2014 ESTIMATES OF ANTHROPOGENIC MERCURY AIR EMISSIONS IN MICHIGAN

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Michigan Department of Environment, Great Lakes, and Energy Air Quality Division P.O. Box 30260 Lansing, Michigan 48909-7760

www.michigan.gov/air

February 2022

Executive Summary

This report is a compilation of estimates from the 2014 triennial inventory of anthropogenic mercury emissions prepared by the Michigan Department of Environment, Great Lakes, and Energy (EGLE), formerly the Michigan Department of Environmental Quality (MDEQ), Air Quality Division (AQD).

The estimates for many traditional sources, referred to as point sources, were obtained from the Michigan Air Emissions Reporting System (MAERS). Estimated emissions are reported annually to MAERS by approximately 1,700 facilities and are subject to limited quality assurance efforts by EGLE to identify, verify, and correct outlier data. Values were also obtained from United States Environmental Protection Agency's (USEPA) Toxics Release Inventory (TRI) and the 2014 National Emissions Inventory version 2 (NEI v2). Where facility-reported values were not available, the USEPA created estimates for the purposes of gap-filling for some sectors. In some instances, estimates have also been calculated by the AQD for the mercury inventory, through application of emission factors or stack test emission rates to facility-reported throughput data.

In addition to point source estimates of mercury, values are included for nonpoint sources. The nonpoint category includes small industrial, commercial, and institutional facilities, which are not large enough to trigger air emissions reporting requirements, but may collectively have significant emissions statewide. Mercury calculations were prepared by the AQD for the stationary nonpoint sector based on county employment, population data, and other inputs. Values for some categories and the mobile source sector were obtained from the 2014 NEI v2.

The triennial mercury inventory was prepared using the best available estimates at the time of the inventory's development. Due to the use of stack test-based calculations and emission factors obtained from published reports, the augmented inventory is considered more likely to represent the emissions from individual sources than values based on default emission factors. It should be noted that the enhanced estimates are not quality-assured by the facilities themselves.

There were several changes in calculation methodologies since the development of the 2011 anthropogenic mercury emissions report. This includes revisions to automobile shredding, human cremation, lamp breakage, and thermostats, based on availability of emission factors and methodologies prepared by a USEPA contractor for the nonpoint sector in the 2014 NEI v2.

Additionally, a range of values is presented for the estimated nonpoint mercury emissions from solid waste collection and processing (handling) and from burn barrels (open burning of household waste). Calculations originally developed based on a 2002 study have been used to estimate mercury emissions for these categories in Michigan's previous anthropogenic mercury inventories. However, between 2002 and 2014, there was a substantial decrease in the quantity of mercury within the solid and household waste stream. While the 2014 mercury report includes calculations made with the 2002 factor to present conservative values, the report also includes updated calculations scaled by the decline in mercury reductions achieved in the solid and household waste stream in Michigan by 2014.

This report, originally posted in July 2021, has been updated. It now adopts the 2014 NEI v2 stationary nonpoint calculations as the final values for those sectors in the mercury inventory. The original report included those estimates but used values from the USEPA Mercury Flow Diagram model as the final nonpoint numbers. While the Mercury Flow Diagram provides estimates of the emissions at different steps in the product recycling and waste streams, the 2014 NEI v2 calculations, which present total emissions, utilize the most current methodologies and emission factors, and are therefore considered the most defensible. Accordingly, the 2014 NEI v2 values have been accepted as the final values for inclusion in the statewide totals and Table 1. The Mercury Flow Diagram estimates are still presented within the report for comparison.

The category of secondary metals production (steel foundries) was revised to include an entry for Barber Steel Foundry Corporation. This facility was bankrupt and closed for several years but resumed operations in 2013. Additionally, a data entry error for nonpoint emissions from human cremation has been corrected.

The revised range of total 2014 anthropogenic mercury emissions for Michigan is 4,289 to 5,585 lbs, compared to 3,995 to 5,439 lbs. The majority of the increase is from the nonpoint categories of nonpoint auto shredding and human cremation.

TABLE OF CONTENTS

Introduction	1
Fuel Combustion	4
Coal Combustion	4
Oil Combustion	8
Natural Gas Combustion	. 15
Wood Combustion	
Tire-Derived Fuel Combustion	. 27
Petroleum Refining	
Residential LPG (Propane) Combustion	
Sewage Sludge Incineration	
Municipal Waste Incineration	
Hazardous Waste Incineration	. 31
Hospital Medical Infectious Waste Incineration	
Human Cremation (Point Source)	
Animal Cremations	
Pathological Waste Incineration	. 34
Industrial Sources	
Cement Manufacturing	
Taconite Processing	
Dental Amalgam Manufacturing	
Lime Manufacturing	
Phosphate Mills	
Brick Manufacturing	
Coke Production	
Medical Waste Autoclave	
Production of Metals	
BOFs in Primary Metal Production (Steel Manufacturing)	
BOT S IT F TIMALY MELA F TOUCCION (Steel Manufacturing)	
Electric Arc Europees in Primary Metal Production (Steel Manufacturing)	
Electric Arc Furnaces in Primary Metal Production (Steel Manufacturing)	. 39
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries)	. 40
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron)	. 40 . 41
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron)	. 40 . 41 . 41
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron)	. 40 . 41 . 41 . 43
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source)	. 40 . 41 . 41 . 43 . 44
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers	. 40 . 41 . 41 . 43 . 44 . 46
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources	. 40 . 41 . 41 . 43 . 44 . 46 . 46
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products	. 40 . 41 . 43 . 43 . 44 . 46 . 46 . 46
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam	. 40 . 41 . 43 . 44 . 46 . 46 . 46 . 46 . 47
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps	. 40 . 41 . 43 . 44 . 46 . 46 . 46 . 47 . 48
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers	. 40 . 41 . 43 . 43 . 44 . 46 . 46 . 46 . 46 . 47 . 48 . 51
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source)	. 40 . 41 . 43 . 43 . 44 . 46 . 46 . 46 . 46 . 46 . 47 . 48 . 51 . 51
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays	. 40 . 41 . 43 . 44 . 46 . 46 . 46 . 46 . 46 . 47 . 48 . 51 . 51 . 53
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats	. 40 . 41 . 43 . 44 . 46 . 46 . 46 . 46 . 46 . 46 . 47 . 48 . 51 . 51 . 53 . 54
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices	. 40 . 41 . 43 . 44 . 46 . 46 . 46 . 46 . 46 . 47 . 48 . 51 . 51 . 53 . 54 . 56
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices Thermometers	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 53 \\ . \ 56 \\ . \ 57 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source). Relay Manufacturers Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers. Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices. Thermometers Bulk Mercury	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 57 \\ . \ 58 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices Bulk Mercury Volatilization During Solid Waste Collection and Processing	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 53 \\ . \ 58 \\ . \ 58 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 57 \\ . \ 58 \\ . \ 58 \\ . \ 60 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization Burn Barrels	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 53 \\ . \ 56 \\ . \ 57 \\ . \ 58 \\ . \ 60 \\ . \ 60 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization Burn Barrels Human Cremation	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 53 \\ . \ 56 \\ . \ 57 \\ . \ 58 \\ . \ 60 \\ . \ 60 \\ . \ 62 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization Burn Barrels Human Cremation Volatilization: Land Application of Sewage Sludge	$\begin{array}{c} . 40 \\ . 41 \\ . 43 \\ . 44 \\ . 46 \\ . 46 \\ . 46 \\ . 46 \\ . 47 \\ . 51 \\ . 51 \\ . 53 \\ . 56 \\ . 57 \\ . 58 \\ . 60 \\ . 60 \\ . 62 \\ . 62 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers Nonpoint Sources Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers. Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices. Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization Burn Barrels Human Cremation Volatilization: Land Application of Sewage Sludge Contaminated Site Remediation	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 53 \\ . \ 54 \\ . \ 57 \\ . \ 58 \\ . \ 60 \\ . \ 62 \\ . \ 62 \\ . \ 62 \\ . \ 62 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source). Relay Manufacturers Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices. Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization Burn Barrels Human Cremation Volatilization: Land Application of Sewage Sludge Contaminated Site Remediation General Laboratory Activities	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 53 \\ . \ 56 \\ . \ 57 \\ . \ 58 \\ . \ 56 \\ . \ 57 \\ . \ 58 \\ . \ 60 \\ . \ 62 \\ . \ 62 \\ . \ 62 \\ . \ 62 \\ . \ 62 \end{array}$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source). Relay Manufacturers Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers. Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices. Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization. Burn Barrels Human Cremation Volatilization : Land Application of Sewage Sludge Contaminated Site Remediation General Laboratory Activities.	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 51 \\ . \ 51 \\ . \ 57 \\ . \ 58 \\ . \ 56 \\ . \ 57 \\ . \ 58 \\ . \ 60 \\ . \ 62 \\ . \ 6$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source) Relay Manufacturers. Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers. Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices. Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization Burn Barrels Human Cremation Volatilization: Land Application of Sewage Sludge Contaminated Site Remediation General Laboratory Activities Mobile Sources On-Road	$\begin{array}{c} . \ 40 \\ . \ 41 \\ . \ 41 \\ . \ 43 \\ . \ 44 \\ . \ 46 \\ . \ 46 \\ . \ 47 \\ . \ 51 \\ . \ 51 \\ . \ 57 \\ . \ 58 \\ . \ 56 \\ . \ 57 \\ . \ 58 \\ . \ 60 \\ . \ 62 \\ . \ 6$
EAFs and Electric Induction Furnaces in Secondary Metal Production (Steel Foundries) Secondary Metal Production (Grey Iron) Cupolas in Secondary Metal Production (Grey Iron) EAFs and EIFs in Secondary Metal Production (Grey Iron) Auto Switches – Shredding of Autos (Point Source). Relay Manufacturers Nonpoint Sources Mercury in Products. Dental Amalgam Fluorescent and Non-fluorescent Lamps Drum Top Crushers. Auto Switches – Shredding of Autos (Nonpoint Source) Switches and Relays Thermostats Measurement and Control Devices. Thermometers Bulk Mercury Volatilization During Solid Waste Collection and Processing Landfill Volatilization. Burn Barrels Human Cremation Volatilization : Land Application of Sewage Sludge Contaminated Site Remediation General Laboratory Activities.	$\begin{array}{c} . 40 \\ . 41 \\ . 43 \\ . 44 \\ . 46 \\ . 46 \\ . 47 \\ . 48 \\ . 51 \\ . 51 \\ . 53 \\ . 56 \\ . 57 \\ . 58 \\ . 60 \\ . 62 \\ . 62 \\ . 62 \\ . 62 \\ . 62 \\ . 62 \\ . 64 \end{array}$

2014 ESTIMATES OF ANTHROPOGENIC MERCURY AIR EMISSIONS IN MICHIGAN

Introduction

Table 1 presents the estimated values of mercury for different sectors and the statewide totals. For some categories more than one estimate was arrived at, based on different methodologies and information sources. In these instances, a range of values is presented.

Speciation profiles were applied to the mercury estimates to quantify different forms of the pollutant for each sector. These forms are particulate mercury or Hg(P), Reactive Gaseous Mercury or RGM, and elemental mercury or Hg(0).

Emission Source	Hg (lbs/yr) in 2014	2014, Iow range	2014, high range	Hg(p)	RGM	Hg(0)
FUEL COMBUSTION						
COAL COMBUSTION						
Electric Utilities	1,832.87	1,832.87	1,832.87	296.70	535.92	1000.25
Residential	0	0	0	0.00	0.00	0.00
Industrial/Commercial	214.54	214.54	214.54	42.91	64.36	107.27
Nonpoint Industrial, Institutional/Commercial	0	0	0	0.00	0.00	0.00
OIL COMBUSTION				0.00	0.00	0.00
Electric Utilities, Boilers	3.84	3.84	3.84	0.77	1.15	1.92
Electric Utilities, ICE	0.16	0.16	0.16	0.03	0.05	0.08
Residential	12.13	12.13	12.13	2.43	3.64	6.07
Industrial/Commercial Boilers	0.41	0.41	0.41	0.08	0.12	0.21
Industrial/Commercial, ICE	0.16	0.16	0.16	0.03	0.05	0.08
Nonpoint Industrial, Institutional/Commercial	9.66	9.66	9.66	1.93	2.90	4.83
NATURAL GAS COMBUSTION						
Electric Utilities	7.76E-06	7.76E-06	7.76E-06	0.00	0.00	0.00
Residential	2.84E-04	2.84E-04	2.84E-04	0.00	0.00	0.00
Industrial/Commercial Boilers	5.52E-05	5.52E-05	5.52E-05	0.00	0.00	0.00
Stationary Internal Combustion Engines	9.88E-06	9.88E-06	9.88E-06	0.00	0.00	0.00
WOOD COMBUSTION				0.00	0.00	0.00
Electric Utilities	38.01	38.01	38.01	7.60	11.40	19.01
Residential	7.20	7.20	7.20	1.44	2.16	3.60
Industrial/Commercial	37.19	37.19	37.19	7.44	11.16	18.60
Refuse-derived fuel	301.37	301.37	301.37	60.27	90.41	150.69
PETROLEUM REFINING	34.22	34.22	34.22	6.84	10.27	17.11
RESIDENTIAL LPG PROPANE COMBUSTION	5.19	5.19	5.19	1.04	1.56	2.60
TOTAL FUEL COMBUSTION	2496.95	2496.95	2496.95	429.51	735.15	1332.29

Table 1. 2014 Estimates of Anthropogenic Mercury

INCINERATION						
Sewage Sludge Incineration	139.55	139.55	139.55	27.91	80.94	30.70
Municipal Waste	17.44	17.44	17.44	3.49	10.12	3.84
Hazardous Waste Incineration	0.53 - 1.39	0.53	1.39	0.11 - 0.28	0.31 - 0.81	0.12 - 0.31
Hospital Medical Infectious Waste Incineration	NA	NA	NA	NA	NA	NA
Human Cremation (point source)	0.69	0.69	0.69	0.14	0.52	0.03
Animal Cremation (point source)	0.66	0.66	0.66	0.13	0.50	0.03
Pathological Waste Incineration	0.09	0.09	0.09	0.02	0.07	0.00
INCINERATION TOTALS	158.96 - 159.82	158.96	159.82	31.69 - 31.79	92.13 - 92.44	34.61 - 34.73
INDUSTRIAL SOURCES						
Cement Manufacturing	118.28	118.28	118.28	1.54	99.07	17.70
Taconite processing	37.95	37.95	37.95	3.80	3.80	30.36
Lime Manufacturing	23.86	23.86	23.86	2.39	2.39	19.09
Dental Amalgam Manufacturing	4	4	4	0.00	0.00	4.00
Brick Manufacturing	0.68	0.68	0.68	0.07	0.07	0.54
Coke Production	52.56	52.56	52.56	5.26	5.26	42.05
Thermometer Manufacturing	0	0	0	0.00	0.00	0.00
Medical Waste Autoclave	NA	NA	NA	NA	NA	NA
Auto Switches- shredding of autos (point source)	18.61	18.61	18.61	1.86	1.86	14.89
Relay/Switch Manufacturing	83.4	83.4	83.4	0.00	0.00	83.40
PRODUCTION OF METALS						
Primary metal production (Blast/BOF Steel Manufacturing)	137.20	137.20	137.20	13.72	13.72	109.76
EAFs in primary metal production (Steel Manufacturing)	155.96	155.96	155.96	15.60	15.60	124.77
EAFs & EIFs in secondary metal production (Steel Foundries)	16.95	16.95	16.95	1.70	1.70	13.56
Secondary metal production (Grey Iron), excluding EAFs	43.58 - 59.86	43.58	59.86	0.36 - 5.99	0.36 - 5.99	2.86 - 47.89
EAFs & EIFs in Secondary metal production (Grey Iron)	23.83 - 88.92	23.83	88.92	0.38 - 8.89	0.38 - 8.89	3.06 - 71.14
INDUSTRIAL SOURCE TOTALS	716.86 - 798.23	716.86	798.23	52.66 - 60.80	150.19 - 158.33	514.04 - 579.14

122.72	122.72	122.72	0.00	0.00	122.72
161.99	161.99	161.99	16.20	16.20	129.59
61.53	61.53	61.53	0.00	0.00	61.53
25.60	25.60	25.60	0.00	0.00	25.60
10.41	10.41	10.41	0.00	0.00	10.41
7.42	7.42	7.42	0.00	0.00	7.42
54.65	54.65	54.65	0.00	0.00	54.65
0.12 - 0.24	0.12	0.24	0.00	0.00	0.12 - 0.14
0	0	0	0.00	0.00	0.00
24.59	24.59	24.59	0.00	0.00	24.59
149.56 - 507.27	149.56	507.27	14.96 - 50.73	14.96 - 15.73	119.65 - 405.82
0.02	0.02	0.02	0.00	0.00	0.02
14.44	14.44	14.44	0.00	0.00	14.44
0.35	0.35	0.35	0.00	0.00	0.35
0	0	0	0.00	0.00	0.00
3.90	3.90	3.90	0.00	0.00	3.90
					0.29
			-	-	50.13 6.68
0.18	0.08	0.08	0.00	0.00	0.18
7.03	7.03	7.03	0.00	0.00	7.03
1.79	1.79	1.79	0.00	0.00	1.79
0	0	0	0.00	0.00	0.00
38.27 - 860.13	38.27	860.13	7.65 - 172.03	11.48 - 258.04	19.14 - 430.05
28.70	28.70	28.70	0.00	0.00	28.70
0.71	0.71	0.71	0.00	0.00	0.71
0	0	0	0.00	0.00	0.00
19.25 0.20	19.25 0.20	19.25 0.20	0.00	0.00	19.25 0.20
0.20					
0.20					
18.85	18.85	18.85	0.00	0.00	18.85
	161.99 61.53 25.60 10.41 7.42 54.65 0.12 - 0.24 0 24.59 149.56 - 507.27 0.02 144.44 0.35 0 3.90 0.29 62.66 6.68 0.18 7.03 1.79 0 38.27 - 860.13 28.70 0.711 0 38.27 - 860.13 28.70 0.71 1.79 0 38.27 - 860.13 28.70 0.71 0	161.99 161.99 61.53 61.53 25.60 25.60 10.41 10.41 7.42 7.42 54.65 54.65 0.12 - 0.24 0.12 0 0 24.59 24.59 149.56 - 507.27 149.56 507.27 149.56 507.27 149.56 0.02 0.02 144.44 14.44 0.35 0.35 0 0 3.90 3.90 3.90 3.90 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0 0 0 0 <tr< td=""><td>161.99 161.99 161.99 61.53 61.53 61.53 25.60 25.60 25.60 10.41 10.41 10.41 7.42 7.42 7.42 54.65 54.65 54.65 0.12 - 0.24 0.12 0.24 0 0 0 24.59 24.59 24.59 149.56 - 507.27 149.56 507.27 149.56 - 507.27 149.56 507.27 0.02 0.02 0.02 144.44 14.44 14.44 0.35 0.35 0.35 0 0 0 0 3.90 3.90 3.90 3.90 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.20 0.0 0 0 0.18 0.18 0.18<!--</td--><td>161.99 161.99 161.99 162.0 61.53 61.53 61.53 0.00 25.60 25.60 25.60 0.00 10.41 10.41 10.41 0.00 7.42 7.42 7.42 0.00 54.65 54.65 54.65 0.00 0.12 - 0.24 0.12 0.24 0.00 0 0 0 0.00 24.59 24.59 24.59 0.00 149.56 - 507.27 14.96 - 507.27 14.96 - 50.73 0.02 0.02 0.02 0.00 144.44 14.44 14.44 0.00 0.35 0.35 0.35 0.00 0.35 0.35 0.35 0.00 0.29 0.29 0.29 0.00 0.29 0.29 0.29 0.00 0.18 0.18 0.18 0.00 0.0 0 0 0.00 0.01 0 0.00 0.00</td><td>161.99 161.99 161.99 162.0 162.0 61.53 61.53 61.53 0.00 0.00 25.60 25.60 25.60 0.00 0.00 10.41 10.41 10.41 0.00 0.00 10.41 10.41 10.41 0.00 0.00 7.42 7.42 7.42 0.00 0.00 0.12 · 0.24 0.12 0.24 0.00 0.00 0 0 0 0 0.00 0.00 24.59 24.59 0.00 0.00 0.00 149.56 · 507.27 14.96 · 507.27 14.96 · 507.3 14.96 · 507.3 149.56 · 507.27 14.96 · 507.3 14.96 · 507.3 14.96 · 507.3 0.02 0.02 0.02 0.00 0.00 0.35 0.35 0.35 0.00 0.00 0.35 0.35 0.35 0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.29</td></td></tr<>	161.99 161.99 161.99 61.53 61.53 61.53 25.60 25.60 25.60 10.41 10.41 10.41 7.42 7.42 7.42 54.65 54.65 54.65 0.12 - 0.24 0.12 0.24 0 0 0 24.59 24.59 24.59 149.56 - 507.27 149.56 507.27 149.56 - 507.27 149.56 507.27 0.02 0.02 0.02 144.44 14.44 14.44 0.35 0.35 0.35 0 0 0 0 3.90 3.90 3.90 3.90 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.20 0.0 0 0 0.18 0.18 0.18 </td <td>161.99 161.99 161.99 162.0 61.53 61.53 61.53 0.00 25.60 25.60 25.60 0.00 10.41 10.41 10.41 0.00 7.42 7.42 7.42 0.00 54.65 54.65 54.65 0.00 0.12 - 0.24 0.12 0.24 0.00 0 0 0 0.00 24.59 24.59 24.59 0.00 149.56 - 507.27 14.96 - 507.27 14.96 - 50.73 0.02 0.02 0.02 0.00 144.44 14.44 14.44 0.00 0.35 0.35 0.35 0.00 0.35 0.35 0.35 0.00 0.29 0.29 0.29 0.00 0.29 0.29 0.29 0.00 0.18 0.18 0.18 0.00 0.0 0 0 0.00 0.01 0 0.00 0.00</td> <td>161.99 161.99 161.99 162.0 162.0 61.53 61.53 61.53 0.00 0.00 25.60 25.60 25.60 0.00 0.00 10.41 10.41 10.41 0.00 0.00 10.41 10.41 10.41 0.00 0.00 7.42 7.42 7.42 0.00 0.00 0.12 · 0.24 0.12 0.24 0.00 0.00 0 0 0 0 0.00 0.00 24.59 24.59 0.00 0.00 0.00 149.56 · 507.27 14.96 · 507.27 14.96 · 507.3 14.96 · 507.3 149.56 · 507.27 14.96 · 507.3 14.96 · 507.3 14.96 · 507.3 0.02 0.02 0.02 0.00 0.00 0.35 0.35 0.35 0.00 0.00 0.35 0.35 0.35 0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.29</td>	161.99 161.99 161.99 162.0 61.53 61.53 61.53 0.00 25.60 25.60 25.60 0.00 10.41 10.41 10.41 0.00 7.42 7.42 7.42 0.00 54.65 54.65 54.65 0.00 0.12 - 0.24 0.12 0.24 0.00 0 0 0 0.00 24.59 24.59 24.59 0.00 149.56 - 507.27 14.96 - 507.27 14.96 - 50.73 0.02 0.02 0.02 0.00 144.44 14.44 14.44 0.00 0.35 0.35 0.35 0.00 0.35 0.35 0.35 0.00 0.29 0.29 0.29 0.00 0.29 0.29 0.29 0.00 0.18 0.18 0.18 0.00 0.0 0 0 0.00 0.01 0 0.00 0.00	161.99 161.99 161.99 162.0 162.0 61.53 61.53 61.53 0.00 0.00 25.60 25.60 25.60 0.00 0.00 10.41 10.41 10.41 0.00 0.00 10.41 10.41 10.41 0.00 0.00 7.42 7.42 7.42 0.00 0.00 0.12 · 0.24 0.12 0.24 0.00 0.00 0 0 0 0 0.00 0.00 24.59 24.59 0.00 0.00 0.00 149.56 · 507.27 14.96 · 507.27 14.96 · 507.3 14.96 · 507.3 149.56 · 507.27 14.96 · 507.3 14.96 · 507.3 14.96 · 507.3 0.02 0.02 0.02 0.00 0.00 0.35 0.35 0.35 0.00 0.00 0.35 0.35 0.35 0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.29

OTHER						
Cremation	139.98	139.98	139.98	28.00	81.19	30.80
Disposal of Bulk Hg to Clean Sweep Sites	3.90	3.90	3.90	0.00	0.00	3.90
Volatilization: land application of sludge	2.5	2.5	2.5	0.25	0.25	2.00
Contaminated Site Remediation	0	0	0	0.00	0.00	0.00
AREA SOURCE TOTALS	904 - 2084	904.38	2084.07	52.32 - 253.46	72.34 - 354.67	678.72 - 1375.94
MOBILE SOURCES					-	-
On Road	0.18 - 23.82	0.18	23.82	0.0 - 0.10	0.02 - 2.05	0.16 - 21.68
Non-Road Rail and Commercial Marine	9.02	9.02	9.02	1.35	2.62	5.05
Non-Road Coal-fired Car Ferry	0.24 - 10.80	0.24	10.80	0.03 - 1.45	0.01 - 0.39	0.02 - 0.75
Nonroad Equipment and Vehicles - diesel	0.23	0.23	0.23	0.03	0.07	0.13
Nonroad Equipment and Vehicles - gasoline	1.68	1.68	1.68	0.01	0.14	1.53
Nonroad Equipment and Vehicles - other fuel types	0.39	0.39	0.39	NA	NA	NA
MOBILE SOURCE TOTALS	11.42 - 45.33	11.74	45.94	1.43 - 3.11	2.91 - 8.01	7.01 - 34.43
TOTAL Hg AIR EMISSIONS	4289 - 5585	4288.89	5585.01	589 - 799	1111 - 1407	2589 - 3379

Fuel Combustion

Coal Combustion

Electric Utilities

The estimated mercury released from coal-fired electric utilities was extracted from the USEPA's 2014 NEI v2. The point source mercury estimates from the NEI v2 were predominantly from the Michigan Air Emissions Reporting System (MAERS) 2014 emissions inventory data. Where the electric utilities did not report mercury to MAERS, the NEI v2 was gap filled with a dataset the USEPA created. This dataset, 2014EPA_EGU, utilized unit specific and "bin" average emission factors collected in support of the Mercury and Air Toxics Standards (MATS) rule. The emission factors were applied against 2014 heat input data from USEPA's Clean Air Markets Division Data.

Several of the 2014 NEI v2 values are based on the MAERS default emission estimates for mercury in cases where a facility did not report a mercury value. For the 2014 AQD mercury report, staff of the AQD's Emissions Reporting and Assessment Unit (ERAU) created an alternate estimate by applying appropriate "bin" emission factors from the MATS rule to facility throughput values and heat input data from MAERS. The following table shows where those values were utilized for this report.

SRN	Facility Name	Emission Unit ID	SCC*	Estimated mercury emissions from 2014 NEI v2 (in Ibs)	MATS emission factor- based estimate in place of MAERS default estimate	Final value for 2014 AQD mercury report (in Ibs)
B1573	Escanaba Power Plant	RG0001	10100205	6.69		6.69
B1833	Marquette Board of Light & Power	EU0003	10100226	82.46	16.64	16.64
B1833	Marquette Board of Light & Power	EU0012	10100204	1.67	0.00	0.00
B1966	White Pine Electric Power LLC	EU0082	10200204	0.00	0.00	0.00
B1966	White Pine Electric Power LLC	EU0083	10200202	0.42	0.08	0.08
B1966	White Pine Electric Power LLC	EU0084	10200202	0.00	0.00	0.00
B1976	J.B. Sims Generating Station	EU0023	10100202	47.09	3.66	3.66
B2132	Wyandotte Department of Municipal Power Plant	EU0037	10100218	1.57	0.02	0.02
B2132	Wyandotte Department of Municipal Power Plant	EU0037	10100238	0.00	0.00	0.00
B2357	Holland BPW, Generating Station & WWTP	EU0012	10100202	0.03		0.03
B2357	Holland BPW, Generating Station & WWTP	EU0013	10100202	2.63	0.74	0.74
B2357	Holland BPW, Generating Station & WWTP	EU0014	10100202	0.33		0.33
B2647	LBWL, Eckert, Moores Park & REO Cogeneration	RG0022	10100222	4.04	3.95	3.95
B2647	LBWL, Eckert, Moores Park & REO Cogeneration	RG0023	10100222	21.66	17.83	17.83
B2796	St. Clair / Belle River Power Plant	EU0105	10100222	26.70		26.70
B2796	St. Clair / Belle River Power Plant	EU0106	10100222	22.70		22.70
B2796	St. Clair / Belle River Power Plant	EU0107	10100222	18.50		18.50
B2796	St. Clair / Belle River Power Plant	EU0108	10100222	23.60		23.60
B2796	St. Clair / Belle River Power Plant	EU0110	10100226	111.00		111.00
B2796	St. Clair / Belle River Power Plant	EU0111	10100226	132.90		132.90
B2796	St. Clair / Belle River Power Plant	EU0119	10100222	148.00		148.00
B2796	St. Clair / Belle River Power Plant	EU0120	10100222	155.00		155.00
B2810	DTE - Electric Company River Rouge	EU0039	10100222	44.90		44.90
B2810	DTE - Electric Company River Rouge	EU0040	10100226	67.80		67.80
B2811	DTE - Electric Company Trenton Channel	EU0035	10100222	70.00		70.00
B2811	DTE - Electric Company Trenton Channel	RG0053	10100222	32.00		32.00
B2815	DTE - Electric Company Harbor Beach Power Plant	EU0009	10100202	0.00	0.00	0.00
B2816	DTE Electric Company - Monroe Power Plant	EU0062	10100222	29.00		29.00
B2816	DTE Electric Company - Monroe Power Plant	EU0063	10100222	30.00		30.00
B2816	DTE Electric Company - Monroe Power Plant	EU0064	10100222	20.00		20.00
B2816	DTE Electric Company - Monroe Power Plant	EU0068	10100222	64.00		64.00
B2835	J. H. Campbell Plant	EU0059	10100222	79.00		79.00
B2835	J. H. Campbell Plant	EU0061	10100202	119.60		119.60
B2835	J. H. Campbell Plant	EU0062	10100222	209.50		209.50

Table 2. Electric Utilities, Coal Combustion

B2836	B. C. Cobb Plant	RG0028	10100212	62.40		62.40
B2840	Consumers Energy Karn-Weadock Facility	RG0058	10100212	49.30		49.30
B2840	Consumers Energy Karn-Weadock Facility	RG0060	10100212	77.60		77.60
B2846	J.R. Whiting Co.	EU0019	10100202	31.30		31.30
B2846	J.R. Whiting Co.	EU0020	10100202	34.20		34.20
B2846	J.R. Whiting Co.	EU0021	10100202	48.10		48.10
B4001	LBWL, Erickson Station	EU0007	10100222	30.44	24.24	24.24
B4261	Wisconsin Electric Power Company	EU0032	10100202	0.16	0.17	0.17
B4261	Wisconsin Electric Power Company	EU0033	10100202	0.16	0.15	0.15
B4261	Wisconsin Electric Power Company	EU0034	10100222	13.72	13.68	13.68
B4261	Wisconsin Electric Power Company	EU0035	10100222	17.42	16.49	16.49
B4261	Wisconsin Electric Power Company	EU0036	10100222	18.23	16.59	16.59
B6611	Michigan South Central Power Agency	EU0003	10100202	54.84	3.90	3.90
N1685	TES Filer City Station	RG0017	10100204	0.78	0.56	0.56
N7786	DTE Pontiac North, LLC	EU0011	10100204	0.00	0	0.00
TOTALS				2011.45		1832.87

*SCC = Source Classification Codes

Residential

Residential fuel combustion estimates were generated as part of EGLE's submittal to the USEPA's 2014 NEI v2. For residential coal combustion, an emission factor of 0.00042 lbs/ton was used, along with 2014 statewide fuel consumption data from the Energy Information Administration (EIA) of the United States Department of Energy (USDoE). As zero tons of residential coal consumption were reported, mercury emissions are assumed to be zero (EGLE, 2020).

Table 3. Residential Coal Combustion

Category	Throughput tons	Emission Factor	Lbs Emitted
Residential Coal Combustion	0.00	4.20E-04	0.00

Industrial/Commercial

Point source estimates, such as those for industrial and commercial combustion of coal, were collected from MAERS. These point source estimates were generated as part of Michigan's submittal to the USEPA's 2014 NEI v2 (EGLE, 2020).

