# Public Health Assessment

**Public Comment Release** 

# FORMER BURN AREA (a/k/a Velsicol Burn Pit) ST. LOUIS, GRATIOT COUNTY, MICHIGAN

EPA FACILITY ID: MIN000510389

# Prepared by Michigan Department of Community Health

# MARCH 21, 2012

Comment Period Ends: MAY 7, 2012

Send comments to: Dr. Jennifer Gray Division of Environmental Health Michigan Department of Community Health 201 Townsend St Lansing, MI 48913

Prepared under a Cooperative Agreement with the U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation Atlanta, Georgia 30333

#### THE ATSDR PUBLIC HEALTH ASSESSMENT: A NOTE OF EXPLANATION

This Public Health Assessment-Public Comment Release was prepared by ATSDR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) section 104 (i)(6) (42 U.S.C. 9604 (i)(6), and in accordance with our implementing regulations (42 C.F.R. Part 90). In preparing this document, ATSDR's Cooperative Agreement Partner has collected relevant health data, environmental data, and community health concerns from the Environmental Protection Agency (EPA), state and local health and environmental agencies, the community, and potentially responsible parties, where appropriate. This document represents the agency's best efforts, based on currently available information, to fulfill the statutory criteria set out in CERCLA section 104 (i)(6) within a limited time frame. To the extent possible, it presents an assessment of potential risks to human health. Actions authorized by CERCLA section 104 (i)(11), or otherwise authorized by CERCLA, may be undertaken to prevent or mitigate human exposure or risks to human health. In addition, ATSDR's Cooperative Agreement Partner will utilize this document to determine if follow-up health actions are appropriate at this time.

This document has now been released for a 45-day public comment period. Subsequent to the public comment period, ATSDR's Cooperative Agreement Partner will address all public comments and revise or append the document as appropriate. The public health assessment will then be reissued. This will conclude the public health assessment process for this site, unless additional information is obtained by ATSDR's Cooperative Agreement Partner which, in the agency's opinion, indicates a need to revise or append the conclusions previously issued.

Use of trade names is for identification only and does not constitute endorsement by the U.S. Department of Health and Human Services.

Please address comments regarding this report to:

Agency for Toxic Substances and Disease Registry Attn: Records Center 1600 Clifton Road, N.E., MS F-09 Atlanta, Georgia 30333

You May Contact ATSDR Toll Free at 1-800-CDC-INFO or Visit our Home Page at: http://www.atsdr.cdc.gov Former Burn Area

Public Comment Release

# PUBLIC HEALTH ASSESSMENT

## FORMER BURN AREA (a/k/a Velsicol Burn Pit) ST. LOUIS, GRATIOT COUNTY, MICHIGAN

#### EPA FACILITY ID: MIN000510389

Prepared by:

Michigan Department of Community Health Under A Cooperative Agreement with the U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry

This information is distributed solely for the purpose of predissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy.

#### Foreword

The Michigan Department of Community Health (MDCH) conducted this evaluation for the federal Agency for Toxic Substances and Disease Registry (ATSDR) under a cooperative agreement. ATSDR conducts public health activities (assessments/consultations, advisories, education) at sites of environmental contamination. The purpose of this document is to identify potentially harmful exposures and recommend actions that would minimize those exposures. This is not a regulatory document and does not evaluate or confirm compliance with laws. This is a publicly available document and is provided to the appropriate regulatory agencies for their consideration.

The following steps are necessary to conduct public health assessments/consultations:

- <u>Evaluating exposure:</u> MDCH toxicologists begin by reviewing available information about environmental conditions at the site: how much contamination is present, where it is found on the site, and how people might be exposed to it. This process requires the measurement of chemicals in air, water, soil, or animals. Usually, MDCH does not collect its own environmental sampling data. We rely on information provided by the Michigan Department of Environmental Quality (MDEQ), U.S. Environmental Protection Agency (EPA), and other government agencies, businesses, and the general public.
- <u>Evaluating health effects:</u> If there is evidence that people are being exposed or could be exposed to hazardous substances, MDCH toxicologists then determine whether that exposure could be harmful to human health, using existing scientific information. The report focuses on public health the health impact on the community as a whole.
- <u>Developing recommendations:</u> In its report, MDCH outlines conclusions regarding any potential health threat posed by a site, and offers recommendations for reducing or eliminating human exposure to contaminants. If there is an immediate health threat, MDCH will issue a public health advisory warning people of the danger, and will work with the appropriate agencies to resolve the problem.
- <u>Soliciting community input:</u> The evaluation process is interactive. MDCH solicits and considers information from various government agencies, parties responsible for the site, and the community. If you have any questions or comments about this report, we encourage you to contact us.

| Please write to:  | Toxicology and Response Section         |
|-------------------|-----------------------------------------|
|                   | Division of Environmental Health        |
|                   | Michigan Department of Community Health |
|                   | PO Box 30195                            |
|                   | Lansing, MI 48909                       |
| Or call us at:    | 1-800-648-6942 (toll free)              |
| For more informat | tion, please visit:                     |
|                   | www.michigan.gov/mdch-toxics            |

| Table of | f Contents |
|----------|------------|
|----------|------------|

| Acronyms and Abbreviationsvi                        | ii |
|-----------------------------------------------------|----|
| Summary                                             | 8  |
| Purpose and Health Issues                           | 9  |
| Background10                                        | 0  |
| Discussion1                                         | 2  |
| Environmental Contamination                         | 2  |
| Site Geology12                                      | 2  |
| Former Burn Area (FBA) Soil Sampling 12             | 3  |
| Residential Area Soil Sampling                      |    |
| Ash Pile Sampling                                   |    |
| Soil Gas Sampling                                   |    |
| Hydrogeology                                        | 7  |
| Groundwater Sampling                                |    |
| Residential Well Sampling                           | 1  |
| Surface Water and Sediment Sampling                 | 1  |
| Exposure Pathways Analysis                          | 2  |
| Soil and ash samples from the FBA                   | 3  |
| Soil samples from a residential area near the FBA24 | 4  |
| Groundwater samples from the FBA                    | 5  |
| Drinking water well samples located near the FBA    | 5  |
| Toxicological Evaluation                            | 6  |
| Arsenic                                             | 6  |
| Lead                                                | 6  |
| Chloride                                            | 7  |
| Contaminants without Screening Levels               | 7  |
| Children's Health Considerations                    | 9  |
| Conclusions                                         | 9  |
| Recommendations                                     | 0  |
| Public Health Action Plan                           | 0  |
| Preparers of Report                                 | 1  |
| References                                          | 2  |

# List of Tables

| Table 1: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in 17 soil samples from the 2004 soil borings (Weston 2006)                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that<br>were higher than or had no screening levels in 66 soil samples from the 2007 sampling<br>(Weston 2009)                                                                                                             |
| Table 3: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in 32 downwind residential soil samples (0 to 0.5 feet deep) from the 2007 sampling (Weston 2009)                                                                         |
| Table 4: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in two ash samples collected in 2004 (Weston 2006)                                                                                                                        |
| Table 5: Maximum value (in milligrams per liter [mg/L]) of contaminants that either had no screening level or exceeded the screening levels in 17 groundwater samples from soil borings (vertical aquifer sampling) sampled in 2004 (Weston 2006)                                                                |
| <ul> <li>Table 6: Maximum value (in milligrams per liter [mg/L]) of detected compounds that either exceeded their respective screening value or had no screening levels in the Former Burn Area (FBA) 17 groundwater samples from the shallow outwash unit monitor wells sampled in 2008 (Weston 2009)</li></ul> |
| Table 7: Maximum value (in milligrams per liter [mg/L]) of detected compounds with no screening levels in the Former Burn Area (FBA) seven groundwater samples from the upper till unit monitor wells sampled in 2008 (Weston 2009)                                                                              |
| Table 8: Maximum value (in milligrams per liter [mg/L]) of detected compounds with no screening levels in the Former Burn Area (FBA) two groundwater samples from the lower till unit monitor wells sampled in 2008 (Weston 2009)                                                                                |
| Table 9: Maximum value (in milligrams per liter [mg/L]) of detected compounds with no screening levels in the Former Burn Area (FBA) eight groundwater samples from the lower outwash unit monitor wells sampled in 2008 (Weston 2009)                                                                           |
| Table 10: Maximum value (in milligrams per kilogram [mg/kg]) of detected contaminants that<br>were higher than or had no screening levels in three drinking water wells sampled in 2002<br>(Weston 2006)                                                                                                         |
| Table 11: Maximum levels (in milligrams per liter [mg/L]) of detected compounds with no screening levels in five surface water samples from a drainage ditch adjacent to the Former Burn Area (FBA) sampled in 2008 (Weston 2009)                                                                                |
| Table 12: Maximum levels (in milligrams per kilograms [mg/kg]) of detected compounds with no screening levels in seven sediment samples from a drainage ditch adjacent to the Former Burn Area (FBA) sampled in 2008 (Weston 2009)                                                                               |
| <ul> <li>Table 13: Exposure pathway for contaminants present at the Former Burn Area (Velsicol Burn Pit) at the Gratiot County Golf Course National Priorities List Site, St Louis (Gratiot County), Michigan</li></ul>                                                                                          |
| Table A-1: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or<br>above the reported quantitation limit in the Former Burn Area (FBA) soil from soil borings<br>(17 samples) (Weston 2006)                                                                                            |

Table A-2: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) ash samples (two Table A-3: Maximum value (in milligrams per cubic meter  $[mg/m^3]$ ) of soil gas levels in the Table A-4: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples (17 Table A-5: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples (52 Table A-6: Maximum value (in milligrams per liter [mg/L]) of para-Chlorobenzenesulfonic acid (pCBSA) in the Former Burn Area (FBA) groundwater samples from monitor wells Table A-7: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Hidden Oaks Golf Course and two residential wells Table B-1: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) soil sampled (66 Table B-2: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the downwind residential area soil (0 to 0.5 feet Table B-3: Maximum levels (in milligrams per liter [mg/L]) of detected contaminants at or above the reported quantitation limit from vertical aquifer sampling (15 samples) (Weston 2009). .....B-3 Table B-4: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from the shallow outwash unit monitor wells (17 samples) (Weston 2009). ..... B-4 Table B-5: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from Table B-6: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from Table B-7: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from Table B-8: Dioxin levels in soil (in nanograms per kilogram [ng/kg], 11 samples) and groundwater (in picograms per liter [pg/L], five samples) Former Burn Area (FBA) samples Table B-9: Maximum levels (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in surface water (five samples) from a drainage ditch adjacent 

| Table B-10: Maximum levels (in milligrams per kilograms [mg/kg]) of detected compounds at o | r |
|---------------------------------------------------------------------------------------------|---|
| above the reported quantitation limit in sediment (seven samples) from a drainage ditch     |   |
| adjacent to the Former Burn Area (FBA) (Weston 2009) B-1                                    | 4 |

# **List of Figures**

| Figure 1: Map of the Gratiot County Golf Course (also known as the Former Burn Area [FBA] |
|-------------------------------------------------------------------------------------------|
| National Priorities List (NPL) site (EPA ID# MIN000510389). The FBA boundary is           |
| approximate11                                                                             |

# List of Appendices

Appendix A : Detected contaminants from the 2006 Remedial Investigation (Weston 2006). . A-1 Appendix B : Detected contaminants from the 2009 Remedial Investigation (Weston 2009)... B-1

# Acronyms and Abbreviations

| µg/L    | micrograms per liter                                         |
|---------|--------------------------------------------------------------|
| 1,2-DCA | 1,2-dichloroethane                                           |
| ATSDR   | Agency for Toxic Substances and Disease Registry             |
| bgs     | below ground surface                                         |
| BHC     | benzene hexachloride                                         |
| DBCP    | 1,2-dibromo-3-chloropropane                                  |
| DDD     | dichlorodiphenyldichloroethane                               |
| DDE     | dichlorodiphenyldichloroethylene                             |
| DDT     | dichlorodiphenyltrichloroethane                              |
| EPA     | United States Environmental Protection Agency                |
| FBA     | Former Burn Area                                             |
| HBB     | Hexabromobenzene                                             |
| HEM     | n-hexane extractable material                                |
| MDCH    | Michigan Department of Community Health                      |
| MDEQ    | Michigan Department of Environmental Quality                 |
| MDNR    | Michigan Department of Natural Resources                     |
| MDNRE   | Michigan Department of Natural Resources and the Environment |
| NAPL    | non-aqueous phase liquid                                     |
| NPL     | National Priorities List                                     |
| PBB     | polybrominated biphenyls                                     |
| PCB     | polychlorinated biphenyls                                    |
| pCBSA   | para-chlorobenzene sulfonic acid                             |
| RDWC    | Residential Drinking Water Criteria                          |
| SVOC    | semivolatile organic chemicals                               |
| TRIS    | tris(2,3-dibromopropyl) phosphate                            |
| VAS     | vertical aquifer sampling                                    |
| VOCs    | volatile organic chemicals                                   |
|         |                                                              |

#### **Summary**

The Former Burn Area (FBA), also called the Velsicol Burn Pit, was proposed to the National Priorities List (NPL) in September 2009 and was added to the NPL in March 2010. The site is located in an out-of-bounds area on the Hidden Oaks Golf Course. It is the former waste burning and disposal site for the Velsicol Chemical Plant and its predecessor, Michigan Chemical Corporation. A variety of chemicals were disposed of and burned with solid waste from the plant at this site from the 1950s to 1970. Contaminants might have migrated or be migrating into groundwater below the site and may, in the future, migrate into groundwater under nearby residential areas. The Michigan Department of Community Health (MDCH) assesses the human health risk present at all NPL (also called Superfund) sites in Michigan under a cooperative agreement with the federal Agency for Toxic Substances and Disease Registry (ATSDR). The purpose of this document is to identify potentially harmful human exposures to contaminants from the FBA, and does not include discussion of contaminated material in the Pine River or at the Velsicol Chemical Corporation plant site in St Louis, Michigan.

#### MDCH's conclusions regarding contaminants from the FBA are as follows:

*Contaminants present in the soil at the site will not harm people's health.* Levels of contaminants present in the soil are, for almost all samples, below the applicable screening levels. Visitors, including golfers, to the golf course around the FBA are expected to have little to no contact with the FBA soil as it is not on the golf course, and it has vegetation growing on it that could prevent soil from being blown onto the golf course. Workers at the golf course are not expected to have contact with the soil.

Next steps: No additional public health activities are necessary at this time.

Not enough information is available to determine if the contaminants present in the ash piles at the FBA could harm worker's and visitor's health. Only one sample was taken from the surface of each ash pile. Contaminant levels of arsenic and lead in both ash piles were higher than the screening levels. Workers and visitors to the golf course are not expected to have contact with the ash piles; the FBA is not on the golf course. However, it is not known how large the ash piles are, if contaminant levels are consistent throughout the pile, or if existing vegetation would prevent ash from being blown on to the golf course. Currently, there is no fence around the ash piles or the rest of the FBA that would limit people's access.

<u>Next steps:</u> MDCH recommends that ash piles be further examined. Additional characterization of ash pile contaminants is necessary.

Levels of contaminants in the soil from the residential area downwind of the FBA are not expected to harm resident's health. Overall, contaminant levels in the downwind residential area were below applicable screening levels.

Next steps: No additional public health activities are necessary at this time.

Contaminants from the FBA may be migrating into groundwater; however, current levels of contaminants in the groundwater at the site are not expected to harm visitor's or worker's health

*because people have little to no contact with groundwater at the FBA*. Contaminants that migrate into the groundwater could, in the future, reach residential private wells or municipal drinking water if the migration continues.

<u>Next steps:</u> Further contaminant migration should be prevented and groundwater contaminant levels should be evaluated in the future.

Levels of contaminants in the two drinking water wells, one from the Hidden Oaks Golf Course and one from the neighborhood near the site are not expected to harm people's health. Because contaminants may continue to migrate into the groundwater, contamination levels in monitoring wells surrounding the site should continue to be monitored in the future. Thirty-two monitoring wells have been installed in the FBA or nearby areas to identify the extent that chemicals from the FBA have spread into the groundwater.

<u>Next steps:</u> Sampling of monitoring wells should continue around the FBA to monitor potential contaminants in the groundwater. MDCH will review future water testing results.

Contaminants in the surface water and sediment in the drainage ditch, a county drain, near the site are not expected to harm people's health. People are expected to have limited, if any, contact with water and sediment in this ditch.

Next steps: No additional public health activities are necessary at this time.

## **Purpose and Health Issues**

The Michigan Department of Environmental Quality (MDEQ), then the Michigan Department of Natural Resources and Environment<sup>1</sup>, and U.S. Environmental Protection Agency (EPA) proposed the addition of the Gratiot County Golf Course site to the EPA National Priorities List (NPL) in September 2009 and finalized addition to the list in March 2010. The Michigan Department of Community Health (MDCH) assesses the human health risk present at NPL (also called Superfund) sites in Michigan under a cooperative agreement with the federal Agency for Toxic Substances and Disease Registry (ATSDR). The site is the former waste burning and disposal site for the Velsicol Chemical Corporation plant. A variety of chemicals were disposed of and burned with solid waste from the plant at this site from the 1950s to 1970. The purpose of this document is to identify potentially harmful human exposures to contaminants from the Gratiot County Golf Course NPL site and does not include discussion of contaminated material from the Velsicol Chemical Corporation plant site or the Pine River. This document addresses human health concerns from contaminants and does not include any ecological assessments, such as discussion of impacts to wildlife or the environment.

<sup>&</sup>lt;sup>1</sup> In January 2010, the Michigan Department of Environmental Quality (MDEQ) merged with the Michigan Department of Natural Resources (MDNR) and became the Michigan Department of Natural Resources and Environment (MDNRE). In March 2011, the MDNRE was once again split into the MDEQ and MDNR.

#### Background

The former burn area (FBA) (also known as the Gratiot County Golf Course site or Velsicol Burn Pit) covers about five acres within the east side of the Hidden Oaks Golf Course<sup>2</sup> on Monroe Road in St Louis, Michigan (EPA 2010). It is across the Pine River from the former Velsicol Chemical Corporation manufacturing plant. The site includes an inactive waste burning and disposal site (Dames & Moore 1980), consisting of an open dump, burn pit, brine well, and brine pond (Lockheed 1982). The site is surrounded by a golf course and, to the east, a residential area (Weston 2009). See Figure 1.

The FBA was a disposal site for solid and liquid waste from the former plant site and solid waste from the city of St Louis (Weston 2006). The Velsicol Chemical Corporation manufacturing plant burned waste liquids weekly, from approximately 1956 to 1970 (EPA 2010). In 1963, the site expanded northwest of the original site, and the area used in the 1950s was covered in vegetation (Lockheed 1982).

The dumpsite for the plant was used for disposal of polybrominated biphenyls (PBB), tris(2,3-dibromopropyl)phosphate (TRIS), dichlorodiphenyl trichloroethane (DDT), and filter cakes from bromide operations (Lockheed 1982). Records were not available on all materials burned or disposed of at this site. Additional materials that may have been disposed of include: magnesium oxide wastes, sodium chloride wastes, DDT waste, TRIS and other hydrocarbon wastes, and heavy metal residues (such as copper, cobalt, and zinc) (Dames & Moore 1980).

A gravel pit, east of the FBA, was formerly used for disposal of general refuse and municipal materials, and possibility some general refuse and waste materials from the plant. Another pit was identified south of the FBA. That pit was used in the 1940s to 1950s for storage of calcium chloride brine for the chemical plant (Dames & Moore 1980).

