WEDNESDAY Lesson Plan: Connected & Automated Vehicles

SUBJECT

TEACHER

GRADE

DATE

2/24/2021

Connected & Automated Vehicles (CAV)

OVERVIEW

Introduce students to automated vehicles and infrastructure to vehicle communication. Will include automated vehicle virtual field trips and demonstration videos.

Please send all collated student questions to <u>Michigan Department of Transportation -</u> <u>Home | Facebook</u> as a message

PHASES	TEACHER GUIDE	STUDENT GUIDE	
OBJECTIVES	 Explain what automated vehicles are. Show how automated connected vehicles work on the road. 	 Pay Attention to Videos Ask Questions about how the car sees the road Ask about how the car talks to road and vise versa. 	
INFORMATION	 Video 1: "Engineering Adventures: CAV" Audio 2: "MDOT Connected & Automated Vehicle Program with Michele Mueller" Audio 3: "Automated & Connected Trucking with Michele Mueller" Video 4: "Autonomous Trucking by Locomotive" 	 Voice over audio describes how cars connect to the road and what a autonomous vehicle is Look for if you can see the difference between a active driver and a autonomous vehicle. 	
VERIFICATION	 Please ask students to pay attention how the automated vehicles "see" the road. See if students can tell the difference between a automated vehicle and regular vehicle 	 Be able to answer what lets the automated vehicles "see" the road. Suggest what a automated vehicle might have trouble navigating through. 	

PHASES	TEACHER GUIDE	STUDENT GUIDE		
ACTIVITY	 Virtual field Trip with videos Discuss what students would in car if it was automated. Ask if anyone has seen a vehicle in automated cruise control 	 Engage in discussion of what they think was the hardest part perfecting automated vehicles might be. Discuss what students would do while in a automated vehicle. 		
SUMMARY	 Show MDOT's involvement in automated vehicles 	 Pay attention to videos and ask frequent questions 		

REQUIREMENTS

Requirement 1

Learn about MDOT's involvement in Automated Vehicles

Requirement 2

Further explanation into MDOT's Connected & Automated Vehicle Program

Requirement 3

 Further explanation into MDOT's Connected & Automated Vehicle Program

• Requirement 4

Demonstration of Automated Trucking

RESOURCES

• Resource 1 Video 1: "Engineering Adventures: CAV" https://youtu.be/eV44 Rxp7wKA

• Resource 2

Audio 2: "MDOT Connected & Automated Vehicle Program with Michele Mueller" https://youtu.be/DtSo PJDS7oY

Estimate Time:

• Resource 3

Audio 3: "Automated & Connected Trucking with Michele Mueller"

https://youtu.be/IOfvo <u>cqZZQw</u>

"Autonomous Trucking by Locomotive" https://youtu.be/Qip OYVFzsq4

Estimate Time: 10-15 minutes

ESTIMATE TIME

Estimate Time:

10-15 minutes

2

Estimate Time:

5-10 minutes

10-15 minutes

Michigan K-12 Standards, Science:

GRADE	1	2	3	4
MDE SUBJECT	Engineering Design	Structure and Properties of Matter	Forces and Interaction s	Engineering Design
		Engineering Design	Engineering Design	
MDE CODES	K-2-ETS1-1	2-PS1-1	3-PS2-1	3-5-ETS1-1
	K-2-ETS1-2	K-2-ETS1-1	3-5-ETS1-1	3-5-ETS1-2
		K-2-ETS1-2	3-5-ETS1-2	

GRADE	5	6-8	9-12
MDE SUBJECT	Structure and Properties of Matter	Structure and Properties of Matter	Structure and Properties of Matter
	Earth's Systems	Energy	Engineering Design
	Engineering Design	Human Impacts	
		Engineering Design	
MDE CODES	5-PS1-4	MS-PS1-3	HS-PS2-6
	5-ESS3-1	MS-PS3-2	HS-ETS1-2
	3-5-ETS1-1	MS-ESS3-2	HS-ETS1-3
	3-5-ETS1-2	MS-ETS1-1	HS-ETS1-4

Explanation of How Civil Engineering applies to the Above Curriculum Codes:

Structure and Properties of Matter: Concentrate on the hydrothermal nature of concrete curing and the chemical reaction of water + cement + gravel. This reaction creates silicone-based crystals within the cement, gives off heat from the hydrothermal reaction, and requires consuming water to keep the reaction constant. A

lot of MDOT projects use concrete and keeping the reaction constant through water fogging and temperature control is a high priority during construction.

Earth's Systems: Dams inherently effect the surrounding ecosystem and waterways for miles. To prevent yearly flooding and increase traffic access MDOT builds culverts, dams, and channels. Channeling waterways help give access to traffic and building development but may raise flooding risk if a structural failure occurs.

Energy: Water has inherent potential energy when being released from a high point. Equating water to electricity using the same mathematical equations is how MDOT bases the size of its waterway structures.

Human Impact: As more vehicle mobility is needed more waterway structures are needed. These structures are designed to minimally impact the surrounding ecosystem and waterway flow but structure failure causes sudden wide range impacts. Natural disasters will use the force of nature to revert waterways back to what they previously were, resisting or overtaking the structures in its path.

Roadways will also affect wildlife ecosystems, especially highways that may interrupt natural habitats. MDOT does many environmental studies and applies for DEQ permits to ensure minimal impacts to the surrounding ecosystem and habitats.

Engineering Design: MDOT uses numerous programs and engineering/tech teams to bring a project from design plans to a constructed structure. The most math and engineering intensive projects are usually for small renovations, emergency repairs, or long-standing travel issues. Simple questions such as "Can we had a extra traffic like on this cable without needing a stronger strain pole?" will lead into numerous calculations using physics and matched with construction specifications to a construction company bidding the job and ordering materials.

The most challenging issue is not the physics of the problem but what other structures or utilities are affected by the change. If you get larger aluminum or steel pole for more signals it will need a larger and deeper foundation that could impact utilities next to it. From here more calculations must be done to see if the utilities that may carry water/sewer pipes can be moved.