Michigan Connected and Automated Vehicle Working Group

March 14, 2019

Meeting Packet

- 1. Agenda
- 2. Meeting Notes
- 3. Attendance List
- 4. Handouts
- 5. Presentations

Michigan Connected and Automated Vehicle Working Group

March 14, 2019

Washtenaw Community College

Morris Lawrence Building, Room 101 4800 E. Huron River Dr. Ann Arbor, MI 48105

Meeting Agenda

12:30 PM Registration and Networking

1:00 PM

Introduction and Update

Richard Wallace, Vice President, Transportation Systems Analysis, CAR

Washtenaw Community College Welcome Remarks

Kimberly Hurns, Vice President for Indtruction, Washtenaw Community College

Scalable Cloud-based Simulation: The Key Enabling Technology Making AV's Possible

Jeff Blackburn, Head of Business Development, Metamoto

Importance of High-fidelity Vehicle Dynamics for AV/ADAS Development

Robert McGinnis, Senior Account Manager, Mechanical Simulation Corporation

Linking the World to Sensor Models for Realistic Simulation

Tony Gioutsos, Director Portfolio Developer for Autonomous Americas, Siemens

2:20 PM Networking Break

2:40 PM

Hot Topics Discussion

Scott Shogan, VP, Connected/Automated Vehicle Market Leader, WSP Frank Perry, Principal Consultant, CAV Program Manager, WSP

Update on MDOT CAV Activities

Joseph Gorman, Connected Vehicle Engineer, Michigan Department of Transportation Car Hackers: The Auto Industry's Latest Safety Feature Jennifer Tisdale, Director Connected Mobility & Critical Infrastructure Security, GRIMM

Automotive Cybersecurity

Cyndi Millns, Professional Faculty – Cybersecurity, Washtenaw Community College

4:00 PM Meeting Adjourned

Michigan Connected and Automated Vehicle Working Group March 14, 2019

Meeting Notes

The Winter 2019 meeting of the Michigan Connected and Automated Vehicle Working Group was held on **March 14, 2019** and hosted by **Washtenaw Community College**; the meeting was held at the Morris Lawrence Building, 4800 E. Huron River Dr. Ann Arbor, MI 48105.

Richard Wallace, Vice President, Transportation Systems Analysis, CAR welcomed the Michigan CAV Working Group attendees, reviewed the meeting agenda and mentioned noteworthy CAV (and related) news. Richard also invited **Barb Land, COO of Square One Education Network** to provide a brief introduction to the 2019 Innovative Vehicle Design Challenge which will be held on May 11, 2019, at the Kettering University GM Mobility Research Center, Flint, MI. An invitation to the Innovative Vehicle Design Challenge can be found in the last section of this meeting packet.

Dr. Kimberly Hurns, Vice President of Instruction at Washtenaw Community College (WCC), also welcomed all attendees to WCC. Dr. Hurns highlighted WCC's initiatives related to CAV, ITS, advanced manufacturing, cybersecurity, and mobility education. The goal is to make students ready for the upcoming industry transformation and labor force development. WCC faculty members are pioneers in developing new curriculum and offering new courses in these areas. Sixteen such courses are being offered at WCC now that have helped many students to successfully transfer to four-year colleges.

Jeff Blackburn, Head of Business Development, Metamoto, introduced the start-up simulation company Metamoto. Jeff highlighted that it is statistically impossible to accrue enough real-world testing miles for automated driving systems to validate them as a human-equivalent level of safety. Creating the right testing scenarios that reflect the behavioral competencies (such as freeway high-speed merging) and incorporating them into scalable simulations is the key enabling technology for making AV's possible. Metamoto offers a cloud-based simulation service allowing ADS developers to run hundreds of simulated scenarios overnight.

Robert McGinnis, Senior Account Manager, Mechanical Simulation Corporation, presented the "Importance of High-fidelity Vehicle Dynamics for AV/ADAS Development". Mechanical Simulation Corp offers a simulation platform that emphasizes the physics of complex dynamic mechanical systems. The tool allows for easy manipulation of virtual vehicles to simulate dynamic performance with high-fidelity. An example use-case is predicting the dynamic performance of a vehicle with a variety of load-types, such as pulling a trailer or carrying a roof-rack. Such work is critical for all vehicles regardless of the level of automation. Distinct tools are available for general vehicle type, including CarSim, BikeSim, and TruckSim. Tony Gioutsos, Director Portfolio Developer for Autonomous Americas, Siemens, presented "Linking the World to Sensor Models for Realistic Simulation". Tony started with discussing the necessity of linking detailed world models with sensor models and available modeling framework. Then he introduced the Siemens Prescan Simulation tool. Prescan is an open-architecture simulation tool able to support multiple uses and levels of fidelity. A current focus of the Prescan development team is to develop accurate user-configurable simulations for a variety of sensors. Tony presented approaches for simulating raw camera, radar, and lidar sensor inputs, as well as V2X wireless communication.

After the networking break, Scott Shogan, VP, Connected/Automated Vehicle Market Leader, and Frank Perry, Principal Consultant, CAV Program Manager, WSP, continued the meeting with the Hot Topics Discussions. Scott Shogan briefly recalled high-level discussions from the 2019 Consumer Electronics Show (CES) in Las Vegas, implying that the futuristic hype of previous years has been tempered by the difficult work of real-world deployment. Then, Frank provided a view from his ongoing work with the OmniAir Consortium—a group set-up to certify DSRC V2X devices. Work is ongoing to deploy a U.S. national V2X-based ITS system but has been complicated and delayed by various factors.

Joseph Gorman, Connected Vehicle Engineer, Michigan Department of Transportation, provided an update on MDOT CAV activities, including infrastructure deployment plan (especially in SE Michigan region), CV design and maintenance guidelines, connected signals policy, and current CAV and ITS projects. Michigan continues to deploy a statewide DSRC-based connected vehicle system. An RSU has recently been installed in Houghton. MDOT is soon planning to contract a vendor to set-up a statewide Security Credentials Management System (SCMS) for the various deployments around the state.

Jennifer Tisdale, Director Connected Mobility & Critical Infrastructure Security, GRIMM, presented "Car Hackers: The Auto Industry's Latest Safety Feature." Jennifer highlighted automotive- and defense industry focused on cybersecurity issues and challenges. For example, the risks are associated with EVs and charging stations, shared mobility, connectivity, and increased SW applications. Training and skill development are also essential to the industry.

