MICHIGAN PUBLIC SERVICE COMMISSION

Resilience & Reliability Technical Conference

Day 1- May 22, 2023 1:00 – 5:00 PM (EST)

The Resilience Technical Conference will begin shortly. Please stand by.

To enable closed captioning:

1. Click the "more" button at the top of your Teams window

2. Click on "Language and speech"

3. Click on "Turn on live captions"

For IT assistance, e-mail: LARA-MPSC-EVENT-IT@michigan.gov

To submit a comment

Written Comments

1. Email to:

LARA-MPSC-commissioners2@michigan.gov

2. Mail to: Michigan Public Service Commission P.O. Box 30221 Lansing, MI 48909

For IT assistance, e-mail: LARA-MPSC-EVENT-IT@michigan.gov

To enable closed captioning: 1.) Click the "more" button

at the top of your screen

2.) Click on "Language and speech" 3.) Click on "Turn on live captions"

MPSC Commissioners

Welcome and Introductory Remarks

> 1:05 pm – 1:15 pm

Dan Scripps MPSC Chair

Katherine Peretick MPSC Commissioner

Weather or Not

Extreme Weather in Michigan

Charyl Kirkland

Energy Operations Division

May 22, 2023

Commission Investigations

- Historically, the Commission has launched investigations into the response of Michigan's utilities during extreme weather events.
 - U-17542 (2014): December 2013 Ice Storm Investigation
 - U-18346 (2017): March 2017 Wind Storm Investigation
 - U-20464 (2019): Polar Vortex Investigation & SEA Report
 - U-21122 (2021): August 2021 Storms
 - U-21305 (2022): August 2022 Storms
 - U-21388 (2023): February 2023 Storms

U-17542: December 2013 Ice Storm

- Reported Outages
 - Consumers Energy: 388,950
 - DTE Electric: 257,000
- Restoration Issues
 - ³/₄ inch ice accumulation
 - 10-20 mph wind gusts
 - Staffing due to Holidays
 - Slower Municipality Restoration

- Outcome
 - Hazardous Tree Removal
 - Annual Power Quality Reporting
 - Outage Credit Info on Websites

U-18346: March 2017 Wind Storm

Wind Gusts 60mph+

- Restoration Challenges
 - Sustained Winds 30mph
 - Widespread tree damage
 - 23,000+ Downed Wires
- Reported Outages
 - Consumers Energy: 358,000
 - DTE Electric: 750,000

- Recommendations
 - Increased Tree Trimming
 - Continued Smart Meter Integration
 - Infrastructure Improvements

U-20464: 2019 Polar Vortex

- January 30-31, 2019
 - Temperatures below -25° F
 - RTO Emergency Declaration for electric utilities
 - Ray Compressor Station Fire
 - Public Appeal to Lower Thermostats
- Gov. Whitmer Letter to MPSC
 - Launched investigation into Michigan's ability to withstand extreme weather events.

- Dockets Initiated:
 - MI Power Grid Initiative
 - U-20628: Demand Response
 - U-20629: Service Quality Rules
 - U-20630: Technical Std. Rules
 - U-20631: Mutual Aid Agreements
 - U-20632: Gas Curtailment Proc.
 - U-20147: Five Year
 Distribution Plans

U-21122: August 2021 Storms

- Wind Gusts 70mph+
- Widespread tree and pole damage
- Reported Outages
 - Consumers Energy: 372,000
 - DTE Electric: 500,000
 - I&M: 20,000

- Outcomes
 - October 2021 Technical Conference on Emergency Preparedness, Distribution Reliability, and Storm Response
 - MPSC Webpage on Reliability
 - Outage Reporting Template (November 2022)

U-21305: August 2022 Storms

Restoration Challenges

- Wind Gusts 70mph +
- Widespread tree and pole damage
- Energized Downed Wires

- Outcomes
 - 3rd Party Audit of Michigan's Electric Distribution System

- Reported Outages
 - Consumers Energy: 197,000
 - DTE Electric: 265,000

U-21388: 2023 Winter Storms

- February 22, 2023- Initial Storm
- Restoration Issues
 - Additional Storms:
 February 27, 2023, and
 March 3, 2023
 - Extensive downed wires
 - Call Centers Offline
 - Inaccurate Restoration Estimates

- Reported Outages
 - Consumers Energy: 427,000
 - DTE Electric: 630,000

Summary

- Extreme weather conditions are becoming an annual occurrence in Michigan.
- Need for a distribution system that can withstand extreme cold, heat, wind and water conditions.
- Need for better communication and more accurate restoration estimates.
- Need for more equitable and consistent investments in the distribution system.
- Up Next: Introduction to Grid Resilience Panel
 - Moderated by Julie Ginevan, MPSC

Up Next:

1:20 pm Intro to Grid Resilience

Panel: Intro to Grid Resilience

Moderator:

Julie Ginevan

Energy Security Analyst MPSC

Karma Sawyer, Ph.D. Director

Director Electricity Infrastructure & Buildings Division PNNL

Kiera Zitelman

Technical Manager Center for Partnerships & Innovation NARUC

. . .

National Association of Regulatory Utility Commissioners

Regulatory Considerations for Energy Resilience Michigan Public Service Commission technical conference

May 22, 2023

Kiera Zitelman

Technical Manager (202) 898-2212 kzitelman@naruc.org

About NARUC

The National Association of Regulatory Utility Commissioners (NARUC) is a non-profit organization founded in 1889.

Our Members are the state utility regulatory Commissioners in all 50 states & the territories. FERC & FCC Commissioners are also members. NARUC has Associate Members in over 20 other countries.

NARUC member agencies regulate electricity, natural gas, telecommunications, and water utilities.

About NARUC's Center for Partnerships & Innovation

Grant-funded team dedicated to providing technical assistance to members

CPI identifies emerging challenges and connects state commissions with expertise and strategies to inform their decision making.

CPI builds relationships, develops resources, and delivers trainings.