The FBA, originally a gravel pit approximately 100 feet long and 30 feet wide (Dames and Moore Aug 1980), was sold in 1970. A 9-hole golf course (Edgewood Farms Golf Course) was constructed in 1972 around the FBA and is currently part of the Hidden Oaks Golf Course. As part of the construction activities, the gravel pit was filled and graded after the 1970 purchase and was re-graded in 1978 (Dames & Moore 1980).

This area was originally proposed to the NPL in 1982<sup>3</sup>, but not added to the final list before deletion (EPA 2010). In 1983, the responsible party excavated the contaminated soil to different depths depending on the extent of the contamination. The MDEQ<sup>4</sup> monitored contaminant levels and requested additional excavation for an area with elevated levels of DDT. After removal of an additional 300 cubic yards, no detectable DDT was present.

 $<sup>^{2}</sup>$  A 9- hole golf course was originally built around the FBA. Later another nine holes were added to the west and all 18 holes are now the Hidden Oaks Golf Course.

<sup>&</sup>lt;sup>3</sup> The site was identified with an identification number of MID980794531 and was also called Edgewood Farms Golf Course Site when proposed to the NPL in 1982.

<sup>&</sup>lt;sup>4</sup> At the time of this work, the MDEQ was the Michigan Department of Natural Resources (MDNR).

Figure 1: Map of the Gratiot County Golf Course (also known as the Former Burn Area [FBA] National Priorities List (NPL) site (EPA ID# MIN000510389). The FBA boundary is approximate.



A one to four foot layer of a substance, visually identified as magnesium oxide, was left in place and was located just below the imported fill layer. The excavated areas were filled with material from adjacent land, covered with six inches of topsoil, seeded, and mulched (CRA 1982).

All excavated material was disposed of at the Velsicol plant site located across the river. Among the material removed was domestic refuse and industrial waste, plastic sample bags (containing magnesium oxide), 25 empty drums, and 14 drums containing material such as silica gel, hypo crystals (sodium thiosulfate), magnesium oxide, and filter cakes (CRA 1982). Groundwater (1.2474 million gallons) was also collected and disposed of by deep well injection on the Veliscol plant site. Levels of contaminants in groundwater were measured in three samples and one duplicate. PBB was not detected, but hexabromobenzene (HBB), DDT, and TRIS were detected in the samples (CRA 1982). The excavation and groundwater collection activities resulted in deletion of the site from the NPL in 1983.

Soil and groundwater contamination at the FBA was identified in 2006 and the site was again proposed to the NPL in September 2009 and placed on the NPL in March 2010. Two ash piles, identified during the work in 2006, are present at the site along with an estimated 345,606 square feet of contaminated soil. Municipal and private residential wells, water supplies for about 20,000 residents, are located within three miles of this site (EPA 2010).

## Discussion

Environmental contaminant data were compared to soil, sediment, soil gas, and water screening levels. See Appendix A for description of the screening levels.

If maximum contaminant levels were above the screening level, averages and 95% upper confidence levels (95% UCL) of the averages were calculated by the EPA's ProUCL (version 4.00.05)<sup>5</sup>. Contaminants with averages or 95% UCLs above the screening levels are discussed in the Exposure Pathways section. Contaminants without screening levels are discussed in the Contaminants without Screening Levels section.

## Environmental Contamination

Since the previous work at the site, there have been two investigations into contaminants present at the FBA. The first investigation, in 2004-2005, identified contamination remaining at the site from the disposal activities decades earlier (Weston 2006). Appendix A contains tables of all chemicals detected during this investigation. A more recent investigation, in 2007-2008, further characterized contamination of the FBA and identified offsite migration of the contaminants (Weston 2009). Appendix B contains tables of all chemicals detected during the more recent investigation.

## Site Geology

Three units of unconsolidated material are below the site, the shallow outwash, till, and lower outwash units. The shallow outwash unit is the layer extending 20 to 30 feet below ground surface (bgs) and is composed of fill (from the excavation), alluvium (material deposited by running water), and lacustrine (material formed in lakes) deposits. The till unit is below the

<sup>&</sup>lt;sup>5</sup> The EPA's ProUCL (version 4.00.05) can be downloaded for free at <u>http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm</u>.

shallow outwash unit, and is composed of sandy silt (sand, gravel, and cobbles). It is 30 to 80 feet thick, with an average of 40 to 45 feet. The lower outwash unit extends from the base of the till unit (around 80 feet bgs) to the top of the bedrock (approximately 280 feet bgs). This unit is composed of sand, gravel, silt, and clay (Weston 2009).

#### Former Burn Area (FBA) Soil Sampling

Soil samples, from borings, were taken in October 2004 from random intervals in the soil cores and from visibly contaminated soil, when present. Non-aqueous phase liquid (NAPL) was identified in one of the soil borings. NAPL are liquids that do not dissolve in water and remain separate from the water. Additional discussion of the NAPL is in the Groundwater Sampling section. Soil samples were tested for volatile organic chemicals (VOCs), specialty chemicals, inorganic chemicals, semivolatile organic chemicals (SVOCs), pesticides, and polychlorinated biphenyls (PCBs) (Weston 2006). Specialty chemicals were HBB, PBB, TRIS, chlordane (technical), 2,4'-DDT, and para-chlorobenzenesulfonic acid (pCBSA). Table 1 presents the detected contaminants that were higher than or had no screening levels.

Table 1: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in 17 soil samples from the 2004 soil borings (Weston 2006).

| Analyte          | Screening level <sup>a</sup> (mg/kg) | Maximum value in FBA<br>soil (mg/kg) |
|------------------|--------------------------------------|--------------------------------------|
| 2,4-DDT          | NA <sup>b</sup>                      | 0.023                                |
| arsenic, total   | 7.6                                  | 10.4                                 |
| calcium, total   | NA                                   | 87,000                               |
| delta-BHC        | NA                                   | 0.043 <sup>c</sup>                   |
| methyl acetate   | NA                                   | 0.99                                 |
| potassium, total | NA                                   | 1,200                                |

**Bold** values are higher than the screening level.

DDT = dichlorodiphenyl trichloroethane

BHC = benzenehexachloride

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct

Contact Criteria. Details on the screening level are in Appendix A.

b = NA, "not available" indicates that no screening levels are available.

c = This value is an estimated result.

Arsenic levels in two of 17 samples were higher than the screening level. One sample was from a depth of seven to nine feet bgs and the other sample was from soil one to three feet bgs. The average of the five soil samples collected at less than three feet deep was 4.6 milligrams per kilogram (mg/kg).<sup>6</sup> This value is below the arsenic screening level of 7.6 mg/kg<sup>7</sup>. Other contaminants are discussed in the Contaminants without Screening Levels section.

<sup>&</sup>lt;sup>6</sup> The average of the soil arsenic values, a total of 17 from all depths, was 4.6 mg/kg and the 95% upper confidence limit of the average (UCL) was 5.6 mg/kg. The 95% UCL is a value that would be higher than the true average contaminant level 95% of the time. It is used as a conservative value to make sure that, even if there were limited samples, higher levels of contaminants that may be present at the site are accounted for.

<sup>&</sup>lt;sup>7</sup> The 95% UCL could not be calculated, as there were only five values in this group.

Additional soil borings were done in 2007, and seventy surface and vadose zone soil samples were taken. Surface soil was collected from zero to 0.5 feet bgs. The vadose zone is the soil between the land surface and the water table, including the capillary fringe (a zone above the water table that is saturated with water). Vadose zone samples, at least one per boring, were collected at random intervals above the capillary fringe if no contamination was identified<sup>8</sup> (Weston 2009).

Soil samples were tested for VOCs, pesticides, inorganic chemicals, and specialty chemicals. Select samples were also tested for pCBSA, dioxins, and furans. Dioxin and furan levels are in Table B-8 in Appendix B. They were not detected above applicable screening levels. NAPL was not identified in any of the soil borings from this sampling (Weston 2009). Table 2 presents the maximum value of detected contaminants in soil samples that were higher than or had no screening levels.

Table 2: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in 66 soil samples from the 2007 sampling (Weston 2009).

| Analyte          | Screening level <sup>a</sup> (mg/kg) | Maximum levels in all soil depths (mg/kg) |
|------------------|--------------------------------------|-------------------------------------------|
| 2,4-DDT          | NA <sup>b</sup>                      | 0.64 <sup>c</sup>                         |
| arsenic, total   | 7.6                                  | 21                                        |
| calcium, total   | NA                                   | 103,000 <sup>c</sup>                      |
| lead, total      | 400                                  | 810                                       |
| PBB              | 1.2                                  | 5.4 <sup>d</sup>                          |
| potassium, total | NA                                   | 1,510 <sup>c</sup>                        |

**Bold** values are those higher than the screening level.

DDT = dichlorodiphenyl trichloroethane

**PBB** = polybrominated biphenyls

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria. Details on the screening level are in Appendix A.

b = NA, "not available", indicates that no screening levels are available.

c = The value is an estimated result.

d = The value is estimated below the level which the analytical method can accurately detect.

Three out of 70 soil samples were higher than the arsenic screening level. These 3 samples were from depths of zero to 0.5 feet bgs, two to three feet bgs, and 13 to 14 feet bgs. Thirty-three samples were collected from soil less than 0.5 feet deep. People are most likely to come into contact with soil closest to the ground surface. The average arsenic value for the 33 samples collected from soil less than 0.5 feet deep was 3.0 mg/kg, and the 95% UCL was 3.5 mg/kg<sup>9</sup>. The three samples higher than the PBB screening level were all from zero to 0.5 feet bgs, and the one sample above the lead screening level was from 13 to 14 feet bgs. The average PBB level, for the 33 samples collected from less than 0.5 feet deep was 0.39 mg/kg and the 95% UCL was 1.2

<sup>&</sup>lt;sup>8</sup> Contamination was identified visually or with a photoionization detector (a machine to detect organic chemicals).

<sup>&</sup>lt;sup>9</sup> For all 70 samples, the average arsenic value was 3.6 mg/kg and the 95% UCL was 4.0 mg/kg.

mg/kg<sup>10</sup>. The soil lead levels, for the 33 samples collected from less than 0.5 feet deep averaged 11.2 mg/kg and the 95% UCL was 13.3 mg/kg<sup>11</sup>. All averages and 95% UCLs were below or equal to the applicable screening levels. Contaminants with no screening levels are discussed in later sections.

#### Residential Area Soil Sampling

Thirty-two surface soil samples (all from 0 to 0.5 feet bgs) were taken from the residential area east and northeast (downwind) of the FBA in December 2007. Samples were tested for SVOCs, pesticides, inorganic, and specialty chemicals (Weston 2009). Table 3 presents the maximum value of detected contaminants that were higher than or had no screening levels.

One of the samples, of the two higher than the screening level for arsenic, was in an area adjacent to the golf course and the other was two streets to the east of the golf course. The maximum value, 35 mg/kg, was determined to be a laboratory error (S. Cornelius, MDEQ, personal communication, 2011). With that value removed, the average soil arsenic level was 4.4 mg/kg and the 95% UCL was 4.8 mg/kg. Both the average and 95% UCL were below the arsenic screening level. Contaminants with no screening levels will be discussed in later sections.

Table 3: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in 32 downwind residential soil samples (0 to 0.5 feet deep) from the 2007 sampling (Weston 2009).

| Analyte          | Screening level <sup>a</sup> (mg/kg) | Maximum levels in surface soil<br>(mg/kg) |
|------------------|--------------------------------------|-------------------------------------------|
| 2,4-DDT          | NA <sup>b</sup>                      | 0.054 <sup>c</sup>                        |
| arsenic, total   | 7.6                                  | 8.0                                       |
| calcium, total   | NA                                   | 68,000                                    |
| potassium, total | NA                                   | 1,290 <sup>c</sup>                        |

**Bold** values are those higher than the screening levels.

DDT = dichlorodiphenyl trichloroethane

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria. Details on the screening level are in Appendix A.

b = NA "not available" indicates that no screening levels are available.

c = The value is an estimated result.

## Ash Pile Sampling

Two ash piles are located in a wooded area that while not on golf course property, could be considered to be in the rough (areas outside of the fairway or green with taller or thicker grass) or out of bounds (a non-playable area) for the golf course. These piles are visible through the vegetation growing on them, which may not prevent ash from blowing onto the golf course. One sample from each of the two ash piles (two samples total) on site were analyzed for VOCs, SVOCs, PCB/pesticides, inorganic chemicals, and specialty chemicals in 2004 (Weston 2006). The ash piles were not sampled in the second investigation. Table 4 presents the detected contaminants in the ash piles that were higher than or had no screening levels.

<sup>&</sup>lt;sup>10</sup> The average PBB value for all 70 samples was 0.22 mg/kg and the 95% UCL was 0.79 mg/kg.

<sup>&</sup>lt;sup>11</sup> The average lead level, for all samples, was 19.6 mg/kg and the 95% UCL was 69.6 mg/kg.

The two samples from the ash piles were both higher than the screening levels for arsenic and lead. Since only two samples were taken from the surface of the pile, the size of the piles and the range of contaminant concentrations are unknown. Arsenic and lead are discussed in the Exposure Pathways section.

Table 4: Maximum value (in milligrams per kilograms [mg/kg]) of detected contaminants that were higher than or had no screening levels in two ash samples collected in 2004 (Weston 2006).

| Analyte        | Screening level <sup>a</sup> (mg/kg) | Maximum value in ash<br>samples (mg/kg) |
|----------------|--------------------------------------|-----------------------------------------|
| arsenic, total | 7.6                                  | 62.4                                    |
| calcium, total | $NA^b$                               | 25,000                                  |
| dibenzofuran   | NA                                   | 0.54 <sup>c</sup>                       |
| lead, total    | 400                                  | 670                                     |
| methyl acetate | NA                                   | 0.19 <sup>d</sup>                       |

**Bold** values are higher than the screening level.

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria. Details on the screening level are in Appendix A.

b = NA "not available" indicates that no screening levels are available.

c = The value is estimated below the level which the analytical method can accurately detect.

d = The value is an estimated result.

#### Soil Gas Sampling

Nine soil gas samples were taken in the FBA from various depths (all between 1.0 and 24.3 feet bgs) in October 2005. Soil gas samples were analyzed at an on-site mobile laboratory. One sample, from the location where on-site analysis found the highest contaminant concentrations, was sent to an off-site laboratory for analysis (Weston 2006). It should be noted that there are no buildings in this area. Soil gas levels that are elevated above screening levels may indicate that if any buildings are built on the site,<sup>12</sup> they might have soil contaminants seeping into indoor air that could be harmful to human health. If no buildings are present at the location, no indoor air contamination is possible.

Results were compared to shallow and deep soil gas screening levels (MDEQ 2009); however, soil gas samples from less than five feet deep may not be informative. Soil gas levels taken from less than five feet deep can be influenced by the ambient air (Amy Salisbury, MDEQ, personal communication, 2010) and be a reflection of chemicals present in the aboveground air while the samples are being collected. Soil gas levels were higher than the screening levels for twelve analytes, and five analytes do not have screening levels. See Table A-3, in Appendix A, for the levels of the analytes and the screening levels.

<sup>&</sup>lt;sup>12</sup> There are no plans at this time to build any buildings on the FBA.

## Hydrogeology

Groundwater for the shallow outwash and till units flows southeast toward the Pine River from the eastern portion of the site, and west and southwest from the western part of the FBA. Based on information from four monitoring locations, groundwater in the lower outwash unit flows southeast, toward the Pine River (Weston 2006).

#### Groundwater Sampling

Groundwater samples were taken during the October 2004 soil investigation at the FBA. As contaminants were identified in the samples, monitoring wells were installed in the FBA. Shallow monitoring wells were installed in the shallow outwash unit between October 2004 and March 2005. NAPL was present in one of the shallow wells. NAPL had been observed in two monitoring wells during installation. The NAPL was sampled from one well, and identified as 1,2-dichloroethane and benzene. The NAPL was estimated to be 18 inches thick. NAPL, composed of the above or other chemicals, might be present at other locations (Weston 2006). Monitoring wells are present in shallow, intermediate, and deep units of groundwater and would be able to identify NAPL in shallower or deeper groundwater.

Vertical aquifer sampling (VAS) was done to determine the extent of contamination in the lower outwash unit groundwater. Select samples were measured for VOCs; SVOCs; PCBs, pesticides, and specialty chemicals; and inorganic chemicals (Weston 2006). Table 5 presents the maximum value of detected contaminants from the VAS that exceeded or had no screening levels.

Table 5: Maximum value (in milligrams per liter [mg/L]) of contaminants that either had no screening level or exceeded the screening levels in 17 groundwater samples from soil borings (vertical aquifer sampling) sampled in 2004 (Weston 2006).

| Analyte              | Screening level <sup>a</sup> (mg/L) | Maximum value (mg/L) |
|----------------------|-------------------------------------|----------------------|
| benzene              | 11                                  | 14                   |
| calcium, dissolved   | NA <sup>b</sup>                     | 186                  |
| calcium, total       | NA                                  | 314                  |
| potassium, dissolved | NA                                  | 11.9                 |
| potassium, total     | NA                                  | 5.41 <sup>c</sup>    |

**Bold** values are higher than the screening level.

a = Unless otherwise noted, the screening level was the MDEQ's Groundwater Contact Criteria. Details on the screening level are in Appendix A.

b = NA "not available" indicates that no screening level was available.

c = The value is an estimated result.

Only benzene, in one sample, was above the screening levels. This sample was taken from 24 to 26 feet bgs. Benzene is discussed in the Exposure Pathways section. Calcium and potassium are discussed in the Contaminants without Screening Levels section.

Two of the 22 monitoring wells sampled in October 2005 had detectable levels of pCBSA (Weston 2006). This chemical has since been detected in all six of the municipal wells (S. Cornelius, MDEQ, personal communication, 2011). Levels of pCBSA in municipal wells are

below levels considered to be protective of human health<sup>13</sup> (M. Joseph, MDEQ, personal communication, 2011). Detailed municipal well data is not included as none of the wells are located on the FBA. Several of the municipal wells are located to the east of the FBA and the others are located across the Pine River near the Velsicol Chemical Corp. Superfund site. Table A-6 presents the maximum pCBSA level from monitoring wells tested in 2005. Levels of pCBSA in the groundwater samples were below the applicable screening level.

In May to June 2005, monitoring wells were sampled for VOCs; SVOCs; pesticides, PCBs, specialty chemicals; and total or dissolved inorganic chemicals. Samples from the monitoring wells were taken again in October 2005 and analyzed for the same contaminants (Weston 2006). Table A-5 presents the results of those sampling events. These wells were sampled again along with additional monitoring wells installed between fall of 2007 and spring of 2008.

The new wells were screened in the shallow outwash (shallow), till (intermediate), and lower outwash (deep) units (three in each unit). The horizontal and vertical extent (VAS) of the contamination was assessed at the three locations. Two intermediate depth wells were installed in the till unit, in the downwind residential area, in fall 2007. They were screened between 39 to 60.5 feet bgs. Two deep wells were also installed in the downwind residential area. (Weston 2009). Table B-3 presents the maximum level of contaminants from the VAS. None of the contaminants were above the applicable screening levels<sup>14</sup>.

Groundwater samples from monitoring wells, screened in various depths below the ground surface, were collected in 2008. Samples were analyzed for VOCs, SVOCs, pesticides, specialty chemicals, and total inorganic chemicals. Select samples were analyzed for pCBSA, PCBs, dissolved inorganic chemicals, and hexavalent chromium (Weston 2009).