Cyndi Millns, Professional Faculty – Cybersecurity, Washtenaw Community College, spoke about automotive Cybersecurity. WCC is offering an associate degree in Applied Science Cybersecurity (APSCY). The program features flexible learning environments, industry best practices and certifications, and soft skills development. The cybersecurity degree also works closely with other WCC programs, such as advanced transportation center, mobile hacking workbench integration, and development of certificate in automotive cybersecurity. Industry partnerships are also key to the success of the program.

The meeting adjourned at 4:15.

MDOT maintains a webpage dedicated to its work related to CAV technologies (http://www.michigan.gov/mdot/0,1607,7-151-9621_11041_38217---,00.html). The page includes documents, presentations, and other materials that may be of interest to CAV stakeholders. Meeting packets containing materials (agenda, meeting notes, attendance, and presentation slides) from past Michigan Connected and Automated Vehicle Working Group meetings are also available on this page.

Michigan Connected and Automated Vehicle Working Group

March 14, 2019

Attendance List

First	Last	Organization	Position	
Alex	Sergay	Washtenaw Community College	Senior Instructional Designer	
Anthony	Magnan	Verizon Wireless	5G Solutions Engineer	
Barb	Land	Square One Education Network	C00	
Barbara	Hauswirth	Washtenaw Community College	Experiential Learning Coordinator	
			Program Manager - Autonomous	
Bert	Baker	Great Wall Motors R&D	Vehicle Systems	
Bill	Shreck	MDOT	Interdepartmentl Liaison	
			Dean - Engineering & Advanced	
Bob	Feldamier	Macomb Community College	Tech	
Brandon	Barry	Block Harbor Cybersecurity	CEO	
			Dean of Advanced Technologies	
Brandon	Tucker	Washtenaw Community College	and Public Service Careers	
Chase	Chen	AECOM	Traffic Engineer	
Cheryl	Harvey	Washtenaw Community College	Assistant Director of CS	
Christyn	Lucas	Detroit Regional Chamber	Manager, Business Research	
Corey	Reiter	Morpace, Inc.	Business Development Manager	
Cyndi	Millns	WCC	Professional Faculty	

First	Last	Organization	Position	
		Ann Arbor Autonomous Vehicle		
David	Walmroth	Group	Co-Organizer	
Elizaboth	Nofe	Washtanaw Community College	Currie lure Deciment	
Elizabeth	NOIS	washtenaw community conege	Curriculum Designer	
			Senior Transportation Systems	
Eric Paul	Dennis	CAR	Analyst	
E	N 4:11:			
Erin	wiiligan	P3Wobility	CEO	
Frank	Perry	WSP	CAV Program Manager	
Gary	Streelman	Magneti Marelli	Dir Adv Eng & New Concepts	
Glen	Konopaskie	P3Mobility	Southeast Michigan	
lan	Hubert	MSC Software	Technical Manager	
lacoh	Perrin	dSPACE Inc	Applications Engineer	
54005				
James	Schirmer	Square One Educational Network	Project Specialist	
loffory	Plackburn	Motamoto	Hoad of Business Dovelopment	
Jenery	DIACKDUITI	Metamoto	head of busilless Development	
Jennifer	Hoerz	Bosch	Marketing manager	
1	-		Disease	
Jennifer	lisdale	GRIMM Cyber Research	Director	
Jesse	Halfon	Dykema	Attorney	
Joseph	Gorman	MDOT	Connected Vehicel Engineer	
John	Michalczuk	P3M/Carnrite	Consultant	
		·		
	Macomb County Department of			
Joseph	Bartus	Roads	Traffic and ITS Project Engineer	
Katharin				
а	McLaughlin	WSP		
Ken	Zurawski	Ricardo	Business Development	
Kim	Hill	HWA Analytics	President	
Komal	Doshi	Ann Arbor SPARK	Director of Mobility Programs	

First	Last	Organization	Position	
Kristin	Welch	Bedestrian	Strategy	
Kyle	Williams	Molex	Director	
Kyle	Vano	P3Mobility	Consultant	
			Director Transportation Business	
Mark	Peters	OnBoard Security	Development	
Mark	Davids	CAV Education Network	Board of Directors	
Massimo	Baldini	Tome, Inc.	President	
Matthew	Gibb	The Next Education	Chairman	
Michelle	Mueller	WCC	VP ECCD	
Mike	Blicher	Autotalks	Business Development	
Nathan	Voght	Washtenaw County	Economic Development Specialist	
Neil	Gudsen	Washtenaw Community College	Program Development Manager	
Niles	Annelin	MDOT	Manager	
Nelson	Kelly	Macomb Community College	Assistant Director	
Qiang	Hong	CAR	Senior Research Scientist	
Raymond	Hess	City of Ann Arbor	Transportation Manager	
			Program Coordinator, Civic	
Richard	Murphy	Michigan Municipal League	Innovation Labs	
Richard	Wallace	CAR	VP TSA	
Rini	Sherony	Toyota Motor North America	Sr. Principal Engineer	
Robert	McGinnis	Mechanical Simulation Corporation	Senior Account Manager	
Coott	Chager		VP, Connected/Automated	
SCOTT	snogan	VV SP	venicie Market Leader	
Shugang	Jiang	SF Motors	Sr. Manager	
Sia	Lyimo	WESTERN MICHIGAN UNIVERSITY	STUDENT	

First	Last	Organization	Position	
Stephen	Selander	Selander Law Office, PLLC	Attorney	
		Michigan Economic Development		
Susan	Proctor	Corporation	Strategic Initiatives Director	
Ted	Sadler	Integral Blue	Connected Vehicle Specialist	
Tim	Palmer	MSC Software	Manager	
Tom	Richer	MDOT	ITS Project Engineer	
			Director Portfolio Developer for	
Tony	Gioutsos	Siemens	Autonomous Americas	
Valerian	Kwigizile	Western Michigan University	Associate Professor	
	Sathe			
Valerie	Brugeman	CAR	Senior Project Manager	
			Director Technology	
Wayne	Snyder	NextEnergy	Development	
Zahra	Bahrani Fard	CAR	Transportation Systems Analyst	

Michigan Connected and Automated Vehicle Working Group

Handouts

2019 Innovative Vehicle Design Challenge Competition

Date: Saturday, May 11, 2019

Time:Challenge Competitions 10am to 4pm

Gates open at 8am Location: Kettering University GM Mobility Research Center Kettering University 1700 University Ave. Flint MI 48504

Join us for an amazing day of student led engineering and innovation at the Square One Education Network's 12th Innovative Vehicle Design (IVD) Challenge Competition!