Regularly updated CPI fact sheet with recent publications & upcoming events under Quick Links at:

https://www.naruc.org/cpi-

Energy Resilience Reference Guide

William McCurry & Elliott Nethercutt, NARUC February 2023 ENERGY Of Cybersecurity, Energy Security, and Emergency Response

Valuing Resilience for Microgrids: Challenges, Innovative Approaches, and State Needs

Wilson Rickerson, Converge Strategies Kiera Zitelman, National Association of Regulatory Utility Commis Kelsey Jones, National Association of State Energy Officials

February 202

Recent Publications

- Demand Flexibility within a Performance-Based Regulatory Framework (Feb 2023)
- State Energy Justice Roundtable Series: Customer Affordability and Arrearages; Participation in Decision Making; Energy Justice Metrics (Feb 2023)
- Mini Guide on PUCs and the Investment Community (Feb 2023) Energy Resilience Reference Guide: Chapters 1 & 2 (Jan & Feb 2023)
- Potential State Regulatory Pathways to Facilitate Low-Carbon Fuels (Dec 2022)
- Digitalization in Electric Power Systems and Regulation: A Primer (Dec 2022)
- Interoperability for Electric Vehicle Charging: A Case Study (Dec 2022)
- Electric Vehicle Interoperability: Considerations for Utility Regulators (Nov 2022)
- Models for Incorporating Equity in Transportation Electrification (Nov 2022)
- Mini Guide on Transportation Electrification (Nov 2022)
- Regulator's Financial Toolbox Briefs: Community Solar for LMI Customers; Electrification; ADMS/DERMS (Oct 2022)
- Defense Energy Resilience Resources Guide & FAQ for Commissioners (Oct 2022)
- Workforce Development Toolbox: Recruitment Templates and Social Media Engagement Materials (Sept 2022)

Upcoming Virtual Learning Opportunities

- Modern DER Capabilities and Deployment. March 8: Next in the virtual interconnection workshop series, NREL will address PUC questions on DER technical capabilities, deployment concerns, and benefits. Contact Jeff
- Resilience for Regulators Webinar Series. March 9: Climate Informed Mitigation Strategies. Find past presentations on critical infrastructure resilience, climate resilience, defense energy resilience, and more. Contact William
- Monthly Innovation Webinars, March 16: Advances in Resource Adequacy, Register | past recordings, Contact Jessica
- On-Demand, Video-Based Learning Modules. Dozens of training videos in English and Spanish on electricity system planning, distribution systems and planning, smart grid and EV interoperability. Contact Danielle

Upcoming In Person Events Travel stipends available

- Cybersecurity Training, Indianapolis, IN. March 22-24: Experts will provide content on cybersecurity topics through the lens of utility regulators with presentations, engaging activities, and more. (Commissioners and staff) Contact Lynn
- Nuclear Energy Partnership Pacific Northwest National Lab Site Visit. April 25-28: Tour PNNL and NW nuclear sites. Advanced Nuclear State Collaborative kickoff workshop will also take place. (Commissioners and staff) Contact Kiera
- Natural Gas Partnership Site Visit, Savannah, GA. May 2023: Tour the Elba Island liquefied natural gas export facility, Port of Savannah compressed natural gas fueling station, and more. (Commissioners only) Contact Kiera
- More Info Available Soon: Energy Justice Midwest Regional Workshop (early May); Grid Data Sharing Collaborative Demonstration Workshop (mid-May in Washington, DC); Resilience Planning Regional Workshops Contact Danielle

Join a Member Working Group! For Commissioners and Commission Staff

- Integrated Distribution System Planning, Register for presentations by subject matter experts and commissions followed by questions and facilitated discussions among members. Six sessions: Feb 27 - Jun 12, Contact Jeff
- NARUC-NASEO Advanced Nuclear State Collaborative. Exchange questions, needs, and challenges relating to the planning and deployment of new advanced nuclear generation. Contact Kiera
- NARUC-NASEO Microgrids State Working Group. Explore capabilities, costs, benefits, and deployment strategies for microgrids with PUCs and State Energy Offices. Contact Kiera
- Electric Vehicles State Working Group. Learn and discuss regulatory questions around transportation electrification, including charging infrastructure buildout, rate design, equity considerations, V2G, and more. Contact Danielle
- Performance-Based Regulation State Working Group. Examine approaches to performance-based regulation and alternative ratemaking across states in a collaborative peer group setting. Contact Elliott
- i2X Working Groups. DOE/National Lab effort for commissions and stakeholders to identify grid interconnection challenges and discuss solutions. Contact Jeff
- Workforce Development Peer Advisory Group, Supporting recruitment & retention for commissions, Contact Hyleah

www.naruc.org/cpi

NARUC National Association of Regulatory Utility Commissioners

- Resilience State Microgrid Policy, Programmatic, and Regulatory Framework
- Renewable Energy Microgrids

Forthcoming Publications

Energy Resilience Reference

Guide Chapter 3: Climate

Black Sky Playbook

Considerations of Advanced

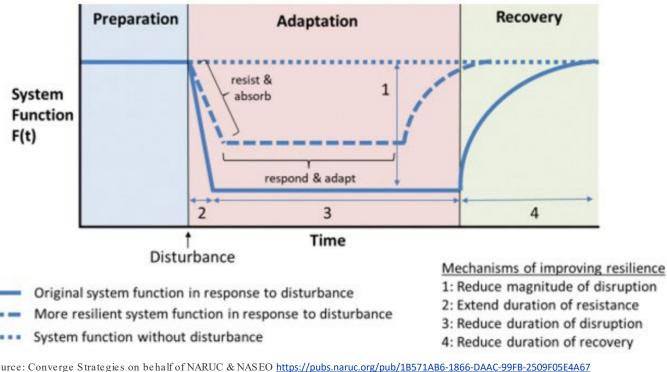
Grid Data Sharing: Brief Summary of Current State Practices (Nov 2022)

Key Questions

What is grid resilience?

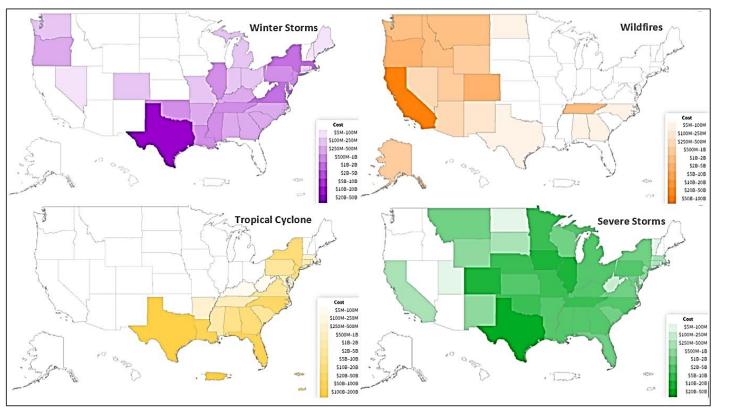
Why is it important?

How is it measured?


What can be done to increase it?