The following industrial and commercial sources of coal combustion were included in the estimate:

SRN	Facility Name	SCC	Coal in Tons	Emission Factor in Lb/Ton	Estimated Emissions in Lbs
A0884	Escanaba Paper Company	10200212	108438	4.16E-04	45.11
A6175	Nexteer Automotive Corporation	10200204	10500.00	4.16E-04	4.37
A6240	Cargill Salt - St. Clair	10100204	23576.10	4.16E-04	9.81
A6380	Abbott Nutrition	10200205	0.00	4.16E-04	0.00
A6475	MPI Acquisition, LLC	10200204	51038.00	4.16E-04	21.23
B1470	Neenah Paper - Michigan Inc	10200204	47866.00	4.16E-04	19.91
B1563	Great Lakes Tissue	10200205	0.00	4.16E-04	0.00
B1824	Morton Salt, Inc.	10100205	49247.00	NA	20.49
B2873	Michigan Sugar Company - Sebewaing Factory	10100204	25485.00	4.16E-04	10.60
B2875	Michigan Sugar Company, Caro Factory	10100204	5977.00	4.16E-04	2.49
B2876	Michigan Sugar Company, Croswell Factory	10100204	18155.00	4.16E-04	7.55
B3610	Pharmacia & Upjohn Co LLC, a Subsidiary of Pfizer	10200204	38414.01	4.16E-04	15.98
B3692	Packaging Corporation of America - Filer City Mill	10100202	517.70	4.16E-04	0.22
B6420	E.B. Eddy Paper Inc.	10200202	53338.00	4.16E-04	22.19
B7192	Verso Quinnesec, LLC	10200204	808.00	4.16E-04	0.34
B7227	General Motors LLC - Orion Assembly	10200204	0.00	4.16E-04	0.00
K3249	Michigan State University	10300206	15540.90	4.16E-04	6.47
K3249	Michigan State University	10300218	52763.20	4.16E-04	21.95
N0677	Steelcase Inc Kentwood Complex	10100204	14035.80	4.16E-04	5.84
TOTAL					214.54

Nonpoint Coal Combustion, Industrial and Commercial-Institutional

Within the 2014 NEI v2, the USEPA estimated zero lbs of mercury emissions from nonpoint industrial and commercial-institutional sources that burned coal.

Table 5.	Nonpoint Combustion of	f Coal from Indust	rial and Commercial-ins	titutional Sources
----------	------------------------	--------------------	-------------------------	--------------------

Data Source	Mercury emissions in Ibs	Nonpoint Sector
2014 NEI v2	0.00	Fuel Comb - Industrial Boilers, ICEs - Coal
2014 NEI v2	0.00	Fuel Comb - Comm/Institutional - Coal
Total	0.00	

Oil Combustion

Electric Utilities, External Combustion Boilers

Mercury emissions from oil-fired electric utilities were estimated using data from MAERS as part of Michigan's submittal to the USEPA's 2014 NEI v2 (EGLE, 2020). The oil combustion, or throughput, is expressed in thousands of gallons (E3GAL). The following sources were included in the estimate for oil-fired boilers:

SRN	Facility Name	SCC	Factor in LB/E3GAL	Oil in E3GAL	Estimated Emissions in Lbs
B1833	Marquette Board Of Light & Power	10100501	4.20E-04	11.40	0.00
B2647	LBWL, Eckert, Moores Park & REO Cogeneration	10100501	4.20E-04	128.32	0.05
B2796	St. Clair / Belle River Power Plant	10100401	1.13E-04	0.00	0.00
B2796	St. Clair / Belle River Power Plant	10100501	4.20E-04	2184.89	0.92
B2796	St. Clair / Belle River Power Plant	10200501	4.20E-04	7.33	0.00
B2811	DTE - Electric Company Trenton Channel	10100501	4.20E-04	1701.03	0.71
B2815	DTE - Electric Company Harbor Beach Power Plant	10100501	4.20E-04	0.00	0.00
B2815	DTE - Electric Company Harbor Beach Power Plant	10200501	4.20E-04	0.00	0.00
B2816	DTE Electric Company - Monroe Power Plant	10100501	4.20E-04	1441.54	0.61
B2816	DTE Electric Company - Monroe Power Plant	10200501	4.20E-04	456.33	0.19
B2835	J.H. Campbell Plant	10100501	4.20E-04	1214.70	0.29
B2840	Consumers Energy Karn-Weadock Facility	10100401	1.13E-04	524.80	0.06
B2840	Consumers Energy Karn-Weadock Facility	10100501	4.20E-04	1169.80	0.49
B2846	J.R. Whiting Co.	10100501	4.20E-04	439.82	0.18
B2846	J.R. Whiting Co.	10200501	4.20E-04	9.66	0.00
B2934	Palisades Nuclear Plant	10200501	4.20E-04	86.45	0.04
B4001	LBWL, Erickson Station	10100501	4.20E-04	93.31	0.04
B4252	AEP Cook Nuclear Plant	10100501	4.20E-04	17.44	0.01
B4252	AEP Cook Nuclear Plant	10200501	4.20E-04	0.00	0.00
B4261	Wisconsin Electric Power Company	10100501	4.20E-04	500.00	0.21
B6145	DTE - Electric Company Greenwood Energy Center	10100401	1.13E-04	7.05	0.00
B6145	DTE - Electric Company Greenwood Energy Center	10100501	4.20E-04	60.40	0.03
B6145	DTE - Electric Company Greenwood Energy Center	10200401	1.13E-04	0.00	0.00
B6145	DTE - Electric Company Greenwood Energy Center	10200501	4.20E-04	0.00	0.00
B6611	Michigan South Central Power Agency	10100501	4.20E-04	5.28	0.00
TOTAL					3.84

Table 6. E	Electric Utilities,	External C	Combustion	Boilers
------------	---------------------	------------	------------	---------

Electric Utilities, Stationary Internal Combustion Engines

Oil-fired, stationary internal combustion engines were separated from oil-fired, external combustion boilers in the report to provide greater clarity. Throughput and emissions from facilities with electric-generating units (EGU) are presented below for 2014, based on data from MAERS and standard USEPA emission factors. Mercury in the amount of 0.16 lbs was estimated for this sector.

SRN	Facility Name	SCC	Emission Factor in Lb/E3 GAL	Diesel Fuel in E3 GAL	Estimated Emissions in Lbs
B1573	Escanaba Power Plant	20100101	1.644E-04	163.81	0.03
B2185	Detroit Public Lighting Department	20100101	1.644E-04	0.00	0.00
B2806	DTE - Electric Company Superior	20100101	1.644E-04	0.04	0.00
B2808	DTE - Electric Company Northeast Station	20100101	1.644E-04	82.18	0.01
B2835	J.H. Campbell Plant	20100101	1.644E-04	0.64	0.00
B2846	J.R. Whiting Co.	20100101	1.644E-04	0.00	0.00
B4321	The DTE Electric Company - Fermi Energy Center	20100101	1.644E-04	613.36	0.10
B6553	UPPCO Portage Station	20100101	1.644E-04	54.85	0.01
N2586	Holland BPW, 48Th Street Peaking Station	20100101	1.644E-04	16.90	0.00
N6000	Holland Board of Public Works	20100101	1.644E-04	10.46	0.00
N6171	Wolverine Power, Tower Power Plant	20100101	1.644E-04	54.70	0.01
N6249	Wolverine Power, Vestaburg Power Plant	20100101	1.644E-04	0.00	0.00
TOTAL					0.16

Table 7. Electric Utilities, Stationary Internal Combustion Engines

Residential

For estimating mercury emitted by residential oil combustion, an emission factor of 0.00042 lbs/1,000 gallons was used along with 2014 statewide fuel consumption data from the EIA, USDoE to generate estimated emissions of mercury (EGLE, 2020).

Table 8. Residential Oil Combustion

Category	Throughput E3GAL	Emission Factor	Lbs Emitted
Residential Oil Combustion	28,869.00	4.200E-04	12.13

Industrial/Commercial (External Combustion Boilers)

Point source estimates such as those for industrial and commercial combustion of oil were collected from MAERS (EGLE, 2020). These point source estimates were generated as part of Michigan's submittal to USEPA's 2014 NEI v2. The following industrial and commercial oil-fired, external combustion boilers were included in the estimate.

SRN	Facility Name	SCC	Oil in E3 GAL	Emission Factor in Lb/E3 GAL	Estimated Emissions in Lbs
A0023	Otsego Paper Inc.	10200501	0	4.20E-04	0.0000
A0884	Escanaba Paper Company	10200401	496.847	1.13E0-04	0.0562
A2402	2 Access Business Group, LLC		3.95	4.20E-04	0.0017
A2402	Access Business Group, LLC	10200501	0.396	4.20E-04	0.0002
A2849	Wacker Chemical Corp	10200501	0	4.20E-04	0.0000
A5858	Mead Johnson & Company, LLC	10200501	0	4.20E-04	0.0000
A6218	Dunn Paper, Inc.	10200401	0	1.13E0-04	0.0000
A6218	Dunn Paper, Inc.	10200501	0	4.20E-04	0.0000
A6240	Cargill Salt - St. Clair	10200501	0	4.20E-04	0.0000
A6475	MPI Acquisition, LLC	10200501	0	4.20E-04	0.0000
B1470	Neenah Paper - Michigan Inc.	10200501	0.087	4.20E-04	0.0000
B1479	Certainteed Ceilings Corporation	10200501	0	4.20E-04	0.0000
B1534	Graphic Packaging International, Inc.	10200401	0	1.13E0-04	0.0000
B1606	General Motors LLC Flint Assembly	10200501	0.059	4.20E-04	0.0000
B1678	Graphic Packaging International, Inc.	10200401	0	1.13E0-04	0.0000
B1678	Graphic Packaging International, Inc.	10200501	0	4.20E-04	0.0000
B1798	General Motors LLC- Warren Transmission Plant	10200401	0	1.13E0-04	0.0000
B1827	Empire Iron Mining Partnership	10200501	0	4.20E-04	0.0000
B2024	White Pigeon Paper Company	10200401	0	1.13E0-04	0.0000
B2024	White Pigeon Paper Company	10200501	0	4.20E-04	0.0000
B2052	Racer Trust - Willow Run Plant Industrial Land	10200501	0	4.20E-04	0.0000
B2064	Ford Motor Co./Rawsonville Plant	10200501	0	4.20E-04	0.0000
B2814	Detroit Thermal Beacon Heating Plant	10300501	0	4.20E-04	0.0000
B3610	Pharmacia & Upjohn Co LLC, A Subsidiary of Pfizer	10200501	0	4.20E-04	0.0000
B4049	GM Technical Center	10200401	0	1.13E0-04	0.0000
B4072	Rock-Tenn Co.	10200401	3.15	NA	0.0004
B6420	E.B. Eddy Paper Inc.	10200501	5.68	4.20E-04	0.0024
D8065	Dart Container Corporation of Michigan	10300501	0.336	4.20E-04	0.0001
E6807	Spectrum Health Blodgett Campus	10200503	0.019	NA	0.0000
G5252	Oakland Co. Service Center - Central Steam Plant	10200401	10.6	1.13E0-04	0.0012
H5877	Eastern MI University	10300501	12.946	4.20E-04	0.0054
K1271	Henry Ford Hospital	10300501	0.652	4.20E-04	0.0003
K1283	Oakwood Southshore Medical Center	10300501	0.02	4.20E-04	0.0000
K2460	Central Michigan University	10300501	0.1	4.20E-04	0.0000
K2688	B.O.P. Federal Correctional Institute	10300501	1.6	4.20E-04	0.0007
M0675	University of Michigan	10300501	55.024	4.20E-04	0.0231
M1954	Covenant Health Care	10300501	300	4.20E-04	0.1260
M3431	St Joseph Mercy Hospital	10300501	7.8	4.20E-04	0.0033
M3641	University of Michigan Flint	10200501	0	4.20E-04	0.0000
M3653	V A Medical Center	10300501	4.5355	4.20E-04	0.0019
M3792	Northern Michigan University	10300501	60.719	4.20E-04	0.0255
M4148	Detroit Renewable Power, LLC	10100501	389.8	4.20E-04	0.1637
N0780	Louisiana-Pacific Corp Newberry Plant	10200501	0.108	4.20E-04	0.0000
N5930	Delta College	10100501	0	4.20E-04	0.0000
N6016	Genesys Regional Medical Center	10300501	1.1	4.20E-04	0.0005
TOTAL				-	0.4126

Table 9.	Industrial/Commercial	External	Combustion Boilers))

Stationary Internal Combustion Engines (Oil-Fired, Industrial/Commercial)

Oil-fired, stationary internal combustion engines were separated from oil-fired, external combustion boilers in the report to provide greater clarity. Throughput and emissions from commercial/industrial facilities are presented below for 2014, based on data from MAERS and standard USEPA emission factors. Mercury in the amount of 0.059 lbs was estimated for this sector.

SRN	Facility Name	SCC	Diesel Fuel in E3 gal.	Emission Factor in Lb/E3 gal.	Est. Emissions (Ibs)
A1641	General Motors Lansing Grand River Assembly	20200102	1.693	4.129E-05	0.00007
A3567	Ford Motor Company - Sterling Plant	20200102	0.727	4.129E-05	0.00003
A3569	Axalta Coating Systems, LLC - Mt. Clemens Plant	20200102	1.548	4.129E-05	0.00006
A4043	Dow Corning - Midland Plant	20200102	0.982	4.129E-05	0.00004
A5764	Ventra Evart, LLC	20200102	0.15	4.129E-05	0.00001
A5858	Mead Johnson & Company, LLC	20200102	0.395	4.129E-05	0.00002
A8638	Detroit Diesel Corporation	20200102	2.299	4.129E-05	0.00009
A8640	Ak Steel - Dearborn Works	20200102	5.985	4.129E-05	0.00025
A8645	Ford Motor Co Livonia Transmission	20200102	0.647	4.129E-05	0.00003
A8648	Ford Motor Co. Rouge Complex	20200102	1.6471	4.129E-05	0.00007
B1548	Post Foods	20200102	0.0422	4.129E-05	0.00000
B1771	Ford Motor Company - Van Dyke Plant	20200102	1.492	4.129E-05	0.00006
B1798	General Motors LLC - Warren Transmission Plant	20200102	0.49	4.129E-05	0.00002
B1991	GM LLC Saginaw Metal Casting Operations	20200102	1.31	4.129E-05	0.00005
B2063	Faurecia Interior Systems Saline, LLC	20200102	0.93265	4.129E-05	0.00004
B2064	Ford Motor Co Rawsonville Plant	20200102	0.48	4.129E-05	0.00002
B2209	Eaton Corporation - Galesburg Campus	20200102	121.5	4.129E-05	0.00502
B2869	Ford Motor Company - Romeo Engine Plant	20200102	0.5231	4.129E-05	0.00002
B2956	Ford Motor Co. New Model Program Center	20200102			0.00000
B3241	Ford Motor Co. Brownstown	20200102	0.0791	4.129E-05	0.00000
B3350	FCA Us LLC – Trenton Engine Complex	20200102	0.175	4.129E-05	0.00001
B3534	Edw. C. Levy Co. Plant 2 Portable Crusher	20200102	10.5	4.129E-05	0.00043
B3610	Pharmacia & Upjohn Co LLC, a Subsidiary of Pfizer	20200102	2.67	4.129E-05	0.00011
B4032	General Motors LLC - Pontiac North Campus	20200102	3.29	4.129E-05	0.00014
B4058	Rieth-Riley Construction Co., Inc.	20200102	11.709	4.129E-05	0.00048
B4072	Rock-Tenn Co.	20200102	0.183	4.129E-05	0.00000
B4102	U S Gypsum Co.	20200102	12.08	4.129E-05	0.00050
B4147	Rieth-Riley Construction Co. Inc.	20200102	7.3	4.129E-05	0.00030
B4164	Bolen Asphalt Paving, Inc.	20200102	11.4	4.129E-05	0.00047
B4288	Zoetis P&U LLC	20200102	0.20691	4.129E-05	0.00001
B4383	Kasson Sand And Gravel	20200102	12.795	4.129E-05	0.00053
	1	1		1	

Table 10. Stationary Internal Combustion Engines (Oil-Fired, Industrial/Commercial)

			I		
B6177	Wiegand's Crushing, Inc.	20200102	23.28328	4.129E-05	0.00096
B6230	Ford Motor Co. Research & Dev Center	20200102	2.07	4.129E-05	0.00009
B6508	Clinton Village Of	20200102	0.493	4.129E-05	0.00002
B7013	Huron Casting Inc. & Blue Diamond Steel Casting	20300102	0	1.668E-04	0.00000
B7090	Michigan Milk Producers Association	20100101	3.19	1.644E-04	0.00052
B7205	Knauf Insulation, LLC	20200102	4.658	4.129E-05	0.00019
B7302	Weyerhaeuser NR Company	20200102	0.714	4.129E-05	0.00003
D8065	Dart Container Corporation of Michigan	20200102	10.54	4.129E-05	0.00044
F3254	Selfridge Air National Guard Base	20300102	2.48	1.644E-04	0.00041
G7126	Grand Valley State University	20200102	0.963	4.129E-05	0.00004
K2460	Central Michigan University	20200102	0.5	4.129E-05	0.00002
M0675	University of Michigan	20200102	3.88	4.129E-05	0.00016
M0675	University of Michigan	20200103	0	1.668E-04	0.00000
M4174	Detroit Metropolitan Wayne County Airport	20100101	3.225	1.644E-04	0.00053
M4175	Ford Motor Co	20200102	0.734	4.129E-05	0.00003
M4199	General Motors Hamtramck	20200102	1.34	4.129E-05	0.00006
M4731	Ajax Paving Industries, Inc.	20200102	0	4.129E-05	0.00000
N0503	Lyon Sand & Gravel Co - Rap Plant	20200102	27.9	4.129E-05	0.00115
N0677	Steelcase Inc Kentwood Complex	20100101	0.054	1.644E-04	0.00001
N0929	Ford Motor Company - Flat Rock Assembly	20200102	1.3361	4.129E-05	0.00006
N1192	Denso Manufacturing Michigan, Inc.	20200102	0.3072	4.129E-05	0.00001
N1316	Njt Enterprises, LLC (Formally Mayco Plastics)	20200102	1.19	4.129E-05	0.00005
N1357	Rieth-Riley Construction Co Inc.	20200102	0	4.129E-05	0.00000
N1594	Rieth-Riley Construction Co, Inc.	20200102	2.368	4.129E-05	0.00010
N1656	Albrecht Sand and Gravel	20200102	29.02	4.129E-05	0.00120
N1905	Bolen Asphalt Paving, Inc.	20200102	9.52	4.129E-05	0.00039
N1917	Ajax Paving Industries, Inc.	20200102	26	4.129E-05	0.00107
N2155	FCA US LLC - Jefferson North Assembly Plant	20200102	0.836	4.129E-05	0.00002
N2184	Rieth-Riley Construction Co. Inc.	20200102	39.146	4.129E-05	0.00162
N2627	Great Lakes Aggregates, Hazmag Plant	20200102	39.624	4.129E-05	0.00164
N3152	American Aggregates of Michigan Eljay 54	20200102	0	4.129E-05	0.00000
N3177	Aggregate Industries - AC3 Portable Plant	20200102	4.752	4.129E-05	0.00020
N3396	A & E Agg. Inc (Plant 1) - Brown Road, Orion Twp.	20200102	15.33	4.129E-05	0.00063
N3435	Balkema Excavating/Aggregate Resources Plant 102	20200102	11.566	4.129E-05	0.00048
N3631	GS Materials, LLC	20200102	20.679	4.129E-05	0.00085
N5131	Balkema Excavating/Aggregate Resources Plant 103	20200102	6.53	4.129E-05	0.00027
N5241	Great Lakes Aggregates, LLC - Sylvania Minerals	20200102	0	4.129E-05	0.00000
N5476	R E Glancy Inc.	20200102	0	4.129E-05	0.00000
N5477	R E Glancy Inc.	20200102	10.34	4.129E-05	0.00043
N5748	Elmer's Crane and Dozer, Inc.	20200102	8.883	4.129E-05	0.00037
N5816	Aggregate & Developing LLC	20200102	0	4.129E-05	0.00000

N5819	Elmer's Crane and Dozer, Inc.	20200102	1.476	4.129E-05	0.00006
N5841	Halliday Sand & Gravel Inc - Plant #2	20200102	19.4	4.129E-05	0.00080
N5842	Halliday Sand & Gravel Inc - Plant #3	20200102	20	4.129E-05	0.00083
N5963	R E Glancy Inc.	20200102	11.55	4.129E-05	0.00048
N5998	Aggregate Industries - Nb1 Portable Plant	20200102	19.1768	4.129E-05	0.00079
N6022	Rieth-Riley Construction Co., Inc.	20200102	3.899	4.129E-05	0.00016
N6197	Aggregate Industries - AC2 Portable Plant	20200102	4.8928	4.129E-05	0.00020
N6283	Aggregate Industries - Day Road	20200102	32.1344	4.129E-05	0.00133
N6306	Hanlee Equipment LLC	20200102	107.182	4.129E-05	0.00443
N6307	Halliday Sand & Gravel, Plant #1 225-97A	20200102	0	4.129E-05	0.00000
N6338	Tri City Aggregates	20200102	0	4.129E-05	0.00000
N6355	R.E. Glancy, Inc.	20200102	6.12	4.129E-05	0.00025
N6385	Mid-Michigan Materials Inc.	20200102	2.254	4.129E-05	0.00009
N6413	Rieth-Riley Construction Co., Inc.	20200102	32.55	4.129E-05	0.00134
N6429	Halliday Sand & Gravel (945 Cone)	20200102	12.2	4.129E-05	0.00050
N6430	Halliday Sand and Gravel	20200102	7.6	4.129E-05	0.00031
N6432	Tri City Aggregates	20200102	18.311	4.129E-05	0.00076
N6448	Manthei Development Corp/ MDC Contracting, LLC	20200102	3.8	4.129E-05	0.00016
N6453	Elmer's Crane and Dozer, Inc.	20200102	7.567	4.129E-05	0.00031
N6481	Undine, Inc.	20200102	0.85	4.129E-05	0.00004
N6488	Lc Materials	20200102	10.9	4.129E-05	0.00045
N6548	Ottawa Aggregates Inc.	20200102	0	4.129E-05	0.00000
N6589	Balkema Excavating, Inc Portable Plant 101	20200102	0	4.129E-05	0.00000
N6599	Florence Cement Company, Inc.	20200102	3.056	4.129E-05	0.00013
N6600	Florence Cement Co. Inc.	20200102	4.396	4.129E-05	0.00018
N6608	Rieth-Riley Construction Co., Inc.	20200102	70.805	4.129E-05	0.00292
N6626	Alphagen Power LLC - Jackson Power Facility	20200102	0.2652	4.129E-05	0.00001
N6631	Dearborn Industrial Generation	20200102	2.97	4.129E-05	0.00012
N6664	Custom Crushing & Recycle, Inc.	20200102	50.8	4.129E-05	0.00210
N6704	Hubscher & Son, Inc Pioneer 50Ve Portable	20200102	4.573	4.129E-05	0.00019
N6705	Hubscher And Son, Inc Cedarapids 443	20200102	4.837	4.129E-05	0.00020
N6749	Carrick Gravel And Crushing	20200102	10.761	4.129E-05	0.00044
N6750	Elmer's Crane and Dozer, Inc.	20200102	0	4.129E-05	0.00000
N6762	Dykema Excavators Inc.	20200102	4.998	4.129E-05	0.00021
N6804	Klett Recycle, Inc.	20200102	8.32	4.129E-05	0.00034
N6837	Rock Recyclers	20200102	52.872	4.129E-05	0.00218
N6848	Parker Excavating Gravel & Recycling Inc.	20200102	0	4.129E-05	0.00000
N6849	Parker Excavating Gravel & Recycle Inc.	20200102	2.058	4.129E-05	0.00008
N6850	Parker Excavating Gravel & Recycle Inc.	20200102	3.444	4.129E-05	0.00014
N6851	Parker Excavating Gravel & Recycle Inc.	20200102	8.211	4.129E-05	0.00034
N6861	Custom Crushing Lakeshore	20200102	43.3	4.129E-05	0.00179
N6880	Carr Brothers & Sons Inc Plant 2	20200102	11.796	4.129E-05	0.00049

		1	1		
N6883	Carr Brothers & Sons Inc Plant 1	20200102	6.344	4.129E-05	0.00026
N6901	R. Smith & Sons, Inc Plant #1	20200102	19	4.129E-05	0.00078
N6913	Searles Construction - 45 Plant	20200102	13.52	4.129E-05	0.00056
N6914	Searles Construction - Wash Plant	20200102	5.445	4.129E-05	0.00022
N6950	General Motors LLC-Lansing Delta Township	20200102	1.231	4.129E-05	0.00005
N6957	Halliday Sand and Gravel Inc. (6000 Cone Plant)	20200102	12.2	4.129E-05	0.00050
N7011	Grosso Trucking and Supply Company	20200102	5.7	4.129E-05	0.00024
N7151	Paul Bechtel Sand and Gravel LLC	20200102	10.35	4.129E-05	0.00043
N7168	American Aggregates-Telsmith 52G Portable Crusher	20200102	11.1	4.129E-05	0.00046
N7232	Carl Schlegel, Inc.	20200102	0.256	4.129E-05	0.00001
N7259	Alpena Aggregate Inc.	20200102	23.341	4.129E-05	0.00096
N7288	Weber Sand and Gravel, Inc Cedar Rapids	20200102	13.326	4.129E-05	0.00055
N7375	American Aggregates of Michigan, Inc. Sandvik Cone	20200102	8	4.129E-05	0.00033
N7383	Green Plains Holdings II LLC	20200102	2.44	4.129E-05	0.00010
N7385	K & K Crushing and Leasing	20200102	0.94	4.129E-05	0.00004
N7390	Balkema Excavating IncPlant 104	20200102	0	4.129E-05	0.00000
N7392	Mack Truck & Weigand's Crushed Concrete	20200102	22.50249176	4.129E-05	0.00093
N7407	Barber Creek Sand and Gravel, Inc.	20200102	11.289	4.129E-05	0.00047
N7595	R. Smith and Sons Inc.	20200102	12	4.129E-05	0.00050
N7618	Great Lakes Aggregates LLC Terex Facility	20200102	4.428	4.129E-05	0.00018
N7858	Tri City Aggregates	20200102	6.518	4.129E-05	0.00027
N7886	Hyundai-Kia America Technical Center Inc. (Hatci)	20200102	0.18	4.129E-05	0.00001
N7981	Aggregate & Developing LLC - Superior Pit	20200102	15.082	4.129E-05	0.00062
N7996	Florence Cement Plant #741	20200102	3.804	4.129E-05	0.00016
N8066	Carl Schlegel Inc.	20200102	0.59	4.129E-05	0.00002
N8078	Joy Construction & Leasing Inc.	20200102	0.03	4.129E-05	0.00000
N8162	Clayton Unit CPF	20200102	0.6894	4.129E-05	0.00003
N8252	Barber Creek Sand and Gravel	20200102	2.9778	4.129E-05	0.00012
P0197	Bierlein Companies, Inc.	20200102	0.18	4.129E-05	0.00001
P0269	Bierlein Companies, Inc.	20200102	1.35	4.129E-05	0.00006
P0315	Jule Swartz & Sons Excavating-Mann Road Concord	20200101	1.2	1.680E-04	0.00020
P0333	D & R Demolition LLC	20200102	0	4.129E-05	0.00000
P0358	Kraken Crushed Concrete & Recycling - Northville	20200102	6.766	4.129E-05	0.00028
P0377	Florence Cement Company	20200102	2.024	4.129E-05	0.00008
P0411	Revolution Onsite Crushing	20200102	5.544	4.129E-05	0.00023
P0456	Holz Sand & Gravel, LLC	20200102	0.85		0.00004
P0504	Toebe Construction Rex Plant 2	20200102	8.176	4.129E-05	0.00034
P0526	Heritage Resources, Inc.	20200102	12.29	4.129E-05	0.00051
P0533	L & L Construction Co.	20200102	7.2757	4.129E-05	0.00030
P0539	Weber Sand & Gravel IncNorth Branch	20200102	6.488	4.129E-05	0.00027
TOTAL					0.05918

Nonpoint Oil Combustion, Industrial and Commercial-Institutional

Within the 2014 NEI v2, the USEPA estimated a total of 9.66 lbs of mercury emissions from nonpoint industrial and commercial-institutional sources that burned oil. This includes boilers and internal combustion engines.

Data Source	Mercury Emissions (Ibs)	Nonpoint Sector
2014 NEI v2	6.86	Fuel Comb Industrial Boilers, ICEs - Oil
2014 NEI v2	2.80	Fuel Comb Comm/Institutional - Oil
Total	9.66	

Table 11. Nonpoint Combustion of Oil from Industrial and Commercial-institutional Sources

Natural Gas Combustion

Electric Utilities

Mercury emissions from natural gas-fired electric utilities were estimated using an emission factor published by the Electric Power Research Institute (EPRI 1996 for natural gas combustion. Throughput, or natural gas consumption, is expressed in millions of cubic feet (MMCF). The EPRI factor of 8.00E-10 lb/MMCF is several orders of magnitude lower than the USEPA emission factor used in MAERS, which is 2.6E-04 lb/MMCF. The result is that the estimated mercury emissions for this category drop to 7.76E-06 lbs statewide, compared to the MAERS estimate of 1.95 lbs for 2014 (McGeen, 2020).

The following sources are included in the estimate for emissions from natural gas-fired electric utilities.

SRN	Facility Name	scc	Natural Gas in MMCF	MAERS Factor in Lb/MMCF	Estimated Emissions in Lbs from MAERS	EPRI Factor in Lb/MMCF	EPRI-based Emissions Estimates in Lbs
B1966	White Pine Electric Power LLC	10200602	309.00	2.60E-04	0.08034	8.00E-10	2.47E-07
B1976	J.B. Sims Generating Station	10100601	44.00	2.60E-04	0.01144	8.00E-10	3.52E-08
B1976	J.B. Sims Generating Station	10200602	7.23	2.60E-04	0.00188	8.00E-10	5.78E-09
B2132	Wyandotte Dept. of Municipal Power Plant	10100601	1552.63	2.60E-04	0.16527	8.00E-10	1.24E-06
B2357	Holland BPW, Generating Station & WWTP	10100601	29.22	2.60E-04	0.00760	8.00E-10	2.34E-08
B2796	St. Clair / Belle River Power Plant	10100601	222.76	2.60E-04	0.05792	8.00E-10	1.78E-07
B2796	St. Clair / Belle River Power Plant	10100604	305.92	2.60E-04	0.07954	8.00E-10	2.45E-07
B2810	DTE - Electric Company River Rouge	10100601	805.99	2.60E-04	0.20960	8.00E-10	6.45E-07
B2810	DTE - Electric Company River Rouge	10100604	639.09	2.60E-04	0.16620	8.00E-10	5.11E-07
B2810	DTE - Electric Company River Rouge	10200601	71.03	2.60E-04	0.01847	8.00E-10	5.68E-08
B2815	DTE - Electric Company Harbor Beach Power Plant	10200602	0.00	2.60E-04	0.00000	8.00E-10	0.00E+00
B2836	B. C. Cobb Plant	10100604	275.80	2.60E-04	0.07171	8.00E-10	2.21E-07

						-	
B2836	B. C. Cobb Plant	10200602	6.82	2.60E-04	0.00177	8.00E-10	5.46E-09
B2840	Consumers Energy Karn-Weadock Facility	10100601	166.60	2.60E-04	0.04331	8.00E-10	1.33E-07
B2840	Consumers Energy Karn-Weadock Facility	10100602	0.11	2.60E-04	0.00003	8.00E-10	8.48E-11
B2840	Consumers Energy Karn-Weadock Facility	10100604	138.90	2.60E-04	0.03611	8.00E-10	1.11E-07
B4260	L'Anse Warden Electric Company LLC	10100601	29.00	2.60E-04	0.00302	8.00E-10	2.32E-08
B6145	DTE - Electric Company Greenwood Energy Center	10100601	1810.94	2.60E-04	0.47080	8.00E-10	1.45E-06
B6145	DTE - Electric Company Greenwood Energy Center	10200602	22.53	2.60E-04	0.00586	8.00E-10	1.80E-08
B6611	Michigan South Central Power Agency	10100601	7.37	2.60E-04	0.00192	8.00E-10	5.90E-09
B6611	Michigan South Central Power Agency	10100602	4.40	2.60E-04	0.00114	8.00E-10	3.52E-09
B6636	Consumers Energy - Ray Compressor Station	10200602	14.96	2.60E-04	0.00389	8.00E-10	1.20E-08
B6636	Consumers Energy - Ray Compressor Station	10300602	26.37	2.60E-04	0.00686	8.00E-10	2.11E-08
B6636	Consumers Energy - Ray Compressor Station	10300603	4.17	2.60E-04	0.00109	8.00E-10	3.34E-09
N0890	Viking Energy of Lincoln, LLC	10100601	1258.00	2.60E-04	0.00000	8.00E-10	1.01E-06
N1099	Consumers Energy - Northville Compressor Station	10300603	0.97	2.60E-04	0.00025	8.00E-10	7.74E-10
N1160	Viking Energy of McBain	10100601	1876.00	2.60E-04	0.48780	8.00E-10	1.50E-06
N1266	Hillman Power Co.	10100602	0.03	2.60E-04	0.00001	8.00E-10	2.00E-11
N2388	Grayling Generating Station Limited Partnership	10100601	0.38	2.60E-04	0.00010	8.00E-10	3.04E-10
N3391	DTE Gas Company - Washington 10 Compressor Station	10200602	58.47	2.60E-04	0.01520	8.00E-10	4.68E-08
N3570	Genesee Power Station Limited Partnership	10100601	4.20	2.60E-04	0.00109	8.00E-10	3.36E-09
N5573	Consumers Energy - White Pigeon Compressor Station	10300603	6.03	2.60E-04	0.00157	8.00E-10	4.82E-09
N7786	DTE Pontiac North, LLC	10300601	0.00	2.60E-04	0.00000	8.00E-10	0.00E+00
TOTAL					1.95177		7.76E-06

Residential

For residential natural gas combustion, the EPRI emission factor of 8.0E-10 lb/MMCF was used along with 2014 statewide fuel consumption data from the EIA, USDoE to generate estimated emissions of mercury (EGLE, 2020). This resulted in statewide total emissions from this category of 2.84E-04 lbs, compared to the estimate of 92.30 lbs, which is based on the WebFIRE natural gas combustion factor of 2.60E-04 lb/MMCF.