Table 6 through 9 presents maximum values of contaminants found in the monitoring wells that were higher than or had no screening levels. No compounds from upper or lower till unit monitoring wells were detected above screening levels; however, several analytes did not have screening levels.

Benzene was detected above the screening level in three monitoring wells. The wells were screened from six to 11 feet (shallow outwash unit), 33 to 38 feet (till unit), and 43.5 to 48.5 feet (till unit) bgs. Elevated levels of benzene were previously detected in two of the three wells. The maximum arsenic level was also higher than the screening level. The other analytes that were higher than the screening level were estimated below the detection limit. These analytes are discussed in the Exposure Pathways section.

<sup>&</sup>lt;sup>13</sup> The MDEQ has a Residential Drinking Water Criterion of 7.3 mg/L for pCBSA.

<sup>&</sup>lt;sup>14</sup> There was no screening level for total trihalomethanes, which is a group of chemicals with one carbon and three halogens, such as bromine or chlorine. Although there is no screening level for total trihalomethanes, individual screening levels are available for many of the chemicals included in this group, such as chloroform, bromoform, and bromodichloromethane.

Table 6: Maximum value (in milligrams per liter [mg/L]) of detected compounds that either exceeded their respective screening value or had no screening levels in the Former Burn Area (FBA) 17 groundwater samples from the shallow outwash unit monitor wells sampled in 2008 (Weston 2009).

| Analyte                     | Screening level <sup>a</sup> (mg/L) | Maximum value<br>(mg/L)   |
|-----------------------------|-------------------------------------|---------------------------|
| 1,2,3-trichlorobenzene      | $NA^{b}$                            | 5 <sup>°</sup>            |
| 1,2,3-trimethylbenzene      | NA                                  | 1 <sup>c</sup>            |
| 1,2-dibromo-3-chloropropane | 0.390                               | <b>5</b> <sup>c</sup>     |
| 2,4-DDT                     | NA                                  | 0.001 <sup>c</sup>        |
| aldrin                      | 0.00034                             | <b>0.001</b> <sup>c</sup> |
| anthracene                  | 0.043                               | <b>0.5</b> <sup>c</sup>   |
| arsenic, total              | 4.3                                 | <b>10</b> <sup>d</sup>    |
| benzene                     | 11                                  | 99                        |
| calcium, dissolved          | NA                                  | 3,590 <sup>d</sup>        |
| calcium, total              | NA                                  | $5,180^{d}$               |
| cyclohexane                 | NA                                  | 5 <sup>°</sup>            |
| delta-BHC                   | NA                                  | $0.002^{c}$               |
| fluoranthene                | 0.21                                | <b>0.5</b> <sup>°</sup>   |
| pentachlorophenol           | 0.2                                 | <b>10</b> <sup>c</sup>    |
| potassium, dissolved        | NA                                  | 110 <sup>d</sup>          |
| potassium, total            | NA                                  | 120 <sup>d</sup>          |
| pyrene                      | 0.14                                | <b>0.5</b> °              |
| trihalomethane (total)      | NA                                  | 3.2                       |

**Bold** values are higher than the screening level.

DDT = dichlorodiphenyl trichloroethane

BHC = benzenehexachloride

a = The screening level was the MDEQ's Groundwater Contact Criteria. Details on the screening level are in Appendix A.

b = NA indicates that no screening levels are available.

c = The value is estimated below the level which the analytical method can accurately detect.

d = The value is an estimated result within the accurate range of the analytical method.

None of the chemicals measured from the upper or lower till monitoring wells (Table 7 and Table 8) with screening levels were detected above their respective screening levels. Monitoring wells installed in the lower outwash unit access groundwater from the same groundwater unit that residential drinking water wells would access. However, since no drinking water wells are located in the FBA, the analyte values from these wells were only compared to screening levels protective for workers coming into contact with the groundwater. Although there are no drinking water wells installed in the FBA, drinking water wells are in the vicinity of the FBA, and there are no restrictions on the installation of drinking water wells in this area.

| Table 7                      | Table 7: Maximum value (in milligrams per liter [mg/L]) of detected compounds with no      |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| creening                     | reening levels in the Former Burn Area (FBA) seven groundwater samples from the upper till |  |  |  |  |
| -                            | unit monitor wells sampled in 2008 (Weston 2009).                                          |  |  |  |  |
| Analyta Mavimum value (mg/L) |                                                                                            |  |  |  |  |

| Analyte              | Maximum value (mg/L) |  |  |
|----------------------|----------------------|--|--|
| 2,4-DDT              | 0.0049               |  |  |
| calcium, dissolved   | 8,250 <sup>a</sup>   |  |  |
| calcium, total       | $17,400^{a}$         |  |  |
| potassium, dissolved | 53 <sup>a</sup>      |  |  |
| potassium, total     | 77 <sup>a</sup>      |  |  |

a = The value is an estimated result.

sc

Table 8: Maximum value (in milligrams per liter [mg/L]) of detected compounds with no screening levels in the Former Burn Area (FBA) two groundwater samples from the lower till unit monitor wells sampled in 2008 (Weston 2009).

| Analyte              | Maximum value (mg/L) |
|----------------------|----------------------|
| 2,4-DDT              | 0.00001 <sup>a</sup> |
| calcium, dissolved   | 321 <sup>b</sup>     |
| calcium, total       | 309 <sup>b</sup>     |
| potassium, dissolved | 4.5                  |
| potassium, total     | 4.6                  |

DDT = dichlorodiphenyl trichloroethane

a = The value is estimated below the level which the analytical method can accurately detect.

b = The value is an estimated result within the accurate range of the analytical method.

Table 9 presents the analytes detected in the lower outwash unit monitoring wells that have no screening levels. No concentrations of compounds exceeded screening levels.

Table 9: Maximum value (in milligrams per liter [mg/L]) of detected compounds with no screening levels in the Former Burn Area (FBA) eight groundwater samples from the lower outwash unit monitor wells sampled in 2008 (Weston 2009).

| Analyte              | Maximum value (mg/L) |
|----------------------|----------------------|
| 2,4-DDT              | 0.000051             |
| calcium, dissolved   | 618 <sup>a</sup>     |
| calcium, total       | 674 <sup>a</sup>     |
| cyclohexane          | 0.005 <sup>b</sup>   |
| potassium, dissolved | 6.6 <sup>a</sup>     |
| potassium, total     | 6.4 <sup>a</sup>     |

DDT = dichlorodiphenyl trichloroethane

a = The value is an estimated result within the accurate range of the analytical method.

b = The value is estimated below the level which the analytical method can accurately detect.

#### Residential Well Sampling

A residential well on Prospect Street and one on the Hidden Oaks Golf Course were tested for VOCs, SVOCs, pesticides, PCBs, specialty chemicals, inorganic chemicals, and water quality parameters in 2002. (Weston 2006). The Hidden Oaks Golf Course well is also used for irrigation at the golf course. Table 10 presents the detected contaminants present that were higher than or had no screening levels.

The Prospect Street well contained arsenic and chloride levels above drinking water screening levels. The concentrations of several analytes were estimated values higher than the screening levels (2,4-DDT, bis(2-ethylhexyl)phthalate, and n-nitroso-di-n-propylamine). Arsenic, chloride, 2,4-DDT, bis(2-ethylhexyl)phthalate, and n-nitroso-di-n-propylamine are discussed in the Exposure Pathways section.

Another residential well was sampled on Orchard Court, which is adjacent to the FBA, and tested for pCBSA. This contaminant was not detected (Weston 2009).

| Table 10: Maximum value (in milligrams per kilogram [mg/kg]) of detected contaminants that |
|--------------------------------------------------------------------------------------------|
| were higher than or had no screening levels in three drinking water wells sampled in 2002  |
| (Weston 2006).                                                                             |

| Analyte                    | Drinking water screening levels <sup>a</sup> | Hidden Oaks Golf<br>Course well values | Maximum value from<br>two residential wells on |
|----------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------|
|                            | (mg/L)                                       | (mg/L)                                 | Prospect St (mg/L)                             |
| 2,4-DDT                    | $NA^b$                                       | $0.00002^{\circ}$                      | 0.00002 <sup>c</sup>                           |
| arsenic, total             | 0.01                                         | 0.0032 <sup>c</sup>                    | 0.0234                                         |
| bis(2-ethylhexyl)phthalate | 0.006                                        | <b>0.013</b> <sup>c</sup>              | <b>0.01</b> <sup>c</sup>                       |
| calcium, total             | NA                                           | 53.1                                   | 143                                            |
| chloride                   | 250                                          | 15                                     | 345                                            |
| HEM, oil and grease        | NA                                           | 5 <sup>c</sup>                         | 5 <sup>c</sup>                                 |
| n-nitroso-di-n-propylamine | 0.005                                        | <b>0.013</b> <sup>c</sup>              | <b>0.01</b> <sup>c</sup>                       |
| potassium, total           | NA                                           | 1.04                                   | 2.98                                           |

**Bold values** are those that exceed the drinking water screening level.

DDT = dichlorodiphenyl trichloroethane

HEM = n-hexane extractable material

a = Unless otherwise noted, the screening level is the MDEQ Part 201 Residential Drinking

Water Criteria. Details on the screening level are in Appendix A.

b = NA "not available" indicates that no screening levels are available.

c = The value is estimated below the level which the analytical method can accurately detect.

## Surface Water and Sediment Sampling

Five surface water and seven sediment samples were taken from a drainage ditch next to the FBA in January 2008. They were tested for VOCs, SVOCs, pesticides, specialty chemicals, including pCBSA, inorganic chemicals, and general water chemistry<sup>15</sup> (Weston 2009). No

<sup>&</sup>lt;sup>15</sup> Except for the oil and grease analysis, these analytes are not included in Table 11. These often do not have screening levels and do not directly affect human health.

concentrations exceeded screening levels. Table 11 presents the detected contaminants in surface water samples that had no screening levels. These analytes are discussed in the Contaminants without Screening Levels section.

Table 11: Maximum levels (in milligrams per liter [mg/L]) of detected compounds with no screening levels in five surface water samples from a drainage ditch adjacent to the Former Burn Area (FBA) sampled in 2008 (Weston 2009).

| Analyte          | Maximum value (mg/L) |
|------------------|----------------------|
| 2,4-DDT          | 0.00001 <sup>a</sup> |
| calcium, total   | 134 <sup>b</sup>     |
| chloride         | 124 <sup>b</sup>     |
| oil and grease   | 11 <sup>a</sup>      |
| potassium, total | 5.9 <sup>b</sup>     |
| sulfate          | 100 <sup>b</sup>     |

DDT = dichlorodiphenyl trichloroethane

a = The value is estimated below the level which the analytical method can accurately detect.

b = The value is an estimated result within the accurate range of the analytical method.

Sediment cores were collected from the drainage ditch, to a depth of one to three feet. The sediment cores were homogenized (mixed) before testing. They were analyzed for VOCs, SVOCs, pesticides, total organic carbon, specialty, and inorganic chemicals. Two of the sediment samples were analyzed for pCBSA (Weston 2009). No detected compounds had levels higher than screening levels. Table 12 presents the maximum level of detected contaminants that had no screening levels. These are discussed in the Contaminants without Screening Levels section.

Table 12: Maximum levels (in milligrams per kilograms [mg/kg]) of detected compounds with no screening levels in seven sediment samples from a drainage ditch adjacent to the Former Burn Area (FBA) sampled in 2008 (Weston 2009).

| Analyte          | Maximum levels (mg/kg) |
|------------------|------------------------|
| 2,4-DDT          | $0.14^{a}$             |
| calcium, total   | 82,200 <sup>b</sup>    |
| potassium, total | 700 <sup>b</sup>       |

DDT = dichlorodiphenyl trichloroethane

a = The value is estimated below the level which the analytical method can accurately detect.

 $\mathbf{b} = \mathbf{The}$  value is an estimated result within the accurate range of the analytical method.

#### Exposure Pathways Analysis

An exposure pathway contains five elements: (1) the contaminant source, (2) contamination of environmental media, (3) an exposure point, (4) a human exposure route, and (5) potentially exposed populations. An exposure pathway is complete if there is a high probability or evidence

that all five elements are present. Table 13 describes human exposure pathways to contaminants at the Gratiot County Golf Course, St Louis (Gratiot County), Michigan.

| Table 13: Exposure pathway for contaminants present at the Former Burn Area (Velsicol Burn       |  |  |
|--------------------------------------------------------------------------------------------------|--|--|
| Pit) at the Gratiot County Golf Course National Priorities List Site, St Louis (Gratiot County), |  |  |
| Michigan.                                                                                        |  |  |

| Source                                               | Environmental<br>Medium              | Exposure<br>Point                              | Exposure<br>Route                                | Exposed Population                                                         | Time<br>Frame             | Exposure   |
|------------------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|---------------------------|------------|
| Materials<br>burned and<br>disposed of at<br>the FBA | Groundwater                          | Groundwater<br>wells for<br>irrigation         | Dermal<br>contact and<br>inhalation              | People who work at<br>or visit the golf<br>course (adjacent to<br>the FBA) | Past<br>Present<br>Future | Potential  |
| Materials<br>burned and<br>disposed of at<br>the FBA | Soil                                 | Soil                                           | Incidental<br>ingestion<br>and dermal<br>contact | People who work or<br>visit the golf course<br>(adjacent to the<br>FBA)    | Past<br>Present<br>Future | Potential  |
| Materials burned and                                 | Air                                  | Air downwind                                   | Inhalation                                       | People who live or visit the downwind                                      | Past                      | Potential  |
| disposed of at the FBA                               | All                                  | of the FBA                                     | minatation                                       | residential area                                                           | Present<br>Future         | Eliminated |
| Materials<br>burned and<br>disposed of at<br>the FBA | Suspended dust<br>or soil in the air | Soil in the<br>downwind<br>residential<br>area | Incidental<br>ingestion<br>and dermal<br>contact | People who live or<br>visit the downwind<br>residential area               | Past<br>Present<br>Future | Potential  |
| Materials<br>burned and<br>disposed of at<br>the FBA | Groundwater                          | Drinking<br>water wells                        | Ingestion                                        | People who live,<br>work, or visit areas<br>near the FBA                   | Past<br>Present<br>Future | Potential  |

## Soil and ash samples from the FBA

Soil samples at the site exceeded the screening levels for arsenic, lead, and PBB. Arsenic exceedences represented about 6% of the total soil samples tested from the FBA for the two investigations combined (Weston 2006, 2009). The arsenic levels ranged up to a maximum of about three times (21 mg/kg) the arsenic screening level. The average and 95% UCL levels for the two soil investigations were below the screening level of 7.6 mg/kg. Although certain spots on the site have elevated arsenic levels, they are not consistently elevated across the site. The soil sample depths for all samples ranges from zero to 14 feet bgs. It is not expected that people will come into contact with soil deep below the ground surface. The average arsenic level for soil samples collected less than 0.5 feet bgs was 3.0 mg/kg and the 95% UCL was 3.5 mg/kg, both below the screening level of 7.6 mg/kg.

Estimated results of three soil samples, collected in the second investigation (Weston 2009), were higher than the PBB screening level and had an estimated maximum of 5.4 mg/kg. These samples were collected from zero to 0.5 feet bgs. The results are estimated values because they are lower than the lower detection limit for the analytical methods. However, the lower detection

limit was higher than the screening level. The average PBB level for the soil samples collected from less than 0.5 feet deep was 0.39 mg/kg, and the 95% UCL was 1.2 mg/kg. Overall, the PBB levels in the soil samples were below or equal to the screening level of 1.2 mg/kg.

Only one soil lead level, 810 mg/kg, collected from 13 to 14 feet bgs, was higher than the screening level. The soil lead levels for the soil samples collected from less than 0.5 feet deep averaged 11.2 mg/kg, and the 95% UCL was 13.3 mg/kg. Both are below the lead screening level of 400 mg/kg.

One ash sample was collected for each of the two ash piles<sup>16</sup>. Both ash piles samples exceeded the lead and arsenic screening levels. The ash piles have vegetation growing on them, but still are visible.

Visitors to the area adjacent to the FBA, such as golfers, are expected to have little or no contact with contaminants from soil or ash piles. The FBA is not part of the golf course property and is considered "out of bounds" for the golf course. However, there are no fences or signs that would prevent golfers or other visitors from walking into the FBA.

Golf course rules require the use of soft spikes (Hidden Oaks Golf Course, Rules and Regulations<sup>17</sup>), which are plastic cleats that minimize damage to the turf grass. The use of these plastic cleats will result in little or no soil exposure for golfers from their golf shoes. The averages and 95% UCLs for arsenic, PBB, and lead levels in the soil are below the screening levels. People are expected to have little to no contact with the soil; people's health is not expected to be harmed by the levels of these contaminants.

Workers at the golf course may have dermal contact with soil or the ash piles. Although the soil and ash piles are not part of the golf course, workers may enter the FBA at times. No fences are present to prevent people from going into the FBA. Although levels of arsenic, lead, and PBB in several soil samples are higher than the screening levels, averages and 95% UCLs are below the screening levels. It is not expected that workers at the golf course will be exposed to levels of contaminants in the soil that will cause health effects.

Although workers or visitors to the golf course are not expected to spend much time in the FBA, levels of arsenic and lead are elevated in the two ash samples. Further characterization of the ash piles is necessary to determine the size of the ash piles and the uniformity of the contamination present. Ash piles were identified during monitoring well installation and the size of the ash piles are unknown. Arsenic and lead will be discussed in the Toxicological Evaluation section.

## Soil samples from a residential area near the FBA

Soil samples were taken in the downwind residential area, a neighborhood east of the FBA on the same side of the Pine River. Two of the downwind residential soil samples (35 total) were higher than the arsenic screening level. The soil samples were taken from zero to 0.5 feet bgs. The maximum arsenic level in the samples was 8.0 mg/kg, but the average level and the 95%

<sup>&</sup>lt;sup>16</sup> As only one sample was collected from each ash pile, averages and 95% UCL could not be calculated.

<sup>&</sup>lt;sup>17</sup> The Hidden Oaks Golf Course Rules and Regulations can be found at: <u>http://www.hiddenoaksgolf.com/node/3</u> (accessed March 2011).

UCL were below the screening level of 7.6 mg/kg. It is not expected that resident's health would be affected by the arsenic levels as they are not consistently elevated in the soil of the residential area.

#### Groundwater samples from the FBA

The three shallow outwash unit wells (the ones closest to the ground surface) were higher than the screening levels for arsenic, aldrin, pyrene, pentachlorophenol, fluoranthene, benzene, anthracene, and 1,2-dibromo-3-chloropropane (DBCP). One well detected benzene above screening level values; a second well contained DBCP, benzene and arsenic above screening values; and a third well had arsenic, aldrin, pyrene, pentachlorophenol, fluoranthene, benzene, and anthracene above screening values. Several of the chemicals, aldrin, pyrene, pentachlorophenol, fluoranthene, anthrancene, and DBCP, had estimated values as the values were below the detection levels. These detection levels were higher than the screening levels. All groundwater samples with contaminants higher than the screening levels were from wells screened at least six to 11 feet bgs. The golf course workers are expected to have little to no contact with water from more than six feet bgs. However, since contaminants higher than the screening levels were only found in the shallow wells, soil contaminants may be migrating (leaching) into the groundwater.