Reliability Versus Resilience: Common Characteristics

Reliability	Resilience	
		ŝ
Routine, expected	Infrequent,	
(though, not 'planned',	unplanned,	
normally localized,	widespread/long	
resource adequacy,	duration power	
shorter duration	interruptions, ability of	
interruptions of	the system to adapt to	_
electric service	changed	
	environmental	
	conditions	Sour

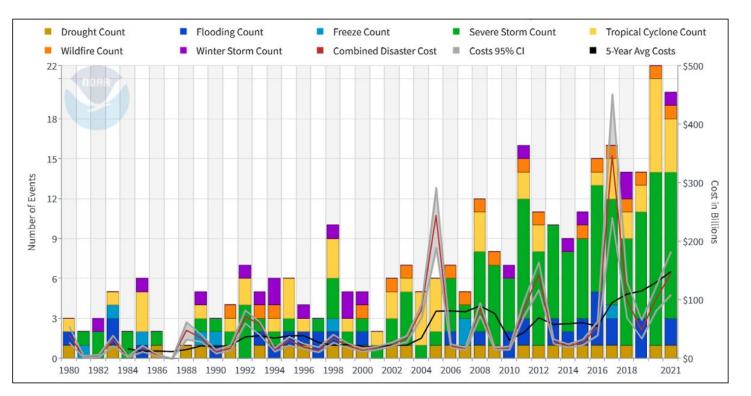

'Resilience Trapezoid'

Extreme events are increasing in frequency and severity. How can policymakers & regulators respond?

Clear and Present Need for Resilience-Informed Grid Management Strategies

State Cost and Frequency, 2013-2021

Courtesy: Elliott Nethercutt, NARUC 2022


- Costs are increasing regulators and investor-owned utilities need to adapt
- There is no "one-size-fits-all" solution for resilience metrics and investments as they are dependent on various factors regional, functional, regulatory, and business
- NARUC doesn't advocate for any specific mitigation strategy

The Role of the Regulator

- Opening investigatory dockets to pursue state energy resilience and related policy objectives
- Establishing resiliency targets for regulated utilities
- Tracking of project implementation and performance
- Approving a regulated utility's investments into grid improvements via rate case or special tariff

U.S. Billion-Dollar Disaster Events, 1980-2021 (CPI-adjusted)

NARUC National Association of Regulatory Utility Commissioners

Assessing Appropriate Mitigation Strategies

- Regulators work in conjunction with their regulated utilities to determine the best hazard mitigation strategy (sometimes these are incentivized or mandated by state law)
- Cost-benefit ratio quantifiable benefits to resilience investments
- PUC primary concerns are safety of distribution system, affordable rates for utility services, and reliability of system during crises

Infrastructure Climate Adaptation and Resilience Framework

Courtesy: Andrew Bochman, Protecting Energy Infrastructure from Extreme Weather and other Physical Climate Risks: An introduction to an Infrastructure Climate Adaptation and Resilience Conceptual Framework for Decision Makers, Idaho National Laboratory, September 2022.

Quantifying Resilience Benefits

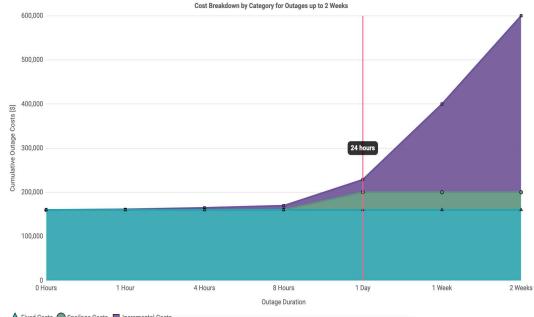
What	Who	When
Interruption Cost Estimator (ICE) 2.0 Tool	Lawrence Berkeley National Laboratory Edison Electric Institute	Expected 2023
Customer Damage Function Calculator Tool	National Renewable Energy Laboratory	2021
Social Burden Method	Sandia National Laboratories University of Buffalo	Pilot 2021 – 2022
FEMA Benefit-Cost Analysis Tool	Federal Emergency Management Agency (FEMA)	2021
Power Outage Economics Tool (POET)	Lawrence Berkeley National Lab Commonwealth Edison (ComEd)	Pilot 2021 – 2022

Innovations in Survey-Based Methods

Bottom Up Approaches

DOEICECalculator 2.0 (2023)

- Updated regional surveys
- Longer duration outages


$\textbf{NRELCDF Calculator}\ (2022)$

- Facility-specific calculator
- Self-guided questions

SocialBurden Metrics (2022)

- Socialneed v. in frastructure
- Ability v. willingness to pay

A Fixed Costs Spoilage Costs Incremental Costs

Pictured: Example out put from the Customer Damage Function (CDF) Calculator (Source: NREL)

FEMA Benefit-Cost Analysis Toolkit Values

Cost of Lost Emergency Service Values for lost fire, police, and m edical services NYSERDA NY Prize m icrogrid BCA adds FEMA values to ICE value Pre-calculated hospital values (\$12.62./sq.ft.in rural areas)

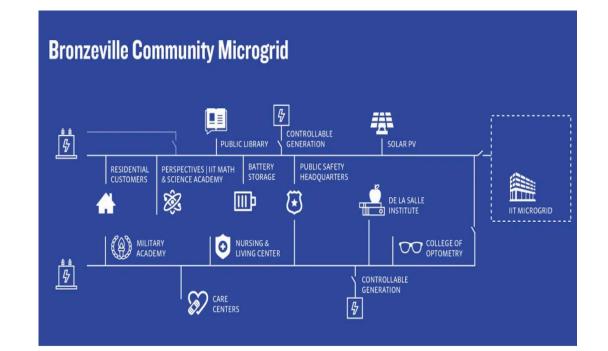
NEW YOR

STATE OF OPPORTUNITY

NYSERDA

Pictured: Proposed microgrid for City of Reno Public Safety Center that was awarded FEMA Building Resilient Infrastructure and Communities (BRIC) funding (Source: Ameresco)

Power Outage Economics Tool (POET) (2022)


Hybrid Economy-Wide Approach

Surveys to assess customer adaptive behavior

Economic model costs of longterm power outages

Direct and indirect cost im pacts within region and beyond

Pictured: The POET analysis focuses on the Bronzeville Community Microgrid in Chicago, IL(Source: Com Ed)

Planned NARUC Activities on Grid Resilience Assistance for PUCs

BIL Grid Resilience Technical Assistance Opportunities

- Regional Objective-setting workshops
- Comprehensive Needs Assessment
- Ongoing National Lab Partnership & Training

NARUC's Energy Resilience Reference Guide

- Chapters 1 & 2 available now
- Planned Climate Resilience Chapter 3

NARUC Working Groups

- Microgrids State Working Group
- Performance-Based Regulation
- NIST Smart Grid Technical Assistance

