

Michigan Connected and Automated Vehicle Working Group

July 22, 2020

Meeting Packet

- 1. Agenda
- 2. Meeting Notes
- 3. Attendance List
- 4. Presentations

Michigan Connected and Automated Vehicle Working Group

July 22, 2020

1 pm - 3 pm

Virtual Meeting Hosted by:

Center for Automotive Research

Meeting Agenda

1:00 PM

3:00 PM

Introduction and Update Zahra Bahrani Fard, Transportation Systems Analyst, Center for Automotive Research Autonomous Trucking: Challenges and Opportunities Cetin Mericli, CEO and Founder, Locomotion Adapting Automated Shuttles During the COVID Crisis Aaron Foster, Solution Engineer, Navya Overview of Michigan CAV Activities Elise Feldpausch, Connected Vehicle Specialist, MDOT Data & The Global Pandemic Bret Scott, Vice President of Partnerships, Wejo Meeting Adjourned

Michigan Connected and Automated Vehicle Working Group July 22, 2020

Meeting Notes

The 2020 summer meeting of the Michigan Connected and Automated Vehicle Working Group was held on July 22, 2020. The event was hosted and attended virtually.

Zahra Bahrani Fard, Transportation Systems Analyst at the Center for Automotive Research (CAR), opened the meeting and discussed the agenda and Working Group's mission. Zahra also highlighted some of the noteworthy industry news. The introduction was concluded by a thanking Michigan Department of Transportation (MDOT), for sponsoring the meeting.

After Zahra's introduction, **Cetin Mericli, CEO and co-founder of Locomation**, discussed the reality of selfdriving systems and provided an overview of his company's approach towards convoying trucks systems. Cetin began by acknowledging the early enthusiasm and optimistic projections that surrounded autonomous vehicles in 2016. He proceeded by explaining some of the difficulties in developing fully autonomous systems and highlighted several gaps between human and robotic perception. Finally, Cetin described Locomation's approach to self-driving; following a path that emphasizes patience, practicality, and safe iterations of their product.

Following Cetin's presentation, **Aaron Foster, Solutions Engineer at NAVYA**, talked about his company's development and activities in the autonomous shuttle sector. Aaron started by providing an overview of of NAVYA's fleet; featuring 160+ "Autonom" SAE Level 3 shuttles, each featuring an electric motor, 15-seat occupancy, and up to 9 hours of runtime. NAVYA's deployments operate on fixed routes, which has contributed to a perfect safety record even after hundreds of thousands of passenger trips. Aaron concluded his presentation by describing the company's involvement in pandemic relief efforts in Jacksonville and Lake Nona, FL. These initiatives helped transport critical resources to Mayoclincs and, and feature NAVYA's first deployment without a human on board.

After Aaron's presentation, **Elise Feldpausch, Connected Vehicle Specialist at MDOT**, provided an overview of Michigan's CAV activities. Elise started by mentioning recent and upcoming developments: the official launch of Michigan's Office of Future Mobility and Electrification, and the development of an MDOT CAV Strategic Plan built on department-wide input and considerations. Next, Elise mentioned two research projects set for completion in 2021; a project highlighting MDOT workforce training and recruitment strategies in the advent of transformational transportation technologies and another project to investigate and improve the operational practices regarding roadside digital message signs. Lastly, Elise described MDOT's early efforts to implement a real-time Transportation Infrastructure Data Exchange (TIDE) system, which would function as a centralized platform to support the continuous exchange of transportation data among MDOT and other stakeholders.

Following Elise's presentation, **Brett Scott, Vice President of Partnerships at Wejo**, gave a presentation that highlighted Wejo's ability to capture and analyze relevant vehicle information. By 2021 the company expects to receive information from approximately 1 in 20 U.S. vehicles and 1 in 50 vehicles in Europe. Brett presented several slides that captured shifts in U.S. traffic and destination patterns due to the recent pandemic. Brett concluded the presentation by discussing Wejo's next steps in helping public agencies plot the implementation of effective future roadways.

The meeting adjourned at 3:00 pm.

MDOT maintains a webpage dedicated to its work related to CAV technologies (http://www.michigan.gov/mdot/0,1607,7-151-9621_11041_38217---,00.html). The page includes documents, presentations, and other materials that may be of interest to CAV stakeholders. Meeting packets containing materials (agenda, meeting notes, attendance, and presentation slides) from past Michigan Connected and Automated Vehicle Working Group meetings are also available on this page.

Michigan Connected and Automated Vehicle Working Group

July 22, 2020

Attendance List

Last name	First Name	Organization
Abbey	Howard	SBD Automotive
Abraham	John	Macomb County Department Of Roads
Alwalie	Hassen	Danlaw
Bahrani Fard	Zahra	CAR
Baker	Amanda	MEDC
Baker	Bert	Great Wall Motors
Bartlett	Kelly	Michigan Department Of Transportation
Beaubien	Richard	Beaubien Engineering
Bergsten	Jeff	Michael Baker International
Brogan	Bridget	UK Department For International Trade
Burrows	Mark	DTMB
Cehaja	Jasna	MDOT
Chakraborty	Prodip	DTMB
Crawford	Tim	Mosaic/Keybanc Capital Markets
Cregger	Joshua	USDOT
Cruz	Benigno	Macomb Community College

Last name	First Name	Organization
Curtis	Mark	Accenture
Dennis	Eric	CAR
Deoliveira	Tanya	Region 2 Planning Commission
Donaldson	Andrew	Danlaw Inc.
Donohue	Denise	County Road Association Of Michigan
Dubois	Dan	Michigan Speedway
Foster	Aaron	Navya
Feldpausch	Elise	MDOT
Filson	Larry	Walbridge
Frazier	Sterling	Atkins
Freeman	Rochelle	City Of Southfield
Gasiorowski	Anthony	WSP
Gettings	Eric	Times Fiber Communications
Gill	Sarah	MDOT
Guo	Xiaoyang	Neusoft Automotive
Halfon	Jesse	Dykema
Hicks	Terrence M.	Metro Strategies, Inc
Hill	Kim	HWA Analytics
Hong	Qiang	CAR
Hutchinson	Cary	Survey Solutions Inc - SSI
Jackson	Gina	Michigan State University
Jones	Rachel	The Road Commission For Oakland County
Jucaitis	Aud	Keybanc Capital Markets
Katsafanas	Jim	

Last name	First Name	Organization
Kelley	Sean	Mannik Smith Group
Kelly	Nelson	Macomb Community College
Land	Barb	Square One Education Network
Lecz	Alan	Washtenaw Community College
Lindenmeyer	Daniel	TASKING
Lyimo	Sia	Western Michigan University
Mahdi	Wardah	
Mbah	Gipson	WSP Michigan
Mclaughlin	Katie	WSP
Mcnamara	David	Brandmotion Solutions
Menon	Cyrilla	Danlaw
Merchant	Adam	Macomb County Department Of Roads
Mericli	Cetin	Locomation
Minarcin	Monika	Accenture
Miners	Ben	IMS
Morell	Scott	Danlaw Inc.
Mueller	Michele	MDOT
Muli	Mahendra	Dspace Inc.
Nelson	Amy	AVL Fuel Cell Canada
Nelson	Meredith	Michigan Department Of Transportation
Nikam	Pratik	Bosch
Perrin	Jacob	Dspace Inc
Nriagu	Emeka	CAR
Perry	Frank	WSP

Last name	First Name	Organization
Peterson	Jeff	First Transit, Inc.
Peterson	Dave	Norma Craun
Peterson	Dave	Norma Group
Pinnelli	Venkata	Danlaw Inc
Pullin	Joseph	Cohda Wireless
Reimnitz	Amber	Michael Baker International
Remias	Steve	Wayne State University
Richer	Thomas	MDOT
Rolina	Thierry	Danlaw
Rosenmayr	Marc	Motherson Innovations
Rouse	Jason	Sekisui Chemical
Rupp	Jeff	
Scott	Bret	Wejo
Schlenker	Ann	Argonne National Laboratory
Sherony	Rini	Toyota
Shreck	Bill	MDOT
Silda	Camille	Macomb County Planning And Economic
		Development Department
Skvarce	Jeff	Continental
Smith	Matt	Michael Baker International
Smith	Brett	CAR
Snyder	Wayne	Nextenergy
Suich	Dale	Independent
Szpytman	Jack	Pilot Systems, Inc.
Talwar	Chris	FEV North America Inc.

Last name	First Name	Organization
Thurston	Karley	Workforce Intelligence Network
Upton	Trevor	KBCM
Walmroth	David	Ann Arbor Autonomous Vehicle Group
Whydell	Andrew	ZF Group
Williams	Kyle	Saferide Technologies
Williams	Chris	SEMCOG
Wright	Brian	Danlaw Inc.
Yang	Ken	AECOM
Zurawski	Ken	KJZ Consulting

CAR CAR

Michigan Connected and Automated Vehicle Working Group

Zahra Bahrani Fard, Transportation systems Analyst, CAR

July 22, 2020

Hosted by: Center for Automotive Research

Meeting Agenda

1:00 PM Introductions and Update

Zahra Bahrani Fard, Transportation Systems Analyst, CAR

Autonomous Trucking: Challenges and Opportunities

Cetin Mericli, CEO and Co-founder, Locomotion

Adapting Automated Shuttles During the COVID Crisis

Aaron Foster, Solution Engineer, Navya

Overview of Michigan CAV Activities

Elise Feldpausch, Connected Vehicle Specialist, MDOT

Data & The Global Pandemic

Bret Scott, Vice President of Partnerships, Wejo

3:00 PM Meeting Adjourned

Working Group Mission

Cooperatively pursue projects and other activities that are best accomplished through partnerships between multiple agencies, companies, universities, and other organizations and that ultimately advance Michigan's leadership position in connected and automated vehicle research, deployment, and operations.

