Chapter 4

LDR Resources

Land Disposal Restrictions

Michigan's land disposal restrictions are found in Rule 311 (MAC R 299.9311) of the Part 111 rules of Act 451, the Michigan Natural Resource and Environmental Protection Act. They adopt the federal land disposal restrictions found in 40 CFR, Part 268. The land disposal restrictions (LDRs) require most hazardous waste to be treated prior to being disposed. The LDRs apply to hazardous waste generated by small and large quantity generators of hazardous waste. They do not apply to hazardous waste generated by conditionally exempt small quantity generators of hazardous waste.

The land disposal restrictions require that small and large quantity generators of hazardous waste provide an initial notice for each hazardous waste shipped to a treatment, storage and disposal facility. The notice must state whether the waste must be treated prior to being land disposed and identify the underlying hazardous constituents (UHCs) in the waste. Notification is required even if the waste is destined for non-land based disposal (e.g. incineration). Most disposal vendors assist generators with completion of their LDR notifications. However, it is ultimately the responsibility of the generator to complete the notice.

To determine whether treatment is required and identify the UHCs for a waste, review the standards found in 40 CFR 268.40 for hazardous waste, 40 CFR 268.45 for contaminated debris, or 40 CFR 268.49 for contaminated soil. For each waste stream, the generator must review the hazardous waste codes associated with each waste listed in the relevant LDR table, identify the UHCs associated with the waste, and whether the waste meets or exceeds the limits and requires treatment prior to land disposal.

LDR records must be maintained on-site for at least three years from the date the waste was last shipped for disposal. See the excerpt from 40 CFR 268.40, the LDR notification certification form, and LDR UHC form for additional details.

40 CFR Ch. I (7-1-13 Edition)

(3) The wastes meet the applicable alternate treatment standards established pursuant to a petition granted under § 268.44;

(4) Persons have been granted an extension to the effective date of a prohibition pursuant to §268.5, with respect to these wastes covered by the extension

(g) To determine whether a hazardous waste identified in this section exceeds the applicable treatment standards specified in §268.40, the initial generator must test a sample of the waste extract or the entire waste, depending on whether the treatment standards are expressed as concentrations in the waste extract or the waste. or the generator may use knowledge of the waste. If the waste contains constituents in excess of the applicable Subpart D levels, the waste is prohibited from land disposal, and all requirements of this part 268 are applicable, except as otherwise specified.

[61 FR 15663, Apr. 8, 1996, as amended at 61 FR 33683, June 28, 1996; 62 FR 1997, Jan. 14, 1997; 62 FR 32979, June 17, 1997; 62 FR 37699, July 14, 1997; 63 FR 51264, Sept. 24, 1998]

Subpart D—Treatment Standards

§ 268.40 Applicability of treatment standards.

(a) A prohibited waste identified in the table "Treatment Standards for Hazardous Wastes" may be land disposed only if it meets the requirements found in the table. For each waste, the table identifies one of three types of treatment standard requirements:

(1) All hazardous constituents in the waste or in the treatment residue must be at or below the values found in the table for that waste ("total waste standards"); or

(2) The hazardous constituents in the extract of the waste or in the extract of the treatment residue must be at or below the values found in the table ("waste extract standards"); or

(3) The waste must be treated using the technology specified in the table ("technology standard"), which are described in detail in §268.42, Table 1—Technology Codes and Description of Technology-Based Standards.

(b) For wastewaters, compliance with concentration level standards is based

on maximums for any one day, except for D004 through D011 wastes for which the previously promulgated treatment standards based on grab samples remain in effect. For all nonwastewaters, compliance with concentration level standards is based on grab sampling. For wastes covered by the waste extract standards, the test Method 1311, the Toxicity Characteristic Leaching Procedure found in "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods," EPA Publication SW-846, as incorporated by reference in §260.11, must be used to measure compliance. An exception is made for D004 and D008, for which either of two test methods may be used: Method 1311, or Method 1310B, the Extraction Procedure Toxicity Test. For wastes covered by a technology standard, the wastes may be land disposed after being treated using that specified technology or an equivalent treatment technology approved by the Administrator under the procedures set forth in § 268.42(b).

(c) When wastes with differing treatment standards for a constituent of concern are combined for purposes of treatment, the treatment residue must meet the lowest treatment standard for the constituent of concern.

(d) Notwithstanding the prohibitions specified in paragraph (a) of this section, treatment and disposal facilities may demonstrate (and certify pursuant to 40 CFR 268.7(b)(5)) compliance with the treatment standards for organic constituents specified by a footnote in the table "Treatment Standards for Hazardous Wastes" in this section, provided the following conditions are satisfied:

(1) The treatment standards for the organic constituents were established based on incineration in units operated in accordance with the technical requirements of 40 CFR part 264, subpart O, or based on combustion in fuel substitution units operating in accordance with applicable technical requirements;

(2) The treatment or disposal facility has used the methods referenced in paragraph (d)(1) of this section to treat the organic constituents; and

178

§ 268.40

- (3) The treatment or disposal facility may demonstrate compliance with organic constituents if good-faith analytical efforts achieve detection limits for the regulated organic constituents that do not exceed the treatment standards specified in this section by an order of magnitude.
- (e) For characteristic wastes (D001-D043) that are subject to treatment standards in the following "Treatment Standards for Hazardous Wastes," and are not managed in a wastewater treatment system that is regulated under the Clean Water Act (CWA), that is CWA-equivalent, or that is injected into a Class I nonhazardous deep injection well, all underlying hazardous constituents (as defined in §268.2(i)) must meet Universal Treatment Standards, found in § 268.48, Table Universal Treatment Standards, prior to land disposal as defined in §268.2(c) of this part.
- (f) The treatment standards for F001-F005 nonwastewater constituents carbon disulfide, cyclohexanone, and/or methanol apply to wastes which contain only one, two, or three of these constituents. Compliance is measured for these constituents in the waste extract from test Method 1311, the Toxicity Characteristic Leaching Procedure found in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA Publication SW-846, as incorporated by reference in §260.11. If the waste contains any of these three constituents along with any of the other 25 constituents found in F001-F005, then compliance with treatment standards for carbon disulfide, cyclohexanone, and/or methanol are not required.
- (g) Between August 26, 1996 and March 4, 1999 the treatment standards for the wastes specified in 40 CFR 261.32 as EPA Hazardous Waste numbers K156-K161; and in 40 CFR 261.33 as EPA Hazardous Waste numbers P127, P128, P185, P188-P192, P194, P196-P199, P201-P205, U271, U277-U280, U364-U367, U372,

U373, U375-U379, U381-U387, U389-U396, U400-U404, U407, and U409-U411; and soil contaminated with these wastes: may be satisfied by either meeting the constituent concentrations presented in the table "Treatment Standards for Hazardous Wastes" in this section, or by treating the waste by the following technologies: combustion, as defined by the technology code CMBST at §268.42 Table 1, for nonwastewaters; and, biodegradation as defined by the technology code BIODG, carbon adsorption as defined by the technology code CARBN, chemical oxidation as defined by the technology code CHOXD, or combustion as defined as technology code CMBST at §268.42 Table 1, for wastewaters.

- (h) Prohibited D004–D011 mixed radioactive wastes and mixed radioactive listed wastes containing metal constituents, that were previously treated by stabilization to the treatment standards in effect at that time and then put into storage, do not have to be re-treated to meet treatment standards in this section prior to land disposal.
 - (i) [Reserved]
- (j) Effective September 4, 1998, the treatment standards for the wastes specified in 40 CFR 261.33 as EPA Hazardous Waste numbers P185, P191, P192, P197, U364, U394, and U395 may be satisfied by either meeting the constituent concentrations presented in the table "Treatment Standards for Hazardous Wastes" in this section, or by treating the waste by the following technologies: combustion, as defined by the technology code CMBST at \$268.42 of Table 1 this Part, nonwastewaters; and, biodegradation as defined by the technology code BIODG, carbon adsorption as defined by the technology code CARBN, chemical oxidation as defined by the technology code CHOXD, or combustion as defined as technology code CMBST at §268.42 Table 1 of this Part, for wastewaters.

179

40 CFR Ch. I (7-1-13 Edition)

TREATMENT STANDARDS FOR HAZARDOUS WASTES [Note: NA means not applicable]

		Regulated hazardous constituent	stituent	Wastewaters	Nonwastewaters
Waste	Waste description and freatment/Regulatory subcategory $^{\mathrm{1}}$	Common name	CAS ² number	Concentration ³ in mg/L; or Tech- nology Code ⁴	Concentration 5 in mg/kg unless noted as "mg/L TCLP", or Technology Code 4
D0019	Ignitable Characteristic Wastes, except for the § 261.21(a)(1) High TOC Subcategory.	ĄN	N.A.	DEACT and meet § 268.48 standards ®, or RORGS; or CMBST	DEACT and meet § 268.48 standards 8; or RORGS; or CMBST
	High TOC ignitable Characteristic Liquids Subcategory based on 40 CFR 261.21(a)(1)—Greater than or equal to 10% total organic carbon. (Note: This subcategory consists of nonwastewaters only.)	NA	∀ Z	NA	RORGS; CMBST; or POLYM
D0029	Corrosive Characteristic Wastes.	NA,	N.	DEACT and meet § 268.48 standards 8	DEACT and meet § 268.48 standards ®
D002, D008, D008, D008, D010,	Radioactive high level wastes generated during the reprocessing of fuel rods. (Note: This subcategory consists of nonwastewaters only.)	Corrosivity (pH) Arsenic Barium Cadmium Chromium (Total) Lead Mercury Selenium Silver	NA 7440-38-2 7440-43-9 7440-43-9 7440-47-3 7439-92-1 7782-49-2 7440-22-4	A A A A A A A A A A A A A A A A A A A	HLVIT HLVIT HLVIT HLVIT HLVIT HLVIT HLVIT HLVIT
5000G	Reactive Sulfides Subcategory based on 261.23(a)(5).	NA.	NA	DEAGT	DEACT
	Explosives Subcategory based on 261.23(a)(6),(7), and (8).	NA	ΨN	DEACT and meet § 268.48 standards ⁸	DEACT and meet §268.48 standards ®
	Unexploded ordnance and other explosive devices which have been the subject of an emergency response.	NA	NA	DEAGT	DEACT
	Other Reactives Subcategory based on 261 23(a)(1)	NA	ď Z	DEACT and meet § 268.48 standards ⁸	DEACT and meet §268.48 standards ⁹

