The Revised IEEE1547 standard

Presenter: Babak Enayati, PhD, PE IEEE 1547 Vice Chair Manager, Technology Deployment National Grid, Waltham, MA

Office: 781-907-3242 Email: <u>babak.enayati@nationalgrid.com</u>

Date: 03/19/2019

What is IEEE1547?

- A Technical standard for the functional and performance requirements of the Distributed Energy Resources (DER) Interconnections with the Electric Power System
- Document of mandatory and uniform requirements at either the Point of Common Coupling or the DER output terminals
- System Protection and Reliability
 - Interoperability
 - Verification & testing

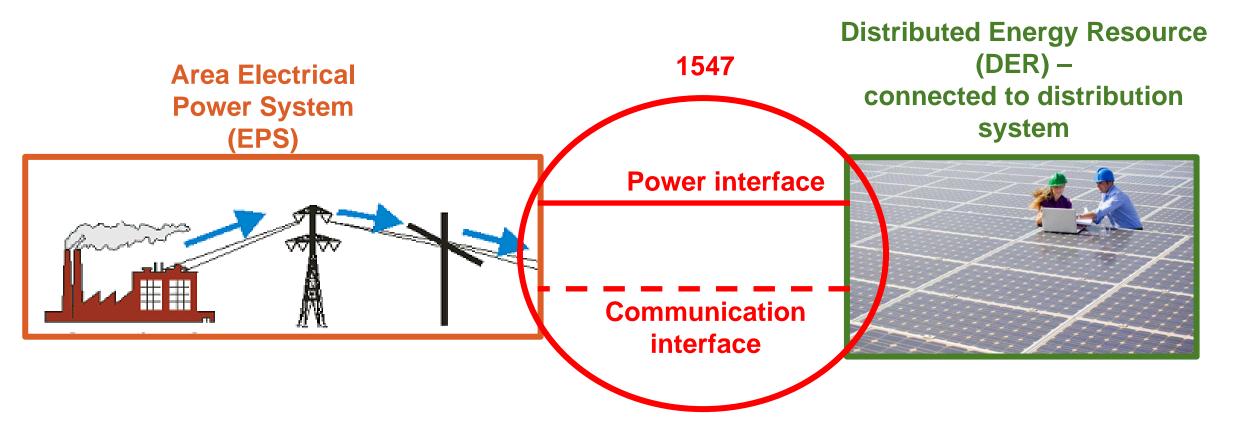
The IEEE 1547 Interconnection Standard has been revised

IEEE 1547-2003

- A traditional DER paradigm
- DER is passive
- DER provides only energy
- Owners are incentivized to provide as much energy as they can
- No communications
- No control

IEEE 1547-2018

- Smart inverter capabilities so that DER can act like conventional, transmissionconnected resources
- DER may now be active
- Two-way communication capabilities required
- Can control power output and provide ancillary services
- Supports bulk system reliability



Why IEEE1547?

- Utility has the responsibility to manage the grid
- Prevent Anti Islanding
- Prevent damage to customer equipment
- Prevent Grid mis-operation and maintain reliability
- Enable functions of the DER

What does IEEE 1547-2018 cover?

Specifies performance of interconnection, not design Specifies capabilities, not necessarily utilization of capability

What does IEEE 1547-2018 not cover?

Upgrades to the grid to support the DER (loading, etc)

Transfer trip and other protection required to integrate the DER

Risks of not doing

- Misoperation of the Grid, resulting in outages
- Misoperation of the DER
- Power Quality disturbances
- Damage to customer equipment
- Bulk System Stability
- Costly subsequent upgrades!

What can DER do under the new standard?