Volunteer here:

https://www.surveymonkey.com/r/IVDVolunteer19

Developing talent for tomorrow's mobility industry workforce is crucial to economic success. Square One links excellent teaching and learning practices to real world engineering challenges to grow skilled, creative and energetic talent. The Square One Innovative Vehicle Design programs showcase the creative engineering strengths of today's students at a regional competition focused on innovative solutions leading to superior vehicle performance.

Teams compete in one of the following challenges: student-built, go-kart sized electric vehicles, autonomous vehicles built on Power Wheels Jeep platforms, and a 1/10th scale radio-controlled re-engineering challenge. Each has a unique connected (V2X) component to the mission challenge.

These three vehicular engineering projects are exciting, complex and relevant learning opportunities to inspire youth toward science, technology, engineering, or math (STEM) oriented career pathways. Join us to meet the 50 competing teams from around the state and see their engineering solutions in action!

Admission is free.

Square One is a Michigan-based 501c3 STEM educational organization serving K-12 students and teachers. Our mission is to empower teachers with a complete set of resources for students to engage, using hands-on learning tools and modern learning fundamentals, with the intent of developing skills needed for the next generation technical workforce. Our vision is to prepare students with the essential skillset for higher learning institutions and the rapidly evolving needs of STEM related jobs.

The Square One Education Network Innovative Vehicle Design Challenge Competition is Made Possible With the Support of...

P3 Group Washtenaw Community College Nissan MIAT College of Technology Michigan Dept. of Talent and Economic Development (TED) Michigan Economic Development Corporation – Planet M MIS Cares ~ AM General ~ NDIA Eisbrenner Public Relations ~ WSP Good Sense Media ~ RC Fun House

Special thanks to our hosts at Kettering University

Attention University & College Students planning careers in Autonomous & Intelligent Vehicles

Intelligent Ground Vehicle Competition

The 27th Annual IGVC 7-10 June 2019 at Oakland University Rochester Michigan

Self Drive Challenge

Competition Objectives

IGVC Student Challenges

- 1. Autonomous Navigation
- 2. Design, Documentation & Presentation
- 3. Computer Architectures
- 4. Self Drive

5. Cyber Security "new for 2019"

AutoNav Challenge

Student Team Benefits

- Full spectrum systems engineering experience for engineering and computer science student teams
- World Class Career building University/College education project experience for Mechanical, Electrical & Computer Engineers and Computer Science Majors
- Direct application to Autonomous & Intelligent manned & unmanned vehicles for the Automotive and Defense Markets
- Provide Industry & Government Managers, Sponsors and Engineers, a multi-day interaction with students, teams and faculty

For Rules and more IGVC Info go to: WWW.IGVC.org

- First full project experience for your resume
- Intelligent & Autonomous proficiency
- Great recruiting by sponsors
- Published technical papers
- Multiple awards; Cash & certificates
- Networking with other US and International students & faculty
- Tailored to support 4-8 credits per year, one or two semesters
- Under-Graduate or Graduate eligible

Student Teams & Robots

2019 IGVC College & University Teams AN - Autonomous Navigation & SD - Self Drive

Bluefield State	AN
Bob Jones University	SD
Boise State University	AN
British Columbia Institute of Technology	AN
Case Western Reserve University	AN
Delhi Technological University	AN
Delhi Technological University	AN
Embry-Riddle	SD
Florida Tech	AN
Florida Tech	SD
Gannon University	AN
Georgia Tech	AN
Hosei University	AN
Indian Institute of Technology Kanpur	AN
Indian Institute of Technology Kharagpur	AN
Lawrence Technological University	AN
Lawrence Technological University	SD
Manipal Institute of Technology Manipal	AN
Michigan Technological University	AN
Millersville University	AN
New York University	SD
North Dakota State University	AN

Oakland University	AN
Oakland University	SD
Ohio University	AN
Old Dominion University	AN
Rochester Institute of Technology	AN
Roger Williams University	AN
SRM Institute of Science and Technology	AN
The Citadel	AN
Trinity College	AN
United States Military Academy	AN
United States Military Academy	SD
Univ. of Detroit Mercy-	AN
Univ. of Detroit Mercy -	SD
University at Buffalo	AN
University of Central Florida	AN
University of Cincinnati	AN
University of Michigan	AN
University of Michigan Dearborn	AN
University of Toronto	AN
Wayne State University Engineering	AN
Western Illinois University	AN
Worcester Polytechnic Institute	AN
	Oakland University Oakland University Ohio University Old Dominion University Rochester Institute of Technology Roger Williams University SRM Institute of Science and Technology The Citadel Trinity College United States Military Academy United States Military Academy University of Detroit Mercy- Univ. of Detroit Mercy- Univ. of Detroit Mercy - University at Buffalo University of Central Florida University of Cincinnati University of Michigan University of Michigan Dearborn University of Toronto Wayne State University Engineering Western Illinois University Worcester Polytechnic Institute

Michigan Connected and Automated Vehicle Working Group

Presentations

CNIDOT

CAR

Michigan Connected and Automated Vehicle Working Group

Richard Wallace, V.P., Transportation Systems Analysis, CAR

March 14, 2019

Washtenaw Community College

Ann Arbor, MI

Meeting Agenda

1:00 PM Introductions and Update

Richard Wallace, V.P., Transportation Systems Analysis Center for Automotive Research

Washtenaw Community College Welcome Remarks

Kimberly Hurn, VP of Instruction, Washtenaw Community College

Scalable Cloud-based Simulation: The Key Enabling

Technology Making AV's Possible

Jeff Blackburn, Head of Business Development, Metamoto Importance of High-fidelity Vehicle Dynamics for AV/ADAS

Development

Robert McGinnis, Senior Account Manager

Mechanical Simulation Corporation

Linking the World to Sensor Models for Realistic Simulation Tony Gioutsos, Director Portfolio Developer for Autonomous Americas, Siemens

2:20 PM Networking Break

2:40 AM Hot Topics Discussion

Scott Shogan, V.P., Connected/Automated Vehicle Market Leader, WSP

Update on MDOT CAV Activities

Joseph Gorman, ITS Program Manager, Michigan Department of Transportation

Car Hackers: The Auto Industry's Latest Safety Feature

Jennifer Tisdale, Director, Connected Mobility & Critical

Infrastructure Security, GRIMM

Automotive Cybersecurity

Cyndi Millns, Professional Faculty – Cybersecurity, Washtenaw Community College

4:00 PM Meeting Adjourned

Working Group Mission

Cooperatively pursue projects and other activities that are best accomplished through partnerships between multiple agencies, companies, universities, and other organizations and that ultimately advance Michigan's leadership position in connected and automated vehicle research, deployment, and operations.