NARUC National Association of Regulatory Utility Commissioners

Energy Resilience Reference Guide

William McCurry & Elliott Nethercutt, NARUC February 2023

Cybersecurity, Energy Security, and Emergency Response

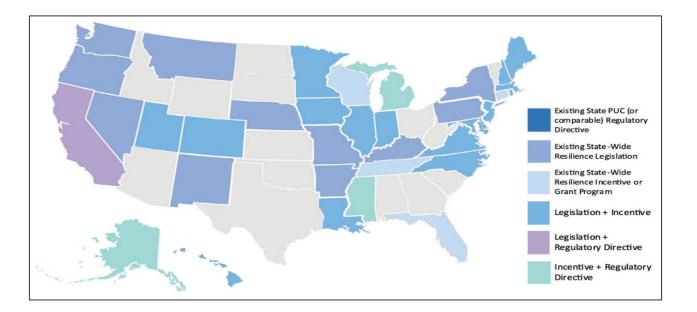
NARUC's Energy Resilience Reference Guide

Challenge Statement: 'Resilience' is increasingly used as a catch-all term to describe numerous aspects within energy policy. New commissioners and public utility commission staff are expected to quickly develop expertise around resiliency topics that are complex and multifaceted.

https://pubs.naruc.org/pub/1C098515-1866-DAAC-99FB-3FBA6FA3AB0B

NARUC National Association of Regulatory Utility Commissioners

Purpose and Vision

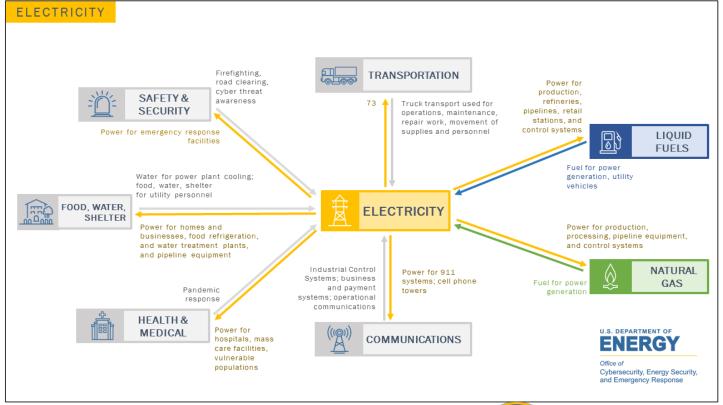


Create a reference guide that succinctly summarizes topics within the 'resilience umbrella'

"Living Resource" – allows for continual updates based on latest developments in industry and regulatory policy

U.S. State-Level Resilience Activities (EPRI, 2021)

Content divided into sections/chapters that cover a specific topic within the range of resilience topical areas



Chapter 1: Developing a Shared Definition of Energy Resilience

- Summarizes existing definitions of energy resilience – noting unique interdependencies among several utility sectors
- Encourages state public utility commissions to develop a shared definition to guide regulatory policy
- Poises several energy resilience questions for regulatory community to consider

Electric Sector Resilience Interdependencies (DOE CESER, 2022)

Chapter 2:

Developing a Shared Framework to Value Resilience Investments

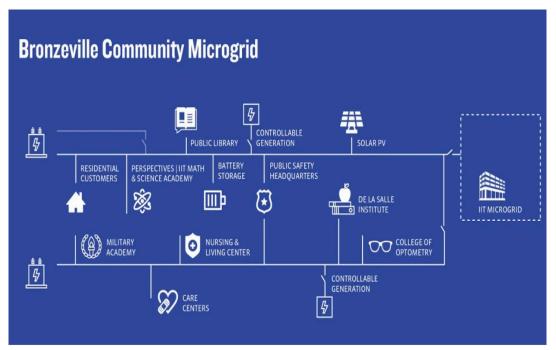
Resilience Analysis Process (Sandia National Laboratory, 2015)

- Describes various frameworks to place a value on energy resilience investments
- Encourages state public utility commissions to develop a shared valuation framework to guide regulatory policy
- Discusses consequence prioritization and regulatory cost-benefit analysis

Commission Actions on Energy Resilience

California	Colorado	Michigan
 Rulemaking on Climate Change Adaptation <u>R1804019</u> (2020) Investor-owned utilities required to file climate 	 <u>4 CCR 723-3525</u> – Rules Regulating Electric Utilities (2022) Establishes cost-benefit methodology for resilience investments 	• <u>Case No. U-20464-0063</u> – Commission Order in response to Governor Whitmer request to review state energy emergency
 vulnerability assessments Guides investment prioritization Order Instituting 	 investments Mandates community engagement for energy justice communities 	 preparedness Commission empowered to evaluate whether electric distribution system is
 Order instituting Rulemaking to Modernize the Electric Grid for a High Distributed Energy Resources Future <u>R.21-</u> 06.017 (2021) Significant equity / 	justice communities	designed to account for changing climate conditions and extreme weather events

Significant equity / stakeholder engagement criteria


Microgrids to Enhance Community Resilience

- California SB 1339 required commission to develop policies related to microgrids (Rulemaking 19-09-009)
- Large amount of state funding Microgrid Incentive Program ~\$200 million
- Equity & resilience considerations

Photo source: Clean Coalition; 'Santa Barbara Unified School District Solar Microgrids' https://cleancoalition.org/communitymicrogrids/goleta-loadpocket/santa-barbaraunified-school-district/

- Illinois Commerce Commission approves Bronzeville Community Microgrid pilot project
- Community benefits considered

Pictured: The POET analysis focuses on the Bronzeville Community Microgrid in Chicago, IL(Source: Com Ed)

NARUC

National Association of Regulatory Utility Commissioners

Thank you!

