlorophyll a samples were collected as an integrated sample of the photic zone (twice the Secchi depth) and preserved with magnesium carbonate in the field. The samples were analyzed at the EGLE Environmental Laboratory using standard United States Environmental Protection Agency (USEPA) methods (Table 1). At the status and trend lakes the same nutrient samples were collected, excluding ortho-phosphate. The August status and trend water chemistry samples were collected by Michigan Department of Natural Resources (MDNR)-Fisheries Division staff and analyzed by the Great Lakes Environmental Center, Traverse City, Michigan. Following collection, sample bottles were placed on ice or refrigerated for transport and storage prior to delivery to the laboratory. At targeted lakes, the nutrient samples were not collected at every sampling event if sampling occurred several times over a week.

Water Samples - Algal Toxins

At most lakes that were sampled by boat, one sample over the deepest part of the lake and at least three shoreline samples were collected in 250 ml polyethylene terephthalate sample bottles at the water surface. Shoreline samples were typically collected at 1- to 6-foot depths. If sampling by boat, the shoreline sampling locations were distributed approximately evenly around the shoreline of the lake. However, downwind locations, areas that may be used for recreation, or beaches were preferentially targeted. When boat access was not available, attempts were made to sample an even distribution of the shoreline; however, sampling locations were limited to areas of public access and/or private property that EGLE workers received permission to access. Prior to sampling, bottles were triple-rinsed with site water and samples were collected from an undisturbed area of water. Microcystin samples at the targeted and response lakes were collected at the water surface (i.e., the bottles were not submerged under water). At the status and trend lakes, sample bottles were collected about .5 feet below the water surface. When scum accumulations were present, and accumulated in a localized area, one surface scum sample was collected and one ambient (non-scum) sample was collected outside of the accumulation (Figure 2). The ambient samples were collected within 5-15 feet from the edge of the scum accumulations. In cases where surface scums were omnipresent either throughout an entire lake, or throughout a very large section of a lake with no clear demarcation between the scum and ambient water, only a scum sample was collected.

Figure 2. Example of a localized cyanobacteria scum accumulation in which a sample was collected from the scum and nearby ambient water.

At response lakes, often only shoreline samples were collected from an area with a cyanobacteria accumulation present, or in an area that previously had high concentrations of microcystins. Most of the samples were collected by EGLE staff, although in some cases citizens collected water samples and turned them into the EGLE district offices.

Ambient water and scum samples that were analyzed using qualitative and quantitative methods were kept on ice during transport back to the laboratory. Microcystin presence/absence and relative concentration estimate was determined using test strips. If the initial test strip indicated that microcystins were present in the sample, then it was delivered to the Michigan Department of Health and Human Services (MDHHS) laboratory for quantitative analysis. Quantitative analysis of anatoxin-a, cylindrospermopsin, and 13 microcystin congeners (Table 1) was performed using LC/MS/MS. If the Abraxis test strips indicated that no microcystin was present in any samples from a lake, then only one sample was sent to the MDHHS laboratory for further quantitative analysis.

Microcystin samples were held on ice or refrigerated for no more than 48 hours prior to analysis. If microcystin samples needed to be held longer than 48 hours, they were frozen with care taken to reduce volume to allow for expansion. EGLE-WRD staff analyzed the July status and trend samples and all targeted lake samples using the test strips. The August status and trend samples were analyzed by staff of the Great Lakes Environmental Center and 1 sample from each lake was analyzed by the MDHHS laboratory.

Parameter	Analytical Method	Reporting Level
		(ug/L)
Microcystin LR	LC/MS/MS	0.008
Microcystin RR	LC/MS/MS	0.004
Microcystin YR	LC/MS/MS	0.008
Microcystin LA	LC/MS/MS	0.008
Microcystin LF	LC/MS/MS	0.008
Microcystin LW	LC/MS/MS	0.008
Microcystin LY	LC/MS/MS	0.008
Microcystin WR	LC/MS/MS	0.008
Microcystin HILR	LC/MS/MS	0.008
Microcystin HTYR	LC/MS/MS	0.008
Microcystin LR D-ASP3	LC/MS/MS	0.008
Microcystin RR D-ASP3	LC/MS/MS	0.004
Microcystin LR DHA7	LC/MS/MS	0.008
Anatoxin-a	LC/MS/MS	0.02
Cylindrospermopsin	LC/MS/MS	0.02
Qualitative Total Microcystin	Abraxis Test Strips (PN52022)	1
Total Phosphorus	EPA 365.4	10
Kjeldahl Nitrogen	EPA 351.2	100
Ammonia	EPA 350.1	10
Nitrate+Nitrite	EPA 353.2	10
Ortho-phosphate	EPA 365.1	10
Chlorophyll a	10200H (Standard Methods)	1

Table 1. Analytical methods and reporting limits.

Data analysis

The number of water bodies that experienced at least one cyanobacteria bloom between 2016 and 2018 was quantified by reviewing field and laboratory data, photographs from sites that were visited by EGLE staff, and by reviewing photographs that were sent to EGLE from concerned citizens. The distribution of cyanobacteria blooms was assessed along a north-south gradient in Michigan. The centroid latitudes for each Michigan county were calculated using the Calculate Geometry tool function in ArcMap 10.4 (ESRI, 2011) using the NAD 1983 Geographic Coordinate System. For coastal counties, islands were excluded from the calculations, so latitude centroids were only for the mainland. A linear regression was performed on the number of confirmed cyanobacteria blooms (log +1- transformed) versus the centroid latitude for each county.

A logistic regression was performed on strip test data versus total microcystin laboratory concentration results. The strip test results were dichotomized as either microcystin detected (score of 1) or microcystin not detected (score of 0). The resulting slope and intercept from the regression were graphed to model the probability of correct microcystin detection using the strip tests.

To evaluate the effect of observed chemical/physical parameters measured at the time microcystin samples were collected, a principal components analysis (PCA) was performed on those data. The PCA was used to reduce the dimensionality of the correlated, independent,

chemical/physical variables, into a single value, or PC 1 score. The first PC score often represents the degree of anthropogenic disturbance that a system is experiencing. High PC 1 scores typically represent more disturbed systems, whereas low PC 1 scores often represent less disturbed environments (Uzarski et al., 2005). A linear regression between the PC 1 scores, acting as a surrogate for disturbance, and microcystin concentrations was performed to assess whether overall site conditions could explain observed toxin concentrations. Chemical/physical data for the above analyses were only used from specific sites where samples were sent to the laboratory for both nutrient and microcystin analyses.

The scores of the PCA bi-plot were categorized as one of three lake types: natural (no dam or water control structure at the lake outlet), natural but with some type of water level control structure at the outlet, and reservoir impoundment (lentic environment only exists because flowing water was impounded). Lake type classifications were mostly obtained from the MiSwims database. To confirm visual interpretations of the PCA bi-plot, statistical differences between the three categories of lakes were tested with a multi-response permutation procedure (Mielke, 1984; Zimmerman et al., 1985). Euclidean distance measures and a natural weighting (n/sum[n]) recommended by Mielke (1984) was used.

Shoreline development factors (SDF) and maximum depths of water bodies that had experienced cyanobacteria blooms were compared between reservoirs, natural lakes with dams, and natural lakes with no water level control structure using analysis of variance (ANOVA) with Tukey's honestly significant difference post-hoc testing. These analyses were performed on different groups of water bodies than the PCA. The PCA was limited to lakes that were accessible by boat and had chemical/physical data collected in the center of the lake. However, SDF and water depths could be obtained for most lakes, regardless of whether they were visited or not. Maximum lake depths were mostly obtained from the MiSwims database. In some cases, where depth data were not available for a lake, other reliable sources were located, such as consultant or MDNR reports. A database of calculated SDF values for all Michigan lakes was provided by P. Tyning (Progressive AE, Grand Rapids, Michigan). Shoreline development factor is the degree of a lake's shoreline irregularity and is expressed as the ratio of shoreline length to the circumference of a circle of area equal to the lakes area (Horne and Goldman, 1994). A lake with the least amount of shoreline would be perfectly circular and have an SDF of 1.0. As shorelines become more irregular (less circular) the SDF increases. A Welch t test was used to compare the microcystin concentrations of all side-by-side scum and ambient water samples that were collected from 2016-2018. Statistical significance for all tests was set at $\alpha = 0.05$.

Results

From 2016-2018, water samples were collected and analyzed for microcystin from 81 different status and trend lakes, 60 complaint water bodies, and 11 targeted lakes. Of the 81 status and trend lakes that were sampled, only two of them had a minimum of one sample with detectable concentrations of microcystin, with the highest being 6.8 μ g/l. Nine of the 11 targeted lakes contained microcystin. Of those nine targeted lakes with microcystin, six of them had samples with elevated concentrations that were >20 μ g/l; Parker, 2017 and 2018b).

The number of water bodies for which EGLE has received complaints has increased in the last two years (Figure 3; Parker, 2018a). From 2016-2018, EGLE received complaints about algae in 102 different water bodies. Of those water bodies, EGLE staff confirmed, either by site visit or photograph, that cyanobacteria were present at 57. Of the sites that were sampled by EGLE

staff, 30 water bodies contained microcystin, 13 of which had microcystin concentrations $>20 \mu g/l$ in at least one sample.

Figure 3. Number of different water bodies with complaints about algae or cyanobacteria from 2013-2018.

Throughout the state from 2016-2018, EGLE staff either observed, or were alerted to, 65 confirmed cyanobacteria blooms. All but one of those blooms was in the Lower Peninsula, with the majority of those in the southern half. There was a significant inverse relationship ($R^2 = 0.43$, p < 0.001; Figure 4) between the number of blooms per county and the county centroid latitude, which confirmed our visual interpretation of the map in Figure 5.

Of the lakes that had blooms, the majority of them were either reservoirs or natural lakes with a lake level control structure (25% reservoir, 32% natural with a dam, 43% natural; Figure 5). The exact number of impounded lakes throughout the state has been an elusive number for some time. Brown (1943) estimated that there were 700-800 impoundments (defined as any lake with a dam greater than 2 feet high) throughout the state, although dams were constructed after that report. The U.S. Army Corps of Engineers has a list of 1,059 impoundments in Michigan in its National Inventory of Dams, although that list includes many small dams that create impoundments <5 acres in size. Nevertheless, even with the 1,059-impoundment figure, that would put the total number of Michigan lakes that are impounded in some way at approximately 10% of all lakes in the state.

Figure 4. Regression of Log +1-transformed bloom occurrences per county and county centroid latitude.

Figure 5. Map of confirmed cyanobacteria blooms by lake type and pie chart of different lake types that experienced blooms (NAT = natural, NWD = natural with dam, RES = reservoir).

The logistic regression analysis indicated that the probability of microcystin detection with the test strip kits was greater than 50% when the actual concentrations were between 1-2 µg/l (Figure 6). Microcystin detection using the test strips was significantly associated with increasing concentrations of microcystin (p < 0.001). Comparing the agreement between the estimated microcystin concentrations from the test strips to the concentration results from the mass spectrometry results revealed good agreement for non-detections, 1-10 µg/l of microcystin, and >10 µg/l of microcystin (Table 2). When actual concentrations were between a non-detection (detection limit - 0.5 µg/l of microcystin) and 1 µg/l of microcystin, the test strips often over-estimated the amount of microcystin (Table 2). There were four samples, from three separate lakes, that caused the strip tests to fail. The actual concentrations of microcystin in those samples ranged from 0.52-29 µg/l. In all of the instances of strip test failure, the cyanobacteria that was tested had a rare, purple hue (Figure 7).

Table 2.				
	Tes	t Strip Res	ults	
Mass spec result	ND (208)	0-1 (20)	1-10 (78)	>10 (96)
ND	67%	10%	14%	1%
0-1	23%	20%	13%	1%
1-10	10%	70%	61%	21%
>10	0%	0%	12%	77%

Table	2
-------	---

Figure 6. Probability of microcystin detection using test strip kits as a function of actual microcystin concentrations measured in the laboratory. Filled circles represent the mean (\pm SE) detections (scored as one) along the laboratory-measured microcystin gradient.

Figure 7. Example of cyanobacteria with a purple hue that caused test strip failures.

The PCA bi-plot representing lakes sampled across the state from 2016-2018 revealed that lakes representing a wide range of conditions were assessed. The first principal component, which is best explained as a gradient of anthropogenic disturbance (increasing nutrients, chlorophyll *a* (integrated samples), and phycocyanin; Uzarski et al., 2005) explained 42% of the variability in the chemical/physical matrix. The reservoirs appeared to exhibit the greatest amount of anthropogenic disturbance/productivity compared to natural lakes and natural lakes with dams (Figure 8). The multi-response permutation procedure results confirmed our visual interpretation of the PCA bi-plot as all lake types exhibited significant differences in chemical/physical characteristics (A = 0.22; p < 0.001). A linear regression of PC 1 scores versus log₁₀-transformed microcystin concentrations showed no relationship between PC 1 scores and microcystin concentrations (R² = 0.04, p = 0.10; Figure 9).

There were significant depth differences between reservoirs and natural lakes with dams (ANOVA: F = 3.6, df = 2, 54, p = 0.03; Table 2), with reservoirs being shallower (Figure 10). Reservoirs had significantly greater SDFs than both natural and natural with dam lakes (ANOVA: F = 8.3, df = 2, 57, p < 0.01; Table 2; Figure 11).

A comparison of microcystin concentrations from side-by-side samples of cyanobacterial scum and nearby ambient water revealed that the scum contained more microcystin than the nearby clear water (t = 2.62, df = 40, p = 0.01; Figure 12).

Figure 8. Principal component analysis bi-plot of chemical physical variables in Michigan lakes that were sampled in 2017. Red squares = reservoir, blue circles = natural lakes, black triangles = natural lakes with dams.

Figure 9. Linear regression of log10-transformed microcystin concentrations and PC 1 scores for each lake.

Table 2. Tukey's honest	ly significant differend	ces between dep	oths and shorelin	e development
factors among lake type	S.			

	Depth		Shorelin	e developme	nt factor
	Reservoir	Natural with		Reservoir	Natural with
		dam			dam
Natural	0.37	0.25	Natural	<0.01	0.93
Natural with dam	0.03		Natural with dam	<0.01	

Figure 10. Mean depths (feet ± S.E.) among lake types.

Figure 11. Mean shoreline development factors (± S.E.) among lake types.

Figure 12. Mean microcystin concentrations (\pm S.E.) from scum and ambient water samples collected side by side.

Discussion

In the last couple of years, the number of complaints received by EGLE about nuisance cyanobacteria and algae have increased. EGLE (Parker, 2018b) and others (Cheung et al. 2013) have acknowledged that the increased awareness and attention that HABS have received recently may account for the increased reports. However, Cheung et al. (2013) maintained that the increasing number of reports is unlikely the sole result of increased attention. The consensus amongst most researchers is that the frequency, magnitude, and intensity of HABS is increasing worldwide, and that given future climate scenarios coupled with more intensive agricultural practices worldwide, HABS are only expected to get worse (Kosten et al., 2012; O'Neil et al., 2012; Paerl and Paul, 2012; Michalak et al., 2013; Scavia et al., 2014; Taranu et al., 2015; Scholz et al., 2017).

We have consistently found that, statewide, the vast majority of the randomly sampled lakes have not had active cyanobacteria blooms occurring and that the only time we do find active blooms is if we target specific lakes that have had them in the past, or if we are alerted to a bloom by citizens. Like others (Aranda-Rodriguez et al., 2015; Watson et al., 2017), we found that the test strips were reliable indicators of high amounts of microcystin. Consistent with previous results (Holden, 2016), we found that the test strips tend to over-estimate the actual concentrations of microcystin.

In general, the cyanobacterial blooms that we did observe were more prevalent in the southern Lower Peninsula of Michigan, which is the most populated area of the state and contains more agricultural areas. Using remote sensing, Torbick et al. (2013) also found that lakes in the southern Lower Peninsula were more productive and that cropland and urban land use was associated with more eutrophic lakes.

There is widespread consensus that water bodies with greater than 10% impervious cover in their watersheds will begin to exhibit water quality degradation (Schueler and Holland, 2000; Brabec et al., 2009; Carey et al., 2013). Urban and residential areas quickly convey nutrients and other pollutants to storm drains that then directly discharge to nearby water bodies (Steinman et al., 2006; Carey et al., 2013; Yang and Toor, 2016 and 2017; and Janke et al., 2017). Unlike streams, which will assimilate some nutrients in the sediment and plant biomass, pipes will direct all nutrients to a receiving water body (Steinman et al., 2006; Brabec et al., 2009). Lakes in more populated areas also tend to be largely developed along their immediate shoreline since lakefront property is highly desired. Residential land use along lake shorelines can contribute nutrients to the lake via lawn fertilizer application (Morton et al., 1988; Bierman et al., 2010; Carey et al., 2012; Steinman et al., 2015) and septic system leachate (Gilliom and Patmont, 1983; Tessier and Lauf, 1992; Swann, 2001; Brennan et al., 2016; Schellenger and Hellweger, 2019).