Goals

- Benefit our state and our industry (automotive and more)
- Enhance safety and mobility in Michigan and beyond

Noteworthy Industry News

- CAR Management Briefing Seminars 4-5 August
- Michigan Formally Launched Office of Future Mobility and Electrification, Trevor Paul is the CMO.
- Active Drive Assist will be offered on certain 2021 model-year Ford vehicles.
- Amazon will buy Zoox for \$1.2 Billion.
- The Automated Vehicle Safety Consortium (AVSC) has published best practices for "<u>Passenger-Initiated Emergency Trip Interruption</u>"
- CAR COVID-19 Resources: <u>https://www.cargroup.org/coronavirus-update/</u>

Thank you to our sponsor!

PRACTICAL AUTONOMOUS TRUCKING FOR TODAY

002

ay Convoy / ARC

ÇETIN MERIÇLI, PH.D. CEO & CO-FOUNDER

Locomation, Int. US BOTH 3134440

TEAM

CEO

RAY RUSSELL

HARDWARE PRINCIPAL

ÇETIN MERIÇLI, PH.D. TEKIN MERIÇLI, PH.D. СТО

GLYNN SPANGENBERG SALES

MICHAEL GEORGE VP OF ENGINEERING

TOM KROSWEK BRETT BATTLES, PH.D. **BUSINESS DEVELOPMENT** BOARD ADVISOR

VENKAT RAJAGOPALAN **VP OF PRODUCT**

PROF. ALONZO KELLY CHIEF SCIENTIST

JOHN FORMISANO BOARD ADVISOR

- 100+ years founder experience, 50+ AV systems deployed \checkmark
- Multiple trucking products launched, thousands of units sold \checkmark
- Deep expertise in freight analysis and optimization
- 22 headcount, average engineer AV experience: **14 years** \checkmark

SELECT RELEVANT PAST WORK

SELF-DRIVING 2020: RECTIFIED EXPECTATIONS

Q Quartz

Ford (F) will have a self-driving car with no steering wheels or pedals in 2021

At an event in Silicon Valley, Ford CEO Mark Fields announced that in five years' time, the company intends to have a fully autonomous vehicle on the road.

Aug 16, 2016

Bloomberg

Uber's First Self-Driving Fleet Arrives in Pittsburgh This Month

Sebastian Thrun, the creator of Google's self-driving car project, spent seven years researching autonomous robots at CMU, and the project's former director. ...

Highly Cited · Aug 18, 2016

Los Angeles Times

Look, Ma, no hands: Google to test 200 self-driving cars

Look, Ma, no hands: Google to test 200 self-driving cars ... space for your belongings, buttons to start and stop, and a screen showing where the car is going. May 28, 2014

U Wired

The World's First Self-Driving Semi-Truck Hits the Road

(An autonomous truck could exit the interstate near the end of its journey, park in a designated lot, and wait for a human to come drive it on surface streets to its

Ford CEO Tamps Down Expectations for First Autonomous Vehicles

Too much hype has built up about how soon self-driving cars will hit the road, but they will ultimately change the world, Ford Motor Co.'s chief executive officer ...

Apr 9, 2019

2019

VB VentureBeat

M CNBC

Alphabet exec says self-driving cars have gone through a lot of hype,' but Google helped drive that hype

2019

Waymo executives think people have taken its promises of self-driving cars too seriously. The Alphabet subsidiary went "through a lot of hype that was sort of

Oct 23, 2019

Oct 18, 2018

Washington Post

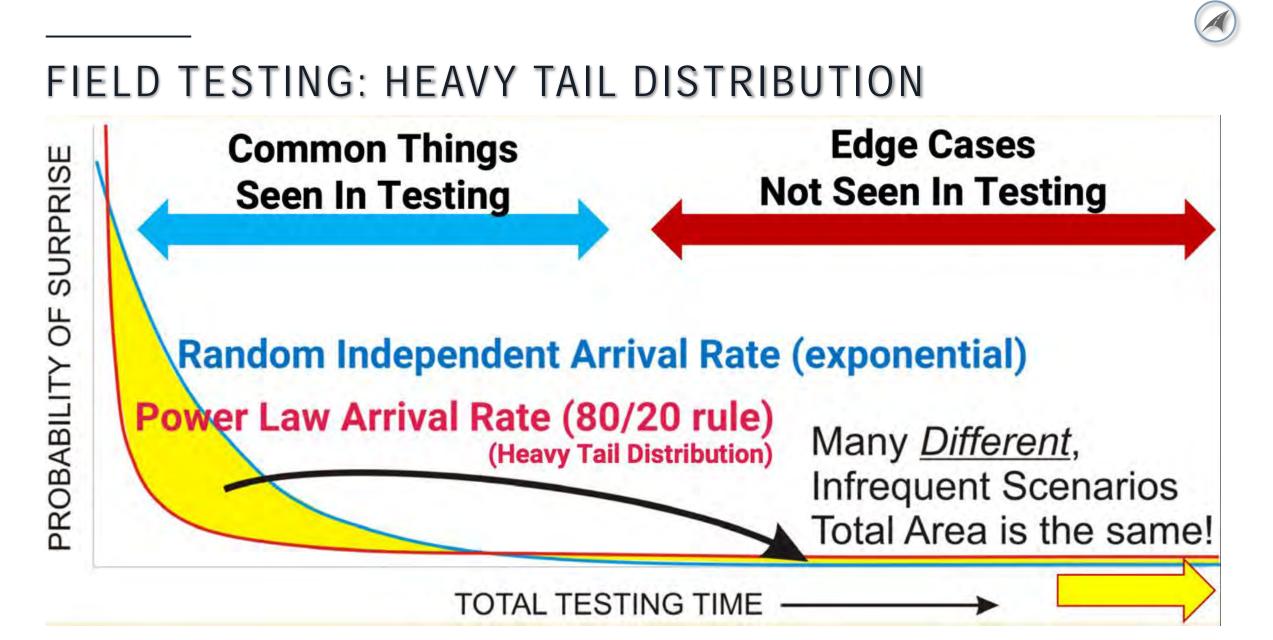
Shaken by hype, self-driving leaders adopt new strategy: Shutting up

PALO ALTO, Calif. - Three former executives at Google, Tesla and Uber who once raced to be the first to develop self-driving cars have adopted a new

2018

2015

2016



WHY AUTONOMOUS DRIVING IS HARD?

- Easy to demonstrate, hard to turn into a robust product
- Uncertainty in the real world is very difficult for robots to model and cope with
 - Humans cause most of the uncertainty
 - Humans are very good at interpreting and coping with each other

https://users.ece.cmu.edu/~koopman/lectures/Koopman19_SSS_slides.pdf

IT IS MORE THAN JUST DETECTING OBJECTS

Maybe careless?

Why did the chicken cross the road?

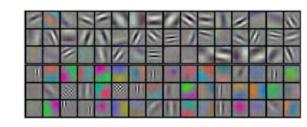
Distracted driver

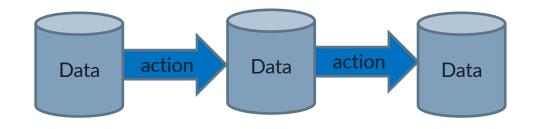
Have a fighter jet in training data?

Not a cone, not a stop sign!

Is half a pick-up still a pick-up?

EXAMPLE: PROBABILITY OF JAYWALKING


ISSUES WITH ML BASED SYSTEMS


Lack of robustness against adversarial perturbations

Lack of introspection and formal frameworks to provide bounded performance guarantees

Real world continuous data from robots violating the i.i.d. assumption

THE LOCOMATION APPROACH TO AUTONOMY

Not an *"if"*, but a *"when"* Not *"what"*, but *"how"*

- Embrace the long path ahead for full autonomy, start with a tangible scope
- Build a true **minimum viable product** and start adding significant value **<u>now</u>**, then iterate quickly
- Make sure there is a viable business with positive unit economics at every iteration
- Incrementally validate the system for increasingly complex applications / domains

LOCOMATION PRODUCT ROADMAP

Mainly long-haul / over-the-road

AUTONOMOUS RELAY CONVOY (ARC[™]) (pilot: 2019 – commercial: 2021)

Initially short-haul, expand the range over time

HIGHWAY FULL AUTONOMY (pilot: 2021 – commercial: 2024)

+ Short-haul, dedicated linehaul / relays

AUTONOMOUS DRONE FOLLOWER, 3 TRUCK CONVOYS (pilot: 2020 – commercial: 2023)

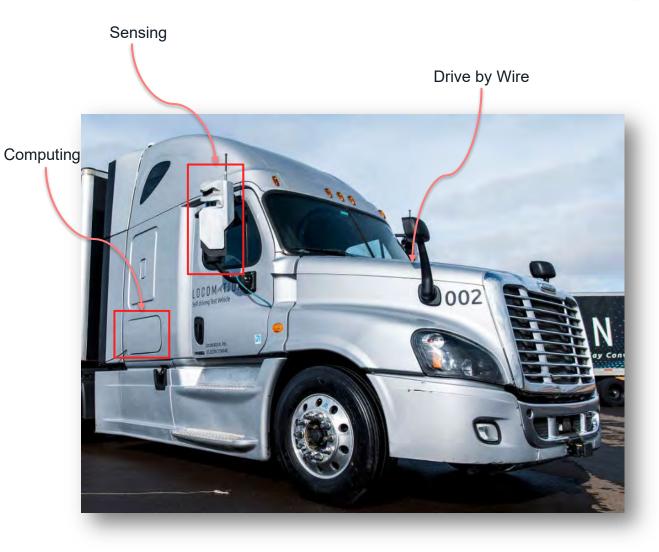
Initially short-haul, expand the range over time

HUB-TO-HUB FULL AUTONOMY

(pilot: 2022 - commercial: 2025+)