§ 268.40

	Water Reactive Subcategory based on 261.23(a)(2), (3), and (4). (Note: This subcategory consists of nonwastewaters only).	NA	NA	NA	DEACT and meet §268.48 standards ⁸
	Reactive Cyanides Subcategory based on 261.23(a)(5).	Cyanides (Total) ⁷ Cyanides (Amenable) ⁷	57-12-5 57-12-5	Reserved 0.86	590 30
D0049	Wastes that exhibit, or are expected to exhibit, the charactenstic of toxicity for arsenic based on the toxicity characteristic leaching procedure (TOLP) in SW846.	Arsenic	7440-38-2	1,4 and meet § 268.48 standards ⁸	5.0 mg/LTCLP and meet §268 48 standards ^a
₽0005	Wastes that exhibit, or are expected to exhibit, the characteristic of toxicity for barrorm based on the toxicity characteristic leaching procedure (TCLP) in SW8.46.	Barium	7440-39-3	1.2 and meet § 268 48 standards ⁸	21 mg/L TCLP and meet §268 48 standards 8
6900Q	Wastes that exhibit, or are expected to exhibit, the characteristic of toxicity for cadmium based on the toxicity characteristic leaching procedure (TCLP) in SW846.	Cadmium	7440-43-9	0.69 and meet § 268.48 standards ⁸	0.11 mg/L TCLP and meet § 268.48 standards 8
	Cadmium Containing Batteries Subcategory. (Note: This subcategory consists of norwastewaters only).	Cadmium	7440-43-9	NA	RTHRM
	Fadroactively contaminated cadmium containing batteries. (Note: This subcategory consists of nonwastewaters only)	Cadmium	7440-43-9	NA	Macroencapsulation in accordance with 40 CFR 268.45
6200Q	Wastes that exhibit, or are expected to exhibit, the characteristic of toxicity for chromium based on the toxicity characteristic leaching procedure (TCLP) in SW846.	Chromium (Total),	7440-47-8	2.77 and meet § 268.48 standards ⁹	0.60 mg/L TCLP and meet § 268.48 standards ⁹
D0089	Wastes that exhibit, or are expected to exhibit, the characteristic of toxicity for lead based on the toxicity characteristic leaching procedure (TCLP) in SW846.	Lead	7439-92-1	0.69 and meet § 268.48 standards ⁸	0.75 mg/L TCLP and meet § 268.48 standards ⁸
	Lead Acid Batteries Subcategory (Note: This standard only applies to lead acid batteries that are identified as RCRA hazardous wastes and that are not excluded elsewhere from regulation under the land disposal restrictions of 40 CFR 268 or exempted under other EPA regulations (see 40 CFR 266.80). This subcategory consists of nonwastewaters only.)	Lead	7439-92-1	NA	RLEAD
	Radioactive Lead Solids Subcategory (Note: These lead solids include, but are not limited to, all forms of lead shielding and other elemental forms of lead. These lead solids do not include treatment residuals such as hydroxide sudges, other wastewater treatment residuals, or inclinerator ashes that can undergo conventional pozzolanic stabilization, nor do they include organo-lead materials that can be incrinerated and stabilized as ash. This subcategory consists of nonwastewaters only.)	Lead	7439-92-1	NA	MAGRO

181

40 CFR Ch. I (7-1-13 Edition)

TREATMENT STANDARDS FOR HAZARDOUS WASTES—Continued [Note: NA means not applicable]

		Regulated hazardous constituent	stituent	Wastewaters	Nonwastewaters
Waste	Waste description and treatment/Regulatory subcategory 1	Common name.	CAS ² number	Concentration 3 in mg/L, or Tech-nology Code 4	Concentration 5 in mg/kg unless noted 8s "mg/L TCLP", or Technology Code4
P0009*	Nonwastewaters that exhibit, or are expected to exhibit, the characteristic of toxicity for mercury based on the toxicity characteristic leaching procedure (TCLP) in SW846, and contain greater than or equal to 260 mg/kg total mercury that also contain organics and are not incinerator residues. (High Mercury-Organic Subcategory)	Meroury	7439–97–6	NA.	IMERC; OR RMERC
	Nonwastewaters that exhibit, or are expected to exhibit, the characteristic of toxicity for mercury based on the toxicity characteristic leaching procedure (TCLP) in SW646, and contain greater than or equal to 260 mg/kg total mercury that are inorganic, including incinerator residues and residues from RMERC. (High Mercury-Inorganic Subcategory)	Mercury	7439–97–6	ΥN	RMERC
	Nonwastewaters that exhibit, or are expected to exhibit, the characteristic of toxicity for mercury based on the toxicity characteristic leaching procedure (TCLP) in SW846; and contain less than 260 mg/kg total mercury and that are residues from RMERC only (Low Mercury Subcategory)	Meroury	7439–97–6	ΥN	0.20 mg/L TGLP and meet § 268.48 standards ⁸
	All other nonwastewaters that exhibit, or are expected to exhibit, the characteristic of toxicity for mercury based on the toxicity characteristic leaching procedure (TCLP) in SW846; and contain less than 260 mg/kg total mercury and that are not residues from RMERC (Low Mercury Subcategory)	Меголгу	7439–97–6	NA.	0.025 mg/L TCLP and meet § 268.48 standards ⁸
	All D009 wastewaters.	Meroury	7439–97–6	0.15 mg/L TCLP and meet § 268.48 standards ⁸	Ϋ́N
	Elemental mercury contaminated with radioactive materials. (Note: This subcategory consists of nonwastewaters only.)	Mercury	7439-97-6	٧N	AMLGM
	Hydraulic oil contaminated with Mercury Radioactive Materials Subcategory, (Note: This subcategory consists of nonwastewaters only.)	Meroury	7439–97–6	YN	IMERC
	Radioactively contaminated mercury containing batteries. (Note: This subcategory consists of nonwastewaters only)	Meroury	7439–97–6	NA	Macroencapsulation in accordance with 40 CFR 268.45.

§ 268.40

D0109	Wastes that exhibit, or are expected to exhibit, the characteristic of toxicity for selentum based on the toxicity characteristic leaching procedure (TCLP) in SW846.	Selenium	7782-49-2	0.82 and meet § 268.48 standards ⁸	5.7 mg/L TCLP and meet §268.48 standards®
D0119	Wastes that exhibit, or are expected to exhibit, the characteristic of toxicity for silver based on the toxicity characteristic feaching procedure (TOLP) in SW846.	Silver	7440-22-4	0.43 and meet § 268.48 standards ⁸	0.14 mg/L TCLP and meet § 268.48 standards ⁸
	Radioactively contaminated silver containing batteries. Note: This subcategory consists of nonwastewaters only)	Silver	7440-22-4	NA	Macroencapsulation in accordance with 40 CFR 268 45.
D0129	Wastes that are TC for Endin based on the TCLP in SW846 Method 1311.	Endin	72-20-8	BIODG; or CMBST	0.13 and meet § 268.48
		Endrin aldehyde	7421–93–4	BIODG; or CMBST	standards ⁸ 0.13 and meet § 268.48 standards ⁸
D0139	Wastes that are TC for Lindane based on the TCLP in SW849 Method 1311.	alpha-BHC	319-84-6	CARBN; or CMBST	0.066 and meet § 268.48
		beta-BHC	319-85-7	CARBN, or CMBST	6
		delta-BHC	319-86-8	CARBN, or CMBST	standards ^a 0.066 and meet § 268.48
		gamma-BHC (Lindane)	58-89-3	CARBN; or CMBST	standards 8 0.066 and meet § 268,48 standards 8
D0149	Wastes that are TC for Methoxychlor based on the TCLP in SW848 Method 1811	Methoxychlor	72-43-5	WETOX or CMBST	0.18 and meet § 268.48 standards 8
D0159	Wastes that are TC for Toxaphene based on the TCLP in SW846 Method 1311	Toxaphene	8001-35-2	BIODG or CMBST	2.6 and meet § 268.48 standards 9
D0169	Wastes that are TC for 2,4-D (2,4-Dichlorophenoxyacetic acid) based on the TCLP in SW846 Method 1311.	2,4,-D (2,4-Dichlorophenoxyacettic acid)	7-97-46	CHOXD, BIODG, or CMBST	10 and meet § 268.48. standards ⁹
D0179	Wastes that are TC for 2,4,5-TP (Silvex) based on the TCLP in SW846 Method 1311	2,4,5-TP (Silvex)	93-72-1	CHOXD or CMBST	7.9 and meet § 268.48 standards ⁸

183

40 CFR Ch. I (7-1-13 Edition)

TREATMENT STANDARDS FOR HAZARDOUS WASTES—Continued [Note: NA means not applicable]

		Regulated hazardous constituent	tuent	Wastewaters	Nonwastewaters
Waste	Waste description and freatment/Regulatory subcategory t	Соттоп пате	CAS ² number	Concentration ³ in mg/L, or Tech- nology Code ⁴	Concentration ⁵ in mg/kg unless noted as "mg/L TCLP", or Technology Code ⁴
D0189	Wastes that are TC for Benzene based on the TCLP in SW846 Method 1311.	Benzene	71-43-2	0.14 and meet §.268.48 standards ⁸	10 and meet § 268.48 standards ®
D0199	Wastes that are TC for Carbon tetrachloride based on the TCLP in SW846 Method 1311.	Carbon tetrachloride	56-23-5	0.057 and meet § 268.48 standards ⁸	6.0 and mee § 268.48 standards ^a
D020@	Wastes that are TC for Chlordane based on the TCLP in SW846 Method 1311.	Chlordane (alpha and gamma isomers)	57-74-9	0.0033 and meet §.268.48 standards®	0.26 and meet § 268.48 standards ®
D0219	Wastes that are TC for Chlorobenzene based on the TCLP in SW846 Method 1311.	Chlorobenzene	108-90-7	0.057 and meet § 268.48 standards ⁸	6.0 and mee § 268.48 standards ⁸
D0229	Wastes that are TC for Chloroform based on the TCLP in SW846 Method 1311	Chloroform	67-66-3	0.046 and meet § 268.48 standards ⁸	6.0 and meet § 268.48 standards ^a
D0239	Wastes that are TC for o-Cresol based on the TCLP in SW646 Method 1311.	o-Cresol	95-48-7	0.11 and meet § 268.48 standards ⁸	5.6 and mee § 268.48 standards ⁸
D0249	Wastes that are TC for m-Cresol based on the TCLP in SW846 Method 1311.	m-Cresol (difficult to distinguish from p-cresol)	108-39-4	0.77 and meet § 268.48 standards ⁸	5.6 and meet § 268 48 standards ^a
D0259	Wastes that are TC for p-Cresol based on the TCLP in SW846 Method	p-Cresol (difficult to distinguish from m-cresol)	106-44-5	0.77 and meet §268.48 standards ⁸	5.6 and meet § 268.48 standards ^a
D0269	Wastes that are TC for Cresols (Total) based on the TCLP in SW846 Method 1311.	Cresol-mixed isomers (Cresylic acid) (sum of o-, m-, and p-cresol concentrations)	1319=77-3	0.88 and meet § 268.48 standards ^a	112 and meet § 268.48 standards ⁸
D0279	Wastes that are TC for p-Dichlorobenzene based on the TCLP in SW846 Method 1311.	p-Dichlorobenzene (1,4- Dichlorobenzene)	106-46-7	0.090 and meet § 268.48 standards ⁸	6.0 and meet § 268.48 standards ^a

§ 268.40

D0289	Wastes that are TC for 1,2-Dichloroethane based on the TCLP in SW846 Method 1311.	1,2-Dichloroethane	107-06-2	0.21 and meet §268.48 standards ⁸	6.0 and meet § 268.48 standards ⁸
D0299	Wastes that are TC for 1,1-Dichloroethylene based on the TCLP in SW846 Method 1311	1,1-Dichloroethylene	75-35-4	0.025 and meet § 268.48 standards ⁸	6.0 and meet § 268.48 standards ⁸
P0309	Wastes that are TC for 2,4-Dinitrotoluene based on the TCLP in SW846 Method 1311.	2,4-Dinitrotoluene	121-14-2	0.32 and meet § 268.48 standards ⁸	140 and meet §268.48 standards
D03+9	Wastes that are TC for Heptachlor based on the TCLP in SW846 Method 1341.	Heptachlor Heptachlor epoxide	76-44-8	0.0012 and meet \$268.48 standards 8 0.016 and meet \$268.48 standards 8	0.066 and meet § 268.48 standards 8 0.066 and meet § 268.48 standards 8 standards 8
D0329	Wastes that are TC for Hexachlorobenzene based on the TCLP in SW846 Method 1311.	Hexachlorobenzene	118–74–1	0.055 and meet § 268.48 standards ⁹	10 and meet § 268.48 standards ®
D033	Wastes that are TC for Hexachlorobutadiene based on the TCLP in SW846 Method 1311.	Hexachlorobutadiene	87-68-3	0.055 and meet § 268.48 standards ⁸	5.6 and meet § 268.48 standards ⁸
D0349	Wastes that are TC for Hexachloroethane based on the TCLP in SW846 Method 1311.	Hexachloroethane	67-72-1	0.055 and meet § 268.48 standards ⁸	30 and meet § 268.48 standards ^a
D0359	Wastes that are TC for Methyl ethyl ketone based on the TCLP in SW846 Method 1311.	Methyl ethyl ketone	78-93-3	0.28 and meet §.268.48 stendards ^e	36 and meet § 268.48 standards [®]
₽980G	Wastes that are TC for Nitrobenzene based on the TCLP in SW846 Method 1311.	Nitróbanzene	8-38-3	0.068 and meet §.268.48 standards ^{a.}	14 and meet §268.48 standards [®]
e7800	Wastes that are TO for Pentachlorophenol based on the TCLP in SW846 Method 1311.	Pentachlorophenol	87–86–5	0.089 and meet § 268.48 standards ⁸	7.4 and meet § 268.48 standards ⁸
D0388	Wastes that are TC for Pyridine based on the TCLP in SW846 Method 1311.	Pyridine	110-86-1	0.014 and meet §268.48 standards ⁸	16 and meet § 268.48 standards [®]