Agricultural nutrient runoff has been recognized as a contributing factor to cyanobacteria blooms, with much attention being focused on the re-eutrophication of western Lake Erie (Michalak et al., 2013; Scavia et al., 2014; and Bullerjahn et al., 2016). However, on a smaller scale, agriculture has also been implicated as contributing to cyanobacteria blooms in inland lakes as well (Torbick et al., 2013; Taranu et al., 2015 and 2017; Clement and Steinman, 2017; Marion et al., 2017). Increased dissolved reactive phosphorus loading via field tile drainage pipes has been cited as one of the main causes of cyanobacteria blooms in water bodies that are surrounded by agricultural land use (Bullerjahn et al., 2016; Clement and Steinman, 2017).

Similar to other work (Taranu et al., 2017; Gina LaLiberte, Wisconsin DNR, personal communication) we found that the majority of cyanobacteria blooms occurred in lakes with some kind of an impoundment structure. The six lakes that had confirmed cyanobacteria blooms in the northern Lower Peninsula were either reservoirs or natural lakes with a lake-level control structure. This is significant since the majority of inland lakes in Michigan are natural. The most recent lake inventory by the MDNR recognizes 10,759 inland lakes throughout the state that are greater than 5 acres. Based on conservative estimates, it is likely that only around 10% of those lakes are impoundments or natural lakes with a dam. Approximately 57% of the lakes with confirmed cyanobacteria blooms from 2016-18 were impounded in some way.

The reservoirs were the shallowest water bodies, had the highest shoreline development factors, and were the most productive systems that we sampled. In general, reservoir systems tend to age faster than natural systems (Ryder, 1978; Kimmel and Groeger, 1986). Reservoirs systems typically have larger catchment-to-lake-area ratios than natural lakes (Taranu et al., 2017). That is, they have larger watersheds draining into them from an upstream tributary than a typical, kettle lake will have. With larger watersheds, more nutrients are likely to flow into the receiving water bodies, thus increasing the chances for cyanobacteria blooms (Toporowska et al., 2018). Reservoir systems also tend to be created in either urban or agriculture-dominated areas (Kimmel and Groeger, 1986), which both contribute nutrients to water bodies as described above. Finally, some reservoirs were created for the sole purpose of developing residential communities around a water body (Nicholls and Crompton, 2018), in which case the majority of the shoreline is going to have residential land use along the immediate shoreline of the lake. Shallow lakes coupled with nutrient-rich sediment are prone to nutrient resuspension into the water column as a result of physical disturbances such as wind (Kristensen et al., 1992; Blottière et al., 2013), fish foraging (Havens, 1991), and boat traffic (Anthony and Downing, 2003).

We found that the shoreline development factors of reservoirs were higher than those of the natural and natural with dam lakes. This is not surprising since impoundments tend to flood historic tributary stream valleys and other low-lying areas. The resultant shoreline features of reservoirs, depending on the extent of impoundment and surrounding landscape features, are often numerous peninsulas, coves, canals, and islands throughout the water body. All of which extend the amount of shoreline along the water body. Given the inherent desirability of lakefront property and the fact that some reservoirs are created for the purpose of creating residential lake lots (Nicholls and Crompton, 2018), reservoirs tend to have a disproportionate number of residential dwellings along their entire shoreline compared to lakes of similar size, but with less shoreline. Each residential lake dwelling can then contribute nutrients to the water body via lawn fertilizer (Morton et al., 1988; Bierman et al., 2010; Carey et al., 2012; Steinman et al., 2015), pet waste (Schueller and Holland, 2000), loss of natural shoreline buffers (Woodard and Rock, 1995; Søndergaard and Jeppesen, 2007; Rosenberger et al., 2008), and septic systems (Gilliom and Patmont, 1983; Tessier and Lauf, 1992; Swann, 2001; Brennan et al., 2016; Schellenger and Hellweger, 2019). The shallow embayments that are characteristic of reservoir systems often offer calm areas of warm water that is conducive to cyanobacteria growth (Parker, 2018b).

Although the natural lakes with dams had similar depths and shoreline development factors as the natural lakes with no water level control structures, they were over-represented among the water bodies that experienced cyanobacteria blooms. Lake-level control structures are typically constructed at lake outlets to ensure that consistent water levels are maintained that can accommodate recreational activities. In fact, over half of the dams in Michigan on the National Inventory of Dams list have "recreation" as the primary purpose for the dam structure. Typically, lakes that have water-level control structures for recreational purposes are going to have a high number of residential units along the shoreline, which may contribute nutrients from lawns (Morton et al., 1988; Bierman et al., 2010; Carey et al., 2012; Steinman et al., 2015) and/or be near urban centers that can contribute nutrients (Steinman et al., 2006; Carey et al., 2013; Yang and Toor, 2016 and 2017; and Janke et al., 2017). However, if lake-level control structures are constructed in lake outlets for the purpose of artificially raising water levels, then this will also artificially raise groundwater levels around the immediate riparian shoreline. If septic systems were in place prior to the groundwater level rising, then the amount of non-saturated soil to filter nutrients from the septic leachate will decrease, which then increases the risk of septic pollution entering the lake via groundwater (Gilliom and Patmont, 1983; Swann, 2001; Lusk et al., 2017).

Some broad conclusions can be made about the occurrences of cyanobacteria blooms throughout Michigan and possible causes of them. Similar to other work though (Kardinaal and Visser, 2005; Omidi et al., 2018), we found that microcystin production dynamics over a large geographic area are very unpredictable. For example, although cyanobacteria blooms are rare in the northern Lower Peninsula, the highest recorded total microcystin concentration that we observed (13,000 µg/l) occurred in a lake in losco County. And while cyanobacteria blooms are typically associated with eutrophic and hypereutrophic lakes, we have observed high microcystin concentrations in oligotrophic and mesotrophic lakes, possibly as a result of selective feeding by Dreissenid mussels (Raikow et al., 2004; Sarnelle et al., 2005 and 2010; Wilson et al., 2005; Knoll et al., 2008; Woller-Skar, 2009; White et al., 2017; and Gaskill and Woller-Skar, 2018). Finally, we have sampled obvious cyanobacteria scums that have not had any microcystin in them.

Whether a population of cyanobacteria produces microcystin is dependent on whether they possess the toxin-producing genotypes or not (Kardinaal and Visser, 2005). In Michigan, cyanobacterial populations are genetically diverse both between lakes, and within lake

populations (Wilson et al., 2005). Even within a single lake, cyanobacteria species and genotypes will change throughout the year, meaning that toxins may only be found in a particular water body for part of the year (Kardinaal et al., 2007; Lehman, 2007; Lehman et al., 2009). Further complicating the understanding of microcystin dynamics is that the exact triggers for microcystin production by cyanobacteria are not fully understood (Sivonen and Jones, 1999; Kardinaal and Visser, 2005).

The factors that determine microcystin production by cyanobacteria are probably dependent on the particular genotypes and environmental conditions within individual water bodies (Kardinaal and Visser, 2005; Omidi et al., 2018). For some well-studied, individual lakes in Michigan, microcystin production can be predicted with some accuracy. For example, in Mona Lake, Muskegon County, microcystin concentrations have consistently been correlated with water column, total phosphorus concentrations (Xie et al., 2012; Parker, 2018b). In Ford Lake, Washtenaw County, and Belleville Lake, Wayne County, the cyanobacterial communities appear to exhibit predictable, seasonal shifts in species composition and toxicity (Lehman, 2007).

Although predicting microcystin production from lake to lake can be difficult, when we have found elevated concentrations in a water body, it has consistently been found in obvious cyanobacteria scum accumulations or obvious sheens on the water surface. Typically, when cyanobacteria are present in a lake, it is in a localized area that is protected from disturbance or along windswept shorelines. Only on rare occasions have we observed extensive, lake-wide blooms. Similar to others (Carmichael and Gorham, 1981; Bartram and Rees, 2000) we have found that microcystin concentrations are often much lower, or non-detectable in clear water that is within 10-15 feet of a cyanobacteria scum.

Conclusion

In general, cyanobacteria blooms do not appear to be a widespread problem in Michigan given how they are rarely observed when lakes are randomly sampled. Rather, we typically only observe cyanobacteria blooms and resultant toxin production in lakes that we either target, because they have experienced blooms in the past, or because citizens have alerted us to them. Typically the blooms that are observed occur in localized areas of a water body and any microcystin that is observed is typically found in obvious scums, whereas adjacent, clear water often has very little/no microcystin. The majority of the cyanobacteria blooms that we have observed in the last three years have been in the southern Lower Peninsula. The southern Lower Peninsula contains the most agricultural and urban areas in Michigan, which are known to contribute nutrients to water bodies. Despite only making up a small percentage of the total number of lakes in Michigan, lakes that were either reservoirs or natural, but with a lake-level control structure, made up the majority of the water bodies that experienced cyanobacteria blooms. These systems may have been over-represented since they are typically situated in populated areas and are usually heavily-developed along the riparian area. Reservoirs in particular tend to be shallow and have high shoreline development factors. We have observed cyanobacteria blooms in only a small percentage of the total number of Michigan lakes, albeit typically in the most densely populated areas of the state. Most experts agree that given future climate projections coupled with agricultural and urban land use scenarios, cyanobacteria blooms are expected to increase in occurrence and magnitude worldwide.

REFERENCES

- Anthony, J.L. and J.A. Downing. 2003. Physical impacts of wind and boat traffic on Clear Lake, Iowa, USA. Lake and Reservoir Management 19:1-14.
- Aranda-Rodriguez, R., Z. Jin, J. Harvie, and A. Cabecinha. 2015. Evaluation of three test kits to detect microcystins from a public health perspective. Harmful Algae 42: 34-42.
- Arthur, J.C. 1889. Some algae of Minnesota, supposed to be poisonous. Bulletin of the Minnesota Academy of Natural Sciences 2: 97-103.
- Bartram, J. and G. Rees (eds.). 2000. Monitoring bathing waters: a practical guide to the design and implementation of assessments and monitoring programmes. E & F N Spons, London.
- Bierman, P.M., B.P. Horgan, C.J. Rosen, A.B. Hollman, and P.H. Pagliari. 2010. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management. Journal of Environmental Quality 39: 282-292.
- Blottière, L. M. Rossi, F. Madricardo, and F.D. Hulot. 2013. Modeling the role of wind and warming on *Microcystis aeruginosa* blooms in shallow lakes with different trophic status. Theoretical Ecology 7: 35-52.
- Brabec, E., S. Schulte, and P.L. Richards. 2009. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. Journal of Planning Literature 16: 499-514.
- Brennan, A.K., C.J. Hoard, J.W. Duris, M.E. Ogdahl, and A.D. Steinman. 2016. Water quality of Silver Lake, Oceana County, Michigan, with emphasis on lake response to nutrient loading, 2012-2014.
- Brown, C.J.D. 1943. The number and size of inland lakes in Michigan. Institute for Fisheries Research report number 871.
- Bullerjahn, G.S., R.M. McKay, T.W. Davis, D.B. Baker, G.L. Boyer, L.V. D'Anglada, G.J. Doucette, J.C. Ho, E.G. Irwin, C.L. Kling, R.M. Kudela, R. Kurmayer, A.M. Michalak, J.D. Ortiz, T.G. Otten, H.W. Paerl, B. Qin, B.L. Sohngen, R.P. Stumpf, P.M. Visser, and S.W. Wilhelm. 2016. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54: 223-238.
- Carey, R.O., G.J. Hochmuth, C.J. Martinez, T.H. Boyer, V.D. Nair, M.D. Dukes, G.S. Toor, A.L. Shober, J.L. Cisar, L.E. Trenholm, and J.B. Sartain. 2012. A review of turfgrass fertilizer management practices: Implications for urban water quality. HortTechnology 22: 280-291.
- Carey, R.O., G.J. Hochmuth, C.J. Martinez, T.H. Boyer, M.D. Dukes, G.S. Toor, and J.L. Cisar. 2013. Evaluating nutrient impacts in urban watersheds: Challenges and research opportunities. Environmental Pollution 173: 138-149.

- Carmichael, W.W. and P.R. Gorham. 1981. The mosaic nature of toxic blooms of cyanobacteria. In W.W. Carmichael (ed.), The Water Environment: Algal toxins and health. Plenum Press, New York, New York.
- Carmichael, W. 2008. A world overview—One-hundred-twenty-seven years of research on toxic cyanobacteria—Where do we go from here? Cyanobacterial harmful algal blooms: State of the science and research needs. Springer, New York, NY. 105-125.
- Cheung, M.Y., S. Liang, and J. Lee. 2013. Toxin-producing cyanobacteria in Freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology 51: 1-10.
- Chorus, I. and J. Bartram. 1999. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. CRC Press.
- Clement, D.R. and A.D. Steinman. 2017. Phosphorus loading and ecological impacts from agricultural tile drains in a west Michigan watershed. Journal of Great Lakes Research 43: 50-58.
- ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
- Francis, G. 1878. Poisonous Australian lake. Nature 18: 11-12.
- Gaskill, J.A. and M.M. Woller-Skar. 2018. Do invasive dreissenid mussels influence spatial and temporal patterns of toxic *Microcystis aeruginosa* in a low-nutrient Michigan lake? Lake and Reservoir Management 1-14.
- Gillett, N.D. and A.D. Steinman. 2011. An analysis of long-term phytoplankton dynamics in Muskegon Lake, a Great Lakes Area of Concern. Journal of Great Lakes Research 37: 335-342.
- Gillett, N. Luttenton, M., and Steinman, A. 2015. Spatial and temporal dynamics of phytoplankton communities in a Great Lakes drowned river-mouth lake (Mona Lake, USA). Journal of Limnology 74.
- Gilliom, R.J. and C.R. Patmont. 1983. Lake phosphorus loading from septic systems by seasonally perched groundwater. Journal (Water Pollution Control Federation) 55: 1297-1305.
- Havens, K.E. 1991. Fish-induced sediment resuspension: effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. Journal of Plankton Research 13: 1163-1176.
- Holden, S. 2016. Algal toxin monitoring in Michigan inland lakes: 2015 results. MI/DEQ/WRD-16/015.
- Hong, Y., Steinman, A., Biddanda, B., Rediske, R., and Fahnenstiel, G. 2006. Occurrence of the toxin-producing cyanobacterium *Cylindrospermopsis raciborskii* in Mona and Muskegon Lakes, Michigan. Journal of Great Lakes Research 32:645-652.

Horne, A.J. and C.R. Goldman. 1994. Limnology, Second Edition. McGraw-Hill Inc.

- Janke, B.D., J.C. Finlay, and S.E. Hobbie. 2017. Trees and streets as drivers of urban stormwater nutrient pollution. Environmental Science and Technology 51: 9569-9579.
- Jöhnk, K.D., J. Huisman, J. Sharples, B. Sommeijer, P.M. Visser, and J.M. Strooms. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495-512.
- Kardinaal, W.E.A. and Visser, P.M. 2005. Dynamics of cyanobacterial toxins. In Huisman, J., Matthijs, H.C.P, and Visser, P.M. (eds.) Harmful cyanobacteria. Springer, Dordrecht, the Netherlands. 2005:41-64.
- Kardinaal, W.E.A., Janse, I., Agterveld, M.K., Meima, M., Snoek, J., Mur, L.R., Huisman, J., Zwart, G., and Visser, P.M. 2007. *Microcystis* genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology 48:1-12.
- Kimmel, B.L. and A.W. Groeger. 1986. Limnological and ecological changes associated with reservoir aging. In G.E. Hall and M.J. Van Den Avyle, editors. Reservoir Fisheries Management: Strategies for the 80's. Reservoir Committee, Southern Division American Fisheries Society, Bethesda, MD.
- Knoll, L.B, Sarnelle, O., Hamilton, S.K., Kissman, C.E.H, Wilson, A.E., Rose, J.B., and Morgan, M.R. 2008. Invasive zebra mussels (*Dreissena polymorpha*) increase cyanobacterial toxin concentrations in low-nutrient lakes. Canadian Journal of Fisheries and Aquatic Sciences 65: 448-455.
- Kohlhepp, G. 2015. Harmful Algal Bloom Monitoring and Assessment in Michigan Waters. MI/DEQ/WRD-15/013.
- Koreivienė, J., O. Anne, J. Kasperovičienė, and V. Burškytė. 2014. Cyanotoxin management and human health risk mitigation in recreational waters. Environmental Monitoring and Assessment 186: 4443-4459.
- Kosten, S., V.L.M. Huszar, E. Bécares, L.S. Costa, E. van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Nõges, S. Romo, and M. Scheffer. 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118-126.
- Kristensen, P., M. Søndergaard, and E. Jeppesen. 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101-109.
- Lehman, E.M. 2007. Seasonal occurrence and toxicity of *Microcystis* in impoundments of the Huron River, Michigan, USA. Water Research 41: 795-802.
- Lehman, E.M., K.E. McDonald, and J.T. Lehman. 2009. Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. Water Research 43: 1187-1198.
- Lehman, J.T. 2014. Understanding the role of induced mixing for management of nuisance algal blooms in an urbanized reservoir. Lake and Reservoir Management 30: 63-71.