Although some contaminant levels were above the screening levels, golfers or other visitors to the site are not expected to have contact with the groundwater. The Hidden Oaks Golf Course well is used for irrigation, but levels of analytes present (bis(2-ethylhexyl)phthalate at 0.013 mg/L and n-nitroso-di-n-propylamine at 0.013 mg/L) in the water are not expected to harm people health if they happen to have contact with the water. Furthermore, people are only expected to have occasional exposure to irrigation or other groundwater as watering would typically be occurring during the beginning or end of the day. It is not expected that people visiting or golfing on this site will be exposed to levels of chemicals that will cause health effects.

Workers contacting groundwater, either pumped to the surface or when digging underground, could possibility inhale benzene. The maximum levels found from the two investigations were 120 mg/L (Weston 2006) and 99 mg/L (Weston 2009). These values are above the MDEQ's Acute Inhalation Screening Level (AISL) of 67 mg/L for benzene. The AISL a level of a contaminant in groundwater that is not expected to harm a worker's health if the worker is breathing in the contaminant for a short amount of time<sup>18</sup>. However, since the water with the elevated benzene levels is from at least six to 11 feet bgs under the FBA, workers are not expected to encounter groundwater during typical maintenance activities. Benzene was not detected in the Hidden Oaks Golf Course well (used for drinking water and irrigation), but it was sampled in 2004. Additional sampling of these wells is necessary to determine if contaminants have migrated into the groundwater.

## Drinking water well samples located near the FBA

Water samples from two residential wells and one at the Hidden Oaks were analyzed for many contaminants. However, it is not known if concentrations of analytes (bis[2-ethylhexyl]phthalate,

<sup>&</sup>lt;sup>18</sup> This screening level does not take the place of any of the Michigan Occupational Safety and Health Administration's (MIOSHA) standards or guidance.

n-nitroso-di-n-propylamine) actually exceeded the screening levels. The values for these chemicals were estimated below the accurate range that could be measured. 2,4-DDT is discussed in the Contaminants without Screening Levels section.

Chloride (345 mg/L) and arsenic (0.0234 mg/L) were higher than the applicable screening levels, 250 mg/L for chloride and 0.01 mg/L for arsenic, in one of the two residential wells samples. The EPA notified the residents of these findings. Arsenic is naturally occurring and can be found in drinking water wells throughout Michigan. Arsenic and chloride will be discussed in the Toxicological Evaluation section.

#### **Toxicological Evaluation**

Arsenic and lead were higher than the screening levels in the two ash pile samples (one from each pile). Although it is not expected that people will be repeatedly exposed to these chemical in the FBA, the size of the ash piles are unknown, therefore arsenic and lead are briefly discussed.

Chloride and arsenic were higher than the screening levels for drinking water in one of the residential well samples.

#### Arsenic

Arsenic is commonly present in the Earth's crust. People ingest small amounts of arsenic in food and water. Typical levels of arsenic in food are 0.02-0.14 mg/kg (ATSDR 2007A). Foods that contain arsenic, mainly in the form of organic arsenic, are dairy products, meat, poultry, fish, grains, and cereal (NAS 2001). Both children and adults can have vomiting, respiratory, cardiovascular, dermal, and neurological effects from exposure to high levels of arsenic. Dermal exposure to arsenic can result in direct irritation of skin (ATSDR 2007a).

Arsenic can be found in private drinking water wells throughout Michigan. Arsenic has been found in Gratiot County drinking water at levels as high as  $0.05 \text{ mg/L}^{19}$ . One residential well sample had an arsenic level that was over the screening level (0.0234 mg/L). Residents with private drinking wells should have their water tested for arsenic.

Arsenic was found in both of the ash pile samples. The size of the ash piles are not known. Arsenic levels may be uniform throughout the pile or may be higher or lower in different parts of the ash piles.

## Lead

Lead has been removed from many paints, ceramic products, caulking, pipe solder, and gasoline. Houses built before the late 1970's may still have paint containing lead. Children are often exposed to lead from ingesting paint chips or dust. Although sources of lead have been reduced people still encounter lead in their daily lives. Almost all (99%) of the publicly supplied drinking water have less than 5.0  $\mu$ g/L lead. Lead in food ranged from less than 0.0004 to 0.5234  $\mu$ g/g. People have an average dietary intake of 1.0  $\mu$ g/kg/day (ATSDR 2007).

<sup>19</sup> A map of Gratiot County and the arsenic levels in the water can be found at <u>http://www.michigan.gov/documents/deq/deq-wd-gws-ciu-counties21-30-as 270825 7.pdf.</u>

Compared to adults, children are more vulnerable to lead poisoning. Children absorb, on average, 50% of the lead they ingest, while adults absorb between 6-80% depending on recent food consumption. Although lead can be absorbed through the skin, absorption of inorganic lead from dermal (skin) exposure appears to be less efficient than absorption from ingestion or inhalation. In studies measuring the amount of lead absorbed after dermal exposure, people's absorption ranged from less than or equal to 0.3% to possibly as high as 30% of the applied dose (ATSDR 2007).

After absorption by ingestion, inhalation, or dermal exposure, lead is distributed throughout the body similarly. Because of this and the fact that there is little information on people's health effects due to dermal exposure to lead, effects from ingestion are discussed. In both adults and children, the main target is the nervous system, but lead will affect every organ system (ATSDR 2007).

Lead was found in both of the ash pile samples. As previously stated, the size of the ash piles are not known. Lead levels may be uniform throughout the pile or may be higher or lower in different parts of the ash piles.

#### Chloride

One residential well had a chloride level (345 mg/L) higher than the drinking water screening level (250 mg/L). People frequently eat chloride in table salt (sodium chloride) (NAS 2004). People's bodies typically regulate the levels of chloride they have. Drinking water or coming into contact with water that has elevated levels of chloride will not harm people's health, although eating a lot of salt can contribute to high blood pressure (NAS 2004). Although it will not harm people's health, drinking water with elevated chloride may be unpleasant, as it could have a salty taste. People with most types of water softeners will have higher levels of chloride in their water.

#### Contaminants without Screening Levels

Calcium, potassium, 2,4-DDT, and delta-BHC were detected in the soil and groundwater samples from the FBA. 2,4-DDT was also detected in the sediment and surface water from a nearby county drain.

Both calcium and potassium are required elements in people. Calcium is required for teeth and bone formation, along with muscle contracting and blood clotting. Recommended intakes are 1,000 mg/day or higher for people over 9 years of age. The upper limit on the daily intake is 2,500 mg/day for people older than 1 year old. People can obtain calcium from eating milk, cheese, yogurt, corn tortillas, Chinese cabbage, broccoli, kale, calcium-set tofu (NAS 2001), and calcium-fortified foods (like orange juice).

Potassium is necessary for the normal functioning of people's cells. People obtain potassium by eating fruits, vegetables, meat, and nuts. There is no upper limit on the daily intake set for potassium because there is no evidence chronic excess intakes of potassium can occur in apparently healthy individuals (NAS 2004). Most people's bodies will remove the extra or unnecessary calcium and potassium.

About 15-21% of technical grade DDT was 2,4-DDT. It is less toxic than 4,4-DDT, but 2,4-DDT can act similar to the hormone estrogen. Laboratory experiments have shown that, 2,4-DDT was about 100,000 times less effective than estrogen hormones in producing an effect on reproductive systems (ATSDR 2002). Levels of 2,4-DDT range from 0.023 to 0.64 mg/kg in soil (from the FBA) and sediment (in a county drain near the FBA), and from 0.00001 to 0.0049 mg/L in surface (in a county drain near the FBA) and groundwater (under the FBA). Adults or children are not expected to be exposed to levels of 2,4-DDT that would harm their health<sup>20</sup>.

Delta-BHC is one of the isomers of the pesticide lindane. Technical grade BHC contained about 6 to 10% of the delta-BHC (ATSDR 2005). It was found in the soil at and in the groundwater under the FBA. Soil had a maximum amount of delta-BHC of 0.043 mg/kg (estimated value) and delta-BHC was detected in groundwater, but below the detection limit for the samples (0.002 mg/L). People are expected to have little to no contact with the soil at the FBA and the groundwater under the FBA.

Methyl acetate and dibenzofuran were detected in the ash piles and methyl acetate was detected in the soil on the FBA Since people are expected to have limited or no contact with the soil and ash piles on the FBA, it is not expected that these chemicals will harm people's health.

1,2,3-Trichlorobenzene, tetrachloroethene, trihalomethane (total), and cyclohexane were detected in groundwater samples taken from monitoring wells on the FBA. Trichlorobenzenes have been used, in industry, as solvents, chemical intermediates, and dye carriers. However, trichlorobenzenes can also be degradation products from other chemicals, such as lindane (ATSDR 2010). 1,2,3-Trichlorobenzene was only detected, below the reported sample quantitation limit (5 mg/L), in shallow outwash unit monitor wells at the FBA. People are expected to have limited to no contact with the groundwater under this site, and people's health is not expected to be harmed from contact with water containing this level of 1,2,3trichlorobenzene.

Total trihalomethane was found up to 3.2 mg/L in groundwater under the FBA. Total trihalomethane refers to chemicals that have three halogens, such as bromine and chlorine, attached to a carbon. Many chemicals, such as bromoform and chloroform are included in this group. While there is no screening level for total trihalomethane, the screening levels exist for the individual chemicals that are included in this group. The individual chemicals included in this group were not above the screening levels. Although people are not expected to have contact with the groundwater, levels of total trihalomethanes present in the water will not harm people's health.

 $<sup>^{20}</sup>$  If adults or children happened to inhale airborne dust with the maximum level of 2,4-DDT (0.64 mg/kg) from the FBA daily, the amount of 2,4-DDT ingested would be about 40 to 300 times lower than 0.3 mg/kg/day (a dose given to rats for two generations with no effect). This assumes adults (70 kg) and children (15 kg) swallow 0.2 kg of soil daily with 0.64 mg/kg of 2,4-DDT. If adults (70 kg) or children (15 kg) drink water (2 L/day) with 0.0049 2,4-DDT, the amount of ingested 2,4-DDT would be 459 to 2,142 times lower than the 2,4-DDT amount given to rats for two generations without an effect (0.3 mg/kg/day). DDT is not absorbed well through the skin, so skin contact with the water or soil would not add to people's exposure. The levels present in soil, water, or sediment would not harm people's health.

Cyclohexane was also detected in FBA groundwater samples at levels below the lower level that could be accurately measured. People are expected to have little to no contact with groundwater from the FBA and so will not come into contact with this chemical.

Sulfate and oil and grease were found in the surface water of the county drain near the FBA. Sulfate had a maximum value of 100 mg/L. The level of sulfate in the water was below the screening level for drinking water (250 mg/L). People's health will not be affected by coming into contact with water containing sulfate. Even if used for drinking water the sulfate levels would not harm people's health.

Oil and grease was detected in surface water and in a drinking water sample, however both were a levels below a level that could be accurately measured by the analytical method used. The oil and grease detected could have been from normal levels of oil and grease from natural sources, such as fats from plant material.

## Children's Health Considerations

Compared to adults, children could be at greater risk from certain kinds of exposure to hazardous substances. Children play outdoors and sometimes engage in hand-to-mouth behaviors that increase their exposure potential. Children are shorter than adults; this means they breathe dust, soil, and vapors close to the ground. A child's lower body weight and higher intake rate results in a greater dose of hazardous substance per unit of body weight. If toxic exposure levels are high enough during critical growth stages, the developing body systems of children can sustain permanent damage. Certain contaminants of concern at these locations, such as lead, produce greater adverse effects in children as compared to adults. Children may have both increased absorption and increased susceptibility to these contaminants.

The FBA is located adjacent to a golf course, in an area that could be considered in the rough (an untended area). As it is not part of the golf course, children visiting the golf course are not expected to have much contact with the soil or ash piles. As the FBA is surrounded by a golf course, young children are not expected to encounter contaminants at this site. Older children and teenagers could make their way onto the FBA, but the vegetation and the depth of contaminated groundwater and soil would limit the exposure.

Contamination might have migrated off the site, either during the use of the site or from areas that into the downwind residential areas. Children may encounter contaminants from the site in their own yards. However, children are not expected to be harmed from the current levels of contamination present in soil in the residential areas.

## Conclusions

<u>Contaminants present in the soil at the FBA will not harm people's health.</u> Visitors, including golfers, to the golf course around the FBA are expected to have little to no contact with the soil as it is not on the golf course, and is covered by vegetation. Golf course workers are not expected to have contact with the soil.

Not enough information is available to determine if the contaminants present in the ash piles at the FBA could harm people's health as only one sample was taken from the surface of each ash

<u>pile.</u> Workers and visitors to the golf course are not expected to have contact with the ash piles; the FBA is not on the golf course. If people appear to have more contact with the ash piles, such as if the vegetation does not completely cover the pile and people often visit the FBA or ash repeatedly blows onto the golf course, contaminant levels should be better characterized.

Levels of contaminants in the soil of the downwind residential area are not expected to harm resident's health. Contaminants are not expected to migrate from the FBA, based on the current vegetation present.

Levels of contaminants in the groundwater at the FBA are not expected to harm people's health; however, contaminants in soil appear to be migrating into the groundwater. Contaminants that migrate into the groundwater have the potential to reach residential or municipal drinking water. Groundwater at and around the FBA should continue to be monitored to determine if contaminants are migrating.

Levels of contaminants in the two residential wells near the site are not expected to harm people's health. Contaminants from the FBA should be measured in the monitoring wells. If the contaminants migrate into the deeper monitoring wells, residential wells should be tested.

<u>Contaminants in the surface water and sediment in the drainage ditch near the site are not expected to harm people's health.</u> This area is a county drain and people will have limited contact with the surface water and sediments.

#### Recommendations

Characterize the extent of contamination in the ash piles, and the potential for contaminant migration.

Consider restricting public access to the ash piles.

Continue monitoring contaminants in the groundwater at the FBA and prevent further migration of contaminants.

## **Public Health Action Plan**

MDCH will evaluate any relevant new data.

#### **Preparers of Report**

This Public Health Assessment was prepared by the Michigan Department of Community Health under a cooperative agreement with the federal Agency for Toxic Substances and Disease Registry (ATSDR). It is in accordance with the approved agency methods, policies, procedures existing at the date of publication. Editorial review was completed by the cooperative agreement partner. ATSDR has reviewed this document and concurs with its findings based on the information presented. ATSDR's approval of this document has been captured in an electronic database, and the approving agency reviewers are listed below.

Author Jennifer Gray Toxicologist

#### **ATSDR Reviewer**

Trent LeCoultre Technical Project Officer

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological profile for DDT, DDE, DDD. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological profile for Hexachlorocyclohexane. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Agency for Toxic Substances and Disease Registry (ATSDR). 2007a. Toxicological profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Agency for Toxic Substances and Disease Registry (ATSDR). 2007b. Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Agency for Toxic Substances and Disease Registry (ATSDR). 2010. Toxicological profile for Trichlorobenzenes. (Draft for Public Comment) Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Conestoga-Rovers and Associates Limited (CRA), Engineering and Construction Report – Securement of Waste Burning and Disposal Area Golf Course Site, St Louis, Michigan. Prepared for Velsicol Chemical Corporation. 1982 August.

Dames & Moore. Report – Phase I: Hydrogeologic Evaluation of Inactive Industrial Waste Burning Site, St Louis, Michigan. Prepared for The Velsicol Chemical Corporation. 1980 August.

Hidden Oaks Golf Course. Course Description – Rules & Regulations Governing Play. [accessed 2011 February 11] Available from: <u>http://www.hiddenoaksgolf.com/node/3</u>.

Lockheed Engineering and Management Services Company, Inc. (Lockheed). Aerial Photography Analysis of Hazardous Waste Disposal Areas. Las Vegas (NV): U.S. Environmental Protection Agency, Advanced Monitoring Systems Division; 1982 June. Report No.: US-AMD-82005c. Contract No.: 68-03-3049.

Michigan Department of Environmental Quality (MDEQ). Remediation and Redevelopment Division Footnotes: For the Part 201 Criteria/Part 213 Risk-based Screening Levels RRD Operational Memorandum No.1. 2005 June.

Michigan Department of Environmental Quality (MDEQ). Remediation and Redevelopment Division Operational Memorandum No. 1, Attachment 1, Table 2. Soil: Residential/Commercial I Part 201 Generic Cleanup Criteria and Screening Levels; Part 213 Tier 1 Risk-Based Screening Levels (RBSLs). 2006a January.

Michigan Department of Environmental Quality (MDEQ). Remediation and Redevelopment Division Operational Memorandum No. 1, Attachment 1, Table 1. Groundwater: Residential and

Industrial-Commercial Part 201 Generic Cleanup Criteria and Screening Levels; Part 213 Tier 1 Risk-Based Screening Levels (RBSLs). 2006b January.

Michigan Department of Environmental Quality (MDEQ). Program Redesign 2009: Draft Proposed Vapor Intrusion Indoor Air Criteria (IAC), Soil Gas Criteria (SGC), and Groundwater Screening Levels (GWVISLs). <u>http://www.michigan.gov/documents/deq/deq-rrd-PART201-</u> IndoorAirAndSoilGasCriteria-9-24-09\_293422\_7.pdf.

Michigan Department of Environmental Quality (MDEQ) Rule 57 Water Quality Values. 2010 October. <u>http://www.michigan.gov/documents/deq/wb-swas-rule57\_210455\_7.xls</u>.

National Academy of Science (NAS). 2001. Dietary Reference Intakes: Elements. Washington, DC: The National Academies Press.

http://www.iom.edu/Global/News%20Announcements/~/media/48FAAA2FD9E74D95BBDA22 36E7387B49.ashx

National Academy of Science (NAS). 2004. Dietary Reference Intakes: Electrolytes and Water. Washington, DC: The National Academies Press.

http://www.iom.edu/Global/News%20Announcements/~/media/442A08B899F44DF9AAD083D 86164C75B.ashx

U.S. Environmental Protection Agency (EPA). Gratiot County Golf Course. [updated 2010 July; accessed 2011 September 8]. Available from: http://www.epa.gov/R5Super/npl/michigan/MID980794531.htm.

Weston Solutions, Inc. (Weston). Remedial Investigation (RI) Report for Operable Unit 1 - Velsicol Chemical Corporation Superfund Site, St. Louis, Gratiot County, Michigan. 2006 November. Prepared for the Michigan Department of Environmental Quality (MDEQ).

Weston Solutions, Inc. (Weston). Remedial Investigation (RI) Addendum Report for Operable Unit One, Velsicol Chemical Corporation Superfund Site, St. Louis, Gratiot County, Michigan. 2009 January. Prepared for Michigan Department of Environmental Quality (MDEQ).

Appendix A: Detected contaminants from the 2006 Remedial Investigation (Weston 2006).

This appendix contains tables of all detected contaminants above the reported quantitation limit from the first investigation (Weston 2006). Screening levels are included in each table.

MDEQ Part 201 Generic Cleanup Criteria (MDEQ 2006a, 2006b) values were selected for screening levels if they were available. Screening levels for soil and sediment were the MDEQ Part 201 Residential and Commercial I Direct Contact Criteria (DCC). The DCC are soil concentrations of contaminants that are not expected to harm people's health after long-term (30 years) ingestion and dermal contact typical of residential use. If no DCC were available, an ATSDR soil comparison value was selected. If contaminant concentrations were below the screening levels, either the DCC or ATSDR soil comparison values, the contaminants are not expected to harm people's health. The DCC were also used as screening levels to evaluate exposure to sediments, such as when people step into the water.