Table 13. Residential, Natural Gas Combustion

Category	Throughput MMCF	Emission Factor	Lbs Emitted
Residential Natural Gas Combustion	355,000.00	8.00E-10	0.000284

Industrial/Commercial Boilers

For natural gas combustion from Industrial and Commercial boilers, the EPRI emission factor of 8.0E-10 lb/MMCF was utilized, along with 2014 activity data from MAERS. The statewide total mercury emissions estimated for this category were 5.52E05 lbs. The MAERS estimate, based on the standard USEPA factor, was 17.77 lbs for this category.

The following industrial and commercial sources of natural gas combustion were included in the estimate:

SRN	Facility Name	scc	Natural Gas in MMCF	MAERS Emission Factor in Lb/MMCF	MAERS Emission Estimates in Lbs	EPRI Emission Factor in Lb/MMCF	EPRI-based Emission Estimates in Lbs
A0023	Otsego Paper Inc.	10200601	22.49	2.60E-04	0.0058	8E-10	1.799E-08
A0402	Menasha Packaging Company, LLC - Coloma Plant	10200602	44.74	2.60E-04	0.0116	8E-10	3.579E-08
A0563	Kellogg USA Inc.	10200602	391.94	2.60E-04	0.1019	8E-10	3.136E-07
A0884	Escanaba Paper Company	10200601	1138.57	2.60E-04	0.2960	8E-10	9.109E-07
A0884	Escanaba Paper Company	10200602	315.60	2.60E-04	0.0821	8E-10	2.525E-07
A1640	Demmer Corp.	10200602	12.40	2.60E-04	0.0032	8E-10	9.920E-09
A1864	Industrial Steel Treat Co.	10300603	214.26	2.60E-04	0.0557	8E-10	1.714E-07
A1932	Royal Adhesives & Sealants	10300603	184.40	2.60E-04	0.0479	8E-10	1.475E-07
A1991	Kalsec, Incorporated	10200602	56.84	2.60E-04	0.0148	8E-10	4.547E-08
A2396	Leon Plastics	10300603	0.34	2.60E-04	0.0001	8E-10	2.720E-10
A2402	Access Business Group, LLC	10100602	4.60	2.60E-04	0.0012	8E-10	3.680E-09
A2402	Access Business Group, LLC	10200602	72.67	2.60E-04	0.0189	8E-10	5.814E-08
A2620	Gm Components Holdings, LLC	10200601	0.00	2.60E-04	0.0000	8E-10	0.000E+00
A2620	Gm Components Holdings, LLC	10200602	183.75	2.60E-04	0.0478	8E-10	1.470E-07
A2849	Wacker Chemical Corp.	10200602	43.85	2.60E-04	0.0114	8E-10	3.508E-08
A3567	Ford Motor Company - Sterling Plant	10200601	220.94	2.60E-04	0.0574	8E-10	1.767E-07
A3567	Ford Motor Company - Sterling Plant	10200602	126.89	2.60E-04	0.0330	8E-10	1.015E-07
A3569	Axalta Coating Systems, LLC- Mt Clemens Plant	10200602	25.74	2.60E-04	0.0067	8E-10	2.059E-08
A4033	The Dow Chemical Company U.S.A., Midland	10200601	8.70	2.60E-04	0.0023	8E-10	6.960E-09
A4033	The Dow Chemical Company U.S.A., Midland	10200602	160.00	2.60E-04	0.0416	8E-10	1.280E-07
A4043	Dow Corning - Midland Plant	10200601	1457.59	2.60E-04	0.3790	8E-10	1.166E-06
A4043	Dow Corning - Midland Plant	10200602	160.38	2.60E-04	0.0417	8E-10	1.283E-07
A4285	Lorin Industries	10200602	40.40	2.60E-04	0.0105	8E-10	3.232E-08
A4338	Gerber Products Co.	10200601	45.43	2.60E-04	0.0118	8E-10	3.634E-08
A4338	Gerber Products Co.	10200602	253.36	2.60E-04	0.0659	8E-10	2.027E-07
A4741	Michigan Seamless Tube, LLC	10200602	119.17	2.60E-04	0.0310	8E-10	9.534E-08
A5262	General Motors LLC - Milford Proving Ground	10300602	344.26	2.60E-04	0.0895	8E-10	2.754E-07
A5806	Hillshire Brands Company	10200602	172.23	2.60E-04	0.0448	8E-10	1.378E-07
A5858	Mead Johnson & Company, LLC	10200602	167.89	2.60E-04	0.0437	8E-10	1.343E-07
A6175	Nexteer Automotive Corporation	10200602	521.61	2.60E-04	0.1356	8E-10	4.173E-07
A6218	Dunn Paper, Inc.	10200602	414.61	2.60E-04	0.1078	8E-10	3.317E-07
A6220	Intertape Polymer Group	10200602	99.94	2.60E-04	0.0260	8E-10	7.995E-08
A6240	Cargill Salt - St. Clair	10200601	936.20	2.60E-04	0.2435	8E-10	7.490E-07
A6240	Cargill Salt - St. Clair	10200602	63.50	2.60E-04	0.0165	8E-10	5.080E-08
A6380	Abbott Nutrition	10200602	380.02	2.60E-04	0.0988	8E-10	3.040E-07
A6475	MPI Acquisition, LLC	10200602	0.00	2.60E-04	0.0000	8E-10	0.000E+00
A6714	Georgia-Pacific Corrugated II LLC	10200602	56.13	2.60E-04	0.0146	8E-10	4.490E-08
A6902	Darling Ingredients Inc.	10200602	39.04	2.60E-04	0.0102	8E-10	3.123E-08
A7757	US Silica Co	10200602	93.97	2.60E-04	0.0244	8E-10	7.518E-08
A7809	US Steel Great Lakes Works	10200602	1681.71	2.60E-04	0.4372	8E-10	1.345E-06
A8448	Durr Systems, Inc.	10100602	25.11	2.60E-04	0.0065	8E-10	2.009E-08
A8638	Detroit Diesel Corporation	10200602	252.91	2.60E-04	0.0658	8E-10	2.023E-07
A8645	Ford Motor Co/ Livonia Transmission	10200601	132.02	2.60E-04	0.0343	8E-10	1.056E-07
A8645	Ford Motor Co/ Livonia Transmission	10200602	117.36	2.60E-04	0.0305	8E-10	9.389E-08
A8648	Ford Motor Co Rouge Complex	10200602	51.19	2.60E-04	0.0133	8E-10	4.095E-08
A8650	Ford Motor Co/ Wayne Complex	10100602	144.64	2.60E-04	0.0376	8E-10	1.157E-07
A8651	Ford Motor Company, Woodhaven Stamping Plant	10200602	12.97	2.60E-04	0.0034	8E-10	1.037E-08
B0785	Quaker Chemical Corp.	10200602	50.49	2.60E-04	0.0131	8E-10	4.039E-08