- Lusk, M.G., G.S. Toor, Y.-Y. Yang, S. Mechtensimer, M. De, and T.A. Obreza. 2017. A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Critical Reviews in Environmental Science and Technology 47: 455-541.
- Marion, J.W., F. Zhang, D. Cutting, and J. Lee. 2017. Association between county-level land cover classes and cyanobacteria blooms in the United States. Ecological Engineering 108: 556-563.
- Michalak, A.M., E.J. Anderson, D. Beletsky, S. Boland, N.S. Bosch, T.B. Bridgeman, J.D. Chaffin, K. Cho, R. Confesor, I. Daloğlu, J.V. DePinto, M.A. Evans, G.L. Fahnenstiel, L. He, J.C. Ho, L. Jenkins, T.H. Johengen, K.C. Kuo, E. LaPorte, X. Liu, M.R. McWilliams, M.R. Moore, D.J. Posselt, R.P. Richards, D. Scavia, A. Steiner, E. Verhamme, D.M. Wright, and M.A. Zagorski. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences 110: 6448-6452.
- Mielke Jr, P.W. 1984. Meteorological applications of permutation techniques based on distance functions. In: Krishnaiah P.R., Sen P.K. (eds) Handbook of Statistics, vol 4. Elsevier, Amsterdam.
- Morton, T.G., A.J. Gold, and W.M. Sullivan. 1988. Influence of overwatering and fertilization on nitrogen losses from home lawns. Journal of Environmental Quality 17: 124-130.
- Nicholls, S. and J.L. Crompton. 2018. The contribution of scenic views of, and proximity to, lakes and reservoirs to property values. Lakes and Reservoirs: Research and Management 23: 63-78.
- Omidi, A, Esterhuizen-Londt, M., and Pflugmacher, S. 2018. Still challenging: the ecological function of the cyanobacterial toxin microcystin What we know so far. Toxin Reviews: 1-19.
- O'Neil, J.M., T.W. Davis, M.A. Burford, and C.J. Gobler. 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14: 313-334.
- Paerl, H.W., V.J. Paul. 2012. Climate change: Links to global expansion of harmful cyanobacteria. Water Research 46:1349-1363.
- Paerl, H.W. 2018. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins 10: 1-16.
- Parker, A.D. 2014. 2013 Algal bloom tracking. MI/DEQ/WRD-14/029.
- Parker, A.D. 2015. 2014 Algal bloom tracking. MI/DEQ/WRD-15/021.
- Parker, A.D. 2016a. 2015 Algal bloom tracking. MI/DEQ/WRD-16/019.
- Parker, A.D. 2016b. 2016 Algal bloom tracking. MI/DEQ/WRD-16/036.

- Parker, A.D. 2017. Algal toxin monitoring in Michigan inland lakes: 2016 results. MI/DEQ/WRD-17/030.
- Parker, A.D. 2018a. 2017 Algal bloom tracking. MI/DEQ/WRD-18/001.
- Parker, A.D. 2018b. Algal toxin monitoring in Michigan inland lakes: 2017 results. MI/DEQ/WRD-18/014.
- Posch, T., O. Köster, M.M. Salcher, and J. Pernthaler. 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change 2: 1-5.
- Raikow, D.F., Sarnelle, O., Wilson, A.E., and Hamilton, S.K. 2004. Dominance of the noxious cyanobacterium *Microcystis aeruginosa* in low-nutrient lakes is associated with exotic zebra mussels. Limnology and Oceanography 49:482-487.
- Rediske, R., Hagar, J., Hong, Y., O'Keefe, J., Steinman, A. 2007. Assessment of cyanobacteria and associated toxins in west Michigan lakes. Final report to Michigan Department of Environmental Quality, Grant #481022-05.
- Reichwaldt, E.S. and A. Ghadouani. 2011. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research 46: 1372-1393.
- Rosenberger, E.E., S.E. Hampton, S.C. Fradkin, and B.P. Kennedy. 2008. Effects of shoreline development on the nearshore environment in large deep oligotrophic lakes. Freshwater Biology 53:1673-1691.
- Ryder, R.A. 1978. Ecological heterogeneity between north-temperate reservoirs and glacial lake systems due to differing succession rates and cultural uses. Proceedings of the International Association of Theoretical and Applied Limnology 20: 1568-1574.
- Sarnelle, O., A.E. Wilson, S.K. Hamilton, L.B. Knoll, and D.F. Raikow. 2005. Complex interactions between the zebra mussel, *Dreisenna polymorpha*, and the harmful phytoplankter, *Microcystis aeruginosa*. Limnology and Oceanography 50: 896-904.
- Sarnelle, O., J. Morrison, R. Kaul, G. Horst, H. Wandell, and R. Bednarz. 2010. Citizen monitoring: Testing hypotheses about the interactive influences of eutrophication and mussel invasion on a cyanobacterial toxin in lakes. Water Research 44: 141-150.
- Scavia, D., J.D. Allan, K.K. Arend, S. Bartell, D. Beletsky, N.S. Bosch, S.B. Brandt, R.D. Briland,
 I. Daloğlu, J.V. DePinto, D.M. Dolan, M.A. Evans, T.M. Farmer, D. Goto, H. Han, T.O.
 Höök, R. Knight, S.A. Ludsin, and Y. Zhou. 2014. Assessing and addressing the reeutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research 40: 226-246.
- Schellenger, F.L. and F.L. Hellweger. 2019. Phosphorus loading from onsite wastewater systems to a lake (at long time scales). Lake and Reservoir Management: 1-12
- Schirrmeister, B.E., P. Sanchez-Baracaldo, and D. Wacey. 2016. Cyanobacterial evolution during the Precambrian. International Journal of Astrobiology 15: 187-204.

- Scholz, S.N., M. Esterhuizen-Londt, and S. Pflugmacher. 2017. Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible countermeasures. Toxicological and Environmental Chemistry 4; 543-577.
- Schueler, T.R. and H.K. Holland. 2000. The practice of watershed protection. Center for Watershed Protection, Ellicott City, MD.
- Sivonen, K. and G. Jones. 1999. Cyanobacterial toxins. In I. Chorus and J. Bertram (eds.). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. CRC Press.
- Søndergaard, M. and E. Jeppesen. 2007. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology 44:1089-1094.
- Steinman, A., R. Rediske, R. Denning, L. Nemeth, X. Chu, D. Uzarski, B. Biddanda, and M. Luttenton. 2006. An environmental assessment of an impacted, urbanized watershed: the Mona Lake Watershed, Michigan. Archiv fur Hydrobiologia 166: 117-144.
- Steinman, A.D., E. Sterrett-Isely, and K. Thompson. 2015. Stormwater runoff to an impaired lake: impacts and solutions. Environmental Monitoring and Assessment 187: 1-14.
- Swann, C. 2001. The influence of septic systems at the watershed level. Watershed Protection Techniques 3: 821-834.
- Taranu, Z.E., I. Gregory-Eaves, P.R. Leavitt, L. Bunting, T. Buchaca, J. Catalan, I. Domaizon, P. Guilizzoni, A. Lami, S. McGowan, H. Moorhouse, G. Morabito, F.R. Pick, M.A. Stevenson, P.L. Thompson, and R.D. Vinebrooke. 2015. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecology Letters 18: 375-384.
- Taranu, Z.E., I. Gregory-Eaves, R.J. Steele, M. Beaulieu, and P. Legendre. 2017. Predicting microcystin concentrations in lakes and reservoirs at a continental scale: A new framework for modelling an important health risk factor. Global Ecology and Biogeography 26: 625-637.

Tessier, A.J. and G.H. Lauff. 1992. The Gull Lake story. The Michigan riparian: 12-14.

- Toporowska, M., B. Ferencz, and J. Dawidek. 2018. Impact of lake-catchment processes on phytoplankton community structure in temperate shallow lakes. Ecohydrology 11: 1-12.
- Torbick, N., S. Hession, S. Hagen, N. Wiangwang, B. Becker, and J. Qi. 2013. Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery. International Journal of Remote Sensing 34: 7607-7624.
- Trevino-Garrison, I., J. DeMent, F.S. Ahmed, P. Haines-Lieber, T. Langer, H. Ménager, J. Neff, D. van der Merwe, and E. Carney. 2015. Human illnesses and animal deaths associated with freshwater harmful algal blooms-Kansas. Toxins 7:353-366.

Uzarski, D.G., Burton, T.M., Cooper, M.J., Ingram, J.W., and Timmermans, S.T. 2005. Fish habitat use within and across wetland classes in coastal wetlands of the five Great Lakes: development of a fish-based index of biotic integrity. Journal of Great Lakes Research 31: 171-187.

Walterhouse, M. 2015. Monitoring strategy for Michigan's inland lakes. MI/DEQ/WRD-15/044.

- Watson, S.B., A. Zastepa, G.L. Boyer, and E. Matthews. 2017. Algal bloom response and risk management: On-site response tools. Toxicon 129: 144-152.
- White, J.D., Sarnelle, O., and Hamilton, S.K. 2017. Unexpected population response to increasing temperature in the context of a strong species interaction. Ecological Applications 27:1657-1665.
- Wilson, A.E., Sarnelle, O., Neilan, B.A., Salmon, T.P., Gehringer, M.M., and Hay, M.E. 2005. Genetic variation of the bloom-forming cyanobacterium *Microcystis auruginosa* within and among lakes: Implications for harmful algal blooms. Applied and Environmental Microbiology 71:6126-6133.
- Woodard, S.E. and C.A. Rock. 1995. Control of residential stormwater by natural buffer strips. Lake and Reservoir Management 11:37-45.
- Woller-Skar, M. 2009. Zebra mussel (*Dreissena polymorpha*) promotion of cyanobacteria in low nutrient lakes and the subsequent production and fate of microcystin. Doctoral Dissertation, Bowling Green State University.
- Xie, L., Hagar, J., Rediske, R., O' Keefe, J., Dyble, J., Hong, Y., and Steinman, A. 2011. The influence of environmental conditions and hydrologic connectivity on cyanobacteria assemblages in two drowned river mouth lakes. Journal of Great Lakes Research 37:470-479.
- Xie, L., Rediske, R.R., Hong, Y., O' Keefe, J., Gillett, N.D., Dyble, J., and Steinman, A.D. 2012. The role of environmental parameters in the structure of phytoplankton assemblages and cyanobacteria toxins in two hypereutrophic lakes. Hydrobiologia 691: 255-268.
- Yang, Y.-Y. and G.S. Toor. 2016. δ^{15} N and δ^{18} O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff. Environmental Science and Technology 50: 2881-2889.
- Yang, Y.-Y. and G.S. Toor. 2017. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Research 112: 176-184.
- Zhang, F., J. Lee, S. Liang, and C.K. Shum. 2015. Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environmental Health 14:1-11.
- Zimmerman, G.M., H. Goetz, and P.W. Mielke Jr. 1985. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology 66: 606-611.

Appendix 1: Raw lake data from 2018.

LAKE	County	TYPE	MONTH	DAY	YE	EAR	LAT	LONG	SITE	scum/ambient	SITE_DEPTH	SAMP_DEPTH (FT) TE	EMP (F)	Dissolved Oxygen (mg/l)	Conductivity (µS/cm)	?Н	PC RFU
Cowan	Kent	RESPONSE		5	10	2018	43.118419	-85.42697	72 East shoreline	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	14	2018	42.790064	-83.82029	94 Haviland Beach DR	scum							
Lobdell	Genesee/Livingston	RESPONSE		5	14	2018	42.790064	-83.82029	94 Haviland Beach DR	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.79	-83.8203	35 Haviland Beach DR	ambient			18.966	9.55	570	8.16	0.085
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.79111	-83.8446	66 Dam outlet	ambient			20.631	10.43	581	8.11	0.04
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.77648	-83.833	33 Bennett Lake outlet	ambient			19.603	8.38	599	7.94	0.013
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	0.23		20.096	9.47	546	8.14	0.031
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	8.08		18.818	9.39	548	8.08	0.036
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	16.07		12.463	7.74	545	7.84	0.113
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	24.17		6.502	9.5	545	7.92	0.103
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	32.05		5.871	9.42	543	7.91	0.118
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	40.22		5.546	8.51	597	7.84	0.083
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	48.15		5.386	8.1	549	7.79	0.142
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	56.07		5.283	7.76	451	7.76	0.099
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.78531	-83.8333	31 Deep	ambient	60.34		5.304	7.25	484.7	7.72	0.118
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.796048	-83.83509	97 Heath's Harbor	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.79773	-83.8221	L4 NE Bay	ambient				9.7		8.14	0.176
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.781472	-83.81821	11 South Bay	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	18	2018	42.784156	-83.81588	3 SE Bay	ambient							
Long	Montmorency	RESPONSE		5	18	2018	45.128333	-83.9772	21 Spur RD	ambient							
Long	Montmorency	RESPONSE		5	18	2018	45.132899	-83.98134	18 Long Lake RD	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	24	2018	42.790064	-83.82029	94 Haviland Beach DR	scum							
Lobdell	Genesee/Livingston	RESPONSE		5	24	2018	42.79	-83.8203	35 Haviland Beach DR	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	24	2018	42.79111	-83.8446	56 Dam outlet	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	24	2018	42.77648	-83.833	33 Bennett Lake outlet	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	24	2018	42.796048	-83.83509	97 Heath's Harbor	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	24	2018	42.786143	-83.8405	54 DNR boat launch	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	25	2018	42.783389	-83.83583	32 Peninsular Drive Canal	ambient							
Cadillac	Wexford	RESPONSE		5	29	2018			Southeast corner								
Lobdell	Genesee/Livingston	RESPONSE		5	29	2018	42.790064	-83.82029	94 Haviland Beach DR	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	29	2018	42.781674	-83.81768	36 Selma Drive	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	29	2018	42.783389	-83.83583	32 Peninsular Drive Canal	ambient							
Lobdell	Genesee/Livingston	RESPONSE		5	29	2018	42.783351	-83.8362	22 McAleer's Bridge	ambient							
Sherwood	Oakland	RESPONSE		6	1	2018	42,595587	-83.53874	13 Ledgewood CT	ambient with greens							
Pontiac	Oakland	targeted monitoring		6	1	2018	42.66883	-83.4665	51 Hampton ST	ambient							
Little Blue	Kalkaska	RESPONSE		6	1	2018	44.800999	-84.89403	35 Blue Lake RD	area canine had occupied							
Little Blue	Kalkaska	RESPONSE		6	4	2018	44.800999	-84.89403	35 Blue Lake RD	ambient							
Blue	Kalkaska	RESPONSE		6	4	2018	44.803768	-84.89425	58 DNR boat launch	ambient							
Coldwater	Branch	RESPONSE		6	8	2018	41.806883	-84.98332	26 Tomahawk Trail	scum			23.809	10.07	425.8	8.43	0.953
Coldwater	Branch	RESPONSE		6	8	2018	41.814483	-84.97793	39 Iyopawa Road	ambient			24.969	8.54	416	8.32	0.057
Coldwater	Branch	RESPONSE		6	8	2018	41.833435	-84,98804	17 DNR boat launch	ambient			24.149	7.9	402.9	8.2	0.085
Coldwater	Branch	RESPONSE		6	8	2018	41.843218	-84.98077	71 Warren RD and Centennial	ambient			24.149	7.89	413.2	8.21	0.313
Coldwater	Branch	RESPONSE		6	8	2018	41,831348	-84,9709	91 Coldwater Lake Marina	ambient			24.139	9.71	390.5	8,42	0.041
Lobdell	Genesee/Livingston	RESPONSE		6	12	2018	42,790064	-83,82029	94 Haviland Beach DR	ambient							
Lobdell	Genesee/Livingston	RESPONSE		6	12	2018	42,783389	-83.83583	32 Peninsular Drive Canal	ambient							
Loch Erin	Lenawee	RESPONSE		6	12	2018	42,01515	-84.15274	13 8047 Stephenson	scum							
Loch Erin	Lenawee	RESPONSE		6	13	2018	42.01512	-84.15265	52 8047 Stephenson RD	scum							
Loch Erin	Lenawee	RESPONSE		6	20	2018	42.0100	-84,1393	37 Deep	ambient			25.49	6 75	491 3	8,21	0.952
Loch Frin	Lenawee	RESPONSE		6	20	2018	42 01839	-84 1630	99 Wolf Creek outlet	ambient			24.7	6.95	521	7 98	0 973
				~	20	2010	-2.01030	04.1035		amorene	1.	•	27.7	0.50	JZI	1.50	0.775