185

40 CFR Ch. I (7-1-13 Edition)

TREATMENT STANDARDS FOR HAZARDOUS WASTES—Continued [Note: NA means not applicable]

		Regulated hazardous constituent	uent	Wastewaters	Nonwastewaters
Waste	Waste description and freatment/Regulatory subcategory ¹	Соттоп пате	CAS ² number	Concentration ^a in mg/L, or Tech- nology Code ⁴	Concentration 5 in mg/kg unless noted 83 "mg/L TCLP", or Technology Code 4
50399	Wastes that are TO for Tetrachloroethylene based on the TCLP in SW848 Method 1311	Tetrachloroethylene	127–18–4	0.056 and meet § 268.48 standards ⁸	6.0 and meet § 268.48 standards ⁸
D0409	Wastes that are TC for Trichloroethylene based on the TCLP in SW846 Method 1311.	Trichloroethylene	79-01-6	0.054 and meet § 268.48 standards ⁸	6.0 and meet § 268.48 standards ⁸
D0419	Wastes that are TC for 2,4,5-Trichlorophenol based on the TCLP in SW846 Method 1311.	2,4,5-Trichlorophenol	95-95-4	0.18 and meet § 268.48 standards ⁸	7.4 and meet § 268.48 standards 8
D0429	Wastes that are TC for 2,4,6-Trichlorophenol based on the TCLP in SW846 Method 1311.	2,4,6-Trichlorophenol	88-06-2	0.035 and meet § 268.48 standards ⁸	7.4 and meet § 268.48 standards 8
D0439	Wastes that are TC for Vinyl chloride based on the TCLP in SW846 Method 1311.	Vinyi chloride	75-01-4	0.27 and meet § 268.48 standards ⁸	6.0 and meet § 268.48 standards ⁸
F001, F002, F004, F005,	F001, F002, F003, F004 and/or F005 solvent wastes that contain any combination of one or more of the following spent solvents: acetone, benzene, n-butyl alcohol, carbon disultide, carbon tetrachloride, chlorinated fluorocarbons, chloribenzene, 2-ethoxyethanol, ethyl acetate, ethyl benzene, ethyl ethar, isobutyl alcohol, methanol, methylene chloride, methyl ethyl ketone, nitrobenzene, 2-nitropropane, pyridine, tetrachloroethylene, tolluene, 11,1-inchloroethane, 11,2-inchloroethylene, tirchloroethylene,	Acetone Benzene n-Buthyl alcohol Carbon disulfide Carbon tetrachloride O-Cresol m-Cresol (difficult to distinguish from p-cresol) Cresol-mixed isomers (Cresylic acid) Cresol-mixed isomers (Cresylic acid) Cresol-mixed isomers (Cresylic acid) Cresol-mixed isomers (Cresylic acid) Sydolohexanone o-Dichlorobenzene Ethyl benzene Ethyl benzene	67-64-1 71-38-3 75-15-0 56-23-5 108-90-7 95-48-7 106-44-5 1319-77-3 108-94-1 95-50-1 141-78-6 100-41-4 60-6-7	0.28 0.14 3.8 3.8 0.057 0.057 0.77 0.77 0.38 0.088 0.088 0.067	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

§ 268.40

		F003 and/or F005 solvent was more of the following three so bon disulfide, cyclohexanone,	F005 solvent waste containing solvent.	F005 solvent waste containing solvent.	Wastewaler treatment sludges from electric the following processes. (1) Sulfuric acid plating on carbon steel; (3) zinc plating (s) (4) aluminum or zinc-aluminum plating on ping associated with th, zinc and aluminum chemical etching and milling of aluminum.	F007 Spent cyanide plating bath so	F008 Plating bath residues from the operations where cyanides are
		F003 and/or F005 solvent wastes that contain any combination of one or more of the following three solvents as the only listed F001-5 solvents: carbon disulfide, cyclohexanone, and/or methanol (formerly 268.41(c))	ning 2-Nitropropane as the only listed F001=5	ning 2-Ethoxyethanol as the only listed F001-5	Wastewater treatment sludges from electroplating operations except from the following processes. (1) Sulfunc acid anodizing of aluminum; (2) fin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) aluminum or zinc-aluminum plating on carbon steel; (5) cleaningstripping associated with fin, zinc and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum.	solutions from electroplating operations.	the bottom of plating baths from electroplating are used in the process.
Isobutyl alcohol Methanol Methylene chloride Methyl ethyl ketone Methyl isobutyl ketone Mitrobenzene Pyridine Tetrachloroethylene	loluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorothuoromethane Trichlorostwiethane Trichlorothuoromethane (sum of o-, Axlenes-mixed isomers (sum of o-,		2-Ntropropane	2-Ethoxyethanol	Cadmium Chromium (Total) Cyanides (Total)? Lead Lead (Amenable)? Lead Nickel	Cadmium Chromium (Total) Cyanides (Total) ⁷ Cyanides (Amenable) ⁷ Lead Nickel	Gadmlum Chromum (Total) Cyanides (Total) ⁷ Cyanides (Amenable) ⁷
78-83-4 67-56-1 75-9-2 78-93-3 108-10-1 98-95-3 110-86-1 127-18-4	71-55-6 78-00-5 76-13-1 79-01-6 75-69-4 1330-20-7	75-15-0 108-94-1 67-56-1	79-46-9	110-80-5	7440-43-9 7440-47-3 57-12-5 57-12-5 7439-92-1 7440-02-0	7440-43-9 7440-47-3 67-12-5 67-12-5 7439-92-1 7440-02-0	7440-43-9 7440-47-3 57-12-5 57-12-5
5.6 0.089 0.28 0.14 0.068	0.080 0.054 0.057 0.057 0.020 0.32	3.8 0.36 5.6	(WETOX or CHOXD) fb CARBN; or CMBST	BIODG; or CMBST	0.69 1.2.777 1.2.0.0.86 0.69 3.98 NA	NA 2.77 1.2 0.88 3.98 NA	NA. 1.2777 0.86
0.000 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.8 mg/L TCLP 0.75 mg/L TCLP 0.75 mg/L TCLP	CMBST	CMBST	0.11 mg/L TCLP 0.60 mg/L TCLP 590 30 0.75 mg/L TCLP 11 mg/L TCLP 0.14 mg/L TCLP	0.11 mg/L TCLP 0.60 mg/L TCLP 590 30 0.75 mg/L TCLP 11 mg/L TCLP 0.14 mg/L TCLP	0.11 mg/L TCLP 0.60 mg/L TCLP 590 30 75 mg/l TCl B

187

40 CFR Ch. I (7-1-13 Edition)

TREATMENT STANDARDS FOR HAZARDOUS WASTES—Continued [Note: NA means not applicable]

		Regulated hazardous constituent	nstituent	Wastewaters	Nonwastewaters
Waste	Waste description and treatment/Regulatory subcategory t	Common name	CAS [≥] number	Concentration ^s in mg/L; or Tech- nology Code ⁴	Concentration 5 in mg/kg unless noted as "mg/L TCLP", or Technology Code 4
		Silver	7440-22-4	NA	0.14 mg/L TCLP
P009	Spent stripping and cleaning bath solutions from electroplating operations where cyanides are used in the process.	Cadmium Chromium (Total) Cyanides (Total) ⁷ Cyanides (Amenable) ⁷ Lead Nickel	7440-43-9 7440-47-3 57-12-5 57-12-5 7439-92-1 7440-02-0	NA 2.777 1.2 0.86 0.69 3.98 NA	0.11 mg/L TOLP 0.60 mg/L TOLP 590 30 0.75 mg/L TOLP 11 mg/L TOLP 0.14 mg/L TOLP
F010	Quenching bath residues from oil baths from metal heat freating operations where cyanides are used in the process.	Cyanides (Total) 7 Oyanides (Amenable) 7	57-12-5 57-12-5	1.2 0.86	590 NA
F011	Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations.	Cadmium Ohromium (Total) Cyanides (Total) ⁷ Cyanides (Amenable) ⁷ Lead Nickel	7440-43-9 7440-47-3 57-12-5 57-12-5 7439-32-1 7440-02-0	NA 2.77 1.2 0.86 0.69 3.98 NA.	0.11 mg/L TCLP 0,60 mg/L TCLP 590 30 0.75 mg/L TCLP 11 mg/L TCLP 0.14 mg/L TCLP
F012	Quenching wastewater treatment sludges from metal heat treating operations where cyanides are used in the process.	Cadmium Ohromium (Total) Cyanides (Total)? Cyanides (Amenable)? Lead Nickel	7440-43-9 7440-47-8 57-12-5 57-12-5 7439-92-1 7440-02-0	NA 2.77 1.2 0.86 0.69 3.98 NA	0.11 mg/L TCLP 0.60 mg/L TCLP 590 30 0.75 mg/L TCLP 11 mg/L TCLP 0.14 mg/L TCLP
F019	Wastewater treatment sludges from the chemical conversion coating of aluminum except from zinconium phosphating in aluminum can washing when such phosphating is an exclusive conversion coating process.	Ohromium (Total) Cyanidas (Total) ⁷ Cyanidas (Amendable), ⁷	7440-47-3 57-12-5 57-12-5	2.77 1.2 0.86	0.60 mg/L TCLP 590 30

§ 268.42

§ 268.42 Treatment standards expressed as specified technologies.

NOTE: For the requirements previously found in this section in Table 2—Technology-Based Standards By RCRA Waste Code, and Table 3—Technology-Based Standards for Specific Radioactive Hazardous Mixed Waste, refer to § 268.40.

(a) The following wastes in the table in §268.40 "Treatment Standards for

Hazardous Wastes," for which standards are expressed as a treatment method rather than a concentration level, must be treated using the technology or technologies specified in the table entitled "Technology Codes and Description of Technology-Based Standards" in this section.