Bit/L Nearbain Paper - Notingan Inc. 10.20001 12.13 2.068-40 0.0083 08-10 5.208-40 Bit/L Decompany - Bay (Campany - Bay City 10.200001 218.60 0.0566 08-10 2.028-40 Bit/L Decompany - Bay City 10.200001 218.60 2.068-40 0.0281 0.566 08-10 2.854.42 2.068-40 0.0295 08-10 0.184.67 Bit/L Decompany - Bay City 10.200001 1142.42 2.068-40 0.0181 0.184.67 Bit/L Decompany - Noting -	D4 470	Needel Deserver Miskinger Lee	40000004	40.00	0.005.04	0.0004	05.40	0.0045.00
B1438 Michigan Sugar Company - Bay Gily. 12200001 2384.00 2.605-04 0.2051 BE-10 1.708E-60 B1528 Daming Ingredientis Inc. 10200001 144.00 2.605-04 0.2081 BE-10 3.138E-07 B1537 RaiCorphic Packaging International, Inc. 10200001 442.49 2.605-04 0.0131 BE-10 3.439E-07 B1538 Grant Labes Tissue 10200001 429.90 2.605-04 0.0158 BE-10 3.439E-07 B1640 Com Custome Care & Altrostales - Swartz Creek 10200602 450.27 2.605-04 0.0458 BE-10 1.309E-07 B1670 Granter Mators LLE Finit Assembly 10200601 226.01-2 0.0652 BE-10 1.309E-07 B1671 Antex USA Inc. 10200601 226.01-2 0.0678 BE-10 1.3026 B1713 Kardt Motor Company-Van Dyko Plant 10200602 283.11 2.605-04 0.0078 BE-10 3.508E-08 B1771 Ford Motor Company-Van Dyko Plant 10200602 0.663 2.605-04 0.	B1470	Neenah Paper - Michigan Inc.	10200601	12.03	2.60E-04	0.0031	8E-10	9.624E-09
Bitsd Carling Ingrediants Inc. 12200022 394:34 2.606-40 0.0281 8E-10 2.838-67 Bitsd Graph Endexign International, Inc. 102000602 142.42 2.606-40 0.0370 8E-10 1.348-67 Bitsd Great Lakes Tissue 10200802 176.30 2.806-40 0.0458 8E-10 1.348-67 Bitsd Great Lakes Tissue 10200802 176.30 2.806-40 0.0458 8E-10 1.3496-67 Bitos Great Lakes Tissue 10200802 105.00 2.606-44 0.0452 8E-10 2.007E-67 Bitos Great Mators LLC Flint Assembly 10200801 2.806-44 0.0523 8E-10 2.207E-67 Bit71 Graphic Packaging International, Inc. 10200801 2.806-44 0.0562 8E-10 3.236E-68 Bit717 Ford Mator Company-Van Dyke Plant 10200801 2.806-44 0.0076 8E-10 3.236E-68 Bit717 Ford Mator Company-Van Dyke Plant 10200802 2.806-44 0.0003 8E-10 3.586E-68	-		-					-
B1537 Rac/nor. Phadings. Inc. 10200001 1148.00 2.005-04 0.0370 BE-10 9.1148-07 B1547 RaC/nor. Phadings. Inc. 10200001 424.24 2.005-04 0.01118 BE-10 1.1396-07 B1543 Grant Labes Tissue 10200001 429.00 2.005-04 0.0131 BE-10 1.4398-07 B1564 Finit Water Pollution Control Facility 10300602 50.27 2.605-04 0.0142 BE-10 1.4056-7 B1666 General Moors LLC Finit Assembly 10200602 280.17 2.605-04 0.0422 BE-10 1.305E-30 B1677 Almex USA Inc. 10100602 283.01 2.605-04 0.0768 BE-10 1.305E-30 B1771 Ford Motor Company-Van Dyke Plant 10200602 28.11 2.605-04 0.0078 BE-10 1.505E-30 B1784 Motor Company-Van Dyke Plant 10200602 14.81 2.605-04 0.0028 BE-10 1.507E-30 B1844 Motor Salt, Inc. 101000602 27.82 2.605-04 0.0			-					
B1537 RalCorp. Hodings, Inc. 10200602 142.42 2.606-04 0.0370 B6-10 1.138E-07 B1548 Post Provide 10200602 178.30 2.606-04 0.0448 B6-10 1.430E-07 B1598 Filt Water Pollution Control Facility 10200602 59.27 2.606-04 0.0442 BE-10 1.306E-07 B1694 Gun Castomer Control Facility 10200602 2805.44 0.0442 BE-10 1.306E-07 B1676 Graphic Packaging International, Inc. 10200601 2281.77 2.606-04 0.0766 BE-10 1.326F-60 B1717 Ford Motor Company-van Dyke Plant 10200601 2281.77 2.606-04 0.0076 BE-10 1.326F-60 B1771 Ford Motor Company-van Dyke Plant 10200602 186.51 2.206E-04 0.0028 BE-10 8.508E-60 B1781 General Motors LLC. Waren Trasmission Plant 10200602 12.606-04 0.0002 BE-10 8.508E-60 B1785 Moroto Sati, Inc. 10200602 7.87 2.606-04 0.0002								
Bifsa Fonds Fonds Ber-10 3.439E-07 Bifsa Great Lakes Tissue 10200602 77.30 2.60E-04 0.0438 8E-10 4.04022-08 Bifsa Great Lakes Tissue Advances Swartz Creek 10200802 168.8 2.60E-04 0.0432 8E-10 4.022E-08 Bifsa Great Advances Swartz Creek 10200801 228.01 2.60E-04 0.0452 8E-10 2.007E-07 Bifsa Great Advances Swartz Creek 10200801 228.01 2.60E-04 0.0523 8E-10 2.2007E-07 Bifra Graphic Packaging International. Inc. 10200601 228.11 2.60E-04 0.0698 8E-10 3.00BE-08 Bifra Graphic Packaging International. Inc. 10200602 163.81 2.60E-04 0.0088 8E-10 5.60E-04 0.0088 8E-10 5.60E-04 0.0028 8E-10 5.60E-04 0.0028 8E-10 5.60E-04 0.0003 8E-10 2.60E-04 0.0007 8E-10 2.209E-08 18184 Morton Salu, Inc.<								
B1583 Great Lakes Tissue 10200002 178.30 2.60E-04 0.0433 8E-10 1.410E-07 B1508 Firt Water Pollution Contol Facility 10200002 120.27 2.60E-04 0.0432 8E-10 1.020E7-07 B1604 General Motors LLC Firth Assembly 10200601 220.84 2.60E-04 0.0452 8E-10 2.228E-07 B1677 Allnex USA Inc. 10100602 2281.77 2.60E-04 0.0738 8E-10 2.228E-08 B1717 Graphic Packaging International Inc. 10200601 2.281.77 2.60E-04 0.0078 8E-10 3.238E-08 B1717 Ford Motor Company-Van Dyke Plant 10200602 108.53 2.60E-04 0.0082 8E-10 3.60E-04 0.882 6.60E-04 0.882 0.60E-04 0.882 <								
B1598 Fint Water Folknion Control Facility 10300602 50.27 2.60E-34 0.0131 8E-10 4.022E-08 B1604 Gn Customer Care & Althersales - Swartz Creek 10200801 250.84 2.60E-04 0.0452 8E-10 2.207E-07 B1676 General Motors LLC Flint Assembly 10200801 228.10 2.60E-04 0.0652 8E-10 2.207E-07 B1677 Altinex USA Inc. 10200801 27.60 0.0733 8E-10 2.208E-08 B1771 Ford Motor Company-Van Dyke Plant 10200802 28.11 2.60E-04 0.0088 8E-10 5.008E-08 B1781 Ford Motor Company-Van Dyke Plant 10200802 0.652 2.60E-04 0.0083 8E-10 5.80E-08 B1824 Motorn Sat, Inc. 10100804 0.986 2.60E-04 0.0002 8E-10 5.209E-10 B1824 Motorn Sat, Inc. 10200602 12.63 2.60E-04 0.0002 8E-10 3.209E-07 B1824 Motorn Sat, Inc. 10200602 7.87 2.60E-04 0.0002								
B1600 Gm Customer Care & Aftersales - Swartz Creek 10200602 168.8 2.00E-04 0.0442 8E-10 1.328E-07 B1670 Greneri Morts LLC Thirt Assembly 10100802 283.01 2.60E-04 0.0736 8E-10 2.207E-07 B177 Almex USA Inc. 10200801 2281.77 2.60E-04 0.076 BE-10 2.325E-06 B1771 Ford Motor Company-Van Dyke Plant 10200802 281.1 2.60E-04 0.076 BE-10 3.235E-06 B1771 Ford Motor Company-Van Dyke Plant 10200802 108.53 2.60E-04 0.0782 BE-10 3.60E-08 B1785 General Motors LLC. Warren Transmission Plant 10200802 108.53 2.60E-04 0.0052 BE-10 3.289E-07 B1824 Motor Salt, Inc. 10200802 2.63 2.60E-04 0.0002 BE-10 3.299E-07 B1824 Motor Salt, Inc. 10200802 7.87 2.60E-04 0.0004 BE-10 3.299E-07 B1824 Motor Salt, Inc. 10200802 7.87 2.60E-04								
B1606 General Motors LLC Finr Assembly 10200601 250.84 2.60E-04 0.0736 BE-10 2.207E-07 B1677 Almerican Seating Company 10200601 2281.77 2.60E-04 0.0736 BE-10 2.238E-06 B1713 American Seating Company 10200601 2.811 2.60E-04 0.0086 BE-10 3.238E-06 B1717 Ford Motor Company-Van Dyke Plant 10200602 64.81 2.00E-04 0.0088 BE-10 5.188E-08 B1708 General Motors LLC Narren Transmission Plant 10100604 0.38 2.60E-04 0.0003 BE-10 7.80E-08 B1824 Moton Salt, Inc. 10200602 2.68 2.60E-04 0.0007 8E-10 2.20E-08 B1825 Menominee Acquisition Corporation 10200602 2.86 2.60E-04 0.0007 8E-10 2.20E-08 B1925 Diversified Machine Montague, LLC 10200602 17.87 2.60E-04 0.0000 8E-10 1.20E-08 B1945 Guikter-Fiirt 10200602 72.78 2.60E-04 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
B1677 Allnex USA Inc. 10100602 283.01 2.261E-04 0.5333 8E-10 2.284E-07 B178 Graphic Packaging International, Inc. 10200601 2281.17 2.66E-04 0.5333 8E-10 1.825E-06 B1771 Ford Motor Company-Van Dyke Plant 10200602 28.11 2.60E-04 0.0076 6E-10 2.329E-08 B1781 Ford Motor Company-Van Dyke Plant 10200602 4.681 2.00E-04 0.0199 8E-10 3.008E-08 B1798 General Motor Sult, Inc. 10100602 2.141 2.60E-04 0.0022 8E-10 8.682E-08 B1824 Morton Salt, Inc. 10100602 2.46E-04 0.0002 8E-10 5.280E-10 B1825 Morton Salt, Inc. 10200602 2.68 2.60E-04 0.0007 8E-10 3.299E-07 B1824 Morton Salt, Inc. 10200602 2.46 2.60E-04 0.0002 8E-10 3.299E-07 B1825 Diversified Machine Montague, LLC 10200602 7.84 2.60E-04 0.00024 8E-10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
B1678 Graphic Packaging International, Inc. 10200601 2281.77 2.408-04 0.0076 BE-10 1.825E-06 B1713 American Seating Company 10200601 37.60 2.608-04 0.0098 BE-10 3.008E-08 B1717 Ford Motor Company-Van Dyke Plant 10200601 37.60 2.608-04 0.0098 BE-10 5.185E-08 B1786 General Motors LIC-Warren Transmission Plant 10100602 10.83 2.608-04 0.0032 BE-10 7.8082-08 B1824 Moton Salt, Inc. 10100604 0.88 2.608-04 0.0003 BE-10 7.809E-07 B1824 Morton Salt, Inc. 10200602 2.681 2.608-04 0.0007 BE-10 5.280E-10 B1825 Menominee Acquisition Corporation 10200602 7.87 2.608-04 0.0004 BE-10 1.928E-08 B1945 Quiktret-Fiint 10200602 15.67 2.606-04 0.0004 BE-10 1.988E-08 B1945 Duiktret-Fiint 10200602 15.67 2.606-04 0.0			-					
B1713 American Sealing Company-Van Dyke Plant 10200602 29.11 2.60E-04 0.0076 8E-10 2.328E-08 B1771 Ford Motor Company-Van Dyke Plant 10200602 64.81 2.60E-04 0.0076 8E-10 5.188E-08 B1788 General Motor Cumpany-Van Dyke Plant 10200602 64.81 2.60E-04 0.0582 8E-10 8.188E-08 B1801 FCA US LLC, Stefing Stamping Plant 10100602 212.41 2.60E-04 0.0032 8E-10 1.809E-07 B1824 Moton Salt, Inc. 10200602 25.63 2.60E-04 0.0007 8E-10 2.508E-08 B1825 Menominee Acquisition Corporation 10200602 2.787 2.60E-04 0.0007 8E-10 1.988E-08 B1912 L3 Communications Corp: Combal Propulsion 10200602 2.787 2.60E-04 0.0004 8E-10 1.988E-08 B1914 Guikrete-Flint 10200602 15.57 2.60E-04 0.0042 8E-10 1.988E-08 B1919 Guikrete-Stele Foundry Corporation 10200602 77.								
B1771 Ford Motor Company-Van Dyke Plant 10200602 64.81 2.60E-04 0.098 8E-10 3.008E-08 B1781 General Motors LC-Waren Transmission Plant 10200602 108.63 2.60E-04 0.0282 8E-10 8.682E-08 B1780 General Motors LLC-Waren Transmission Plant 10100604 0.083 2.60E-04 0.0282 8E-10 1.689E-07 B1824 Moton Salt, Inc. 10100604 0.88 2.60E-04 0.0002 8E-10 7.840E-10 B1824 Moton Salt, Inc. 10200602 2.63 2.60E-04 0.0002 8E-10 3.298E-07 B1825 Menominee Acquisition Corporation 10200602 7.87 2.60E-04 0.0004 8E-10 3.298E-07 B1912 Systems Systems 10200602 7.87 2.60E-04 0.0004 8E-10 1.302E-08 B1915 Machine Hontague, LLC 10200602 16.57 2.60E-04 0.0042 8E-10 1.302E-08 B1916 Butcher-Flint 10200602 16.57 2.60E-04			-					
B1771 Ford Motor Company-Van Dyke Plant 10200602 64.81 2.60E-04 0.0169 8E-10 5.188E-08 B1788 General Motors LLC- Warren Transmission Plant 10100602 212.41 2.60E-04 0.0552 8E-10 1.699E-07 B1824 Moton Salt, Inc. 10100604 0.88 2.60E-04 0.0003 8E-10 7.340E-10 B1824 Moton Salt, Inc. 10200602 2.563 2.60E-04 0.0007 8E-10 2.508E-08 B1825 Menominee Acquisition Corporation 10200602 2.563 2.60E-04 0.0007 8E-10 3.298E-07 B1912 L3 Communications Corp: Combat Propulsion 10200602 7.87 2.60E-04 0.0004 8E-10 1.968E-08 B1945 Quikrete-Flint 10200602 15.57 2.60E-04 0.0042 8E-10 1.968E-08 B1941 Gm LLC Saginaw Matal Casting Operations 10200602 77.84 2.60E-04 0.0017 8E-10 2.568E-08 B2014 Day International, Inc. 10200602 77.84 2.		o	10200602		2.60E-04	0.0076		
Bit788 General Motors LLC: Waren Transmission Plant 10200802 108.53 2.60E-04 0.0282 8E-10 8.682E-08 B1801 FCA US LLC, Sterling Stamping Plant 10100602 212.41 2.60E-04 0.0032 8E-10 7.640E-10 B1824 Morton Salt, Inc. 10200602 0.66 2.60E-04 0.0002 8E-10 7.540E-10 B1825 Empriler Ion Mining Partnership 10200602 2.53 2.60E-04 0.0007 8E-10 3.299E-07 B1915 Culture-Irinit 10200602 7.87 2.60E-04 0.0004 8E-10 1.246E-08 B1945 Diversilied Machine Montague, LLC 10200602 1.6.57 2.60E-04 0.0044 8E-10 1.302E-08 B1945 Diversilied Machine Montague, LLC 10200602 16.27 2.60E-04 0.0042 8E-10 1.302E-08 B1945 Diversilied Machine Montague, LLC 10200602 278.54 2.60E-04 0.0012 8E-10 2.308E-07 B2014 Day International, Inc. A Flint Group Company 10200602 <			10200601		2.60E-04			
B1801 FCA US LLC. Sterling Stamping Plant 10100604 212.41 2.60E-04 0.0552 8E-10 7.840E-10 B1824 Morton Salt, Inc. 10100604 0.98 2.60E-04 0.0003 8E-10 7.840E-10 B1824 Morton Salt, Inc. 10200602 2.63.3 2.60E-04 0.0007 8E-10 2.208E-08 B1855 Morninee Acquisition Corporation 10200602 412.43 2.60E-04 0.0064 8E-10 2.329E-07 B1915 Diversified Machine Montague, LLC 10200602 7.87 2.60E-04 0.0044 8E-10 1.968E-08 B1914 Guikrete-Finit 10200602 7.87 2.60E-04 0.0044 8E-10 1.968E-08 B1916 Guikrete-Finit 10200602 77.87 2.60E-04 0.0042 8E-10 1.968E-08 B2013 Ox Papetoard of Michigan, LLC 10200602 77.54 2.60E-04 0.0185 8E-10 2.239E-07 B2014 Day International, Inc. A Fint Group Company 10200602 395.34 2.60E-04 <td< td=""><td>B1771</td><td></td><td>10200602</td><td></td><td></td><td></td><td></td><td></td></td<>	B1771		10200602					
B1824 Morton Salt, Inc. 10 1000604 0.98 2.60E-04 0.0003 8E-10 7.440E-10 B1824 Morton Salt, Inc. 10200602 2.663 2.60E-04 0.0007 8E-10 2.205E-04 B1825 Empire Iron Mining Partnership 10200602 2412.43 2.60E-04 0.0028 8E-10 3.299E-07 B1915 Communications Corp: Combat Propulsion 10200602 7.87 2.60E-04 0.0020 8E-10 1.298E-09 B1925 Diversified Machine Montague, LLC 10200602 24.60 2.60E-04 0.0040 8E-10 1.248E-08 B1945 Quikrete-Fiint 10200602 15.57 2.60E-04 0.0042 8E-10 1.248E-08 B1991 But LC Saginaw Meal Casting Operations 10200602 278.78 2.60E-04 0.0072 8E-10 2.230E-07 B2014 Day International, Inc. A Fiint Grup Company 10200602 278.78 2.60E-04 0.0072 8E-10 2.233E-07 B2024 White Pigoen Paper Company 10200602 39.34<			10200602					
B1824 Morton Salt, Inc. 10200802 0.66 2.60E-04 0.0002 8E-10 5.280E-10 B1825 Tempire Iron Mining Partnership 10200602 25.63 2.60E-04 0.0072 8E-10 2.60E-08 B1855 Menominee Acquisition Corporation 10200602 742.43 2.60E-04 0.0020 8E-10 6.298E-09 B1912 Systems 10200602 24.60 2.60E-04 0.0040 8E-10 1.302E-08 B1945 Duiversified Machine Montague, LLC 10200602 16.27 2.60E-04 0.0042 8E-10 1.302E-08 B1961 Bartler Steel Foundry Corporation 10200602 77.87 2.60E-04 0.0042 8E-10 1.302E-08 B1961 Bartler Steel Foundry Corporation 10200602 77.84 2.60E-04 0.0073 8E-10 2.308E-07 B2013 Ox Paperboard of Michigan, LLC 10200602 73.54 2.60E-04 0.0073 8E-10 2.338E-08 B2024 White Pigeon Paper Company 10200601 38.94 2.60E-04			-					
B1827 Empire Iron Mining Partnership 10200602 25.63 2.60E-04 0.0067 8E-10 2.050E-08 B1855 Menominee Acquisition Corporation 10200602 7.87 2.60E-04 0.0027 8E-10 3.298E-07 B1912 Li3 Communications Corp: Combat Propulsion 10200602 7.87 2.60E-04 0.0020 8E-10 1.298E-08 B1945 Quixrete-Flint 10200602 24.60 2.60E-04 0.0040 8E-10 1.248E-08 B1941 Barber Steel Foundry Corporation 10200602 71.24 2.60E-04 0.0072 8E-10 1.302E-08 B2013 Dx Paperboard of Michigan, LLC 10200602 73.54 2.60E-04 0.0073 8E-10 2.328E-07 B2024 White Pigeon Paper Company 10200602 29.81 2.60E-04 0.0034 8E-10 1.582E-07 B2025 Merearch 10300602 99.34 2.60E-04 0.0046 8E-10 1.582E-07 B2026 Racer Trust - Willow Run Plant Industrial Land 10200602 98.50 2.	B1824		10100604	0.98		0.0003		7.840E-10
B1855 Menominee Acquisition Corporation 10200602 412.43 2.60E-04 0.1072 8E-10 3.299E-07 B1912 L-3 Communications Corp. Combat Propulsion Systems 10200602 7.87 2.60E-04 0.0020 8E-10 6.298E-09 B1925 Diversified Machine Montague, LLC 10200602 16.57 2.60E-04 0.0040 8E-10 1.302E-08 B1945 Quikrete-Finit 10200602 16.27 2.60E-04 0.0042 8E-10 1.302E-08 B1961 Barber Steel Foundry Corporation 10200602 278.78 2.60E-04 0.0042 8E-10 1.302E-08 B2013 Ox Paperboard of Michigan, LLC 10200602 278.78 2.60E-04 0.0073 8E-10 2.838E-08 B2024 White Pigeon Paper Company 10200602 395.34 2.60E-04 0.0026 8E-10 1.828E-07 B2025 RAGE Trust - Willow Run Plant Industrial Land 10200602 39.93 2.60E-04 0.0026 8E-10 1.582E-07 B2026 MPI Research 10300602 197.80								
B112 L-3 Communications Corp: Combat Propulsion 10200602 7.87 2.60E-04 0.0020 8E-10 6.298E-09 B1925 Diversified Machine Montague, LLC 10200602 24.60 2.60E-04 0.0064 8E-10 1.968E-08 B1946 Barber Steel Foundry Corporation 10200602 15.57 2.60E-04 0.0042 8E-10 1.302E-08 B1991 Barber Steel Foundry Corporation 10200602 71.24 2.60E-04 0.0183 8E-10 2.20E-07 B2013 Ox Paperboard of Michigan, LLC 10200602 73.78 2.60E-04 0.0072 8E-10 2.230E-07 B2024 White Pigeon Paper Company 10200602 78.78 2.60E-04 0.0073 8E-10 2.241E-08 B2024 White Pigeon Paper Company 10200602 9.81 2.60E-04 0.0026 8E-10 7.846E-09 B2030 MPI Research 10300602 197.80 2.60E-04 0.0248 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 <td></td> <td></td> <td>10200602</td> <td>25.63</td> <td>2.60E-04</td> <td>0.0067</td> <td></td> <td>2.050E-08</td>			10200602	25.63	2.60E-04	0.0067		2.050E-08
B192 Systems 1020002 7.6 2.00-40 0.00-40 0.00-40 0.00-40 0.00-40 0.00-40 0.00-40 0.00-40 0.00-40 0.00-40 0.00-64 0.00-72 8E-10 5.898-50 0.00-64 0.00-72 8E-10 2.80-6-70 0.00-73 8E-10 2.80-67 0.00-73 8E-10 2.80-67 0.00-73 8E-10 2.80-67 0.00-73 8E-10 2.80-67 0.00-73 8E-10 7.85-67 82024 White Pigeon Paper Company 10200602 1.81 2.60E-40 0.00-74 8E-10 7.852-67 820-50 Reru VII-80 0.80-60 0.00	B1855		10200602	412.43	2.60E-04	0.1072	8E-10	3.299E-07
B1945 Quikrete-Flint 10200602 15.57 2.60E-04 0.0040 8E-10 1.246E-08 B1961 Barber Steel Foundry Corporation 10200602 11.24 2.60E-04 0.0042 8E-10 1.302E-08 B1991 Gm LLC Saginaw Metal Casting Operations 10200602 278.78 2.60E-04 0.0072 8E-10 2.230E-07 B2014 Day International, Inc. A Flint Group Company 10200602 73.54 2.60E-04 0.0073 8E-10 2.238E-08 B2024 White Pigeon Paper Company 10200602 9.81 2.60E-04 0.00934 8E-10 7.84E-09 B2050 MPI Research 10300602 197.80 2.60E-04 0.0004 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 6.61 2.60E-04 0.0014 8E-10 0.5333E-08 B2064 Ford Motor Co/Rawsonville Plant 10200602	B1912		10200602	7.87	2.60E-04	0.0020	8E-10	6.298E-09
B1961 Barber Steel Foundry Corporation 10200602 16.27 2.60E-04 0.0042 8E-10 5.699E-08 B1991 Gm LLC Saginaw Metal Casting Operations 10200602 77.87 2.60E-04 0.0185 8E-10 5.699E-08 B2013 Ox Paperboard of Michigan, LLC 10200602 73.54 2.60E-04 0.0073 8E-10 2.230E-07 B2024 White Pigeon Paper Company 10200601 28.01 2.60E-04 0.0073 8E-10 2.847E-07 B2024 White Pigeon Paper Company 10200602 359.34 2.60E-04 0.0026 8E-10 7.846E-09 B2050 MPI Research 10300602 197.80 2.60E-04 0.0004 8E-10 1.52E-07 B2050 MPI Research 10300602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 166.91 2.60E-04 0.00174 8E-10 5.353E-08 B2054 Ford Motor CorRawsonville Plant 10200602 168.92 2.60	B1925	Diversified Machine Montague, LLC	10200602	24.60	2.60E-04	0.0064	8E-10	1.968E-08
B1991 Gm LLC Saginaw Metal Casting Operations 10200602 71:24 2.60E-04 0.0185 8E-10 5.699E-08 B2013 Ox Paperboard of Michigan, LLC 10200602 773.54 2.60E-04 0.0072 8E-10 2.230E-07 B2024 White Pigeon Paper Company 10200601 28.01 2.60E-04 0.0073 8E-10 2.241E-08 B2024 White Pigeon Paper Company 10200602 359.34 2.60E-04 0.0073 8E-10 2.241E-08 B2032 FCA US LLC 10200602 197.80 2.60E-04 0.0264 8E-10 1.562E-07 B2050 MPI Research 10300603 95.90 2.60E-04 0.0026 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.66.91 2.60E-04 0.0000 8E-10 0.000E+00 B2053 Faurecia Interior Systems Saline, LLC 10200602 166.91 2.60E-04 0.0174 8E-10 5.33E-08 B2064 Ford Motor Co/Rawsonville Plant 10200602 158.92 <t< td=""><td>B1945</td><td>Quikrete-Flint</td><td>10200602</td><td>15.57</td><td>2.60E-04</td><td>0.0040</td><td>8E-10</td><td>1.246E-08</td></t<>	B1945	Quikrete-Flint	10200602	15.57	2.60E-04	0.0040	8E-10	1.246E-08
B2013 Ox Paperboard of Michigan, LLC 10200602 278.78 2.60E-04 0.0072 8E-10 2.230E-07 B2014 Day International, Inc. A Flint Group Company 10200601 28.01 2.60E-04 0.0191 8E-10 5.833E-08 B2024 White Pigeon Paper Company 10200602 359.34 2.60E-04 0.0934 8E-10 2.87E-07 B2032 FCA US LLC 10200602 9.81 2.60E-04 0.0934 8E-10 7.846E-09 B2050 MPI Research 10300602 9.9.0 2.60E-04 0.0004 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2053 Faurecia Interior Systems Saline, LLC 10200602 10.601 2.60E-04 0.00174 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10200602 168.92 2.60E-04 0.0174 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10200602 2.60E-04	B1961	Barber Steel Foundry Corporation	10200602	16.27	2.60E-04	0.0042	8E-10	1.302E-08
B2014 Day International, Inc. A Flint Group Company 10200602 73.54 2.60E-04 0.0191 8E-10 5.883E-08 B2024 White Pigeon Paper Company 10200601 2.801 2.60E-04 0.0073 8E-10 2.241E-08 B2032 FCA US LLC 10200602 9.81 2.60E-04 0.0026 8E-10 7.846E-09 B2050 MPI Research 10300602 197.80 2.60E-04 0.0024 8E-10 1.582E-07 B2050 MPI Research 10300602 197.80 2.60E-04 0.0024 8E-10 1.582E-07 B2052 Racer Trust - Willow Run Plant Industrial Land 10200601 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0171 8E-10 1.5353E-08 B2064 Ford Motor Co/Rawsonville Plant 10300602 46.40 2.60E-04 0.0012 8E-10 1.271E-07 B2158 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 46.40	B1991	Gm LLC Saginaw Metal Casting Operations	10200602	71.24	2.60E-04	0.0185	8E-10	5.699E-08
B2024 White Pigeon Paper Company 10200601 28.01 2.60E-04 0.0073 8E-10 2.241E-08 B2024 White Pigeon Paper Company 10200602 359.34 2.60E-04 0.0934 8E-10 2.875E-07 B2032 FCA US LLC 10200602 9.81 2.60E-04 0.0026 8E-10 7.846E-09 B2050 MPI Research 10300603 95.90 2.60E-04 0.0249 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 66.91 2.60E-04 0.0174 8E-10 5.35E-08 B2064 Ford Motor Co/Rawsonville Plant 10200602 158.92 2.60E-04 0.0171 8E-10 3.712E-08 B2178 Buckeye terminals, LLC 10020602 46.40 2.60E-04 0.0002 8E-10 1.287E-07 B2339 Par Sterile Products LLC 10020602 58.17 2.60E-04	B2013	Ox Paperboard of Michigan, LLC	10200602	278.78	2.60E-04	0.0072	8E-10	2.230E-07
B2024 White Pigeon Paper Company 10200602 359.34 2.60E-04 0.0934 8E-10 2.875E-07 B2032 FCA US LLC 10200602 9.81 2.60E-04 0.0026 8E-10 7.846E-09 B2050 MPI Research 10300602 197.80 2.60E-04 0.0249 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200601 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2053 Faurecia Interior Systems Saline, LLC 10200602 66.91 2.60E-04 0.0174 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10200602 158.92 2.60E-04 0.0174 8E-10 3.712E-08 B2175 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0012 8E-10 1.282E-08 B2239 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0012 8E-10 1.282E-08 B2339 VCF Films, Inc. 10200602 58.17 2.60E-04	B2014	Day International, Inc. A Flint Group Company	10200602	73.54	2.60E-04	0.0191	8E-10	5.883E-08
B2032 FCA US LLC 10200602 9.81 2.60E-04 0.0026 8E-10 7.846E-09 B2050 MPI Research 10300602 197.80 2.60E-04 0.0514 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200601 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2063 Faurecia Interior Systems Saline, LLC 10200602 166.91 2.60E-04 0.0174 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10300602 0.00 2.60E-04 0.0121 8E-10 1.271E-07 B2138 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0002 8E-10 1.282E-08 B2337 VCF Films, Inc. 10200602 27.00 2.60E-04 0.0004 8E-10 1.262E-08 B2337 VCF Films, Inc. 10200602 2.60E-04 0.0	B2024	White Pigeon Paper Company	10200601	28.01	2.60E-04	0.0073	8E-10	2.241E-08
B2050 MPI Research 10300602 197.80 2.60E-04 0.0514 8E-10 1.582E-07 B2050 MPI Research 10300603 95.90 2.60E-04 0.0249 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200601 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2053 Faurecia Interior Systems Saline, LLC 10200602 66.91 2.60E-04 0.0174 8E-10 5.353E-08 B2064 Ford Motor Co/Rawsonville Plant 10200602 158.92 2.60E-04 0.0121 8E-10 3.712E-08 B2175 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 46.40 2.60E-04 0.0000 8E-10 0.000E+00 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0101 8E-10 1.282E-08 B2331 Michigan State University - Bioeconomy Institute 10200602 58.17 2.60E-04 0.0070 8E-10 2.160E-08 B2429 Faurecia Interior Systems 10200602 27.00	B2024	White Pigeon Paper Company	10200602	359.34	2.60E-04	0.0934	8E-10	2.875E-07
B2050 MPI Research 10300603 95.90 2.60E-04 0.0249 8E-10 7.672E-08 B2052 Racer Trust - Willow Run Plant Industrial Land 10200601 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2064 Ford Motor Co/Rawsonville Plant 10200602 168.91 2.60E-04 0.0174 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10300602 46.40 2.60E-04 0.00121 8E-10 1.271E-07 B2138 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.00121 8E-10 1.282E-08 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.00171 8E-10 1.282E-08 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0070 8E-10 2.160E-08 B2337 VCF Films, Inc. 10200602 65.50 <td>B2032</td> <td>FCA US LLC</td> <td>10200602</td> <td>9.81</td> <td>2.60E-04</td> <td>0.0026</td> <td>8E-10</td> <td>7.846E-09</td>	B2032	FCA US LLC	10200602	9.81	2.60E-04	0.0026	8E-10	7.846E-09
B2052 Racer Trust - Willow Run Plant Industrial Land 10200601 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2063 Faurecia Interior Systems Saline, LLC 10200602 158.92 2.60E-04 0.0174 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10300602 46.40 2.60E-04 0.0121 8E-10 1.271E-07 B2158 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0002 8E-10 1.282E-08 B2239 Par Sterlie Products LLC 10200602 58.17 2.60E-04 0.00151 8E-10 1.282E-08 B2337 VCF Films, Inc. 10200602 27.00 2.60E-04 0.0004 8E-10 1.287E-09 B2349 Faurecia Interior Systems 10200602 26.5.50 2.60E-04 0.0076 8E-10 2.353E-08 B2429 Faurecia Interior Systems 10200602	B2050	MPI Research	10300602	197.80	2.60E-04	0.0514	8E-10	1.582E-07
B2052 Racer Trust - Willow Run Plant Industrial Land 10200602 0.00 2.60E-04 0.000 8E-10 0.000E+00 B2063 Faurecia Interior Systems Saline, LLC 10200602 66.91 2.60E-04 0.0174 8E-10 5.353E-08 B2064 Ford Motor Co/Rawsonville Plant 10200602 158.92 2.60E-04 0.0413 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10300602 46.40 2.60E-04 0.0121 8E-10 3.712E-08 B2158 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0042 8E-10 1.282E-08 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0070 8E-10 1.282E-08 B2331 Michigan State University - Bioeconomy Institute 10200602 27.00 2.60E-04 0.0070 8E-10 1.287E-09 B2337 VCF Films, Inc. 10200602 1.61 2.60E-04 0.0076 8E-10 2.353E-08 B2429 Faurecia Interior Systems 10200602 </td <td>B2050</td> <td>MPI Research</td> <td>10300603</td> <td>95.90</td> <td>2.60E-04</td> <td>0.0249</td> <td>8E-10</td> <td>7.672E-08</td>	B2050	MPI Research	10300603	95.90	2.60E-04	0.0249	8E-10	7.672E-08
B2063 Faurecia Interior Systems Saline, LLC 10200602 66.91 2.60E-04 0.0174 8E-10 5.353E-08 B2064 Ford Motor Co/Rawsonville Plant 10200602 158.92 2.60E-04 0.0413 8E-10 1.271E-07 B2103 Detroit Wastewater Treatment Plant 10300602 46.40 2.60E-04 0.0121 8E-10 3.712E-08 B2178 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0042 8E-10 1.282E-08 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0070 8E-10 1.282E-08 B2331 Michigan State University - Bioeconomy Institute 10200602 27.00 2.60E-04 0.0070 8E-10 1.287E-09 B2359 Birds Eye Foods LLC 10200602 16.1 2.60E-04 0.0170 8E-10 2.332E-08 B2429 Faurecia Interior Systems 10200602 29.41 2.60E-04 0.0170 8E-10 2.332E-08 B2644 Hemlock Semiconductor Corporation 10200602	B2052	Racer Trust - Willow Run Plant Industrial Land	10200601	0.00	2.60E-04	0.0000	8E-10	0.000E+00
B2064Ford Motor Co/Rawsonville Plant10200602158.922.60E-040.04138E-101.271E-07B2103Detroit Wastewater Treatment Plant1030060246.402.60E-040.01218E-103.712E-08B2158Buckeye Terminals, LLC - Woodhaven Terminal103006020.002.60E-040.00028E-100.000E+00B2217Eaton Research Center1030060316.032.60E-040.00428E-101.282E-08B2329Par Sterile Products LLC1020060258.172.60E-040.01718E-104.653E-08B2331Michigan State University - Bioeconomy Institute1020060227.002.60E-040.00708E-102.160E-08B2337VCF Films, Inc.102006021.612.60E-040.00708E-101.287E-09B2359Birds Eye Foods LLC1020060229.412.60E-040.01708E-105.240E-08B2429Faurecia Interior Systems10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060371.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.00528E-101.604E-08B2761Magna Mirrors10300603117.102.60E-040.03058E-109.368E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.0528E-109.368E-08B2767	B2052	Racer Trust - Willow Run Plant Industrial Land	10200602	0.00	2.60E-04	0.0000	8E-10	0.000E+00
B2103Detroit Wastewater Treatment Plant1030060246.402.60E-040.01218E-103.712E-08B2158Buckeye Terminals, LLC - Woodhaven Terminal103006020.002.60E-040.00008E-100.000E+00B2217Eaton Research Center1030060316.032.60E-040.00428E-101.282E-08B2329Par Sterile Products LLC1020060258.172.60E-040.01518E-104.653E-08B2331Michigan State University - Bioeconomy Institute1020060227.002.60E-040.00048E-101.287E-09B2337VCF Films, Inc.102006021.612.60E-040.00048E-101.287E-09B2429Faurecia Interior Systems1020060229.412.60E-040.00768E-102.353E-08B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01568E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.0548E-101.676E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.03058E-10<	B2063	Faurecia Interior Systems Saline, LLC	10200602	66.91	2.60E-04	0.0174	8E-10	5.353E-08
B2158 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2217 Eaton Research Center 10300603 16.03 2.60E-04 0.0042 8E-10 1.282E-08 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0070 8E-10 2.160E-08 B2331 Michigan State University - Bioeconomy Institute 10200602 27.00 2.60E-04 0.0070 8E-10 2.160E-08 B2337 VCF Films, Inc. 10200602 1.61 2.60E-04 0.0070 8E-10 1.287E-09 B2359 Birds Eye Foods LLC 10200602 65.50 2.60E-04 0.0076 8E-10 2.353E-08 B2420 Faurecia Interior Systems 10200602 19.41 2.60E-04 0.0076 8E-10 1.320E-07 B2460 General Motors LLC - Bay City 10200602 71.70 2.60E-04 0.0186 8E-10 5.736E-08 B2641 Hemlock Semiconductor Corporation 10200602 92.60E-04 0.	B2064		10200602	158.92	2.60E-04	0.0413	8E-10	1.271E-07
B2158 Buckeye Terminals, LLC - Woodhaven Terminal 10300602 0.00 2.60E-04 0.0000 8E-10 0.000E+00 B2217 Eaton Research Center 10300603 16.03 2.60E-04 0.0042 8E-10 1.282E-08 B2329 Par Sterile Products LLC 10200602 58.17 2.60E-04 0.0070 8E-10 2.160E-08 B2331 Michigan State University - Bioeconomy Institute 10200602 27.00 2.60E-04 0.0070 8E-10 2.160E-08 B2337 VCF Films, Inc. 10200602 1.61 2.60E-04 0.0070 8E-10 1.287E-09 B2359 Birds Eye Foods LLC 10200602 65.50 2.60E-04 0.0076 8E-10 2.353E-08 B2420 Faurecia Interior Systems 10200602 19.41 2.60E-04 0.0076 8E-10 1.320E-07 B2460 General Motors LLC - Bay City 10200602 71.70 2.60E-04 0.0186 8E-10 5.736E-08 B2641 Hemlock Semiconductor Corporation 10200602 92.60E-04 0.		Detroit Wastewater Treatment Plant	10300602					
B2217Eaton Research Center1030060316.032.60E-040.00428E-101.282E-08B2329Par Sterile Products LLC1020060258.172.60E-040.01518E-104.653E-08B2331Michigan State University - Bioeconomy Institute1020060227.002.60E-040.00708E-102.160E-08B2337VCF Films, Inc.102006021.612.60E-040.00048E-101.287E-09B2359Birds Eye Foods LLC1020060265.502.60E-040.01708E-105.240E-08B2429Faurecia Interior Systems1020060229.412.60E-040.00768E-102.353E-08B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2761Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.015248E-104.690E-07B2761Detroit Thermal Beacon Heating Plant10300601117.102.60E-040.00548E-101.604E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.01718E-105.267E-08B	B2158		10300602	0.00		0.0000		
B2329Par Sterile Products LLC1020060258.172.60E-040.01518E-104.653E-08B2331Michigan State University - Bioeconomy Institute1020060227.002.60E-040.00708E-102.160E-08B2337VCF Films, Inc.102006021.612.60E-040.00048E-101.287E-09B2359Birds Eye Foods LLC1020060265.502.60E-040.00768E-102.353E-08B2429Faurecia Interior Systems10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.00528E-101.604E-08B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.0548E-104.690E-07B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.01718E-105.267E-08 <td></td> <td>*</td> <td></td> <td>16.03</td> <td></td> <td>0.0042</td> <td></td> <td></td>		*		16.03		0.0042		
B2331Michigan State University - Bioeconomy Institute1020060227.002.60E-040.00708E-102.160E-08B2337VCF Films, Inc.102006021.612.60E-040.00048E-101.287E-09B2359Birds Eye Foods LLC1020060265.502.60E-040.01708E-105.240E-08B2429Faurecia Interior Systems1020060229.412.60E-040.00768E-102.353E-08B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.00528E-101.604E-08B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.01528E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.15248E-101.676E-08B2814Detroit Thermal Beacon Heating Plant1020060220.952.60E-040.00548E-101.676E-08B2817Vertellus Health & Specialty Products, LLC1020060265.842.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-0		Par Sterile Products LLC	10200602	58.17		0.0151		
B2337VCF Films, Inc.102006021.612.60E-040.00048E-101.287E-09B2359Birds Eye Foods LLC1020060265.502.60E-040.01708E-105.240E-08B2429Faurecia Interior Systems1020060229.412.60E-040.00768E-102.353E-08B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.24088E-107.409E-07B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.00548E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.030428E-109.360E-07B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.18078E-105.561E-07B283								
B2359Birds Eye Foods LLC1020060265.502.60E-040.01708E-105.240E-08B2429Faurecia Interior Systems1020060229.412.60E-040.00768E-102.353E-08B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.24088E-107.409E-07B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.15248E-104.690E-07B2814Detroit Thermal Beacon Heating Plant10300601117.002.60E-040.30428E-109.360E-07B2817Vertellus Health & Specialty Products, LLC1020060265.842.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.06788E-102.086E-07					2.60E-04		8E-10	
B2429Faurecia Interior Systems1020060229.412.60E-040.00768E-102.353E-08B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.24088E-107.409E-07B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.05248E-104.690E-07B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.30428E-109.360E-07B2817Vertellus Health & Specialty Products, LLC1020060265.842.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.06788E-102.086E-07			10200602				8E-10	
B2460General Motors LLC - Bay City10200602165.062.60E-040.04298E-101.320E-07B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.24088E-107.409E-07B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.15248E-104.690E-07B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant1020060220.952.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.06788E-102.086E-07								
B2561Packaging Corporation of America1030060271.702.60E-040.01868E-105.736E-08B2644Hemlock Semiconductor Corporation10200602926.152.60E-040.24088E-107.409E-07B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant10200601586.292.60E-040.15248E-104.690E-07B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.30428E-109.360E-07B2817Vertellus Health & Specialty Products, LLC1020060265.842.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.06788E-102.086E-07								
B2644 Hemlock Semiconductor Corporation 10200602 926.15 2.60E-04 0.2408 8E-10 7.409E-07 B2751 Magna Mirrors 10300603 20.05 2.60E-04 0.0052 8E-10 1.604E-08 B2763 U.S. Army Garrison-Detroit Arsenal 10300603 117.10 2.60E-04 0.0305 8E-10 9.368E-08 B2767 FCA US LLC Warren Truck Assembly Plant 10200601 586.29 2.60E-04 0.1524 8E-10 4.690E-07 B2767 FCA US LLC Warren Truck Assembly Plant 10200602 20.95 2.60E-04 0.0054 8E-10 1.676E-08 B2814 Detroit Thermal Beacon Heating Plant 10300601 1170.00 2.60E-04 0.3042 8E-10 9.360E-07 B2817 Vertellus Health & Specialty Products, LLC 10200602 65.84 2.60E-04 0.0171 8E-10 5.267E-08 B2838 Veolia Energy Grand Rapids, LLC 10300601 695.08 2.60E-04 0.1807 8E-10 5.561E-07 B2838 Veolia Energy Grand Rapids, LLC 10300602								
B2751Magna Mirrors1030060320.052.60E-040.00528E-101.604E-08B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant10200601586.292.60E-040.15248E-104.690E-07B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.30428E-109.360E-07B2817Vertellus Health & Specialty Products, LLC1020060265.842.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.06788E-102.086E-07								
B2763U.S. Army Garrison-Detroit Arsenal10300603117.102.60E-040.03058E-109.368E-08B2767FCA US LLC Warren Truck Assembly Plant10200601586.292.60E-040.15248E-104.690E-07B2767FCA US LLC Warren Truck Assembly Plant1020060220.952.60E-040.00548E-101.676E-08B2814Detroit Thermal Beacon Heating Plant103006011170.002.60E-040.30428E-109.360E-07B2817Vertellus Health & Specialty Products, LLC1020060265.842.60E-040.01718E-105.267E-08B2838Veolia Energy Grand Rapids, LLC10300601695.082.60E-040.18078E-105.561E-07B2838Veolia Energy Grand Rapids, LLC10300602260.812.60E-040.06788E-102.086E-07		Magna Mirrors						
B2767 FCA US LLC Warren Truck Assembly Plant 10200601 586.29 2.60E-04 0.1524 8E-10 4.690E-07 B2767 FCA US LLC Warren Truck Assembly Plant 10200602 20.95 2.60E-04 0.0054 8E-10 1.676E-08 B2814 Detroit Thermal Beacon Heating Plant 10300601 1170.00 2.60E-04 0.3042 8E-10 9.360E-07 B2817 Vertellus Health & Specialty Products, LLC 10200602 65.84 2.60E-04 0.0171 8E-10 5.267E-08 B2838 Veolia Energy Grand Rapids, LLC 10300601 695.08 2.60E-04 0.1807 8E-10 5.561E-07 B2838 Veolia Energy Grand Rapids, LLC 10300602 260.81 2.60E-04 0.0678 8E-10 2.086E-07			10300603			0.0305		
B2767 FCA US LLC Warren Truck Assembly Plant 10200602 20.95 2.60E-04 0.0054 8E-10 1.676E-08 B2814 Detroit Thermal Beacon Heating Plant 10300601 1170.00 2.60E-04 0.3042 8E-10 9.360E-07 B2817 Vertellus Health & Specialty Products, LLC 10200602 65.84 2.60E-04 0.0171 8E-10 5.267E-08 B2838 Veolia Energy Grand Rapids, LLC 10300601 695.08 2.60E-04 0.1807 8E-10 5.561E-07 B2838 Veolia Energy Grand Rapids, LLC 10300602 260.81 2.60E-04 0.0678 8E-10 2.086E-07								
B2814 Detroit Thermal Beacon Heating Plant 10300601 1170.00 2.60E-04 0.3042 8E-10 9.360E-07 B2817 Vertellus Health & Specialty Products, LLC 10200602 65.84 2.60E-04 0.0171 8E-10 5.267E-08 B2838 Veolia Energy Grand Rapids, LLC 10300601 695.08 2.60E-04 0.1807 8E-10 5.561E-07 B2838 Veolia Energy Grand Rapids, LLC 10300602 260.81 2.60E-04 0.0678 8E-10 2.086E-07	B2767	FCA US LLC Warren Truck Assembly Plant	10200602	20.95	2.60E-04	0.0054	8E-10	
B2838 Veolia Energy Grand Rapids, LLC 10300601 695.08 2.60E-04 0.1807 8E-10 5.561E-07 B2838 Veolia Energy Grand Rapids, LLC 10300602 260.81 2.60E-04 0.0678 8E-10 2.086E-07	B2814	Detroit Thermal Beacon Heating Plant	10300601	1170.00		0.3042	8E-10	9.360E-07
B2838 Veolia Energy Grand Rapids, LLC 10300602 260.81 2.60E-04 0.0678 8E-10 2.086E-07	B2817	Vertellus Health & Specialty Products, LLC	10200602	65.84	2.60E-04	0.0171	8E-10	
	B2838	Veolia Energy Grand Rapids, LLC	10300601	695.08	2.60E-04	0.1807	8E-10	5.561E-07
B2873 Michigan Sugar Company - Sebewaing Factory 10200602 356.89 2.60E-04 0.0928 8E-10 2.855E-07	B2838		10300602	260.81	2.60E-04	0.0678	8E-10	2.086E-07
	B2873	Michigan Sugar Company - Sebewaing Factory	10200602	356.89	2.60E-04	0.0928	8E-10	2.855E-07

B2875	Michigan Sugar Company, Caro Factory	10200601	201.00	2 60E 04	0.0522	9E 10	1 609E 07
B2875 B2875	Michigan Sugar Company, Caro Factory	10200601	201.00	2.60E-04	0.0523	8E-10 8E-10	1.608E-07 2.472E-07
	Michigan Sugar Company, Caro Factory	10200602	309.00	2.60E-04	0.0803		
B2876	Michigan Sugar Company, Croswell Factory Sunoco Partners M & T, L.P River Rouge	10200602	250.09	2.60E-04	0.0650	8E-10	2.001E-07
B2926	Terminal	10300603	0.02	2.60E-04	0.0000	8E-10	1.600E-11
B2952	Silbond Corp.	10200602	34.26	2.60E-04	0.0089	8E-10	2.741E-08
B3012	Detroit Thermal Blvd Heating Plant	10300602	6.30	2.60E-04	0.0016	8E-10	5.040E-09
B3037	Fitzgerald Finishing LLC	10300603	134.32	2.60E-04	0.0349	8E-10	1.075E-07
B3241	Ford Motor Co Brownstown	10200602	44.30	2.60E-04	0.0115	8E-10	3.544E-08
B3291	Gibraltar National Corp. / Quikrete Detroit	10100602	17.92	2.60E-04	0.0047	8E-10	1.434E-08
B3350	FCA US LLC – Trenton Engine Complex	10200601	2.98	2.60E-04	0.0008	8E-10	2.384E-09
B3350	FCA US LLC – Trenton Engine Complex	10200602	79.43	2.60E-04	0.0207	8E-10	6.354E-08
B3610	Pharmacia & Upjohn Co LLC, A Subsidiary of Pfizer	10200601	684.66	2.60E-04	0.1780	8E-10	5.477E-07
B3692	Packaging Corporation of America - Filer City Mill	10200601	3643.00	2.60E-04	0.9471	8E-10	2.914E-06
B4032	General Motors, LLC - Pontiac North Campus	10200602	235.05	2.60E-04	0.0611	8E-10	1.880E-07
B4045	H.J. Heinz Company, L.P.	10300602	65.49	2.60E-04	0.0170	8E-10	5.239E-08
B4049	Gm Technical Center	10200601	670.77	2.60E-04	0.1744	8E-10	5.366E-07
B4049	Gm Technical Center	10200602	2.60	2.60E-04	0.0007	8E-10	2.080E-09
B4072	Rock-Tenn Co	10200601	856.22	2.60E-04	0.2226	8E-10	6.850E-07
B4131	MNP Corp.	10300602	207.82	2.60E-04	0.0540	8E-10	1.663E-07
B4238	French Paper Company	10200602	159.00	2.60E-04	0.0413	8E-10	1.272E-07
B4288	Zoetis P&U LLC	10200601	46.09	2.60E-04	0.0120	8E-10	3.687E-08
B4288	Zoetis P&U LLC	10200602	167.37	2.60E-04	0.0435	8E-10	1.339E-07
B4302	Esco Company, LLC	10200602	74.90	2.60E-04	0.0195	8E-10	5.992E-08
B4306	Gerdau Special Steel North America - Jackson Mill	10200602	110.19	2.60E-04	0.0287	8E-10	8.815E-08
B4311	Adm Grain Co	10200602	51.11	2.60E-04	0.0133	8E-10	4.089E-08
B4395	Keebler Co	10200602	56.20	2.60E-04	0.0146	8E-10	4.496E-08
B4752	Great Lakes Petroleum Terminal, LLC	10200601	69.00	2.60E-04	0.0179	8E-10	5.520E-08
B4885	Tilden Mining Company LLC	10200601	1792.00	2.60E-04	0.4659	8E-10	1.434E-06
B4925	O-N Minerals (Michigan) Co. Dba Carmeuse Lime	10200602	57.26	2.60E-04	0.0149	8E-10	4.581E-08
B4942	Dow Agrosciences LLC	10200602	30.00	2.60E-04	0.0078	8E-10	2.400E-08
B4977	Pinnacle Foods Group LLC	10200602	198.40	2.60E-04	0.0516	8E-10	1.587E-07
B5162	Xcel Steel Pickling	10200602	20.30	2.60E-04	0.0053	8E-10	1.624E-08
B5417	DW-National Standard-Niles, LLC	10200602	85.90	2.60E-04	0.0223	8E-10	6.872E-08
B5453	Coastal Container Corp.	10200602	0.00	2.60E-04	0.0000	8E-10	0.000E+00
B5830	Ajax Metal Processing Inc.	10200602	145.40	2.60E-04	0.0378	8E-10	1.163E-07
B5853	Detroit Media Partnership	10100602	68.87	2.60E-04	0.0179	8E-10	5.510E-08
B5966	Sun Chemical Corp.	10200602	78.77	2.60E-04	0.0205	8E-10	6.302E-08
B6027	Inteva Products Adrian Operations	10200602	29.33	2.60E-04	0.0076	8E-10	2.346E-08
B6178	Huron Valley Steel Corp.	10200602	0.00	2.60E-04	0.0000	8E-10	0.000E+00
B6230	Ford Motor Co Research & Dev Center	10200602	68.67	2.60E-04	0.0179	8E-10	5.493E-08
B6237	Ypsilanti Comm. Utilities Authority	10200602	2.31	2.60E-04	0.0006	8E-10	1.851E-09
B6420	E.B. Eddy Paper Inc.	10200602	85.36	2.60E-04	0.0222	8E-10	6.829E-08
B6420	E.B. Eddy Paper Inc.	10300603	4.21	2.60E-04	0.0011	8E-10	3.368E-09
B6519	Albemarle Corporation	10200602	17.82	2.60E-04	0.0046	8E-10	1.426E-08
B6569	Henkel Corporation	10200602	32.02	2.60E-04	0.0083	8E-10	2.561E-08
B6619	Tiara Yachts Division of S2 Yachts	10300603	54.98	2.60E-04	0.0143	8E-10	4.398E-08
B6620	Coldwater Veneer	10300603	0.20	2.60E-04	0.0001	8E-10	1.600E-10
B6633	American Axle & Manufacturing, Inc.	10200602	93.51	2.60E-04	0.0243	8E-10	7.481E-08
B7038	Continental Dairy Facilities, LLC	10200602	300.00	2.60E-04	0.0780	8E-10	2.400E-07
B7061	Gerdau Macsteel Monroe	10200602	383.47	2.60E-04	0.0997	8E-10	3.068E-07
B7090	Michigan Milk Producers Association	10200602	268.53	2.60E-04	0.0698	8E-10	2.148E-07
B7192	Verso Quinnesec, LLC	10200601	306.34	2.60E-04	0.0797	8E-10	2.451E-07
B7192	Verso Quinnesec, LLC	10200602	67.21	2.60E-04	0.0175	8E-10	5.377E-08
	ANR Pipeline-Cold Sprngs12 /Blue Lk/Cold						
B7198	Springs 1	10300603	36.97	2.60E-04	0.0096	8E-10	2.958E-08
B7227	General Motors LLC - Orion Assembly	10200601	157.13	2.60E-04	0.0409	8E-10	1.257E-07
DIZZI							
B7227 B7244	General Motors LLC - Orion Assembly	10200602	17.70	2.60E-04	0.0046	8E-10	1.416E-08