Kiera Zitelman Technical Manager (202) 898-2212 kzitelman@naruc.org

Up Next:

1:50 pm Cross Sector Interdependence

Panel: Cross Sector Interdependence

Moderator:

Alex Morese Energy Security Manager MPSC

Peter Hoffman

Detroit Southeast Michigan Information and Intelligence Center (DSEMIIC)

Megan Levy

Office of Cybersecurity, Energy Security, and Emergency Response (CESER) U.S. Department of Energy

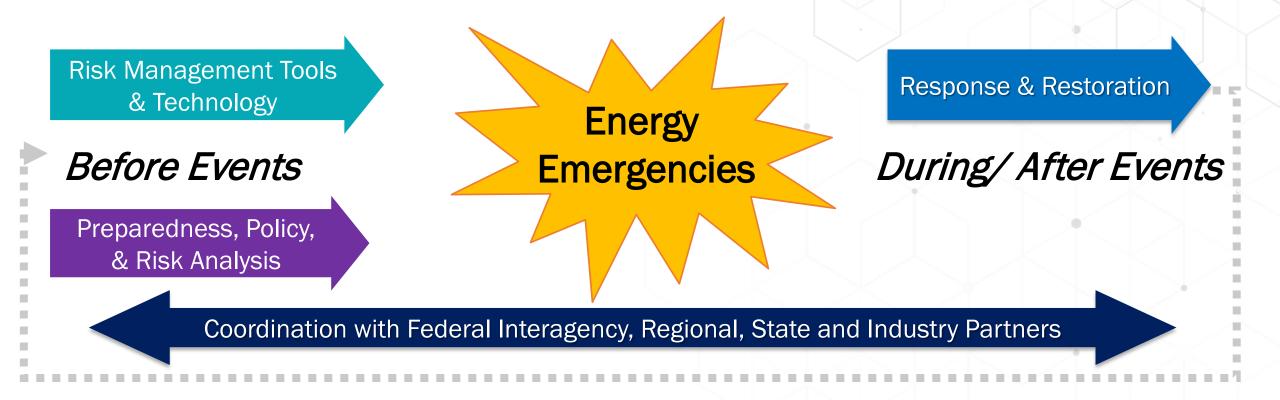
Michigan PSC Resiliency Tech Conference

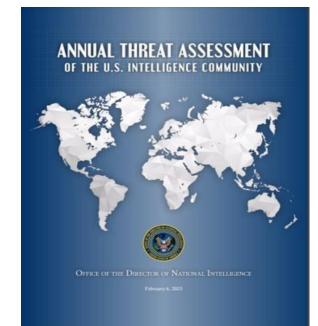
Megan Levy, SLTT Project Manager May 22, 2023

U.S. DEPARTMENT OF ENERGY OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

- 2 -

CESER Mission & Energy Threat Landscape


To enhance the security of U.S. critical energy infrastructure to all hazards, mitigate the impacts of disruptive events and risk to the sector overall through preparedness and innovation, and respond to and facilitate recovery from energy disruptions in collaboration with other Federal agencies, the private sector, and State, local, tribal, and territory governments.


CESER's Responsibilities

DOE is the **Sector Risk Management Agency** for the Energy Sector

DOE is the federal coordinating agency for Emergency Support Function #12 (Energy)

Cybersecurity Threats

B Bloomberg.com

...

Russian Hackers Tried Damaging Power Equipment, Ukraine

... military intelligence agency launched a cyberattack on Ukrainian energy facilities, according to Ukrainian cybersecurity officials.

The New York Times

Cyberattack Forces a Shutdown of a Top U.S. Pipeline

The operator, Colonial Pipeline, said it had halted systems for its 5,500 miles of pipeline after being hit by a ransomware attack.

May 13, 2021

Physical Security Threats

- Rogue actors and domestic violent extremists are targeting critical energy infrastructure
- Of the physical security incidents shared with E-ISAC between 2020-2022, 3% resulted in outages or other grid impacts.
- Notable increase in repeat and clustered incidents

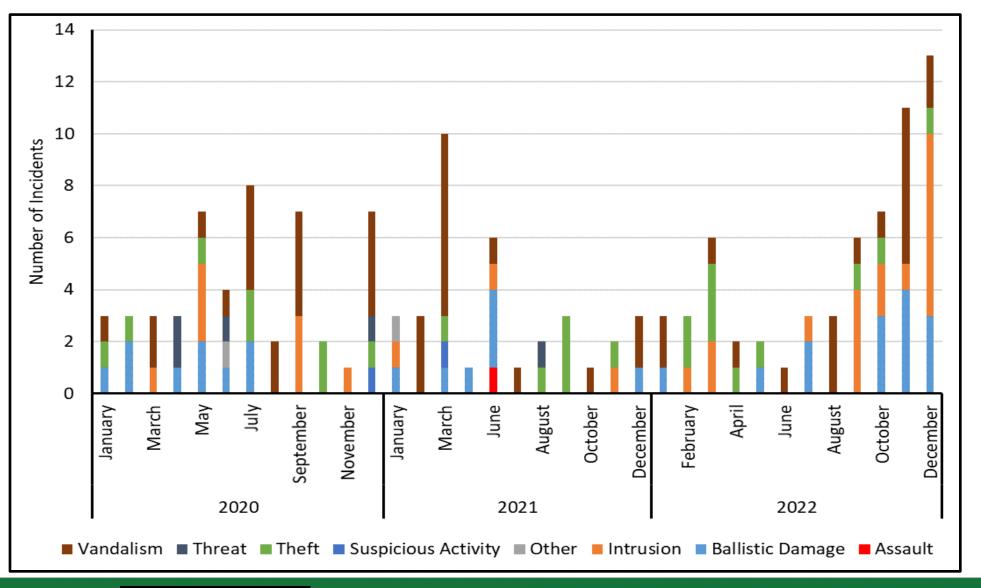
CNN

<u>A vulnerable power grid is in the crosshairs of domestic</u> <u>extremist groups</u>

... fired at two power substations in Moore County, North Carolina, ... In 2022 there were 25 "actual physical attacks" reported on power...

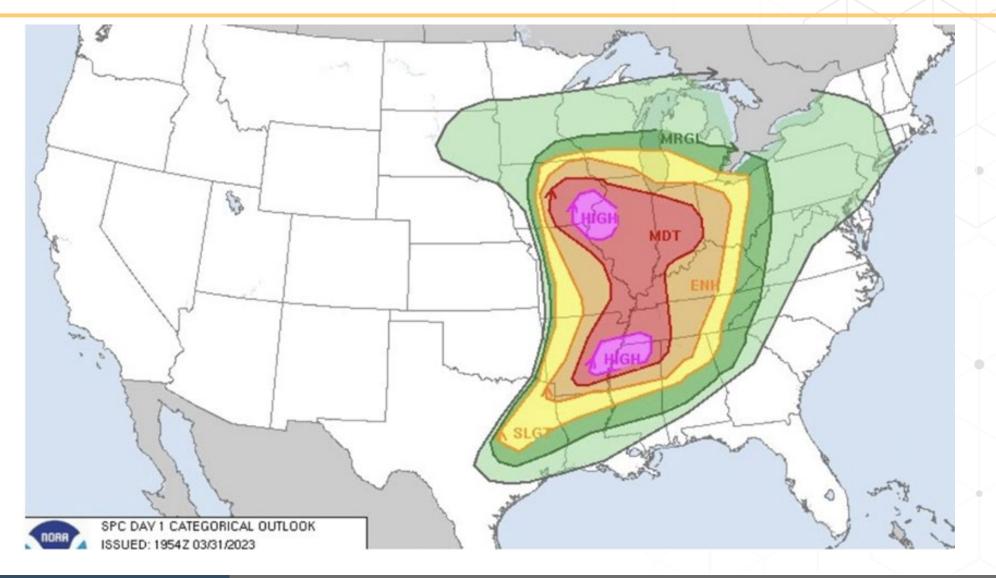
C The New York Times

Pair Charged With Plotting to Attack Baltimore Electrical Grid


WASHINGTON – Federal law enforcement officials have arrested two ... the plot to jarring details of her personal and physical travails.