PC CONC. (µg/I)	CHLA RFU	CHLA CONC. (µg/l)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/I)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/l)	LAB ANATOX (µg/l)	LAB CYLINDRO (µg/l)
										Non-detect			
		•								>10	4300	Non-detect	Non-detect
		•								present	5.8	Non-detect	Non-detect
0.06	0.924	3.68								Non-detect	non-detect	Non-detect	Non-detect
0.02	0.611	2.53								Non-detect			
0	0.544	2.29								Non-detect	non-detect	Non-detect	Non-detect
0.02	0.451	1.95	10.5		3.4	0.52	0.011	ND	0.015	Non-detect			•
0.02	1.068	4.21											
0.09	0.981	3.89											
0.08	0.457	1.97											•
0.1	0.303	1.4											
0.06	0.312	1.44											
0.12	0.271	1.29											
0.08	0.271	1.29											•
0.09	0.311	1.43											•
										Non-detect	1	Non-detect	Non-detect
. 0.15	. 1.296	5.05								Non-detect	_		
										Non-detect			
	-	-	-	-	-	-			-	Non-detect			
•	•	•		•				•	•	Non-detect	•	· ·	•
•	•	•	•	•	•	•	•	•	•	Non-detect	· ·	•	•
•	•	•	•	•	•	•	•	•	•	>10	860	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	5-10	non-detect	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non-detect	non-detect	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non-detect	non-detect	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non-detect	non dotoct	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non-detect	non-detect	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non-detect	12	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non datact	15	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
·	•	•	•	•	•	•	•	•	•	Non-delett	non-datact	Non-datact	Non-datact
•	•	•	•	•	•	•	•	•	•	•	non detect	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•	•	non detect	Non-detect	Non-detect
. 1.07	. 5.051	22.66	•	•	•	•	•	•	•	5 10		non dotoct	non detect
1.07	0.551	22.00	•	•	•	•	•	•	•	J-10	5.1	non-detect	non-detect
0.08	0.331	2.14	•	•	•	•	•	•	•	Non-detect	non datact	non datact	non datast
0.1	0.419	1.04	•	•	•	•	•	•	•	Non-detect	non-detect	non-detect	non-detect
0.35	0.079	2.03	•	•	•	•	•	•	•	Non-detect	· ·	· ·	•
0.05	0.33	1.3	•	•	•	•	•	•	•	dotoct		Non dataat	Non datast
·	•	•	•	•	•	•	•	•	•	Non datast	1/ non datact	Non-detect	Non-detect
•	•	•	•	•	•	•	•	•	•		non-detect	Non-detect	
•	•	•	•	•	•	•	•	•	•	C.	1.8	non-detect	non-detect
										uelect	1.8	Non-detect	Non-detect
0.98	4.397	16.29	1.8	0.05	25	0.975	0.017	0.01	0.059	Non-detect	New data	Nov. dotoo:	Nov. Jakard
1	4.634	1/.17			.				•	ivon-detect	Non-detect	Non-detect	Non-detect

LAKE	County	TYPE	MONTH	DAY	YE	AR LA	.т. і	ONG	SITE	scum/ambient	SITE_DEPT	H SAMP_DEPTH (FT)	TEMP (F) Dis	ssolved Oxygen (mg/l)	Conductivity (µS/cm) PH	1 P	'C RFU
Loch Erin	Lenawee	RESPONSE		6	20	2018	42.01448	-84.16189	Irish Mist	ambient			24.79	6.51	493.9	8.12	1.105
Loch Erin	Lenawee	RESPONSE		6	20	2018	42.01079	-84.16132	2 Dalton CT	ambient			24.29	6.44	493.6	8.12	1.47
Loch Erin	Lenawee	RESPONSE		6	20	2018	41.99886	-84.13136	5 Reed RD	ambient			25.22	5.56	484.1	8.1	0.792
Loch Erin	Lenawee	RESPONSE		6	20	2018	42.02023	-84.13904	1 Donegal DR	ambient			25.25	8.49	546	8.28	1.8
Pontiac	Oakland	RESPONSE		6	20	2018	42.66326	-83.44227	7 DNR boat launch	ambient			24.61	7.46	404.2	8.06	0.232
Pontiac	Oakland	RESPONSE		6	20	2018	42.66719	-83.45521	L Deep	ambient			24.66	7.93	429.5	8.36	0.368
Pontiac	Oakland	RESPONSE		6	20	2018	42.66906	-83.45576	5 Skull Island	ambient			24.72	7.8	430.1	8.37	0.417
Pontiac	Oakland	RESPONSE		6	20	2018	42.6701	-83.44971	L State park beach	ambient			24.55	7.46	433.9	8.24	0.422
Pontiac	Oakland	RESPONSE		6	20	2018	42.66497	-83.46123	3 Kingston	ambient			24.27	8.6	423.8	8.45	0.378
Pontiac	Oakland	RESPONSE		6	20	2018	42.66876	-83.46625	Hampton ST	ambient			24.9	7.99	450.8	8.35	0.37
Pontiac	Oakland	RESPONSE		6	20	2018	42.66988	-83.46949	Lighthouse Bay	ambient			24.03	8.28	436.8	8.26	0.324
Otter	Oakland	RESPONSE		6	20	2018	42.63554	-83.35378	B East of Beverly Estates DR	ambient			24.46	9	879	7.87	1.218
Otter	Oakland	RESPONSE		6	20	2018	42.63509	-83.35358	West of Beverly Estates DR	ambient			25.16	7.8	869	7.94	2.1
Coldwater	Branch	RESPONSE		6	21	2018	41.806883	-84.983326	Tomahawk Trail	scum			19.41	11.63	562	7.57	0.707
Coldwater	Branch	RESPONSE		6	21	2018	41.806883	-84.983326	5 Tomahawk Trail	ambient			22	10.07	412.7	7.99	0.581
Coldwater	Branch	RESPONSE		6	21	2018	41,82989	-84,97759	Deep	ambient			24.28	7.86	370.6	8.31	0.072
Coldwater	Branch	RESPONSE		6	21	2018	41.84016	-84.9781	Warren RD/Lake DR	ambient			23.73	8.19	369.5	8.3	0.742
Coldwater	Branch	RESPONSE		6	21	2018	41.81106	-84,99289	Vopawa/Spaulding DR	ambient			23.36	8.08	365.2	8.31	0.54
Coldwater	Branch	RESPONSE		6	21	2018	41 83342	-84 9880	7 DNB hoat launch	ambient			23.36	8 19	369.7	8 38	0.67
Mona	Muskegon	targeted monitoring	,	7	11	2018	43 18635	-86 23609	Muskegon Heights hoat launch	scum			26 301	10.69	456.4	8 34	0.765
Mona	Muskegon	targeted monitoring	, ,	7	11	2018	43 17873	-86 25916	Deen	ambient			26 373	9.36	468.8	8 14	0.585
Mona	Muskegon	targeted monitoring	r	7	11	2018	43 17597	-86 24609	Boss Park Beach	ambient			26.575	10 52	463.9	8 69	0.505
Mona	Muskegon	targeted monitoring	r	7	11	2018	43 18272	-86 2321	Fast near Highgate RD	scum			26.367	10.01	462.8	8 71	0.552
Maston	Kent	RESPONSE	•	7	11	2018	43 270169	-85 35953/	1 south channel	scum		•	21.982	7.85	476.4	7 54	5 194
Maston	Kent	RESPONSE		7	11	2018	43 27023	-85 3593/	south Maston Lake	scum		•	29.158	13.2	380.7	8 38	2 087
Maston	Kent			7	11	2010	43.27023	- 85 2502/	south Maston Lake	ambient			20.130	12.25	384.2	8.46	1.066
Loch Frin	Lenawee	RESPONSE		7	13	2018	42 01214	-84 13583	Boat Launch	scum			26 583	9.76	497.7	7 94	7 976
Loch Erin	Lenawee	RESPONSE		7	13	2018	42.01214	-84 1543		scum		•	27.336	9.78	497.4	7.86	0.997
Loch Erin	Lenawee	RESPONSE		7	13	2018	42.01403	-84 15269	Stephenson DR	scum		•	27.302	8.04	489.3	7.87	5 602
Loch Erin	Lenawee			7	12	2010	42.01010	- 9/ 13200	Geddes Creek outlet	ambient			27.302	11 75	512	8 17	1 0/0
Loch Erin	Lenawee	RESPONSE		7	12	2010	42.0203	04.13030		ambient	•	•	27.307	0.0	J12 402 4	0.17	1 210
Loch Erin	Lenawee	RESPONSE		7	12	2018	42.01003	-94.1410	Lich Mist	ambient		•	27.029	0.0	405.4	8.09	0.51
Loch Erin	Lenawee	RESPONSE		7	12	2010	42.01401	04.1010	Wolf Crook outlot	ambient	•	•	27.803	0.02	500 E19	0.00	0.51
Loch Erin	Lenawee	RESPONSE		7	13	2010	42.01822	-04.10505	Dalton CT	ambient		•	28.101	9.03	400.2	8.10	0.590
Loch Erin	Lenawee	RESPONSE		7	13	2018	42.01066	-84.10115		ambient	•	•	28.011	6.75	499.3	8.04	1.050
LOCH ENN Diad Laba	Lenawee	RESPONSE		7	15	2018	42.00111	-84.12714		ampient	·	•	20.802	5.40	488.2	7.7	1.058
Bird Lake	Hilisdale	RESPONSE		7	13	2018	41.82555	-84.5234	L Early Bird Beach DR	scum		•	29.251	8.92	431.6	7.94	-0.074
Biru Lake	niiisuale	RESPONSE		7	15	2018	41.82555	-84.5234	L Early Bird Beach DR	ampient	·	•	28.774	9.40	417.2	6.16	-0.12
Coldwater	Branch	RESPONSE		7	13	2018	41.80695	-84.9834		ampient	•	•	30.882	6.88	632	6.84	0.139
Coldwater	Branch	RESPONSE		7	13	2018	41.82753	-84.96906	Lake DK	scum	•	•	32.063	12.54	412.8	8.11	1.109
Coldwater	Branch	RESPONSE		/	13	2018	41.83055	-84.9758	Deep	ampient	•	•	28.943	9.31	400.5	8.01	-0.079
Coldwater	Branch	RESPONSE		/	13	2018	41.81133	-84.9946	Spaulding DR	ambient			31.404	11.38	415.4	8.13	-0.145
Coldwater	Branch	RESPONSE		/	13	2018	41.83338	-84.98806	DNR boat launch	ambient			30.667	9.74	436.5	7.88	-0.043
Earl	Livingston	RESPONSE		/	15	2018	42.603197	-83.892886	3110 Golf Club	scum							
South Pond	Ottawa	RESPONSE		/	18	2018	42.96388	-85.97648	s north side of pond, 10949 View Pond CT	ampient	•	•	26.231	9.06	422.1	8.2	0.313
Mona	Muskegon	targeted monitoring	5	7	18	2018	43.18635	-86.23609	Muskegon Heights boat launch	ambient	•		26.936	9.64	494.3	8.29	0.387
Mona	Muskegon	targeted monitoring	5	7	18	2018	43.17873	-86.25916	Deep	ambient			26.59	8.39	507	8.25	0.242
Mona	Muskegon	targeted monitoring	5	7	18	2018	43.17597	-86.24609	Ross Park Beach	ambient	•		26.964	9.63	497.3	8.64	0.167
Mona	Muskegon	targeted monitoring	5	7	18	2018	43.18272	-86.2321	L East, near Highgate RD	ambient	•		27.684	10.64	497.8	8.69	0.522
Earl	Livingston	RESPONSE		7	18	2018	42.603197	-83.892886	3110 Golf Club	ambient			.				

PC CONC. (µg/l)	CHLA RFU	CHLA CONC. (µg/l)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/I)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/I)	LAB ANATOX (µg/l)	LAB CYLINDRO (µg/l)
1.14	6.823	25.29								Non-detect			
1.52	7.955	29.49								Non-detect			
0.82	3.982	14.75								Non-detect			
1.85	3.955	14.65								Non-detect			
0.24	0.835	3.08								Non-detect			
0.38	1.41	5.21	6.5	ND	6.7	0.61	0.005	ND	0.023	Non-detect			
0.43	1.376	5.09								Non-detect			
0.43	1.183	4.37								Non-detect			
0.39	1.571	5.81								Non-detect			
0.38	1.491	5.51								1-5	2.4	Non-detect	Non-detect
0.33	1.165	4.3								Non-detect			
1.25	11.515	42.69								Non-detect	Non-detect	Non-detect	Non-detect
2.16	11.633	43.13								Non-detect			
0.73	3.011	11.15								>10	22.6		
0.6	1.715	6.34								Non-detect	non-detect	non-detect	non-detect
0.07	0.622	2.29	10.9	0.13	2.6	0.75	0.23	ND	0.014	Non-detect			
0.76	0.528	1.94								Non-detect			•
0.56	0.436	1.6								Non-detect			
0.69	0.715	2.63								Non-detect	non-detect	non-detect	non-detect
0.79	2.283	8.45								~10	2	non-detect	non-detect
0.6	2.304	8.53	5.9	0.01	. 17	0.66	0.12	ND	0.021	Non-detect			
0.55	2.191	8.11								Non-detect			
0.72	1.899	7.02								>10	21	non-detect	non-detect
5.35	8.031	29.77								>10	69	non-detect	non-detect
2.15	1.224	4.52								5-10	3.3	non-detect	non-detect
1.1	0.695	2.56								Non-detect			
8.22	2.063	7.63								Non-detect	non-detect	non-detect	non-detect
1.03	5.231	19.38								5-10	non-detect	non-detect	non-detect
5.77	4.162	15.42								Non-detect			
1.08	2.829	10.47								Non-detect			
1.36	1.758	6.5	1.8	0.01	. 28	0.92	ND	0.009	0.068	Non-detect	non-detect	non-detect	non-detect
0.53	2,466	9.13								Non-detect			
0.61	3.46	12.82								Non-detect			
0.53	3.351	12.41								Non-detect			
1.09	1.475	5.45								Non-detect			
-0.08	3.444	12.76								Non-detect	non-detect	non-detect	non-detect
-0.12	1.244	4.6								Non-detect			
0.14	1.732	6.41								Non-detect	non-detect	non-detect	non-detect
1.14	4.368	16.18								Non-detect			
-0.08	0 787	29	. 62	. 0.01	51	. 0.74	. 0.11	ND	. 0.011	Non-detect	0.58	non-detect	non-detect
-0.15	0.707	1.81	0.2	0.01		0.74	0.11		0.011	Non-detect	0.50	non acteur	
-0.04	0.683	2 51	•	•	•	•	•	•	•	Non-detect	· ·	· ·	•
0.04	0.005	2.51	•	•	•	·	•	•	•	test fail	6.6	non-detect	non-detect
. 0.24	1 064	⊿ 10	•	•	•	•	•	•	•	Non-detect	0.0		
0.34	2 207	10 75	•		•	•	•	•	•	Non-detect	non-detect	non-detect	non-detect
0.42	2 161	0 55		ND	. 16		. 0.006	ND		Non-detect	non-detect		
0.20	2.404 1 562	J.JJ 2 1	5.7		10	0.04	0.000		0.020	Non-detect	•	•	•
0.18	2.302	0.1	•	•	•	•	•	•	•	Non-detect	non datact	non datact	non datact
0.50	2.0/1	11.12	•	•	•	•	•	•	•		non datact	non datact	non-detect
•		•	·	·	·	•	·	•	•	T-2	non-detect	non-detect	non-detect