D7040		40400000	770.00	0.005.04	0.0007	05.40	0.4775.07
B7248	FCA US LLC Sterling Heights Assembly Plant	10100602	772.08	2.60E-04	0.2007	8E-10	6.177E-07
B7248	FCA US LLC Sterling Heights Assembly Plant	10200602	424.48	2.60E-04	0.1104	8E-10	3.396E-07
B7248	FCA US LLC Sterling Heights Assembly Plant	10300602	12.57	2.60E-04	0.0033	8E-10	1.006E-08
B7248	FCA US LLC Sterling Heights Assembly Plant	10300603	39.48	2.60E-04	0.0103	8E-10	3.158E-08
B7276	L Perrigo Co.	10200602	99.85	2.60E-04	0.0260	8E-10	7.988E-08
B8573	Great Lakes Gas Trans Station #11 (TransCanada #11	10300603	3.01	2.60E-04	0.0008	8E-10	2.408E-09
B8704	Michigan Turkey Producers Co-Op Inc.	10300603	71.97	2.60E-04	0.0187	8E-10	5.758E-08
B8707	Springs Window Fashions, LLC	10200602	0.39	2.60E-04	0.0001	8E-10	3.106E-10
B8863	Adm Grain Company	10200602	11.66	2.60E-04	0.0030	8E-10	9.328E-09
B9080	Envirosolids, LLC	10300603	0.05	2.60E-04	0.0000	8E-10	4.184E-11
C5704	Lakeland Medical Center (Former Memorial	10300602	9.59	2.60E-04	0.0025	8E-10	7.671E-09
C5728	Hospital) Andrews University	10300602	152.10	2.60E-04	0.0396	8E-10	1.217E-07
D3598	Hurley Medical Center	10300602	179.81	2.60E-04	0.0350	8E-10	1.438E-07
D6394	Mid-Michigan Medical Center - Gratiot	10300602	71.90	2.60E-04	0.0408	8E-10	5.752E-08
D8065		10200602					
	Dart Container Corporation of Michigan		193.91	2.60E-04	0.0504	8E-10	1.551E-07
E4437	Northwest Hardwoods	10200602	22.20	2.60E-04	0.0058	8E-10	1.776E-08
E4569	Arkema, Inc.	10200602	45.16	2.60E-04	0.0117	8E-10	3.613E-08
E5094	Hutchinson Antivibration Systems, Inc.	10200602	39.08	2.60E-04	0.0102	8E-10	3.126E-08
F3254	Selfridge Air National Guard Base	10300603	145.50	2.60E-04	0.0378	8E-10	1.164E-07
G5066	St Joseph Mercy Hospital	10300602	163.87	2.60E-04	0.0426	8E-10	1.311E-07
G5067	William Beaumont Hospital	10300602	513.90	2.60E-04	0.1336	8E-10	4.111E-07
G5067	William Beaumont Hospital	10300603	23.90	2.60E-04	0.0062	8E-10	1.912E-08
G5252	Oakland Co. Service Center - Central Steam Plant	10300602	139.30	2.60E-04	0.0362	8E-10	1.114E-07
G7126	Grand Valley State University	10300602	140.98	2.60E-04	0.0367	8E-10	1.128E-07
H5265	Edwards Brothers, Inc.	10300603	13.18	2.60E-04	0.0034	8E-10	1.054E-08
H5877	Eastern MI University	10300601	233.93	2.60E-04	0.0608	8E-10	1.871E-07
H5877	Eastern MI University	10300602	37.39	2.60E-04	0.0097	8E-10	2.991E-08
J4912	Oakwood Hospital	10300602	189.00	2.60E-04	0.0491	8E-10	1.512E-07
K1260	Oakwood Healthcare Annapolis	10100602	64.00	2.60E-04	0.0166	8E-10	5.120E-08
K1271	Henry Ford Hospital	10300602	431.00	2.60E-04	0.1121	8E-10	3.448E-07
K1283	Oakwood Southshore Medical Center	10300602	52.17	2.60E-04	0.0136	8E-10	4.174E-08
K2087	Lakeland Correctional Facility	10300602	128.93	2.60E-04	0.0335	8E-10	1.031E-07
K2131	Western Michigan University	10300602	299.41	2.60E-04	0.0779	8E-10	2.395E-07
K2155	Ferris State University	10300602	298.83	2.60E-04	0.0777	8E-10	2.391E-07
K2460	Central Michigan University	10300601	307.22	2.60E-04	0.0799	8E-10	2.458E-07
K2460	Central Michigan University	10300602	107.82	2.60E-04	0.0280	8E-10	8.626E-08
K2688	B.O.P. Federal Correctional Institute	10300602	110.90	2.60E-04	0.0288	8E-10	8.872E-08
K2729	Botsford Hospital	10300602	112.77	2.60E-04	0.0293	8E-10	9.021E-08
K3249	Michigan State University	10200602	21.50	2.60E-04	0.0056	8E-10	1.720E-08
K3249	Michigan State University	10300601	4454.36	2.60E-04	1.1581	8E-10	3.563E-06
K3249	Michigan State University	10300603	25.32	2.60E-04	0.0066	8E-10	2.026E-08
K5375	University MI Dearborn	10300602	87.70	2.60E-04	0.0228	8E-10	7.016E-08
K5375	University MI Dearborn	10300603	42.60	2.60E-04	0.0111	8E-10	3.408E-08
L0550	Calvin College	10300602	98.70	2.60E-04	0.0257	8E-10	7.896E-08
M0037	Mercy Health	10300602	66.01	2.60E-04	0.0172	8E-10	5.281E-08
M0239	Wayne State University	10300602	687.61	2.60E-04	0.1788	8E-10	5.501E-07
M0239	Wayne State University	10300603	24.46	2.60E-04	0.0064	8E-10	1.957E-08
M0675	University of Michigan	10200602	206.15	2.60E-04	0.0536	8E-10	1.649E-07
M0675	University of Michigan	10300601	2215.07	2.60E-04	0.5760	8E-10	1.772E-06
M0675	University of Michigan	10300602	130.87	2.60E-04	0.0340	8E-10	1.047E-07
M0675	University of Michigan	10300603	522.69	2.60E-04	0.1359	8E-10	4.182E-07
M1812	St John Hospital & Medical Center	10300602	84.09	2.60E-04	0.0219	8E-10	6.727E-08
M1952	St Mary's Of Michigan	10300602	94.60	2.60E-04	0.0246	8E-10	7.568E-08
M1954	Covenant Health Care	10300602	300.00	2.60E-04	0.0780	8E-10	2.400E-07
M1967	St. John Providence Hospital	10300602	145.51	2.60E-04	0.0378	8E-10	1.164E-07
M1968	Pontiac Osteopathic Hospital	10300602	59.68	2.60E-04	0.0155	8E-10	4.774E-08
M2032	Spectrum Health-Butterworth Campus	10300602	274.13	2.60E-04	0.0713	8E-10	2.193E-07
					0.07.10	0_ 10	

MO404	St. Joseph Morey Lisesite	10200000	007.00		0.0640	0 - 40	1 0005 07
M3431	St Joseph Mercy Hospital	10300602	237.90	2.60E-04	0.0619	8E-10	1.903E-07
M3641	University of Michigan Flint	10300602	95.46	2.60E-04	0.0248	8E-10	7.637E-08
M3641	University of Michigan Flint	10300603	14.86	2.60E-04	0.0039	8E-10	1.189E-08
M3653	V A Medical Center	10300602	134.99	2.60E-04	0.0351	8E-10	1.080E-07
M3792	Northern Michigan University	10300602	156.21	2.60E-04	0.0406	8E-10	1.250E-07
M3912	Adm Grain Company	10200602	34.29	2.60E-04	0.0089	8E-10	2.743E-08
M4086	Toyota Technical Center USA	10300603	4.16	2.60E-04	0.0011	8E-10	3.328E-09
M4153	Hope College	10300602	148.71	2.60E-04	0.0387	8E-10	1.190E-07
M4174	Detroit Metropolitan Wayne County Airport	10300602	339.98	2.60E-04	0.0884	8E-10	2.720E-07
M4175	Ford Motor Co	10300602	155.55	2.60E-04	0.0404	8E-10	1.244E-07
M4199	General Motors Hamtramck	10200602	155.73	2.60E-04	0.0405	8E-10	1.246E-07
M4204	Zeeland Farm Services, Inc.	10300602	112.56	2.60E-04	0.0293	8E-10	9.004E-08
M4232	Huron Valley - Sinai Hospital	10200602	58.90	2.60E-04	0.0153	8E-10	4.712E-08
M4347	Praxair, Inc.	10200602	97.26	2.60E-04	0.0253	8E-10	7.781E-08
M4547	Fritz Products	10200602	67.18	2.60E-04	0.0175	8E-10	5.374E-08
M4732	Amcane Sugar LLC	10200602	171.91	2.60E-04	0.0447	8E-10	1.375E-07
M4752	John D Dingell VA Medical Center	10300602	228.63	2.60E-04	0.0594	8E-10	1.829E-07
M4764	Ford Motor Co Elm Street Boiler House	10200601	730.61	2.60E-04	0.1900	8E-10	5.845E-07
M4764	Ford Motor Co Elm Street Boiler House	10200602	618.34	2.60E-04	0.1608	8E-10	4.947E-07
M4768	Flat Rock Metal Inc.	10200602	92.90	2.60E-04	0.0242	8E-10	7.432E-08
M4772	Wayne Co Comm College Western	10300603	6.20	2.60E-04	0.0016	8E-10	4.960E-09
M4773	Wayne Co Comm College Downriver	10300603	14.40	2.60E-04	0.0037	8E-10	1.152E-08
M4774	Wayne Co Comm College Eastern	10300603	14.60	2.60E-04	0.0038	8E-10	1.168E-08
M4833	Wayne Co Comm College Northwest	10300603	0.00	2.60E-04	0.0000	8E-10	0.000E+00
N0547	Kruger Commodities	10200602	272.32	2.60E-04	0.0708	8E-10	2.179E-07
N0677	Steelcase Inc Kentwood Complex	10200602	7.71	2.60E-04	0.0020	8E-10	6.168E-09
N0677	Steelcase Inc Kentwood Complex	10300602	102.00	2.60E-04	0.0265	8E-10	8.160E-08
N0731	Nortru, LLC	10300603	0.86	2.60E-04	0.0002	8E-10	6.873E-10
N0842	Gage Products Company	10200602	48.00	2.60E-04	0.0125	8E-10	3.840E-08
N0923	Ventra Ionia Main, LLC	10200602	97.82	2.60E-04	0.0254	8E-10	7.826E-08
N1192	Denso Manufacturing Michigan, Inc.	10200602	6.65	2.60E-04	0.0017	8E-10	5.322E-09
N1237	Georgia Pacific Chemicals LLC	10200602	20.70	2.60E-04	0.0054	8E-10	1.656E-08
N1280	Flint Hills Resources Marysville, LLC	10300602	115.97	2.60E-04	0.0302	8E-10	9.278E-08
N1336	BASF Corporation	10200602	39.80	2.60E-04	0.0104	8E-10	3.184E-08
N1436	FCA US Technology Center	10200602	485.10	2.60E-04	0.1261	8E-10	3.881E-07
N1461	Welch Foods Inc.	10200602	165.79	2.60E-04	0.0431	8E-10	1.326E-07
N1604	Kent County Waste to Energy Facility	10300602	18.33	2.60E-04	0.0048	8E-10	1.466E-08
N1622	Pollard (U.S.) Ltd.	10200602	45.30	2.60E-04	0.0118	8E-10	3.624E-08
N1701	Morbark Inc.	10200602	51.80	2.60E-04	0.0135	8E-10	4.144E-08
N1781	Magna Mirrors Corporation	10300603	90.30	2.60E-04	0.0235	8E-10	7.224E-08
N1784	Ada Cogeneration Limited Partnership	10100602	241.21	2.60E-04	0.0627	8E-10	1.930E-07
N1794	Atlas Eps, A Division of Atlas Roofing Corp.	10200602	0.93	2.60E-04	0.0002	8E-10	7.440E-10
N1966	Michigan Automotive Compressor Inc.	10300603	197.13	2.60E-04	0.0513	8E-10	1.577E-07
N2155	FCA US LLC - Jefferson North Assembly Plant	10200602	152.24	2.60E-04	0.0396	8E-10	1.218E-07
N2432	A G Simpson (USA), Inc.	10100602	19.78	2.60E-04	0.0051	8E-10	1.582E-08
N2614	NBHX Trim USA Corporation	10200602	34.45	2.60E-04	0.0090	8E-10	2.756E-08
N2915	Toyota Motor Engineering And Manufacturing	10300603	47.60	2.60E-04	0.0124	8E-10	3.808E-08
N2954	Cargill Salt - Hersey	10200602	148.40	2.60E-04	0.0386	8E-10	1.187E-07
N3225	Kent Career Technical Center	10300602	27.50	2.60E-04	0.0072	8E-10	2.200E-08
N3417	Lymtal International, Inc.	10200601	5.38	2.60E-04	0.0014	8E-10	4.304E-09
N3422	Oakland University	10300602	246.84	2.60E-04	0.0642	8E-10	1.975E-07
N3519	Zoetis P&U LLC	10200602	0.00	2.60E-04	0.0000	8E-10	0.000E+00
N3519	Zoetis P&U LLC	10300602	38.65	2.60E-04	0.0101	8E-10	3.092E-08
N3655	Bronson Battle Creek	10300602	79.58	2.60E-04	0.0207	8E-10	6.367E-08
N3929	Resolute Forest Products - Menominee	10200601	569.57	2.60E-04	0.1481	8E-10	4.557E-07
N3987	William Beaumont Hospital	10300602	110.90	2.60E-04	0.0288	8E-10	8.872E-08
N4975	Michigan Power Limited Partnership	10200601	14.78	2.60E-04	0.0038	8E-10	1.182E-08
N5056	Magna Mirrors Corporation - Newaygo	10300603	19.30	2.60E-04	0.0050	8E-10	1.544E-08
N5226	Quincy Street, Inc.	10200602	31.00	2.60E-04	0.0081	8E-10	2.480E-08
			01.00		0.0001		2002.00

N5575	ANR Pipeline Company - Bridgman Compressor Station	10300603	16.67	2.60E-04	0.0043	8E-10	1.334E-08
N5688	Perrigo Holland, Inc.	10200602	93.92	2.60E-04	0.0244	8E-10	7.514E-08
N5747	Pioneer Metal Finishing Industrial Hwy	10300603	94.32	2.60E-04	0.0245	8E-10	7.545E-08
N5767	Tweddle Group	10300602	25.40	2.60E-04	0.0066	8E-10	2.032E-08
N5797	Boar's Head Provisions Co., Inc.	10300602	153.59	2.60E-04	0.0399	8E-10	1.229E-07
N5866	Metal Technologies, Inc., Ravenna Ductile Iron	10200602	80.61	2.60E-04	0.0210	8E-10	6.449E-08
N5930	Delta College	10300602	73.98	2.60E-04	0.0192	8E-10	5.918E-08
N5930	Delta College	10300603	0.00	2.60E-04	0.0000	8E-10	0.000E+00
N6013	Continental Aluminum	10200602	119.80	2.60E-04	0.0311	8E-10	9.584E-08
N6016	Genesys Regional Medical Center	10300602	133.77	2.60E-04	0.0348	8E-10	1.070E-07
N6358	Detroit Thermal Henry Heating Plant	10300602	2.13	2.60E-04	0.0006	8E-10	1.704E-09
N6388	Pioneer Metal Finishing - Stephens Road	10200602	28.06	2.60E-04	0.0073	8E-10	2.245E-08
N6577	ND Industries, Inc.	10300603	7.70	2.60E-04	0.0020	8E-10	6.160E-09
N6631	Dearborn Industrial Generation	10200601	67.06	2.60E-04	0.0174	8E-10	5.365E-08
N6726	Heat Treating Services Corp Plant 3	10200602	207.12	2.60E-04	0.0538	8E-10	1.657E-07
N6734	Heritage-Crystal Clean, LLC	10200602	2.21	2.60E-04	0.0006	8E-10	1.766E-09
N6767	New Covert Generating Company, LLC	10200602	21.14	2.60E-04	0.0055	8E-10	1.691E-08
N6866	Georgia Pacific Corrugated LLC III	10200602	75.97	2.60E-04	0.0198	8E-10	6.078E-08
N6950	General Motors LLC-Lansing Delta Township	10200602	148.01	2.60E-04	0.0385	8E-10	1.184E-07
N6976	Huntington Foam LLC	10200602	56.02	2.60E-04	0.0146	8E-10	4.482E-08
N6980	WMU Energy Resource Center	10300602	52.90	2.60E-04	0.0138	8E-10	4.232E-08
N6996	Michigan Ethanol D/B/A Poet Biorefining - Caro	10200602	1520.10	2.60E-04	0.3952	8E-10	1.216E-06
N7096	Heat Treating Services Corp. Of America - Plant 1	10200602	171.69	2.60E-04	0.0446	8E-10	1.374E-07
N7132	Sun Gro Horticulture	10100602	63.00	2.60E-04	0.0164	8E-10	5.040E-08
N7289	Sonoco Protective Solutions, Inc.	10200602	243.72	2.60E-04	0.0634	8E-10	1.950E-07
N7303	Bluewater Gas Storage Facility	10200602	0.77	2.60E-04	0.0002	8E-10	6.160E-10
N7349	Metro Health Hospital	10300602	97.94	2.60E-04	0.0255	8E-10	7.835E-08
N7383	Green Plains Holdings II LLC	10200602	1095.10	2.60E-04	0.2847	8E-10	8.761E-07
N7411	SMR Automotive Systems USA, Inc.	10300603	14.49	2.60E-04	0.0038	8E-10	1.159E-08
N7493	Marysville Ethanol, LLC	10200601	1429.00	2.60E-04	0.3715	8E-10	1.143E-06
N7809	Adept Plastic Finishing	10200602	38.45	2.60E-04	0.0100	8E-10	3.076E-08
N8192	Request Foods, Inc.	10200602	121.80	2.60E-04	0.0317	8E-10	9.744E-08
N8265	Hearthside Food Solutions LLC	10300603	20.89	2.60E-04	0.0054	8E-10	1.671E-08
N8270	Hearthside Food Solutions	10300603	21.08	2.60E-04	0.0055	8E-10	1.686E-08
N8273	Providence Park Hospital	10300602	86.13	2.60E-04	0.0224	8E-10	6.890E-08
P0024	A123 Systems	10200602	0.12	2.60E-04	0.0000	8E-10	9.680E-11
P0087	Lg Chem Michigan Inc.	10200602	65.40	2.60E-04	0.0170	8E-10	5.232E-08
P0243	Beaumont Information Technology Center	10300603	1.94	2.60E-04	0.0005	8E-10	1.552E-09
P0336	Henry Ford West Bloomfield Hospital	10300602	185.22	2.60E-04	0.0482	8E-10	1.482E-07
P0448	Postle Aluminum	10200602	76.80	2.60E-04	0.0200	8E-10	6.144E-08
P0468	Newberry Correctional Facility	10300602	605.34	2.60E-04	0.1574	8E-10	4.843E-07
P0517	Mastronardi Produce	10200602	286.65	2.60E-04	0.0745	8E-10	2.293E-07
TOTAL					17.7718		5.520E-05

Stationary Internal Combustion Engines

Stationary internal combustion engine emissions were calculated similarly to industrial/commercial boilers that combust natural gas. The EPRI factor produced a statewide estimate of 9.88E-06 lbs, compared to the MAERS estimate, which produced an estimate of 107.08 lbs using the USEPA factor.

The following sources of natural gas combustion were included in the estimate:

SRN	Facility Name	SCC	Natural gas in MMCF	Emission factor in Lb/MMCF	MAERS Emission Estimates in Lbs	EPRI Emission Factor in Lb/MMCF	EPRI- based Emission Estimates in Lbs
A1641	General Motors Lansing Grand River Assembly	20200202	0.00	1.193E-02	0.00	8.00E-10	1.60E-12
A3567	Ford Motor Company - Sterling Plant	20200202	0.08	1.193E-02	0.00	8.00E-10	6.40E-11
A5858	Mead Johnson & Company, LLC	20200202	0.00	1.193E-02	0.00	8.00E-10	7.69E-14
A8638	Detroit Diesel Corporation	20200202	0.00	1.193E-02	0.00	8.00E-10	0.00E+00
A8645	Ford Motor Co./Livonia Transmission	20200202	0.08	1.193E-02	0.00	8.00E-10	6.57E-11
A8648	Ford Motor Co. Rouge Complex	20200202	0.04	1.193E-02	0.00	8.00E-10	3.36E-11
A9831	Marathon Petroleum Company LP	20200202	0.00	1.193E-02	0.00	8.00E-10	0.00E+00
B1771	Ford Motor Company - Van Dyke Plant	20200202	0.12	1.193E-02	0.00	8.00E-10	9.86E-11
B2942	Consumers Energy Gaylord Combustion Turbine Plant	20100201	201.15	6.763E-03	1.36	8.00E-10	1.61E-07
B3350	FCA Us LLC – Trenton Engine Complex	20200202	0.28	1.193E-02	0.00	8.00E-10	2.25E-10
B3721	ANR Pipeline - Reed City Compressor Station	20200202	92.07	1.193E-02	1.10	8.00E-10	7.37E-08
B4032	General Motors LLC - Pontiac North Campus	20200202	0.01	1.193E-02	0.00	8.00E-10	8.00E-12
B4049	GM Technical Center	20200202	0.00	1.193E-02	0.00	8.00E-10	0.00E+00
B4282	Marysville Hydrocarbons, LLC	20200201	2.63	6.763E-03	0.02	8.00E-10	2.10E-09
B4292	Merit Energy Co Kalkaska Gas Plant	20100201	477.85	6.763E-03	3.23	8.00E-10	3.82E-07
B4292	Merit Energy Co Kalkaska Gas Plant	20200201	36.85	6.763E-03	0.25	8.00E-10	2.95E-08
B4942	Dow Agrosciences, LLC	20200201	700.00	6.763E-03	4.73	8.00E-10	5.60E-07
B5421	Vandyke Generating Plant	20200201	8.09	6.763E-03	0.05	8.00E-10	6.47E-09
B6001	Herman Miller, Inc.	20200202	0.03	1.193E-02	0.00	8.00E-10	2.16E-11
B6230	Ford Motor Co Research & Dev. Center	20200202	0.27	1.193E-02	0.00	8.00E-10	2.19E-10
B6481	Mid-Michigan Gas Storage Co - Capac	20200202	0.00	1.193E-02	0.00	8.00E-10	0.00E+00
B6508	Village of Clinton	20200202	0.04	1.193E-02	0.00	8.00E-10	2.80E-11
B6636	Consumers Energy - Ray Compressor Station	20200201	76.52	6.763E-03	0.52	8.00E-10	6.12E-08
B6637	Consumers Energy - St. Clair Compressor Station	20200201	87.45	6.763E-03	0.59	8.00E-10	7.00E-08
B7196	ANR Storage Co Excelsior Compressor Station	20200202	142.40	1.193E-02	1.70	8.00E-10	1.14E-07
B7197	ANR Rapid River Compressor Station	20200202	166.01	1.193E-02	1.98	8.00E-10	1.33E-07
B7198	ANR Pipeline-Cold Sprngs12/Blue Lk/Cold Springs 1	20200202	706.53	1.193E-02	8.43	8.00E-10	5.65E-07
B7219	ANR Pipeline Co. South Chester Compressor Station	20200202	165.46	1.193E-02	1.97	8.00E-10	1.32E-07
B7220	ANR Pipeline Co - Woolfolk Compressor Station	20200202	641.36	1.193E-02	7.65	8.00E-10	5.13E-07
B7390	ANR Pipeline - Central Charlton Compressor Station	20200202	59.51	1.193E-02	0.71	8.00E-10	4.76E-08
B8337	ANR Pipeline CoMuttonville Compressor Station	20200202	53.60	1.193E-02	0.64	8.00E-10	4.29E-08
B8573	Great Lakes Gas Trans Station #11 (TransCanada #11)	20200201	226.60	6.763E-03	1.53	8.00E-10	1.81E-07
B8573	Great Lakes Gas Trans Station #11 (TransCanada #11)	20200202	0.01	1.193E-02	0.00	8.00E-10	8.00E-12
M4085	FCA US LLC - Mack Avenue Engine Plant	20200202	0.00	1.193E-02	0.00	8.00E-10	2.40E-12
M4780	Roush Industries	20200202	3.22	1.193E-02	0.04	8.00E-10	2.58E-09
N1652	West Branch Production Gathering & Compressor Stat	20200202	21.10	1.193E-02	0.25	8.00E-10	1.69E-08
N1685	TES Filer City Station	20200202	0.06	1.193E-02	0.00	8.00E-10	4.56E-11
N2168	Great Lakes Gas Transmission Station #7	20200201	12.16	6.763E-03	0.08	8.00E-10	9.73E-09
N2168	Great Lakes Gas Transmission Station #7	20200202	0.01	1.193E-02	0.00	8.00E-10	8.00E-12
N2901	Consumers Energy - Muskegon River Compressor Station	20200201	54.66	6.763E-03	0.37	8.00E-10	4.37E-08
N2954	Cargill Salt - Hersey	20200201	483.40	6.763E-03	3.27	8.00E-10	3.87E-07
N3022	Eaton Rapids Gas Storage System	20200202	130.12	1.193E-02	1.55	8.00E-10	1.04E-07
N3391	DTE Gas Company - Washington 10 Compressor Station	20200202	684.09	1.193E-02	8.16	8.00E-10	5.47E-07
N3392	DTE Gas Company-Taggart Compressor Station	20200202	473.42	1.193E-02	5.65	8.00E-10	3.79E-07
N3758	Great Lakes Gas Transmission Station #10	20200201	222.24	6.763E-03	1.50	8.00E-10	1.78E-07
N3758	Great Lakes Gas Transmission Station #10	20200202	0.01	1.193E-02	0.00	8.00E-10	8.00E-12

Table 15. Static	onary Internal	Combustion	Engines,	Natural Gas
------------------	----------------	------------	----------	-------------

N3759	Great Lakes Gas Transmission Station #9	20200201	12.88	6.763E-03	0.09	8.00E-10	1.03E-08
N3759	Great Lakes Gas Transmission Station #9	20200202	0.01	1.193E-02	0.00	8.00E-10	8.00E-12
N3760	Great Lakes Gas Transmission Station #8	20200201	775.58	6.763E-03	5.25	8.00E-10	6.20E-07
N3760	Great Lakes Gas Transmission Station #8	20200202	0.03	1.193E-02	0.00	8.00E-10	2.40E-11
N3818	Great Lakes Gas Transmission Station #13	20200201	120.79	6.763E-03	0.82	8.00E-10	9.66E-08
N5574	ANR Pipeline Company - Hamilton Compressor Station	20200201	844.33	6.763E-03	5.71	8.00E-10	6.75E-07
N5574	ANR Pipeline Company - Hamilton Compressor Station	20200202	6.39	1.193E-02	0.08	8.00E-10	5.11E-09
N5575	ANR Pipeline Company - Bridgman Compressor Station	20200201	119.43	6.763E-03	0.81	8.00E-10	9.55E-08
N5575	ANR Pipeline Company - Bridgman Compressor Station	20200202	473.66	1.193E-02	5.65	8.00E-10	3.79E-07
N5576	ANR Pipeline Co Goodwell Compressor Station	20200201	150.50	6.763E-03	1.02	8.00E-10	1.20E-07
N5576	ANR Pipeline Co Goodwell Compressor Station	20200202	0.07	1.193E-02	0.00	8.00E-10	5.60E-11
N5578	ANR Pipeline Co Winfield Compressor Station	20200202	21.23	1.193E-02	0.25	8.00E-10	1.70E-08
N5581	Great Lakes Gas - Farwell Compressor Station 12	20200201	51.48	6.763E-03	0.35	8.00E-10	4.12E-08
N5581	Great Lakes Gas - Farwell Compressor Station 12	20200202	214.55	1.193E-02	2.56	8.00E-10	1.72E-07
N5586	ANR Pipeline Company Lincoln Compressor Station	20200202	147.89	1.193E-02	1.76	8.00E-10	1.18E-07
N5798	Core Energy, LLC., Chester 10 CO2 Recovery	20200202	168.00	1.193E-02	2.00	8.00E-10	1.34E-07
N6242	HRF Exploration & Production - Walking Buck	20200202	73.20	1.193E-02	0.87	8.00E-10	5.86E-08
N6266	Federal Mogul Powertrain Inc.	20200202	0.74	1.193E-02	0.01	8.00E-10	5.90E-10
N6512	Westside Gas Producers, LLC	20200202	103.60	1.193E-02	1.24	8.00E-10	8.29E-08
N6833	Wolverine Power, Gaylord Generating Station	20100201	207.07	6.763E-03	1.40	8.00E-10	1.66E-07
N6838	Vector Pipeline L.P., Highland Compressor Station	20200201	1077.35	6.763E-03	7.29	8.00E-10	8.62E-07
N6950	General Motors, LLC - Lansing Delta Township	20200202	0.08	1.193E-02	0.00	8.00E-10	6.72E-11
N7113	Michigan Public Power Agency	20100201	222.00	6.763E-03	1.50	8.00E-10	1.78E-07
N7624	Vector Pipeline L.P.	20200201	915.29	6.763E-03	6.19	8.00E-10	7.32E-07
N8151	Vector Pipeline L.P., Athens Compressor Station	20200201	696.25	6.763E-03	4.71	8.00E-10	5.57E-07
P0271	South Buckeye 127 CPF Gas Plant	20200202	14.20	1.193E-02	0.17	8.00E-10	1.14E-08
TOTAL					107.08		9.88E-06

Wood Combustion

Electric Utilities

Mercury emissions from wood-fired electric utilities were estimated using data from MAERS as part of Michigan's submittal to the USEPA's 2014 NEI v2 (EGLE, 2020). Wood consumption, or throughput, is expressed in tons.

A mercury emission factor was not available for the source classification code (SCC) selected by Genesee Power for reporting of wood and wood waste combusted in their boiler. Accordingly, an emission rate factor obtained from their July 2016 stack testing (Bureau Veritas North America Inc., 2016) was used by the AQD with hourly activity data from MAERS to create an estimate (McGeen, 2020).

Wood-fired electric utilities included in the estimate:

SRN	Facility Name	SCC	Factor in Lb/Ton	Wood in Tons	Estimated Emissions in Lbs
B1966	White Pine Electric Power LLC	10200905	5.15E-06	1.00	0.00
B4260	L'Anse Warden Electric Company LLC	10100903	3.64E-05	121325.00	1.77
N0890	Viking Energy of Lincoln, LLC	10100902	3.64E-05	180356.00	0.00
N1160	Viking Energy of McBain	10300902	5.15E-06	161935.00	0.83
N1266	Hillman Power Co.	10100902	3.64E-05	284565.00	10.36
N1395	Cadillac Renewable Energy Facility	10100902	3.64E-05	317238.81	11.55
N2388	Grayling Generating Station Limited Partnership	10100902	3.64E-05	337121.00	12.27
N3570	Genesee Power Station Limited Partnership	10100911	1.50e-04 lb/hour	8208 hours	1.23
TOTAL					38.01

Table 16. Electric Utilities, Wood Combustion

Industrial/Commercial

Point source estimates such as those for industrial and commercial combustion of wood were collected from MAERS (EGLE, 2020). These point source estimates were generated as part of Michigan's submittal to USEPA's 2014 NEI v2.

Facilities included in the estimate:

SRN	Facility Name	SCC	Wood in Tons	Emission Factor in Lbs	Estimated Emissions in Lbs
A0749	Ameriwood Industries	10300903	1638.00	3.64E-05	0.06
A0884	Escanaba Paper Company	10200902	532371.00	3.395E-05	18.07
A0999	Michigan Maple Block Co.	10200906	2466.00	5.15E-06	0.01
A5937	Howard Miller Company	10200906	813.44	5.15E-06	0.00
B1476	Decorative Panels International, Inc.	10200901	35669.00	3.15E-05	0.45
B1476	Decorative Panels International, Inc.	10200902	18038.00	3.395E-05	0.24
B6001	Herman Miller, Inc.	10200907	5474.00	5.15E-06	0.03
B6620	Coldwater Veneer	10300903	1300.00	3.64E-05	0.05
B7099	Connor Aga Sports Flooring LLC	10200905	4234.80	5.15E-06	0.02
B7192	Verso Quinnesec, LLC	10200902	519799.00	3.395E-05	17.65
B8603	Jeld-Wen Interior Door - Grand Rapids	10300903	0.00	3.64E-05	0.00
B8707	Springs Window Fashions, LLC	10200905	907.13	5.15E-06	0.00
E4437	Northwest Hardwoods	10200906	4109.00	5.15E-06	0.02
K2460	Central Michigan University	10300903	38.00	3.64E-05	0.00
N0780	Louisiana-Pacific Corp. Newberry Plant	10200905	15107.00	5.15E-06	0.08
N1271	Fiber Char Corp.	10200910	201.00		0.12
N1315	Louisiana-Pacific Corp Sagola Plant	10200904	18547.00	5.15E-06	0.10
N2206	Banks Hardwoods, Inc.	10200906	8721.00	5.15E-06	0.04
N2454	Wolverine Hardwoods Inc.	10100903	950.00	3.64E-05	0.03
N5940	Potlatch Land & Lumber LLC	10200905	39565.00	5.15E-06	0.20
TOTAL					37.19

Table 17. Industrial Commercial, Wood Combustion

Residential

For residential wood combustion, the USEPA's estimate of mercury emissions from the 2014 NEI v2 was utilized. The USEPA calculated that 7.20 lbs of mercury was emitted from residential wood burning in Michigan. This estimate is based on inputs and emission factors included in the USEPA's Residential Wood Combustion Tool; an Access database designed for estimating pollutants from the residential wood sector. The sector includes estimates for freestanding woodstoves (USEPA certified catalytic and non-catalytic, and non-certified), inserts (USEPA certified catalytic, and non-certified), fireplaces burning cordwood, indoors wood furnaces, outdoor hydronic heaters, wood pellet stoves, and miscellaneous woodburning devices not elsewhere classified.

