High School Physical Sciences							
NGSS Code	Performance Expectations	Bridge Builder Module					
		Structural Concepts	Beam Me Up	Bridge Analysis	Draft It Up!	Basic Box Bridge Structure	Improved Box Bridge Structure
HS-PS1	Matter and Its Interactions						
HS-PS1-1	Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.						
HS-PS1-2	Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.						
HS-PS1-3	Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.						
HS-PS1-4	Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.						
HS-PS1-5	Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.						
HS-PS1-6	Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.						
HS-PS1-7	Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.						

HS-PS1-8	Develop models to illustrate the changes in			
	the composition of the nucleus of the atom			
	and the energy released during the processes			
	of fission, fusion, and radioactive decay.			
HS-PS2	Motion and Stability: Forces and Interactions			
HS-PS2-1	Analyze data to support the claim that			
	Newton's second law of motion describes the			
	mathematical relationship among the net			
	force on a macroscopic object, its mass, and			
	its acceleration.			
HS-PS2-2	Use mathematical representations to support			
	the claim that the total momentum of a system			
	of objects is conserved when there is no net			
	force on the system.			
HS-PS2-3	Apply scientific and engineering ideas to			
	design, evaluate, and refine a device that			
	minimizes the force on a macroscopic object			
	during a collision.			
HS-PS2-4	Use mathematical representations of			
	Newton's Law of Gravitation and Coulomb's			
	Law to describe and predict the gravitational			
	And electrostatic forces between objects.			
по-го2-3	evidence that an electric current can produce			
	a magnetic field and that a changing magnetic			
	field can produce an electric current			
HS_PS2_6	Communicate scientific and technical			
115-1 52-0	information about why the molecular-level			
	structure is important in the functioning of			
	designed materials			
HS-PS3	Energy			
HS-PS3-1	Create a computational model to calculate the			
	change in the energy of one component in a			
	system when the change in energy of the			
	other component(s) and energy flows in and			
	out of the system are known.			
HS-PS3-2	Develop and use models to illustrate that			
	energy at the macroscopic scale can be			
	accounted for as a combination of energy			
	associated with the motion of particles			
	(objects) and energy associated with the			
	relative position of particles (objects).			
HS-PS3-3	Design, build, and refine a device that works			
	within given constraints to convert one form			
	of energy into another form of energy.			

HS-PS3-4	Plan and conduct an investigation to provide			
	evidence that the transfer of thermal energy			
	when two components of different			
	temperature are combined within a closed			
	system results in a more uniform energy			
	distribution among the components in the			
	system (second law of thermodynamics)			
HS_PS3_5	Develop and use a model of two objects			
115-1 55-5	interacting through electric or magnetic fields			
	to illustrate the forces between objects and the			
	changes in energy of the objects due to the			
	interaction			
HS_PS/	Wayes and Their Applications in			
115-1 54	Technologies for Information Transfer			
HS-PS4-1	Use mathematical representations to support a			
110 1 0 1 1	claim regarding relationships among the			
	frequency wavelength and speed of waves			
	traveling in various media			
HS-PS4-2	Evaluate questions about the advantages of			
	using digital transmission and storage of			
	information.			
HS-PS4-3	Evaluate the claims, evidence, and reasoning			
	behind the idea that electromagnetic radiation			
	can be described either by a wave model or a			
	particle model, and that for some situations			
	one model is more useful than the other.			
HS-PS4-4	Evaluate the validity and reliability of claims			
	in published materials of the effects that			
	different frequencies of electromagnetic			
	radiation have when absorbed by matter.			
HS-PS4-5	Communicate technical information about			
	how some technological devices use the			
	principles of wave behavior and wave			
	interactions with matter to transmit and			
	capture information and energy.			