TABLE 1—TECHNOLOGY CODES AND DESCRIPTION OF TECHNOLOGY-BASED STANDARDS

Technology code	Description of technology-based standards
ADGAS:	Venting of compressed gases into an absorbing or reacting media (i.e., solid or liquid)—venting can be accomplished through physical release utilizing valves/piping, physical penetration of the container, and/or penetration through detonation.
AMLGM:	Amalgamation of liquid, elemental mercury contaminated with radioactive materials utilizing inorganic reagents such as copper, zinc, nickel, gold, and sulfur that result in a nonliquid, semi-solid amalgam and thereby reducing potential emissions of elemental mercury vapors to the air.
BIODG:	Biodegradation of organics or non-metallic inorganics (i.e., degradable inorganics that contain the elements of phosphorus, nitrogen, and sulfur) in units operated under either aerobic or anaerobic conditions such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the biodegradation of many organic constituents that cannot be directly analyzed in wastewater residues).
CARBN	Carbon adsorption (granulated or powdered) of non-metallic inorganics, organo-metallics, and/or organic con- stituents, operated such that a surrogate compound or indicator parameter has not undergone breakthrough (e.g., Total Organic Carbon can often be used as an indicator parameter for the adsorption of many organic constituents that cannot be directly analyzed in wastewater residues). Breakthrough occurs when the carbon has become saturated with the constituent (or indicator parameter) and substantial change in adsorption rate associated with that constituent occurs.
CHOXD:	Chemical or electrolytic oxidation utilizing the following oxidation reagents (or waste reagents) or combinations of reagents: (1) Hypochlorite (e.g., bleach); (2) chlorine; (3) chlorine dioxide; (4) ozone or UV (ultraviolet light) assisted ozone; (5) peroxides; (6) persulfates; (7) perchlorates; (8) permangantes; and/or (9) other oxidizing reagents of equivalent efficiency, performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbor can offen be used as an indicator parameter for the oxidation of many organic constituents that cannot be directly analyzed in wastewater residues). Chemical oxidation specifically includes what is commonly referred to as alkaline chlorination.
CHRED:	Chemical reduction utilizing the following reducing reagents (or waste reagents) or combinations of reagents. (1) Sulfur dioxide; (2) sodium, potassium, or alkali salts or sulfities, bisulfites, metablisulfities, and polyethylene glycols (e.g., NaPEG and KPEG); (3) sodium hydrosulfide, (4) ferrous salts; and/or (5) other reducing reagents of equivalent efficiency, performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Halogens can often be used as an indicator parameter for the reduction of many halogenated organic constituents that cannot be directly analyzed in wastewater residues). Chemical reduction is commonly used for the reduction of hexavalent chromium to the trivalent state.
CMBST:	High temperature organic destruction technologies, such as combustion in incinerators, boilers, or industrial fur- naces operated in accordance with the applicable requirements of 40 CFR part 264, subpart O, or 40 CFR part 265, subpart O, or 40 CFR part 266, subpart H, and in other units operated in accordance with applica- ble technical operating requirements, and certain non-combustive technologies, such as the Catalytic Extrac- tion Process.
DEACT:	Deactivation to remove the hazardous characteristics of a waste due to its ignitability, corrosivity, and/or reactivity.
FSUBS:	Fuel substitution in units operated in accordance with applicable technical operating requirements,
HLVIT:	Vitrification of high level mixed radioactive wastes in units in compliance with all applicable radioactive protection requirements under control of the Nuclear Regulatory Commission.
IMERC.	Incineration of wastes containing organics and mercury in units operated in accordance with the technical oper- ating requirements of 40 CFR part 264 subpart 0 and part 265 subpart 0. All wastewater and nonwastewater residues derived from this process must then comply with the corresponding treatment standards per waste code with consideration of any applicable subcategories (e.g., High or Low Mercury Subcategories).
INCIN:	Incineration in units operated in accordance with the technical operating requirements of 40 CFR part 264 sub- part 0 and part 265 subpart 0.
LLEXT:	Liquid-liquid extraction (often referred to as solvent extraction) of organics from liquid wastes into an immissible solvent for which the hazardous constituents have a greater solvent affinity, resulting in an extract high in organics that must undergo either incineration, reuse as a fuel, or other recovery/reuse and a raffiniate (extracted liquid waste) proportionately low in organics that must undergo further treatment as specified in the standard.

249

40 CFR Ch. I (7-1-13 Edition)

TABLE 1—TECHNOLOGY CODES AND DESCRIPTION OF TECHNOLOGY-BASED STANDARDS—Continued

Technology code	Description of technology-based standards
MACRO:	Macroencapsulation with surface coating materials such as polymeric organics (e.g., resins and plastics) o with a jacket of inert inorganic materials to substantially reduce surface exposure to potential leaching media Macroencapsulation specifically does not include any material that would be classified as a tank or contained according to 40 CFR 260.10.
NEUTR:	Neutralization with the following reagents (or waste reagents) or combinations of reagents: (1) Acids, (2) bases or (3) water (including wastewaters) resulting in a pH greater than 2 but less than 12.5 as measured in the aqueous residuals.
NLDBR:	No land disposal based on recycling.
POLYM:	Formation of complex high-molecular weight solids through polymerization of monomers in high-TOC D001 non-wastewaters which are chemical components in the manufacture of plastics.
PRECP:	Chemical precipitation of metals and other inorganics as insoluble precipitates of oxides, hydroxides, carbonates, sulfides, sulfates, chlorides, fluorides, or phosphates. The following reagents (or waste reagents) are typically used alone or in combination: (1) Lime (i.e., containing oxides and/or hydroxides of calcium and/or magnesium; (2) caustic (i.e., sodium and/or potassium hydroxides; (3) soda ash (i.e., sodium carbonate), (4) sodium sulfide; (5) ferric sulfate or ferric chloride; (6) alum; or (7) sodium sulfate. Additional floculating, coagulation or similar reagents/processes that enhance sludge dewatering characteristics are not precluded from use.
RBERY:	Thermal recovery of Beryllium.
RCGAS:	Recovery/reuse of compressed gases including techniques such as reprocessing of the gases for reuse/resale
RCORR:	filtering/adsorption of impunties, remixing for direct reuse or resale, and use of the gas as a fuel source. Recovery of acids or bases utilizing one or more of the following recovery technologies: (1) Distillation (i.e. thermal concentration); (2) ion exchange; (3) resin or solid adsorption; (4) reverse osmosis; and/or (5) incineration for the recovery of acid—Note: this does not preclude the use of other physical phase separation of concentration techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies.
RLEAD:	Thermal recovery of lead in secondary lead smelters.
RMERO:	Retorting or roasting in a thermal processing unit capable of volatilizing mercury and subsequently condensing the volatilized mercury for recovery. The retorting or roasting unit (or facility) must be subject to one or more of the following: (a) a National Emissions Standard for Hazardous Air Pollutants (NESHAP) for mercury; (b) a Best Available Control Technology (BACT) or a Lowest Achievable Emission Rate (LAER) standard for mercury imposed pursuant to a Prevention of Significant Deterioration (PSD) permit; or (c) a state permit that establishes emission limitations (within meaning of section 302 of the Clean Air Act) for mercury. All wastewater and nonwastewater residues derived from this process must then comply with the corresponding treatment standards per waste code with consideration of any applicable subcategories (e.g., High or Low Mercury Subcategories).
RMETL:	Recovery of metals or inorganics utilizing one or more of the following direct physical/removal technologies: (1) lon exchange, (2) resin or solid (i.e., zeolites) adsorption; (3) reverse osmosis, (4) chelation/solvent extraction; (5) freeze crystalization; (6) ultrafiltration and/or (7) simple precipitation (i.e., crystalization)—Note: This does not preclude the use of other physical phase separation or concentration techniques such as decantation, filtration (including ultrafiltration), and centrifugation, when used in conjunction with the above listed recovery technologies.
RORGS:	Recovery of organics utilizing one or more of the following technologies: (1) Distillation; (2) thin film evaporation; (3) steam stripping; (4) carbon adsorption; (5) critical fluid extraction; (6) liquid-liquid extraction; (7) precipitation/crystalization (including freeze crystallization); or (8) chemical phase separation techniques (i.e. addition of acids, bases, demulsifiers, or similar chemicals).—Note: this does not preclude the use of other physical phase separation techniques such as a decantation, filtration (including ultrafiltration), and centifugation, when used in conjunction with the above listed recovery technologies.
RTHRM	Thermal recovery of metals or inorganics from nonwastewaters in units identified as industrial furnaces according to 40 CFR 260.10 (1), (6), (7), (11), and (12) under the definition of "industrial turnaces"
RŽINC: STABL:	Resmelting in high temperature metal recovery units for the purpose of recovery of zinc. Stabilization with the following reagents (or waste reagents) or combinations of reagents (1) Portland cement or (2) lime/pozzolans (e.g., fly ash and cement kiln dust)—this does not preclude the addition of reagents (e.g., iron salts, silicates, and clays) designed to enhance the set/cure time and/or compressive strength, or to everall reduce the leachability of the metal or inorganic.
SSTRP:	Steam stripping of organics from liquid wastes utilizing direct application of steam to the wastes operated such that liquid and vapor flow rates, as well as temperature and pressure ranges, have been optimized, mon itored, and maintained. These operating parameters are dependent upon the design parameters of the unit such as the number of separation stages and the internal column design, thus, resulting in a condensed extract high in organics that must undergo either incineration, reuse as a fuel, or other recovery/reuse and an extracted wastewater that must undergo further treatment as specified in the standard.
VTD:	Vacuum thermal desorption of low-level radioactive hazardous mixed waste in units in compliance with all ap-
WETOX.	plicable radioactive protection requirements under control of the Nuclear Regulatory Commission. Wet air oxidation performed in units operated such that a surrogate compound or indicator parameter has been substantially reduced in concentration in the residuals (e.g., Total Organic Carbon can often be used as an indicator parameter for the oxidation of many organic constituents that cannot be directly analyzed in waster water residues).

4-14 LDR RESOURCES

§ 268.48

TABLE 1-ALTERNATIVE TREATMENT STANDARDS FOR HAZARDOUS DEBRIS 1-Continued

Technology description	Performance and/or design and oper- ating standard	Contaminant restrictions ²
3. Sealing: Application of an appropriate material which adheres tightly to the debris surface to avoid exposure of the surface to potential leaching media. When necessary to effectively seal the surface, sealing entails pretreatment of the debris surface to remove foreign matter and to clean and roughen the surface. Sealing materials include epoxy, silicone, and urethane compounds, but paint may not be used as a sealant.	Sealing must avoid exposure of the de- bris surface to potential leaching media and sealant must be resistent to degradation by the debris and its contaminants and materials into which it may come into contact after place- ment (leachate, other waste, mi- crobes).	None:

[†] Hazardous debris must be treated by either these standards or the waste-specific treatment standards for the waste contami-

[57 FR 37277, Aug. 18, 1992, as amended at 59 FR 48103, Sept. 19, 1994; 63 FR 28738, May 26, 1998; 71 FR 40279, July 14, 2006]

§268.46 Alternative treatment standards based on HTMR.

For the treatment standards previously found in this section, refer to § 268.40.

[59 FR 48103, Sept. 19, 1994]

§268.48 Universal treatment standards.

(a) Table UTS identifies the hazardous constituents, along with the nonwastewater and wastewater treatment standard levels, that are used to regulate most prohibited hazardous wastes with numerical limits. For determining compliance with treatment standards for underlying hazardous constituents as defined in §268.2(i), these treatment standards may not be exceeded. Compliance with these treatment standards is measured by an analysis of grab samples, unless otherwise noted in the following Table UTS.

¹ Hazardous debris must be treated by either these standards or the waste-specific treatment standards for the waste contaminating the debris. The treatment standards must be met for each type of debris contained in a mixture of debris types, unless the debris is converted into treatment residue as a result of the treatment process. Debris treatment residuals are subject to the waste-specific treatment standards for the waste contaminating the debris.

2 Contaminant restriction means that the technology is not BDAT for that contaminant. If debris containing a restricted contaminant is treated by the technology, the contaminant must be subsequently treated by a technology for which it is not restricted in order to be laind disposed (and excluded from Subtitle C regulation).

3 "Clean debris surface" means the surface, when viewed without magnification, shall be free of all visible contaminated soil and hazardous waste except that residual staining from soil and waste consisting of light shadows, slight streaks, or minor discolorations, and soil and waste in cracks, crevices, and pits shall be limited to no more than 5% of each square inch of surface area.

4 Acids, solvents, and chemical reagents may react with some debris and contaminants to form hazardous compounds. For example, acid washing of cyanide-contaminated debris could result in the formation of hydrogen cyanide. Some acids may also react violentity with some debris and contaminants, depending on the concentration of the acid and the type of debris and contaminants. Debris treaters should refer to the safety precautions specified in Material Safety Data Sheets for various acids to avoid applying an incompatible acid to a particular debris/contaminant combination. For example, concentrated sulfuric acid may react violently with certain organic compounds, such as acrylonitrie.

react violently with certain organic compounds, such as acrylonitrile.