AUTONOMOUS RELAY CONVOY

LOCOMATION


Belay Convoy. / ARG

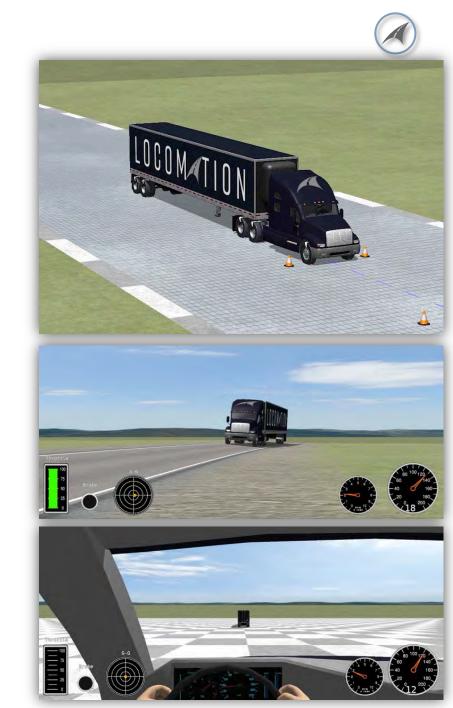
100

00

LOCOMATION STACK

- Autonomy retrofit kit
 - OEM installation in the future
- Compatible with major truck makes/models
 - ~70% of all trucks, >90% of large fleets in US
- Robust, safe, <u>future compatible</u> design
 - Full L4 self-driving capable
- Rapid deployment/scaling on new routes
 - No reliance on infrastructure or HD maps
- Integration with the fleet management systems
 - Optimization/scheduling for convoy dispatching

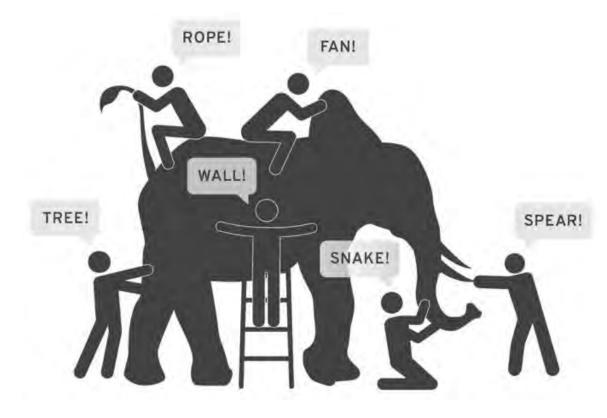
DRIVE-BY-WIRE KIT



SELF-DRIVING TRUCKS: SAFETY

- A fully loaded truck is a 80,000 pound projectile going at 70mph
 - ~30m/s displacement
- Highways are more structured, but semi-trucks pose higher safety risks
 - Zero room for any mishap
 - All it takes is one bad accident
 - Edge cases are less frequent but equally rich

"If you think safety is expensive, try having an accident."



SAFETY - VALIDATION

- Functional safety ISO26262, etc.
- Graceful degradation (lizard brain)
- MTBFs Hardware redundancy
- Top down (e.g., Functional Hazard Analysis, Fault Trees)
- Bottom up (e.g., field testing)

16

• Safety at the system architecture level

WRAP UP


- Humans are lousy drivers but replacing them with machines is still an open science question
- The industry had been suffering from the "Innovator's Dilemma"
- A more efficient, "first principles" approach is viable
- Selecting a domain and application is important from sustenance point of view
- Locomation takes a very strong "last mover" position, filters every assumption through the "know-how" and "know how not to" filters
- Autonomy will first come to freight transportation, and incrementally

Thanks!

5.5

LOCOMATION

@locomationai

@locomationai

cetin@locomation.ai

NAVYA IN A NUTSHELL: A FRONTRUNNER IN THE AUTONOMOUS VEHICLE MARKET

<u>Mission</u>: NAVYA works with cities, communities and private sites from all over the world to improve their transportation offer with its autonomous, driverless and electric solutions

- HEADQUARTERS in France
- 2 PLANTS in Lyon, FRANCE and Saline, Michigan, USA
- 280+ passionate people (December 2019)

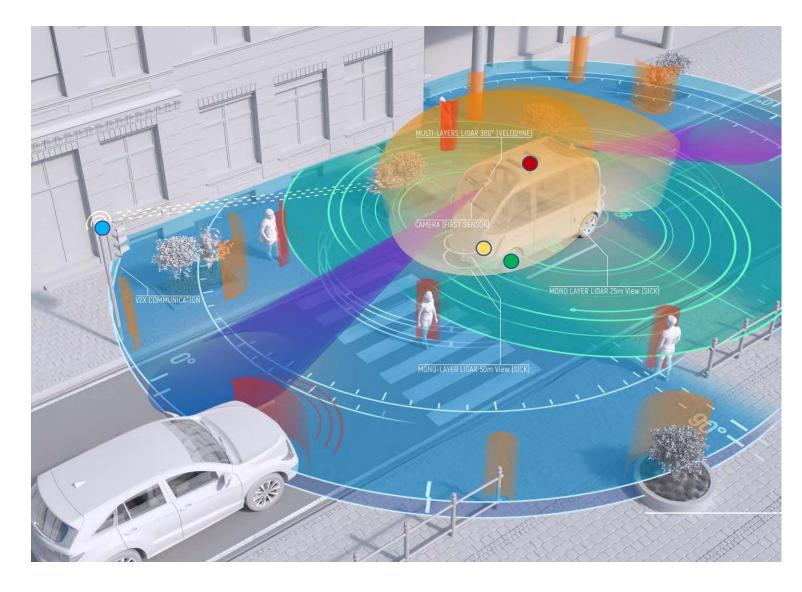
- 160+ VEHICLES sold (December 2019)
- STRATEGIC AGREEMENTS signed with key partners

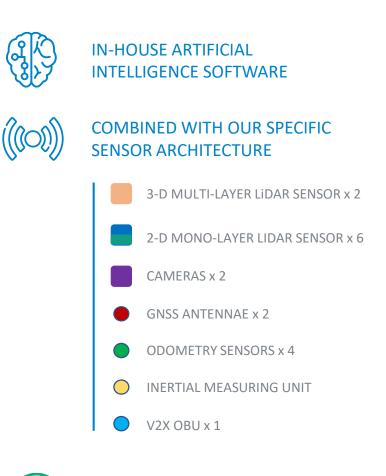
AUTONOM SHUTTLE AT A GLANCE

100% AUTOMATED

100% ELECTRIC

15 PASSENGER MAX CAPACITY 15.5MPH MAX OPERATING SPEED 9H AVERAGE RUN TIME


> NO HEAVY INFRASTRUCTURE NEEDED



ON THE CUTTING EDGE OF MULTISENSOR TECHNOLOGY

PLAY INTERACTIVE PRESENTATION NOW

nguyg

- Navya & BEEP Delivering COVID-19 test samples from a testing site to the laboratory at the Mayo Clinic in Jacksonville, FL
- Navya & BEEP Delivering food to employees at the VA Hospital in Lake Nona, FL
- Hyundai-Aptiv Delivering food to vulnerable families in Las Vegas, NV
- Kiwibot Delivering PPE and hygiene-related products in Berkeley, CA & Denver, CO
- Pony.ai Delivering groceries & packages in Irvine, CA
- Refraction AI Delivering food and essentials from grocery stores in Ann Arbor, MI
- Nuro Delivering prescriptions in Houston, TX
- Cruise Delivering items from food banks to at-risk populations & frontline workers in San Francisco, CA

And many others...

https://www.nhtsa.gov/coronavirus/innovative-automotive-technologies-address-crisis-challenges

JACKSONVILLE TRANSPORTATION AUTHORITY

CUSTOMER	LOCATION	SERVICE OPERATOR	ENVIRONMENT
MAYO	JACKSONVILLE,		CLOSED ROAD LOOP
CLINIC	FLORIDA (US)		AROUND HOSPITAL

MISSION

UTILIZE AUTONOMOUS SHUTTLES TO TRANSPORT COVID-19 TEST SAMPLES AND MEDICAL SUPPLIES, MITIGATING RISK AND LIMITING HUMAN INTERACTION TO POTENTIALLY CONTAGIOUS TEST SAMPLES

MAIN NEEDS

- Safe, controlled transport of potentially contagious and deadly COVID-19 test samples
- Reduce human interaction from the collected COVID-19 test samples
- Provide a transport solution capable of assisting when healthcare staff and resources were limited
- Determine the feasibiility of using autonomous shuttles in a crisis

nauya

VEHICLES

4 AUTONOM SHUTTLES

LAUNCH

March 2020

TRIP

0.8 miles RT (1.28 kilometers)

SCHEDULE

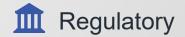
March 30 through May 2020

ΠΟυγο

Overview of Michigan CAV Activities

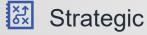
Elise Feldpausch (MDOT)

CAV Working Group • July 21st 2020


Office of Future Mobility and Electrification As announced on February 25th, 2020:

Executive Directive 2020-1 Creates Office of Future Mobility and Electrification

As released on July 2nd, 2020:


Formally launched Office of Future Mobility and Electrification

Trevor Pawl named as Chief Mobility Officer to lead Office of Future Mobility

OFME Strategic Objectives

- Increase Mobility Investment in Michigan: Generate new investment and job creation from tech companies focused on future mobility, including autonomous and electric vehicle innovation.
- Expand Michigan's Smart Infrastructure: Further develop systems for deploying autonomous and shared transportation.
- Engage More Mobility Startups: Establish Michigan as a premier location for young companies to start, scale, commercialize and grow technologies redefining the movement of people and goods.
- Further Enable Michigan's Mobility Workforce: Develop and attract the skills and talent necessary to meet the changing demands of the mobility sector.
- Accelerate Electric Vehicle Adoption in Michigan: Support the transition from internal combustion engine vehicles to electric vehicles and expand access to charging infrastructure.
- **Bolster Michigan's Mobility Manufacturing Core:** Protect the state's competitiveness in electric and autonomous vehicle manufacturing and ability to move technologies into industrial scale manufacturing.

MDOT CAV Strategic Plan

Department Connected and Automated Vehicle Strategic Plan to:

- Articulate the guiding mission, vision, and goals
- Help prepare for the imminent arrival of disruptive technologies
- Educate, engage, and learn from staff
- Encourage thinking about implications, challenges, gaps, and opportunities
- Reflect on what has already been done and identify areas that need further attention
- Define a path for preparedness and technology implementation

Recent Initiative Updates

Timeline for Completion: End of 2020

Strategic

High-Tech Workforce Preparation for Emerging Transportation Technologies

Conduct research on new technologies and associated implementation strategies

Develop a series of recommendations for MDOT units to aid decision-makers in identifying the expertise gap within MDOT's current construction and operation workforce

Provide a set of recruitment strategies and training material for acquisition and (re)training the current and future workforce

Timeline for Completion: June 2021

Recent Initiative Updates

Strategic

DMS Messaging Effectiveness Research

Developing a data driven methodology to assess the effectiveness of different digital message signs, message types and installation locations.