Tire-Derived Fuel Combustion

Several facilities utilized tire-derived fuel (TDF) to fire their boilers. Viking Energy of Lincoln, LLC (N0890) is the only facility to have reported a mercury value to MAERS based on their stack testing in 2010, which did not detect any amount of mercury (EGLE, 2020). The other values are default MAERS estimates based on a USEPA emission factor.

SRN	Facility Name	Emission Unit ID	SCC	Emission factor in Lb/Ton	Estimated Emissions in Lbs	Tire- Derived Fuel in Tons
B2132	Wyandotte Department of Municipal Power Plant	EU0037	10101201	3.86E-03	41.16	10651.04
B6611	Michigan South Central Power Agency	EU0003	10101201	3.86E-03	36.89	9548.00
N0890	Viking Energy of Lincoln, LLC	EU0003	10101201	Non- detect	0.00	11140.00
N1160	Viking Energy of McBain	EU0003	10101201	3.86E-03	44.29	11461.00
N1685	TES Filer City Station	RG0017	10101201	3.86E-03	102.07	26414.50
N2388	Grayling Generating Station Limited Partnership	EU0008	10101201	3.86E-03	22.45	5811.00
N3570	Genesee Power Station Limited Partnership	EU0009	10101201	3.86E-03	12.55	3247.00
B4260	L'Anse Warden Electric Company LLC	EU0009	10201201	3.86E-03	41.97	10861.00
TOTAL					301.37	

Table 18. TDF Boilers

Petroleum Refining

Marathon Ashland Petroleum (A9831), the only petroleum refinery in the state, emitted 34.22 lbs of mercury in 2014 according to data gathered from MAERS as part of Michigan's submittal to the USEPA's 2014 NEI v2 (EGLE, 2020).

Table 19. Petroleum Refining

SRN	Facility Name	SCC	Process Gas in MMCF	Emission factor in Lb/MMCF	Estimated Emissions in Lbs
A9831	Marathon Petroleum Company LP	30600106	12535.390	2.73E-03	34.22

Residential LPG (Propane) Combustion

Residential fuel combustion estimates were generated as part of Michigan's submittal to the USEPA's 2014 NEI v2. For residential Liquefied Petroleum Gas (LPG) or propane combustion, an emission factor of 1.20E-05 lbs/1,000 gallons was selected. This factor was used along with 2014 statewide fuel consumption data from the EIA, USDoE to generate estimated emissions of mercury for 2014 (EGLE, 2020). LPG consumption, or throughput, is expressed in thousands of gallons.

Table 20. Residential Propane Combustion.

Category	Throughput E3GAL	Emission Factor Ib/E3GAL	Lbs Emitted	Year
Residential LPG Propane	432,264.00	1.20E-05	5.19	2014

INCINERATION

Sewage Sludge Incineration

When possible, specific facility information was collected and used to compute emissions. The Battle Creek Wastewater Treatment Plant (WWTP) has two multiple hearth sewage sludge incinerators, which have venturi scrubber, impingement scrubber, quencher, and afterburner controls. Stack testing data from 2014 was referenced in an AQD inspection report of March 5, 2015 (Lane, 2015). A maximum value of 0.086 grams per day was recorded, compared to a permitted emission limit of 10 grams per day. If the facility operated 365 days per year with that emissions rate, the estimated emissions are 0.069 lbs annually (McGeen, 2020).

According to MAERS, 101786.1 tons of biosolids (sewage sludge) were incinerated at the Detroit Wastewater Treatment Plant in 2014. Using an emission factor derived from a 2012 stack test at the facility, 109.93 lbs of mercury were likely released to the air in 2014 (McGeen, 2020).

The Flint Water Pollution Control Plant has an afterburner, venturi and impingement tray scrubber and mist eliminator controls. The 2014 NEI v2 contained the original MAERS default mercury calculation of 12.65 lbs which was based on an uncontrolled emission factor. Subsequently, when a tiered emission estimator was implemented in MAERS that applied controlled HAP emission factors to calculations where there was an appropriate match for SCC, pollutant and reported control technology, a controlled MAERS default mercury estimate of 0.03 lbs was created. Recent stack testing data was not available; therefore, stack tests from 2001 and 2014 MAERS hourly operating data were also used by ERAU staff to prepare an emissions estimate of 5.77 lbs (McGeen, 2020). This results in a range of estimates in which the stack test-based estimate may be the most appropriate for the facility, although the age of the stack test should be considered when evaluating the representativeness of the calculation. The facility ceased operation of the incinerators on March 10, 2016, due to pending compliance requirements of 40 CFR Part 60 Subpart MMMM, Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units, which were due to take effect on March 30, 2016. The permits were subsequently voided and the building, which once housed the incinerators, has been repurposed for sludge dewatering, as verified by AQD field staff in 2017 (EGLE, 2020).

Emissions in 2014 from the Ypsilanti Community Utilities Authority (YCUA) were reported at 0.87 lbs/yr in the annual MAERS reporting (EGLE, 2020). This was based on stack testing conducted at the facility on December 6, 2011. The new incinerator is a fluidized bed incinerator with venturi and impingement scrubbers, wet electrostatic precipitator, and carbon adsorption.

The East Lansing POTW shut down its incinerator in 2002; therefore, it was not included in this inventory. The Trenton WWTP removed its incinerator in 2003 and it was also not included. The Ann Arbor WWTP incinerator ceased operations and the permit was voided in 2006. The Port Huron WWTP removed its incinerator by 2010 as verified during an inspection by AQD district staff (EGLE, 2020).

The following sewage sludge incinerators were included in the calculation:

SRN	Facility Name	scc	Sludge in Tons	MAERS Estimates (2014 NEI v2 estimates) in Lbs	Emission Basis	ERAU calculations based on stack tests	Best Estimate in Lbs
B1598	Flint Water Pollution Control Facility	50100515	2750.00	12.65	MAERS EF	5.77	5.77
B1792	Warren Wastewater Treatment Plant	50100515	4981.00	22.91	MAERS EF		22.91
B1950	Pontiac Wastewater Treatment Plant	50100515	0.00	0.00	MAERS EF		0.00
B6237	Ypsilanti Community Utilities Authority	50100516	5144.00	0.87	Stack Test		0.87
B6307	City of Battle Creek Wastewater Treatment Plant	50100515	3097.20	14.25	MAERS EF	0.07	0.07
B2103	Detroit Wastewater Treatment Plant	50200506	101786.10	NA	NA	109.93	109.93
TOTAL				50.68			139.55

Table 21. Sewage Sludge Incinerators

Trends for Mercury in Michigan Biosolids (EGLE, 2020).

Table 22. Hg Concentrations in Biosolids, 2002-2008

Year	Hg Concentrations in Biosolids mg/kg
2002	3.39
2003	1.9
2004	2.0
2005	1.96
2006	1.99
2007	1.48
2008	1.35
2009	1.63
2010	1.83
2011	2.01
2012	1.61
2013	1.54
2014	1.54

In an email on February 19, 2014, Michael Person indicated, "... please note that this is the average concentration in land applied biosolids not sewage sludge that is incinerated. It is probably fairly close, but I do not have the Hg concentration of incineration only facilities."

Pre-2008 trends in biosolids are shown below, as documented by the MDEQ's Water Bureau (MDEQ, 2009).

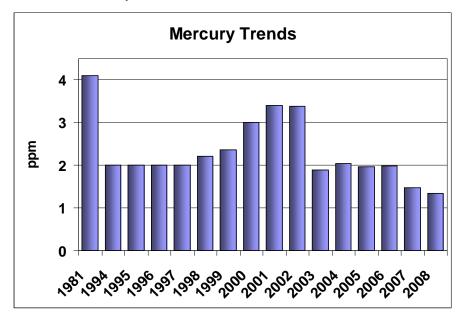


Table 23. Mercury Concentration Trends in Biosolids, 1981-2008

Municipal Waste Incineration

Two municipal waste combustors were operating in Michigan in 2014.

Kent County Waste-to-Energy submitted facility-verified estimates of 2.00 lbs of mercury to MAERS for the 2014 operating year based on stack testing (EGLE, 2020).

The Jackson County Waste-to-Energy facility (N1125) ceased operations in 2013 and the Renewable Operating Permit was voided in 2014 (EGLE, 2020). Accordingly, estimates have not been prepared for this facility.

Detroit Renewable Power, LLC (formerly Greater Detroit Resource Recovery Facility) conducted stack testing in 2014 (EGLE, 2020). Subsequent to the release of the 2014 NEI v2, ERAU staff utilized the 2014 stack testing rate to develop an estimate of 15.44 lbs of mercury emissions for the facility. The facility was shut down on March 26, 2019, and the facility boilers have not operated on refuse-derived fuel since that date (Zynda, 2020).

SRN	Facility Name	Refuse in Tons	Factor Value	Factor Numerator and Denominator	Comments	Estimated Emissions in Lbs
N1604	Kent County Waste-to-Energy Facility	180930	5.60E-03	Lb/Ton	Reported by facility based on stack test.	2.00
M4148	Detroit Renewable Power, LLC	805730	5.50E-03	Lb/Hour	Stack-test based ERAU calculation entered into MAERS, subsequent to NEI reporting	15.44
TOTAL						17.44

Table 24. Municipal Waste Incineration

Hazardous Waste Incineration

One facility operates a hazardous waste incinerator in Michigan: Dow Chemical (A4033). In 2003, Dow began operating a new incinerator, the 32 Incinerator, to replace the existing 830 Building and 703 Building Incinerators. Based on stack testing conducted on the 32 Incinerator in 2009, for Dow's 32 Incinerator HWC MACT Notification of Compliance and Comprehensive Performance Test, less than 1.59E-04 pounds of mercury per hour were emitted from this facility under test conditions designed to simulate extreme operating parameters. Based on the continuous year-round operating schedule reported to MAERS in 2014, this extrapolates to annual emissions of 1.39 lbs of mercury. Actual emissions were likely less as the performance test simulates adverse rather than routine operating conditions. The most recent stack testing for the Incinerator HWC MACT Notification of Compliance and Comprehensive Performance Test was in November 2019. Based on those results, year-round emissions of 0.53 lbs were estimated (McGeen, 2020).

SRN	Facility Name	Emission Factor in Lb/Hour	Estimate in Lbs	Comments
A4033	Dow Chemical	1.59E-04	1.39	Based on 2009 stack test
A4033	Dow Chemical	6.05E-05	0.53	Based on 2019 stack test

Table 25. Hazardous Waste Incineration

Hospital Medical Infectious Waste Incineration

There is not currently any medical waste incineration facility operating in Michigan. City Medical Waste (M4139) in Hamtramck was a hospital medical infectious waste incinerator, which stopped operating on July 28, 2008. This was per the date of a court order, which required the company to cease operation of the facility (McLemore, 2010). The ROP was voided on December 15, 2008 (Foy, 2010).

Human Cremation (Point Source)

One university reported the combustion of human remains in 2014.

A range of estimates is presented. While the emission factor developed in the Takaoka study is much lower than the other available factors, it is based on a study of crematories in Japan. The emission factors prepared for different age groups by the Bay Area Air Quality Management District (BAAQMD) in California are higher but may reflect differences in dental care in the United States. The emission factors from BAAQMD, which were utilized by the USEPA in development of the 2014 NEI v2 stationary nonpoint emission estimates for cremation, are considered more likely to be representative of cremation in the United States.

Age distribution for human cremations at the universities was not known. The BAAQMD emission factor for the age group with the highest quantity of mercury amalgams, 55-64 years old, was selected to develop the most conservative estimate.

Facility Name	Emission Unit Name	Description	SCC	MAERS Default Estimates in Lbs	Human Cremation Based on Takaoka Emission Factor ¹	Human Cremation Estimate Based on BAAQMD Emission Factor ²	Best Estimate in Lbs
Wayne State University	EUINCINERATORFG	Emission Unit covers all 3 Incinerators (2 at Scott Hall & 1 at Mott) in FGINCIN of PTI No. 80-06. A combined throughput has been entered for all units.	50200505	0.01387	2.61E-07	0.69	0.69

Table 26. H	uman Cremation,	Point Sources
-------------	-----------------	---------------

¹ Factor of 1.38E-08 lb/ton obtained from study "Mercury emission from crematories in Japan" (Takaoka, Oshita, Takeda and Morisawa, 2010).

² Since age group of human cremations is not known, the factor of 3.65E-02 lb/ton for the age group with the highest number of mercury amalgams, and highest mercury content, is utilized for the most conservative estimate.

Animal Cremations

Two incinerators at Michigan State University, identified in MAERS as EUCREMATORY and EUDCPAHINC01, were used for cremation of small animals, and animals tested for tuberculosis, respectively (McGeen, Daniel, 2020). No human remains are cremated at MSU although it would be permissible at EUDCPAHINC01 under the facility's Renewable Operating Permit. A third incinerator, EUFLRINC01, has been moved to the pathological waste incinerator category as it is not used for cremations. Instead, it incinerates animal waste and bedding, wood infested by emerald ash borers, pharmaceuticals, and low-level radioactive waste.

Three facilities, which cremate animal remains, were removed from the annual MAERS reporting requirement after 2005 but still conduct cremations, therefore estimates were made using 2005 throughout values as surrogates.

For estimation of mercury from animal cremations, a 2012 emission factor prepared by Reindl was used. This emission factor is based on a study of mercury emissions from blood and tissues (but not teeth) from humans. In the absence of cremation emission factors specific to animals this factor is used as a surrogate. It is likely to be more representative of animal cremations than factors based on cremation of humans with mercury dental amalgams, due to the absence of amalgams in animals (McGeen, 2021).

SRN	Facility Name	Emission Unit Name	Description	MAERS Default Estimates in Lbs	Animal Cremation Estimate Based on Reindl Emission Factor ³	Best Estimate in Lbs
K3249	Michigan State University	EUDCPAHINC01	ASC design incinerator located at new DCPAH facility on Bennett Rd. Gas fired with 1200 lb/hr capacity at 1800 F and 1 second retention time in secondary chamber.	0.29830	0.61	0.61
K3249	Michigan State University	EUCREMATORY	Small animal crematorium located at DCPAH	0.00254	0.005	0.005
N6543	Monroe County Animal Control	EU00001	Animal Crematory Incinerator	NA	0.002	0.002
N7158	Rainbow Bridge	EU002	Animal Crematory Incinerator	NA	0.004	0.004
N6494	Union Lake Veterinary Hospital	EU00001	Animal Crematory Incinerator	NA	0.041	0.041
TOTALS				3.01E-01	0.66	0.66

Table 27.	Animal	Cremation,	Point Sources
-----------	--------	------------	----------------------

Pathological Waste Incineration

Zoetis P&U LLC (N3519), a medical research and development facility, is estimated to have emitted 0.005762 lbs of mercury in 2014 from the disposal of pathological waste in their pathological waste incinerator. This is based on the use of a WebFIRE emission factor by the MAERS emission estimator.

The waste incinerator at Michigan State University, which operates under the emission unit EUFLRINC, was identified as a pathological waste incinerator. Per AQD district staff, this incinerator does not incinerate human or animal remains. It incinerates animal waste and bedding, wood from trees infested with the emerald ash borer, pharmaceuticals, and low-level radioactive waste (McGeen, Daniel, 2020).

SRN	Facility Name	Throughput tons	Emission Factor lb/ton	Source of Factor	Lbs Emitted	El Year
N3519	Zoetis P&U LLC	7.85	7.34E-04	MAERS	0.00576	2014
K3249	Michigan State University	113.04	7.34E-04	MAERS	0.08297	2014
TOTAL					0.08873	

Table 28. Pathological Waste Incinerat	e Incineratio	Waste	Pathological	Table 28.
--	---------------	-------	--------------	-----------

INDUSTRIAL SOURCES

Cement Manufacturing

There are two cement manufacturing facilities in Michigan: Lafarge, and St. Marys Cement. Throughput values for all of the facilities were obtained from EI Toolkit. Lafarge's own 2014 estimate of mercury from their cement manufacturing facility was 115.16 lbs, as reported to MAERS. Speciation data for kiln emissions, and raw materials grinding and drying was obtained from a 2007 report prepared for the company (Advanced Environmental Management Group, 2007).

B1477 (Lafarge) processes, for 2014	Hg in Ibs	Particulate Divalent Speciation Factor	Gaseous Divalent Speciation Factor	Elemental Gaseous Speciation Factor	Hg(p) in Ibs	RGM in Ibs	Hg(0) in Ibs
Kiln 19	43.51	0.01	0.85	0.14	0.44	36.98	6.09
EU Clinker 19	0.08	0.01	0.85	0.14	0.00	0.07	0.01
Kiln 20	22.88	0.01	0.85	0.14	0.23	19.45	3.20
EU Clinker 20	0.09	0.01	0.85	0.14	0.00	0.08	0.01
Kiln 21	35.02	0.01	0.85	0.14	0.35	29.77	4.90
EU Clinker 21	0.08	0.01	0.85	0.14	0.00	0.07	0.01
Kiln 22	4.27	0.01	0.91	0.08	0.04	3.89	0.34
EU Clinker 22	1.59	0.01	0.91	0.08	0.02	1.45	0.13
Kiln 23	4.77	0.01	0.91	0.08	0.05	4.34	0.38
EU Clinker 23	2.81	0.01	0.91	0.08	0.03	2.56	0.22
Raw Material Grinding and Drying	0.06	0.17	0.38	0.45	0.01	0.02	0.03
TOTAL	115.16				1.16	98.66	15.33

Table 29. Lafarge Cement Manufacturing

A facility-submitted MAERS value was not available for St. Marys Cement. Accordingly, 2010 stack testing data and 2014 hourly operating data was used by the AQD's Emissions Reporting and Assessment Unit (ERAU), to estimate emissions of mercury at 3.15 lbs (McGeen, 2020). For comparison, the 2014 TRI value of 26.76 lbs has also been included in the report. A total of 184.09 lbs of mercury was estimated from cement manufacturing in Michigan in 2014.

The following cement manufacturing facilities were included in the inventory:

SRN	Facility	Throughput in Tons	TRI Data in Lbs	MAERS Estimate in Lbs	Stack Test- Based Estimate in Lbs	Source for Best Estimate	Lbs Hg Emitted, Best Estimate
B1477	Lafarge	7,594,409	149.00	115.13		Facility reported value in MAERS, 2014	115.13
B1559	St. Marys Cement	1,032,745	26.76	227.20	3.15	2010 stack test	3.15
TOTAL							118.28

Table 30. Cement Manufacturing

Taconite Processing

Michigan has two taconite processing plants, Empire and Tilden, located in the Marquette Range of the Upper Peninsula. Cleveland-Cliffs is the owner of both Tilden and Empire.

Tilden processes both hematite and magnetite. A 2002 stack test for Tilden (B4885) found it emitted 71.83 lbs/yr of mercury based on reported continuous operation of 8,760 hours (Tilden, 2002). More recent stack testing is not available for mercury. Based on the 2002 factor and the 2014 operating schedule for coal-fired and gas-fired pellet production from Tilden, an estimate of 37.95 lbs was created for 2014.

Empire (B1827) only produces taconite from magnetite. Based on an emission factor of 3.54E-06 lb of mercury per long ton of coal-fired pellets made (3.161E-06 lb/ton) from Jiang (1999), and a greatly diminished 2014 production value of 726 tons from coal firing, 0.002 lbs of mercury was likely emitted from Empire for 2014. Taconite in the amount of 2.94 million tons was reported for the gas-fired processes at Empire but there is not an emission factor or stack test for these processes at the facility. Therefore, any associated mercury emissions have not been quantified. Total estimated mercury emissions from taconite processing amount to 37.95 lbs.

Dental Amalgam Manufacturing

In 2014 there was one dental amalgam manufacturer in Michigan, Kerr Industries (B2658). Based on the average mercury concentration inside the building and the ventilation rate of the building, one can estimate that less than four pounds of mercury are emitted from this facility every year. Lumex RA915+ monitoring inside the building yielded an estimated average mercury concentration of approximately 500 ng/m³ for the entire building, which has a volume of 44,309 m³ and has nine air exchanges per hour (MDEQ, 2009).

Lime Manufacturing

Throughput values for facilities with lime kilns were obtained using MAERS. These throughputs were multiplied by an emission factor to estimate mercury emissions. The emission factor of 1.2×10^{-4} lbs of mercury per ton of lime produced corresponds to facilities that manufacture lime (Pilgrim, 1998). The emission factor from WebFIRE for lime kilns used by the paper manufacturing industry (2.90×10^{-7} lbs of mercury per ton of lime produced) was used to estimate emissions from Escanaba Paper Company and Verso Paper — Quinnesec. Using the WebFIRE and Pilgrim emission factors, and USEPA's augmentation of the 2014 NEI v2, it is estimated that 23.86 lbs of mercury was emitted to the air in 2014 from lime manufacturing kilns (McGeen, 2020).

The following lime kilns were included in the calculation:

Table 31. Lime Manufacturing

		Linna an	WebFIRE and	WebFIRE and Mercury			Mercury Estimates in Lbs		
SRN	Facility	Lime or Unbleached Pulp in Tons ¹	Pilgrim Emission Factors ²	MAERS Default	ERAU Calculation	2014 TRI Data ³	EPA Augmentation of 2014 NEI v2	Best Estimate in Lbs	
A0884	Escanaba Paper Co.	104,655.00	2.90E-07	0.02	0.03	37.82		0.03	
A3900	Martin Marietta Magnesia Specialties, LLC	153,333.00	1.20E-04	0.98	18.40			18.4	
B2169	Carmeuse Lime, Inc., River Rouge	300,095.00				3.46	2.06	2.06	
B7192	Verso Paper - Quinnesec	496,606.00	2.90E-07	0.14	0.14			0.14	
N7362	Graymont Western Lime, Inc.	213,492.00				3.23	3.23	3.23	
	TOTAL	1,268,181.00						23.86	

¹ For Escanaba Paper Co. and Verso Paper - Quinnesec, throughput was reported in tons of unbleached paper.

² 1.2E-04 lb/ton of lime from Pilgrim, 1998; 2.9E-07 lb/ton of unbleached pulp from WebFIRE

³ The majority of the A0884 TRI estimate is likely from their coal-fired boiler rather than lime manufacturing; emissions from boiler are already accounted for under fuel combustion.

Phosphate Mills

Michigan does not have any phosphate mills. Based on a query of the SCCs involving phosphates, superphosphates, and ammonium phosphates, the only facility in MAERS associated with the use of phosphates is B1989, Agrium Advanced Technologies (US), Inc. (EGLE, 2020). This facility's North American Industry Classification System code of 325314 indicates "Fertilizer (Mixing Only) Manufacturing."

Brick Manufacturing

Hanson Brick (A6497) in Corunna, emitted 0.68 lbs from its two gas-fired kilns in 2014, based on the facility reported throughput and the application of a standard USEPA emission factor by the MAERS emission estimator (EGLE, 2020).

SRN	Facility	Throughput tons	Emission Factor	Lbs Emitted	Year
A6497	Hanson Brick	0	7.50E-06	0	2014
A6497	Hanson Brick	90113	7.50E-06	0.68	2014
	TOTAL			0.68	2014

Table 32. Brick Manufacturing

Coke Production

Michigan has one coke battery, EES Coke Battery, LLC (P0408). This facility was formerly part of US Steel (A7809) on Zug Island, River Rouge, until it was permitted as a separate stationary source (P0408). In a permit application submitted in June 2014, EES Coke estimated a maximum emission rate for mercury of 0.006 lb/hr (Brunner, 2014). Accordingly, a maximum annual estimate of 52.56 lbs has been estimated by the AQD (McGeen, 2014). More recent stack test data is not available.

Medical Waste Autoclave

There were no medical waste autoclaves operating in Michigan in 2014. There were two medical waste autoclaves referenced in the 2005 mercury report. One was Michigan Waste Services (M4139) in Grand Blanc. This facility, which utilized a medical waste incinerator as well as the autoclave, is no longer operating. The source ceased operations on July 28, 2008, per the date of a court order, which required the company to cease operation of the facility (McLemore, 2010). The other medical waste autoclave was Agility (N7568), in Kentwood. This facility was later known as Stericycle, Inc. The source started operation on October 7, 2004, and closed in 2010 (Charley, 2010).

PRODUCTION OF METALS

Primary Metal production refers to metal created from ore, whereas secondary metal production refers to the production of alloys from ingots and the recovery of metal from scrap and salvage (USEPA, 1986). Metal production that uses scrap is of more concern for mercury emissions, because of the wide application of mercury-containing convenience light switches and antilock brake switches used in vehicles until 2003 (End-of Life Vehicles Solutions Corporation, 2014).

BOFs in Primary Metal Production (Steel Manufacturing)

Basic Oxygen Furnaces (BOFs) are used to make steel from molten metal and scrap. The input material is typically 70 percent molten pig iron and 30 percent scrap (Grinstern, 2010). The input material is refined by injecting high-purity oxygen into the furnace; the oxygen reacts with carbon and other impurities in the metal to remove them from the metal. Basic oxygen process steelmaking is executed in large, refractory-lined, pear-shaped furnaces (USEPA,1986).

There are two facilities in Michigan that make steel using the basic oxygen process: Cleveland-Cliffs Steel Corporation Dearborn Works (formerly AK Steel – Dearborn Works, known in 2014 as Severstal and before that as Rouge Steel) (A8640), and US Steel Great Lakes Works (A7809). For 2014 operations, Severstal reported 51.10 lbs of mercury emissions to the USEPA's TRI. TRI data for 2014 indicates that US Steel emitted 86.1 lbs of mercury. In total, it is estimated that facilities engaged in steelmaking via the Blast/BOF process emitted 137.2 lbs of mercury to the atmosphere in 2014.

Table 33. Steel Manufacturing

SRN	Facility	Comments	Estimated Emissions in Lbs
A8640	Severstal (formerly River Rouge)	2014 TRI	51.1
A7809	US Steel Great Lakes Works	2014 TRI	86.1
TOTAL			137.2

Electric Arc Furnaces (EAFs) in Primary Metal Production (Steel Manufacturing)

Electric arc furnaces are the most common type of furnace used for the electric production of steel. EAFs are capable of melting small amounts of iron scrap, pig iron, and direct reduced iron, but primarily melt scrap (Energy International, 2005). According to the AP-42 Compilation of Emission Factors, about 57% of total steel produced in the United States comes from EAFs in operations called minimills (USEPA, 2010). Minimills use 100% scrap charge (Metals Advisor).

Gerdau MacSteel Jackson (B4306) in Jackson, MI conducted stack testing in May 2014. Based on the stack test emission factor of 4.00-03 lb/hr, and the 2014 operating schedule of 6,000 hours reported to MAERS, 24.00 lbs are estimated for this facility (McGeen, 2020).

Gerdau MacSteel Monroe (B7061) estimated in their 2014 MAERS report that their mercury emissions for the year were 125.8 lbs. This is based on facility stack test data. The ERAU also added a value of 0.03 lbs for emissions of particle bound mercury from the baghouse, based on baghouse dust analysis performed by the facility in 2005. Accordingly, a total estimate of 125.83 lbs of mercury was estimated for Gerdau MacSteel Monroe. These emissions are comprised of elemental and gaseous reactive mercury (McGeen, 2020).

Ervin Amasteel (B1754) conducted stack testing in 2013 on their EAF baghouse exhaust. The emission rate of 3.04E-07 gr/dscf was utilized by the ERAU to estimate annual emissions of 6.16 lbs of mercury from the facility (McGeen, 2020).

SRN	Facility Name	SCC	Steel in Tons	Emission Factor	Hrs/ yr	Estimated Emissions	Basis
B7061	Gerdau MacSteel Monroe	30300908	592,788.66	1.60E-02 lb/hr	7872	125.83	Facility-reported value
B4306	Gerdau Special Steel North America, Jackson Mill	30300904	287,631.72	4.00E-03 lb/hr	6000	24.00	ERAU estimate based on facility's 2014 stack test
B1754	Ervin Amasteel Division	30400701	91,768.00	3.04E-07 gr/dscf	4112	6.16	ERAU estimate based on facility's 2013 stack test
TOTAL						155.96	

Table	34.	EAFs
1 0010		

EAFs and Electric Induction Furnaces (EIFs) in Secondary Metal Production (Steel Foundries)

EAFs and EIFs are used by the steel industry to melt and formulate steel. EAFs are large, welded, cylindrical steel vessels with removable roofs through which three retractable carbon electrodes are lowered; a metal charge is melted by the resistive heating generated from electrical current flowing among the electrodes and through the charge. EAFs are used to produce carbon and alloy steels. The input material to an EAF is typically 100% scrap (USEPA, 1986).

EIFs are cylindrical or cup-shaped vessels that are surrounded by electrical coils. The coils are energized with an alternating current to produce a fluctuating magnetic field that heats the metal charge (USEPA, 1986).

Throughput information for secondary metal production (steel foundries) was obtained from MAERS. An emission factor from *"Toxics in Vehicles: Mercury"* was then applied since WebFIRE was lacking an emission factor for this category (Ecology Center & Great Lakes United, 2001).

Barber Steel Foundry Corporation (B1961) was bankrupt and did not operate for several years, but resumed operations in 2013. Michigan Steel (B1929) and Ancast, Inc. (N7276) closed permanently in 2012 and are therefore not included in the 2014 inventory. Barron Industries, Inc. was removed from the MAERS reporting requirement in 2012. The facility's 2011 reported throughput is used as the basis for an estimate in the absence of more recent information (McGeen, 2021).

Cannon Muskegon Corp. (A4315) was not included for mercury estimates since they do not melt any automotive or common white goods scrap. They only use high quality/purity metals due to the products they produce; therefore, any mercury emitted would have to come from the metal itself as opposed to contamination from mercury switches (Grinstern, 2010).

The following EAFs and EIFs in steel foundries were included in the calculation:

SRN	Facility Name	Emission Unit Name	Emission Unit Description	SCC	Iron in Tons	Emission factor in Ib/ton ¹	Estimated Emissions in Lbs
B1961	Barber Steel Foundry Corp.	EU-MELTING	One 6 ton per hour electric induction furnace. Two permitted 10 ton per hour furnaces not installed during 2014.	30400705	2576.4	6.90E-04	1.78
B7013	Huron Casting, Inc. & Blue Diamond Steel Casting	EU-INDUCTION	Induction Furnaces Pourline A. Recirculated	30400705	18286.00	6.90E-04	12.62
B7357	Temperform LLC	EUSCRUBBER1	Melting, pouring and cooling operations equipped with 4 electric induction furnaces, pour station, ladle drying station, heaters and mold spray. This emission unit is controlled by a 40,000 CFM wet scrubber, SV001.	30400705	1212.00	6.90E-04	0.84
B7870	Eagle Alloy, Inc.	RG08	Melting & Pouring Equipment- Eagle Prec.	30400705	1585.87	6.90E-04	1.09
N2631	Barron Cast, Inc.	EU-E I Furn	Electric Induction Furnace	30400705	910.00	6.90E-04	0.63
TOTAL							16.95

¹ Emission factor from "Toxics in Vehicles: Mercury" (Ecology Center & Great Lakes United, 2001).