It reducing the particle size of debris to meet the treatment standards results in material that no longer meets the 60 mm minimum particle size limit for debris, such material is subject to the waste-specific treatment standards for the waste contaminating the material, unless the debris has been cleaned and separated from contaminated soil and waste prior to size reduction. At a

the material, unless the debris has been cleaned and separated from contaminated soil and waste prior to size reduction. At a minimum, simple physical or mechanical means must be used to provide such cleaning and separation of nondebris materials to ensure that the debris surface is free of caked soil, waste, or other nondebris material.

§ Dioxin-listed wastes are EPA Hazardous Waste numbers FO20, FO21, FO23, FO26, and FO27.

7 Thermal desorption is distinguished from Thermal Destruction in that the primary purpose of Thermal Desorption is to volatilize contaminants and to remove them from the treatment chamber for subsequent destruction or other treatment.

§ The demonstration "Equivalent Technology" under § 268.42(b) must document that the technology treats contaminants subject to treatment to a level equivalent to that required by the performance and design and operating standards for other technologies in this table such that residual levels of hazardous contaminants will not pose a hazard to human health and the environment desort measurement chamber.

ronment absent management controls

Any soil, waste, and other nondebris material that remains on the debris surface (or remains mixed with the debris) after "Any son, waste, and other molecular must be separated from the debits suring, at a minimum, simple physical or mechanical means. Examples of simple physical or mechanical means are vibratory or frommel screening or water washing. The debits surface need not be cleaned to a "clean debits surface" as defined in note 3 when separating treated debits from residue; rather, the surface must be free-of caked soil, waste, or other nondebits material. Treatment residuals are subject to the waste-specific treatment standards for the waste contaminating the debits.

40 CFR Ch. I (7-1-13 Edition)

UNIVERSAL TREATMENT STANDARDS

[Note: NA means not applicable]

		Wastewater standard	Nonwastewater standard	
Regulated constituent common name	CAS 1 number	Concentration ² in mg/l	Concentration ³ in mg/kg unless noted as "mg/l TCLP"	
Organic Constituents				
Acenaphthylene	208-96-8	0.059	3.4	
Acenaphthene	83-32-9	0.059	3.4	
Acetone	67-64-1	0.28	160	
Acetonitrile	75-05-8	5.6	38	
Acetophenone	96-86-2	0.010	9.7	
2-Acetylaminofluorene	53-96-3	0.059	140	
Acroléin	107-02-8	0.29	NA.	
Acrylamide	79-06-1	19	23	
Acrylonitrile	107-13-1	0.24	84	
Aldrin	309-00-2	0.021	0.066	
4-Aminobiphenyl	92-67-1	0.13	NA	
Aniline	62-53-3	0.81	14	
o-Anisidine (2-methoxyaniline)	90-04-0	0.010	0,66	
Anthracene	120-12-7	0.059	3.4	
Aramite	140-57-8	0.36	NA	
alpha-BHC	319-84-6	0.00014	0.066	
beta-BHC	319-85-7	0.00014	0,066	
delta-BHC	319-86-8	0.023	0,066	
gamma-BHC	58-89-9	0.0017	0.066	
Benzene	71-43-2	0.14	10	
Benz(a)anthracene	56-55-3	0.059	3.4	
Benzal chloride	98-87-3	0.055	6.0	
Benzo(b)fluoranthene (difficult to distinguish from benzo(k)fluoranthene)	205-99-2	0.11	6.8	
Benzo(k)fluoranthene (difficult to distinguish from benzo(b)fluoranthene)	207-08-9	0.11	6.8	
Benzo(g,h,i)perylene	191-24-2	0.0055	1.8	
Benzo(a)pyrene	50-32-8	0.061	3.4	
Bromodichloromethane	75–27–4	0.35	15	
Bromomethane/Methyl bromide	74-83-9	0.11	15	
4-Bromophenyl phenyl ether	101-55-3	0.055	15	
n-Butyl alcohol	71–36–3	5.6	2.6	
Butyl benzyl phthalate	85-68-7	0.017	28	
2-sec-Butyl-4,6-dinitrophenol/Dinoseb	88-85-7	0.066	2.5	
Carbon disulfide	75-15-0	3.8	4.8 mg/l TCLP	

260

§ 268.48

UNIVERSAL TREATMENT STANDARDS—Continued

[Note: NA means not applicable]

		Wastewater standard	Nonwastewater standard
Regulated constituent common name	CAS1 number	Concentration ² in mg/l	Concentration ³ in mg/kg unless noted as "mg/l TCLP"
Carbon tetrachloride	56-23-5	0.057	6.0
Chlordane (alpha and gamma isomers)	57-74-9	0,0033	0.26
p-Chloroaniline	106-47-8	0.46	16
Chlorobenzene	108-90-7	0.057	6.0
Chlorobenzilate	510-15-6	0.10	NA
2-Chloro-1,3-butadiene	126–99–8	0.057	0.28
Chlorodibromomethane	124–48–1	0,057	15
Chloroethane	75-00-3	0.27	6.0
bis(2-Chloroethoxy)methane	111-91-1	0.036	7.2
bis(2-Chloroethyl)ether	111-44-4	0.033	6.0
Chloroform	67-66-3	0.046	6.0
bis(2-Chloroisopropyl)ether	39638-32-9	0.055	7.2
p-Chloro-m-cresol	59–50–7	0.018	14
2-Chloroethyl vinyl ether	110-75-8	0.062	NA
Chloromethane/Methyl chloride	74-87-3	0.19	30
2-Chloronaphthalene	91–58–7	0.055	5.6
2-Chloropohenol	95-57-8	0.044	5.7
3-Chloropropylene	107-05-1	0.036	30
Chrysene	218-01-9	0.059	3.4
p-Cresidine	120-71-8	0.010	0.66
o-Cresol	95-48-7	0.11	5.6
m-Cresol (difficult to distinguish from p-cresol)	108–39–4	0.77	5.6
p-Cresol (difficult to distinguish from m-cresol)	106-44-5	0.77	5.6
Cyclohexanone	108–94–1	0.36	0.75 mg/l TCLP
o,p'-DDD	53-19-0	0.023	0.087
p,p'-DDD	72-54-8	0.023	0.087
o,p'-DDE	3424-82-6	0.031	0.087
p,p'-DDE	72-55-9	0.031	0,087
o,p'-DDT	789-02-6	0.0039	0.087
p,p'-DDT	50-29-3	0.0039	0.087
Dibenz(a,h)anthracene	53-70-3	0,055	8.2
Dibenz(a,e)pyrene	192–65–4	0.061	NA
1,2-Dibromo-3-chloropropane	96-12-8	0.11	15
1,2-Dibromoethane/Ethylene dibromide	106-93-4	0 028	15

40 CFR Ch. I (7-1-13 Edition)

UNIVERSAL TREATMENT STANDARDS—Continued

[Note: NA means not applicable]

	966	Wastewater standard	Nonwastewater standard
Regulated constituent common name	CAS 1 number	Concentration ² in mg/l	Concentration ² in mg/kg unless noted as "mg/l TCLP"
Dibromomethane	74-95-3	0.11	15
m-Dichlorobenzene	541-73-1	0.036	6.0
o-Dichlorobenzene	95-50-1	0.088	6.0
p-Dichlorobenzene	106-46-7	0.090	6.0
Dichlorodifluoromethane	75-71-8	0.23	7.2
1,1-Dichloroethane	75–34–3	0.059	6.0
1,2-Dichloroethane	107-06-2	0.21	6.0
f ,1-Dichloroethylene	75-35-4	0.025	6.0
trans-1,2-Dichloroethylene	156-60-5	0.054	30
2,4-Dichlorophenol	120-83-2	0.044	14
2,6-Dichlörophenol	87-65-0	0.044	14
2,4-Dichlorophenoxyacetic acid/2,4-D	94-75-7	0.72	10
1,2-Dichloropropane	78-87-5	0.85	18
cis-1,3-Dichloropropylene	10061-01-5	0.036	18
trans-1,3-Dichloropropylene	10061-02-6	0.036	18
Dieldrin	60-57-1	0.017	0.13
Diethyl phthalate	84–66–2	0.20	28
p-Dimethylaminoazobenzene	60-11-7	0.13	NA
2,4-Dimethylaniline (2,4-xylidine)	95-68-1	0.010	0.66
2,4-Dimethyl phenol	105-67-9	0.036	-14
Dimethyl phthalate	131-11-3	0.047	28
Di-n-butyl phthalate	84-74-2	0.057	28
t,4-Dinitrobenzene	100-25-4	0.32	2.3
4,8-Dinitro-o-cresol	534-52-1	0.28	160
2,4-Dinitrophenol	51-28-5	0.12	160
2,4-Dinitrotoluene	121-14-2	0.32	140
2,6-Dinitrotoluene	606-20-2	0,55	28
Di-n-octyl phthalate	117-84-0	0.017	28
Di-n-propylnitrosamine	621–64–7	0.40	14
t,4-Dioxane	123-91-1	12.0	170
Diphenylamine (difficult to distinguish from diphenylnitrosamine)	122-39-4	0.92	1.3
Diphenylnitrosamine (difficult to distinguish from diphenylamine)	86-30-6	0.92	13
1,2-Diphenylhydrazine	122-66-7	0.087	NA
Disultoton	298-04-4	0.017	6.2

262

4-18 LDR RESOURCES

§ 268.48

UNIVERSAL TREATMENT STANDARDS—Continued

[Note: NA means not applicable]

	100	Wastewater standard	Nonwastewater standard
Regulated constituent common name	CAS 1 number	Concentration ² in mg/l	Concentration ³ in mg/kg unless noted as "mg/l TCLP"
Endosulfan I	959–98–8	0.023	0.066
Endosulfan II	33213-65-9	0.029	0.13
Endosulfan sulfate	1031-07-8	0.029	0.13
Endrin	72-20-8	0.0028	0.13
Endrin aldehyde	7421-93-4	0.025	0.13
Ethyl acetate	141-78-6	0.34	33
Ethyl benzene	100-41-4	0.057	10
Ethyl cyanide/Propanenitrile	107-12-0	0.24	360
Ethyl ether	60-29-7	0.12	160
bis(2-Ethylhexyl)phthalate	117-81-7	0.28	28
Ethyl methacrylate	97–63–2	0.14	160
Ethylene oxide	75–21–8	0.12	NA
Famphur	52-85-7	0.017	15
Fluoranthene	206-44-0	0.068	3.4
Fluorene	86-73-7	0.059	3.4
Heptachlor	76-44-8	0.0012	0.066
†,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDD)	35822-46-9	0.000035	.0025
1,2,3,4,6,7,8-Heptachlorodibenzofluran (1,2,3,4,6,7,8-HpCDF)	67562-39-4	0.000035	.0025
f,2,3,4,7,8,9-Heptachlorodibenzofluran (1,2,3,4,7,8,9-HpCDF)	55673-89-7	0.000035	,0025
Heptachlor epoxide	1024–57–3	0.016	0.066
Hexachlorobenzene	118-74-1	0.055	10
Hexachlorobutadiene	87–68–3	0.055	5.6
Hexachlorocyclopentadiene	77-47-4	0.057	2.4
HxCDDs (All Hexachlorodiberizo-p-dioxins)	NA	0.000063	0.001
HxCDFs (All Hexachlorodibenzofurans)	NA	0.000063	0.001
Hexachloroethane	67-72-1	0.055	30
Hexachloropropylene	1888-71-7	0.035	30
Indeno(1,2,3-c,d) pyrene	193–39–5	0.0055	3.4
lodomethane	74-88-4	0.19	65
Isobutyl alcohol	78-83-1	5.6	170
Isodrin	465-73-6	0.021	0,066
Isosatrole	120-58-1	0.081	2.6
Kepone	143-50-0	0.0011	0.13
Methacrylonitrile	126-98-7	0.24	84

40 CFR Ch. I (7-1-13 Edition)

UNIVERSAL TREATMENT STANDARDS—Continued

[Note: NA means not applicable]