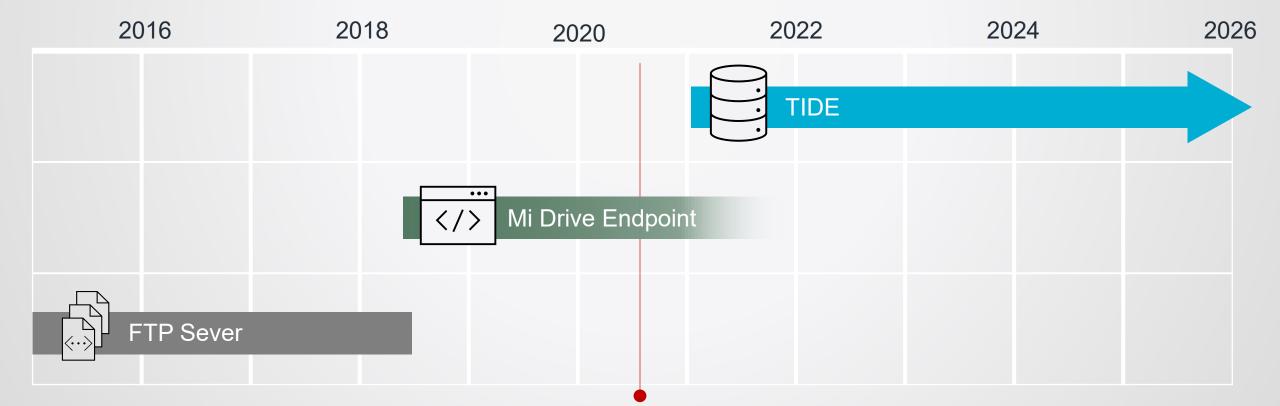
Generating necessary results to allow better allocation of MDOT's resources by investing in effective sign technologies for traffic improvement.

Improving digital message sign operational practices in the state of Michigan

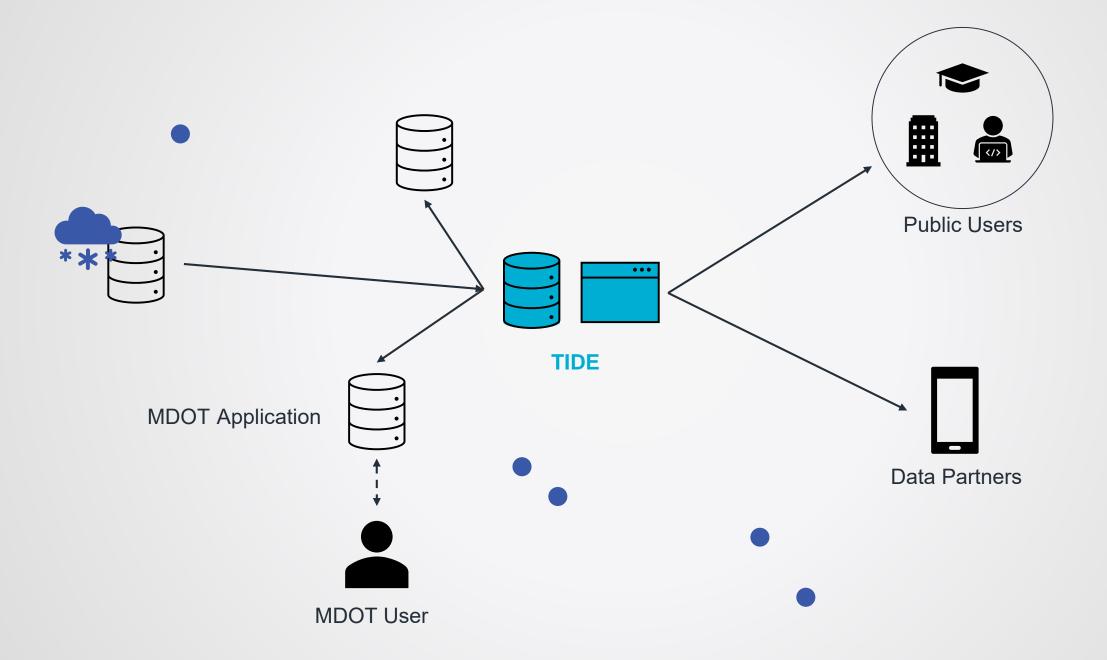
Timeline for Completion: December 2021

Take poll at www.mi.gov/drive

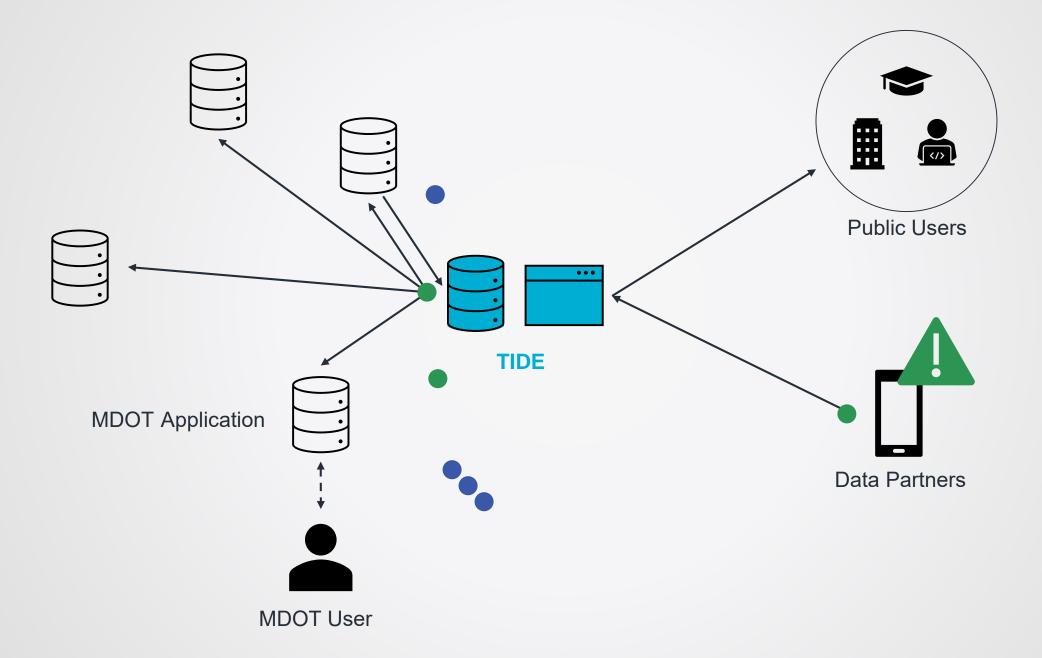
Recent Initiative Updates



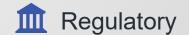
Proposed initiative would create a centralized platform for the realtime exchange of continuous transportation data


Main Benefits:

- Facilitates centralized and abstracted data sharing between MDOT's operations applications
- Allows for the ingestion and distribution of emerging data sources
- Supports federal requirements for Real-Time System Management Information Program
- Replaces legacy and interim real-time sharing systems
- Supports goals in Five-Year Plan and MM 2045 Plan


TIDE would replace legacy and interim solutions for real-time data sharing

High-level System Function – MDOT Data



High-level System Function – Data Partners

Thank you

Elise Feldpausch MDOT ITS Program Office Feldpausche1@Michigan.gov

Wejo

Data & The Global Pandemic: Wejo In Action

MONITORING

98* VISIBILITY

Bret Scott, VP of Partnerships July 22, 2020

2014 Founded 84 150bn+ Employees miles curated 2 trillion+

data points captured

NORTHERN TECH Awards Precented by GREat Hound Winner, Fastest Growing Company 2019