LAKE	County	TYPE	MONTH	DAY	YE/	AR LAT	- I	.ONG	SITE	scum/ambient	SITE_DEPTH	SAMP_DEPTH (FT)	TEMP (F)	Dissolved Oxygen (mg/l)	Conductivity (µS/cm) PH	P	C RFU
Earl	Livingston	RESPONSE		7	18	2018	42.603197	-83.892886	3110 Golf Club	ambient							
Earl	Livingston	RESPONSE		7	18	2018	42.603197	-83.892886	3110 Golf Club	ambient							
Pontiac	Oakland	targeted monitoring		7	19	2018	42.66326	-83.44227	DNR boat launch	ambient			25.538	9.38	411.5	7.02	0.214
Pontiac	Oakland	targeted monitoring		7	19	2018	42.66719	-83.45521	Deep	ambient			26.862	8.21	457.1	8.24	0.225
Pontiac	Oakland	targeted monitoring		7	19	2018	42.66906	-83.45576	Skull Island	ambient			26.77	8.21	456.9	8.37	0.195
Pontiac	Oakland	targeted monitoring		7	19	2018	42.6701	-83.44971	State park beach	ambient			26.284	9.15	438	8.19	0.181
Pontiac	Oakland	targeted monitoring		7	19	2018	42.66497	-83.46123	Kingston	ambient			26.516	8.34	452.9	8.28	0.159
Pontiac	Oakland	targeted monitoring		7	19	2018	42.66876	-83.46625	Hampton ST	ambient			26.47	7.95	455.9	8.11	0.195
Pontiac	Oakland	targeted monitoring		7	19	2018	42.66988	-83.46949	Lighthouse Bay	ambient			26.042	7.11	461.6	7.91	0.203
Sugden	Oakland	targeted monitoring		7	19	2018	42.61768	-83.49785	Deep	ambient			27.234	8.16	779	8.1	-0.122
Sugden	Oakland	targeted monitoring		7	19	2018	42.61828	-83.5006	Sugden Lake RD	ambient			28.114	9.66	788	8.27	-0.181
Sugden	Oakland	targeted monitoring		7	19	2018	42.61419	-83.49628	Bogie Lake RD	ambient			27.863	9.81	787	8.23	-0.16
Sugden	Oakland	targeted monitoring		7	19	2018	42.61515	-83.49438	Woodstone CT	ambient			27.898	8.97	789	8.1	-0.139
Sugden	Oakland	targeted monitoring		7	19	2018	42.6175	-83.49427	Bayview ST	ambient			27.591	8.25	784	8.13	-0.13
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.78999	-83.82037	7377 Haviland Beach DR	ambient			28.695	11.55	445.4	8.68	-0.119
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.79111	-83.8445	Dam outlet	ambient			27.963	10.08	538	7.99	0.054
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.77629	-83.83333	Bennett Lake outlet	ambient			27.918	9.28	660	8.01	-0.147
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.7856	-83.83298	Deep	ambient			28.166	8.97	517	8.13	-0.093
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.7961	-83.83513	Heath's Harbor	ambient			28.228	8.96	507	8.07	0.058
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.79782	-83.82195	Glen Hatt RD	ambient			29.141	10.52	482.3	8.38	-0.061
Lobdell	Genesee/Livingston	targeted monitoring		7	19	2018	42.78358	-83.83635	Peninsular Drive Canal	ambient			28.507	10.07	518	8.36	-0.033
Maston	Kent	RESPONSE		7	23	2018	43.270169	-85.359534	south channel	scum			18.75222	5.25	443	7.54	0.177
Maston	Kent	RESPONSE		7	23	2018	43.27023	-85.35934	south Maston Lake proper	ambient			24.86556	10.06	363.9	8.49	0.057
Mona	Muskegon	targeted monitoring		7	23	2018	43.18635	-86.23609	Muskegon Heights boat launch	ambient			24.61389	6.18	467.5	8.19	0.504
Mona	Muskegon	targeted monitoring		7	23	2018	43.1785	-86.2589	Deep	ambient			24.91167	7.27	468.1	8.39	0.653
Mona	Muskegon	targeted monitoring		7	23	2018	43.17597	-86.24609	Ross Park Beach	ambient			24.52278	7.08	464.8	8.32	0.763
Mona	Muskegon	targeted monitoring		7	23	2018	43.18272	-86.2321	East, near Highgate RD	ambient			24.60222	6.59	465	8.21	0.799
Mona	Muskegon	targeted monitoring		7	23	2018	43.16643	-86.28359	Turtle Bay	ambient			25.04056	8.07	467.9	8.48	0.579
Sugden	Oakland	RESPONSE		7	25	2018	42.61909	-83.49504	Castlewood ST	ambient			25.00111	8.9	715	7.58	0.004
Sugden	Oakland	RESPONSE		7	25	2018	42.61778	-83.49915	Deep	ambient			25.46611	8.71	723	7.99	-0.029
Sugden	Oakland	RESPONSE		7	25	2018	42.61895	-83.50034	forested area along Sugden Lake RD	scum			25.71889	8.36	727	7.96	-0.056
Sugden	Oakland	RESPONSE		7	25	2018	42.61411	-83.49617	Bogie Lake RD	scum			25.84722	8.76	731	7.92	-0.076
Sugden	Oakland	RESPONSE		7	25	2018	42.61514	-83.49435	Woodstone CT	scum			26.00833	8.98	732	7.99	-0.068
Sugden	Oakland	RESPONSE		7	25	2018	42.6176	-83.49426	Bayview ST	ambient			25.95278	8.36	731	7.85	-0.095
Earl	Livingston	RESPONSE		7	25	2018	42.60325	-83.89301	3110 Golf Club	scum							
Fausett	Livingston	RESPONSE		7	26	2018	42.696475	-83.870502	4797 Waterwood Way	scum							
Fausett	Livingston	RESPONSE		7	26	2018	42.696475	-83.870502	4797 Waterwood Way	ambient							
Tyrone	Livingston	RESPONSE		8	2	2018	42.694893	-83.727609	6050 Bullard Road	scum							
Tyrone	Livingston	RESPONSE		8	2	2018	42.694893	-83.727609	6050 Bullard Road	ambient							
Sugden	Oakland	RESPONSE		8	3	2018	42.61795	-83.50222	Pond between Bogie and Sugden Lakes	ambient			22.8	5.37	814	7.03	0.472
Sugden	Oakland	RESPONSE		8	3	2018	42.61638	-83.49604	Boat Launch	scum			24.696	8.34	745	7.67	0.127
Sugden	Oakland	RESPONSE		8	3	2018	42.61752	-83.49885	Deep	ambient			25.033	8.77	746	7.8	0.133
Sugden	Oakland	RESPONSE		8	3	2018	42.61816	-83.49577	Castlewood ST	scum			25.051	8.87	744	8.03	0.12
Sugden	Oakland	RESPONSE		8	3	2018	42.61982	-83.49557	Estola	scum			24.601	8.15	152.2	7.62	1.698
Sugden	Oakland	RESPONSE		8	3	2018	42.61811	-83.50058	Sugden Lake RD	ambient			25.215	8.4	750	8.02	0.061
Sugden	Oakland	RESPONSE		8	3	2018	42.619	-83.50027	forested area along Sugden Lake RD	ambient			25.197	8.4	748	7.97	0.018
Sugden	Oakland	RESPONSE		8	3	2018	42.61449	-83.49644	Bogie Lake RD	scum			25.097	8.25	803	7.08	0.414
Sugden	Oakland	RESPONSE		8	3	2018	42.6152	-83.49439	Woodstone CT	ambient			25.135	8.19	758	7.67	0.278
Sugden	Oakland	RESPONSE		8	3	2018	42.61761	-83.49429	Bayview ST	scum			25.303	8.39	764	7.86	0.25
															· • · ·		

PC CONC. (µg/I)	CHLA RFU	CHLA CONC. (µg/I)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/I)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/I)	LAB ANATOX (µg/l)	LAB CYLINDRO (µg/I)
										1-5	non-detect	non-detect	non-detect
										1-5	non-detect	non-detect	non-detect
0.23	0.822	3.26								1-5 ug/I MC	non-detect	non-detect	non-detect
0.24	1.057	4.16	3.9	ND	7.2	0.68	0.008	ND	0.023	Non-detect			
0.21	1.057	4.16						•		Non-detect			
0.19	0.963	3.8								Non-detect			
0.17	1.161	4.56								Non-detect		· .	
0.21	1.105	4.35								Non-detect	non-detect	non-detect	non-detect
0.22	1.282	5.02								Non-detect			
-0.13	0.148	0.68	10.9	0.01	4.7	0.54	0.011	ND	0.006	Non-detect			
-0.19	0.131	0.61								Non-detect			
-0.17	0.204	0.89								Non-detect			
-0.15	0.201	1 31	•	•		•	•	•	•	Non-detect	non-detect	non-detect	non-detect
-0.14	0.314	1.51	•	•	•	•	•	•	•	Non-detect	non deteet		non deteet
-0.13	0.3	1.20	•	•	•	•	•	•	•	Non-detect	non-detect	non-detect	non-detect
0.15	1 120	1.05	•	•	•	•	•	•	•	Non detect	non acteu	non acteur	non acteet
0.00	0.459	4.44	•	•	•	•	•	•	•	Non-detect	•	· ·	•
-0.10	0.430	1.07		ND		0.52	. 0.007	ND	. 0.011	Non-detect	•	•	•
-0.1	0.511	2.07	1.1	ND	4.0	0.53	0.007	טא	0.011	Non-delect	•	· ·	•
0.06	0.99	3.91	•	•	•	•	•	•	•	Non-detect	•	· ·	•
-0.07	0.594	2.39	•	•	•	•	•	•	•	Non-detect	•	· ·	•
-0.03	1.037	4.08	•	•	•	•	•	•	•	Non-detect		•	•
0.19	0.917	3.62	•	•	•	•	•	•	•	>10	14.4	non-detect	non-detect
0.06	0.725	2.89	•	•	•	•	•	•	•	Non-detect	non-detect	non-detect	non-detect
0.54	2.699	10.46		•					•	Non-detect	•	· .	· ·
0.7	3.367	13.02	4.4	ND	15	0.62	0.005	0.007	0.027	Non-detect	· ·	·	· .
0.82	3.505	13.55		•	•	•	•	•	•	Non-detect	· ·	· .	· .
0.86	3.78	14.6	•	•	•	•	•	•	•	Non-detect	non-detect	non-detect	non-detect
0.62	3.566	13.78		•	•				•	Non-detect	1.89	non-detect	non-detect
0	0.323	1.35		•					•	Non-detect	· ·	· ·	
-0.03	0.246	1.05	9.6	0.009	3	0.51	0.008	ND	0.006	Non-detect	•	· ·	
-0.06	0.173	0.77		•						5-10	3.5	non-detect	non-detect
-0.08	0.188	0.83		•						1-5	4.8	non-detect	non-detect
-0.07	0.245	1.05		•				•	•	1-5	1.4	non-detect	non-detect
-0.1	0.194	0.85		•						Non-detect	· ·	· .	
		•		•						5-10	9.9	non-detect	non-detect
		•		•						1-5	2.4	non-detect	non-detect
		•								Non-detect	Non-detect	non-detect	non-detect
		•						•		1-2.5	1.9	non-detect	non-detect
										1-2.5	Non-detect	non-detect	non-detect
0.47	5.697	21.2								Non-detect			
0.13	0.473	1.73								>10	60	non-detect	non-detect
0.13	0.359	1.3	10.66	ND	3.3	0.54	0.007	ND	0.006	Non-detect			
0.12	0.371	1.35								>10	4.8	non-detect	non-detect
1.69	0.949	3.5								>10	160	non-detect	non-detect
0.06	0.389	1.42								Non-detect			
0.02	0.36	1.31								Non-detect			
0.41	0.391	1.42								5-10	6	non-detect	non-detect
0.28	0.313	1.13								Non-detect			
0.25	0.456	1.66								>10	57	non-detect	non-detect

LAKE	County	TYPE	MONTH DAY	YE	EAR LAT	L	ONG SITE	scum/ambient	SITE_DEPTH	SAMP_DEPTH (FT)	TEMP (F)	Dissolved Oxygen (mg/l)	Conductivity (µS/cm) PH	I F	PC RFU
Earl	Livingston	RESPONSE	8	3	2018	42.60325	-83.89301 3110 Golf Club	ambient			25.074	7.66	1130	6.91	16.931
Earl	Livingston	RESPONSE	8	3	2018	42.60207	-83.90031 Canal - Earl Lake RD	ambient			25.828	8.66	1159	7.58	0.91
Earl	Livingston	RESPONSE	8	3	2018	42.60243	-83.90013 Canal - 2690 Golf Club RD	ambient			26.37	10.32	1166	7.8	1.939
Earl	Livingston	RESPONSE	8	3	2018	42.60223	-83.89777 Deep	ambient			25.564	8.05	1145	7.68	0.048
Earl	Livingston	RESPONSE	8	3	2018	42.60012	-83.89474 Char-Ann Dr	ambient			26.694	8.42	1171	7.95	0.117
Earl	Livingston	RESPONSE	8	3	2018	42.60193	-83.8987 Boat Launch	ambient			25.904	7.48	1157	7.55	0.231
Thornapple River	Barry	RESPONSE	8	4	2018	42.61648	-85.21237 Rivergate Park	scum							
Maston	Kent	RESPONSE	8	6	2018	43.270169	-85.359534 south channel	ambient			23.304	8.2	394.5	7.95	0.576
Maston	Kent	RESPONSE	8	6	2018	43.27023	-85.35934 south Maston Lake proper	ambient			25.791	11.22	359.5	8.62	0.333
Mona	Muskegon	targeted monitoring	; 8	6	2018	43.18635	-86.23609 Muskegon Heights boat launch	ambient			25.855	6.84	475.3	8.17	0.987
Mona	Muskegon	targeted monitoring	; 8	6	2018	43.17597	-86.24609 Ross Park Beach	ambient			25.858	7.82	483.3	8.4	1.13
Mona	Muskegon	targeted monitoring	8	6	2018	43.18272	-86.2321 East, near Highgate RD	ambient			26.507	8.56	477.1	8.54	1.227
Mona	Muskegon	targeted monitoring	8	6	2018	43.16643	-86.28359 Turtle Bay	ambient			25.06	5.52	463.8	7.82	0.834
Mona	Muskegon	targeted monitoring	8	6	2018	43.17873	-86.25916 Deep	ambient			25.728	7.2	487.9	8.17	1.009
Van Etten	losco	RESPONSE	7	27	2018	44.47585	-83.35888 6785 Loud DR	scum							
Van Etten	losco	RESPONSE	7	27	2018	44.4518	-83.3366 East shore	scum							
Van Etten	losco	RESPONSE	8	8	2018	44.47585	-83.35888 6785 Loud DR	ambient			24.44	8	321	7.75	0.332
Van Etten	losco	RESPONSE	8	8	2018	44.46272	-83.3563 boat launch/beach	ambient			24.204	9.25	318.2	8.4	1.309
Van Etten	losco	RESPONSE	8	8	2018	44,46434	-83.35627 Deep	ambient			24,409	9.07	325.6	8.42	1.297
Van Etten	losco	RESPONSE	8	8	2018	44,48613	-83.36649 Loud Island	ambient			25,669	11.18	324.7	8.58	0.724
Van Etten	losco	RESPONSE	8	8	2018	44,48602	-83.38341 NW	ambient			25.875	9.97	333	8.53	1,198
Van Etten	losco	RESPONSE	8	8	2018	44,44934	-83.33828 Dam outlet	ambient			24.347	9.59	318.9	8.49	0.778
Lamberton	Kent	RESPONSE	8	10	2018	43.02295	-85.63046 1552 Lamberton Lake DB	scum			25,366	9.32	739	7.69	99,486
Lamberton	Kent	RESPONSE	8	10	2018	43.02295	-85.63046 1552 Lamberton Lake DR	ambient			25.86	9.68	765	7.66	1.461
Lamberton	Kent	RESPONSE	8	10	2018	43.02246	-85.62828 NE	scum			25.49	9.49	783	7.62	0.562
Lamberton	Kent	RESPONSE	8	10	2018	43 01951	-85 62988 Anartment	scum	-		26 628	9.49	862	6.87	84 651
Lamberton	Kent	RESPONSE	8	10	2018	43.01951	-85.62988 Apartment	ambient			26.064	9.59	764	7.72	0.786
Pontiac	Oakland	targeted monitoring	8	13	2018	42.66338	-83.44231 DNR boat launch	scum			25,285	7.46	401.5	8.06	0.85
Pontiac	Oakland	targeted monitoring	, 2	13	2018	42 66707	-83 4549 Deep	scum			26 414	8 37	434.3	8 43	0.628
Pontiac	Oakland	targeted monitoring	, 2	13	2018	42 66901	-83 44826 State park beach	ambient			25 772	8	431.6	8 33	0.919
Pontiac	Oakland	targeted monitoring	, 8	13	2018	42 6693	-83 4556 Skull Island	ambient			26 32	8.45	432.9	8 49	0.661
Pontiac	Oakland	targeted monitoring	, 0	13	2018	42.66488	-83 46117 Kingston ST	scum			25 791	8 55	418.8	8.48	0.001
Pontiac	Oakland	targeted monitoring	, 0	13	2018	42 66801	-83 46223 Kingston Island	scum			26.054	8.52	428.1	8 44	0.546
Pontiac	Oakland	targeted monitoring	, 0	13	2010	42.66877	-83.46616 Hampton ST	ambient	•	•	25 501	8.84	387.8	8.61	0.340
Pontiac	Oakland	targeted monitoring		12	2018	42.00877	-83.46051 Buckingham st	ambient		•	25.501	10.29	201.0	8.01	0.451
Surden	Oakland	targeted monitoring		12	2018	42.00303	-83.40995 Deep	ambient	•	•	25.21	10.20	405.5	8 21	-0.041
Sugden	Oakland	targeted monitoring	8	13	2018	42.01732	-83.49583 Deep	nurple mat		•	26.729	8.5	762	8 34	-0.041
Sugden	Oakland	targeted monitoring		12	2018	42.01371	-83.50058 Sugden Lake PD	ambient		•	20.725	8.6	762	8 27	-0.012
Sugdon	Oakland	targeted monitoring		12	2018	42.01010	92 40622 Pagia Lake RD	ambient		•	27.050	0.00	703	0.37	0.041
Sugdon	Oakland	targeted monitoring	, 0	12	2018	42.01418	-65.45022 Bogie Lake RD	ambiant			27.090	0.00	709	0.37	-0.041
Suguen	Oakland	targeted monitoring	. 0	13	2018	42.01416	-83.49022 Bogie Lake KD	ambient	•		20.999	0.30	770	0.33	0.005
Suguen	Oakland	targeted monitoring		13	2018	42.01511	-83.49439 WOOdstone CT	ambient			27.297	05.0	777	0.37	-0.045
Suguen	Udkidnu		, 0	13	2018	42.01754	-83.49423 Bdyview ST	ambient	·	•	27.041	8.73	10 0	0.33	120.05
Turene	Livingston	RESPUNSE	0	13	2018	42.09009	-03.72794 Buildia KD	Scum	·	•	30.853	16.24	10.0	9.23	139.030
Tyrone Deleter	Livingston	RESPONSE	8	13	2018	42.69509	-63.72794 Bullard KD	ampient, less cyano	·		28.4/6	10.63	486.3	8.49	2.465
Brighton	Livingston	RESPONSE	8	13	2018	42.52024	-83.78989 Brighton Lake boat launch	ampient	·		29.086	10.7	990	8.32	1.432
Brighton	Livingston	RESPONSE	8	13	2018	42.52296	-83.78997 Ure Creek Inlet	ampient	•		28.228	7.46	1084	1.79	0.169
Brighton	Livingston	KESPONSE	8	13	2018	42.52084	-83.79426 Arbor Bay	scum			29.77	10.67	1011	8.32	1.103
Brighton	Livingston	RESPONSE	8	13	2018	42.51698	-83.80231 Dam	ambient	· ·		28.84	10.7	984	8.38	0.944
Brighton	Livingston	RESPONSE	8	13	2018	42.51999	-83.80135 Deep	ambient			29.047	11.25	978	8.41	1.045