Information provided by E-ISAC

Incident Summary



RELIABILITY | RESILIENCE | SECURITY

6

TLP:GREEN

Emerging Extreme Weather Threats

U.S. DEPARTMENT OF ENERGY OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Collaboration and Coordination is Essential

Industry Councils

Electricity Subsector Coordinating Council

Bipartisan Infrastructure Law (BIL) Key Opportunities

Investing in a Secure, Resilient, and Clean Energy Future

The IIJA includes over \$62B for the U.S. Department of Energy to deliver a more equitable clean energy future

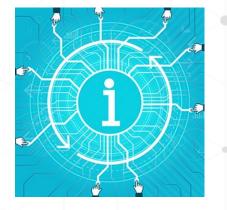
Provisions to review:

- Grid resilience **40101**, 40103, 40107
- State energy security plan: 40108
- Cyber-related: 40124

DOE BIL Homepage BIL Programs at Department of Energy

40124: Rural and Municipal Utility Advanced Cybersecurity Grant and Technical Assistance (RMUC) Program

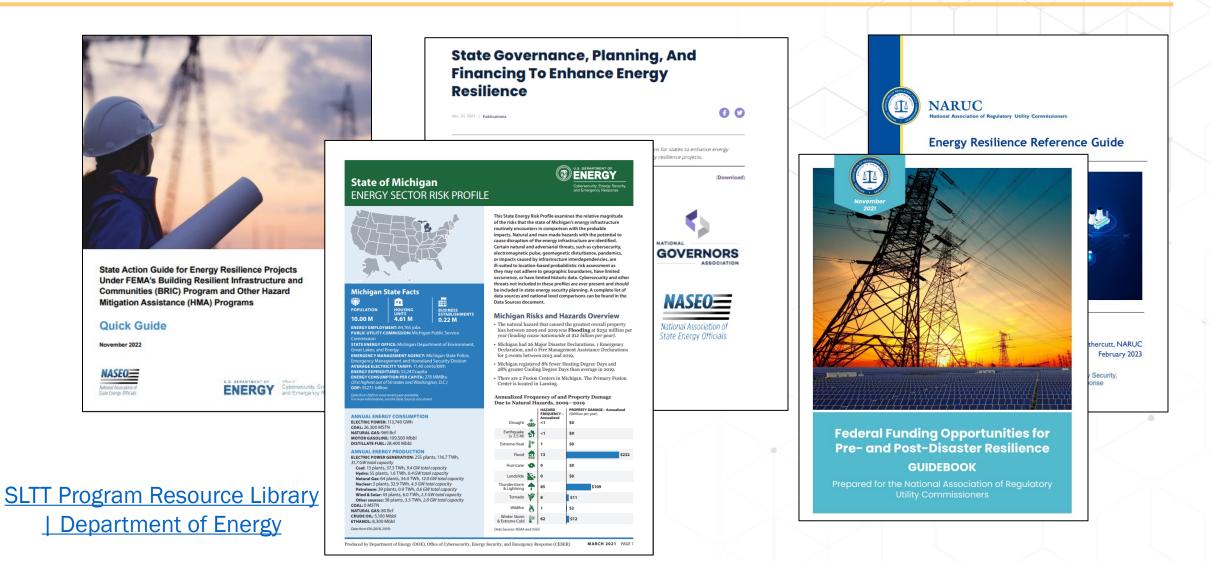
Funding: \$250 million over 5 years (FY22-26) via grants, technical assistance, and cooperative agreements


Objectives:

- Deploy cybersecurity technology, operational capability, or services that <u>enhance the</u> <u>security posture</u> of electric utilities through improvements in the ability to **protect** against, detect, respond to, or recover from a cybersecurity threat.
- 2. Increase the participation of eligible entities in cybersecurity **threat** *information sharing* **programs**.

Eligibility:

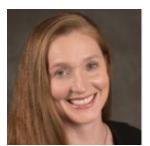
- Rural electric cooperatives
- Municipal electric utilities
- Not-for-profits in partnership with rural or municipal electric utilities
- Investor-owned electric utilities that sell < 4,000,000 MWh/year



The Bipartisan Infrastructure Law provides \$13B for grid resilience over the next five years

Program	Funding Amount	Important Dates
Grid Resilience Formula Grants Sec. 40101(d)	\$2.3B	Applications Due: March 31, 2023 (FY22 and FY23)
Grid Resilience Innovation Partnership (GRIP)		
Grid Resilience Industry Grants Sec. 40101(c)	\$2.5B	Concept Papers Submitted: December 16, 2022 DOE Responses: February 2023 Applications Due: April 6, 2023
Smart Grid Grants Sec. 40107	\$3B	Concept Papers Submitted: December 16, 2022 DOE Responses: February 2023 Applications Due: March 17, 2023
Grid Innovation Program Sec. 40103(b)	\$5B	Concept Papers Submitted: January 13, 2023 DOE Responses: March 2023 Applications Due: May 19, 2023

CESER's Resources


U.S. DEPARTMENT OF ENERGY

OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

CESER SLTT Contact Information

Brandi Martin SLTT Program Manager Brandi.Martin@hq.doe.gov

Megan Levy SLTT Project Manager Megan.levy@hq.doe.gov

Juan Gomez Energy Sector Specialist Juan.gomez@hq.doe.gov

Joel Nelson Energy Industry Specialist Joel.nelson@hq.doe.gov

Website: energy.gov/ceser

@DOE_CESER

CESER LinkedIn

RTMENT OF Office of Cybersecurity, Energy Security and Emergency Response

Protecting our energy infrastructure is our shared responsibility.