Goals

- Benefit our state and our industry (automotive and more)
- Enhance safety and mobility in Michigan and beyond

Upcoming CAV Events

ADAS Sensors

March 20-21, 2019 | The Henry Hotel, Dearborn, MI

Michigan Defense Expo (MDEX)

April 3-4, 2019 | Macomb Community College (MCC) Expo Center, Warren, MI

• SAE Government and Industry April 3-5, 2019 | Walter E. Washington Convention Center, Washington, D.C.

• 2019 Washington D.C. Auto Show

April 5-14, 2019 | Walter E. Washington Convention Center, Washington, D.C.

• SAE WCX

April 9-11, 2019 | Cobo Center, Detroit, MI

• 2019 Innovative Vehicle Design Challenge

May 11, 2019 | Kettering University GM Mobility Research Center, Flint, MI

Next Gen Mobility Summit

May 23-24, 2019 | Somewhere in Silicon Valley, CA

• TU-Automotive Detroit 2019

June 4-6, 2019 | Suburban Showcase, Novi, Mi

Noteworthy CAV (and Related) News

- The Partnership for Autonomous Vehicle Education (PAVE) was announced in January. Its goal is to educate the public and policymakers about AVs.
- GM is closing factories in the region
 - But Waymo and FCA are adding them
- Meanwhile, Ford and Volkswagen have announced a partnership to make pickup trucks and commercial vans, but they also are exploring collaborations on EVs, AVs, and mobility services.
- Similarly, Daimler and BMW have extended their mobility partnership, which includes five joint ventures:
 - REACH NOW for multimodal services
 - CHARGE NOW for charging
 - FREE NOW for taxi ride-hailing
 - PARK NOW for parking
 - SHARE NOW for car-sharing
- Both Uber and Lyft have announced plans for IPOs sometime this year

Thank you to our hosts!

metamoto

.....

Scalable Cloud-based Simulation: The Key Enabling Technology Making AV's Possible

Jeff Blackburn Head of Business Development Metamoto, Inc.

6+ years experience with Legacy Simulation tools (Siemens Tass PreScan)

10+ years experience in AV development (IVBSS - embedded code development with National Instruments)

Developed and Teach the SAE classes "Introduction to the Highly Automated Vehicle" "Autonomous Vehicle Regulations and Liability" "Autonomous Vehicle Simulation Hands-on Workshop"

The Empirical Problem - Scale

~5 to 9 billion miles required* 95% CI with 5% to 20% degree of precision 100 AV's with 100% uptime \rightarrow 12.5 to 400 years to completion

	Benchmark Failure Rate		
How many miles (years) would			
autonomous vehicles have to be	(A) 1.09 fatalities per 100	(B) 77 reported injuries	(C) 190 reported crashes
driven	million miles?	per 100 million miles?	per 100 million miles?
(1) without failure to demonstrate with			
95% confidence that their failure rate	275 million miles (12.5	3.9 million miles (2	1.6 million miles (1
is at most	years)	months)	month)
(2) to demonstrate with 95%			
confidence their failure rate to within	8.8 billion miles (400	125 million miles (5.7	51 million miles (2.3
20% of the true rate of	years)	years)	years)

* "Driving to Safety: How Many Miles of Driving Would it Take to Demonstrate Autonomous Vehicle Reliability?", Nidhi Kalra, Susan M. Paddock, RAND Corporation, 2016

The Tactical Problem - Testing Coverage

The relevant real-world cases (accidents) shouldn't be reproduced in the real world

Shadow Driving/Partial AV is neither adequate or safe

Using Simulation Efficiently

Physics based sensor models ~5% of all simulations

Full Stack with high
fidelity sensor models
~45% of all simulations

Testing of algorithms and sub-systems Simplified to high fidelity sensor models depending on SUT ~50% of all simulations

Scalable Simulation Drives AV Performance

California Miles Per Disengagement - 2018

Source: California DMV

Waymo and Simulation

Waymo is performing millions of simulations per night

"In raw miles, Waymo is by far the leader," said Grayson Brulte, a Beverly Hills-based driverless industry consultant. "They're like Jesse Owens or Carl Lewis – running a 100-meter dash around everybody."

Scalable Simulation Drives AV Performance

Disengagements / Simulation Hours

Simulation Hrs

Behavioral Competencies - An Overview

Edge cases should be classified and categorized into behavioral competencies Don't test useless miles

NHTSA 28 behavioral competencies 19 behavioral competencies Waymo Total 47 behavioral competencies

Behavioral Competencies - Example

Scenario Perform High-Speed Merge (e.g., Freeway) Parameterization 8 variables with 5 possible values per variable $5^8 = -400,000$ test cases (without intelligent parameterization) 10 scenarios are required per behavioral competency Assume Each behavioral competency has a possible 4,000,000 test cases

~200,000,000 test cases are required to prove out all 47 behavioral competencies

The Legacy Scale Problem - Serial Test Execution

~200,000,000 test cases are required to prove out all 47 behavioral competencies

Legacy Simulation – Serial Test Execution 5 minutes per simulation $\rightarrow \sim 25,000$ simulations per year $200,000,000 / 25,000 \rightarrow \sim 8,000$ years (or Workstations) ~\$45k per workstation \rightarrow \$1.80 per simulation

Cloud Based Simulation – Parallel Test Execution 10,000 parallel instances $\rightarrow \sim 250$ million simulations per year $200,000,000 / 250,000,000 \rightarrow \sim 10$ months \$3 per hour \rightarrow \$ 0.42 per simulation

Assumes running 8/5/260 (Typical use case)

The Legacy Scale Problem - Serial Test Execution

~200,000,000 test cases are required to prove out all 47 behavioral competencies

Legacy Simulation – Serial Test Execution 5 minutes per simulation $\rightarrow \sim 105,120$ simulations per year $200,000,000 / 105,120 \rightarrow \sim 1,903$ years (or Workstations) ~\$45k per workstation \rightarrow \$.43 per simulation

Cloud Based Simulation – Parallel Test Execution 10,000 parallel instances $\rightarrow \sim 1$ billion simulations per year $200,000,000 / 1,000,000,000 \rightarrow \sim 2 \text{ months}$ \$3 per hour \rightarrow \$ 0.00003 per simulation

Assumes running 24/7/365 (Max Thru-Put Use Case)