Capabilities under IEEE 1547-2018

- Two-way communications: visibility and control
- Control reactive power: voltage regulation
- Control active power: curtail
- Frequency response: increase power if low frequency. Decrease power if high frequency
- Regulation reserves
- Spinning and non-spinning reserves

Comparison of Existing Standards, State/PUC Rules, and Listing/Certification Standards for Distributed Energy Resources

		Interconnection Standards			State/ PUC Rules		Listing/ Certification		
Function set	Advanced Functions Capability	IEEE 1547- 2003	IEEE 1547a- 2014	IEEE 1547 - 2018*	CA Rule 21 - 2015	HI Rule 14H - 2015	UL 1741	UL 1741(SA) 2016	IEEE 1547.1- 201?*
Static	Adjustable Trip Settings		√	‡					Δ
Controlling	Active Power Curtailment			‡	IEEE Std 1547-2018 is most comprehensive and				Δ
	Disable Permit Service (Remote Shut-Off)			+					
	Ramp Rate Control								
Freq. Support -	L/H Frequency Ride-Through				makes all capabilities				
	ROCOF Ride-Through			‡	mandatory				Δ
	Frequency-Watt	X	$ \sqrt{}$	‡		#		Δ	Δ
Voltage Support	L/H Voltage Ride-Through (L/H VRT)			‡	‡	‡		Δ	Δ
	Dynamic Voltage Support during L/H VRT			√					
	Voltage Phase Angle Jump Ride-Through			‡					Δ
	Fixed Power Factor	√	$\sqrt{}$	‡	‡	‡	$\sqrt{}$	Δ	Δ
	Fixed Reactive Power	√	eg	‡			\checkmark		Δ
	Volt-Var	Х	$\sqrt{}$	‡	‡	‡		Δ	Δ
	Volt-Watt	X	$\sqrt{}$	‡		‡		Δ	Δ
	Watt-Var	X		‡					Δ

Testing /
Verification is
as important
as the
requirements

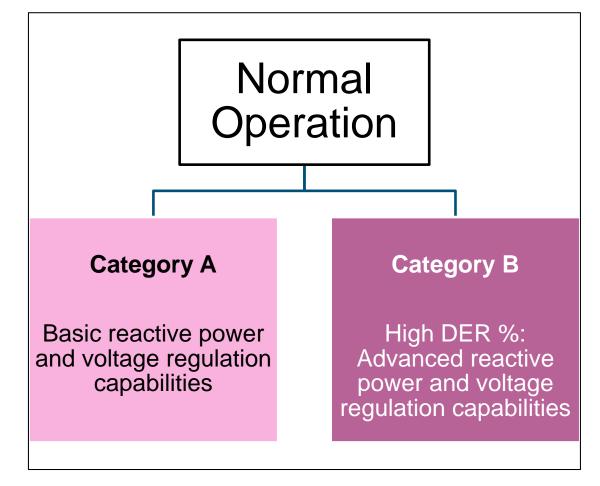
Legend: X Prohibited, √ Allowed by Mutual Agreement, ‡ Capability Required, △ Test and Verification Defined

^{*} Final requirements not confirmed.