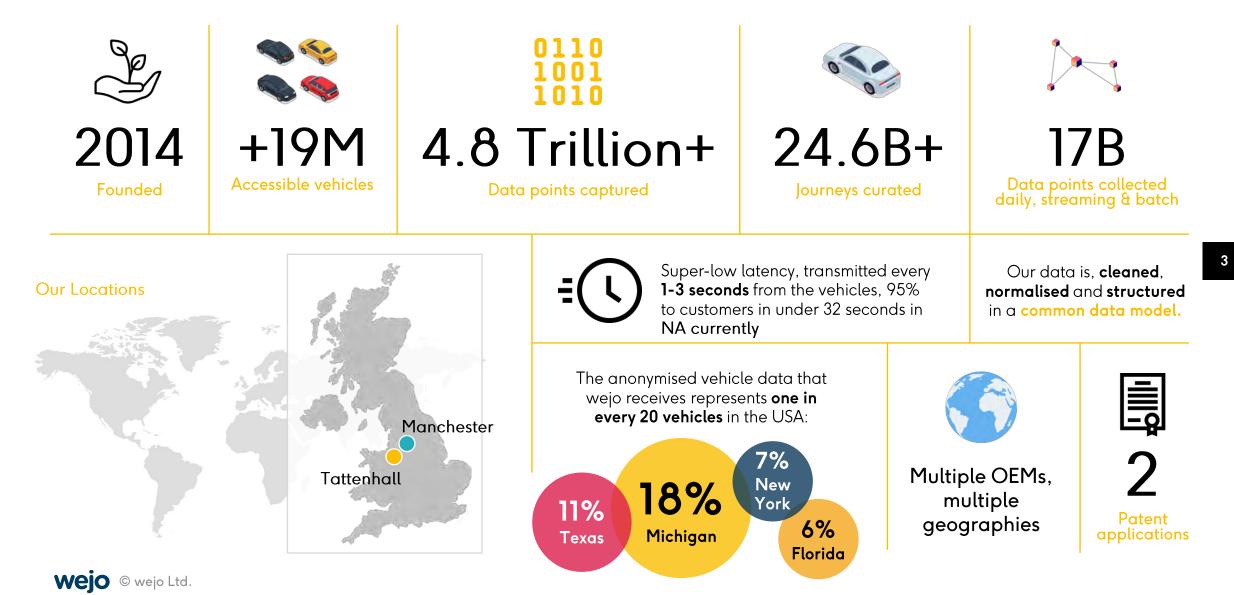
TORQUE

1500 RPM

FROST 🕉 SULLIVAN

2019 BEST PRACTICES AWARD **Winner**, Customer Value Leadership 2019

Agenda In todays webinar we will cover


- An introduction to Wejo
- Our Covid-19 study
- Q&A

2

Wejo story

Wejo connected high speed data car park United States & Europe, 2021

1 IN 20 CARS

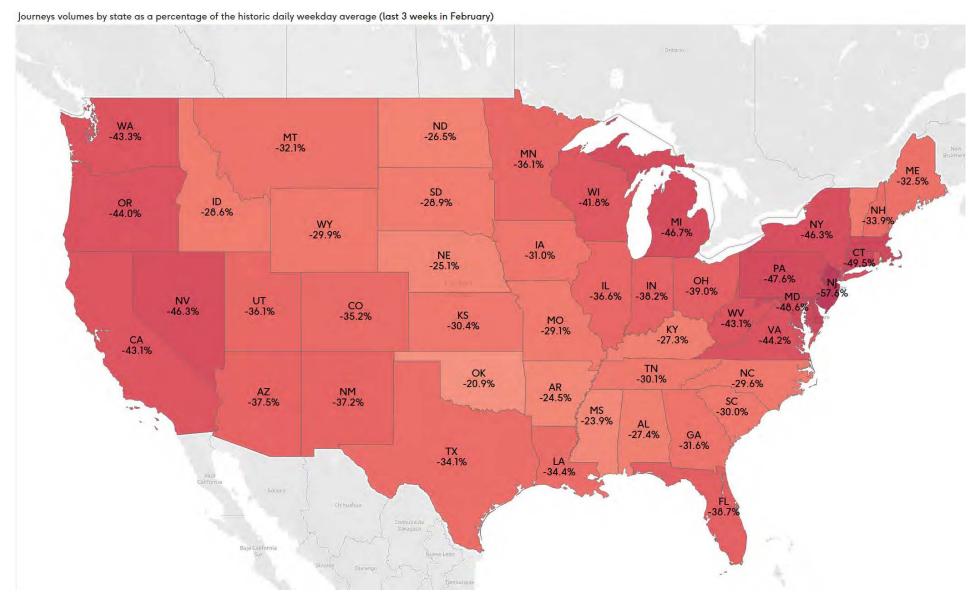
IN THE US

welo

Coverage of all 50 US states, UK and EU27

wejo

Covid-19 study

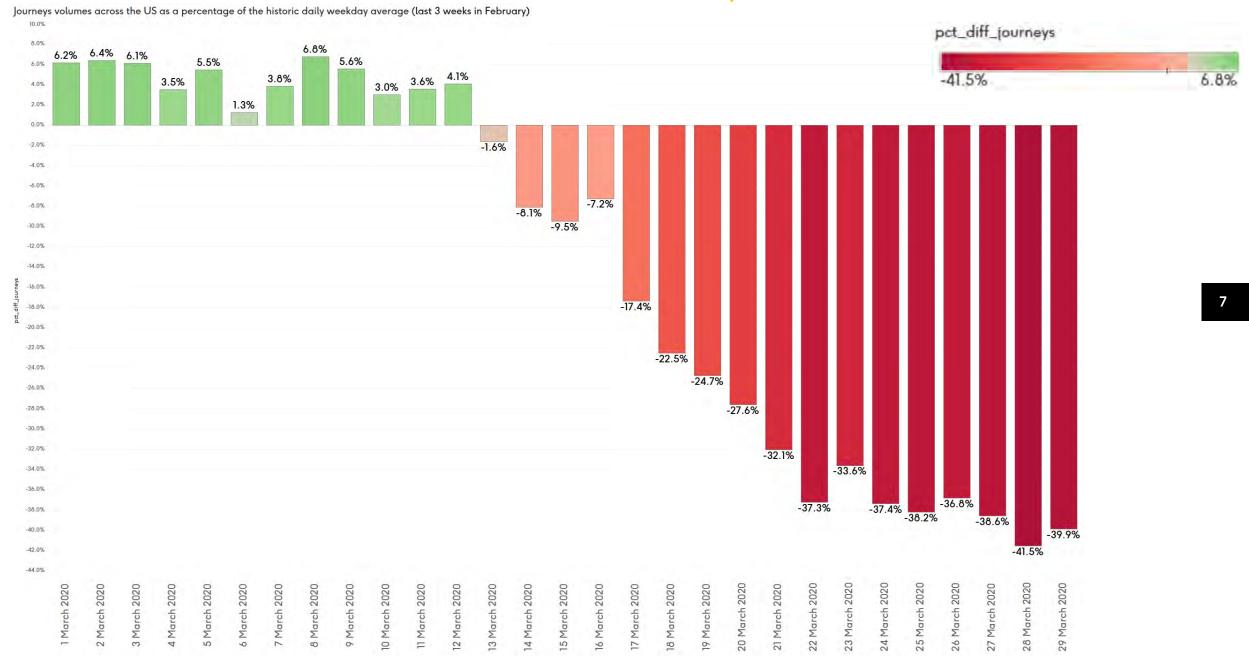

What can Wejo see?

Wejo © wejo Ltd. | Private & Confidential

Jaap Daniel

Jim

All US summary


pct_diff_journeys

6


Study across all US shows following trends,

- Reduced overall journeys
- Increased visits to certain store types

All US summary

CONGESTION ON 09-03-2020

CONGESTION ON 16-03-2020

Austin

WALTER

ELONG

METROPOLITAN

PARK

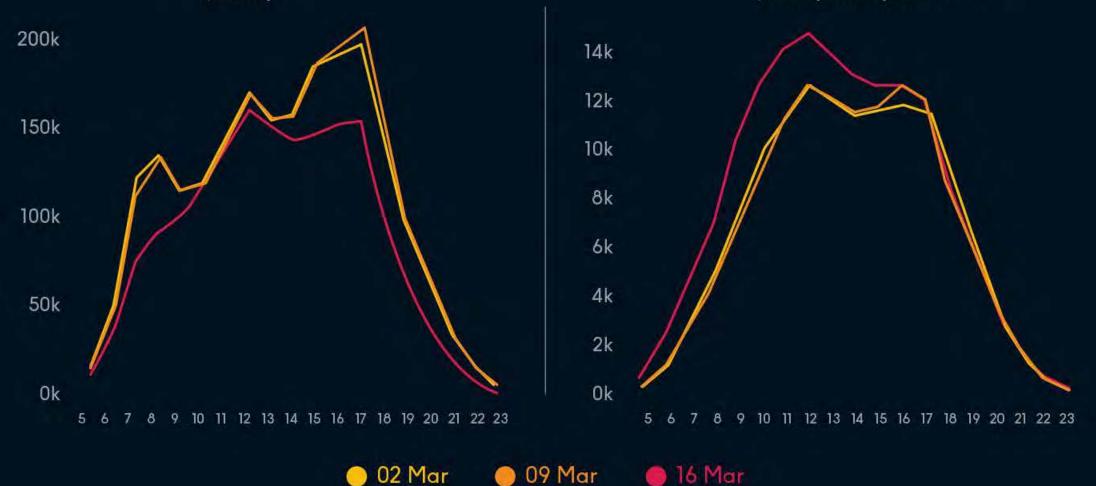
SOME CONGESTION

MORE CONGESTION

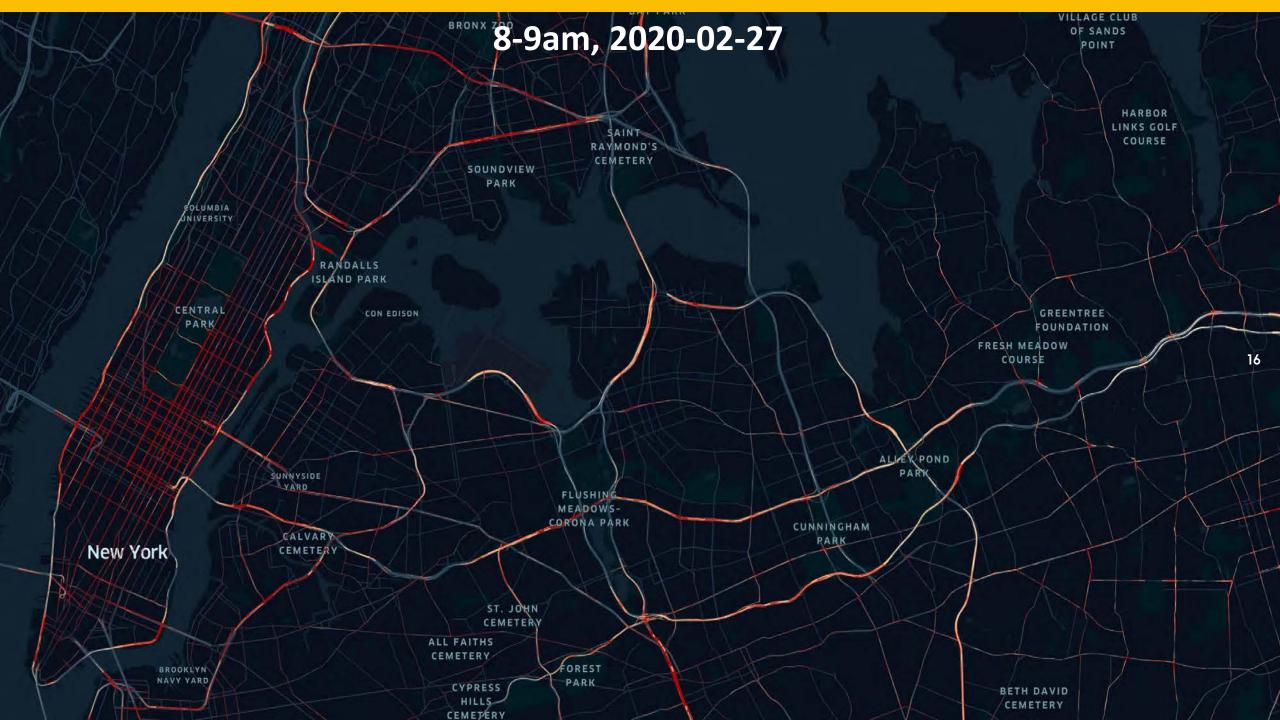
Supermarket visits by time of day in Michigan

