Planning for the Direction of Battery Electric Buses

Jared Schnader- National Program Manager, Transit jschnader@calstart.org Michigan Tech Talk

CALSTART's 265 + Member Companies and Organizations

Making Clean Transportation Happen

CALSTART – A National Organization 9 Offices Seven Regional Offices + Two Field Offices

Zeroing in on ZEBS and Inventory Across the Nation

As of December, 2020 there are:

- Total Zero-emission Buses (ZEBs): 2,790
 - Battery Electric Buses (BEBs): 2,703
 - Cutaway Buses (BEB): 617
 - Hydrogen Fuel Cell Buses (FCBs): 87
- An increase of 24% over the last calendar year.
- 229 transit agencies
 - Median number of ZEBs per property is six
 - 57 properties are in California.

https://www.cleantransitnetwork.org/site/wpcontent/uploads/2021/01/Zeroing_In_on_ZEBs_O fficial_Final_Document-Dec-2020.pdf

Battery and Fuel Cell Electric Transit Buses Currently Deployed, On Order, or Soon To Be On Order Within the United States of America

Last Updated: November 11, 2020

What Makes a ZEB Different Than A Conventional Buses?

- The infrastructure is all new for a ZEB
- A small rollout of ZEBs may be easier with a battery bus
 - However when growing the fleet size the cost effectiveness of Hydrogen refueling can in some cases be lower or at parity with a battery electric bus

Assumptions: the Chevv

Volt charging rate is 3.3 kW, the medium-duty E-

Truck charging rate is 15 kW and the E-Bus charging rate is 60 kW.

- Just the access to electric power can be steep and expensive

Planning

- Align short and long-range transit plans
 - Key for future funding and planning
- Energy Consumption Analysis
 - Determination of power needs and operational feasibility
- Utility Engagement
 - Power availability (ask for a site walk)
 - Possible funding for infrastructure
- Identify Funding Opportunities

CALSTART Electric Bus Corridor Model Tool Key Outputs

• Planning Tool to

assess the efficiency of a battery-electric bus on a predetermined route.

 Utilizing route speed, topography, seasonal temperatures, etc.

Energy Consumption Breakdown for the Design Days in Winter and Summer

Key Design Output	
Average Energy Consumption per mile in the design day in Summer (kWh/mi)	4.23
Average Energy Consumption per mile in the design day in Winter (kWh/mi)	5.32
Minim um battery size if using Depot Charger Exclusively (kWh)	732
Minim um required charging power for depot charger if using Depot Charger Exclusively (kW)	66
Minm um battery size if using On Route Charger Exclusively (kWh)	78
Minim um required charging power for on-route charger if using On-route charger exclusively (kW)	224
Minim um battery size if using both Depot and On-route Charger (kWh)	78
Minim um required charging power of depot charger if using both Depot and On-route	7

Energy Consumption Breakdown for the Design Days in Spring and Fall

Additional Key Output for Typical Days in Spring and Fall	
Average Energy Consumption per mile in a typical day in Spring (kWh/mi)	3.54
Average Energy Consumption per mile in a typical day in Fall (kWh/mi)	3.64
Average Energy Consumption per lap in a typical day in Spring (kWh)	31.63
Average Energy Consumption per lap in a typical day in Fall (kWh)	32.52

Additional Technology Considerations

• Data Logging

- Viricti
- Hams (IO Controls)
- Proprietary Software (Connect, APEX, etc.)
- Used in TCO Calculations and Validation
- Smart Charging Software
 - Installed on chargers or the bus
 - Helps to lessen peak demand price issues
- Distributed Energy Resources (DER)
 - Microgrids
 - On-Route Charging capabilities

More Than 30 Transit Style and Cutaway Bus ZEB Products Across

The new phrase in BEBs

EXTENRER BANGE

Nova Bus

Powered by BAE Systems

- Nova + BAE
- Up to 594 kWH of on-board storage
- Overhead or Depot charging available
- 3.25 hours to full charge on either system

New Flyer Xcelsior Charge NG

- Next Generation
- Up to 525 kWH of on-board storage
- Overhead or Depot charging available
- 179-251 Mile range
- 3.25 hours to full charge on either system

- 450 675 kWh battery pack
- 240 329 Mile Range
- 2.9-8 hour recharge time
- Additional front port charging
- Both overhead and in-depot charging available on same bus
- 600v System for faster recharge capabilities

Proterra ZX5

Cutaway / Trans Van BEBs

- Smaller battery sizes: 105kw-130kw
- Often Familiar Bus Builders: Forest River
 - Utilization of "Integrators"
- Smaller Charger Sizes = Less Infrastructure and Power Supply Needs
- Shorter testing life: 5 years
- Approximately 3x the purchase price
- Rapidly expanding market
- Option for auxiliary heater
- Charge Time: 1.5-8 hours depending upon battery and charger size

GreenPower

- Ford Transit-<u>STYLE</u> vehicle
- Based in Porterville, California
- Buy America compliant
- Altoona tested
- Up to 150 miles

Phoenix Motorcar

- Starcraft Body E450 Chassis
- Based in Ontario, California
- Buy America compliant
- Altoona testing to begin Q2, 2021
- 80-150 mile range depending on battery size

Lightning eMotors

- E450 Chassis
- Based in Loveland, Colorado
- Buy America compliant
- Altoona testing to begin Q2, 2021
- Electric Range: 80-120 miles based upon battery size
 - 3 new pack sizes will be available with up to 180 miles of range
 - Ford Transit to be tested as well

Motiv

- E450 Chassis Forest River
- Based in Forest City, California
- Buy America compliant
- Altoona testing to begin Q2, 2021
- Electric Range: 80-120 miles based upon battery size

Optimal

- E450 Chassis Optimal
- Based in Plymouth, Michigan
- Projected Availability: Q3, 2021
- Proterra Batteries
- Low-Floor
- Electric Range ???

Current Hurdles for Cutaway Market

- Component waste
 - Engine, transmission, etc.
- Ford eQVM has been cancelled
- Little data available
- 1 OEM has completed Altoona
- 5-year Altoona Test
- Current price makes for a poor TCO

Forest River + Green Power

- Exclusive chassis agreement announced February 11, 2021
- 150 chassis purchased for initial order
- Buy America Compliant, Altoona Testing 2022
 - 7-10 year test
- New bus "brand" and pricing will be released in Summer 2021
 - Expect a price well below anything on the market

Thank you

Jared Schnader jschnader@calstart.org 205-515-8752