@DOE_CESER

linkedin.com/company/office-of-cybersecurity-energysecurity-and-emergency-response

in

energy.gov/CESER

Office of Cybersecurity, Energy Security, and Emergency Response

Up Next:

2:20 pm Customer Communications During Outages

Panel: Customer Communications During Outage Events

Moderator:

· · · ·

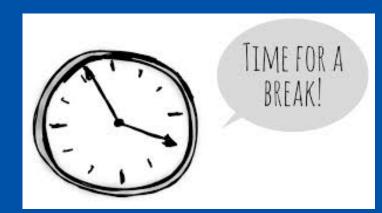
. . . .

Julie Ginevan

Energy Security MPSC

Therese Cremonte

Emergency Manager Livingston County


Mike Kennedy

Fire Chief City of Ann Arbor **Jake Thelen** Customer Assistance Division MPSC

Questions from Commissioners

Up Next: 2:50 pm BREAK

3:00 pm Challenges to Enhance Resilience

Panel: Challenges to Enhanced Resilience

Moderator:

Julie Baldwin Director

Energy Operations Division Michigan Public Service Commission

John Albers

Senior Associate with the Midwest Policy & Strategy Team SunPower

Joshua Williams

Midwest Regional Manager Market Development Highland Electric Fleets

Mike Stone

Major General (Retired) Senior Counsel Warner Norcross & Judd **Diane Mills, CEM** President Occupant Care

May 22, 2023

MPSC Resiliency Barriers Panel

John Albers

Policy & Strategy Team

SunPower Corporation

Who is SunPower? An industry leader in solar sustainability and social responsibility

About SunPower

- 1. Focus is residential solar, battery storage, and grid services
- 2. Incorporated in 1985 one off the oldest solar companies in the U.S.
- 3. Headquartered in California
- 4. ≈4,700 employees worldwide, ≈3,500 in the U.S.
- 5. Network of more than 700 independent dealers serving 49 states
- 6. A partner with General Motors, Ikea, Sierra Club, KB Home, and others to change the way our would is powered

About SunPower in Michigan

- Serving Michigan residents through our subsidiary Blue Raven Solar and 4 independent local dealers:
 - a. Oak Electric
 - b. The Green Panel
 - <mark>c.</mark> Climax Solar
 - d. Viking Solar

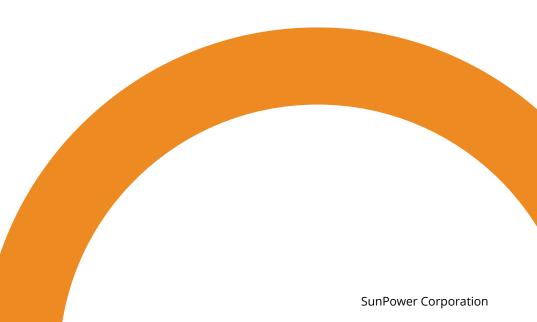
Michigan Backdrop Areas of concern

- 1. Based on 2020/2021 EIA data, Michigan ranks:
 - a. 43rd in reliability (46th prior year)
 - b. 39th in affordability (34th prior year)
 - c. 36th in emissions (35th prior year)
- 2. Average electricity price (per EIA): 13.4 ¢/kWh
- 3. Residential solar penetration rate as of 12/31/22: 0.39%
- 4. Recent prolonged outages following weather events
- 5. Significant appetite for improved reliability and energy cost savings among MI consumers

Barriers to Improvement Improved resiliency is possible, but impediments exist

- 1. Uncertainty regarding ability to interconnect, i.e., the DG cap
- 2. Limited hosting capacity
- 3. Limited or no access to grid and/or customer data
- 4. Need to update home load panel and amperage
- 5. Roof strength, age of roof surface
- 6. Limits on system size can impede electrification
- 7. Lack of statutory/regulatory framework for DER aggregation
- 8. Overall system cost (solar system + battery (?) + grid upgrade (?) + load panel upgrade (?) + roof work (?))

Opportunities for Improvement


Technical and policy barriers can be overcome

- 1. From residential perspective, batteries are usually paired with solar and not installed alone
 - a. Cost
 - b. Ensure some level of renewably sourced energy
- 2. As threshold, need statutory and regulatory landscape that allows solar and battery storage
 - a. Eliminate DG cap
 - b. Reasonable limits on system size to ensure resiliency and promote electrification
 - c. Encourage utility grid planning that accommodates new DG
- 3. Provide for DER aggregation that ensures fair compensation for grid services (different from purchase incentives)
- 4. Time of use rates (covering household and EV charging)
- 5. Purchase incentives, particularly for low income
 - a. Include load panel upgrades and roof work
 - b. Comparison of cost to ratepayers of privately owned/maintained DG with utility owned/maintained plant

Thank You

Changing the way our world is powered

Yighland

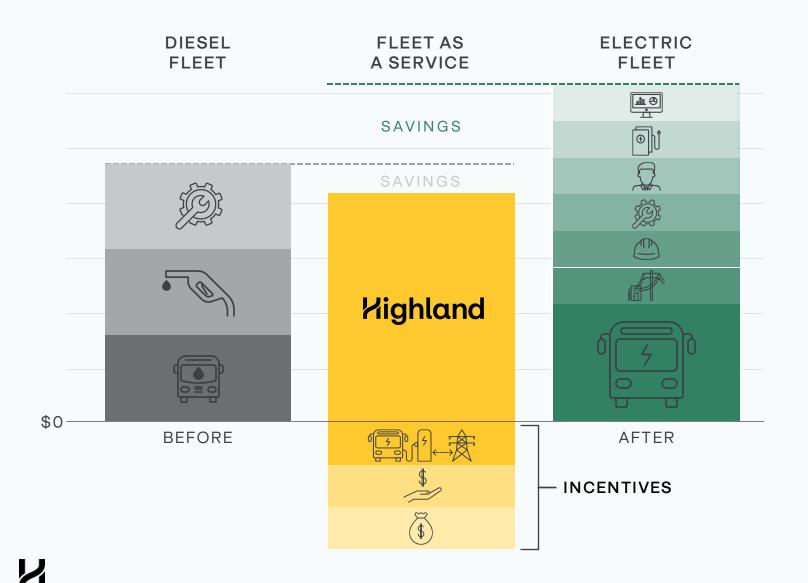
MPSC Resilience Tech Conference Electric School Buses and V2G

 (γ)