PC CONC. (µg/l)	CHLA RFU C	HLA CONC. (µg/I)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/I)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/I)	LAB ANATOX (µg/I)	LAB CYLINDRO (µg/l)
16.87	9.152	34.07								Non-detect	Non-detect	non-detect	non-detect
0.9	11.708	43.6								Non-detect			
1.93	15.667	58.35								Non-detect	Non-detect	non-detect	non-detect
0.05	5.05	18.79	6.25	ND	17	0.68	ND	ND	0.018	Non-detect			
0.12	1.07	3.95	•							Non-detect			•
0.23	2.711	10.07								Non-detect			
										5-10	1.1	non-detect	non-detect
0.59	1.986	7.35	•							Non-detect	Non-detect	non-detect	non-detect
0.34	0.494	1.81								Non-detect			
1.02	3.534	13.09								Non-detect	· .		
1.16	4.285	15.87								Non-detect			
1.26	4.936	18.29								Non-detect	Non-detect	non-detect	non-detect
0.86	3.353	12.42								Non-detect			
1.04	3.27	12.11	3.5	ND	16	0.58	ND	0.008	0.029	Non-detect			
										5-10	4.3	non-detect	non-detect
										5-10	23	non-detect	non-detect
0.33	0.887	3.27								Non-detect			
1.3	1.334	4.94								5-10	0.73	non-detect	non-detect
1.29	1.769	6.56	4	0.02	2 22	0.64	ND	0.005	0.025	5-10	1	non-detect	non-detect
0.72	1.079	3.99								5-10	0.7	non-detect	non-detect
1.19	2.023	7.51								5-10	0.57	non-detect	non-detect
0.77	1.581	5.86								1-5	Non-detect	non-detect	non-detect
99.14	13.519	50.34								>10	270	non-detect	non-detect
1.45	1.61	5.96								Non-detect	Non-detect	non-detect	non-detect
0.56	2.573	9.56								5-10	3.6	non-detect	non-detect
84 36	10 925	40.68								5-10	17	non-detect	non-detect
0.78	1 568	5.81		•						Non-detect	Non-detect	non-detect	non-detect
0.89	1.842	6.93		•			•	•	•	>10	9	non-detect	non-detect
0.66	1 113	4 22	. 4 1	ND	95	. 0.74	ND	0.006	0.025	>10	4	non-detect	non-detect
0.00	2 34	8 77			5.5	0.74		0.000	0.025	Non-detect			non acteur
0.7	1.019	3.88								1-5	2.1	non-detect	non-detect
0.82	1 168	4.43	•	•	•	•	•	•	•	>10	17	non-detect	non-detect
0.52	1 151	4 36		•						>10	8	non-detect	non-detect
0.30	1 527	5.76		•						1-5	0.79	non-detect	non-detect
0.51	1 101	4 18		•						Non-detect	0175		
-0.03	0 297	1.10	. 6.75	ND	. 26	. 0.54	ND	ND	. 0.007	Non-detect	· ·	· ·	•
0.05	0.297	1.2	0.75		2.0	0.51			0.007	1-5	. 2	non-detect	non-detect
-0.03	0.257	1.2		•						1-5	0.95	non-detect	non-detect
-0.03	0.376	1.49		•						>10	120	non-detect	non-detect
0.03	0.444	1.13		•						5-10	2.4	non-detect	non-detect
-0.03	0.338	1.74	•	•	•	•	•	•	•	Non-detect	2.7		non deteet
-0.07	0.350	0.86	•	•	•	•	•	•	•	Non-detect	· ·	· · ·	•
1/12 25	27 782	102.15	·	•		•	-	-	•	>10	900	non-detect	non-detect
243.25	6 71	24 00	•	•	•	•	•	•	•	>10	55	non-detect	non-detect
1 /0	3 586	12 /	•	•	•	•	•	•	•	Non-detect	5.5		
0.10	1 27	13.4 5 10	•	•	•	•	•	•	•	Non-detect	•	•	•
1 15	2 557	0 C 2	•	•	•	•	•	•	•	Non-detect	Non-detect	. 11	non-detect
0.00	2.357	9.36	. 1 67		2 วา		ND		. 0.020	Non-detect	Non-detect	1.1	
1.09	2.314	0.00	1.07	0.05	5 52	0.92		0.006	. 0.059	Non-detect	•	· ·	•
1.09	2.055	5.07	•	· ·	•	•	· ·	•	· ·	HOIL UCICUL	· ·	· ·	•

LAKE	County	TYPE	MONTH	DAY	YE	AR LAT	· L	ONG SITE		scum/ambient	SITE_DEPTH	SAMP_DEPTH (FT) TEMP (F) Dis	solved Oxygen (mg/l) Conductivity (µS/cm	PH	PC	RFU
Brighton	Livingston	RESPONSE		8	13	2018	42.52217	-83.80116 Club House		ambient			30.192	10.8	35 100	0	8.41	1.052
Brighton	Livingston	RESPONSE		8	13	2018	42.51831	-83.79137 Brighton Lake F	Rd	ambient			30.367	10.9	96 100	4	8.43	0.711
Thornapple	Barry	RESPONSE		8	14	2018	42.6178	-85.19837 Boat Launch		ambient			26.605	9.9	91 56	3.		
Thornapple	Barry	RESPONSE		8	14	2018	42.62094	-85.194 beach		ambient			27.292	10.3	31 57	7.		
Thornapple	Barry	RESPONSE		8	14	2018	42.62424	-85.18908 Deep		ambient			26.985	10.3	38 56	3.		
Thornapple	Barry	RESPONSE		8	14	2018	42.62502	-85.18129 Barry's Resort		ambient			27.64	10.2	29 57	0.		
Thornapple	Barry	RESPONSE		8	14	2018	42.6291	-85.18431 NE		ambient			27.727	10	.4 56	5.		
Thornapple	Barry	RESPONSE		8	14	2018	42.62473	-85.19412 NW		ambient			27.074	10.4	18 56	5.		
Thornapple	Barry	RESPONSE		8	14	2018	42.61648	-85.21237 Rivergate Park		scum			27.027	9	.6 57	3.		
Long	Kalamazoo	RESPONSE		8	14	2018	42.19692	-85.524506 8261 W. Long L	ake Drive, Scotts, MI	ambient								
Loch Erin	Lenawee	RESPONSE		8	13	2018	42.008475	-84.146969 7577 Wadding	Dr.	scum								
Allegan	Allegan	TMDL Monitoring		8	14	2018	42.56137	-85.94833 Site 3		ambient								
Belleville	Wayne	TMDL Monitoring		8	14	2018	42.2086	-83.5319 Bell 1		ambient								
Belleville	Wayne	TMDL Monitoring		8	14	2018	42.5319	-83.5315 Bell 2		ambient								
Ford	Washtenaw	TMDL Monitoring		8	14	2018	42.2109	-83.573 Boat launch		ambient								
Ford	Washtenaw	TMDL Monitoring		8	14	2018	42.2194	83.5945 Ford 2		ambient								
Macatawa	Ottawa	TMDL Monitoring		8	15	2018	42.777015	-86.180838 West Basin		ambient								
Macatawa	Ottawa	TMDL Monitoring		8	15	2018	42.788936	-86.144225 Pine Creek Bay	,	ambient								
Macatawa	Ottawa	TMDL Monitoring		8	15	2018	42.796257	-86.1186 Boat launch		scum								
Lamberton	Kent	RESPONSE		8	20	2018	43.02295	-85.63046 1552 Lamberto	n Lake DR	ambient			26.623	9	.6 74	2	8.34	0.122
Lamberton	Kent	RESPONSE		8	20	2018	43.02246	-85.62828 NE		ambient			27.012	11.4	12 73	5	8.46	0.129
Lamberton	Kent	RESPONSE		8	20	2018	43.01951	-85.62988 Apartment		ambient			26.365	9.1	4 73	1	8.29	0.06
Mona	Muskegon	targeted monitoring	z	8	20	2018	43.18635	-86.23609 Muskegon Heig	ghts boat launch	ambient			25.986	7.7	76 455.	9	8.44	0.842
Mona	Muskegon	targeted monitoring	z	8	20	2018	43.17597	-86.24609 Ross Park Beac	h	ambient			26.274	8.0	466	6	8.58	0.744
Mona	Muskegon	targeted monitoring	z	8	20	2018	43.18272	-86.2321 East, near High	gate RD	ambient			26.48	8.5	8 459	1	8.59	0.925
Mona	Muskegon	targeted monitoring	7	8	20	2018	43,16643	-86,28359 Turtle Bay	0	ambient			26.061	7	.8 451	8	8.31	0.876
Mona	Muskegon	targeted monitoring	z .	8	20	2018	43.17873	-86.25916 Deep		ambient			26.152	7.€	51 468	6	8.48	0.841
Loch Erin	Lenawee	targeted monitoring	z	8	19	2018	42.012683	-84.129836 8573 Rose of S	haron Court	scum							<u> </u>	
Loch Erin	Lenawee	targeted monitoring	7	8	20	2018	42.012683	-84,129836 8573 Rose of S	haron Court	ambient								
Loch Erin	Lenawee	targeted monitoring	7	8	18	2018	42.008572	-84,147276 7583 Wadding	Drive	scum			i i					
Loch Frin	Lenawee	targeted monitoring	,	8	20	2018	42 008572	-84 147276 7583 Wadding	Drive	ambient		-						
Pontiac	Oakland	RESPONSE	,	8	22	2018	42.67071	-83.45836 Tackles DR boa	t launch	ambient			23.75722	7.8	. 434	5	6.46	0.896
Pontiac	Oakland	RESPONSE		8	22	2018	42 66761	-83 44708 State park hear	rh	ambient			21 39778	86	3 376	2	7 41	1 229
Pontiac	Oakland		-	8	22	2018	42 66338	-83 44237 DNR boat laun	ch	ambient			23 27222	5-	75 374	4	7 23	1 505
Pontiac	Oakland			8	22	2018	42 66485	-83 4613 Kingston		ambient	· ·	•	23.01389	81	9 411	8	6.86	1.505
Pontiac	Oakland			8	22	2018	42 66877	-83 46646 Hampton ST		ambient	· ·	•	24 10889	7 (398	7	6.64	0.937
Pontiac	Oakland		-	8	22	2018	42.6699	-83 46976 Buckingham st		ambient			22 90278	8/	17 378	8	6.22	0.948
Sugden	Oakland			8	22	2018	42 61636	-83.49604 hoat launch		ambient	· ·	•	24 48889	8.1	7 69	6	7 18	0.340
Sugden	Oakland			0 0	22	2010	42.01050	-83 49416 Woodstone CT		ambient		•	22 / 2111		7 70	5	7.10	1 014
Sugden	Oakland		-	0 9	22	2018	42.01313	-83.49410 Woodstone CT		ambient		•	22.45111	8.2	./ //	6	6.64	1 104
Sugden	Oakland	RESPONSE		0	22	2010	42.01402	-65.49029 Bugie Lake ND	D	ambient		•	23.40555	0.2		4	0.04 E 01	1 121
Juguen	Livingston	RESPONSE		0	22	2010	42.01009	92 72794 Bullard BD	U	ambient		•	24.10007	7	72 72	4 0	7.24	1.151
Lobdoll	Conocoo /Livingston	RESPONSE		0	22	2010	42.09507	-03.72704 Buildiu KD	withot	ambient		•	24.30305	7.7	441.	1	7.54 C EC	1.409
Lobdell	Genesee/Livingston	RESPONSE		0	22	2010	42.77509	92 92E20 Hoathle Harbor		ambient	•	•	24.1/3		20 400	1	6.50	0.007
Lobuell	Genesee/Livingston	RESPONSE		0	22	2018	42.7901	10016H 2 Upped D		ambient	· ·	•	23.93369	7.3	466.	4 ว	0.03	0.897
Lobuell	Genesee/Livingston	RESPONSE		0	22	2018	42.79	-65.62035 Haviland Beach	IUK	ambient	· ·	•	25.3/444	/.3	4/2	3 2	1	0.969
Lobuell	Genesee/Livingston	RESPONSE		0	22	2018	42.79121	-03.04511 Uam	ah	ambient	· ·	•	24.08107	/.8	54	2	0.80	0.774
Lobuell	Genesee/Livingston	RESPONSE		0	22	2018	42.7002	-05.04U AVIU SCU40.co-	un Canal	ambient	· ·	•	24.74222	8.0	5/	1	0.45	1.007
Lobuell	Genesee/Livingston	RESPONSE		0	22	2018	42.78345	-65.8364 Peninsular Driv	ve Canal	ampient	•	•	23.00833	7.9	489.	1	0.19	1.06/
Lobdell	Genesee/Livingston	RESPONSE	1	8	27	2018	42.77569	-83.83337 Bennett Lake o	outlet	ambient			26.394		9 64	5	7.59	-0.005

PC CONC. (µg/l)	CHLA RFU	CHLA CONC. (µg/I)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/l)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/I)	LAB ANATOX (µg/I)	LAB CYLINDRO (µg/I)
1.1	2.885	10.8	3.							Non-detect			
0.75	2.51	9.41								Non-detect	Non-detect	0.83	non-detect
		•								Non-detect			
		•								Non-detect	Non-detect	non-detect	non-detect
		•	3.2	ND	24	0.51	ND	0.005	0.026	Non-detect			
		•								Non-detect			
		•								Non-detect			
		•								Non-detect			
		•								Non-detect	Non-detect	non-detect	non-detect
		•								Non-detect			
		•								5-10	1.4	non-detect	non-detect
		•								Non-detect	Non-detect	non-detect	non-detect
		•								1-5	2.5	non-detect	non-detect
		•								Non-detect			
		•								Non-detect			
		•								Non-detect			
		•								Non-detect			
		•								Non-detect			
		•								>10	1.7	non-detect	non-detect
0.14	1.591	6	5.							Non-detect	non-detect	non-detect	non-detect
0.15	1.42	5.36	5.							Non-detect			
0.08	1.06	4.03								Non-detect			
0.88	3.618	13.52	2.							Non-detect			
0.78	2.938	10.99								Non-detect			
0.97	5.192	19.35	5.							Non-detect			
0.92	4.244	15.84	l.							Non-detect	non-detect	non-detect	non-detect
0.88	3.164	11.83	3.5	ND	16	0.57	ND	0.007	0.027	Non-detect			
		•								>10	7.7	non-detect	non-detect
		•								Non-detect			
		•								1-5	1.8	non-detect	non-detect
		•								Non-detect			
0.94	0.436	1.71								Non-detect			
1.28	0.674	2.6	ō.							Non-detect			
1.57	2.95	11.04	Ι.							Non-detect			
1.84	1.204	4.56	ō.							Non-detect	0.89	non-detect	non-detect
0.98	0.602	2.33	8.							Non-detect			•
0.99	0.457	1.79).							Non-detect			•
0.81	0.326	1.3	8.							Non-detect			•
1.06	0.345	1.37	′.							Non-detect			
1.15	0.374	1.49).							Non-detect	0.61	non-detect	non-detect
1.18	0.384	1.52	2.							Non-detect			
1.47	11.93	44.35	5.							Non-detect	non-detect	0.31	non-detect
1.14	0.371	1.47								Non-detect			
0.94	0.847	3.24	Ι.							Non-detect			
1.01	1.076	4.09).							Non-detect	non-detect	non-detect	non-detect
0.81	0.527	2.05	j.							Non-detect			
1	0.476	1.86	i .							Non-detect			
1.11	0.44	1.73	8.							Non-detect			
0.01	0.882	3.37								Non-detect			