Product Offering

Designer *Scenario Creation* Script AV Exercises

Expose Parameters

Director Cloud Simulation

Scalable, On Demand Usage Based Pricing

Analyzer Simulation Replay

Analyze Results AV Debugging

Integration

Modern DevOps Processes

Operate

Tools Bamboo Jenkins Jira Jama GitHub Bitbucket

Parameter Exploration

Environmental Factors

Do Not Distribute Proprietary and Confidential

Hardware Factors

Sensor Simulation

Camera / IR Camera

Spectral Density Lens Distortion Dirty Lens Foggy / Wet Lens Vignetting & Bloom

Lidar

Beam Widening Multiple Returns Material Reflectivity Atmospheric Attenuation

Radar

Custom Scan patterns MIMO Multipathing Clutter Material Properties Micro-Doppler Custom Waveforms

GPS / IMU

Positional Noise Gyro Noise / Bias Accelerometer Noise / Bias Abbe Error

BSM 1 & 2 Multipathing Dropped packets Signal Fade With Distance

Sensor Simulation

Visible Light Configurable Camera Settings

•	Image output type	•	Dirt te
•	Encoding of the image data published to the data bus	•	Level
•	Frame width in pixels	•	Bloom
•	Frame height in pixels	•	Vignet
•	Frame rate	•	Fogge
•	Vertical field of view	•	Wet le
•	Pixel size in micrometers	•	Stuck
•	Focal length in millimeters	•	Low lig
•	Lens radial distortion coefficient k1	•	Labele
•	Lens radial distortion coefficient k2	•	Origin
•	Lens radial distortion coefficient k3	•	Cropp
•	Lens tangential distortion coefficient t1	•	Object
•	Lens tangential distortion coefficient t2	•	Remo
•	Principal point x offset	•	Object
•	Principal point y offset	•	Minim
	Enables or disables HDR	•	Minim

- exture to use
- of dirt on the lens
- ning
- etting
- ed lens
- ens
- pixels
- ight noise
- ed image output by their ground-truth object type of corner of the image data
- bing
- t list output
- ove outlier pixels
- ct types to report
- num width (in pixels) for detection
- num height (in pixels) for detection

Sensor Simulation

Low distortion regular lens

frameWidth: 1280 frameHeight: 720 pixelSize: 4.08 focalLength: 3.8 distortionK1: -0.06 distortionK2: 0.0005 distortionK3: 0 principalCxOffset: 0 principalCyOffset: 0

Full frame distorted wide-angle lens

frameWidth: 1280 frameHeight: 720 pixelSize: 7.32 focalLength: 3.01 distortionK1: -0.12 distortionK2: 0.01 distortionK3: 0 principalCxOffset: 0 principalCyOffset: 0 fullFrame: true

Do Not Distribute Proprietary and Confidential

Uncropped 120° fisheye lens

frameWidth: 1280 frameHeight: 1280 pixelSize: 4.36 focalLength: 1.61 distortionK1: -0.06 distortionK2: -0.1 distortionK3: -0.43 principalCxOffset: 0 principalCyOffset: 0 fullFrame: false

System Architecture

Overview

Director

metamoto

System Under Test (SUT) Integration

- Containerized External Code
- Sensors \bigcirc
- Controllers driving data, processing, etc. Ο
- Vehicle Dynamics 0

gRPC and Protobuf API Publish – Subscribe Data Bus SUT Connector for Local Testing

metamoto

BAIDU APOLLO INTEGRATION Feeding raw sensor data from Metamoto simulation into Apollo and visualizing its perception stack output

apollo

The Solution

Scalable, cloud based simulation, integrated into an continuous build and test software development workflow, is the key enabling technology making AV's possible

Questions? jeff.blackburn@metamoto.com 650-313-3649

Patha COPILORMAN MARANT

Mechanical Simulation Snapshot

- University of Michigan / UMTRI origins
- Founded 1996
- 50 Empolyees
- 7 Global Agents
- Customers in 60+ countries

carsıм strucksım bikesım

Mechanical Simulation 🔿

40+ Worldwide Car and Truck OEMs

тм

Technology Partners

тм

Accurate High-Fidelity Vehicle Dynamics

Mechanical Simulation 🔘

Car/Truck/BikeSim

Braking Steering Powertrain Suspension kinematics Suspension compliance Tire models **Driver models** Autonomous driving Weight distribution **Fuel economy** 3D roads Road roughness **Traffic vehicles** Pedestrians **ADAS Range sensors** Camera sensors VS/Python scripting

2000 1000 -Time - sec

Vehicle Simulation and Testing Platform

Tire Models

Steering Models

Driver Models

Autonomous and ADAS Systems:

- Lane Keeping / departure
- Cooperative Active Cruise Control
- Forward Collision
- Level 4/5 Handoff
- Sensor Models

VS Commands scripting Python Matlab/Simulink, LabView, ASCET API - C/C++ HPC and Cloud Computing

Driving Simulators

VS Connect

Active Suspension Models

Testing Complex Driving Sequences

ESC/ABS/Traction Controllers

ICE and Hybrid Powertrain Controllers

MATLAB/Simulink Interface (when necessary)

Scopes - Pressure
Pressure

- S-Function loads the CarSim Solver
- Use Simulink from CarSim
- Use CarSim from Simulink
- Multiple S-Functions support running multiple vehicles in the same simulation (CACC for example)

Multiple Car Interactions

Mechanical Simulation \bigcirc $_{\text{\tiny M}}$

Autonomous Vehicles from Recent Futurists

- Never crash
- Never exceed .3g acceleration
- Straight to Level 5
- Mass deployment in 2021 models

- Passenger sickness
- Pedestrian bullying

OEMs have Invested Millions in Simulation

- Software tools
- HIL benches
- Test equipment
- Data storage
- Engineering
- Validation and Certification

Value

- Trusted technologies
- Reduce time to market
- Improves domain knowledge
- Continual validation

- Wide range of maneuvers
- Road surfaces
- Weather conditions
- Vehicle payloads
- Controller settings

All AV Companies Understand Simulation is Essential

- 8,000,000,000,000 miles are required
- Tests must be run every night/day
- Pass/Fail must be analyzed automatically
- How is pass/fail determined?
 - Variance from path lane keeping
 - Avoidance of collision how much distance is ideal
 - Reduction of energy in collision
 - Network benefit if we all stop...we won't get anywhere
- Trusted Simulation is the only answer.