NORMAL AND ABNORMAL PERFORMANCE CATEGORIES

NORMAL VS ABNORMAL SYSTEM CONDITIONS

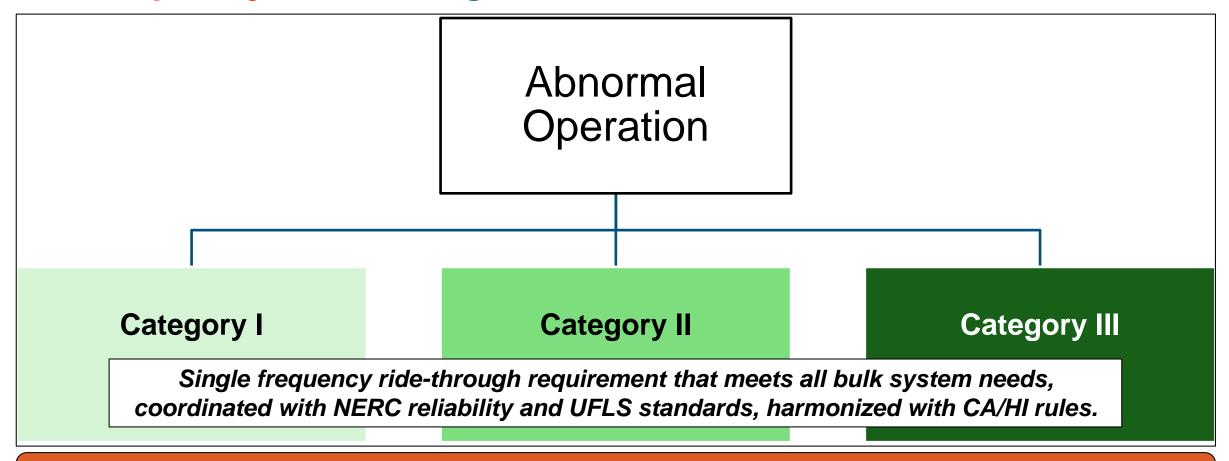
Normal system conditions


 Voltage regulation (88%<V<110%)- reduce the adverse impact on utility asset's lifecycle

Abnormal system conditions

 Ride through- Non steady state faulted or disturbed bulk system- avoid blackouts

Performance categories for Normal Operation Reactive power and voltage regulation


- Voltage affects the *local* distribution grid and customers
- Can affect costs (e.g., inverter sizing) and benefits (active power output)

Considerations:

- Assign technology-specific normal DER performance categories (e.g., Cat. B for inverters)
- Activate certain functions and specify 'preferred' functional settings for a region (e.g., how aggressively the DER tries to manage voltage)

Performance categories for Abnormal Operation Frequency ride-through

Challenge: Coordination with unintentional islanding prevention

Performance categories for Abnormal Operation Voltage ride-through

Decision criteria:

- Technology limitations
- Benefits & costs
- Expected regional DER penetration / bulk system modeling

Abnormal Operation

¹ <u>fault-induced delayed voltage</u> <u>recovery</u>, e.g., caused by single-phase air-conditioning systems.

Category I

Essential voltage ridethrough capabilities

All state-of-art DER technologies can meet this

Category II

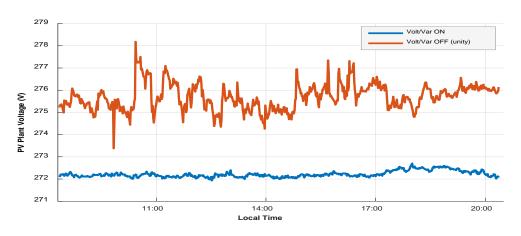
DER voltage ride-through for all bulk system needs Consideration of FIDVR¹

Category III

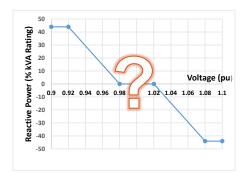
Bulk + distribution grid needs
Coordinated with CA/HI rules

Adjustable trip ranges limite

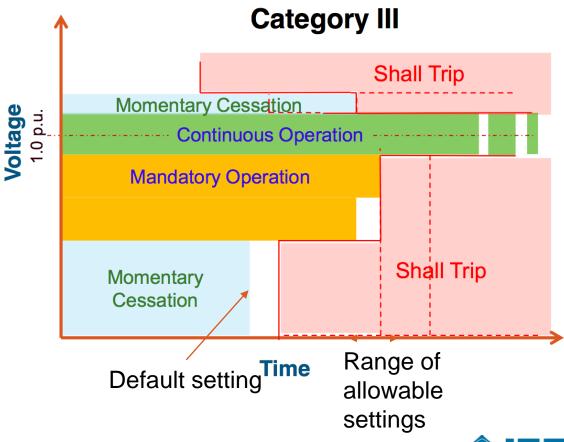
Challenge: Coordination with utility reclosing practices


You may need to coordinate functional settings between distribution and transmission utilities

FUNCTIONAL SETTINGS, RANGES OF ALLOWABLE SETTINGS, AND DEFAULT VALUES


for Humanity

What are ranges of allowable settings?


Voltage Reactive-Power Control Settings

- addressing voltage issues with exchange of reactive power.
- may require feederspecific settings.

Voltage/Frequency Trip Settings

Thank you Questions?

Babak.enayati@nationalgrid.com