For groundwater, the MDEQ Part 201 Groundwater Contact Criteria (GCC) were used as screening levels. The GCC is a protective value for workers coming into contact with groundwater contaminants (for 21 years) and was also used as a screening value to evaluate contact with surface water. Since the FBA is located within a working golf course, workers would be the group most expected to have dermal contact with groundwater. The Part 201 MDEQ Residential Drinking Water Criteria (RDWC) were used as screening levels for wells that are used or are potentially located at a depth that could be used for drinking water. If the RDWC was not health-based, the human health-based MDEQ Rule 57 value (MDEQ 2010) for drinking water was selected as a screening level.

Screening levels for soil gas were from the MDEQ Part 201 Program Redesign 2009 Draft Proposed Residential Soil Gas Criteria (MDEQ 2009). The Residential Soil Gas Criteria are calculated from the Residential Indoor Air Criteria, levels of chemicals that people can breathe in their home that are not expected to cause health effects. These levels are only meaningful if a building is present on the location. If buildings are built on the FBA in the future, the possibility of soil gas phase contaminant migration into the buildings (vapor intrusion) should be evaluated.

#### Soil sampling results

Table A-1: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) soil from soil borings (17 samples) (Weston 2006).

| Analyte             | Screening level <sup>a</sup> (mg/kg) | Maximum value in FBA soil<br>(mg/kg) |
|---------------------|--------------------------------------|--------------------------------------|
| 1,1-dichloroethane  | 890                                  | 0.071 J <sup>b</sup>                 |
| 1,2-dichloroethane  | 91                                   | 33                                   |
| 2,4-DDT             | NA <sup>c</sup>                      | 0.023                                |
| 2,6-dinitrotoluene  | 200 <sup>d</sup>                     | 1.1 U <sup>e</sup>                   |
| 2-methylnaphthalene | 8,100                                | 0.47 UJ <sup>f</sup>                 |
| 4,4-DDD             | 95                                   | 0.38 J                               |
| 4,4-DDE             | 45                                   | 0.2                                  |

| Table A-1 continued        |                                      | Maximum value in FBA soil |
|----------------------------|--------------------------------------|---------------------------|
| Analyte                    | Screening level <sup>a</sup> (mg/kg) | (mg/kg)                   |
| 4,4-DDT                    | 57                                   | 0.041 U                   |
| acetone                    | 23,000                               | 3.3 UJ                    |
| alpha-BHC                  | 2.6                                  | 0.14 J                    |
| aluminum, total            | 50,000                               | 7,800J                    |
| anthracene                 | 230,000                              | 1.1 U                     |
| antimony, total            | 180                                  | 3.9                       |
| arsenic, total             | 7.6                                  | 10.4                      |
| barium, total              | 37,000                               | 52                        |
| benzene                    | 180                                  | 6.2                       |
| beryllium, total           | 410                                  | 0.60 J                    |
| beta-BHC                   | 5.4                                  | 0.023 J                   |
| bromomethane               | 320                                  | 0.29 J                    |
| cadmium, total             | 550                                  | 3.3 U                     |
| calcium, total             | NA                                   | 87,000                    |
| chlordane, total           | 31                                   | 0.083 J                   |
| chlorobenzene              | 260                                  | 0.076 J                   |
| chloroform                 | 1,200                                | 0.24                      |
| chromium, hexavalent       | 2,500                                | 0.65                      |
| chromium, total            | 2,500 <sup>g</sup>                   | 14                        |
| chromium, trivalent        | 790,000                              | 13.35                     |
| cobalt, total              | 2,600                                | 6.4                       |
| copper, total              | 20,000                               | 15                        |
| delta-BHC                  | NA                                   | 0.043 J                   |
| diethylphthalate           | 740                                  | 1.1 U                     |
| endosulfan II              | 1,400 <sup>h</sup>                   | 0.15 J                    |
| endosulfan, total          | 1,400                                | 0.15 J                    |
| endrin aldehyde            | 65 <sup>i</sup>                      | 0.96 DJ <sup>j</sup>      |
| endrin ketone              | 65 <sup>i</sup>                      | 0.041 U                   |
| ethylbenzene               | 140                                  | 0.22 U                    |
| gamma-BHC (lindane)        | 8.3<br>31 <sup>k</sup>               | 1.5 DJ                    |
| gamma-chlordane            |                                      | 0.083 J                   |
| hexabromobenzene           | 1,100                                | 0.10 U                    |
| iron, total                | 160,000                              | 21,000J                   |
| lead, total                | 400                                  | 100J                      |
| magnesium, total           | 1,000,000                            | 34,000                    |
| manganese, total           | 25,000                               | 420J                      |
| mercury, total             | 160                                  | 0.42 J                    |
| methyl acetate             | NA                                   | 0.99                      |
| methylene chloride         | 1,300                                | 0.29 U                    |
| naphthalene                | 16,000                               | 0.47 UJ                   |
| -                          |                                      |                           |
| nickel, total              | 40,000                               | 15J                       |
| n-nitroso-di-n-propylamine | 1.2                                  | 1.1 U                     |
| PBB                        | 1.2                                  | 0.05 UJ                   |
| phenanthrene               | 1,600                                | 0.47 UJ                   |

| Table A-1 continued       |                                      |                                      |  |
|---------------------------|--------------------------------------|--------------------------------------|--|
| Analyte                   | Screening level <sup>a</sup> (mg/kg) | Maximum value in FBA soil<br>(mg/kg) |  |
| phenol                    | 12,000                               | 1.3                                  |  |
| potassium, total          | NA                                   | 1,200                                |  |
| selenium, total           | 2,600                                | 1.6 U                                |  |
| silver, total             | 2,500                                | 2.4 U                                |  |
| sodium, total             | 1,000,000                            | 460                                  |  |
| thallium, total           | 35                                   | 2.0 U                                |  |
| toluene                   | 250                                  | 0.25                                 |  |
| trans-1,3-dichloropropene | NA                                   | 1.3                                  |  |
| vanadium, total           | 750                                  | 23                                   |  |
| xylene (total)            | 150                                  | 0.67 U                               |  |
| zinc, total               | 170,000                              | 41                                   |  |

a = Unless otherwise noted, the screening level is the MDEQ Residential DCC.

b = The "J" indicates that the value is an estimated result.

c = The "NA" indicates that no screening level is available.

d = The screening level is ATSDR's intermediate Environmental Media Evaluation Guide value.

e = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

f = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

g = The screening level is the MDEQ Residential DCC for hexavalent chromium.

h = The screening level is the MDEQ Residential DCC for total endosulfan isomers.

i = The screening level is the MDEQ Residential DCC for endrin.

j = The "DJ" indicates that the sample was diluted and the value is an estimated result.

k = The screening level is the MDEQ Residential DCC for total chlordane isomers.

#### Ash sampling results

Table A-2: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) ash samples (two samples) (Weston 2006).

| Analyte              | Screening level <sup>a</sup> (mg/kg) | Maximum value in ash samples<br>(mg/kg) |
|----------------------|--------------------------------------|-----------------------------------------|
| 2-methylnaphthalene  | 8,100                                | 0.54 U                                  |
| 4,4-DDD              | 95                                   | 0.0013                                  |
| 4,4-DDE              | 45                                   | 0.061                                   |
| 4,4-DDT              | 57                                   | 0.030                                   |
| acetone              | 23,000                               | 0.32 U                                  |
| aluminum, total      | 50,000                               | 14,000                                  |
| anthracene           | 230,000                              | 0.54 U                                  |
| antimony, total      | 180                                  | 36                                      |
| arsenic, total       | 7.6                                  | 62.4 (2/2)                              |
| barium, total        | 37,000                               | 840                                     |
| benzo(a)anthracene   | 20                                   | 0.54 U                                  |
| benzo(a)pyrene       | 2                                    | 0.54 U                                  |
| benzo(b)fluoranthene | 20                                   | 0.3 J                                   |

| Table A-2 continued    |                                      | Maximum value in ash samples |
|------------------------|--------------------------------------|------------------------------|
| Analyte                | Screening level <sup>a</sup> (mg/kg) | (mg/kg)                      |
| benzo(k)fluoranthene   | 200                                  | 0.54 U                       |
| beryllium, total       | 410                                  | 5.8                          |
| butylbenzylphthalate   | 310                                  | 0.54 U                       |
| cadmium, total         | 550                                  | 1.9 J                        |
| calcium, total         | NA                                   | 25,000                       |
| chromium, hexavalent,  | 2,500                                | 0.6 U                        |
| chromium, total        | 2,500 d                              | 26                           |
| chromium, trivalent    | 790,000                              | 25.4                         |
| chrysene               | 2,000                                | 0.41 J                       |
| cobalt, total          | 2,600                                | 41                           |
| copper, total          | 20,000                               | 95                           |
| cyanide, total         | 12                                   | 1.0                          |
| dibenzofuran           | NA                                   | 0.54 U                       |
| diethylphthalate       | 740                                  | 0.065 J                      |
| endrin ketone          | 65 (endrin)                          | 0.01                         |
| fluoranthene           | 46,000                               | 0.5 J                        |
| heptachlor epoxide     | 3.1                                  | 0.007 U                      |
| hexabromobenzene       | 1,100                                | 0.1 U                        |
| indeno(1,2,3-cd)pyrene | 20                                   | 0.54 U                       |
| iron, total            | 160,000                              | 62,000                       |
| lead, total            | 400                                  | 670 (2/2)                    |
| magnesium, total       | 1,000,000                            | 2,800                        |
| manganese, total       | 25,000                               | 620                          |
| mercury, total         | 160                                  | 0.145                        |
| methoxychlor           | 1,900                                | 0.007 U                      |
| methyl acetate         | NA                                   | 0.19 J                       |
| naphthalene            | 16,000                               | 0.54 U                       |
| nickel, total          | 40,000                               | 38                           |
| PBB                    | 1.2                                  | 0.0012 J                     |
| phenanthrene           | 1,600                                | 0.58 J                       |
| phenol                 | 12,000                               | 0.54 U                       |
| pyrene                 | 29,000                               | 0.25 J                       |

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria (DCC).

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The "J" indicates that the value is an estimated result.

d = The "NA" indicates that no screening level is available.

e = The screening level is the MDEQ Residential DCC for hexavalent chromium.

f = The screening level is the MDEQ Residential DCC for endrin.

# Soil gas sampling

# Table A-3: Maximum value (in milligrams per cubic meter [mg/m<sup>3</sup>]) of soil gas levels in the Former Burn Area (FBA) (Weston 2006).

|                             | Shallow                 | Maximum levels              | Deep screening               | Maximum levels    |
|-----------------------------|-------------------------|-----------------------------|------------------------------|-------------------|
| Analyte                     | screening level         | from samples less           | level (deep 5') <sup>b</sup> | from samples over |
|                             | (sub-slab) <sup>a</sup> | than five feet deep         |                              | five feet deep    |
| 1,1,1-trichloroethane       | 310                     | <0.04 <sup>c</sup>          | 3,100                        | <5                |
| 1,1,2-trichloroethane       | 0.076                   | < 0.04°                     | 0.76                         | <5                |
| 1,1-dichloroethane          | 26                      | 0.13 <sup>c</sup>           | 260                          | 5.8               |
| 1,1-dichloroethene          | 10                      | < 0.04°                     | 100                          | <5                |
| 1,2,4-trichlorobenzene      | 21,000                  | < 0.04°                     | 21,000                       | <5                |
| 1,2,4-trimethylbenzene      | 11                      | <0.04 <sup>c</sup>          | 110                          | $ND^d$            |
| 1,2-dibromoethane           | NA <sup>e</sup>         | <0.04 <sup>c</sup>          | NA                           | 0.43              |
| 1,2-dichlorobenzene         | 16                      | <0.04 <sup>c</sup>          | 160                          | <10               |
| 1,2-dichloroethane          | 0.047                   | > <b>4.0</b> °              | 0.47                         | 22                |
| 1,2-dichloroethene, cis-    | 1.8                     | < 0.04°                     | 18                           | <5                |
| 1,2-dichloroethene, trans-  | 3.7                     | < 0.04°                     | 37                           | <5                |
| 1,2-dichloropropane         | 0.21                    | $0.058^{\circ}$             | 2.10                         | <5                |
| 1,3,5-trimethylbenzene      | 11                      | < 0.04°                     | 110                          | ND                |
| 1,3-dichlorobenzene         | 0.16                    | < 0.04°                     | 1.60                         | <10               |
| 1,4-dichlorobenzene         | 0.18                    | < 0.04°                     | 1.80                         | <10               |
| 1-2 dibromo-3-chloropropane | 0.01                    | < <b>0.1</b> <sup>c</sup>   | 0.10                         | <25               |
| 2-butanone (MEK)            | 260                     | < 0.04°                     | 2,600                        | <50               |
| 2-hexanone                  | 2.1                     | < 0.04°                     | 21                           | <50               |
| 4-methyl-2-pentanone        | 1.00                    |                             | 1 (00                        |                   |
| (MIBK)                      | 160                     | $0.085^{\circ}$             | 1,600                        | <50               |
| acetone                     | 310                     | < 0.48°                     | 3,100                        | <50               |
| benzene                     | 0.15                    | > <b>3.2</b> °              | 1.50                         | 160               |
| carbon disulfide            | 37                      | < 0.04°                     | 370                          | <50               |
| carbon tetrachloride        | 0.081                   | <0.04 <sup>c</sup>          | 0.81                         | <5                |
| chlorobenzene               | 37                      | < 0.04°                     | 37                           | 0.49              |
| chloroethane                | 520                     | <0.1 <sup>c</sup>           | 5,200                        | <25               |
| chloroform                  | 0.51                    | < 0.22 <sup>c</sup>         | 5.10                         | <5                |
| cyclohexane                 | 310                     | < 0.04 <sup>c</sup>         | 3,100                        | <50               |
| dichlorodiflouromethane     | 2,600                   | <0.1 <sup>c</sup>           | 26,000                       | <25               |
| ethanol                     | NA                      | < 0.04 <sup>c</sup>         | NA                           | ND                |
| ethyl benzene               | 3.9                     | <0.04 <sup>c</sup>          | 39                           | <5                |
| heptane                     | 180                     | <0.04 <sup>c</sup>          | 1,800                        | ND                |
| hexane, n-                  | 37                      | <0.2 <sup>c</sup>           | 370                          | ND                |
| isopropylbenzene            | 21                      | <2                          | 210                          | <10               |
| methyl acetate              | NA                      | <0.1 <sup>c</sup>           | NA                           | <50               |
| methylcyclohexane           | NA                      | <0.1 <sup>c</sup>           | NA                           | <50               |
| methylene chloride          | 2.60                    | 1.3°                        | 26                           | <25               |
| propylene                   | NA                      | >1.7°                       | NA                           | ND                |
| styrene                     | 2.10                    | <0.04 <sup>c</sup>          | 21                           | <5                |
| tetrachloroethene           | 2.10                    | <0.04 <sup>c</sup>          | 21                           | <5                |
| toluene                     | 260                     | 0.15 <sup>c</sup>           | 2,600                        | <5                |
| trichloroethene             | 7.20                    | <0.13<br><0.04 <sup>c</sup> | 7.20                         | <5                |
| trichlorofluoromethane      | 2,900                   | <0.04<br><0.1°              | 29,000                       | <25               |
| vinyl chloride              | 0.140                   | <0.1<br><0.04 <sup>c</sup>  | 1.40                         | < <u></u> <10     |
| xylene, m,p                 | 5.20                    | <0.04<br><0.08 <sup>c</sup> | 52                           | <10               |
|                             | 5.20                    | <0.08<br><0.04 <sup>c</sup> | 52                           | <10               |
| xylene, o-                  | 5.20                    | <0.04                       | 32                           | < 2               |

Table A-3 continued

**Bold** values are higher than the criteria.

a = The screening levels are MDEQ's Draft Proposed Sub-Slab Residential Soil Gas Criteria (MDEQ 2009).

b = The screening levels are MDEQ's Draft Proposed Deep 5' Residential Soil Gas Criteria (MDEQ 2009).

c = The sample was collected in a Summa canister and analyzed offsite

d = The "ND" indicates that the sample was not analyzed for this analyte.

e = The "NA" indicates that no screening level is available.

#### Groundwater sampling results from soil borings

Table A-4: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples (17 samples) from vertical aquifer sampling (Weston 2006).

| Analyte                    | Screening level <sup>a</sup><br>(mg/L) | Maximum value (mg/L)  |
|----------------------------|----------------------------------------|-----------------------|
| 1,2-dichloroethane         | 19                                     | 16                    |
| 1,3-dichlorobenzene        | 2                                      | 0.005 U <sup>b</sup>  |
| 2-chlorophenol             | 94                                     | 0.005 U               |
| 4-methylphenol             | 810 <sup>c</sup>                       | 0.0092                |
| acetone                    | 31,000                                 | 10 UJ <sup>d</sup>    |
| aluminum, dissolved        | 64,000                                 | 0.2 U                 |
| aluminum, total            | 64,000                                 | 10.8                  |
| antimony, dissolved        | 68                                     | 0.0059 J <sup>e</sup> |
| arsenic, dissolved         | 4.3                                    | 0.0588                |
| arsenic, total             | 4.3                                    | 0.0133 J              |
| barium, dissolved          | 14,000                                 | 0.705                 |
| barium, total              | 14,000                                 | 0.254                 |
| benzene                    | 11                                     | 14                    |
| beryllium, total           | 290                                    | 0.005 U               |
| bis(2-ethylhexyl)phthalate | 0.32                                   | 0.028                 |
| cadmium, dissolved         | 190                                    | 0.005 U               |
| calcium, dissolved         | $NA^{f}$                               | 186                   |
| calcium, total             | NA                                     | 314                   |
| carbon disulfide           | 1,200                                  | 0.5 U                 |
| chloroform                 | 150                                    | 0.14 J                |
| chromium, dissolved        | 460 <sup>g</sup>                       | 0.01 U                |
| chromium, total            | 460 <sup>g</sup>                       | 0.0841                |
| cis-1,2-dichloroethane     | 19                                     | 0.2 U                 |
| cobalt, dissolved          | 2,400                                  | 0.0102                |
| copper, total              | 7,400                                  | 0.0495 J              |
| diethylphthalate           | 1,100                                  | 0.005 U               |
| iron, dissolved            | 58,000                                 | 33.2                  |
| iron, total                | 58,000                                 | 27.1                  |
| lead, total                | 0.19 <sup>h</sup>                      | 0.0101 J              |
| magnesium, dissolved       | 1,000,000                              | 44                    |

| Table A-4 continued  |                                        |                      |
|----------------------|----------------------------------------|----------------------|
| Analyte              | Screening level <sup>a</sup><br>(mg/L) | Maximum value (mg/L) |
| magnesium, total     | 1,000,000                              | 81.5                 |
| manganese, dissolved | 9,100                                  | 0.11                 |
| manganese, total     | 9,100                                  | 0.604                |
| nickel, dissolved    | 74,000                                 | 0.0474               |
| nickel, total        | 74,000                                 | 0.0449               |
| phenol               | 29,000                                 | 0.02                 |
| potassium, dissolved | NA                                     | 11.9                 |
| potassium, total     | NA                                     | 5.41 J               |
| selenium, dissolved  | 970                                    | 0.035 U              |
| sodium, dissolved    | 1,000,000                              | 483                  |
| sodium, total        | 1,000,000                              | 75                   |
| tetrachloroethane    | 4.7 <sup>i</sup>                       | 0.2 U                |
| thallium, dissolved  | 13                                     | 0.025 U              |
| toluene              | 530                                    | 0.2 U                |
| trichloroethane      | 21 <sup>j</sup>                        | 0.2 U                |
| vanadium, dissolved  | 970                                    | 0.05 U               |
| vinyl chloride       | 1.0                                    | 0.2 U                |
| zinc, dissolved      | 110,000                                | 0.0345               |
| zinc, total          | 110,000                                | 0.222                |

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The screening level is the MDEQ GCC for total methylphenols.

d = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

e = The "J" indicates that the value is an estimated result.

f = The "NA" indicates that no screening level is available.

g = The screening level is the MDEQ GCC for hexavalent chromium.

h = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

i = The screening level is the MDEQ GCC for 1,1,2,2- tetrachloroethane.

j = The screening level is the MDEQ GCC for 1,1,2- trichloroethane.