Table 36. Supporting Data from Toxics in Vehicles: Mercury(Ecology Center & Great Lakes United, 2001)

Company	State	Production Capacity Short	Estimated Hg Emissions	Estimated Hg Emissions	Average Estimated Hg Emissions	Average Emission Factor	
		Tons/year	Low Lbs/yr	High Lbs/yr	Lbs/yr	Lbs Hg/ton	Kg Hg/metric ton
Marion Steel	OH	365,000	371	572	514	0.0014	0.0007
Co-Steel Sayreville	NJ	750,000	24	4730	597	0.00080	0.00040
North Star Steel	MN	465,000 ^b	136	136	136	0.00029	0.00011
Co-Steel Raritan	NJ	800,000	129	323	224	0.00028	0.00014
Overall average er	nission f	0.00069	0.00035				

Mercury Emission Factors for EAFs (1997-2000 test data)

Note: Except for NSS, estimated mercury emissions are based on actual stack-test data for pounds of mercury emitted per hour times the allowable operating hours per year. NSS mercury emissions are based on actual stack-test data times the annual hours the EAF is under power.

^{an} Except for NSS, production capacity data from Iron & Steel Maker, EAF Roundup, May 2000.

^b Based on estimated 1998 production instead of capacity[.]

Secondary Metal Production (Grey Iron)

Grey iron is a type of cast iron with 3.5% carbon and is used in industry. Much of the carbon in this type of cast iron separates out as graphite, which gives grey iron its grey appearance (Dictionary.com). This broad grouping includes the following two categories: cupolas in secondary metal production (grey iron), and EAFs and EIFs in secondary metal production (grey iron).

Cupolas in Secondary Metal Production (Grey Iron)

The cupola is a type of furnace used in the iron foundry industry. It uses coke as a fuel and is typically composed of a cylindrical steel shell with a refractory-lined or water-cooled inner wall (USEPA, 1986).

For Grede, LLC. (B1577) and Cadillac Casting, Inc. (B2178), recent stack test data was available and was deemed applicable for use in estimating 2014 emissions based on lack of process equipment changes preceding or following the years in which the testing occurred. A 2010 stack test was used for CWC Textron (B1909) in lieu of a 2017 stack test; due to process modifications that occurred after 2014, the 2010 test results were seen as more likely to be representative of 2014 operating conditions. Accordingly, ERAU staff created mercury estimates for these sources using the emission rates in lbs per ton. Emission rates in lbs per hour were also utilized, where available. The resulting values were several times lower than the MAERS default estimates and the estimates based on the New Jersey or WebFIRE emission factors (McGeen, 2020).

Stack testing data from other cupolas engaged in secondary metal production of grey iron was not available. Where knowledge was available on control information, a controlled factor from WebFIRE was selected. The "New Jersey" emission factor was generated based on stack tests from three facilities between 1993 and 1999 (Ecology Center & Great Lakes United, 2001). Cupolas emitted an estimated 43.58 to 43.76 lbs of mercury in 2014.

The following cupolas engaged in the production of grey iron were included in the inventory:

Table 37. Cupolas - Grey Iron

SRN	Facility Name	Default Estimates from 2014 NEI v2 in Ibs	Iron in Tons	Estimated Emissions from Stack Testing and NEI ^{1,2,3}	Estimated Emissions from Stack Testing, NJ Emission Factor and Controlled FIRE Factor ^{4,5}
A0767	East Jordan Iron Works, dba EJUSA, Inc.	61.57	176918.00	44.23	28.13
A3934	Great Lakes Castings LLC	17.95	54887.81	13.72	13.72
B1577	Grede LLC - Iron Mountain	24.32	69877.00	1.18	1.18
B1909	CWC Textron	21.67	62281.00	9.28E-03 to 2.54E-02	9.28E-03 to 2.54E-02
B2178	Cadillac Casting, Inc.	51.64	148396.00	0.54 - 0.70	0.54 - 0.70
TOTAL		177.15		59.68 - 59.86	43.58 - 43.76

¹ B1577 stack test on May 8, 2012

² B1909 stack test on June 20, 2010

³B2178 stack test on October 25, 2016

⁴ Emission factor of 2.50E-04 lb/ton from New Jersey study applied to A3934 calculation

⁵ Controlled FIRE factor of 1.59E-04 lb/ton applied to A0767 and B1577 calculations

Table 38. Supporting Data from *Toxics in Vehicles: Mercury* (Ecology Center & Great Lakes United, 2001)

Mercury Emissions from New Jersey Foundries

Facility	Permitted Production Capacity (short tons/yr)	Mercury Permit Limit (Ibs/yr)	Stack Test Date	Mercury Emissions (lbs/yr)	Average Mercury Emission Factor	
	tonio, yr,				(lbs/short ton)	(kg/metric ton)
Atlantic States Iron Pipe Co.	234,000	137	Nov. 1993	40	0.00032	0.000016
			Nov. 1999	108		
Griffin Pipe Products	182,000	312	Sept. 1997	10	0.000055	0.000027
U.S. Pipe and Foundry, Inc.	262,964	80	Sept. 1997	96	0.00037	0.00018
Average Emission	n Factor	0.00025	0.00012			

Source: Agrawal, Sunila, NJ DEP, October 30, 2000.

EAFs and EIFs in Secondary Metal Production (Grey Iron)

An EAF is a large, welded, cylindrical steel vessel with a removable roof through which three retractable carbon electrodes are lowered and energized, creating arcs that melt metallic charge with their heat. EIFs are cylindrical or cup-shaped vessels that are surrounded by electrical coils, energized to produce an electromagnetic field that heats the metal charge (USEPA, 1986).

Stack testing was not available for EAFs and EIFs involved in the secondary metal production of grey iron. Throughput information was obtained from the EI Toolkit. An emission factor of 2.70E-04 lb/ton was obtained from the Indiana Department of Environmental Management's "Summary of Mercury Emissions from Non-Electric Generating Units" (IDEM, 2004). This emission factor was then compared to the emission factor of 7.20E-05 lb/ton corresponding to grey iron production from WebFIRE to generate a range (McGeen, 2020).

The following EAFs and EIFs engaged in the production of grey iron in 2014 were included in the calculations:

SRN	Facility Name	SCC	Iron in Tons	Stack Test Factor in Lb/Hour	Stack Test- Based Estimate in Lbs	Estimate in Lbs per Stack Testing and FIRE Factor	Estimate in Lbs per Stack Testing and IDEM Factor
A0171	Hastings Manufacturing Company	30400303	1370.60			0.10	0.37
B1661	Pioneer Foundry Co., Inc.	30400303	826.00			0.06	0.22
B1709	Federal-Mogul Powertrain Systems	30400303	14955.00			1.08	4.04
B1716	Betz Industries, Inc.	30400303	35786.00	< 4.969E-05	0.11	0.11	0.11
B1737	Kent Foundry Co.	30400303	6186.80			0.45	1.67
B2015	Metal Technologies, Inc. Three Rivers Gray Iron	30400303	175569.00			12.64	47.40
B4538	Blackmer	30400303	3964.42			0.29	1.07
M4387	Process Prototype, Inc.	30400303	116.64			0.01	0.03
N5814	Asama Coldwater Manufacturing, Inc.	30400303	96982.00	6.11E-06	0.04	0.04	0.04
N5866	Metal Technologies, Inc., Ravenna Ductile Iron	30400303	125801.00			9.06	33.97
TOTAL						23.83	88.92

Table 39. EAFs and EIFs - Grey Iron

EAFs and EIFs engaged in the production of grey iron produced between 23.83 and 88.92 lbs of mercury emissions in 2014 (McGeen, 2020).

Auto Switches – Shredding of Autos (Point Source)

Mercury emissions from the shredding of automobiles have a point source component (from permitted facilities) as well as a nonpoint source component from unpermitted facilities.

	2014 Mercury Estimate in Lbs for Michigan				
Category	USEPA Mercury Flow Diagram Calculation	2014 NEI v2 Calculation			
Point source auto shredding	18.61	18.61			
Area source auto shredding	71.49	161.99			
Statewide totals: auto shredding	90.10	180.6			

Table 40. Shredding of Autos

Using Michigan data about scrapped vehicles, a range of emissions from 32.85 lbs to 180.60 lbs of mercury were emitted statewide to the atmosphere from shredding (McGeen, 2020). It was estimated that a maximum of 18.61 lbs were emitted by point sources per the table below. Estimates were based on the availability of stack test data and permitted hours of operation, or Lumex monitoring.

In the nonpoint source section, the methodology for estimating the nonpoint source component of auto shredding emissions (71.49 lbs to 161.99 lbs) will be presented.

Company	SRN	Emission Control Equipment	Emissions (Ibs/yr)	Comments
Louis Padnos Iron & Metal Co. 2001 Turner Ave NW, Grand Rapids, MI 49504	A2457	Shredder has "water only" spray in the hammer mill.	11.44	2008 stack test
SLC Recycling, Inc. (Ferrous Processing & Trading)	A4750	Baghouse	0.4	2001 stack test; EU-SHREDDER currently permitted under 309-00B, which has mercury limit of 0.0012 lbs/hour mercury and restriction for 6240 hours of annual operation
Louis Padnos Iron & Metal Co. 120 S. River Avenue, Holland, MI 49423	B1982	Multicyclone, water injection	NA	365-98A, active, for AUTOMOBILE SHREDDER-WATER INJECTION SYSTEM/REVISE.
Ferro-Met Corp. 1011 N. Washington Saginaw, MI 48601	B1997	Not currently operating	NA	201-88, active, for SHREDDING SYSTEM.

Table 41. Point Source Auto Shredding

Jackson Iron & Metal, 810 Lewis Street, Jackson, MI 49201	B2281	Shredder has "water only" spray in the hammer mill.	2.01	PTI 93-04 voided on 1/06/2005. PTI 93-04A issued on 1/06/2005 and is currently active; FG-SHREDDERAPC has limit of 0.02 lbs Hg/hour. EUSHREDDER has limit of 3120 hours per rolling 12 month time period. Per inspection report of 7/03/2019, 2005 stack test report had results of 0.008 lb/hr Hg from EU-SHREDDER. At 3120 hours per year, this results in a calculation of 24.96 lbs of Hg emissions annually. However, per an 8/04/2015 inspection report, 2500 to 3000 cars are shredded annually at this facility. The total estimated mercury in vehicle switches for those automobiles ranges from 3 to 4 lbs. Utilizing the same emission factors as for the USEPA flow diagram nonpoint source calculations, up to 2.01 lbs of mercury are estimated to have been released from the 2500 to 3000 vehicles processed annually at this facility.
Fritz Enterprises, 23550 Pennsylvania Rd, Taylor, MI 48180	B3240	Water spray and cyclone on shredder.	1	2003 Lumex Monitoring (assuming 8 hour workday/365 days/yr)
FPT-Pontiac Division LLC 500 Collier Rd. Pontiac, MI 48056	B4146	Water spray on hammer mill with a control system of primary cyclone, followed by a quad cyclone, then a fabric filter (cloth filter/roller). Material handling systems down line are controlled by cyclones.	NA	120-80, active, for HAMMERMILLS CAR SHREDDER AND FABRIC FILTER AND CYCLONIC COLLECTORS.
Sturgis Iron & Metal, 70675 Centerville, Sturgis, MI 49091	B4372	Shredder ducted to a cyclone and cyclones on material handling.	NA	25-03A for aluminum shredder (particulate limits), active. 355-79A (particulate limits), active.
Louis Padnos Iron & Metal Co. 1900 W. Willow Lansing, MI 48917	B4884	Shredder has "water only" spray in the hammer mill.	NA	100-18 for new shredder voided on 8/18/2020. 205-75 and 52-75 still active.
Huron Valley Steel Corp. 41000 Huron River Dr. Belleville, MI 48111	B6178	Two cyclones	NA	No stack test, TRI, permit or MAERS data available for mercury emissions
West Michigan Iron and Metal 1845 Chicago Dr. SW, Wyoming, MI 49509	B7634	Shredder enclosed by a metal hood and ducted to a cyclone followed by a wet scrubber.	NA	1094-80, 15 CAT/HOUR FRAGMENTIZER WITH WET SCRUBBER AND CYCLONE
Rifkin Scrap Iron & Metal 1445 N. Niagara St. Saginaw, MI 48602	N0844	Shredder enclosed by a metal hood and ducted to a cyclone followed by a wet venturi scrubber.	2.7	2004 stack test at baghouse (assuming operating 24 hr/d, 365 d/yr)
Portland Iron & Metal, 3130 Knoll Rd. Portland, MI 48875	N1340	Water spray on shredder. Z-box with cyclone for material separation.	NA	PTI 2-15, PM emission limit only. 381-98, opacity limits.

Kalamazoo Metal Recyclers 1525 King Highway Kalamazoo, MI 49001	N1373	Shredder enclosed by a metal hood and ducted to a cyclone followed by a wet venturi scrubber.	NA	PTI 364-78
E. Kingsford Iron and Metal 100 Superior Avenue, Kingsford, MI 49801	N3753	NA	NA	No stack test, TRI, permit or MAERS data available for mercury emissions
Strong Steel Products, 6464 Strong Detroit, MI 48211	N6293	Shredder has water added to control emissions.	1	2005 Lumex Monitoring (5008 max. operating hours)
S & S Metal Processing 5032 Dort Highway Flint, MI 48505	N6823	Shredder (60 ton/hr thruput) enclosed by a metal hood and ducted to a cyclone followed by a wet cyclonic scrubber.	6.13E-02	2011 stack test data associated with PTI 92-00B (currently active) found in 2015 MACES inspection report for Fritz Enterprises of Flint, SRN # N6823. Limit of 0.0022 lb/hour and stack testing results showed emissions of 7.0E-06 lb/hour. Based on that hourly rate, emissions of 6.13E-02 lbs would result from continuous year-round operation. Emissions in 2014 may have been much lower as the facility had only operated 17 days in 2015 at the time of the inspection on 7/16/2015 due to a low price for steel on the commodities market.
TOTAL			18.61	

Relay Manufacturers

MDI (Mercury Displacement Industry, SRN N5886) operates in Edwardsburg, MI. According to the facility's TRI report, it emitted 83.4 lbs of mercury in 2014. According to the 2005 NATA, the mercury emissions are elemental mercury.

NONPOINT SOURCES

MERCURY IN PRODUCTS

Incineration of wastes contaminated with mercury-containing products has been known for some time to release mercury to the air, but other pathways for atmospheric mercury emissions from products have received little attention. Emissions from products in this inventory were calculated using the flow model approach. The flow pathway technique was pioneered by the Swedish Nation Chemicals Inspectorate (KEMI), which estimated releases from batteries, fluorescent lamps, and sewage sludge. Barr Engineering Company (Barr) and Minnesota Pollution Control Agency (MPCA) used the KEMI approach to estimate the quantity of mercury releases from products in Minnesota. The Minnesota study expanded the KEMI technique to include additional release pathways and additional products. The Minnesota study looked at releases to air, water, and land. The flow model developed during the Minnesota study has since been used to estimate emissions in studies conducted by the Wisconsin Department of Natural Resources and USEPA Region 5 with assistance from Barr (WDNR, 2006). The estimates for emissions from products in this inventory used the most recent model that was updated by USEPA Region 5. Michigan specific data was incorporated into the model when possible. Since the purpose of this inventory is to quantify air emissions, releases to land and water were not included. The methodology used for each specific product is described below.

Dental Amalgam

Substituting Michigan data for national data in the USEPA Mercury Flow Diagram, emissions from dental amalgam were calculated (McGeen, 2020). Emissions in this category can be further subdivided into four categories: emissions from the dental office, emissions from the consumer "in use," emissions from recycling, and emissions from dental amalgam in the solid waste stream.

Emissions from dental offices are based on the Interstate Mercury Education & Reduction Clearinghouse Fact Sheet: Mercury Use in Dental Amalgam (IMERC, 2018). According to the December 2018 version of the fact sheet, there were 31,940 total lbs of mercury sold nationally in dental amalgam in 2013. The 2014 calculation assumes that 2014 sales were identical to 2013. Michigan's proportion of the national sales was determined by population (3.1% of the national value). Furthermore, it was assumed that all amalgam sold within the year was placed. Accordingly, 996.53 lbs was assumed for placement of dental amalgam in Michigan in 2014.

This corresponds to 68.23 lbs of mercury emissions, assuming that 7% of the mercury in an amalgam volatilizes to the air during placement of the amalgam.

Additionally, it was estimated that 516.74 lbs of mercury returned to the dental office in the form of mercury amalgams, which were replaced with new amalgam. Seven percent of the replaced amalgam or 37.99 lbs of mercury was emitted from the dental office in the form of air emissions. This source of emissions was inadvertently omitted from the AQD's 2002 and 2005 mercury reports.

Consumer "in use" emissions were estimated to be 14.42 lbs. This estimate was based on the assumption that 76 percent of the mercury input to dental offices goes to the consumer. A release factor of 0.02% was used to estimate the amount of mercury that would be exhaled to the air.

Mercury from storage, transit, and transfer en route to MSW landfills was estimated at 0.29 lbs. Mercury from disposal as MSW was estimated at 1.79 lbs.

Mercury in the amount of 6.44 lbs from mass burn and refuse derived fuel (RDF) was estimated by the USEPA model, but since this category is already accounted for in the point source inventory, this estimate was not included in the Michigan 2014 mercury inventory.

Mercury in the amount of 122.72 lbs was estimated in total for the category of dental amalgams in 2014, for the placement of dental amalgams and consumer "in use" emissions. An additional value for mercury in the amount of 2.08 lbs was estimated for the waste steam as noted above. These values do not include the emission estimates from cremation, which is a separate nonpoint source category.

	Dental Amalgam					
Year	lb	Subset				
2014	68.23	Emissions from replacement (removal) of dental amalgam				
2014	37.99	Emissions from placement of dental amalgam				
2014	14.42	Consumer "in use" emissions				
2014	0.29	Storage, transit and transfer (MSW)				
2014	1.79	Landfills				
2014	NA	Recycling				
2014	NA	Mass burning and RDF (accounted for under point sources)				
2014	NA	Burn barrels				
TOTALS	122.72					
		Assignment in Table 1				
Table 1	122.72	Mercury-containing Products				
Table 1	2.08	All other values (storage, transfer and transit) are included under subsets of Waste Disposal category				

Table 42. Dental Amalgam

Fluorescent and Non-fluorescent Lamps

Substituting Michigan data for national data in the USEPA Mercury Flow Diagram, an emissions estimate for fluorescent lamp breakage was calculated (McGeen, 2020). Mercury in the amount of 5.42 tons was present in lamp sales in 2013, based on data from IMERC's Mercury Use in Products fact sheet (IMERC, 2018). This represents a 50% decline since 2001 and a 35% decline since 2010. The IMERC data was presented for lamp manufacturing as a whole and did not apportion the number into values for fluorescent and non-fluorescent lighting. Accordingly, the two categories have been grouped together for the 2014 mercury report.

For the estimation of Michigan's 2014 emissions, it was assumed that 2014 lamp sales in the United States were the same as in 2013. Using Michigan and national population data for 2014, it was assumed that Michigan received a proportionate percentage of the lamps containing mercury (3.12%, or 19,177,840 lamps). This number was increased to account for an additional 0.5% broken at retail locations (for 19.273.729 lamps), and an additional 5.0% broken prior to delivery to retail locations (production total of 20,237,416 lamps). The quantity of lamps in retail and the quantity of lamps purchased by consumers were then multiplied by release factors to estimate the amount of mercury emitted when a fraction of these lamps was broken. The release factor for breakage during retail was 0.002%, and the release factor for consumer breakage was 0.01%. It was assumed that each lamp manufactured in 2014 contained 0.008 g of mercury (NEMA, 2000). In 2007 participating manufacturers capped the total mercury content in CFLs at less than 25 watts at 5 milligrams (mg) per unit. CFLs that use 25 to 40 watts of electricity were capped at 6 mg per unit (NEKA, 2007). The proportion of CFL to full-size fluorescent bulb sales was not available, therefore the more conservative assumption of 8 mg per unit is still being used for purposes of the 2014 emissions estimation for this nonpoint source category. This method yielded an emissions estimate of 0.68 lbs of mercury emitted from lamp breakage by retailers, and 3.37 lbs emitted from lamp breakage by consumers. An additional 0.18 lbs of mercury from lamps broken at production facilities was estimated, for a total of 4.23 lbs directly from lamp breakage.

The USEPA Flow Diagram was also used to estimate emissions from the disposal of lamps in the MSW stream. Of the total number of disposed fluorescent lamps (537.38 lb/yr in Michigan based on an estimate of lamps being discarded at the end of their life expectancy in 2014), 78% or 419.16 lbs likely ended up in the solid waste stream. Assuming 10% of the mercury in each lamp was released while in transit, 41.91 lbs of mercury emissions would be attributable to the collection and processing of lamp-containing MSW.

Assuming 84% of lamps in MSW end up in landfills, and 1% of the mercury is released, 2.95 lbs of mercury emissions can be attributed to landfill emissions from disposed lamps. Another 6.50 lbs of emissions were likely due to the 2% of lamps in MSW that are burned in burn barrels, assuming a 90% release factor. Emissions in the amount of 24.80 lbs were estimated from lamps incinerated in mass burn/RDF combustion. However, Michigan's 2014 mercury inventory already accounts for solid waste incineration under point sources, so the 24.80 lbs of nonpoint source mercury emissions estimated by the USEPA Mercury Flow Diagram for mass burn/RDF has been omitted from the Michigan 2014 inventory.

Using the USEPA Mercury Flow Diagram and assuming that Michigan recycles fluorescent lamps at the same rate as the national average, 22%, about 8.8 million lamps should have been recycled in Michigan in 2014. Approximately 1.17 lbs of mercury was likely released during the transport of lamps to the recycling facility based on a 1% release factor.

It can be estimated that the five companies in Michigan with fluorescent lamp recyclers emit 3.5 lbs of mercury per year, assuming that they are emitting the maximum amount allowed by their permit conditions. These six facilities are not required to report to the Michigan Air Emissions Reporting System. Therefore, it was not known how many hours they operated or, in the case of the portable sources, where they operated and emitted in 2014.

SRN	Facility	Portable or Permit Facility Stationary Limit		Max. Emitted lbs
N5941, N5942, N5614	Valley City	Each facility is portable.	0.004 g / hr for each portable lamp recycler	0.23
N5948	Greenlites (Cleanlites)	Stationary	Stationary 0.08 g/hr	
N6821	Reliable Relamping	Facility is permitted as both a portable and a stationary source.	0.01 g/hr	0.19
N5549	Greenlite Lamp Recycling	Stationary	0.08 g/hr	1.55
P0621	3S International, LLC	Stationary	The permittee shall not process more than 9,636 tons of fluorescent light bulbs per year in FGRECYCLERS per 12-month rolling time period.	NA
Total				3.50

Table 43. Fluorescent Lamp Recyclers

Hence, fluorescent and non-fluorescent lamp breakage, recycling, and the solid waste stream are estimated to have released 87.45 lbs of mercury to the atmosphere in 2014. Lamp breakage is estimated to have released 4.23 lbs of mercury by itself, and the remaining disposal activities (storage, transfer, transit, and recycling) are estimated to have released 56.03 lbs. Of the disposal activities, the subset of fluorescent lamp recycling and recycling-related activities account for 4.67 lbs.

The USEPA's 2014 NEI v2 contains a relatively close estimate for Michigan of 54.65 lbs from non-recycling breakage and 0.02 lbs from recycling breakage. This is based on methodologies and calculations prepared by the USEPA's contractor, Abt Associates. Ultimately, the 2014 NEI v2 value has been used for the report as the most defensible calculation, though Table 44 shows the values estimated via the USEPA Mercury Flow Diagram for comparison.

	Fluorescent Lamps				
Year	Flow Diagram Estimate in Lbs	2014 NEI v2 Estimate in Lbs	subset		
2014	0.18		Production breakage		
2014	0.68		Retail breakage		
2014	3.37	54.65	Consumer breakage		
2014	41.91		Storage, transit and transfer (MSW)		
2014	1.17		Landfills		
2014	2.95	0.02	Storage, transit and transfer (recycling)		
2014	3.5	0.02	Recycling		
2014	NA	NA	Mass burning and RDF		
2014	6.50	NA	Burn barrels		
TOTALS	60.26	54.67			
	Assignment in Table 1				
Table 1		54.65	Mercury-containing Products		
Table 1		0.02	All other values (storage, transfer and transit en route to recycling) are included under Waste Disposal category		

Table 44.	Fluorescent	and No	n-fluorescent	Lamps
	1 1001000011			Lampo

Drum Top Crushers

As of 2014, there were ten active permits issued by EGLE for drum-top crushers (DTCs) with an eleventh permit voided but the process rolled into the facility's Renewable Operating Permit. Accordingly, there were 11 permitted DTCs operating in 2014. Of the active DTCs in 2014, the permits for several have since been voided. The information available for these sources is summarized below. Based on the maximum allowed number of lamps to be crushed each year (5,000 per facility with 90% control for carbon filters, per Joy Taylor Morgan, EGLE), the amount emitted from this category in 2014 can be estimated at a minimum of 0.12 lbs and a maximum of 0.24 lbs (McGeen, 2020).

Permit No	SRN	Company	Location	Approved	Voided	Comments
170-13	B8747	Johnson Matthey Vehicle Testing & Development	Taylor	12/11/2013	2/10/2020	
159-14	B8876	Flowserve Corporation	Kalamazoo	10/23/2014	2/23/2017	
23-10	E8510	Adrian College	Adrian	2/3/2010	12/20/2016	
112-10	N0929	Auto Alliance International	Flat Rock	6/9/2010	5/19/2011	Rolled into ROP
59-14	N3111	Tenneco, Inc.	Marshall	5/5/2014	5/23/2016	
117-10	N5245	Marquette County Solid Waste Management	Marquette	7/19/2010		
138-06	N7614	Shaheen Chevrolet, Inc.	Lansing	7/13/2006		
40-10	P0063	McPhee Electric & Telecommunications	Potterville	3/8/2010	10/18/2017	
49-11	P0231	Hybra Recycling, LLC	Traverse City	5/4/2011	5/24/2016	
16-14	P0500	Sebewaing Light & Water Dept	Sebewaing	2/14/2014		
68-14	P0515	Tenneco Automotive, Inc.	Litchfield	5/27/2014	3/13/2018	

Table 45. DTCs

Auto Switches – Shredding of Autos (Nonpoint Sources)

Nonpoint source mercury emissions from the shredding of automobiles were calculated by substituting Michigan data for national data in the USEPA Flow Diagram (McGeen, 2020). Additionally, a value prepared by the USEPA's contractor for the 2014 NEI v2 is included and is accepted as the final value for the report.

Using Michigan data about scrapped vehicles, an estimated 32.85 lbs of mercury was emitted to the atmosphere from shredding, in total. It was estimated that 225.53 lbs of mercury was present in switches in end-of-life vehicles in Michigan in 2014, based on the estimated number of vehicles scrapped in Michigan (5.44% or 457,090 vehicles). Previous mercury inventories assumed an average of 0.54 switches per vehicle with an average of 1 gram of mercury per switch. Ninety-nine percent of these vehicles were assumed to be sent to scrap yards/dismantlers, with the remaining 1% being disposed of in some other manner.

However, the number of vehicles with mercury switches has declined as the vehicle population ages. As documented by End-of-Life-Vehicle Solutions, vehicles manufactured in the 2003 model year and beyond do not contain mercury convenience switches (ELVS, 2007). In addition, the

average age of vehicles in Michigan at present is 10.7 years. The average age of vehicles in the U.S. in 2014 was 11.4 years (Bureau of Transportation Statistics, 2017).

The 2014 mercury report, as originally released in July 2021, contained a back-calculated estimate for mercury remaining in the vehicle pool, which significantly lowered the air emissions calculations. However, after comparison with the 2014 NEI v2 assumptions, that value was later considered to be an underestimate of the quantity of available mercury. Accordingly, the estimate of mercury remaining in the vehicle fleet was recalculated based on the standard USEPA Mercury Flow Diagram assumptions. The resulting emission estimates presented here are significantly closer to the estimates from the 2014 NEI v2.

Based on an End-of-Life-Vehicle Solutions report, 42.31 lbs of mercury was recovered from mercury switches in 2014 (ELVS, 2019). Sixty-six percent of the vehicles sent to scrap yards/dismantlers were assumed to be shredded. Per the USEPA Flow Diagram, it was estimated that 22% or 72.08 lbs of mercury in these vehicles will be released during the shredding process. This release factor was based on the *North Star Steel Mercury Mass Balance Report*, prepared by Barr in 1999. Another 18.02 lbs of mercury should be released from auto fluff, assuming a 25% release factor per the Barr report.

This results in a flow diagram calculation total of 90.10 lbs from the auto shredding sector. Following the deduction of 18.61 lbs of mercury estimated for the point source component of auto shredding, the nonpoint source component is estimated to be 71.49 lbs in 2014.

The USEPA's 2014 NEI v2 contained a nonpoint estimate for Michigan of 180.60 lbs from shredding. This activity, under SCC of 265000002 is entirely for switches in automobiles per the documentation and calculations prepared by the USEPA's contractor Abt Associates. The USEPA apportioned a national estimate for unrecycled automobile switches (2.1 million) to counties based on the number of car recycling facilities per county.

The following table presents the range of emissions estimated for the nonpoint component of auto switches (automobile shredding).

	Auto Switches - Estimated Mercury Emissions in Lbs				
Year	Year USEPA Mercury 2014 NEI v2 Flow Diagram Calc.		Subset		
2014	72.08	180.6	Shredding (NEI value was not apportioned between shredding and auto fluff)		
2014	18.02	NA	Auto fluff		
2014	NA	NA	Storage, transit and transfer (MSW)		
2014	NA	NA	Storage, transit and transfer (recycling)		
2014	NA	NA	Landfills		
2014	NA	NA	Recycling		
2014	NA	NA	Mass burning and RDF		
2014	NA	NA	Burn barrels		
TOTAL	90.10	180.6	Area source and point source totals		
	71.49	161.99	Area source total		
	18.61	18.61	Point source total		
	Assignment in TABLE 1				
TABLE 1		161.99	Mercury-containing Products		
TABLE 1		18.61	Point source deduction entry		

Switches and Relays

Using national data in the USEPA Flow Diagram, emissions from switches and relays were estimated as a proportion of national emissions (McGeen, 2020). Michigan accounted for 3.12% of the United States population in 2014 so national values were scaled down to reflect Michigan's proportion of the national population.

Approximately 1.08 lbs of mercury was emitted from the retail of switches and relays, assuming 0.1% of mercury in switches and relays is released during retail in 2014. The quantity of mercury sold annually in switches and relays nationally was based on the 2010 figure from the most recent IMERC Fact Sheet: Mercury Use in Switches & Relays (IMERC, 2014). The 2010 value was adjusted for an annual 4% decline by 2014.

For consumer breakage of switches and relays a 0.05% release factor was used. It is estimated that 60.45 lbs of mercury was emitted from consumer breakage in 2014, for a total of 61.53 lbs from the consumer and retail category.

During the storage, transit, and transfer of MSW, 14.44 lbs of mercury was likely released assuming a 1.5% release factor. Another 19.25 lbs of mercury was released in 2014 during the storage and transfer of switches and relays bound for recycling. Approximately 40% of the mercury in discarded switches and relays is sent on for recycling.

The switches and relays in MSW which reach landfills contributed 6.68 lbs of mercury emissions under the assumption that 1% of the mercury is released. Another 18.85 lbs of mercury was likely released due to recycling switches and relays, assuming a 1% release factor and is reported under recycling. The mercury model projected that 93.56 lbs more would be lost due to mass burning and RDF combustion, but this was not included in the switch and relay nonpoint source estimate as the incineration category has already been accounted for under point sources. Three percent of switches and relays in MSW were likely burned in burn barrels, releasing 90% of the mercury contained in them, or 28.70 lbs.

In total, 149.45 lbs of mercury was likely released from activities associated with mercury-containing switches and relays in 2014. This includes the solid waste stream.

Mercury in the amount of 61.53 lbs is listed in Table 1 for the Switches & Relays component of the mercury-containing products category. This includes only the emissions from retail and consumer breakage. The remaining emissions from activities such as storage, transfer, transit, and recycling are reported in Table 1 under the Waste Disposal category.

Table 47. Switches and Relays

	Switches and Relays				
Year	lb	Subset			
2014	1.08	Retail breakage			
2014	60.45	Consumer breakage			
2014	14.44	Storage, transit and transfer (MSW)			
2014	19.25	Storage, transit and transfer (recycling)			
2014	6.68	Landfills			
2014	NA	Compost			
2014	18.85	Recycling			
2014	NA	Mass burning and RDF			
2014	28.70	Burn barrels			
TOTAL	149.45				
	Assignment in TABLE 1				
TABLE 1	61.53	Mercury-containing Products			
TABLE 1	87.92	All other values (storage, transfer, transit and recycling) are included under subsets of Waste Disposal category			

Thermostats

Emissions from thermostats were estimated by substituting Michigan data for national data in the USEPA Flow Diagram (McGeen, 2020). Emissions were estimated from production, retail, and consumers.