LAKE	County	TYPE	MONTH	DAY	YEA	AR LAT	L	DNG SITE	scum/ambient	SITE_DEPTH SAMP_DEPTH (FT) TEMP (F)	Dissolved Oxygen (mg/l)	Conductivity (µS/cm) P	H P	۲C RFU
Lobdell	Genesee/Livingston	RESPONSE		8	27	2018	42.7961	-83.83529 Heath's Harbor	ambient		25.9	6.2	2 531	6.63	0.27
Lobdell	Genesee/Livingston	RESPONSE		8	27	2018	42.79	-83.82035 Haviland Beach DR	ambient		25.423	8.49	443.8	7.8	0.439
Lobdell	Genesee/Livingston	RESPONSE		8	27	2018	42.79121	-83.84511 Dam	ambient		25.927	8.31	i 533	7.65	-0.058
Lobdell	Genesee/Livingston	RESPONSE		8	27	2018	42.7862	-83.84058 DNR boat launch	ambient		25.172	. 8.82	2 557	7.52	-0.124
Lobdell	Genesee/Livingston	RESPONSE		8	27	2018	42.78345	-83.8364 Peninsular Drive Canal	ambient		26.661	. 6.66	i 526	7.41	0.101
Paw Paw	Berrien	RESPONSE		8	22	2018	42.19656	-86.29218 Paw Paw Lake Public Access at Island Court	scum						
Paw Paw	Berrien	RESPONSE		8	22	2018	42.19656	-86.29218 Paw Paw Lake Public Access at Island Court	ambient						
Porter	Iron	RESPONSE		8	22	2018	46.323879	-88.572997 East shore, Fire #173	scum						
Mona	Muskegon	targeted monitoring	5	9	4	2018	43.18635	-86.23609 Muskegon Heights boat launch	scum		25.052	. 11.5	i 445	8.01	32.736
Mona	Muskegon	targeted monitoring	5	9	4	2018	43.18635	-86.23609 Muskegon Heights boat launch	ambient						
Mona	Muskegon	targeted monitoring	5	9	4	2018	43.17597	-86.24609 Ross Park Beach	ambient		24.688	9.02	423.6	8.42	1.028
Mona	Muskegon	targeted monitoring	5	9	4	2018	43.18272	-86.2321 East, near Highgate RD	scum		25.29	9.63	423.4	8.56	1.15
Mona	Muskegon	targeted monitoring	;	9	4	2018	43.16643	-86.28359 Turtle Bay	ambient		24.137	7.77	/ 431.9	7.97	1.434
Mona	Muskegon	targeted monitoring	;	9	4	2018	43.17873	-86.25916 Deep	ambient		24.481	. 9.01	425.4	8.41	1.151
Van Etten	losco	RESPONSE		8	30	2018	44.47585	-83.35888 6785 Loud DR	scum						
Van Etten	losco	RESPONSE		8	30	2018	44.46272	-83.3563 boat launch/beach	scum						
Van Etten	losco	RESPONSE		8	30	2018	44.48613	-83.36649 Loud Island	scum						
Van Etten	losco	RESPONSE		8	30	2018	44.48602	-83.38341 NW	scum						
Van Etten	losco	RESPONSE		8	30	2018	44.44934	-83.33828 Dam outlet	clear						
Lake Michigan	Muskegon	RESPONSE		9	6	2018	43.221871	-86.337573 Pere Marguette Park	clear						
Mona	Muskegon	RESPONSE		9	6	2018	43.18635	-86.23609 Muskegon Heights boat launch	clear						
Mona	Muskegon	RESPONSE		9	6	2018	43.182844	-86.224414 Hidden Cove Park	scum						
Van Etten	losco	RESPONSE		9	11	2018	44.47585	-83.35888 6785 Loud DR	scum						
Van Etten	losco	RESPONSE		9	11	2018	44.46272	-83.3563 boat launch/beach	scum						
Van Etten	losco	RESPONSE		9	11	2018	44.46272	-83.3563 boat launch/beach	ambient						
Van Etten	losco	RESPONSE		9	11	2018	44.451742	-83.3366 End of Oscoda ST	scum						
Van Etten	losco	RESPONSE		9	11	2018	44.448468	-83.340144 Below dam	ambient						
Van Etten	losco	RESPONSE		9	11	2018	44.471606	-83.372365 DNR boat launch	scum						
Van Etten	losco	RESPONSE		9	11	2018	44.471606	-83.372365 DNR boat launch	ambient						
Belleville	Wayne	TMDL Monitoring		9	12	2018	42,21397	-83.47318 Boat Jaunch	scum		22.532	6.7	7 751	8.12	3,449
Belleville	Wayne	TMDL Monitoring		9	12	2018	42,21082	-83.51996 B2	scum		22.596	8.7	2 774	8.08	1.082
Ford	Washtenaw	TMDL Monitoring		9	12	2018	42.21080	-83.57304 Boat launch	scum		23.85	8.4	4 792	8.22	2.17
Ford	Washtenaw	TMDI Monitoring		9	12	2018	42 22017	-83 59378 F2	scum		23 337	9.91	1 781	8 51	1 202
Lobdell	Genesee/Livingston	RESPONSE		9	14	2018	42 77569	-83 83337 Bennett Lake outlet	ambient		24 32778	(- , , , , , , , , , , , , , , , , , , ,	8 23	0 234
Lobdell	Genesee/Livingston			9	14	2010	42 7961	-83 83529 Heath's Harbor	ambient		23.00611	8.0	478.7	7.93	0.084
Lobdell	Genesee/Livingston			9	14	2010	42.7501	-83 82035 Haviland Beach DR	ambient		22 5044/	9.05	4/6.7	8 34	0.676
Lobdell	Genesee/Livingston	RESPONSE		9	14	2010	42.75	-83 82035 Haviland Beach DR	scum	· ·	25 3733	5.23	2 550	8.01	77 872
Lobdell	Genesee/Livingston			9	14	2018	42 79121	-83 84511 Dam	ambient		22 61380	9.02	3 521	8.02	0 594
Lobdell	Genesee/Livingston			0	14	2010	42.75121	-83 84058 DNR boat launch	ambient		22.01303	0.2	564	7 02	0.554
Lobdell	Genesee/Livingston	RESPONSE		0	14	2018	42.7802	-83 8364 Peningular Drive Canal	scum		23.27	0.85		8.44	27 202
Mona	Muckagon	targeted monitoring		0	17	2010	42.78545	96 22600 Muckagen Heights heat launch	scum		24.4550	11.15	204.0	0.44	1 62
Mona	Muskegon	targeted monitoring		9	17	2010	43.10053	Per 24600 Poss Park Poach	ambient	· ·	23.13303	11.13	2 202.2	0.09	1 502
Mona	Muskegon	targeted monitoring		0	17	2010	43.1/35/	-96 2221 Eact near Highgate PD	scum	· ·	23.35278	13.43	2016	0.70	2.055
Mona	Muskegon	targeted monitoring		0	17	2010	43.10272	06 202E0 Turtlo Pay	ambient	· ·	23.33005	12.73	394.0	0.03	2.035
Mana	Muskegon	targeted monitoring		9	17	2018	43.10043	-00.20000 I UILLE Bdy	amplent		22.85	12.01	. 395.6	0.00	2.831
Turana	iviuskegon	Largeted monitoring		9	17	2018	43.1/8/3	-00.22284 Dullard DD	ampient	• •	23.39885	12.63	, 394.2	8.84	1./
Tyrone	Livingston	RESPUNSE		9	17	2018	42.69507	-05.72704 DUIIard RD	scum	· ·	·	•	+·		
Tyrone	Livingston	RESPUNSE	-	9	1/	2018	42.69507	-05.72704 buillard KU	amplent	· ·					25.462
Ford	washtenaw	RESPUNSE	-	9	10	2018	42.21080	-05.57504 BOOT IBUNCN	scum	· ·	24.8/8	16.64	604	8.38	25.108
Ford	Washtenaw	RESPONSE		9	19	2018	42.22017	-83.59378 +2	ampient		24.844	14.89	ا (631	8.45	4.415

PC CONC. (µg/l)	CHLA RFU	CHLA CONC. (µg/l)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/I)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/I) MC_STRIP_RESULT	LAB TOT MC (µg/I)	LAB ANATOX (µg/l)	LAB CYLINDRO (µg/l)
0.29	0.707	2.72							. Non-detect			
0.47	1.696	6.39							. Non-detect	non-detect	non-detect	non-detect
-0.04	0.707	2.72							. Non-detect			
-0.11	0.412	1.63							. Non-detect			
0.12	1.519	5.73						•	. Non-detect			
		•						•	. >10	7.8	non-detect	non-detect
									. >10	5.3	non-detect	non-detect
									. non-detect	non-detect	non-detect	non-detect
32.65	7.892	29.35							. >10	280	non-detect	non-detect
									. Non-detect	1.2	non-detect	non-detect
1.06	3.112	11.54							. Non-detect			
1.18	2.577	9.55							. >10	260	non-detect	non-detect
1.46	4.18	15.52							. Non-detect			
1.18	2.604	9.65	3.6	ND	25	0.62	0.089	0.005	0.034 Non-detect			
		•							. >10	15	Non-detect	Non-detect
									. >10	29	Non-detect	Non-detect
									. >10	390	Non-detect	Non-detect
		•							. >10	83	Non-detect	Non-detect
									. Non-detect	non-detect	Non-detect	Non-detect
									. Non-detect			
		•							. Non-detect			
									. >10			
•		•	•			•		•	. >10	4900	Non-detect	Non-detect
									. 5-10	3.4	Non-detect	Non-detect
		•				•			. Non-detect	0.7	Non-detect	Non-detect
		•				•			. >10	13000	Non-detect	Non-detect
		•							. Non-detect			
		•							. >10	360	Non-detect	Non-detect
		•	·						. ~1	non-detect	Non-detect	Non-detect
3.57	1.042	3.96	·					•		700	Non-detect	Non-detect
1.13	1.148	4.36	•			•		•		120	Non-detect	Non-detect
2.25	0.883	3.37								1300	Non-detect	Non-detect
1.25	9.503	35.35								168	Non-detect	Non-detect
0.21	1.172	4.36	•		•	•	•	•	. Non-detect		· ·	•
0.06	0.833	3.1	•						. Non-detect			· .
0.65	0.785	2.92	•						. ~1	non-detect	Non-detect	Non-detect
77.58	14.711	54.81	•						. >10	450	Non-detect	Non-detect
0.57	0.671	2.49	•					•	. Non-detect		•	•
0.5	0.405	1.5			•	•		•	. Non-detect	•	•	•
27.19	6.124	22.81	•					•	. >10	330	Non-detect	Non-detect
1.69	4.915	18.33	•		•	•	•	•	. >10	360	0.43	non-detect
1.66	4.967	18.52	•						. Non-detect	· ·	· ·	•
2.13	6.056	22.56	•				•	•	. >10	53	0.29	non-detect
2.93	10.05	37.38	•				•	•	. Non-detect	· ·	· ·	· ·
1.77	5.274	19.66	•				•	•	. Non-detect	•	•	•
		•	•				•	•	. >10	580	Non-detect	Non-detect
		•	·				•	•	. 5-10	13	Non-detect	Non-detect
24.9	5.437	19.88	•						. >10	440	Non-detect	Non-detect
4.22	1.903	6.71							. Non-detect	non-detect	Non-detect	Non-detect

LAKE	County	TYDE		DAV	VE		ΔT 1	ONG	CITE	coum/ambient			TEMO (E)	Discolude Ovugon (mg/l)	Conductivity (uS/cm) DL		OC BELL
Ford	Washtenaw			DAT	10	2018	42 220161	-92 57525	7 north cove	scum	JIL_DEPTH	SAMP_DEPTH(FT)	25 045	15 02	620	1 F	8 286
Ford	Washtenaw	RESPONSE		2	10	2018	42.220101	-83 56304	5 deep	ambient		•	25.045	17.53	612	8.52	7 047
Ford	Washtenaw	RESPONSE		2	10	2018	42.200215	-83 50504	1 south cove	ambient		•	23.025	10.85	660	8.32	2 11/
Ford	Washtenaw	RESPONSE		2	10	2010	42.213410	03.33334	6 Huron River inlet/L 04	ambient		•	24.343	L0.03	721	0.23	0.202
Pallavilla	Washlendw	RESPONSE		9	10	2010	42.220714	-05.00417	P Dest laureh	ambient	•	•	23.012	0.01	/21	0.04	2 220
Belleville	Wayne	RESPONSE	2	9	19	2018	42.21397	-83.4731	2 Fost source	ambient	·	•	24.8/8	11.8	624	8.05	3.220
Belleville	wayne	RESPONSE		9	19	2018	42.211944	-83.45952	1 de se	ampient	·	•	24.807	12.20	624	8.00	2.904
Belleville	wayne	RESPONSE	5	9	19	2018	42.214818	-83.44334	4 deep	ambient	•	•	24.579	12.23	624	8.72	3.281
Belleville	Wayne	RESPONSE	9	9	19	2018	42.20703	-83.48483	3 belleville cove	ambient			24.731	10.71	626	8.51	3.29
Belleville	Wayne	RESPONSE	<u> </u>	9	19	2018	42.215977	-83.49911	8 two bridges cove	ambient	•		25.022	10.85	633	8.5	4.165
Belleville	Wayne	RESPONSE	9	9	19	2018	42.209266	-83.50789	9 west cove	ambient	· ·		24.848	14.02	630	8.55	3.668
Van Etten	losco	RESPONSE	9	9	20	2018	44.47585	-83.3588	8 6785 Loud DR	scum	•	•	20.475	8.88	148.9	8.43	1.099
Van Etten	losco	RESPONSE	9	9	20	2018	44.46272	-83.356	3 boat launch/beach	scum			20.498	8.73	257.9	8.37	23.48
Van Etten	losco	RESPONSE	9	9	20	2018	44.451742	-83.336	6 End of Oscoda ST	scum			20.438	8.71	158.6	8.33	2.127
Van Etten	losco	RESPONSE	9	9	20	2018	44.451742	-83.336	6 End of Oscoda ST	ambient		•	20.33	8.78	253.8	8.32	2.119
Van Etten	losco	RESPONSE	ģ	9	20	2018	44.448468	-83.34014	4 Below dam	ambient		•	20.92	8.51	259	8.27	0.888
Van Etten	losco	RESPONSE	9	9	20	2018	44.471606	-83.37236	5 DNR boat launch	scum			20.707	8.68	260.7	8.38	16.213
Lobdell	Genesee/Livingston	RESPONSE	9	9	20	2018	42.77569	-83.8333	7 Bennett Lake outlet	ambient			24.9	8.6	487.8	8.17	0.573
Lobdell	Genesee/Livingston	RESPONSE	9	9	20	2018	42.7961	-83.8352	9 Heath's Harbor	ambient			23.903	8.7	390.6	8.06	0.481
Lobdell	Genesee/Livingston	RESPONSE	9	9	20	2018	42.79	-83.8203	5 Haviland Beach DR	ambient			23.882	8.83	379.3	8.35	0.721
Lobdell	Genesee/Livingston	RESPONSE	9	9	20	2018	42.79121	-83.8451	1 Dam	ambient			24.861	8.51	462.2	7.87	0.587
Lobdell	Genesee/Livingston	RESPONSE	9	9	20	2018	42.7862	-83.8405	8 DNR boat launch	ambient			24.643	8.67	464.9	7.84	0.442
Lobdell	Genesee/Livingston	RESPONSE	9	9	20	2018	42.78345	-83.836	4 Peninsular Drive Canal	ambient			24.02	8.17	398.5	8.1	0.505
Pontiac	Oakland	targeted monitoring	9	9	24	2018	42.67071	-83.4583	6 Tackles DR boat launch	ambient			18.864	8.88	349.3 .		0.509
Pontiac	Oakland	targeted monitoring	(9	24	2018	42.66761	-83,4470	8 State park beach	ambient			19.269	8.97	347.2 .		0.714
Pontiac	Oakland	targeted monitoring	(9	24	2018	42.66338	-83,4423	7 DNR boat launch	ambient			18.573	7.15	341.9 .		0.373
Pontiac	Oakland	targeted monitoring	(9	24	2018	42,66485	-83.461	3 Kingston	scum			19.918	8.32	179.4 .		0.801
Pontiac	Oakland	targeted monitoring	(9	24	2018	42.66877	-83,4664	6 Hampton ST	scum			18.644	9.05	357.7 .		11.052
Pontiac	Oakland	targeted monitoring		9	24	2018	42,6699	-83,4697	6 Buckingham st	scum			18,735	8.18	354		1,914
Sugden	Oakland	targeted monitoring		9	24	2018	42 61636	-83 4960	4 hoat launch	ambient		•	20 395	9.2	630		0 176
Sugden	Oakland	targeted monitoring		9	24	2018	42 61513	-83 4941	6 Woodstone CT	ambient		•	20.097	8 52	646		0.54
Sugden	Oakland	targeted monitoring		а а	24	2018	42 61402	-83 4962	9 Bogie Lake RD	ambient		•	19 977	8.6	760		0 734
Sugden	Oakland	targeted monitoring		2 2	24	2010	42.61809	-83 5007	8 Sugden Lake RD	ambient		•	19 595	8.94	620		0.734
Tyrope	Livingston			2	24	2010	42.01005	- 82 7278	4 Bullard PD	scum		•	10 /22	0.12	105.4		45 939
Tyrone	Livingston	complaint follow up		2	24	2010	42.05507	- 82 7278	4 Bullard RD	ambient		•	20.168	8.45	204.6		1 201
Lobdoll	Conocoo /Livingston	complaint follow up			24	2010	42.03507	03.7270		ambient		•	10 695	0.45	421.4		0.004
Lobdell	Genesee/Livingston	complaint follow up		9	24	2018	42.7901	03.0332	E Haviland Roach DR	ambient		•	20.994	0.30	421.4 .		0.094
Lobdell	Genesee/Livingston	complaint follow up		9	24	2010	42.75	03.0203	PNR boot Joursh	ambient	•	•	10.047	0.27	425.5 .		0.001
Lobdell	Genesee/Livingston	complaint follow up		9	24	2010	42.7002	03.0403	4 Deningular Drive Canal	ambient	•	•	19.947	0.34	J12 . 451 0		-0.001
Lobden	Genesee/Livingston	complaint follow up		9	24	2018	42.78345	-03.030	4 Peninsular Drive Canal	ampient	·	•	20.021	8.35	451.9.		01.010
Ford	washtenaw	follow up	5	9	25	2018	42.21080	-83.5730		scum	•	•	21.281	9.32	463.8 .		91.816
Ford	Washtenaw	follow up	9	9	25	2018	42.22992	-83.6071	2 North Bay Park	ambient			20.71	8.31	/15 .		0.462
Ford	Washtenaw	follow up	9	9	25	2018	42.20414	-83.564	3 Lakeside Park	ambient			21.527	7.88	680.		0.873
Ford	Washtenaw	follow up	9	9	25	2018	42.21849	-83.584	5 Loon Feather Point Park	scum			20.917	8.59	/13 .		1.265
Belleville	Wayne	follow up	<u> </u>	9	25	2018	42.20978	-83.5394	7 West boat launch	ambient	·		21.156	7.62	716.		0.593
Belleville	Wayne	tollow up	9	9	25	2018	42.21069	-83.4933	9 Main ST and Denton, Belleville	ambient	· ·	•	21.102	6.54	701 .		1.271
Belleville	Wayne	follow up	9	9	25	2018	42.21384	-83.4731	9 Belleville boat launch	ambient	•	•	21.267	6.2	683 .		1.455
Belleville	Wayne	follow up	9	9	25	2018	42.21268	-83.442	7 Edison Lake RD	ambient		•	21.315	5.9	675 .		1.332
Belleville	Wayne	follow up	ġ	9	25	2018	42.21248	-83.525	1 Van Buren Park	scum			21.305	7.79	688 .		1.389
Otsego	Otsego	complaint	9	9	25	2018	44.984378	-84.68329	5 Tall Tree 1	scum			· ·				
Otsego	Otsego	complaint	9	9	25	2018	44.984378	-84.68329	5 Tall Tree 2	scum			. .				