Bicycle Model / Game Engine Model

First model taught at university

Bicycle model - very limited

Game Physics – more sophisticated, not intended for engineering

Minimal Degrees of Freedom

Cannot handle wide range of vehicles: motorcycle, tractor-trailer, etc.

Nobody has time to second guess unproven/unvalidated physics

High-Fidelity Models Provide

- ABS/ESC/TC controls
- Active dampers, torque vectoring, new steering strategies
- Hybrid technologies regen braking
- Loaded vehicles behave differently passengers, roof racks
- Road conditions (crowns, drop off, gravel, pot holes, roughness, ice patches, etc.)
- Understeer/oversteer
- Ackerman steering
- Comprehensive tire models
- Sensor motion (roll, pitch, yaw)
- Ride motion is important

VS Visualizer - TruckSim - 9A Mobile crane w 5 driven axles <* TS 2018 - Very Large Vehicles:
 File View Playback Plot Tools Help

Connectivity Required for Complete Solution

- Developing driver controls
- Handoff Strategies
- Regression tests
- Hardware-in-the-loop
- Machine learning/optimization
- Mapping
- Scenarios
- Sensor simulation
 - Best of class
 - Prescan

- Matlab/Simulink, C/C++, Python
- Windows, Linux, HIL, Embedded
- AWS, Azure, HPC
- Tools for DOE/optimization
- Tools for Cloud/HPC

Mechanical Simulation 🕡 т

Thank you

- Robert McGinnis
- Mechanical Simulation
- rmcginnis@carsim.com

Linking the World to Sensor Models for Realistic Simulation

Tony Gioutsos - Portfolio Developer TASS - Siemens

World & Sensor Modeling

Unrestricted © Siemens AG 2018

Page 3

The necessity of linking detailed World models with detailed Sensor models SIEMENS Ingenuity for Life

- Simcenter Prescan is constructed from the ground up to perform realistic ADAS/AV V&V
- ADAS/AV Integration environment commercially available since 2006
- Far ahead of the competition

Available Data in the Sensor Processing Chain

Simcenter Prescan

The most realistic and comprehensive solution for Digital Twin of the World

Unrestricted © Siemens AG 2018

SIEMENS Ingenuity for life

Camera Sensor Models

Unrestricted © Siemens AG 2018

Page 7

Physics Based Camera (PBC) Pipeline Overview

8

Page 9

Camera Spectral Density

- The spectrum of light that reaches the lens is calculated
- The user can specify the number of bands to be used.
 - For example 10 bands for visible light (320-720 nm)
- Materials
- Puddles with reflections
- Retro reflections for physics based materials

320 360 400 440

wavelength [nm]

- Assignment of materials to regions/objects
- Environment
- Configuration of sky SPD and intensity

pectral quantity

Ability to control ambient lighting

Spectral bands

Start wavelength [nm]

End wavelength [nm]

Number of Bands

320

720

10

÷

+

+

SIEMENS

Ingenuity for life

Siemens PLM Software

Camera Inputs

SIEMENS Ingenuity for life

Lens modelling

- according to Zmax standard
- Focal length
- Aperture
- Vignetting
- Modulation Transfer Function
- Barrel and Pincushion distortion

Color Filter Array

- RCCC or BGGR filters
- edit the transmittance

Image sensor

- Imager layout
- Imager electrons

Circuit board

- Digital precision
- Off-chip gain

Noise model

- Read noise
- Dark noise
- Photon dependent noise, array uniformity

Lens

Detailed information is available in the manual.

Page 10
Example Usage for Adapting Camera Exposure

Unrestricted © Siemens AG 2018 Page 11

PBC Imagery Injected into NVIDIA Drive PX2 (DIL simulator at Ford September 5th)

Unrestricted © Siemens AG 2018

Effect of Lane Line Corrosion

Lane Corrosion 0%

Lane Corrosion 50%

SIEMENS Ingenuity for Life Lane Corrosion 80%

Unrestricted © Siemens AG 2018

Effect of Lane Line Corrosion

Advanced Camera Model

Sensor Parameters

World Definition

Simulate Light in the Scene

Multi-bounce	Spectral Effects
Weather	Physics Based
Dirt/Dust	Refraction/Reflection
Temporal Effe	ects

$$L_o(\mathbf{x},\mathbf{w}) = L_e(\mathbf{x},\mathbf{w}) + \int_{\Omega} f_r(\mathbf{x},\mathbf{w}',\mathbf{w}) L_i(\mathbf{x},\mathbf{w}') (-\mathbf{w}'\cdot\mathbf{n}) d\mathbf{w}'$$

Radar Sensor Models

Unrestricted © Siemens AG 2018

Object Level Radar/Lidar

AIR sensor

- Idealized radar model
- Bounding box detection
- Occluded targets are visible
- No distortions
- Output on <u>target</u> level

Radar/TIS sensor

- Single-path reflection radar model
- Detection of actual target geometry
- Occluded objects will not be detected
- Distortions like noise, drift and misalignment
- Output on <u>detection</u> level
- Different scan patterns
- Targets have radar cross section (RCS) definition
- Calculation of dB loss (attenuation)
- Use of antenna gain maps

Radar and Lidar sensor settings

- Position & orientation
- Frequency
- •Scan pattern (fixed or user controlled)
- •Resolution cell size (range & angle)
- •Max. detected objects
- •Antenna parameters / gain map
- •Noise, drift and misalignment

Output signals for each target

- •Distance to target (Range)
- •Velocity (x,y,z) relative to target (Rangedot)
- •Detection angles in azimuth (θ) and elevation (ϕ)
- •Local incidence angles in azimuth and elevation
- •Energy loss (dB loss)
- •Target ID and Target Type

Example of Real-time Physics Based Sensor Data- Radar Energy Loss

Unrestricted © Siemens AG

Detailed Physics Based Radar Module (PBRM)

Simulation Overview

Multipath Simulation and Perfect Ground Truth

Unrestricted © Siemens AG 2018

Capabilities

Multipath simulation up to any number of bounces.

- Configurable tradeoff between fidelity and performance.
- Multistatic antenna configurations (MIMO).
- Fully customizable waveforms (FMCW, Fast Chirp Modulation, etc).
- Physical material properties, including polarization effects.
- Clutter simulation.
- Micro-doppler effects.
- Interference between different radar sets..
- Non-perfect component behaviour.

City Example

Camera image from point of view of radar.