The fact sheet Mercury Use in Thermostats provided an estimate of total mercury sold nationally in electro-mechanical thermostats (IMERC, 2018). The fact sheet indicated that 102 lbs of mercury was sold nationally in thermostats in 2013. This represents a decline of almost 99% in mercury use in thermostats since 2001. According to Clean Water Action, this decline was due in large part to state laws which banned the sale of thermostats containing mercury (Clean Water Action, 2010). IMERC states that by 2016, all known manufacturers of thermostats have phased out the use of mercury. As thermostats have a life expectancy of 30 to 50 years, emissions from discarded thermostats will occur for some years into the future.

Assuming that mercury use in 2014 thermostats sold is equal to 2013 levels and using Michigan's 2014 population data to apportion the United States total sales to Michigan, 309 thermostats containing mercury were estimated to be sold in Michigan in 2014. This includes sales for new construction, and sales for the replacement of older units. This estimate assumes that Michigan received an even percentage of the national number of thermostats produced, and that thermostats contain an average of 3.67 g mercury per unit.

It was presumed that 0.2% of the mercury in new electro-mechanical thermostats was emitted during production, resulting in 0.01 lbs of mercury emissions. Another 0.2% of the mercury in thermostats was emitted from breakage during retail. This likely contributed 0.01 lbs of mercury emissions in 2014.

Based on state and national population data, and national estimates for the number of thermostats replaced, an estimated 109,200 mercury-containing thermostats were replaced (discarded by consumers) in Michigan in 2014. This estimate assumes that Michigan accounted for an even

percentage of the national number of thermostats replaced, that thermostats contain an average of 3.67 g mercury per unit, and that 70% of the thermostats removed contained mercury (an increasing share of replaced thermostats is expected to be non-mercury, based on the gradual increase since the 1990s in the sale of non-mercury thermostats). An estimated 8.64 lbs of mercury was emitted from consumer breakage of the replaced thermostats. During consumer use, 1% percent of the mercury in thermostats was expected to have volatilized due to breakage. The total emission estimate from retail and consumer breakage is 8.66 lbs.

Based on the estimated 109,200 mercury-containing thermostats discarded by consumers in 2014, 18.65 lbs was contained in the 2% of thermostats that were recycled.

Per the USEPA Mercury Flow Diagram, 0.37 lbs of mercury was estimated to be emitted during storage, transit, and transfer on the way to recycling. Mercury in the amount of 0.18 lbs was estimated to be emitted during recycling.

Mercury in the amount of 776.53 lbs in thermostats entered the solid waste stream. During the storage, transit, and transfer of MSW, thermostats contributed 11.64 lbs of emissions. Three percent of thermostats in MSW were likely burned in burn barrels emitting 90% or 23.17 lbs of the mercury they contained. Mercury in the amount of 5.38 lbs was likely released due to the 75% of the thermostats in the MSW stream that were landfilled, assuming 1% of the mercury would volatilize.

An additional 88.18 lbs of mercury was present in the 10% of thermostats which ended up under demolition debris disposal. Mercury in the amount of 0.88 lbs was emitted during the storage, transit, and transfer to demolition debris landfills. Additional mercury in the amount of 1.65 lbs was emitted after disposal in the demolition debris landfills.

There are also wastewater treatment and sludge disposal emission components for thermostats which enter the MSW stream. A value of 0.90 lbs of mercury emissions were estimated from wastewater treatment. Another 0.46 lbs was estimated from land application air emissions, but this category has been estimated as a separate nonpoint source. Mercury in the amount of 1.23 lbs, estimated by the USEPA Mercury Flow Diagram for WWTP incineration was not included, since this category is addressed under point sources.

Not including the emissions from wastewater treatment and land application, 51.93 lbs of mercury was likely emitted due to thermostats in 2014. Of this, 8.66 lbs was emitted directly from retail and consumer breakage.

The USEPA's 2014 NEI v2 includes an estimated 7.42 lbs of mercury emissions in Michigan from thermostats and thermometers under SCC 265000000. The USEPA's methodology from contractor Abt Associates presumed that there are 2.3 million improperly disposed thermostats nationwide, with estimated emissions per device of 1.5% (0.045 grams) of the mercury content of thermostats prior to disposal in a landfill or incinerator. The emissions were apportioned to counties based on population data. This methodology results in 71,760 thermostats discarded in Michigan in 2014, which is a smaller number than Michigan's calculation. The 2014 NEI v2 calculation is considered the most defensible estimate and is used as the final value in the report. However, it does not account for estimated emissions occurring at the numerous steps in the product disposal path, therefore the USEPA Mercury Flow Diagram values are provided here for comparison.

	Thermostats				
Year	Flow Diagram Estimate in Lbs	2014 NEI v2 Estimate in Lbs	Subset		
2017	0.01	0	Production losses		
2017	8.64	7.42	Consumer breakage		
2017	0.01	0	Retail breakage		
2017	11.64	NA	Storage, transit and transfer (MSW)		
2017	0.88	NA	Storage, transit and transfer (demolition debris landfills)		
2017	0.37	NA	Storage, transit and transfer (recycling)		
2017	5.38	NA	Landfills		
2017	1.65	NA	Landfills (demolition debris)		
2017	0.18	NA	Recycling		
2017	NA	NA	Mass burning and RDF		
2017	23.17	NA	Burn barrels		
TOTAL	51.93	7.27			
			Assignment in TABLE 1		
TABLE 1		7.42	Mercury-containing Products		

Table 48. Thermostats

Measurement and Control Devices

Emissions from measurement and control devices were estimated as a proportion of national emissions using the USEPA Flow Diagram (McGeen, 2020). According to the IMERC fact sheet Mercury Use in Measuring Devices, 0.58 tons of mercury was contained in measuring devices sold nationally in 2013 (IMERC, 2018). This represents an 89% decline since 2001 when measuring devices sold contained 5.12 tons of mercury. Much of the decline comes from the discontinuation of mercury in barometers and dairy manometers, and the reduction of mercury used in thermometers. Based on the USEPA's assessment that mercury thermometers have an average life span of five years, the same assumption will be made for mercury manometers until data can be found indicating otherwise. Michigan accounted for 3.12% of the US population in 2014 so national values were adjusted accordingly to generate Michigan-specific values.

Approximately 0.04 lbs of mercury was emitted from the retail of measurement and control devices assuming 0.1% of mercury in measurement and control devices is released during retail. For consumer breakage of measurement and control devices a 0.2% release factor was used. Mercury in the amount of 25.60 lbs was emitted from consumer breakage in 2014, for a total of 25.60 lbs from retail and consumer breakage.

During the storage, transit, and transfer of measurement and control devices as MSW, 0.35 lbs of mercury was likely released assuming a 1.5% release factor. Approximately 40% of the mercury in discarded measurement and control devices is sent on for recycling. Mercury in the amount of 0.20 lbs was release during storage and transfer of measurement and control devices bound for recycling. Another 0.18 lbs of mercury was likely released due to recycling assuming a 1% release factor and will be grouped with retail and consumer losses.

Three percent of measurement and control devices in MSW were likely burned in a burn barrel releasing 90% of the mercury contained in them. Accordingly, 0.71 lbs of mercury was released due to measurement and control devices being burned in burn barrels. Seventy-five percent of measurement and control devices in MSW are sent to landfills. Measurement and control devices in landfills contribute 0.18 lbs of mercury emissions assuming 1% of the mercury is released.

In total, 27.21 lbs of mercury was likely released from all activities associated with mercurycontaining measurement and control devices in 2014.

Measurement & Control Devices					
Year	Year Ib Subset				
2014	0.04	Retail breakage			
2014	25.55	Consumer breakage			
2014	0.35	Storage, transit and transfer (MSW)			
2014	0.20	Storage, transit and transfer (recycling)			
2014	0.18	Landfills			
2014	0.18	Recycling			
2014	NA	Mass burning and RDF			
2014	0.71	Burn barrels			
TOTAL	27.21				
	Assignment in TABLE 1				
TABLE 1	25.60	Mercury-containing Products			
TABLE 1	1.61	All other values (storage, transfer, transit and recycling) are included under subsets of Waste Disposal category			

Table 49. Measurement & Control Devices

Thermometers

In 2003, Michigan PA 578 banned the sale of mercury thermometers in Michigan, or for use in the state of Michigan. The only exceptions are if a mercury thermometer is sold or offered for one of the following:

- a. A use for which a mercury thermometer is required by state or federal statute, regulation, or administrative rule;
- b. Pharmaceutical research purposes; or
- c. By prescription.

Mercury thermometers in household use are assumed to have a 5-year lifespan prior to breakage and disposal. Therefore, it is assumed that household use and breakage of mercury thermometers in 2014 is negligible, based on the ban on sales since 2003. Mercury thermometers used in hospitals were assumed to have a 1-year life span prior to breakage and disposal; therefore, it was assumed no hospital mercury thermometers were in use in 2014. Accordingly, mercury emissions from breakage and disposal of mercury thermometers are assumed to be minimal in 2014 and zero emissions have been calculated (McGeen, 2020).

Bulk Mercury

Household hazardous waste collection sites operated by county and city health departments collected 390.19 lbs of elemental free-flowing mercury in 2014 (McGeen, 2020). The USEPA Flow Model estimates that 1% or 3.90 lbs of this mercury was released to the air. A total of 390.19 lbs of bulk mercury was also transported as waste in 2014. One percent or 3.90 lbs of this mercury was expected to be released during waste transport. Approximately 5,202.53 lbs of mercury was calculated as the total consumer input by extrapolating from the total waste estimates. It was assumed that bulk mercury disposed of as waste comprised 7.5% of total consumer input. Mercury from consumers had an expected release factor of 0.2%, resulting in emissions of approximately 10.41 lbs of elemental mercury in 2014. Therefore, approximately 18.21 lbs of mercury was likely released from all aspects of the bulk mercury category in 2014 (McGeen, 2020).

Consumer Use of Bulk Mercury				
Year	Year Ib Subset			
2014	3.90	Released from collection of bulk mercury emissions (Clean Sweep sites)		
2014	10.41	Consumer and retail		
2014	3.90	Storage, transit and transfer (MSW)		
2014	NA	Landfills		
2014	NA	Recycling		
2014	NA	Mass burning and RDF		
2014	NA	Burn barrels		
TOTAL	18.21			
		Assignment in TABLE 1		
TABLE 1	10.41	Mercury-containing Products		
TABLE 1	3.90	See CLEAN SWEEP SITES entry		
TABLE 1	3.90	All other values (storage, transfer, transit and recycling) are included under subsets of Waste Disposal category		

Table 50.	Consumer	Use of	Bulk N	/lercurv
10010 001	00110011101	000 0.	D 0	

Volatilization During Solid Waste Collection and Processing

Although the USEPA Mercury Flow Diagram includes calculations for emissions from solid waste processing (handling) for each product type, the AQD has prepared an in-house calculation for each triennial mercury inventory to represent any emissions that may occur above and beyond the flow diagram calculations.

The estimate for volatilization during solid waste collection and processing was based on the assumption that 1.5% of the mercury in solid waste is volatilized during collection, transportation, and mechanical processing (MPCA, 2001). In prior mercury reports a mercury value was estimated for composted municipal solid waste in Michigan. However, since then it has been clarified that composting in Michigan consists almost entirely of yard waste. Yard waste was once sent to landfills but resulted in numerous odor issues and even fire hazards as it decomposed. Accordingly, it is kept separate from the municipal solid waste stream and it is highly unlikely that batteries or mercury-containing devices would contaminate the yard waste compost (Hiday, 2020). Based on this information, composted yard waste is not included as a source of mercury emissions in the 2014 mercury report.

The quantity of solid waste combusted was calculated using MAERS throughput values (see Municipal Waste Incineration). Landfill data from 2014 was obtained from the Materials Management Division (EGLE, 2020). For this estimate, only Type II in-state waste (municipal solid waste) was considered. The value was 22,425,777 cubic yards and a weight of 0.333 tons per yard was assumed for an estimate of 7,467,783.74 tons. Since out-of-state waste is not likely to be transported to a transfer station in Michigan, it was not included in this estimate. It is assumed that the mercury concentration of MSW is approximately 0.004 lbs of mercury per ton of solid waste (van Veizen, 2002). Mercury in the amount of 507.27 lbs was estimated due to volatilization during the collection and processing of MSW in 2014 based on this methodology (McGeen, 2020).

The van Veizen emission factor from 2002 may not reflect trends by 2014 in the solid waste stream for mercury products and devices. Within the USEPA flow diagram, mercury emissions estimated from solid waste collection and processing declined from 249 lbs to 73.41 lbs, or a decrease of 71%. If this information is used to scale the calculation based on the van Veizen factor, an adjusted estimate of 149.56 lbs of mercury from solid waste collection and processing is calculated for 2014. This AQD estimate may still be partially duplicative of the 73.41 lbs estimated mercury emissions from the flow diagram for solid waste collection and processing.

Fate of Municipal Solid Waste (MSW)	Amount	Reference
Resource Recovery (tons)	986,660.00	From 2014 MSW incineration sector
Landfill Type II In-State Waste (tons)	7,467,783.74	MDEQ, OWMRP, for 2014
Total landfill, combusted	8,454,443.74	
Calculated Mercury Content (lb/ton)	0.004	van Veizen (2002)
Mercury content (lb) of SW (excluding recycling)	33,817.77	
Volatilization during handling and transport, in lbs (equals 1.5% of mercury content from landfill, combustion)	507.27	
Scaled emission estimate in lbs, based on 71% decline in solid waste inputs from 2002 through 2014	149.56	2002 through 2014 product use and waste inputs within USEPA Mercury Flow Diagram

Table 51. Solid Waste Collection and Processing

Landfill Volatilization

The estimate for volatilization from solid waste in landfills was based on the assumption that 0.1% of the mercury in landfilled solid waste is volatilized per year based on studies of MSW emissions in Florida (Lindberg and Price, 1999).

To estimate the quantity of MSW landfilled in Michigan in 2014, a Michigan specific figure from the MDEQ's Office of Waste Management & Radiological Protection was utilized (MDEQ, OWMRP, 2014). For this estimate, total landfilled Type II (in-state and out-of-state) waste (47,043,458 cubic yards) was considered and a weight of 0.333 tons per yard was assumed. It is assumed that the mercury concentration of MSW is approximately 0.004 lbs of mercury per ton of solid waste (van Veizen, 2002). Approximately 62.66 lbs of mercury was likely emitted due to volatilization from landfilled MSW in 2014 (EGLE,2020).

The USEPA's 2014 NEI v2 estimated that 30.69 lbs of mercury emissions were emitted from the working face of landfills, based on methodologies and calculations prepared by the USEPA's contractor, Abt Associates. The emissions from the working face of landfills were included in the 1999 study as a subset of the total emissions from volatilization of mercury in landfill waste. Accordingly, the estimate of 62.66 lbs based on the Lindberg and Price methodology already accounts for this pathway.

Fate of Municipal Solid Waste	Amount	Reference
Total landfilled in-state and out-state Type II Waste (Municipal & Commercial Waste) in cubic yards, 2014	47,043,458	MDEQ, Office of Waste Management & Radiological Protection
Total landfilled Type II Waste in tons (assumes 0.333 tons/yd), 2014	15,665,472	MDEQ, Office of Waste Management & Radiological Protection
Calculated mercury content (lb/ton)	0.0040	van Veizen (2002)
Mercury content in lb of solid waste (excluding recycling)	62,662	
Volatilization from landfilled municipal solid waste in lb (0.1% of mercury in MSW volatilizes)	62.66	Lindberg and Price (1999)

Table 52. Landfill Volatilization

Burn Barrels

While the USEPA Mercury Flow Diagram includes calculations for emissions from burn barrels (open burning of MSW) for each product type, the AQD has prepared an in-house calculation as well for each triennial mercury inventory to represent emissions which may occur above and beyond the flow diagram calculations.

For the category of burn barrels, the methodology from the 2005 report was utilized to estimate 103.44 lbs of mercury from the open burning of MSW in 2014. The USEPA's methodology was from Appendix A of *Documentation for the Final 2002 Nonpoint Sector (Feb 06 Version) National Emissions Inventory for Criteria and Hazardous Air Pollutants*. The ratio of urban to rural population was obtained from 2010 U.S. Census data, and then multiplied by a 2014 U.S. Census Bureau estimate of the county population in Michigan to obtain an estimate of rural population in 2014. The USEPA's estimate of 3.37 lbs of solid waste per person per day was used to calculate total solid waste generated. It was assumed that MSW has a mercury content of 0.0040 lb/ton (van Veizen, 2002). Per an estimate by Minnesota Pollution Control Agency (MPCA, 20008), 2% of MSW was assumed to be disposed of in burn barrels, resulting in the estimate of 103.44 lbs (McGeen, 2020).

Per the USEPA's open burning estimates in the 2014 NEI v2, an estimated 215,032 tons of MSW were burned. From this source, burn barrel emissions of mercury for 2014 are estimated at 860.13 lbs utilizing the van Veizen emission factor and the throughput from the 2014 NEI (McGeen, 2020). This value is substantially higher due to the assumption of a larger quantity of available waste being burned. The number of mercury-containing devices in use has declined since the 2002 study was conducted by van Veizen, therefore this calculation may overestimate the quantity of mercury emissions from open burning of MSW in 2014.

Additionally, an emissions component from burn barrels of 59.08 lbs has already been estimated for several of the mercury product use categories such as thermostats, switches and relays, and fluorescent and non-fluorescent bulbs based on the USEPA Mercury Flow Diagram. These types of product account for the likeliest source of mercury in MSW in burn barrels, with the exception of mercury-containing batteries for which calculation methodologies are not available. For 2014, there is an estimated 63% less mercury emissions from burn barrels than the 2002 calculation from the USEPA Mercury Flow Diagram. Therefore, the AQD calculations, utilizing the 2002 van Veizen factor, and waste inputs per MPCA's assumptions or the 2014 NEI v2, and the resulting emissions estimates of 103.44 lbs and 860.13 lbs, may be overestimates based on the reduced presence of mercury in the solid waste stream in 2014.

Scaling the AQD calculations based on the 63% decline of mercury from products per the USEPA flow diagram, an adjusted range of 38.27 lbs and 318.25 lbs is derived for 2014. Even these values may pose some overlap with the 59.08 lbs of burn barrel emissions from the flow diagram, but they are more likely to reflect current trends in the waste stream.

Methodology	Assumptions	Emission factor	Estimated Emissions from Burn Barrels in Lbs
MPCA waste assumptions	2% of solid waste is assumed to be burned in burn barrels.	Van Veizen emission factor (2002)	103.44
2014 NEI v2 inputs	Quantity of solid waste in burn barrels was estimated by USEPA.	Van Veizen emission factor (2002)	860.13
Scaled estimate based on MPCA assumptions	63% estimated decline in open burning of solid waste (burn barrels), based on product and waste inputs in USEPA Mercury Flow Diagram from 2002 through 2014.	Van Veizen emission factor (2002)	38.27
Scaled estimate based on 2014 NEI v2 inputs	63% estimated decline in open burning of solid waste (burn barrels), based on product and waste inputs in USEPA Mercury Flow Diagram from 2002 through 2015.	Van Veizen emission factor (2002)	318.25

Table 53. Open Burning of Solid Waste (burn barrels)

Human Cremation

From the 2014 NEI v2, based on current methodologies and calculations prepared by the USEPA's contractor, Abt Associates, Michigan's estimated nonpoint emissions of mercury from human cremation are 137.49 lbs with estimated emissions from animal cremation of 2.49 lbs (USEPA, 2016), or 39.98 lbs total. Abt Associates prepared detailed estimates based on deaths by age group by state and county. Different emission factors were developed for each age group based on the average quantity of mercury dental amalgams per person within that age group.

Volatilization: Land Application of Sewage Sludge

Sewage sludge in the amount of 81,156 dry English tons was land applied in Michigan in 2014 according to estimates from the Biosolids Program of EGLE's Water Resources Division (EGLE, 2020). Sewage sludge had an average concentration of 1.54 ppm of mercury in 2014. Assuming 1% of mercury applied to the surface of the land volatilized within one year (MPCA, 2004), but not taking into account any carryover from previous years, 2.50 lbs of mercury was likely emitted via volatilization from surface-applied sewage sludge in 2014 (McGeen, 2020).

Contaminated Site Remediation

The only known source of atmospheric mercury emissions from the clean-up of a contaminated site in Michigan was the dredging of the BASF Riverview site in Detroit. The dredging of this site began in late 2006 and was completed in the second week of 2007 (Sadoff, 2006). Therefore in 2014 there are no known air emissions of mercury from contaminated site remediation.

General Laboratory Activities

The USEPA's 2014 NEI v2 contains an estimate for Michigan of 24.59 lbs of mercury emissions from general laboratory activities. This value was pulled forward from the 2008 NEI. The last survey on mercury use in laboratories was conducted in 2002. Accordingly, there is uncertainty as to whether the underlying assumptions used for the 2008 calculation are still representative of laboratory use of mercury in 2014. While the survey data may not be representative of laboratory activities in 2014, it has been included in this report as the best available estimate.

Mobile Sources

ON-ROAD

The USEPA and the University of Michigan (U of M) Air Quality Laboratory collaborated on a pilot project in 2002 to investigate motor vehicle mercury emissions (Hoyer et al., 2004). This pilot project produced significantly different emission factors than those previously used to estimate mobile source mercury emissions from on-road vehicles. Michigan's 1999 mercury emissions inventory estimated on-road mobile source emissions using emission factors that were the detection limit cut in half from Coordinating Research Council (CRC) data. The emission factors produced by the USEPA/U of M pilot project were several orders of magnitude lower than the estimate based on the CRC factor.

YEAR	Total on-road Hg	Total on-road low range	Total on-road high range	EPA NEI Hg
	emissions in lbs	Hg emissions in lbs (EPA/U	Hg emissions in lbs (EPA/U	estimate for on-
	(CRC factor)	of M factor)	of M factor)	road (in Ibs)
2014	1727.43	0.18	0.48	23.82

Table 55. Comparison of 1999 (CRC) and 2002 (USEPA/U of M) Emission Factors

Vehicle Type	1999 Emission Factor	2002 Emission Factor
Light-duty Diesel	6,579 ng/mi	6.4-11.1 ng/mi
Heavy-duty Diesel	86,577 ng/mi	6.4-11.1 ng/mi
Light-duty Gasoline	875 ng/mi	0.3-1.4 ng/mi
Heavy-duty Gasoline	839 ng/mi	0.3-1.4 ng/mi

Table 56. 2014 Michigan Statewide Vehicle Miles Traveled and Estimated Mercury Emissions from 2014 NEI v2

On-road Sector	Vehicle Miles Traveled (VMT) in Millions	Hg Emissions in lbs from 2014 NEI v2
Light-duty Gasoline	83,989.84	23.48
Heavy-duty Gasoline	3,287.17	0.2
Light-duty Diesel	325.31	0.04
Heavy-duty Diesel	8,144.88	0.1
Total VMT in Michigan	95,747.21	23.82

The Light-Duty Gasoline Vehicles emission factor from USEPA/U of M was applied to all gasoline vehicles for 2014, and the Heavy-Duty Diesel Vehicles emission factor from USEPA/U of M was applied to all diesel vehicles. The resulting 2014 estimate suggests that <1 lbs of mercury was emitted from on-road vehicles (0.18 to 0.48 lbs).

It should be noted that the USEPA/U of M pilot project did not measure reactive gaseous mercury and since this was a pilot project, few vehicles were studied. Further research is needed to estimate emissions from mobile sources with the desired degree of certainty. This pilot study tested light-duty gasoline vehicles and heavy-duty diesel vehicles. These estimates only include mercury from tailpipe emissions and do not address other potential mercury sources from on-road vehicles such as mercury in brake pads. Brake wear was identified as a potentially significant source of mercury emissions from mobile sources during the pilot study (Hoyer et al., 2004).

The estimate from the USEPA's 2014 NEI v2 suggests that 23.82 lbs of mercury was emitted from on-road vehicles.

NON-ROAD

The 2014 mercury inventory includes several non-road categories. These categories are off-road vehicles and equipment (diesel and gasoline-powered), commercial marine vessels, and railroads.

The estimate from the USEPA's 2014 NEI v2 non-road inventory estimates that 2.30 lbs of mercury was emitted from off-road vehicles and equipment. This includes snowmobiles, ATVs, agricultural, construction, mining, and lawn and garden equipment, and railroad maintenance of way equipment. Mercury in the amount of 0.23 lbs was from diesel equipment and vehicles, and 1.68 lbs of mercury was from gasoline-powered vehicles and equipment, with 0.39 lbs emitted by other fuel types (USEPA, 2014 NEI v2).

The USEPA's 2014 NEI v2 nonpoint inventory estimates that 0.06 lbs of mercury was emitted from commercial marine vessels and 8.96 lbs from came from railroad locomotives. This includes port and underway emissions for the marine vessels. It also includes emissions from line-haul locomotives for Class I, II, and III railroads (large carriers, regional railroads, and shortlines, respectively).

A preliminary estimate of between 0.24 and 10.80 lbs of mercury emitted per year was generated for Michigan's only coal-burning ferry, the *S.S. Badger*, owned by Lake Michigan Carferry Service. The *Badger* burns 12,000 tons of bituminous coal per year on average, according to the USEPA (USEPA, 2013). Using the range of mercury concentration in bituminous coal of 0.01-0.45 ppm (<u>MMEUW, 2005</u>), the preliminary range of emissions was created (McGeen, 2014). Efforts to estimate other emissions from this source sector and other non-road mobile sources have not been conducted to date.

REFERENCES

Advanced Environmental Management Group. Nov. 1, 2007. Assessment of Mercury Emissions Impacts for Lafarge Midwest, Inc., Alpena, Michigan, pp. 20-21.

<u>AP-42 Compilation of Emission Factors, U.S. Environmental Protection Agency (USEPA)</u>. Ch. 12.5, Iron and Steel Production, pp. 1-19.

Bureau Veritas North America, Inc. 2016. *Air Emission Test for EU-Boiler. Genesee Power Station Limited Partnership. G5310 North Dort Highway*, p. vi.

Charley, Mary. 2010. Personal communication via writing on 8/18/2010 to Dennis McGeen. Charley is a retired Environmental Engineer Specialist and is the incineration expert for the Air Quality Division, MDEQ.

Derenzo and Associates, Inc. July 15, 2014. *Results of Emissions Testing Conducted at Gerdau Specialty Steel in Jackson, Michigan*, p. 17.

Dictionary.com. Gray Iron. Available from: Originally from Webster's Revised Unabridged Dictionary, © 1996, 1998 MICRA, Inc.

Ecology Center & Great Lakes United. 2001. Toxics in Vehicles: Mercury, p 35, 38.

End-of-Life-Vehicle Solutions Corporation. 2020. ELVS Mercury Switch Recovery Program Reporting: <u>2014</u>.

Energy International: Metals Processing Advisor. Electric Arc Furnace: Process Description.

Foy, Joanne. 2010. Personal communication via 8/03/2010 email to Dennis McGeen. Joanne Foy is a retired Environmental Quality Specialist with the Lansing District, Air Quality Division, MDEQ.

Gabor, Michael. Activity Report: Self-initiated Inspection, p. 3. Omnisource Corporation (now Jackson Iron & Metal). August 4, 2015. Michael Gabor was a Jackson District Environmental Quality Analyst for DEQ, Air Quality Division.

Grinstern, Eric. 2010. Personal communication via 8/19/2010 email to Dennis McGeen. Grinstern is an Environmental Quality Analyst with the Grand Rapids District of the Air Quality Division, MDEQ.

Hiday, Aaron. 2020. Personal communication via telephone and email with Dennis McGeen, EGLE, on October 12, 2020. Aaron Hiday is the Compost Program Coordinator for EGLE's Materials Management Division.

<u>Hoyer, Marion, Baldauf, Richard W., Scarbro, Carl, Barres, James, and Gerald J. Keeler</u>. Mercury Emissions from Motor Vehicles. 2004. Paper from the 13th International Emissions inventory Conference: "Working for Clean Air in Clearwater."

Indiana Department of Environmental Management (IDEM), Office of Air Quality. Summary of Mercury Emissions from Non-Electric Generating Units (Non-EGUs).

Jiang, Hongming. 1999. Personal communication via 4/8/1999 email to Joy Taylor Morgan. Jiang Hongming is with the MPCA and based this value on a 1995 stack test from Empire.

Lane, Rex. 2015. Activity Report: Self-Initiated Inspection, p. 2. City of Battle Creek Wastewater Treatment Plant. March 5, 2015. Rex Lane is Kalamazoo District Supervisor for EGLE, Air Quality Division.

Lindberg, S. E.; Price, J.L. Airborne emissions of mercury from municipal landfill operations: a short-term measurement study in Florida. *J. Air & Waste Manage. Assoc.* 1999, 49, 520-532.

McGeen, Daniel. 2020. Daniel McGeen is an Environmental Quality Analyst for the Lansing District of the Air Quality Division. He is the assigned inspector of incinerators at Michigan State University.

McGeen, Dennis. 2020 and 2021. Dennis McGeen is an Environmental Quality Specialist with the Emissions Reporting & Assessment Unit, Air Quality Division.

McLemore, Wilhemina. 2010. Personal communication via 8/03/2010 email to Dennis McGeen. McLemore is the District Supervisor of the Detroit Office, Air Quality Division, MDEQ.

<u>MDEQ</u>, Office of Waste Management & Radiological Protection. 2015. *Report of Solid Waste Landfilled in Michigan: October 1, 2013-September 30, 2014*.

<u>MDEQ, Pollution Prevention Program</u>. Memorandum of Understanding Between the Michigan Department of Environmental Quality and the Alliance of Automobile Manufacturers Establishing the Michigan Mercury Automotive 'Switch/Sweep' Program. July 1, 2004.

MDEQ, Water Bureau. Mercury Trends. December 2009.

<u>Metals Processing Advisor</u>. Energy International, with support from Southern California Gas, Gas Research Institute and others.

<u>Michigan Mercury Electric Utility Workgroup (MMEUW)</u>. 2005. Michigan's Electric Utility Workgroup Report on Mercury Emissions from Coal-Fired Power Plants.

Minnesota Pollution Control Agency (MPCA). 2004. Estimated Mercury Emissions in Minnesota for 1990, 1995, & 2000: March 2004 Update.

MPCA. 2008. Estimated Mercury Emissions in Minnesota for 2005 to 2018.

MPCA. 2001. Substance Flow Analysis of Mercury in Products.

NEMA (National Electrical Manufacturers Association). 2000. Environmental Impact Analysis: Spent Mercury-Containing Lamps.

<u>Office of Highway Policy Information, Federal Highway Administration</u>. Highway Statistics 2014. State Motor Vehicle Registrations - 2014.

<u>Reindl, John</u>. 2005. Summary of References on Mercury Emissions from Crematoria. Dane County Department of Public Works in Madison, Wisconsin.

Sadoff, Margaret. 2006. Personal communication via 5/26/2006 email to Joy Taylor Morgan.

Takaoka M., Oshita K., Takeda N., and Morisawa, S. Mercury emission from crematories in Japan. Atmospheric Chemistry and Physics. April 20, 2010.

Tilden stack test. 2002. Received via 12/04 email from Conrad Chin, USEPA.

U.S. Census Bureau. 2020. Population estimates: states, 2014.

<u>USEPA</u>. 1986. AP 42, Fifth Ed., Volume 1, Chapter 12: Metallurgical Industry.

USEPA. 2020. TRI Explorer.

USEPA. 2020. 2014 National Emissions Inventory (NEI) Data.

<u>USEPA</u>. 2020. HAP Emission Factors developed for the Mercury and Air Toxics (MATS) rule.

USEPA. 2020. WebFIRE database.

Van Veizen, Daniel, Langenkamp, Heinrich & Georg Herb. 2002. Review: Mercury in waste incineration. *Waste Manage. Res: 20*, p 556-568.

<u>Weiss, Laura & Sandy Wright</u>. 2001. *Mercury: On the Way to Zero: Recommended Strategies to Eliminate Mercury Releases from Human Activities in Oregon by 2020,* p 59.

Wisconsin Department of Natural Resources (WDNR). *Fate of Mercury in Products in Wisconsin*. Flow model developed by Barr for WDNR. First modified with 2002 Michigan data by Leah Granke, MDEQ, in 2006. Modified with 2005 Michigan data by Dennis McGeen, MDEQ, in 2009.

Zynda, Todd. 2020. 2019 MAERS Report Review (PCE for an FCE source), dated April 1, 2020. Todd Zynda is a Senior Environmental Engineer with the Detroit District Office, Air Quality Division.

Prepared by: Dennis McGeen, Environmental Quality Specialist Emissions Reporting & Assessment Unit Air Quality Evaluation Section Air Quality Division, Department of Environment, Great Lakes, and Energy February 2022

This inventory represents the best information available at the time of the last update.