PC CONC. (µg/l)	CHLA RFU CH	LA CONC. (µg/l) SE	CCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/l)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l) MC_STRIP_RESULT	LAB TOT MC (µg/I)	LAB ANATOX (µg/l)	LAB CYLINDRO (µg/I)
8.17	1.967	6.95 .							. >10	43	Non-detect	Non-detect
6.84	2.601	9.31	1.2	0.009	130	2	0.013	3 0.011	0.078 Non-detect			
2.92	2.415	8.62 .			•				. Non-detect			
0.21	1.553	5.41 .							. Non-detect			
3.03	1.131	3.84 .			•				. >10	4.9	Non-detect	Non-detect
2.77	1.61	5.62 .			•				. Non-detect			
3.09	1.538	5.35	2.8	0.009	34	0.99	ND	0.006	0.048 1-5	3.8	Non-detect	Non-detect
3.1	1.215	4.15 .			•				. 5-10	5.1	Non-detect	Non-detect
3.97	1.283	4.4 .			•				. Non-detect			
3.47	1.674	5.86 .			•				. Non-detect			
0.91	1.776	6.24 .			•				. >10	83	Non-detect	Non-detect
23.22	5.932	21.72 .			•				. >10	50	Non-detect	Non-detect
1.94	0.14	0.14 .			•				. >10	300	Non-detect	Non-detect
1.93	0.534	1.61 .			•				. Non-detect	0.82	Non-detect	Non-detect
0.7	0.68	2.16 .			•				. Non-detect			
15.97	3.589	12.99 .							. >10	240	Non-detect	Non-detect
0.39	0.662	2.09 .							. Non-detect			
0.3	0.685	2.17 .							. Non-detect			
0.54	0.96	3.2 .							. Non-detect	non-detect	Non-detect	Non-detect
0.4	0.65	2.04 .							. Non-detect			
0.26	0 381	1 04			- -				Non-detect		· ·	•
0.20	0 749	2 41			•			•	Non-detect	0.81	Non-detect	Non-detect
0.52	0.391	1 47			•			•	Non-detect	0.01	Non acteur	Non detect
0.50	2 077	7.88		•	•		•	•	1-5	•	· ·	•
0.75	1 562	5.92			•	•	•	•	Non-detect	•	· ·	•
0.4	0.617	J.JZ .		•	•	•	•	•	>10	•	· ·	· ·
12.34	3 208	12.55.		•	•	•	•	•	>10	•	· ·	· ·
2 12	2 044	7 75		•	•	•	•	•	>10	•	· ·	· ·
0.18	0.621	2 25			•	•	•	•	Non-detect	•	· ·	•
0.18	0.021	2.55.		· .	•	•	•	•	Non-detect	•	•	•
0.55	0.707	1.24		· .	•	•	•	•	Non-detect	•	•	•
0.01	0.330	1.54 .		· ·	•	•	•	•	Non-detect	•	· ·	•
0.40 E1 21	0.259	159.07		· ·	•	•	•	•	. Non-detect	•	•	•
1 22	41.005	156.07 .		· ·	•	•	•	•	. >10	•	•	•
1.55	9.109			· ·	•	•	•	•	Non-detect	•	•	•
0.09	0.040	Z.44 .		•	•	•	•	•		non dataat	Non dataat	Non dataat
0.62	1.387	5.20.		•	•	•	•	•	. 5-10	non-detect	Non-detect	Non-detect
-0.01	0.339	1.28 .		•	•	•	•	•	. Non-detect	•	· ·	· ·
0.17	0.73	2.76.		•	•	•	•	•	. Non-detect		No	Nie is alse te st
102.59	10.696	40.63 .			•	•	•	•	. >10	930	Non-detect	Non-detect
0.5	0.335	1.26 .		· ·	•	•	•	•	. Non-detect	•	•	•
0.96	0.861	3.26.		· ·	•	•	•	•	. Non-detect		•	•
1.4	0.653	2.47 .		•			•	•	. 5-10	1.5	Non-detect	Non-detect
0.65	0.152	0.56 .		· .				•	. Non-detect	•	· ·	· ·
1.41	0.63	2.38 .		•	•			•	. Non-detect	•	· ·	· ·
1.61	0.88	3.33 .					•	•	. Non-detect		· ·	· ·
1.48	0.523	1.97 .		· ·				•	. Non-detect	•	•	•
1.54	0.636	2.4 .						•	. 5-10	1.6	Non-detect	Non-detect
					•		•	•	. >10	240	Non-detect	Non-detect
									. >10	58	Non-detect	Non-detect

LAKE	County	TYPE	MONTH	I DAY	YE	EAR	LAT	LONG	SITE	scum/ambient	SITE_DEPTH	SAMP_DEPTH (F1	TEMP (F)	Dissolved Oxygen (mg/l)	Conductivity (µS/cm)	PH	PC RFU
Townline	Montcalm	complaint		9	27	2018	43.461227	-85.207918	Channel DR	ambient							
Townline	Montcalm	complaint		9	27	2018	43.461874	-85.207992	Channel weir	ambient							
Townline	Montcalm	complaint		9	27	2018	43.458906	-85.194593	boat launch	ambient							
Ford	Washtenaw	follow up	1	10	4	2018	42.21080	-83.57304	Boat launch	ambient			19.114	i 6.42	692	7.88	0.696
Ford	Washtenaw	follow up	1	10	4	2018	42.22992	-83.60712	North Bay Park	ambient			18.641	. 8.04	723	7.68	0.771
Ford	Washtenaw	follow up	1	10	4	2018	42.20414	-83.5643	Lakeside Park	ambient			19.335	6.68	695	7.83	0.588
Ford	Washtenaw	follow up	1	10	4	2018	42.21849	-83.5845	Loon Feather Point Park	ambient			19.596	i 7.17	699	7.87	1.175
Belleville	Wayne	follow up	1	10	4	2018	42.20978	-83.53947	West boat launch	ambient			19.144	5.77	697	7.78	0.311
Belleville	Wayne	follow up	1	10	4	2018	42.21069	-83.49339	Main ST and Denton, Belleville	ambient			18.978	8.07	667	7.88	0.848
Belleville	Wayne	follow up	1	10	4	2018	42.21384	-83.47319	Belleville boat launch	ambient			19.688	6.88	663	7.84	1.046
Belleville	Wayne	follow up	1	10	4	2018	42.21268	-83.4427	Edison Lake RD	ambient			19.301	. 7.79	696	7.76	0.764
Belleville	Wayne	follow up	1	10	4	2018	42.21248	-83.5251	Van Buren Park	ambient			20.134	, 7.02	710	7.91	0.86
Pontiac	Oakland	follow up	1	10	4	2018	42.67071	-83.45836	Tackles DR boat launch	ambient			17.259	8.91	331.3	8.07	0.744
Pontiac	Oakland	follow up	1	10	4	2018	42.66761	-83.44708	State park beach	ambient			19.666	8.69	342	8.06	0.838
Pontiac	Oakland	follow up	1	10	4	2018	42.66338	-83.44237	DNR boat launch	ambient			17.942	8.34	328.4	8.1	0.509
Pontiac	Oakland	follow up	1	10	4	2018	42.66485	-83.4613	Kingston	ambient			18.112	. 8.69	337.1	8.24	0.567
Pontiac	Oakland	follow up	1	10	4	2018	42.66877	-83.46646	Hampton ST	scum			18.372	9.16	344.2	8.21	0.669
Pontiac	Oakland	follow up	1	10	4	2018	42.6699	-83.46976	Buckingham st	ambient			18.245	, 8.54	357.5	8.15	0.615
LeAnn	Hillsdale	complaint	1	10	10	2018	42.06836	-84.42872	Dublin CT launch	scum			19.63611	. 9.39	439	7.08	24.495
LeAnn	Hillsdale	complaint	1	10	10	2018	42.05904	-84.42529	Look Out Point launch	ambient			19.77	7.46	491.4	6.89	1.369
LeAnn	Hillsdale	complaint	1	10	10	2018	42.05402	-84.4293	Sauk Trail	ambient			19.56389	7.8	537	5.85	1.754
LeAnn	Hillsdale	complaint	1	10	10	2018	42.0547	-84.43936	Sauk Trail Park	ambient			19.45333	, 7.89	538	5.91	1.135
LeAnn	Hillsdale	complaint	1	10	10	2018	42.0569	-84.44099	Baker Rd Park	ambient			19.65889	8.08	523	6.63	0.293
LeAnn	Hillsdale	complaint	1	10	10	2018	42.06443	-84.43795	Pineview DR	scum			20.21611	. 8.51	435.9	7.04	19.011
LeAnn	Hillsdale	complaint	1	10	10	2018	42.06443	-84.43795	Pineview DR	ambient			20.17833	, 8.38	431.4	7.16	0.869
LeAnn	Hillsdale	complaint	1	10	10	2018	42.06137	-84.4359	Oakwood Dr	ambient			20.28722	8.16	488.6	6.53	1.006
LeAnn	Hillsdale	complaint	1	10	10	2018	42.07032	-84.43614	Briar Lane	ambient	· ·		20.51389	8.99	503	6.48	3.505
Hanna Web Lake	Iron	S/T	_	8	23	2018	46.35463	-88.72115								·	
Kingston Lake	Alger	S/T	_	8	13	2018	46.58364	-86.22115								·	
Fox Lake	Alger	S/T		8	14	2018	46.59198	-86.03441									
Beaver Lake	Alger	S/T		8	13	2018	46.57690	-86.33437									
Belle Lake 1	Luce	S/T		8	14	2018	46.48600	-85.80878									
Weber Lake	Dickinson	S/T				2018	46.20065	-88.08875									
Pickerel Lake	Dickinson	S/T		8	23	2018	46.08058	-87.81097									
No Name Lake	Marquette	S/T				2018	46.149423	-87.34565									
Long Lake	Hillsdale	S/T		8	20	2018	41.87471	-84.79443									
Hall Lake	Barry	S/T		8	21	2018	42.61474	-85.48181									
Torch Lake	Antrim	S/T		8	9	2018	44.97283	-85.31332									
Brevoort Lake	Mackinac	S/T		8	27	2018	45.99519	-84.91591									
South Tomahawk Lake	Montmorency	S/T				2018	45.16504	-84.14777									
Shupac Lake	Crawford	S/T		8	29	2018	44.82262	-84.47604									
Chain Lake	losco	S/T		8	20	2018	44,48626	-83.85464									
Sand Lake	losco	s/T	_	-		2018	44 32101	-83 68648	-	-	-			1		-	-
Long Lake	losco	S/T				2018	44 42126	-83 86000									
Peach Lake	Ogemaw	s, r s/t				2010	44.72120	-84 16840		•							· · · · · ·
Hardwood Lako	Ogomaw	с/т		· ·		2018	44.23132	92 00053		•				1		·	ŀ
Bush Lake	Ogenaw	5/1 S/T		Q	21	2018	44.24300	-03.33333	•	•				-	•	·	·
Five Lakes	Claro	з/ I с /т	_	U	21	2018	44.15244	04.0000	•	•			•	· · · · · · · · · · · · · · · · · · ·	•	·	·
rive LdKes	Clarkein	3/1 c/T	· ·	•		2018	45.0/400	-04.00827	•	•	· ·	•	·	•	•	·	· · ·
HOISTER LAKE	Gladwin	5/1			- I -	2018	44.14185	-84.56631		- L.					1.	1.	1.

PC CONC. (µg/l)	CHLA RFU	CHLA CONC. (µg/I)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/I)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/l)	LAB ANATOX (µg/I)	LAB CYLINDRO (µg/I)
						•				Non-detect			
										Non-detect			
		•								Non-detect			
0.73	0.943	3.6	5.							Non-detect	Non-detect	Non-detect	Non-detect
0.81	0.666	2.57	7.							Non-detect			
0.62	0.841	3.21	L.							Non-detect			
1.23	1.764	6.64	¥ .							Non-detect			
0.34	0.556	2.16	5.				•			Non-detect	•		<u>.</u>
0.89	0.981	3.73	3.				•			Non-detect	•		<u>.</u>
1.09	0.822	3.14	ı .							Non-detect			
0.8	0.291	1.17	7.							Non-detect			
0.9	1.217	4.61	L.							Non-detect			
0.78	0.348	1.39	9.							Non-detect			
0.88	0.638	2.46	5.							Non-detect			
0.54	0.918	3.5	5.							Non-detect			
0.6	0.486	1.9	9.							Non-detect			
0.71	1.075	4.08	3.							>10	6.6	Non-detect	Non-detect
0.65	0.553	2.15	5.							Non-detect			
25.25	3.475	12.99	9.							5-10			
1.43	1.521	5.74	1.							Non-detect			
1.82	2,554	9.57	7							Non-detect			
1.18	0.714	2.75	5.							Non-detect			
0.32	1.016	3.86	5.							Non-detect			
19.6	15 744	58 5	5							>10			
0.91	0 741	2.85	5	•		•		•		Non-detect	•		•
1.05	2 277	8 54	1	•						Non-detect			
3.63	1,499	5.66	5.		•			•	•	Non-detect	· ·		
	1.100	5100		•						Non-detect			
•	•	•	•	•	•	•	•	•	•	Non-detect	•	· ·	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	· ·	•
•	•	•	•	•	•	•	•	•	•	Non-detect	•	· ·	•
•		•	•	•	•	•	•	•	•	Non-detect	•	•	•
•	•	•	·	•	•	•	•	•	•	Non-detect	•	· ·	•
·		•	•	•	•	•	•	•	•	Non-detect	•	· ·	•
·			•					•		Non-detect	· ·		
•										Non-detect			
·		•								Non-detect			
•		•								Non-detect	· .		
										Non-detect			
		•								Non-detect			
										Non-detect			<u>.</u>
										Non-detect			
		•								Non-detect			
										Non-detect			
·		-			-					Non-detect	· ·	· ·	· · ·
·	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
·	•	•	•	•	•	•	•	•	•	Non-detect	•	•	•
·	•	•	•	•	•	•	•	•	•		•	•	•
•	•	•	•	·		•	•	·	·	non-delect		· ·	

LAKE	County	TYPE	MONTH	DAY	YEAR	LAT	LONG	SITE	scum/ambient	SITE_DEPTH	SAMP_DEPTH (FT)	TEMP (F)	Dissolved Oxygen (mg/l)	Conductivity (µS/cm)	PH	PC RFU
Bennett Lake	Livingston	S/T			20	42.7739	-83.82893	3.								
Cass Lake	Oakland	S/T		3 2	7 20	42.6090	-83.36907	7.								
Barton Pond	Washtenaw	S/T		3 3	0 20	42.3128	L -83.75604	L .								
Boney Lakes Impoundment	Delta	S/T		3 2	1 20	45.9829	6 -87.26828	3.								
Heron Lake	Oakland	S/T		3 1	3 20	42.8097	-83.52547	7.								
Londo Lake	losco	S/T		3 2	1 20	44.3452	-83.86899).								
Michigamme Impoundment	Dickinson	S/T		3 2	2 20											
Perch Lake	Dickinson	S/T		3 2	2 20	46.3368	-87.80137	7.								
Pratt	Gladwin	S/T		3 2	3 20	44.0239	-84.54696	ō .								
Ross	Gladwin	S/T		3 2	2 20	43.8843	L -84.49793	3.								
Tawas	losco	S/T		3 2	9 20	44.3063	-83.49573	3.								
Thompson	Livingston	S/T		3 1	5 20	42.6112	-83.91145	5.								

PC CONC. (µg/l)	CHLA RFU	CHLA CONC. (µg/I)	SECCHI D. (FT)	NH3 (mg/l)	LAB CHL (µg/l)	Kjeldahl N (mg/l)	NO2/NO3 (mg/l)	ORTHO PO4 (mg/l)	Total P (mg/l)	MC_STRIP_RESULT	LAB TOT MC (µg/l)	LAB ANATOX (µg/l)	LAB CYLINDRO (µg/l)
							•			Non-detect			•
										Non-detect	•		•
										Non-detect			•
										Non-detect			•
										Non-detect			•
										Non-detect			
										Non-detect			•
										Non-detect			•
										Non-detect			
										Non-detect			
	-				•		•			Non-detect			
			•					•		Non-detect			