#### Groundwater sampling results from monitor wells

Table A-5: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples (52 samples) from monitor wells sampled in 2005 (Weston 2006).

| Analyte               | Screening level <sup>a</sup><br>(mg/L) | Maximum levels (mg/L) |
|-----------------------|----------------------------------------|-----------------------|
| 1,1,1-trichloroethane | 1,300                                  | 0.340 J <sup>b</sup>  |
| 1,1-biphenyl          | 0.69 <sup>c</sup>                      | 0.00072 J             |
| 1,1-dichloroethane    | 2,400                                  | 1.8                   |
| 1,2-dichloroethane    | 19                                     | 700 D <sup>d</sup>    |

| Table A-5 continued         |                                        |                               |
|-----------------------------|----------------------------------------|-------------------------------|
| Analyte                     | Screening level <sup>a</sup><br>(mg/L) | Maximum levels (mg/L)         |
| 1,2-dichloropropane         | 16                                     | 0.88                          |
| 2,2-oxybis(1-chloropropane) | NA <sup>e</sup>                        | 0.6 UJ <sup>f</sup>           |
| 2,4-DDT                     | NA                                     | 0.000094 UJ                   |
| 2,4-dichlorophenol          | 48                                     | 0.6 UJ                        |
| 2-chlorophenol              | 94                                     | 0.024                         |
| 2-methylnaphthalene         | 25                                     | 0.014 J                       |
| 2-methylphenol              | 810 <sup>g</sup>                       | 0.25 J                        |
| 4,4-DDD                     | 0.044                                  | 0.0022 UJ                     |
| 4,4-DDE                     | 0.027                                  | 0.0022 UJ                     |
| 4,4-DDT                     | 0.013                                  | 0.0022 UJ                     |
| 4-methyl-2-pentanone        | 13,000                                 | 50                            |
| 4-methylphenol              | 810                                    | $0.6 \mathrm{U}^{\mathrm{h}}$ |
| acetone                     | 31,000                                 | 50 U                          |
| acetophenone                | 6,100                                  | 0.6 U                         |
| aldrin                      | 0.00034                                | 0.0035 J                      |
| alpha-BHC                   | 0.06                                   | 0.001 U                       |
| alpha-chlordane             | 0.015 <sup>i</sup>                     | 0.001 U                       |
| aluminum, total             | 64,000                                 | 2.83                          |
| antimony, dissolved         | 68                                     | 0.06 U                        |
| antimony, total             | 68                                     | 0.06 U                        |
| arsenic, dissolved          | 4.3                                    | 0.035                         |
| arsenic, total              | 4.3                                    | 0.118                         |
| barium, dissolved           | 14,000                                 | 1.14                          |
| barium, total               | 14,000                                 | 1.99 J                        |
| benzene                     | 11                                     | <b>120 E</b> <sup>j</sup>     |
| beryllium, dissolved        | 290                                    | 0.005 J                       |
| beryllium, total            | 290                                    | 0.005 J                       |
| beta-BHC                    | 0.12                                   | 0.001 U                       |
| bis(2-chloroethyl)ether     | 5.7                                    | 0.16 J                        |
| bis(2-ethylhexyl)phthalate  | 0.32                                   | <b>0.6</b> U                  |
| cadmium, total              | 190                                    | 0.005 U                       |
| calcium, dissolved          | NA                                     | 3,420                         |
| calcium, total              | NA                                     | 3,920                         |
| carbon disulfide            | 1,200                                  | 50 U                          |
| chlordane, (total)          | 0.015                                  | 0.017 J                       |
| chlorobenzene               | 86                                     | 50 U                          |
| chloroform                  | 150                                    | 50 U                          |
| chromium, dissolved         | 460 <sup>k</sup>                       | 0.01 U                        |
| chromium, total             | 460 <sup>k</sup>                       | 0.049                         |
| cis-1,2-dichloroethene      | 19                                     | 50U                           |
| cobalt, dissolved           | 2,400                                  | 0.050 U                       |
| cobalt, total               | 2,400                                  | 0.050 U                       |
| copper, dissolved           | 7,400                                  | 0.025 U                       |
| copper, total               | 7,400                                  | 0.025 U                       |
| cyanide, total              | 57                                     | 0.0103                        |
| cyclohexane                 | NA                                     | 50 U                          |

| Analyte                            | Screening level <sup>a</sup><br>(mg/L) | Maximum levels (mg/L) |
|------------------------------------|----------------------------------------|-----------------------|
| endosulfan II                      | 0.51                                   | 0.001 U               |
| endosulfan sulfate                 | 0.51                                   | 0.001 U               |
| endosulfan, (total)                | 0.51                                   | 0.00011 J             |
| endrin                             | 0.16                                   | 0.001 U               |
| endrin ketone                      | 0.16                                   | 0.001 U               |
| fluorene                           | 2.0                                    | 0.6 U                 |
| gamma-BHC (Lindane)                | 0.19                                   | 0.041 D               |
| gamma-chlordane                    | 0.015 <sup>h</sup>                     | 0.017 J               |
| heptachlor                         | 0.0029                                 | 0.001 U               |
| heptachlor epoxide                 | 0.009                                  | 0.001 U               |
| iron, dissolved                    | 58,000                                 | 279 J                 |
| iron, total                        | 58,000                                 | 281 J                 |
| lead, dissolved                    | 0.19 <sup>m</sup>                      | 0.0328                |
| lead, total                        | 0.19 <sup>m</sup>                      | 0.0292                |
| magnesium, dissolved               | 1,000,000                              | 675                   |
| magnesium, total                   | 1,000,000                              | 687.999 J             |
| manganese, dissolved               | 9,100                                  | 5.62                  |
| manganese, total                   | 9,100                                  | 5.65 J                |
| mercury, dissolved                 | 0.056                                  | 0.0034                |
| mercury, total                     | 0.056                                  | 0.0036                |
| methoxychlor                       | 0.045                                  | 0.011 EJ <sup>j</sup> |
| methylcyclohexane                  | NA                                     | 50 U                  |
| methylene chloride                 | 220                                    | 16                    |
| methylphenol, (total)              | 810                                    | 0.342 J               |
| naphthalene                        | 31                                     | 0.6 UJ                |
| nickel, dissolved                  | 74,000                                 | 0.57 J                |
| nickel, total                      | 74,000                                 | 0.574 J               |
| PCBs - Aroclor-1242                | 0.0033 <sup>n</sup>                    | 0.005 UJ              |
| p-chloro-m-cresol                  | 79                                     | 0.6 UJ                |
| phenol                             | 29,000                                 | 2.7                   |
| potassium, dissolved               | NA                                     | 174.999 J             |
| potassium, total                   | NA                                     | 171 J                 |
| pyrene                             | 0.14                                   | <b>0.6</b> U          |
| selenium, dissolved                | 970                                    | 0.035 U               |
| selenium, total                    | 970                                    | 0.035 U               |
| sodium, dissolved                  | 1,000,000                              | 726.999 J             |
| sodium, total                      | 1,000,000                              | 1,140 J               |
| toluene                            | 530                                    | 50 U                  |
| trichloroethene                    | 21°                                    | 50 U                  |
| tris (2,3-dibromopropyl) phosphate | 2.1                                    | 0.01 U                |
| vanadium, dissolved                | 970                                    | 0.05 UJ               |
| vanadium, total                    | 970                                    | 0.05 U                |

| Table A-5 continued |                                        |                       |  |
|---------------------|----------------------------------------|-----------------------|--|
| Analyte             | Screening level <sup>a</sup><br>(mg/L) | Maximum levels (mg/L) |  |
| zinc, dissolved     | 110,000                                | 0.0686 J              |  |
| zinc, total         | 110,000                                | 0.063 J               |  |

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).

b = The "J" indicates that the value is an estimated result.

c = The screening level is the MDEQ's Rule 57 non-drinking water value set for human health.

d = The "D" indicates that the sample was diluted for analysis.

e = The "NA" indicates that no screening level is available.

f = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

g = The screening level is the MDEQ GCC for total methylphenols.

h = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

i = The screening level is the MDEQ GCC for total chlordane isomers.

j = The "E" or "EJ" indicates that the value exceeded the instrument's calibration range for the analytical method and the result is estimated.

k = The screening level is the MDEQ GCC for hexavalent chromium.

l = The screening level is the MDEQ GCC for total endosulfan isomers.

m = The screening level is the MDEQ's Rule 57 non-drinking water value set for human health.

n = The screening level is the MDEQ GCC for total PCBs.

o = The screening level is the MDEQ GCC for 1,1,2- trichloroethane.

Table A-6: Maximum value (in milligrams per liter [mg/L]) of para-Chlorobenzenesulfonic acid (pCBSA) in the Former Burn Area (FBA) groundwater samples from monitor wells sampled in 2005 (Weston 2006).

| Wells                       | Number of wells | Screening level <sup>a</sup> (mg/L) | Maximum level pCBSA<br>(mg/L) |
|-----------------------------|-----------------|-------------------------------------|-------------------------------|
| Shallow depth wells         | 8               | 2,200                               | 0.015                         |
| Intermediate depth<br>wells | 7               | 2,200                               | 0.001 U <sup>b</sup>          |
| Deep wells                  | 4               | 2,200                               | 0.0018                        |

a = The screening level is the MDEQ's Rule 57 non-drinking water value set for human health.

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

#### Residential and Hidden Oaks Golf Course well sampling results

Table A-7: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Hidden Oaks Golf Course and two residential wells sampled in 2004 (Weston 2006).

| Analyte         | Screening level <sup>a</sup><br>(mg/L) | Maximum values from<br>Hidden Oaks Golf Course<br>well (mg/L) | Maximum values from<br>two residential wells<br>(mg/L) |
|-----------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| 1,1-biphenyl    | 0.46 <sup>b</sup>                      | 0.013 U <sup>c</sup>                                          | 0.01 U                                                 |
| 2,4-DDT         | NA <sup>d</sup>                        | 0.00002 UJ <sup>e</sup>                                       | 0.00002 UJ                                             |
| aluminum, total | 0.3 <sup>f</sup>                       | 0.0536 U                                                      | 0.0311 J <sup>g</sup>                                  |
| arsenic, total  | 0.010                                  | 0.0032 U                                                      | 0.0234                                                 |

| Table A-7 continued        |                                        |                                                               |                                                        |
|----------------------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| Analyte                    | Screening level <sup>a</sup><br>(mg/L) | Maximum values from<br>Hidden Oaks Golf Course<br>well (mg/L) | Maximum values from<br>two residential wells<br>(mg/L) |
| barium, total              | 2                                      | 0.053                                                         | 0.277                                                  |
| beryllium, total           | 0.004                                  | 0.0002 U                                                      | 0.00085 J                                              |
| bis(2-ethylhexyl)phthalate | 0.006                                  | <b>0.013</b> U                                                | 0.01 U                                                 |
| butylbenzylphthalate       | 1.2                                    | 0.013 U                                                       | 0.01 U                                                 |
| calcium, total             | NA                                     | 53.1                                                          | 143                                                    |
| chloride                   | 250                                    | 15                                                            | 345                                                    |
| chlorobenzene              | 0.1                                    | 0.01 U                                                        | 0.01 U                                                 |
| chromium, total            | 0.1                                    | 0.0011 U                                                      | 0.0006 U                                               |
| copper, total              | 1                                      | 0.0011 UJ                                                     | 0.0123                                                 |
| cyanide, total             | 0.200                                  | 0.003 UJ                                                      | 0.0062 J                                               |
| di-n-butylphthalate        | 0.88                                   | 0.013 U                                                       | 0.01 U                                                 |
| HEM, oil & grease          | NA                                     | 5 U                                                           | 5U                                                     |
| hexabromobenzene           | 0.00017                                | 0.00002UJ                                                     | 0.0000067 J                                            |
| iron, total                | 2.0 <sup>b</sup>                       | 0.161                                                         | 0.989                                                  |
| lead, total                | 0.004                                  | 0.0026 U                                                      | 0.0023                                                 |
| magnesium, total           | 400                                    | 17.1                                                          | 56.3                                                   |
| manganese, total           | $0.86^{b}$                             | 0.0743                                                        | 0.133                                                  |
| nitrogen, ammonia          | 10                                     | 0.53                                                          | 0.46                                                   |
| nitrogen, nitrate+nitrite  | $1^{h}$                                | 0.02                                                          | 0.11                                                   |
| n-nitroso-di-n-propylamine | 0.005                                  | 0.013 U                                                       | 0.01 U                                                 |
| potassium, total           | NA                                     | 1.04                                                          | 2.98                                                   |
| selenium, total            | 0.05                                   | 0.0032 U                                                      | 0.0025 U                                               |
| sodium, total              | 120                                    | 83.4 J                                                        | 79.1 J                                                 |
| sulfate                    | 250                                    | 107                                                           | 20                                                     |
| vanadium, total            | 0.0045                                 | 0.001 U                                                       | 0.0015 U                                               |
| zinc, total                | 2.4                                    | 0.0551                                                        | 0.342                                                  |

a = Unless otherwise noted, the screening levels is the MDEQ Residential Drinking Water Criteria (RDWC).

b = The screening level is the MDEQ's Rule 57 drinking water value set for human health.

c = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

d = The "NA" indicates that no screening level is available.

e = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

f = The screening level is the MDEQ's Residential health based drinking water value in the Footnotes (MDEQ 2005).

g = The "J" indicates that the value is an estimated result.

h = The screening level is the MDEQ's RDWC for nitrite.

Appendix B: Detected contaminants from the 2009 Remedial Investigation (Weston 2009).

This appendix contains tables of all detected contaminants above the reported quantitation limit from the second investigation (Weston 2006).

## Soil sampling results from the FBA

Table B-1: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) soil sampled (66 samples) in 2007 (Weston 2009).

| Analyte              | Screening level <sup>a</sup> (mg/kg) | Maximum levels in all soil depths (mg/kg) |
|----------------------|--------------------------------------|-------------------------------------------|
| 1,2-dichloroethane   | 91                                   | 1.7                                       |
| 2,4-DDT              | NA <sup>b</sup>                      | 0.64 J <sup>c</sup>                       |
| 4,4-DDD              | 95                                   | 0.42                                      |
| 4,4-DDE              | 45                                   | 2.2                                       |
| 4,4-DDT              | 57                                   | 2.3                                       |
| aldrin               | 1.0                                  | $0.18 \mathrm{~U}^{\mathrm{d}}$           |
| alpha-BHC            | 2.6                                  | 0.18 U                                    |
| alpha-chlordane      | 31 <sup>e</sup>                      | 0.22                                      |
| aluminum, total      | 50,000                               | 10,000                                    |
| antimony, total      | 180                                  | 1.7                                       |
| arsenic, total       | 7.6                                  | 21                                        |
| barium, total        | 37,000                               | 140                                       |
| benzene              | 180                                  | 2.8                                       |
| beryllium, total     | 410                                  | 1.2                                       |
| cadmium, total       | 550                                  | 2.2                                       |
| calcium, total       | NA                                   | 103,000 J                                 |
| chlordane (total)    | 31                                   | 0.37                                      |
| chlorobenzene        | 260                                  | 0.13 U                                    |
| chromium, hexavalent | 2,500                                | 6.6                                       |
| chromium, total      | 2,500 <sup>f</sup>                   | 23                                        |
| cobalt, total        | 2,600                                | 8.1                                       |
| copper, total        | 20,000                               | 120                                       |
| cyanide, total       | 12                                   | 0.32                                      |
| endosulfan (total)   | 1,400                                | 0.0014                                    |
| endosulfan I         | 1,400                                | 0.18 U                                    |
| gamma-BHC (lindane)  | 8.3                                  | 0.18 U                                    |
| gamma-chlordane      | 31 <sup>e</sup>                      | 0.15 J                                    |
| HBB                  | 1,100                                | 11U                                       |
| iron, total          | 160,000                              | 29,000 J                                  |
| lead, total          | 400                                  | 810                                       |
| magnesium, total     | 1,000,000                            | 37,400 J                                  |
| manganese, total     | 25,000                               | 630                                       |
| mercury, total       | 160                                  | 0.16                                      |
| molybdenum, total    | 2,600                                | 1.8                                       |
| nickel, total        | 40,000                               | 22                                        |

| Table B-1 continued |                                      |                                           |
|---------------------|--------------------------------------|-------------------------------------------|
| Analyte             | Screening level <sup>a</sup> (mg/kg) | Maximum levels in all soil depths (mg/kg) |
| PBB                 | 1.2                                  | 5.4 U                                     |
| pCBSA               | 230,000                              | 0.011                                     |
| potassium, total    | NA                                   | 1,510 J                                   |
| selenium, total     | 2,600                                | 7.6                                       |
| silver, total       | 2,500                                | 0.25                                      |
| sodium, total       | 1,000,000                            | 1,540                                     |
| thallium, total     | 35                                   | 0.5 U                                     |
| vanadium, total     | 750                                  | 84                                        |
| zinc, total         | 170,000                              | 520                                       |

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria (DCC).

b = The "NA" indicates that no screening level is available.

c = The "J" indicates that the value is an estimated result.

d = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

e = The screening level is the MDEQ Residential DCC for total chlordane isomers.

f = The screening level is the MDEQ Residential DCC for hexavalent chromium.