	* 1000	Wastewater standard	Nonwastewater standard
Regulated constituent common name	CAS1 number	Concentration ² in mg/l	Concentration ³ in mg/kg unless noted as "mg/l TCLP"
Methanol	67-56-1	5.6	0.75 mg/l TOLP
Methapyrilene	91-80-5	0.081	15
Methoxychlor	72-43-5	0,25	0.18
3-Methylcholanthrene	56-49-5	0.0055	15
4,4-Methylene bis(2-chloroaniline)	101-14-4	0.50	-30
Methylene chloride	75-09-2	0.089	30
Methyl ethyl ketone	78-93-3	0.28	36
Methyl isobutyl ketone	108-10-1	0.14	33
Methyl methacrylate	80-62-6	0.14	160
Methyl methanesulfonate	66-27-3	0.018	NA
Methyl parathion	298-00-0	0.014	4.6
Naphthalene	91–20–3	0.059	5,6
2-Naphthylamine	91–59–8	0.52	NA
o-Nitroaniline	88-74-4	0.27	14
p-Nitroaniline	100-01-6	0.028	28
Nitrobenzene	98-95-3	0,068	14
5-Nitro-o-toluidine	99-55-8	0.32	28
o-Nitrophenol	88-75-5	0.028	13
p-Nitrophenol	100-02-7	0.12	29
N-Nitrosodiethylamine	55-18-5	0.40	28
N-Nitrosodimethylamine	62-75-9	0.40	2.3
N-Nitroso-di-n-butylamine	924-16-3	0.40	17
N-Nitrosomethylethylamine	10595–95–6	0.40	2.3
N-Nitrosomorpholine	59-89-2	0.40	2,3
N-Nitrosopiperidine	100-75-4	0,013	35
N-Nitrosopyrrolidine	930-55-2	0.013	35
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	3268-87-9	0.000063	0.005
1,2,3,4,6,7,8,9-Octachlorodibenzofluran (OCDF)	39001-02-0	0.000063	0.005
Parathion	56-38-2	0.014	4.6
Total PCBs (sum of all PCB isomers, or all Aroclors) ^a	1336–36–3	0.10	10
Pentachio robenzene	608–93–5	0.055	(0
PeCDDs (All Pentachlorodibenzo-p-dioxins)	NA	0.000063	0.001
PeCDFs (All Pentachlorodibenzofurans)	NA	0.000035	0.001
Pentachloroethane	76-01-7	0.055	6.0

264

4-20 LDR RESOURCES

§ 268.48

UNIVERSAL TREATMENT STANDARDS—Continued

[Note: NA means not applicable]

	0.70	Wastewater standard	Nonwastewater standard
Regulated constituent common name	CAS ¹ number	Concentration ² in mg/l	Concentration ³ in mg/kg unless noted as "mg/l TCLP"
Pentachloronitrobenzene	82-68-8	0.055	4.8
Pentachlorophenol	87–86–5	0.089	7.4
Phenacetin	62-44-2	0.081	16
Pherianthrene	85-01-8	0.059	5.6
Phenol	108–95–2	0.039	6.2
1,3-Phenylenediamine Phorate	108-45-2 298-02-2	0,010 0.021	0.66 4.6
Phthalic acid	100-21-0	0.055	28
Phthalic anhydride	85-44-9	0.055	28
Pronamide	23950-58-5	0.093	1.5
Pyrene	129-00-0	0.067	8.2
Pyridine	110-86-1	0.014	16
Satrole	94–59–7	0.081	22
Silvex/2,4,5-TP	93-72-1	0.72	7.9
1,2,4,5-Tetrachlorobenzene	95-94-3	0.055	14
TCDDs (All Tetrachlorodibenzo-p-dioxins)	NA	0.000063	0.001
TCDFs (All Tetrachlorodibenzofurans)	NA	0.000063	0.001
1,1,1,2-Tetrachloroethane	630-20-6	0,057	6.0
1,1,2,2-Tetrachloroethane	79–34–5	0.057	6.0
Tetrachloroethylene	127-18-4	0.056	6.0
2,3,4,6-Tetrachlorophenol	58-90-2	0.030	7.4
Toluene	108-88-3	0.080	10
Toxaphene	8001-35-2	0,0095	2.6
Tribromomethane/Bromotorm	75-25-2	0.63	15
1,2,4-Trichlorobenzene	120-82-1	0.055	19
1,1,1-Trichloroethane	71–55–6	0.054	6.0
1,1,2-Trichloroethane	79-00-5	0.054	6.0
Trichloroethylene	79-01-6	0.054	6.0
Trichlorofluoromethane	75-69-4	0.020	30
2,4,5-Trichlarophenol	95-95-4	0.18	7.4
2,4,6-Trichlorophenol	88-06-2	0,035	7.4
2,4,5-Trichlorophenoxyacetic acid/2,4,5-T	93-76-5	0.72	7.9
1,2,3-Trichloropropane	96-18-4	0.85	30
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.057	30

40 CFR Ch. I (7-1-13 Edition)

UNIVERSAL TREATMENT STANDARDS-Continued

[Note: NA means not applicable]

		Wastewater standard	Nonwastewater standard
Regulated constituent common name	CAS1 number	Concentration 2 in mg/l	Concentration ³ in mg/kg unless noted as "mg/l TOLP"
tris-(2,3-Dibromopropyl) phosphate	126-72-7	0.41	0.10
Vinyl chloride	75-01-4	0.27	6.0
Xylenes-mixed isomers (sum of o-, m-, and p-xylene concentrations)	1330-20-7	0.32	30
Inorganic Constituents			
Antimony	7440-36-0	1.9	1.15 mg/l TCLP
Arsenic	7440–38–2	1.4	5,0 mg/l TCLP
Bailum	7440-39-3	1.2	21 mg/l TCLP
Beryllium	7440-41-7	0.82	1.22 mg/l TCLP
Cadmium	7440-43-9	0.69	0.11 mg/I TCLP
Chromium (Total)	7440-47-3	2.77	0.60 mg/l TCLP
Cyanides (Total) ⁴	57-12-5	1.2	590
Cyanides (Amenable) 4	57-12-5	0.86	30
Fluoride 5	16984-48-8	35	NA
Lead	7439–92–1	0.69	0.75 mg/l TCLP
Mercury—Nonwastewater from Retort	7439–97–6	NA	0.20 mg/l TCLP
Mersury—All Others	7439–97–6	0.15	0.025 mg/l TOLP
Nickel	7440-02-0	3.98	11 mg/l TCLP
Selenium 7	7782-49-2	0.82	5.7 mg/l TCLP
Silver	7440-22-4	0.43	0.14 mg/l TCLP
Sulfide 5	18496-25-8	14	NA
Thallium	7440-28-0	1.4	0.20 mg/l TGLP
Vanadium ⁵	7440-62-2	4.3	1,6 mg/l TCLP
Zinc ⁶	7440-66-6	2.61	4.3 mg/I TCLP

FOOTNOTES TO TABLE UTS

- 1 CAS means Chemical Abstract Services. When the waste code and/or regulated constituents are described as a combination of a chemical with it's salts and/or esters, the CAS number is given for the parent compound only.
- 2 Concentration standards for wastewaters are expressed in mg/l and are based on analysis of composite samples.
- Except for Metals (EP or TCLP) and Cyanides (Total and Amenable) the nonwastewater treatment standards expressed as a concentration were established, inpart, based upon incineration in units operated in accordance with the technical requirements of 40 CFR part 264, subpart O or 40 CFR part 265, subpart O, or based upon combustion in fuel substitution units operating in accordance with applicable technical requirements. A facility may comply with these treatment standards according to provisions in 40 CFR 268.40(d). All concentration standards for nonwastewaters are based on analysis of grab samples.

266

\$ 268.49

FOOTNOTES TO TABLE UTS-Continued

- Both Cyanides (Total) and Cyanides (Amenable) for nonwastewaters are to be analyzed using Method 9010C or 9012B, found in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in 40 CFR 260.11, with a sample size of 10 grams and a distillation time of one hour and 15 minutes.
- These constituents are not "underlying hazardous constituents" in characteristic wastes, according to the definition at § 268.2(i).
- 6 [Reserved]
- 7 This constituent is not an underlying hazardous constituent as defined at §268.2(i) of this Part because its UTS level is greater than its TC level, thus a treatment selenium waste would always be characteristically hazardous, unless it is treated to below its characteristic level.
- 8 This standard is temporarily deferred for soil exhibiting a hazardous characteristic due to D004–D011 only

[59 FR 48103, Sept. 19, 1994, as amended at 60 FR 302, Jan. 3, 1995; 61 FR 15654, Apr. 8 1996; 61 FR 33690, June 28, 1996; 62 FR 7596, Feb. 19, 1997; 63 FR 24626, May 4, 1998; 63 FR 28739, May 26, 1998; 63 FR 47417, Sept. 4, 1998; 64 FR 25417, May 11, 1999; 65 FR 14475, Mar. 17, 2000; 70 FR 34590, June 14, 2005; 70 FR 9178, Feb. 24, 2005; 71 FR 40279, July 14, 2006; 75 FR 13008, Mar. 18, 2010; 76 FR 34156, June 13, 2011]

§268.49 Alternative LDR treatment standards for contaminated soil.

(a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of

hazardous waste at the time it was generated, into a land disposal unit. The following chart describes whether you must comply with LDRs prior to placing soil contaminated by listed hazardous waste into a land disposal unit:

If LDRs	And if LDRs	And if	Then you
Applied to the listed waste when it contaminated the soil*.	Apply to the listed waste now.		Must comply with LDRs
Didn't apply to the listed waste when it contami- nated the soil*	Apply to the listed waste now.	The soil is determined to contain the listed waste when the soil is first generated.	Must comply with LDRs.
Didn't apply to the listed waste when it contami- nated the soil*.	Apply to the listed waste now.	The soil is determined not to contain the listed waste when the soil is first generated.	Needn't comply with LDRs
Didn't apply to the listed waste when it contami- nated the soil*.	Don't apply to the listed waste now.		Needn't comply with LDRs.

^{*}For dates of LDR applicability, see 40 CFR Part 268 Appendix VII. To determine the date any given listed hazardous waste contaminated any given volume of soil, use the last date any given listed hazardous waste was placed into any given land disposal unit or, in the case of an accidental spill, the date of the spill

(b) Prior to land disposal, contaminated soil identified by paragraph (a) of this section as needing to comply with LDRs must be treated according to the applicable treatment standards specified in paragraph (c) of this section or according to the Universal Treatment Standards specified in 40 CFR 268.48 applicable to the contaminating listed hazardous waste and/or the applicable characteristic of hazardous waste if the soil is characteristic. The treatment standards specified in paragraph (c) of this section and the Universal Treat-

ment Standards may be modified through a treatment variance approved in accordance with 40 CFR 268.44.

(c) Treatment standards for contominated soils. Prior to land disposal, contaminated soil identified by paragraph (a) of this section as needing to comply with LDRs must be treated according to all the standards specified in this paragraph or according to the Universal Treatment Standards specified in 40 CFR 268.48.