Simulated radar data, processed to Range-Doppler

Highway Example

Example without thermal and receiver noise Sweep bandwith 600 Mhz

Verification of RCS - Corner reflector 15dBm2

PBRM Simulation

Denso Measurements

Verification of RCS - Vehicle

PBRM Simulation (YARIS)
Denso Measurements (Prius)

Lidar Sensor Models

Unrestricted © Siemens AG 2018

Point Cloud Sensor

Made for real-time applications

Able to generate 240,000 points and run in real-time for a highway scenario that contains up to 7 target vehicles

Outputs:

Point cloud measurements in x,y,z coordinates Range and angle Intensity values used for object differentiation

PCS Ground Truth

De-clustered Point Cloud Data

Car

Tree

ee

Point Cloud Sensor Settings

Resolution

Horizontal #Samples

:	320	
:	160	

Tre

Tree

Person Car

Field of View

FoV Azimuth [deg] FoV Elevation [deg]

Clustered Point Cloud Data

: 60

: 30

Detailed physics LIDAR sensor model – in development

Detailed Physics Based Lidar Simulation

Unrestricted © Siemens AG 2018 Page 31

Detailed Physics Based Lidar Simulation

Weather Effects

LIDAR sensors are affected by weather (e.g. rain, snow, fog) and dust. Therefore it is important to simulate how light from a LIDAR beam scatters in an environment. This can impact both the waveform and the final point cloud generated by the LIDAR

V2X Sensor Models

Unrestricted © Siemens AG 2018

Sensor Modeling V2X

Application layer: Building your control algorithms

Facilities layer: Select your message set using standard message sets in PreScan GUI

	Distance based / ideal sensor No license needed	Fraunhofer statistical sensor Separate license required	Physics based sensor Separate license required	a a a a
Network layer : How is the message distributed?	N/A	N/A	Framework ready Hopping, geo-addressing to be added by TASS or partner in future versions	
Access layer: Message scheduling & queuing	N/A	Effects are lumped	802.11p (ITS-G5,DSRC)	1 0.9 0.8 ਵਿੱਚ 0.7
Radio channel layer	: N/A	in one for spee- model for spee- scenarios	Dedicated radio models	H 0.6 100.6 100.4 100.4 100.4 0.3 0.2 0.1

Conclusions

- It is important to link the world with your sensor models
- Your sensor models should be a tradeoff between computation and realism
- Detailed Physics Based Sensor models were depicted for camera, Radar, Lidar and V2X

THANK YOU!!!!

MICHIGAN DEPARTMENT OF TRANSPORTATION

Statewide CAV Program Update

MISSION

MDOT will work to ensure Michigan remains the national leader in the evolution of CAV technologies, to deliver enhanced transportation safety and reliability, providing economic benefit and improved quality of life.

PROGRAM GOALS

Goal 1: Serve as a national model to catalyze CAV deployment

Goal 4: Accelerate CAV benefits to users

Goal 2: Establish Foundational systems to support wide-scale CAV deployment

Goal 5: Exploit mutual benefit opportunities between CAV tech and other department business processes/objectives

Goal 3: Make Michigan the go-to state for CAV research and development

0

Goal 6: Use Michigan experience to lead dialogue on national standards and best practices

0

Ð

 \Diamond

Infrastructure Deployment Plan

 Expansion underway to create one of the largest CV infrastructure deployments in the world

CV Design & Maintenance Guidelines

Statewide Guidelines Document

- Develop roles and responsibilities for the designer, MDOT, integrator, and general contractor
- Develop criteria for general deployment
- Standards development for different scenarios
 - Freeway vs Intersection
 - Installation on different structure types
 - Communication architectures to be applied
- Plan delivery requirements for different procurement methods

Updating Standards -Connected Signals Policy

- Coordinated effort with Signals Division to update traffic signal controller specification standards
- All new or upgraded traffic signals on the MDOT system will be CV-enabled going forward
- Developing process to configure and test RSUs at Signals Shop

Current CV Efforts

- Working to procure and implement SCMS
- Developing device/backoffice interoperability conformation process.
- Test and deploy ITIS phrase support for TIM.
- Houghton CV Deployment

Upcoming CV Efforts

- Statewide ITS Architecture update to include CV
- US-23 FlexRoute RSU deployment
- Houghton CV deployment/ integration

Communications

Applications

Data

Talent

Research

Vehicles

Infrastructure

Michigan is Open for Business for CV Partnership Opportunities

HACKERS:

THE AUTO INDUSTRY'S LATEST SAFETY FEATURE

March 14, 2019 Connected & Automated Vehicle Working Group **Center for Automotive Research (CAR)**

- Executive Director, MI Homeland Security Consortium
- Cyber-Mobility Program Manager, Michigan Economic Development Corporation
- Cybersecurity Manager, R&D, Mazda North America
- Director, Strategic Partnerships & Transportation Security Programs, GRIMM Cyber Research
- Cybersecurity Director, NDIA MI
 - Cybersecurity: Defense Sector Summit
 - Cyber Military Vehicle Industry Collaboration

What this presentation is NOT...

What This Talk /S About...

- Overview of Automotive Industry
 Trends
- Focus on Cybersecurity Implications
- What Is Working?
- Where Do We Need Improvement?
- Building a Framework
- Embracing Hackers in the Industry
- The Business of Hacking
- Talent of Tomorrow, Today

Automotive Industry Trends & Cybersecurity Considerations

EVs and Charging Stations

The Promise

- Energy Security
- Environmental Benefits
- Cost Savings
- Noise Reduction
- Tax Incentives

The Risk

- Shorter Range
- Long Charging Times
- Bi-Lateral Data
 Exchange
- Data Ownership

Shared, Smart Mobility

The Promise

- Cost-Efficient
- Solve Urban
 Density Issues
- Environmental Benefits
- On-Demand
 Transportation
- Social Experience

The Risk

- The Car is the Center of the IoT discussion
 - DataData
 - Data

Increasing R&D for Connected, Automated & Autonomous Systems

The Promise

- Fewer Fatalities
- Increased Safety
- Economic Empowerment; Commercially
- Traffic Management; Ant Farm Theory

The Risk

- Biometrc Data; Heart, Glucose, Vital Signs
- Increasing Software Applications; POEs
- Shift of Fatality Responsibility; Driver to Programmer
- Secure Vehicle in an Insecure Environment
- Lack of Regulation and Legal Guidance