#### Soil sampling results from the downwind residential area

Table B-2: Maximum value (in milligrams per kilogram [mg/kg]) of detected compounds at or above the reported quantitation limit in the downwind residential area soil (0 to 0.5 feet deep, 32 samples) sampled in 2007 (Weston 2009).

| Analyte              | Screening level <sup>a</sup> (mg/kg) | Maximum levels in surface soil (mg/kg) |
|----------------------|--------------------------------------|----------------------------------------|
| 2,4-DDT              | NA <sup>b</sup>                      | 0.054 J <sup>c</sup>                   |
| 4,4-DDD              | 95                                   | 39 UJ <sup>d</sup>                     |
| 4,4-DDE              | 45                                   | 0.61                                   |
| 4,4-DDT              | 57                                   | 0.28                                   |
| aluminum, total      | 50,000                               | 12,000                                 |
| antimony, total      | 180                                  | 0.31                                   |
| arsenic, total       | 7.6                                  | 35                                     |
| barium, total        | 37,000                               | 72                                     |
| benzo(a)anthracene   | 20                                   | 0.14 U <sup>e</sup>                    |
| benzo(b)fluoranthene | 20                                   | 0.28 U                                 |
| beryllium, total     | 410                                  | 0.52                                   |
| cadmium, total       | 550                                  | 0.58                                   |
| calcium, total       | NA                                   | 68,000                                 |
| chromium, hexavalent | 2,500                                | 2.7 UJ                                 |
| chromium, total      | $2,500^{\rm f}$                      | 18                                     |
| chrysene             | 2,000                                | 0.14 U                                 |
| cobalt, total        | 2,600                                | 8                                      |
| copper, total        | 20,000                               | 22                                     |
| cyanide, total       | 12                                   | 0.22                                   |
| fluoranthene         | 46,000                               | 0.24                                   |
| gamma-BHC (lindane)  | 8.3                                  | 0.038 UJ                               |
| HBB                  | 1,100                                | 2.2 U                                  |

| Table B-2 continued |                                      |                                        |  |  |
|---------------------|--------------------------------------|----------------------------------------|--|--|
| Analyte             | Screening level <sup>a</sup> (mg/kg) | Maximum levels in surface soil (mg/kg) |  |  |
| heptachlor          | 5.6                                  | 0.038 UJ                               |  |  |
| iron, total         | 160,000                              | 22,000 J                               |  |  |
| lead, total         | 400                                  | 100                                    |  |  |
| magnesium, total    | 1,000,000                            | 18,200 J                               |  |  |
| manganese, total    | 25,000                               | 350                                    |  |  |
| mercury, total      | 160                                  | 0.16                                   |  |  |
| molybdenum, total   | 2,600                                | 2.4                                    |  |  |
| nickel, total       | 40,000                               | 19                                     |  |  |
| PBB                 | 1.2                                  | 1.1 UJ                                 |  |  |
| phenanthrene        | 1,600                                | 0.14 U                                 |  |  |
| potassium, total    | NA                                   | 1,290 J                                |  |  |
| pyrene              | 29,000                               | 0.21                                   |  |  |
| selenium, total     | 2,600                                | 1.2                                    |  |  |
| silver, total       | 2,500                                | 0.18                                   |  |  |
| sodium, total       | 1,000,000                            | 140                                    |  |  |
| vanadium, total     | 750                                  | 27 J                                   |  |  |
| zinc, total         | 170,000                              | 140                                    |  |  |

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria (DCC)..

b = The "NA" indicates that no screening level is available.

c = The "J" indicates that the value is an estimated result.

d = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

e = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

f = The screening level is the MDEQ Residential DCC for hexavalent chromium.

#### Groundwater sampling results from vertical aquifer sampling

Table B-3: Maximum levels (in milligrams per liter [mg/L]) of detected contaminants at or above the reported quantitation limit from vertical aquifer sampling (15 samples) (Weston 2009).

| Analyte                   | Screening level <sup>a</sup><br>(mg/L) | Maximum levels<br>(mg/L) |
|---------------------------|----------------------------------------|--------------------------|
| 1,1,1,2-tetrachloroethane | 30                                     | 0.001 U <sup>b</sup>     |
| 1,1-tichloroethane        | 2,400                                  | 0.001 U                  |
| 1,2-dichlorobenzene       | 160                                    | 0.001 U                  |
| 1,2-trichloroethane       | 19                                     | 0.001 U                  |
| 1,3-dichlorobenzene       | 2                                      | 0.001 U                  |
| 1,4-dichlorobenzene       | 6.4                                    | 0.001 U                  |
| acetone                   | 31,000                                 | 0.02 U                   |
| benzene                   | 11                                     | 0.001 U                  |
| bromobenzene              | 12                                     | 0.001 U                  |
| bromodichloromethane      | 14                                     | 0.001 U                  |
| bromoform                 | 140                                    | 0.001 U                  |
| carbon disulfide          | 1,200                                  | 0.001 U                  |
| chlorobenzene             | 86                                     | 0.001 U                  |
| chloroethane              | 440                                    | 0.005 U                  |

| Table B-3 continued      |                                        |                          |
|--------------------------|----------------------------------------|--------------------------|
| Analyte                  | Screening level <sup>a</sup><br>(mg/L) | Maximum levels<br>(mg/L) |
| chloroform               | 150                                    | 0.0021                   |
| cis-1,2-dichloroethene   | 200                                    | 0.001 U                  |
| ethyl ester              | 64,000                                 | 0.005 U                  |
| pCBSA                    | 2,200 <sup>c</sup>                     | 0.001 U                  |
| styrene                  | 9.7                                    | 0.001 U                  |
| toluene                  | 530                                    | 0.001 U                  |
| trans-1,2-dichloroethene | 220                                    | 0.001 U                  |
| trichloroethane          | 21 <sup>d</sup>                        | 0.001 U                  |
| trihalomethane (total)   | NA <sup>e</sup>                        | 0.0021                   |
| vinyl chloride           | 1                                      | 0.001 U                  |

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater

Contact Criteria (GCC).

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The screening level is the MDEQ's Rule 57 non-drinking water value set for human health.

d = The screening level is the MDEQ GCC for 1,1,2- trichloroethane.

e = The "NA" indicates that no screening level is available.

#### Groundwater sampling results from monitor wells

Table B-4: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from the shallow outwash unit monitor wells (17 samples) (Weston 2009).

| Analyte                     | Screening level <sup>a</sup> (mg/L) | Maximum levels<br>(mg/L) |
|-----------------------------|-------------------------------------|--------------------------|
| 1,1,1-trichloroethane       | 1,300                               | 1 U <sup>b</sup>         |
| 1,1,2,2-tetrachloroethane   | 4.7                                 | 1 U                      |
| 1,1,2-trichloroethane       | 21                                  | 1 U                      |
| 1,1-dichloroethane          | 2,400                               | 1.3                      |
| 1,1-dichloroethene          | 11                                  | 1 U                      |
| 1,2,3-trichlorobenzene      | 0.073 <sup>c</sup>                  | 5U                       |
| 1,2,3-trimethylbenzene      | 0.65d                               | 1 U                      |
| 1,2,4-trichlorobenzene      | 19                                  | 5U                       |
| 1,2,4-trimethylbenzene      | 56                                  | 1 U                      |
| 1,2-dibromo-3-chloropropane | 0.39                                | <b>5</b> U               |
| 1,2-dibromoethane           | 530                                 | 1 U                      |
| 1,2-dichlorobenzene         | 160                                 | 1 U                      |
| 1,2-dichloroethane          | 19                                  | 1 U                      |
| 1,2-dichloropropane         | 16                                  | 1 U                      |
| 1,3-dichlorobenzene         | 2                                   | 1 U                      |
| 1,4-dichlorobenzene         | 6.4                                 | 1 U                      |
| 2,4-DDT                     | NA <sup>e</sup>                     | 0.001 U                  |
| 2,4-dichlorophenol          | 48                                  | 5U                       |
| 2-butanone                  | 240,000                             | 5 U                      |
| 2-chlorophenol              | 94                                  | 5U                       |
| 2-methylnaphthalene         | 25                                  | 2.5 U                    |

| Table B-4 continued     |                                     |                          |
|-------------------------|-------------------------------------|--------------------------|
| Analyte                 | Screening level <sup>a</sup> (mg/L) | Maximum levels<br>(mg/L) |
| 3 and 4-methylphenol    | 810 <sup>f</sup>                    | 1 U                      |
| 4,4-DDD                 | 0.044                               | 0.002 U                  |
| 4,4-DDE                 | 0.027                               | 0.002 U                  |
| 4,4-DDT                 | 0.013                               | 0.002 U                  |
| acenaphthene            | 4.2                                 | 0.5 U                    |
| acetone                 | 31,000                              | 20U                      |
| aldrin                  | 0.00034                             | 0.001 U                  |
| alpha-BHC               | 0.06                                | 0.002 U                  |
| aluminum, dissolved     | 64,000                              | 0.05 U                   |
| aluminum, total         | 64,000                              | 0.05 U                   |
| anthracene              | 0.043                               | 0.5 U                    |
| antimony, dissolved     | 68                                  | 0.001 U                  |
| antimony, total         | 68                                  | 0.01 U                   |
| arsenic, dissolved      | 4.3                                 | 0.3                      |
| arsenic, total          | 4.3                                 | 10 J <sup>g</sup>        |
| barium, dissolved       | 14,000                              | 0.14                     |
| barium, total           | 14,000                              | 1.8 J                    |
| benzene                 | 11                                  | 99                       |
| beryllium, dissolved    | 290                                 | 0.001 U                  |
| beryllium, total        | 290                                 | 0.01 U                   |
| beta-BHC                | 0.12                                | 0.02 U                   |
| bis(2-chloroethyl)ether | 5.7                                 | 0.5 U                    |
| bromobenzene            | 12                                  | 1 U                      |
| bromochloromethane      | 59 <sup>h</sup>                     | 1 U                      |
| bromodichloromethane    | 14                                  | 1 U                      |
| bromoform               | 140                                 | 1 U                      |
| bromomethane            | 70                                  | 5U                       |
| cadmium, dissolved      | 190                                 | 0.002 U                  |
| cadmium, total          | 190                                 | 0.02 U                   |
| calcium, dissolved      | NA                                  | 3,590 J                  |
| calcium, total          | NA                                  | 5,180 J                  |
| carbon disulfide        | 1,200                               | 1 U                      |
| carbon tetrachloride    | 4.6                                 | 1 U                      |
| chlorobenzene           | 86                                  | 1 U                      |
| chloroethane            | 440                                 | 5U                       |
| chloroform              | 150                                 | 3.2                      |
| chloromethane           | 490                                 | 5U                       |
| chromium, dissolved     | 460 <sup>i</sup>                    | 0.001 U                  |
| chromium, hexavalent    | 460                                 | 0.01 U                   |
| chromium, total         | 460 <sup>i</sup>                    | 0.59                     |
| cis-1,2-dichloroethene  | 200                                 | 1 U                      |
| cobalt, dissolved       | 2,400                               | 0.015 U                  |
| cobalt, total           | 2,400                               | 0.052                    |
| copper, dissolved       | 7,400                               | 0.0017                   |
| copper, total           | 7,400                               | 0.012                    |
| cyclohexane             | NA                                  | 5U                       |

| Table B-4 continued       |                                     | 1                        |
|---------------------------|-------------------------------------|--------------------------|
| Analyte                   | Screening level <sup>a</sup> (mg/L) | Maximum levels<br>(mg/L) |
| delta-BHC                 | NA                                  | 0.002 U                  |
| dibromochloromethane      | 18                                  | 1 U                      |
| dibromomethane            | 530                                 | 1 U                      |
| ethyl ether               | 1,000 <sup>j</sup>                  | 5U                       |
| ethylbenzene              | 170                                 | 1 U                      |
| fluoranthene              | 0.210                               | 0.5 U                    |
| fluorene                  | 2                                   | 0.5 U                    |
| gamma-BHC                 | 0.19                                | 0.1 U                    |
| iron, dissolved           | 58,000                              | 54J                      |
| iron, total               | 58,000                              | 310J                     |
| isopropylbenzene          | 56                                  | 1 U                      |
| lead, dissolved           | 0.19 <sup>k</sup>                   | 0.001 U                  |
| lead, total               | 0.19 <sup>k</sup>                   | 0.01 U                   |
| magnesium, dissolved      | 1,000,000                           | 680J                     |
| magnesium, total          | 1,000,000                           | 1,120 J                  |
| manganese, dissolved      | 9.1                                 | 0.025                    |
| manganese, total          | 9.1                                 | 8.6 J                    |
| mercury, dissolved        | 0.056                               | 0.0002 U                 |
| mercury, total            | 0.056                               | 0.0002 U                 |
| methylene chloride        | 220                                 | 13                       |
| methylphenol, total       | 810                                 | 0.091                    |
| naphthalene               | 31                                  | 5U                       |
| nickel, dissolved         | 74,000                              | 0.017                    |
| nickel, total             | 74,000                              | 0.38                     |
| n-propylbenzene           | 15                                  | 1 U                      |
| pCBSA                     | 2,200                               | 0.036                    |
| pentachlorophenol         | 0.2                                 | 10 U                     |
| phenanthrene              | 1                                   | 0.5 U                    |
| phenol                    | 29,000                              | 2.5 U                    |
| potassium, dissolved      | NA                                  | 110J                     |
| potassium, total          | NA                                  | 120Ј                     |
| Pyrene                    | 0.14                                | 0.5 U                    |
| pyridine                  | 94                                  | 10U                      |
| sec-butylbenzene          | 4.4                                 | 1 U                      |
| selenium, dissolved       | 970                                 | 0.001 U                  |
| selenium, total           | 970                                 | 0.1 U                    |
| silver, dissolved         | 1,500                               | 0.0002 UJ                |
| silver, total             | 1,500                               | 0.00025 <sup>1</sup>     |
| sodium, dissolved         | 1,000,000                           | 1,810J                   |
| sodium, total             | 1,000,000                           | 3,170J                   |
| tertiary butyl alcohol    | 79,000                              | 50 U                     |
| tetrachloroethene         | 12                                  | 1 U                      |
| toluene                   | 530                                 | 1.5                      |
| trans-1,2-dichloroethene  | 220                                 | 1 U                      |
| trans-1,3-dichloropropane | NA                                  | 1 U                      |
| trichloroethene           | 21 <sup>m</sup>                     | 1 U                      |

| Table B-4 continued   |                                     |                          |
|-----------------------|-------------------------------------|--------------------------|
| Analyte               | Screening level <sup>a</sup> (mg/L) | Maximum levels<br>(mg/L) |
| trihalomethane, total | NA                                  | 3.2                      |
| TRIS                  | 2.1                                 | 0.1 U                    |
| vanadium, dissolved   | 970                                 | 0.002 U                  |
| vanadium, total       | 970                                 | 0.031                    |
| vinyl chloride        | 1                                   | 1 U                      |
| xylene, meta & para   | 190                                 | 2 U                      |
| xylene, o-            | 190                                 | 1 U                      |
| xylenes (total)       | 190                                 | 0.028                    |
| zinc, dissolved       | 110,000                             | 0.01 U                   |
| zinc, total           | 110,000                             | 0.13                     |

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

d = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

e = The "NA" indicates that no screening level is available.

f = The screening level is the MDEQ GCC for total methylphenols.

g = The "J" indicates that the value is an estimated result.

h = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

i = The screening level is the MDEQ GCC for hexavalent chromium.

j = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

k = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

l = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

m = The screening level is the MDEQ GCC for 1,1,2- trichloroethane.

## Table B-5: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from the upper till unit monitor wells (seven samples) (Weston 2009).

| Analyte              | Screening level <sup>a</sup><br>(mg/L) | Maximum levels from upper till<br>monitor wells (mg/L) |
|----------------------|----------------------------------------|--------------------------------------------------------|
| 1,1-dichloroethane   | 2,400                                  | 0.001 U <sup>b</sup>                                   |
| 1,2-dichloroethane   | 19                                     | 0.001 U                                                |
| 1,2-dichloropropane  | 16                                     | 0.001 U                                                |
| 2,4-DDT              | NA <sup>c</sup>                        | 0.0049                                                 |
| 2-butanone           | 240,000                                | 0.005 U                                                |
| 4,4-DDD              | 0.044                                  | 0.0003                                                 |
| 4,4-DDE              | 0.027                                  | 0.000054                                               |
| 4,4-DDT              | 0.013                                  | 0.0061                                                 |
| 4-methyl-2-pentanone | 13,000                                 | 0.005 U                                                |
| acetone              | 31,000                                 | 0.027                                                  |
| aluminum, dissolved  | 64,000                                 | 0.05 U                                                 |
| aluminum, total      | 64,000                                 | 6.9 J <sup>d</sup>                                     |
| arsenic, dissolved   | 4.3                                    | 0.01 U                                                 |
| arsenic, total       | 4.3                                    | 0.19                                                   |

| Table B-5 continued        |                              | -                              |
|----------------------------|------------------------------|--------------------------------|
| Analyte                    | Screening level <sup>a</sup> | Maximum levels from upper till |
| •                          | (mg/L)                       | monitor wells (mg/L)           |
| barium, dissolved          | 14,000                       | 10J                            |
| barium, total              | 14,000                       | 80J                            |
| benzene                    | 11                           | 0.0072                         |
| bis(2-ethylhexyl)phthalate | 0.32                         | 0.0089                         |
| bromobenzene               | 12                           | 0.001 U                        |
| bromochloromethane         | 1 <sup>e</sup>               | 0.001 U                        |
| calcium, dissolved         | NA                           | 8,250 J                        |
| calcium, total             | NA                           | 17,400 J                       |
| chlorobenzene              | 86                           | 0.001 U                        |
| chloroform                 | 150                          | 0.001 U                        |
| chromium, dissolved        | 460 <sup>f</sup>             | 0.023                          |
| chromium, total            | 460 <sup>f</sup>             | 0.055                          |
| cis-1,2-dichloroethene     | 0.07                         | 0.001 U                        |
| cobalt, dissolved          | 2,400                        | 0.028                          |
| cobalt, total              | 2,400                        | 0.045                          |
| copper, dissolved          | 7,400                        | 0.012                          |
| copper, total              | 7,400                        | 0.034                          |
| dibromomethane             | 530                          | 0.001 U                        |
| ethyl ether                | 0.01                         | 0.005 U                        |
| iron, dissolved            | 58,000                       | 16                             |
| iron, total                | 58,000                       | 100J                           |
| lead, dissolved            | 0.19 <sup>g</sup>            | 0.01 U                         |
| lead, total                | 0.19 <sup>g</sup>            | 0.02 U                         |
| magnesium, dissolved       | 1,000,000                    | 2,640 J                        |
| magnesium, total           | 1,000,000                    | 2,880 J                        |
| manganese, dissolved       | 9,100                        | 2.3 J                          |
| manganese, total           | 9,100                        | 4.4 J                          |
| methylene chloride         | 220                          | 0.005 U                        |
| molybdenum, dissolved      | 970                          | 0.027                          |
| molybdenum, total          | 970                          | 0.026                          |
| nickel, dissolved          | 74,000                       | 0.25                           |
| nickel, total              | 74,000                       | 0.66                           |
| pCBSA                      | 2,200 <sup>h</sup>           | 0.001 U                        |
| potassium, dissolved       | NA                           | 53 J                           |
| potassium, total           | NA                           | 77 J                           |
| selenium, dissolved        | 970                          | 0.01 U                         |
| selenium, total            | 970                          | 0.02 U                         |
| sodium, dissolved          | 1,000,000                    | 2,180 J                        |
| sodium, total              | 1,000,000                    | 10,900 J                       |
| toluene                    | 530                          | 0.001 U                        |
| vanadium, dissolved        | 970                          | 0.01 U                         |
| vanadium, total            | 970                          | 0.02 U                         |
| vinyl chloride             | 1                            | 0.07                           |
| zinc, dissolved            | 110,000                      | 0.021                          |
| zinc, total                | 110,000                      | 0.042                          |

Table B-5 continued

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The "NA" indicates that no screening level is available.

d = The "J" indicates that the value is an estimated result.

e = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

f = The screening level is the MDEQ GCC for hexavalent chromium.

g = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

h = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

Table B-6: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from the lower till unit monitor wells (two samples) (Weston 2009).