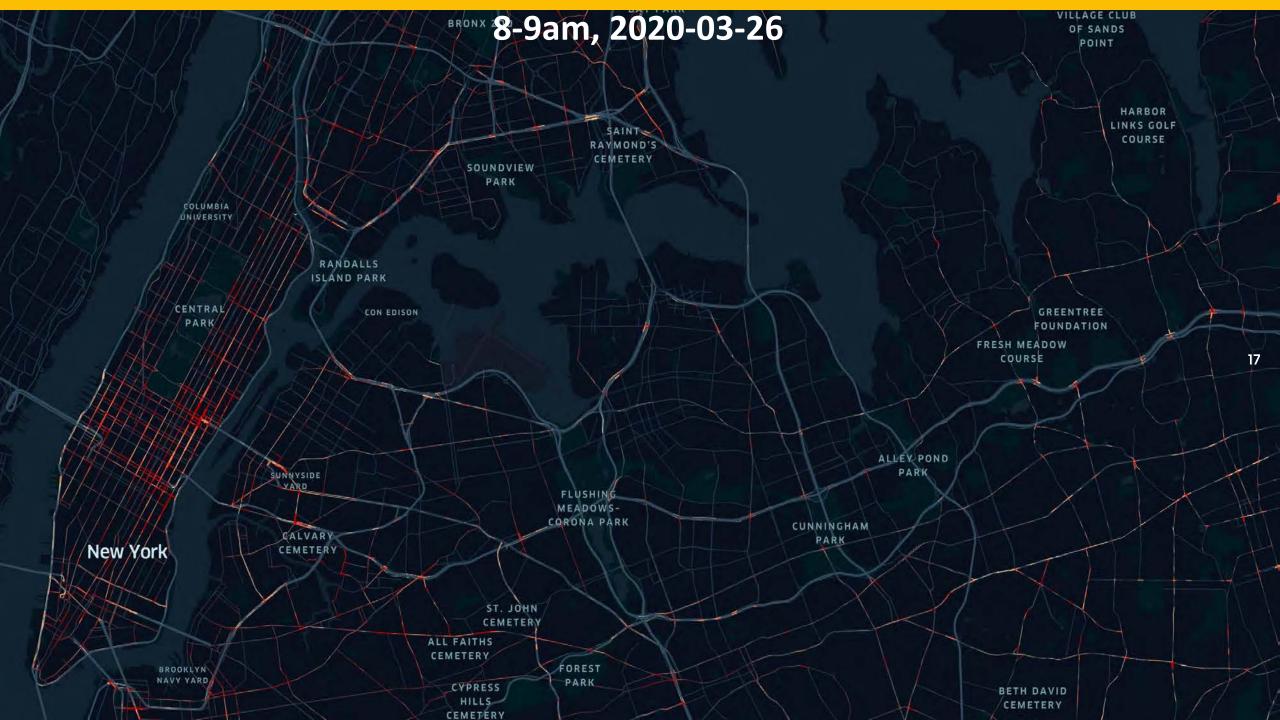
🔵 w/c 01 Mar

⊖w/c 08 Mar

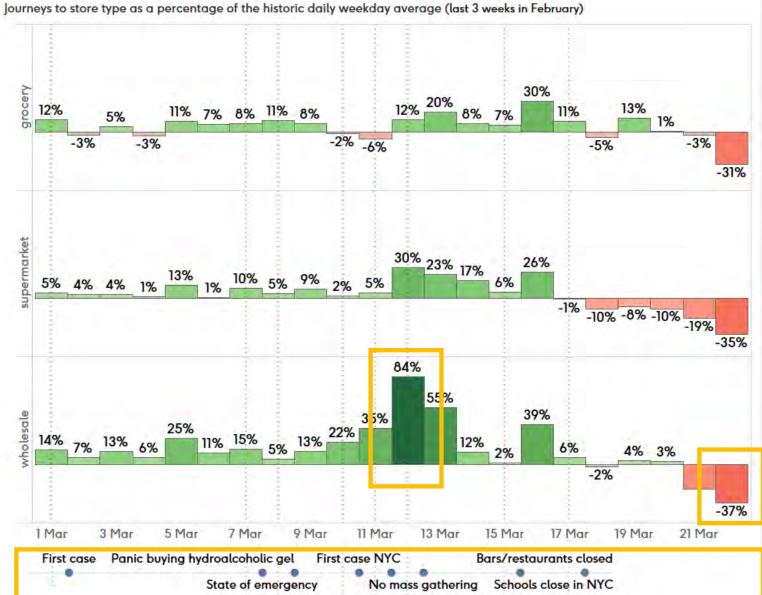

🔵 w/c 15 Mar

Total Journeys vs Journeys to Supermarkets in Michigan


Journeys



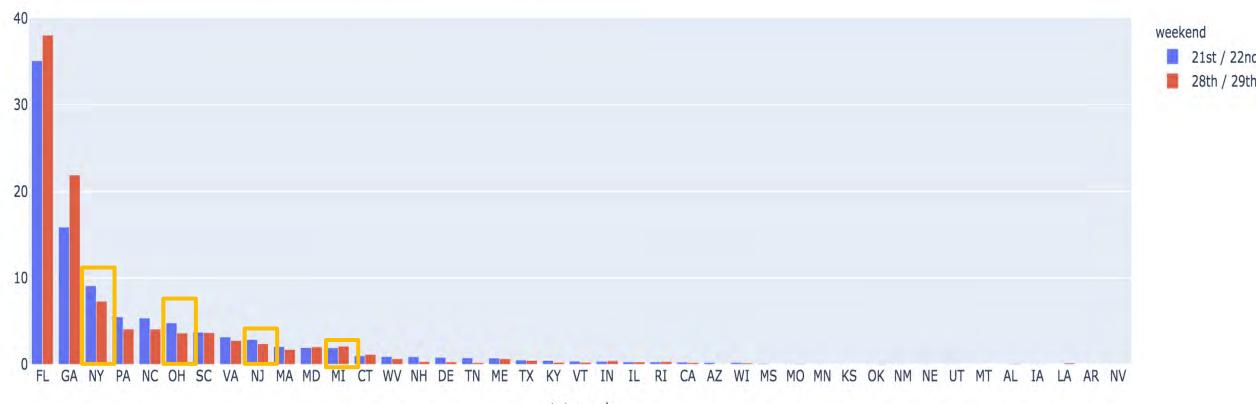
Journeys to Supermarkets



Retail establishments in NY State grocery focus

Wejo © wejo Ltd.

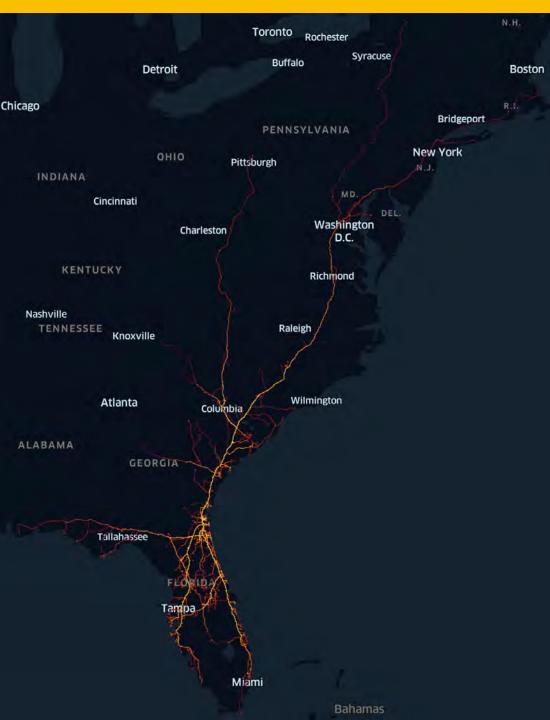
Retail establishments in NY State split by furniture, electronics & malls


Journeys to store type as a percentage of the historic daily weekday average (last 3 weeks in February)

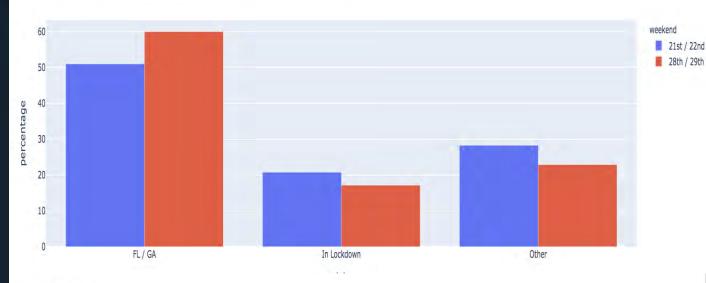
, <u>14% 9% ;</u> -1%	0% 7% <u>13% 0% 2%</u> 2% 2% -1% -1% 3% 8% 4% 10%	-3% -20% -24% -25% -25% -33% - 2% 13% 2% -11% -17% -14% -33% -40% -42% -48% -60% -4
-1%	2% 2% -1% -1%	-3% -20% -24% -25% -25% -33% - 2% 13% 2% -11% -17% -14% -33% -40% -42% -48% -60% -4 10% 28% 9% 20% 20% 8%
-1%	-1% -1%	-20% -24% -25% -25% -33% - 2% 13% 2% -11% -17% -14% -33% -40% -42% -48% -60% -4 10% 28% 19% 20% 20% 8%
-1%	-1% -1%	-11% -17% -14% -33% -40% -42% -48% -60% -40% -42% -48% -60% -40% -42%
210/		-33% -40% -42% -48% -60% -4 10% 28% 19% 20% 20% 8%
21% 7% 15% 1	3% 8% 4% 10%	10% 28% 19% 20% 20% 8%
		-7% -7% -4% -3% -8% -
11% 8% 1	1%	2%
0%	0% -6% -3%	-3% 3% -10% -14% -6% -29% -37% -38% -43% -57% -
10% 3% 6% 2	2% 3% 0%	0% 2%
	-2%	4% -14% -19% -12% -36% -39% -42% -43% -54% -
9% 8% 3	3% 2%	5%
-1%	-3% -2%	-2% 5% -12% -19% -17% -40% -45% -49% -52% -64%
ir 5 Mar 6 Mar 7 Mar B	1 Mar 9 Mar 10 Mar 11 Ma	11 Ma 12 Mar 13 Mar 14 Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20 Mar 21 Ma 2
	r 5 Mar 6 Mar 7 Mar I	