LAND DISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM

F001 – F005 S CONS Acetone – F003 Benzene – F005 (in-Butyl alcohol – F Carbon disulfide – Carbon tetrachloric Chlorobenzene –	PENT SOLVENTS STITUENT D018) -003 -F005 de - F001 (D019) -F002 (D021) -004 (D024 & D025) -F003 -F003 -F003 -F003 -F003 -F003 -F003 -F005 -F005 -F005 -F005 -F005 -F005	on Statement (found on re	Metr Metr Metr Nitro 2-Nit Pyric Tetra Tolu 1,1,1 1,1,1 1,1,1	CONS cylene chlorid cyl ethyl keton cyl isobutyl ke benzene – Fi cyropropane – I dine – F005 (L achloroethyler ene – F005 I-Trichloroetha I-Trichloroetha I-Trichloroetha	A STITUE e = F000 tone = F000 tone = F000 F005 D038) he = F000 he = F000	NT 2 15 (D035) 5003 36) 01 (D039) 02 (D039)	ww	of	
CONS Acetone – F003 Benzene – F005 (in-Butyl alcohol – F Carbon disulfide – Carbon tetrachloric Chlorobenzene – Im- & p-Cresol – F004 (in-Benzene – In-Benzene – In-Benzene – In-Benzene – In-Benzene – In-Benzene – F Ethyl acetate – F0 Ethyl benzene – F Ethyl ther – F003 Isobutanol – F003 Methanol – F003	D018) F003 F005 de = F001 (D019) F002 (D021) 004 (D024 & D025) D023) F003 sine = F002 F005 03 003	100	Metrin Metrin Metrin Metrin Mitro 2-Nitro 2-Nitro Pyrio Tetra Tolu 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	nylene chlorid nyl ethyl keton nyl isobutyl ke benzene – FC ropropane – I dine – F005 (L achloroethyler achloroethyler ene – F005 I-Trichloroethi	e – F00: tone – F 004 (D0: F005 D038) ne – F00	2 5 (D035) 5 (D035) 5 (D033) 36) 01 (D039) 02 (D039)	ww	NWW	
Acetone – F003 Benzene – F005 (in-Butyl alcohol – F Carbon disulfide – Carbon tetrachloric Chlorobenzene – Im- & p-Cresol – F100-Cresol – F004 (IC Cyclohexanone – 1,2-Dichlorobenze 2-Ethoxyethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ether – F003 Isobutanol – F005 Methanol – F003	D018) F003 F005 de - F001 (D019) F002 (D021) 004 (D024 & D025) D023) F003 F003 F003 F003 F003 F003 F003 F0	WW NVW	Metrin Metrin Metrin Metrin Mitro 2-Nitro 2-Nitro Pyrio Tetra Tolu 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	nylene chlorid nyl ethyl keton nyl isobutyl ke benzene – FC ropropane – I dine – F005 (L achloroethyler achloroethyler ene – F005 I-Trichloroethi	e – F00: tone – F 004 (D0: F005 D038) ne – F00	2 5 (D035) 5 (D035) 5 (D033) 36) 01 (D039) 02 (D039)	ww	NWW	
Benzene – F005 (in-Butyl alcohol – F Carbon disulfide – Carbon tetrachloric Chlorobenzene – Im- & p-Cresol – F004 (IC Cyclohexanone – 1,2-Dichlorobenze 2-Ethyl cetate – F0 Ethyl benzene – F Ethyl benzene – F Ethyl ether – F003 Isobutanol – F005 Methanol – F003	F003 F005 de - F001 (D019) F002 (D021) 004 (D024 & D025) D023) F003 F003 F005 03 003		Metrin Metrin Metrin Metrin Mitro 2-Nitro 2-Nitro Pyrio Tetra Tolu 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	nyl ethyl keton nyl isobutyl ke benzene – FC ropropane – I dine – F005 (L achloroethyler achloroethyler ene – F005 I-Trichloroethi	tone – F00 tone – F 004 (D0 F005 D038) ne – F00 ne – F00	5 (D035) 5 (D035) 6 (D035) 6 (D039) 6 (D039) 6 (D039)			
n-Butyl alcohol – F Carbon disulfide – Carbon tetrachloric Chlorobenzene – I m- & p-Cresol – F 0-Cresol – F 00-Cresol – F 00-Cre	F003 F005 de - F001 (D019) F002 (D021) 004 (D024 & D025) D023) F003 F003 F005 03 003		Meth Nitro 2-Nitro Pyrio Tetra Tolu 1,1,1 1,1,1 1,1,2 1,1,2	nyl isobutyl ke benzene – F(ropropane – I dine – F005 (L achloroethyler achloroethyler ene – F005 I-Trichloroethi I-Trichloroethi	tone – F 004 (D0. F005 D038) ne – F00 ne – F00	5003 336) 01 (D039) 02 (D039)			
Carbon disulfide – Carbon tetrachloric Chlorobenzene – I m- & p-Cresol – Froo-Cresol – F004 (I Cyclohexanone – 1,2-Dichlorobenze 2-Ethoxyethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ther – F003 Isobutanol – F005 Methanol – F003	F005 de - F001 (D019) F002 (D021) 004 (D024 & D025) D023) F003 F005 F005 003 003		Nitro 2-Nit Pyrio Tetra Tolu 1,1,1 1,1,2 1,1,2	incorporate - FO incorp	004 <i>(D0.</i> F005 0038) ne – F00	01 (D039) 02 (D039)			
Carbon tetrachloric Chlorobenzene – I m- & p-Cresol – F0 o-Cresol – F004 (I Cyclohexanone – 1,2-Dichlorobenze 2-Ethyayethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ether – F003 Isobutanol – F005 Methanol – F003	de - F001 (D019) F002 (D021) 004 (D024 & D025) D023) F003 ene - F002 F005 003 003		2-Nit Pyric Tetra Tolu 1,1,1 1,1,1 1,1,2 1,1,2	ropropane – I dine – F005 (L achloroethyler achloroethyler ene – F005 I-Trichloroeth I-Trichloroeth	F005 0038) ne – F00 ne – F00	01 (D039) 02 (D039)			
m- & p-Cresol - Fi o-Cresol - F004 (the Cyclohexanone - 1,2-Dichlorobenze 2-Ethoxyethanol - Ethyl acetate - F0 Ethyl benzene - F Ethyl ether - F003 Isobutanol - F003 Methanol - F003	004 (D024 & D025) D023) F003 ene - F002 F005 03 003		Tetra Tetra Tolu 1,1,1 1,1,1 1,1,2 1,1,2	achloroethyler achloroethyler ene – F005 I-Trichloroeth I-Trichloroeth	ne – F00 ne – F00)2 (D039)			
o-Cresol – F004 (t Cyclohexanone – 1,2-Dichlorobenze 2-Ethoxyethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ether – F003 Isobutanol – F003 Methanol – F003	D023) F003 Ine - F002 F005 I03 I003		Tetra Tolu 1,1,1 1,1,1 1,1,2	achloroethyler ene – F005 I-Trichloroetha I-Trichloroetha	ne – F00)2 (D039)			
Cyclohexanone – 1,2-Dichlorobenze 2-Ethoxyethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ether – F003 Isobutanol – F003 Methanol – F003	F003 Ine - F002 F005 I03 I003 I003		Tolu 1,1,1 1,1,1 1,1,2 1,1,2	ene – F005 I-Trichloroetha I-Trichloroetha					
1,2-Dichlorobenze 2-Ethoxyethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ether – F003 Isobutanol – F003 Methanol – F003	rne – F002 F005 003 0003		1,1,1 1,1,1 1,1,2 1,1,2	-Trichloroetha		001			
2-Ethoxyethanol – Ethyl acetate – F0 Ethyl benzene – F Ethyl ether – F003 Isobutanol – F003 Methanol – F003	F005 003 0003		1,1,1 1,1,2 1,1,2	I-Trichloroeth	1,1,1-Trichloroethane – F				
Ethyl acetate - F0 Ethyl benzene - F Ethyl ether - F003 Isobutanol - F003 Methanol - F003	03		1,1,2			175.5517			_
Ethyl benzene – F Ethyl ether – F003 Isobutanol – F003 Methanol – F003	003		1,1,2	. THORNOLOGUE	1,1,1-Trichloroethane – F002 1,1,2-Trichloroethane – F002				_
Ethyl ether – F003 Isobutanol – F005 Methanol – F003	3			Trichloro-1,2,2			_		_
Methanol – F003			Trich	loroethylene		Approximately the Secretary			
	5004	I		loroethylene					
Methylene chloride	E004		Trich	lorofluoromet	thane - I	F002			
welligiene chionus	e - F001		Xyle	ne - F003					
EPA Hazardous WW Waste No.	NWW	Subcategory of Waste	е	EPA Hazardous Waste No.	ww	NWW		Subcategory of Waste	i n
D001		High TOC-Ignitable Liquid (≥10%)					\rightarrow		i e
D001		Ignitable Waste in non-CWA/SDW					$\overline{}$		÷
D002		Corrosive Waste in non-CWA/SD					$\overline{}$		÷
D002		Reactive Cyanides					$\overline{}$		÷
		Reactive Sulfides					-		÷
D003		Water Reactive					\longrightarrow		÷
D003		Other Reactive					-		Ļ
D003							\rightarrow		1
D009		High Mercury – Inorganic (≥260 m							Ļ
D009		High Mercury – Organic (≥260 mg	/kg)						ļ.
D009		Low Mercury (<260 mg/kg)							1
			N						1
			n						1
			е						1
			- 6						į.
									1
			1						1
							$\neg \neg$		1
			T.				$\overline{}$		Ī
							$\overline{}$		Ť
HAZARDOUS	DEBRIS			IL					<u> </u>

UNDERLYING HAZARDOUS CONSTITUENTS (UHCs)

4-24 LDR RESOURCES

	☐ No UHCs	☐ UHCs identified on attached Underlying Hazardous Constituents Form
		CERTIFICATION STATEMENTS
e.	RESTRICTED WASTE REQUI I am the initial generator of the res land disposal.	RING TREATMENT ricted waste(s) listed on the reverse side which must be treated to the applicable treatment standard prior t
Ġ.	I am the initial generator of the meets all applicable treatment treatment. "I certify under penalty of or through knowledge of in 40 CFR part 268 subp	NG TREATMENT STANDARDS AT THE POINT OF GENERATION EPA hazardous waste number(s) listed on the reverse side. I have determined that the waste standards set forth in 40 CFR Part 268 and therefore, can be land disposed without further law that I personally have examined and am familiar with the waste through analysis and testing he waste to support this certification that the waste complies with the treatment standards specified and D. I believe that the information I submitted is true, accurate, and complete. I am aware prenabilities for submitting a false certification, including the possibility of a fine and imprisonment."
	LAB PACKS MANAGED UND The lab packs identified on the the alternative treatment standa "I certify under penalty	ER ALTERNATIVE TREATMENT STANDARDS reverse side do not contain any of the wastes specified in Appendix IV and are managed unde
	standards for lab pa submitting a false cert RESTRICTED WASTE CONSI The contaminated soil identified "I certify under penalty of	will be sent to a combustion facility in compliance with the alternative treatment class at 40 CFR 269.42(c). I am aware that there are significant penalties for fication, including the possibility of fine or imprisonment." STING OF CONTAMINATED SOIL NOT MEETING TREATMENT STANDARDS on the reverse side does not meet the soil treatment standard in 40 CFR 268.49(c). law that I personally have examined this contaminated soil and it [does/does not] contain not [does/does not] exhibit a characteristic of hazardous waste and requires treatment.
	DECHARACTERIZED WAST	t standards as provided by 268.49(c);" E CONTAINING UNDERLYING HAZARDOUS CONSTITUENTS REQUIRING FURTHE s waste listed on the reverse side contain underlying hazardous constituents requiring further
	"I certify under penalty of 268.40 to remove the constituents that require	flaw that the waste has been treated in accordance with the requirements of 40 CFR nazardous characteristic. This decharacterized waste contains underlying hazardous further treatment to meet universal treatment standards. I am aware that there are ubmitting a false certification, including the possibility of fine and imprisonment."
		CT TO A VARIANCE OR EXEMPTION erse side is exempt from LDR standards and subject to a nationwide variance which expires o
	eby certify that all information s nowledge and information.	ubmitted in this and all associated documents is complete and accurate, to the best of
	erator Signature	Date