| Analyte                    | Screening level <sup>a</sup><br>(mg/L) | Maximum levels from lower till monitor wells (mg/L) |
|----------------------------|----------------------------------------|-----------------------------------------------------|
| 1,1,1,2-tetrachloroethane  | 30                                     | 0.001 U <sup>b</sup>                                |
| 1,1,2,2-tetrachloroethane  | 4.7                                    | 0.001 U                                             |
| 1,1-dichloroethane         | 2,400                                  | 0.001 U                                             |
| 1,2,4-trichlorobenzene     | 19                                     | 0.005 U                                             |
| 1,2,4-trimethylbenzene     | 56                                     | 0.001 U                                             |
| 1,2-dichlorobenzene        | 160                                    | 0.001 U                                             |
| 1,2-dichloroethane         | 19                                     | 0.001 U                                             |
| 1,3-dichlorobenzene        | 2                                      | 0.001 U                                             |
| 1,4-dichlorobenzene        | 6.4                                    | 0.001 U                                             |
| 2,4-DDT                    | NA <sup>c</sup>                        | 0.00001 U                                           |
| 2-butanone                 | 240,000                                | 0.005 U                                             |
| 2-chlorophenol             | 94                                     | 0.01 U                                              |
| 4,4-DDD                    | 0.044                                  | 0.00002 U                                           |
| 4,4-DDE                    | 0.027                                  | 0.00002 U                                           |
| 4,4-DDT                    | 0.013                                  | 0.00002 U                                           |
| aluminum, dissolved        | 64,000                                 | 0.05 U                                              |
| aluminum, total            | 64,000                                 | 0.38                                                |
| antimony, dissolved        | 68                                     | 0.001 U                                             |
| antimony, total            | 68                                     | 0.001 U                                             |
| arsenic, dissolved         | 4.3                                    | 0.076                                               |
| arsenic, total             | 4.3                                    | 0.077                                               |
| barium, dissolved          | 14,000                                 | 1.2 J <sup>d</sup>                                  |
| barium, total              | 14,000                                 | 1.2 J                                               |
| benzene                    | 11                                     | 0.17                                                |
| beta-BHC                   | NA                                     | 0.00002 U                                           |
| bis(2-chloroethyl)ether    | 5.7                                    | 0.001 U                                             |
| bis(2-ethylhexyl)phthalate | 0.32                                   | 0.016                                               |
| bromobenzene               | 12                                     | 0.014                                               |
| bromochloromethane         | NA                                     | 0.001 U                                             |
| cadmium, dissolved         | 190                                    | 0.0002 U                                            |
| cadmium, total             | 190                                    | 0.0002 U                                            |
| calcium, dissolved         | NA                                     | 321 J                                               |

| Analyte                  | Screening level <sup>a</sup> | Maximum levels from lower till |
|--------------------------|------------------------------|--------------------------------|
| -                        | (mg/L)                       | monitor wells (mg/L)           |
| calcium, total           | NA                           | 309 J                          |
| carbon disulfide         | 1,200                        | 0.001 U                        |
| chloroethane             | 440                          | 0.005 U                        |
| chloroform               | 150                          | 0.001 U                        |
| chromium, dissolved      | 460 <sup>e</sup>             | 0.001 U                        |
| chromium, hexavalent     | 460                          | 0.005 U                        |
| chromium, total          | 460 <sup>e</sup>             | 0.026                          |
| cis-1,2-dichloroethene   | NA                           | 0.001 U                        |
| cobalt, dissolved        | 2,400                        | 0.015 U                        |
| cobalt, total            | 2,400                        | 0.015 U                        |
| copper, dissolved        | 7,400                        | 0.001 U                        |
| copper, total            | 7,400                        | 0.0028                         |
| dibromomethane           | 530                          | 0.001 U                        |
| ethyl ether              | 35,000                       | 0.005 U                        |
| gamma-BHC                | 0.19                         | 0.00002 U                      |
| iron, dissolved          | 58,000                       | 3.2                            |
| iron, total              | 58,000                       | 3.9                            |
| lead, dissolved          | NA                           | 0.001 U                        |
| lead, total              | NA                           | 0.001 U                        |
| magnesium, dissolved     | 1,000,000                    | 160 J                          |
| magnesium, total         | 1,000,000                    | 160 J                          |
| manganese, dissolved     | 9,100                        | 0.13                           |
| manganese, total         | 9,100                        | 0.17                           |
| methylene chloride       | 220                          | 0.005 U                        |
| molybdenum, dissolved    | 970                          | 0.025 U                        |
| molybdenum, total        | 970                          | 0.025 U                        |
| nickel, dissolved        | 74,000                       | 0.018                          |
| nickel, total            | 74,000                       | 0.023                          |
| pCBSA                    | NA                           | 0.001 U                        |
| phenol                   | 29,000                       | 0.0051 U                       |
| potassium, dissolved     | NA                           | 4.5                            |
| potassium, total         | NA                           | 4.6                            |
| selenium, dissolved      | 970                          | 0.001 U                        |
| selenium, total          | 970                          | 0.001 U                        |
| sodium, dissolved        | 1,000,000                    | 168 J                          |
| sodium, total            | 1,000,000                    | 171 J                          |
| toluene                  | 530                          | 0.001 U                        |
| trans-1,2-dichloroethene | NA                           | 0.001 U                        |
| trichloroethene          | NA                           | 0.001 U                        |
| TRIS                     | 2.1                          | 0.01 U                         |
| vanadium, dissolved      | 970                          | 0.002 U                        |
| vanadium, total          | 970                          | 0.002 U                        |
| zinc, dissolved          | 110,000                      | 0.01 U                         |
| zinc, total              | 110,000                      | 0.014                          |

Table B-6 continued

- a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).
- b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.
- c = The "NA" indicates that no screening level is available.
- d = The "J" indicates that the value is an estimated result.

e = The screening level is the MDEQ GCC for hexavalent chromium.

Table B-7: Maximum value (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in the Former Burn Area (FBA) groundwater samples from the lower outwash unit monitor wells (eight samples) (Weston 2009).

| Analyte Screening level <sup>a</sup><br>(mg/L) |                  | Maximum levels from<br>lower outwash monitor<br>wells (mg/L) |
|------------------------------------------------|------------------|--------------------------------------------------------------|
| 1,1,2,2-tetrachloroethane                      | 30               | 0.001 U <sup>b</sup>                                         |
| 1,1-dichloroethane                             | 2,400            | 0.001 U                                                      |
| 1,2,4-trichlorobenzene                         | 19               | 0.0021 U                                                     |
| 1,2-dichlorobenzene                            | 160              | 0.001 U                                                      |
| 1,2-dichloroethane                             | 19               | 0.001 U                                                      |
| 1,2-dichloropropane                            | 16               | 0.001 U                                                      |
| 1,4-dichlorobenzene                            | 6.4              | 0.001 U                                                      |
| 2,4-DDT                                        | NA <sup>c</sup>  | 0.00005                                                      |
| 2-chlorophenol                                 | 94               | 0.01 U                                                       |
| 4,4-DDD                                        | 0.044            | 0.00002 U                                                    |
| 4,4-DDE                                        | 0.027            | 0.00002 U                                                    |
| 4,4-DDT                                        | 0.013            | 0.00021                                                      |
| aluminum, dissolved                            | 64,000           | 0.05 U                                                       |
| aluminum, total                                | 64,000           | 2.1 J <sup>d</sup>                                           |
| antimony, total                                | 68               | 0.001 U                                                      |
| arsenic, dissolved                             | 4.3              | 0.087                                                        |
| arsenic, total                                 | 4.3              | 0.092                                                        |
| barium, dissolved                              | 14,000           | 1.1 J                                                        |
| barium, total                                  | 14,000           | 1.1 J                                                        |
| benzene                                        | 11               | 0.001 U                                                      |
| bis(2-ethylhexyl)phthalate                     | 0.32             | 0.0051 U                                                     |
| bromobenzene                                   | 12               | 0.001 U                                                      |
| cadmium, total                                 | 190              | 0.0002 U                                                     |
| calcium, dissolved                             | NA               | 618 J                                                        |
| calcium, total                                 | NA               | 674 J                                                        |
| chlorobenzene                                  | 86               | 0.001 U                                                      |
| chromium, dissolved                            | 460 <sup>e</sup> | 0.0047                                                       |
| chromium, total                                | 460 <sup>e</sup> | 0.16                                                         |
| cis-1,2-dichloroethene                         | NA               | 0.001 U                                                      |
| cobalt, total                                  | 2,400            | 0.015 U                                                      |
| copper, dissolved                              | 7,400            | 0.0068                                                       |
| copper, total                                  | 7,400            | 0.024                                                        |
| cyclohexane                                    | NA               | 0.005 U                                                      |
| fluorene                                       | 2                | 0.001 U                                                      |
| iron, dissolved                                | 58,000           | 4.3                                                          |

| Table B-7 continued   |                                        |                                                              |
|-----------------------|----------------------------------------|--------------------------------------------------------------|
| Analyte               | Screening level <sup>a</sup><br>(mg/L) | Maximum levels from<br>lower outwash monitor<br>wells (mg/L) |
| iron, total           | 58,000                                 | 9.0                                                          |
| lead, total           | NA                                     | 0.0019                                                       |
| magnesium, dissolved  | 1,000,000                              | 17 J                                                         |
| magnesium, total      | 1,000,000                              | 18 J                                                         |
| manganese, dissolved  | 9,100                                  | 0.4                                                          |
| manganese, total      | 9,100                                  | 0.46                                                         |
| mercury, total        | 0.056                                  | 0.0002 U                                                     |
| methylene chloride    | 220                                    | 0.005 U                                                      |
| molybdenum, dissolved | 970                                    | 0.025 U                                                      |
| molybdenum, total     | 970                                    | 0.025 U                                                      |
| nickel, dissolved     | 74,000                                 | 0.041                                                        |
| nickel, total         | 74,000                                 | 0.052                                                        |
| pCBSA                 | 2,200 <sup>f</sup>                     | 0.001 U                                                      |
| phenol                | 29,000                                 | 0.005 U                                                      |
| potassium, dissolved  | NA                                     | 6.6 J                                                        |
| potassium, total      | NA                                     | 6.4 J                                                        |
| selenium, dissolved   | 970                                    | 0.001 U                                                      |
| selenium, total       | 970                                    | 0.001 U                                                      |
| silver, total         | 1,500                                  | 0.0002 U                                                     |
| sodium, dissolved     | 1,000,000                              | 233 J                                                        |
| sodium, total         | 1,000,000                              | 231 J                                                        |
| tetrachloroethene     | 12                                     | 0.001 U                                                      |
| tetrahydrofuran       | 1,600                                  | 0.005 U                                                      |
| toluene               | 530                                    | 0.001 U                                                      |
| trichloroethene       | 21 <sup>g</sup>                        | 0.001 U                                                      |
| vanadium, total       | 970                                    | 0.0036                                                       |
| xylene, o-            | 190                                    | 0.001 U                                                      |
| zinc, dissolved       | 110,000                                | 0.013                                                        |
| zinc, total           | 110,000                                | 0.037                                                        |

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The "NA" indicates that no screening level is available.

d = The "J" indicates that the value is an estimated result.

e = The screening level is the MDEQ GCC for hexavalent chromium.

f = The value is the MDEQ's Rule 57 non-drinking water value set for human health.

g = The screening level is the MDEQ GCC for 1,1,2- trichloroethane.

#### Soil and groundwater dioxin levels from the FBA samples

| Analyte                                  | Soil<br>screening<br>level (ng/kg) | Soil<br>(ng/kg)    | Water<br>screening<br>level (pg/L) | Water<br>(pg/L) |
|------------------------------------------|------------------------------------|--------------------|------------------------------------|-----------------|
| 2378-TCDF                                | NA <sup>a</sup>                    | 12 U <sup>b</sup>  | NA                                 | 12 U            |
| 2378-TCDD                                | NA                                 | 1.1 U              | NA                                 | 12 U            |
| 12378-PeCDF                              | NA                                 | 190 E <sup>c</sup> | NA                                 | 59 U            |
| 23478-PeCDF                              | NA                                 | 12                 | NA                                 | 59 U            |
| 12378-PeCDD                              | NA                                 | 6.8 U              | NA                                 | 59 U            |
| 123478-HxCDF                             | NA                                 | 15                 | NA                                 | 59 U            |
| 123678-HxCDF                             | NA                                 | 9.5                | NA                                 | 59 U            |
| 234678-HxCDF                             | NA                                 | 6.8 U              | NA                                 | 59 U            |
| 123789-HxCDF                             | NA                                 | 6.8 U              | NA                                 | 59 U            |
| 123478-HxCDD                             | NA                                 | 6.8 U              | NA                                 | 59 U            |
| 123678-HxCDD                             | NA                                 | 6.8 U              | NA                                 | 59 U            |
| 123789-HxCDD                             | NA                                 | 6.8 U              | NA                                 | 59 U            |
| 1234678-HpCDF                            | NA                                 | 24                 | NA                                 | 59 U            |
| 1234789-HpCDF                            | NA                                 | 10                 | NA                                 | 59 U            |
| 1234678-HpCDD                            | NA                                 | 48                 | NA                                 | 59 U            |
| OCDF                                     | NA                                 | 53                 | NA                                 | 120 U           |
| OCDD                                     | NA                                 | 410                | NA                                 | 120 U           |
| Total TEQ in parts per<br>trillion (ppt) | 90 <sup>d</sup>                    | 7.9                | 10 <sup>e</sup>                    | 0               |

Table B-8: Dioxin levels in soil (in nanograms per kilogram [ng/kg], 11 samples) and groundwater (in picograms per liter [pg/L], five samples) Former Burn Area (FBA) samples (Weston 2009).

a = The "NA" indicates that no screening level is available.

b = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

c = The "E" indicates that the value is the estimated maximum possible concentration.

d = The screening level is the MDEQ Residential Direct Contact Criteria for total dioxins based on Toxic Equivalency (TEQ) in parts per trillion (ppt).

e = The screening level is the MDEQ Groundwater Contact Criteria for total dioxins based on Toxic Equivalency (TEQ) in parts per trillion (ppt).

#### Surface water sampling results

Table B-9: Maximum levels (in milligrams per liter [mg/L]) of detected compounds at or above the reported quantitation limit in surface water (five samples) from a drainage ditch adjacent to the Former Burn Area (FBA) (Weston 2009).

| Analyte         | Screening level <sup>a</sup><br>(mg/L) | Maximum level in surface<br>water (mg/L) |
|-----------------|----------------------------------------|------------------------------------------|
| 2,4-DDT         | NA <sup>b</sup>                        | 0.00001 UJ <sup>c</sup>                  |
| aluminum, total | 64,000                                 | 0.71                                     |
| ammonia         | NA                                     | 0.53                                     |
| arsenic, total  | 4.3                                    | 0.0073                                   |
| barium, total   | 14,000                                 | 0.092                                    |
| calcium, total  | NA                                     | 134 J <sup>d</sup>                       |

| Table B-9 continued |                                        |                                          |
|---------------------|----------------------------------------|------------------------------------------|
| Analyte             | Screening level <sup>a</sup><br>(mg/L) | Maximum level in surface<br>water (mg/L) |
| chloride            | NA                                     | 124 J                                    |
| chromium, total     | 460 <sup>e</sup>                       | 0.0018                                   |
| copper, total       | 7,400                                  | 0.0036                                   |
| iron, total         | 58,000                                 | 9.2                                      |
| lead, total         | 0.19 <sup>f</sup>                      | 0.0019                                   |
| magnesium, total    | 1,000,000                              | 30                                       |
| manganese, total    | 9,100                                  | 0.86                                     |
| nickel, total       | 74,000                                 | 0.0063                                   |
| nitrate + nitrite   | 310,000 <sup>g</sup>                   | 0.66                                     |
| oil and grease      | NA                                     | 11 U                                     |
| potassium, total    | NA                                     | 5.9 J                                    |
| sodium, total       | 1,000,000                              | 49.5                                     |
| sulfate             | NA                                     | 100 J                                    |
| vanadium, total     | 970                                    | 0.004                                    |
| zinc, total         | 110,000                                | 0.025                                    |

a = Unless otherwise noted, the screening levels is the MDEQ Groundwater Contact Criteria (GCC).

b = The "NA" indicates that no screening level is available.

c = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.

d = The "J" indicates that the value is an estimated result.

e = The screening level is the MDEQ GCC for hexavalent chromium.

f = The screening level is the MDEQ's Rule 57 non-drinking water value set for human health.

g = The screening level is the MDEQ GCC for nitrate.

#### Sediment sampling results

Table B-10: Maximum levels (in milligrams per kilograms [mg/kg]) of detected compounds at or above the reported quantitation limit in sediment (seven samples) from a drainage ditch adjacent to the Former Burn Area (FBA) (Weston 2009).

| Analyte               | Screening level <sup>a</sup><br>(mg/kg) | Maximum levels<br>(mg/kg) |
|-----------------------|-----------------------------------------|---------------------------|
| 2,4-DDT               | $NA^b$                                  | 0.14 U <sup>c</sup>       |
| 4,4-DDD               | 95                                      | 0.2                       |
| 4,4-DDE               | 45                                      | 0.05                      |
| 4,4-DDT               | 57                                      | 0.027 U                   |
| alpha-chlordane       | 31 <sup>d</sup>                         | 0.013 J <sup>e</sup>      |
| aluminum, total       | 50,000                                  | 5,200                     |
| antimony, total       | 180                                     | 0.55                      |
| arsenic, total        | 7.6                                     | 7.2                       |
| barium, total         | 37,000                                  | 58                        |
| beryllium, total      | 410                                     | 0.26                      |
| cadmium, total        | 550                                     | 0.52                      |
| calcium, total        | NA                                      | 82,200 J                  |
| carbon, total organic | NA                                      | 87,000 J                  |
| chromium, total       | 2,500 (VI) <sup>f</sup>                 | 11                        |

| Table B-10 continued |                                         |                           |
|----------------------|-----------------------------------------|---------------------------|
| Analyte              | Screening level <sup>a</sup><br>(mg/kg) | Maximum levels<br>(mg/kg) |
| chrysene             | 2,000                                   | 0.590 U                   |
| cobalt, total        | 2,600                                   | 5                         |
| copper, total        | 20,000                                  | 18                        |
| endosulfan I         | 1,400                                   | 0.014 U                   |
| fluoranthene         | 46,000                                  | 0.59 U                    |
| gamma-chlordane      | 31 <sup>d</sup>                         | 0.013 UJ <sup>g</sup>     |
| HBB                  | 1,100                                   | 0.27 U                    |
| iron, total          | 160,000                                 | 21,000 J                  |
| lead, total          | 400                                     | 19                        |
| magnesium, total     | 1,000,000                               | 24,800 J                  |
| manganese, total     | 25,000                                  | 1,000                     |
| mercury, total       | 160                                     | 0.15 U                    |
| molybdenum, total    | 16,000                                  | 4.5                       |
| nickel, total        | 40,000                                  | 14                        |
| pCBSA                | 230,000                                 | 0.01 U                    |
| phenanthrene         | 1,600                                   | 0.59 U                    |
| PBB                  | 1.2                                     | 0.13 U                    |
| potassium, total     | NA                                      | 700 J                     |
| pyrene               | 29,000                                  | 0.59 U                    |
| selenium, total      | 2,600                                   | 0.87                      |
| silver, total        | 2,500                                   | 0.1 U                     |
| sodium, total        | 1,000,000                               | 140                       |
| toluene              | 250                                     | 0.23                      |
| vanadium, total      | 750                                     | 14                        |
| zinc, total          | 170,000                                 | 130                       |

a = Unless otherwise noted, the screening level is the MDEQ Residential Direct Contact Criteria (DCC).

b = The "NA" indicates that no screening level is available. c = The "U" indicates that the analyte was not detected above the reported sample quantitation limit.

d = The screening level is the MDEQ Residential DCC for total chlordane isomers.

e = The "J" indicates that the value is an estimated result.

f = The screening level is the MDEQ Residential DCC for hexavalent chromium.

g = The "UJ" indicates that the analyte was not detected and the reporting limit is estimated.