Vehicles traveling to FL during lockdown

Home State of Devices Passing Through I-95 at Florida-Georgia Border


state_code

Florida begins coronavirus checkpoints, threatens jail time for out-of-state travelers who don't selfquarantine


percentage

Florida coronavirus checkpoints screen for motorists from hardest-hit areas

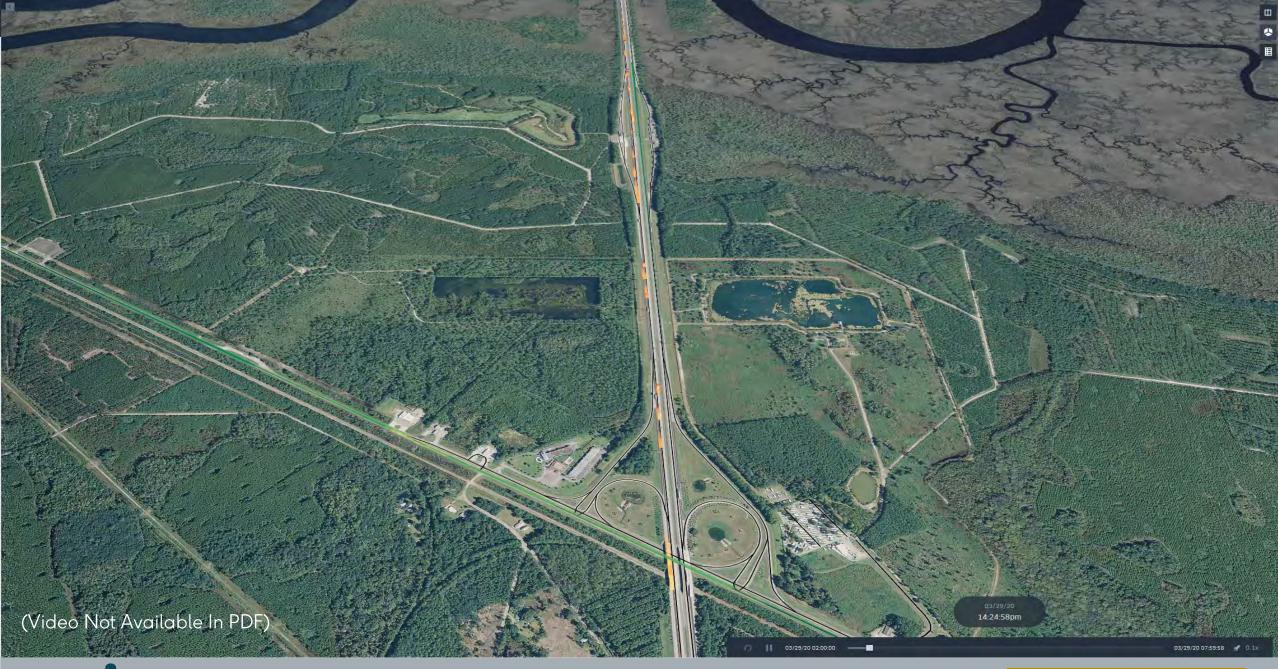
Gov. DeSantis: Rapid tests, travel checkpoints now part of Florida's fight against coronavirus

Home State of Devices Passing Through I-95 at Florida-Georgia Border

7:19 a.m.

Florida checkpoint shut down after causing massive traffic jam on I-95

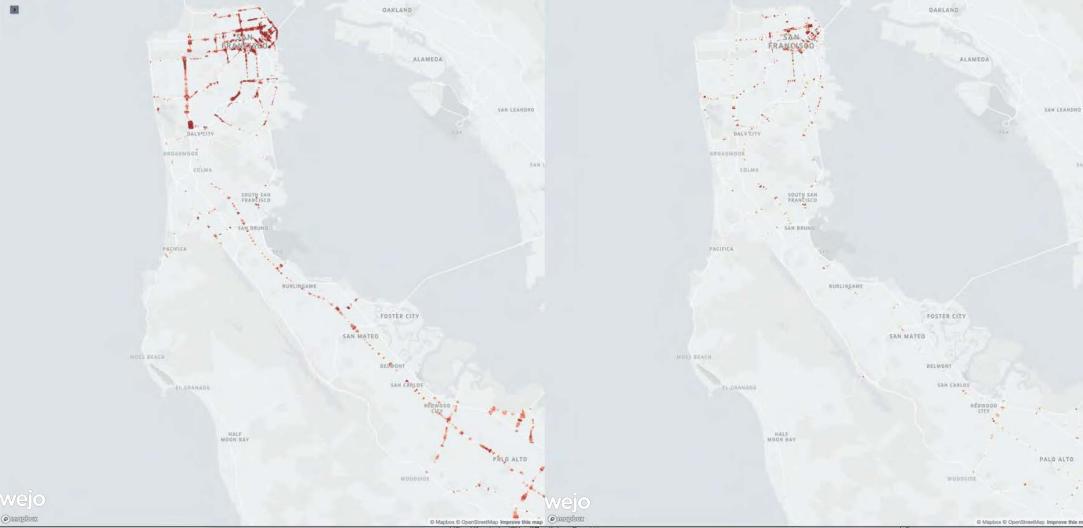
An attempt to screen out-of-state drivers entering Florida backfired on Sunday when Interstate 95 came to a standstill, creating miles of traffic near the Georgia border.



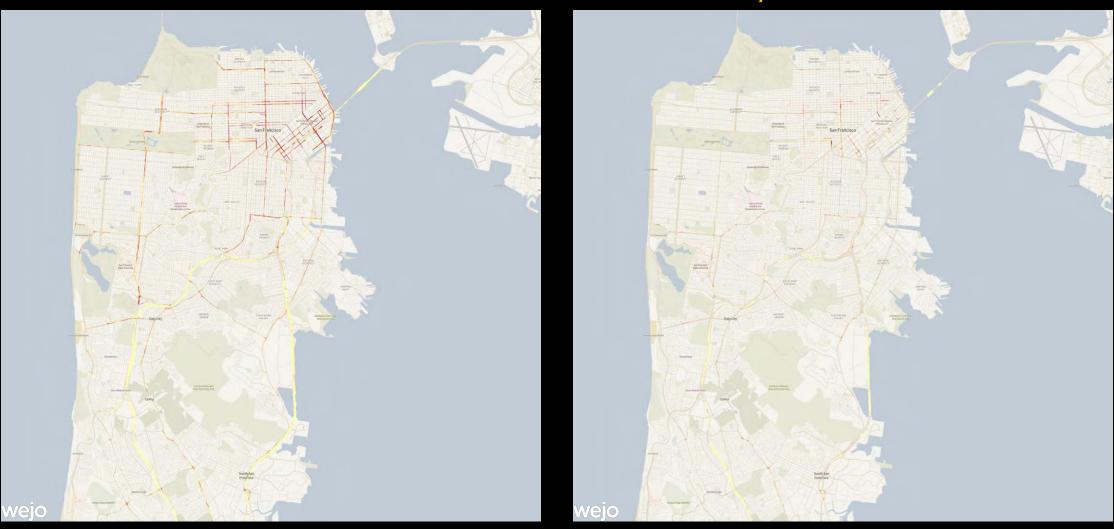
Wow. I-95 south is stopped at the FL state line as the new checkpoint screening begins. I didn't record past a minute but it keeps going into GA. @FCN2go

♡ 142 5:58 PM - Mar 29, 2020

(i)

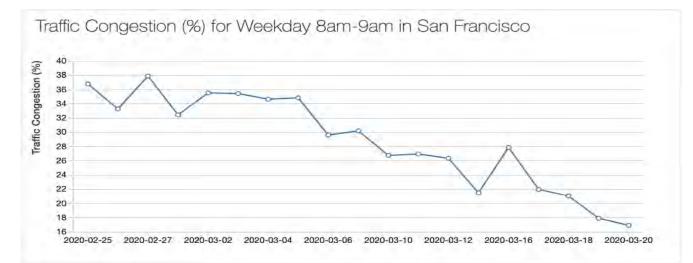


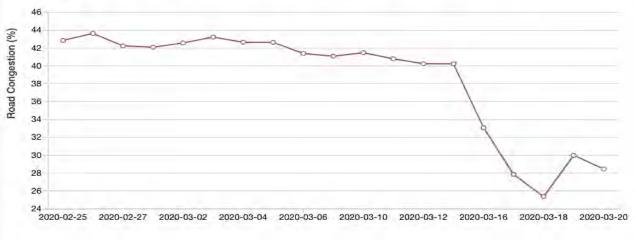
I-95 near Florida/ Georgia


San Francisco case study

Friday 28th of Feb

Friday 20th of March


San Francisco case study


Friday 28th of Feb

Friday 20th of March

San Francisco case study

Road Congestion (%) for Weekday 8am-9am in San Francisco

 In similarity to New York changes in behaviour during announcements over the 3 week period.

WejO © wejo Ltd.

Have further questions? email us at bret.scott@wejo.com

Wejo © wejo Ltd. | Private & Confidential

wejo Data Background

How wejo's data helps studies of this nature

Wejo © wejo Ltd. | Private & Confidential

Jaap

Jim

Introducing Wejo's connected car data

Key features of our rapidly growing, high resolution connected car data asset

3 second capture rate, with a latency of 30 seconds^{*}.

High volume of journeys tracked, 1.3 billion per month.

Accuracy down to 3 metres_t allowing identification of parking areas and speeds on highway lanes.