Positive Cyber Automotive Trends

2017 Car Hacking Village, DEFCON, Las Vegas, Mazda CX-5 R&D Security by Design

Auto ISAC

Meet Ups Industry Professionals

Bug Bounties

Increased Hacker Embrace

Cyber AutoMobility Goals

Building a Framework to Validate Security Products

Legacy System Security Practices

Standardization of Compliance

Investment into Security Similar to Safety

Improved Cyberscurity Organizational Strategy; including IR Plans

Knowledgeable Cyber Automotive Workforce

The Business of Hacking: Planes, Trains & Automobiles (Embedded Systems & Critical Infrastructure)

Creating a business model where a business model did not exist

Changing the narrative around "Hackers"

Bringing Calm to Chaos

Use Moral Compass

The GRIMM Business Model

A SDVOSB* Cybersecurity Firm with a Holistic Approach

CONSULTATION	RESEARCH	TRAINING
 CONSULTATION Technical Consultation 	 RESEARCH Advanced Penetration Testing Reverse Engineering Application of Adversarial Methodologies Embedded Talent 	 TRAINING Defensive Automotive Security Engineering Telematics Security Executive Leadership Applications Security Aerospace/UAV Custom Built
Classified Cyber Ranges		

*GRIMM offers SME's with Secret and Top Secret Clearance

The Talent of Tomorrow, Today: Things to Consider When Hiring a Hacker

Skills

Can they recommend practical and effective counter-measures to their findings?

Education requirements preferred: CS vs Mechanical / Electrical / Systems Engineering

Qualify / Quantify their experience

Beyond Skills

GRIMM

Expensive; Market Competition

Confidential Information is at stake

Do they understand your business needs <u>and</u> technical needs?

Hobbyist vs Professional; Scope-creep

The Common Bond: Cyber Talent Shortage

TWITTER: @GRIMMCYBER

<u>Let's stay in touch!</u>

LINKEDIN: Jennifer E. Tisdale

https://www.linkedin.com/in/jennifertisdale1

WEBSITE: WWW.GRIMM-CO.COM

EMAIL: Jennifer@grimm-co.com

Automotive Cybersecurity

Cyndi Millns, Professional Faculty

Evolution of Cybersecurity

Associate in Applied Science Cybersecurity (APSCY)

- Linux
- Introduction to Programming
- Networking (Cisco CCENT/ICND1)
- System Administration (Client OS and Servers)
- Scripting (PowerShell and Python)
- Introduction to Network Security Security+
- Essentials of Network Penetration Testing (Ethical Hacking)
- Introduction to Cryptography or Cybersecurity Operations
- Network Perimeter Protection CCNA Security

Program Features

- Transferability
- Flexible learning environments
- Industry best practices and certifications
- Soft skills development
- Critical thinking through reverse engineering and analysis

Why Automotive Cybersecurity?

Image courtesy of the U.S. Department of Transportation

2

<u> http://www.informationisbeautiful.ne</u>

Lines of Code

It should not be thought from showe that Soviet party line is necessarily disingenucus and indincers on part of all those who put it forward many of these are too ignorant of outside world and hendally too dependent to question (*) self-hypaoliam, and who have no difficulty maining themselves believe what they find it comforting and convenient to believe. Finally we have the unnolved mystery as to who, if anyone, in this great land actually receives accurate and unbiased information shout outside world. In atmosphere of oriental secretiveness and complexery which pervades this government, possibilities for distorting or poisoning sources and currents of information are infinite. The very disrespect of Rusains for objective truth---indeed, their disbelief in its existence---leads thes to yios all stated facts as instruments for furtherance of one witerior purpose or another. There is good reason to support that this government is

field of international law. This publication has been written with the expectation that the military attorneys making use of it will be provided with a basic understanding of the legal system governing the international community. International haw is an area of jurksprudence which challenges. It quite offen fails to provide voncise "textbook saweers" to problems which reach a degree of complexity far greater than that found in any other legal system. Entrusted with the task of regulating the conduct of international sovereign entities, it is a legal framework which develops on a daily basis. Its successes go largely unnobled, which is failures gain almost instantaneous notoriety and condermation. It is a jurisprudential system particularly unsuited for complexity far soundies and regimented minish. Hopefully, military attorneys will not view the often evident imprecision of international law as a fatal weakness but as an opportunity eritisism and the ability to apply concepts and rules to practical international legal problems must be based on a working, knowledge of the subject mater. The achievement of this and underlies the purpose of this publication.

1 Million

100 Million

14 Million

Ann Arbor, MI

What could go wrong?

Chinese Hackers Find Over a Dozen Vulnerabilities in BMW Cars

🛗 May 23, 2018 🛔 Mohit Kumar

CAR HACKS A Flaw in Your Car Lets Hackers Shut Down Safety Features ANDY GREENBERG

BECURITY A New Wireless Hack Can Unlock 100 Million Volkswagens ANDY BREENBERG

Hackers Fool Tesla S's Autopilot to Hide and Spoof Obstacles

Safety

- Theft
- Terrorism
- Revenge
- Mischief
- Extortion-Ransomware
- Insurance fraud
- Espionage
- Stalking
- Feature de(activation)
- Identity theft
- Counterfeiting

Entry Points for Hackers

- External
 - Bluetooth
 - Internet
 - Wi-Fi
 - Key fob
 - LIDAR Digital broadcasts
 - Tire Pressure Monitors
 - Tail light
 - DSRC

Internal

- Diagnostic Port
- CD/DVD
- USB/SD card
- Aux input
- CAN Bus
- Other networks
- Mobile phone

Automotive Cybersecurity at WCC

Cybersecurity	Cybersecurity	Cybersecurity
Automotive	Manufacturing	Health Sciences
Cybersecurity	Cybersecurity	Cybersecurity
		Cysciscourty
HVAC/Construction	Criminal Justice	Culinary/Hospitality

Mobile Hacking Workbench - ACE

Proposed Certificate in Automotive Cybersecurity

Pre-requisite: Linux

- CST185 Essentials of Local and Mobile Networks
- CSS200 Introduction to Network Security
- CPS171 Intro to Programming with C++ or CPS141 Introduction to Programming using Python
- CSS205 Essentials of Penetration Testing (Ethical hacking)
- CSSxxx Pentesting Automotive Platforms
- Automotive Technology Course (to be determined)

Faculty Preparation

GRÍMM

- Professional faculty in Automotive Technologies, Information Technology & Cybersecurity and Mechatronics
- Grimm's Defensive Automotive Engineering Training
- Non Credit Course Offerings in Intelligent Transportation
 - Intelligent Transportation Systems Basics
 - Automated Vehicle Localization Techniques
- Industry Partnerships

Next Steps

Automotive Cybersecurity Certificate launch

- Program integrations
- K-12 pipeline
- Industry events and partnerships