*Consentation average TCLP

Generator Name:	T.SUF.KLYIII	THE PARTIES	Manifest Number:			
ORGANIC CONSTITUENTS	SWITCHENIS WW(mg/l) NWW(mg/kg)		ORGANIC CONSTITUENTS	NWW(mg/kg)		
Acemphthylene	0,059	3,4	o.p'-DDT	WW(mg/l) 0.0039	0.087	
Acenaphthene	0.059	3.4	p.p'-DDT	0.0039	0.087	
Acetone	0.28	160	Dibenz(a,h)anthracene	0,055	8.2	
Acetonitrile	5.6	38	Dibenz(a,e)pyrene	0,061	NA.	
Acetophenone 2-Acetylaminofluorene	0.01	9.7	1,2-Dibromo-3-chloropropane 1,2-Dibromoethane/Ethylene dibromide	0.11	1.5	
Acrolein	0.039	NA NA	Dibromomethane	0.048	15	
Acrylamide	19	23	m-Dichlorobenzene	0.036	6	
Acrylonitrile	0.24	84	o-Dichlorobenzene	0,088	6	
Aldicarb sulfone"	0.056	0.28	p-Dichlorobenzene	0.09	6	
Aldrin	0.021	0.066	Dichlorodifluoromethane	0.23	7.2	
4-Aminobiphenyl	0.13	NA	1.1-Dichloroethane	0,059	6	
Aniline	0.81	14	1,2-Dichlereethane	0.21	6	
o-Anisidine	0.01	0.66	1,1-Dichleroethylene	0.025	6	
Anthracene	0.059	3.4	trans-1,2-Dichloroethylene	0.054	30	
Aramite	0.36	NA	2.4-Dichlorophenol	0,044	14	
alpha-BHC beta-BHC	0.00014	0,066	2,6-Dichlorophenol 2,4-Dichlorophenoxyacetic acid/2,4-D	0.044	14	
delia-BHC	0.023	0,066	1.2-Dichloropropane	0.85	18	
дания-ВИС	0.0017	0.066	cis-1,3-Dichloropropylene	0.036	18	
Barban	0.056	1.4	trans-1,3-Dichloropropylene	0.036	18	
Bendiocarb"	0.056	1.4	Dieldrin	0.017	0.13	
Benomyl"	0.056	1.4	Diethyl phthalate	0.2	28	
Benzene	0.14	10	p-Dimethylaminoazobenzene	0.13	NA	
Benz(a)anthracene	0.059	3.4	2.4-Dimethylariline	0.01	0.66	
Benzal chloride	0.055	6	2.4-Dimethyl phenol	0,036	14	
Benzo(b)fluoranthene	0.11	6.8	Dimethyl phthalate	0.047	28	
Benzo(k)fluoranthene	0.11	6.8	Di-n-butyl phthalate	0.057	28	
Benzo(g,h,i)perylene	0.0055	1.8	1.4-Dinitrobenzene	0.32 0.28	2.3 160	
Benzo(a)pyrene Bromodichloromethane	0.35	15	2,4-Dimiro-o-crescii	0.12	160	
Bromonethane/Methyl bromide	0.11	15	2,4-Dinitrotoluene	0.32	140	
1-Bromophenyl phenyl ether	0.055	15	2.6-Dinitrotoluene	0.55	28	
n-Butyl alcohol	5.6	2.6	Di-n-octyl phthalate	0,017	28	
Butylate"	0.042	1.4	Di-n-propylnitrosamine	0.4	-14	
Buryl benzyl phthalate	0,017	28	1,4-Dioxane	12	170	
2-sec-Butyl-4,6-dinitrophenol/Dinoseb	0.056	2.5	Diphenylamine	0.92	13	
Carbaryl*	0.006	0.14	Diphenylnitrosamine	0.92	13	
Carbenzadim ^e	0.056	1.4	1,2-Diphenylhydrazine	0,087	NA.	
Carbofuan"	- 0.006	0.14	Disulfoton	0.017	6.2	
Carbofuran phenol ^o Carbon disulfide	0.056	4.8**	Dithiocarbamates (total)" Endosulfan I	0.028	28 0.066	
Carbon tetrachlonde	0.057	6	Endosulfan II	0,023	0.066	
Carbosulfan"	0.028	1,4	Endosulfan sulfate	0,029	0.13	
Chlordane (a&g isomers)	0.0033	0.26	Endrin	0.0028	0.13	
p-Chloroaniline	0.46	16	Endrin aldehyde	0,025	0.13	
Chlorobenzene	0.057	6	EPTC"	0.042	1.4	
Chlorobenzilate	0.1	NA.	Ethyl acetate	0.34	33	
2-Chloro-1,3-butadiene	0.057	0.28	Ethyl benzene	0.057	10	
Chlorodibromomethane	0.057	15	Ethyl cyanide/Propanentrile	0.24	360	
Chloroethane	0.27	6	Ethyl other	0.12	160	
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	0.036	7.2	Ethyl methacrylate	0.14	160	
ors(2-Chloroethyl)ether Chloroform	0.033	6	Ethylene oxide bis(2-ethylhexyl)phthalate	0.12	NA. 28	
bis(2-Chloroisopropyl)ether	0.055	7.2	Famphur	0.017	15	
p-Chloro-m-cresol	0.018	14	Fluoranthene	0,068	3.4	
2-Chloroethyl vinyl ether	0.062	NA NA	Fluorene	0.059	3.4	
Chloromethane/Methyl chloride	0.19	30	Formetanate hydrochloride"	0.056	1.4	
2-Chloronaphthalene	0.055	5.6	Heptachlor	0.0012	0,066	
2-Chloropchenol	0.044	5.7	1,2,3,4,6,7,8-HpCDD	0.000035	.0,002	
3-Chloropropylene	0.036	30	1,2.3,4.6,7,8-HpCDF	0.000035	0.002	
Chrysene	0.059	3.4	1,2,3,4,7,8,9-HpCDF	0.000035	0.002	
p-Cresidine	0.01	0.66	Heptachlor epoxide	0.016	0.066	
o-Cresol	0.11	5.6	Hexachlorobenzene	0.055	10	
m-Cresol p-Cresol	0.77	5.6 5.6	Hexachlorobutadiene	0.055 0.057	5.6 2.4	
m-Cumenyl methylcarbamate	0.056	1.4	Hexachlorocyclopentadiene HxCDDs (All Hexachlorodibenzo-p-dioxins)	0.000063	0.001	
Cyclohexanoue	0.36	0.75**	HxCDFs (All Hexachlorodibenzofurans)	0.000063	0.001	
o,p'-DDD	0.023	0.087	Hexachloroethane	0.0055	30	
p.p'-DDD	0.023	0.087	Hexachloropropylene	0.035	30	
o.p'-DDE	0.031	0.087	Indeno(1,2,3-c,d) pyrene	0.0055	3.4	
p.p'-DDE	0.031	0.087	Todomethane	0.19	65	

4-26 LDR RESOURCES

ORGANIC CONSTITUENTS	WW(mg/l)	NWW(mg/kg)	S CONSTITUENTS FORM ORGANIC CONSTITUENTS	WW(mg/l)	NWW(mg/kg
sobutyl alcohol	5.6	170	Thiodicarb	0.019	1.4
sodrin	0.021	0.066	Thiophanate-methyl"	0.056	1.3
sosalfole	0.081	2.6	Toluene	0.08	10
Серопе	0.0011	0.13	Toxaphene	0,0095	2.6
Methacrylomitrile	0.24	84	Triallate	0.042	14
Methanol	5.6	0.75**	Tribromomethane/Bromoform	0.63	15
Methapyrilene	0.081	1.5	1,2,4-Trichlorobenzene	0,055	19
Methiocarb ^e	0.056	JA.	1, 1,1-Trichloroethane	0.054	6.
Methomyf	0.028	0.14	1,1,2-Trichloroethane	0.054	6
Methoxychlor	0.25	0.18	Trichloroethylene	0.054	6
3-Methylcholanthrene	0.0055	15	Trichlorofluoromethane	0.02	30
4.4-Methylene bis(2-chloroaniline)	0.5	30	2,4,5-Trichlorophenol	0.18	7.4
Methylene chloride	0.089	30	2,4,6-Trichlorophenol	0,035	7.4
Methyl ethyl ketone	0.28	36	2,4,5-Trichlorophenoxyacetic acid/2,4,5-T	0.72	7.9
Methyl isobutyl ketone	0.14	33	1.2,3-Trichloropropane	0.85	30
Methyl methacrylate	0.14	160	1.1.2-Trichloro-1.2.2-trifluoroethane	0.057	30
Methyl methanesulfonate	0.018	NA	Triethylamine"	0.081	1.5
Methyl parathion	0.014	4.6	tris-(2.3-Dibromopropyl) phosphate	0.11	0.1
Metolcarb	0.056	-1.4	Vernolate"	0.042	1.4
Mexacarbate*	0.056	-1.4	Vinyl chloride	0.27	- 6
Molimate	0.042	1.4	Xylenes-mixed isomers (sum of o-, m-, and p-	0.32	30
Naphthalene	0,059	5.6			
2-Naphthylamine	0.52	NA	INORGANIC CONSTITUENTS	WW(mg/l)	NWW(mg/kg
o-Nitroaniline	0.27	14	Antimony	1.9	1.15
p-Nitroaniline	0.028	28	Arsenic	1.4	5.0*
Nitrobenzene	-0.068	14	Barium	1.2	-31s
5-Nitro-o-tolnidine	0.32	28	Beryllium	0.82	1.22
o-Nitrophenol	0.028	13	Cadmium	0.69	0.11
p-Nitrophenol	0.12	29	Chromium (Total)	2.77	0.60
N-Nitrosodiethylamine	0.4	28	Cyanides (Total)	1.2	590
N-Nitrosodimethylamine	0.4	2.3	Cyanides (Amenable)	0.86	30
N-Nitroso-di-n-butylamine	0.4	17	Fluoride	35	NA
N-Nitrosomethylethylamine	0.4	2.3	Lead	0.69	0.75
N-Nitrosomorpholine	0.4	2.3	Mercury-Nonwastewater from Retort	NA.	0.20
N-Nitrosopiperidine	0.013	35	Mercury—All Others	0.15	0.025
N-Nitrosopyrrolidine	0.013	35	Nickel	3.98	111*
1.2.3.4.6.7.8.9-Octachlorodibenzo-p-dioxin	0.000063	0.005	Sclenium'	0.82	5,7*
1,2,3,4,6,7,8,9-Octochlorodibenzofburm (OCDF)	0.000063	0.005	Silver	0.43	0.14
Oxamyl	0.056	0.28	Sulfide	14	NA
Parathion	0.014	4.6	Thallium	1.4	0.20
Total PCBs (sum of all PCB isomers, or all	0.1	10	Vanadium	4.3	1.68
Pebulate"	0.042	14	Zinc'	2.61	4.3*
Penrachlorobenzene	0.055	10	"Concentration in mg/l TCLP	2.01	412
PeCDDs (All Pentachlorodibenzo-p-dioxios)	0.000063	0.001	Contention in mg i ICLE		-
PecDFs (All Pentachlorodibenzofiums)	0.000035	0.001			
Pentachloroethane	0.055	6.001			
Pentachloronitrobenzene	0.055	4.8			
Pentachloronhenol	0.033	7.4			
Phenacetin	0.089	16			
Phenanthrene	0.059	5.6			
Phenol	0.039	6.2			
1,3-Phenylenediamine	0.039	0.66	4		
Phorate	0.021	4,6	1		
STATES TO THE	0.022	700	4		
Phihalic acid	0.055	28	4		
Phthalic anhydride			ł		
Physostigmine	0.056	1,4			
Physostigmine salicylate"	0,056	1.4	1		
Promecarb"	0.056	1.4			
Prominide	0.093	1.5			
Propham*	0.056	1.4			
Ргорожи	0.056	1.4			
Prosulfocarb"	0,042	1.4			
Рутепе	0.067	8.2	1		
Pyridine	0.014	16			
Safrole	0.081	22			
Silvex/2,4,5-TP	0.72	7.9			
1,2,4,5-Tetrachlorobenzene	0.055	14			
CCDDs (All Tetrachlorodibenzo-p-dioxins)	0.000063	0.001			
l'CDFs (All Tetrachlorodibenzofimans)	0,000063	0.001			
1,1,1,2-Tetrachloroethane	0.057	6			
1,1,2,2-Tetrachloroethane	0.057	6	1		
Tetrachloroethylene	0.056	6			