Historic events providing insight into incident hotspots.

Wejo © wejo Ltd.

95% of data points received by partners in 30 seconds. vejo SLA 60 seconds

Wejo data accuracy and precision

- Our precision is 6 decimal places
 - The blue square illustrates *precision* (the size of the square the lat long represents)
- Our accuracy is up to 3m dependant on points that we will cover
 - The Yellow circle's diameter being 3m shows wejo's CVD (Connected vehicle data) *accuracy* how much the blue square may move based on how well the lat long provided matches where it is

Wejo © wejo Ltd.

31

		Data type	Accuracy
		CVD yellow	Up to 3m*
		Telematics Green	Up to 20m
		Mobile Green	Up to 20m
7		Road sensor blue	10m – 100m
			32

How Maps finds your current location

Maps estimates where you are from sources like:

- GPS: This uses satellites and knows your location up to around 20 meters. Note: When you're inside buildings
 or underground, the GPS is sometimes inaccurate.
- Wi-Fi: The location of nearby Wi-Fi networks helps Maps know where you are.
- Cell tower: Your connection to a cellular network can be accurate up to a few thousand meters.

Source: Google Maps He

https://support.google.com/maps/answer/2839911?hl=en&co=GENIE.Platform=Anc

bid

Class 1 transmitting at 100 mW with a range of 100 meters or 328 feet.
 Class 2 transmiting at 2.5 mW with a range of 10 meters or 33 feet (most Bluetooth headsets and headphones are common Class 2 devices).
 Class 3 transmitting at 1 mW with a range of fewer than 10 meters.

Source: Science ABC https://www.scienceabc.com/innovation/what-is-the-range-ofbluetooth-and-how-can-it-be-extended.html

For illustrative purposes not to scale

Wejo © 2018 WEJO LTD.

Core Vehicle Attributes

Vehicle Movement Data

Core Attributes

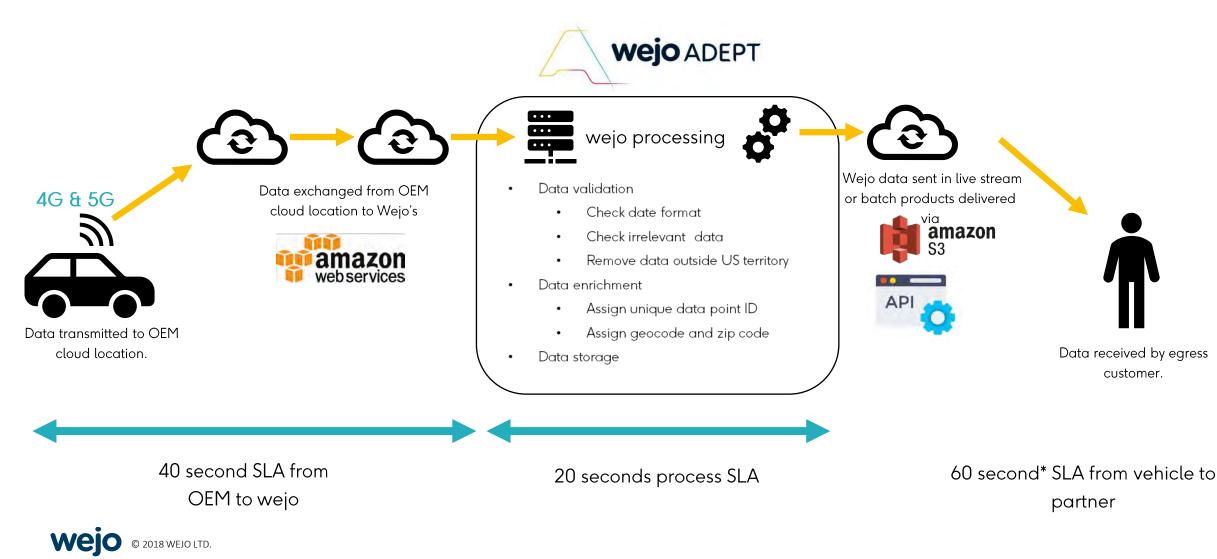
Name	Description	
Data Point ID	Unique identifier for an individual captured datapoint.	
Journey ID	Unique identifier for individual vehicle's movements through to an ignition off	
	event happening.	
Captured data and	Timestamp contured for each datapoint (ISO8601) Including LITC off set	
time	Timestamp captured for each datapoint. (ISO8601). Including UTC off-set.	
Latitude	The North-South positioning of the vehicle on the Earth's surface.	
Longitude	The East-West positioning of the vehicle on the Earth's surface.	
Speed	The speed in kilometres per hour that the vehicle was travelling at the time	
	datapoint was captured	
Heading	The direction that the vehicle was heading at the time the datapoint was captured	
Ignition Status	The ignition status as the time the datapoint was captured	

Optional Attributes

Name	Description	
Geohash	Representation of a square on the Earth's surface.	
Zip Code	The zip or postal code in which the vehicle was located at the time of datapoint capture.	
State / Region Code	The region/state code in which the vehicle was located at the time of datapoint capture.	
Country Code	The country in which the vehicle was location at the time of datapoint capture.	
Squish VIN	A subset of the characters in a standard 17 character VIN solely to describe the vehicle make, model and production year and not to identify individual any vehicle. The first 8 characters with the 9 th character skipped and then the 10 th and 11 th characters.	
Vehicle Make	The make of the vehicle at the time of datapoint capture.	
Vehicle Model	The model of the vehicle at the time of datapoint capture.	
Vehicle Year	The year in which the vehicle was manufactured at the time of datapoint capture.	

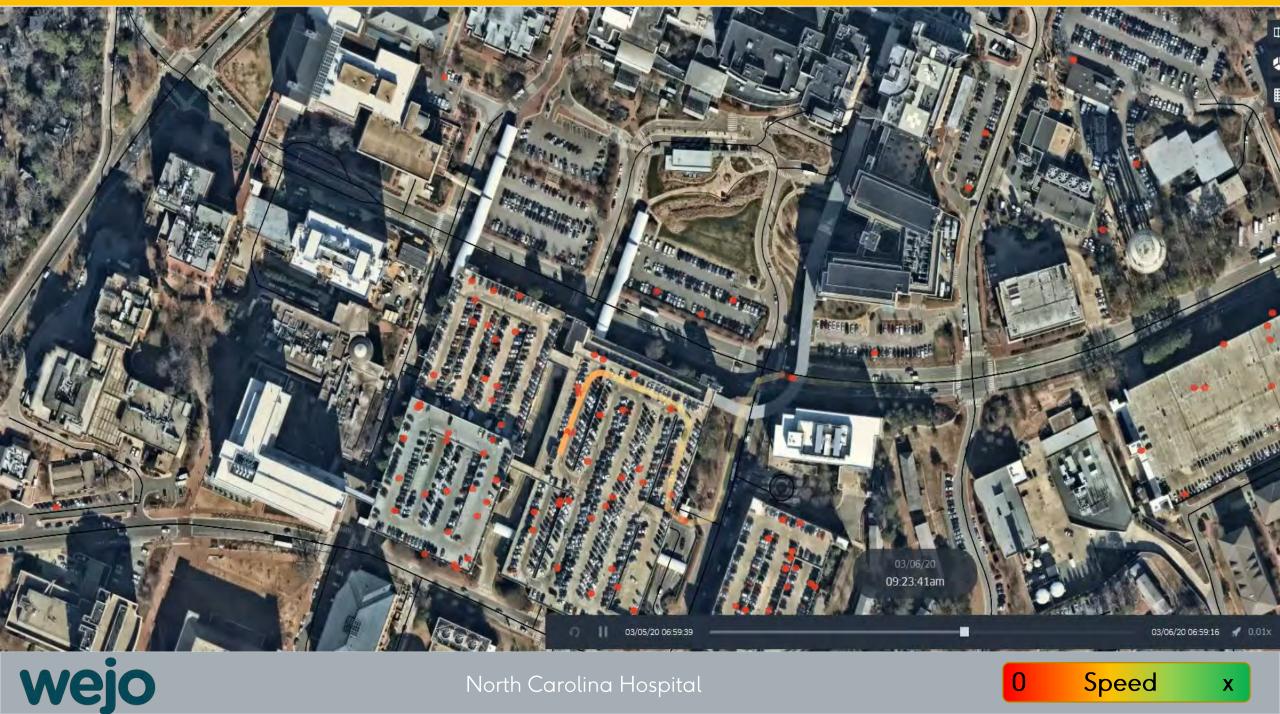
Driver Event Data

Core Attributes


Name	Description	
Datapoint ID	Unique identifier for the for the event	
Trip ID	Unique identifier for an individual vehicle's movements through to an ignition off event happening.	
Device ID	Unique identifier for the vehicle that the event was recorded by	
Captured Date and Time	Timestamp captured for each datapoint.	
Time zone offset	Time zone offset of the captured timestamp	
Latitude	The North-South positioning of the vehicle on the Earth's surface.	
Longitude	The East-West positioning of the vehicle on the Earth's surface.	
Speed	The speed in kilometres per hour that the vehicle was travelling at the time datapoint was captured.	
Heading	The direction that the vehicle was heading at the time the datapoint was captured	
Ignition State	Representation of ignition state when the datapoint was captured	
Event Type	An identifier for the recorded event (See "Event Types" section)	
Journey Event Change Type	Ignition on or ignition off	
Seatbelt Change Type	Latched or unlatched	
Acceleration Change Type	Harsh braking or harsh acceleration	
Speed Threshold Event Type	Speed above or below threshold	
Optional Attribut	00	

Optional Attributes

Name	Description		
Geohash	Representation of a square on the Earth's surface.		
Zip Code	The zip or postal code in which the vehicle was located at the time of datapoint capture.		
State / Region Code	The region/state code in which the vehicle was located at the time of datapoint capture.		
Country Code	The country in which the vehicle was located at the time of datapoint capture.		



Wejo data process

* 95% of data points received by partners in 30 seconds.
 wejo SLA 60 seconds

Wejo data identifying that the new road construction is complete and in use satellite image has not been updated by provider to show new road

North Carolina Hospital