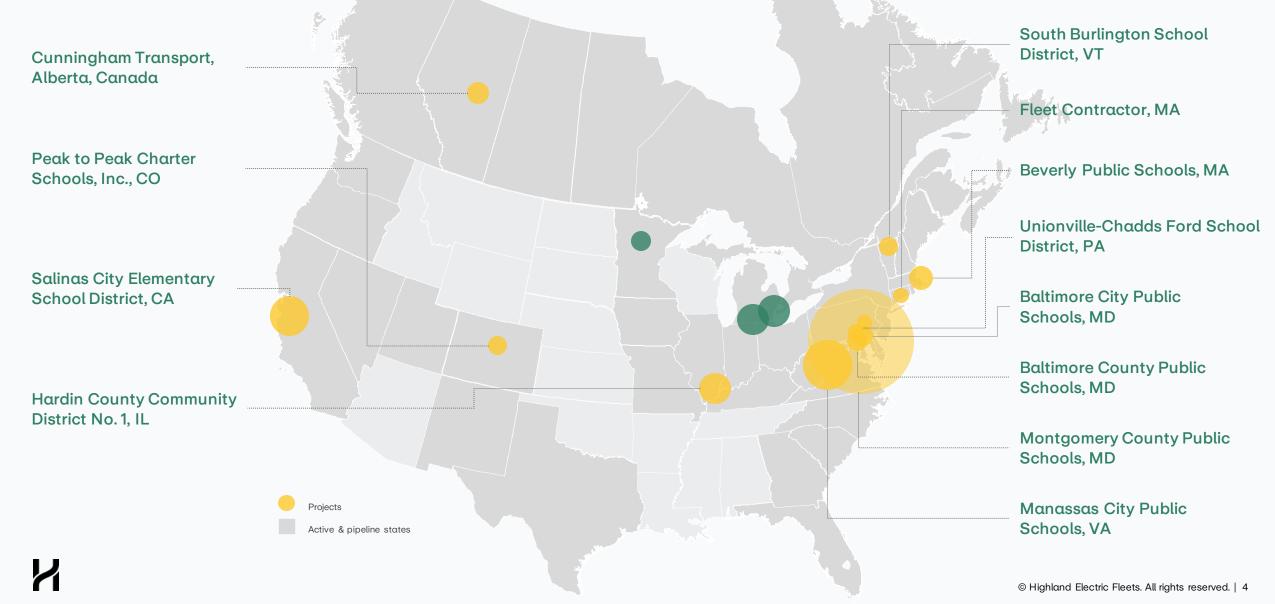
The Highland story

\$253M capital raised

Largest electric school bus project in North America: MCPS, Maryland


First commercial electric school bus V2G program in the U.S.

Leader in publicprivate partnerships: 410+ buses under contract


A better electric fleet, for less

Highland makes it affordable.

- No Upfront Cost / No Bond Funds
- Turn-Key Solution
- Save Year 1
- Lower Total Program Cost
- Monetize Tax Incentives
- Aligned Partnership
- Operations & Maintenance Included
- Performance Guarantee

Broad fleet electrification experience

Vehicle-to-grid (V2G) with Highland

Electric school buses are essentially batteries on wheels. They're ideally suited to provide capacity, stability, and emergency power to the grid.

500k electrified buses add 60GWh of storage capacity.

# OF BUSES	ENERGY CAPACITY	IMPACT TO COMMUNITY
25	5 MWh	116 Local Homes for 1 Day
275	58 MWh	1,400 Local Homes for 1 Day
1,100	231 MWh	5,500 Local Homes for 1 Day

Highland uses V2G participation to offset the upfront cost of electric buses and make fleets more affordable.

REAL RESULTS

In the summers of 2021 and 2022, Highland orchestrated a commercial V2G program with National Grid in Massachusetts, that sent 10.8 MWh back to the grid over 158 hours.

V2G Conceptual Diagram

Provide up to **nine hours of 60kW output** with a three-bus bidirectional charging system:

bidirectional inverter

for charge / discharge³

Backflow energy to anywhere with a bidirectional charger: installation distribution grid, microgrid, or critical infrastructure⁴

A single 3-bus system (pictured) services a peak electric power output of 60 kW for 9 hours

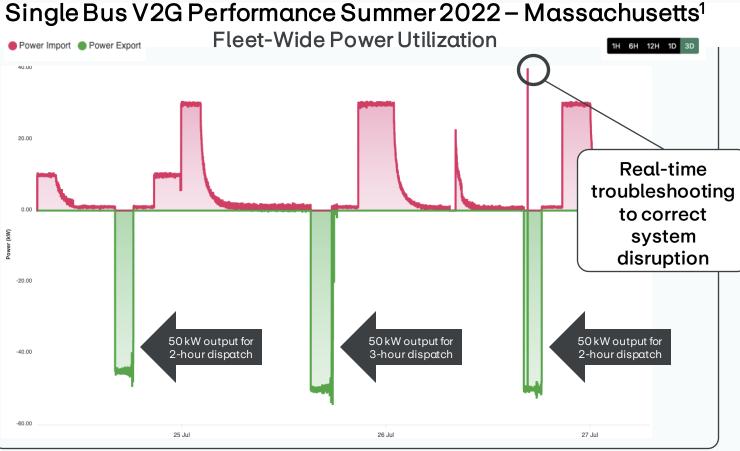
40 systems (4,000-amps) will support 2.4 MW of power output for 9 hours (or 60 kW for 360 hours)

60 kW bidirectional

chargers²

Based on 200kWh of usable battery capacity on Thomas Built Jouley (2022 vintage); actual capacity varies by OEM model Sequential discharge format requires cycling between ports; simultaneous discharge capabilities expected in 2023 System capable of continuous backflow of 60 kW until bus batteries are depleted; DC-to-AC conversion results in approximately 5% line losses in Highland operating projects

onal electrical panels and controls required for interconnection; dependent on localized project dynamics

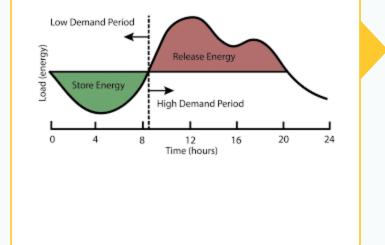

mobile dual-use

EDSI assets¹

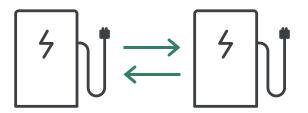
V2G Operating Experience

Highland has two operating Vehicle-to-Grid projects for peak shaving

Snapshot from Highland's energy management software system, developed in coordination with partner Synop. Output not a guarantee of future performance.


V2G Market Mechanisms: Peak Demand Reduction Incentive Programs

V2G is possible in active demand response programs today



national**grid**

Program administrators identify peak periods when stored electricity can help

School buses respond to performance-based incentive payments

Get Paid to Discharge at Peak!

Partnership is Critical to Success

Primary Infrastructure Secondary Equipment Bus & Battery **V2G & DR** Programs Student Transportation

Key Questions for Developing Projects

- How can school buses complement the service area?
- Capturing full amount of grants & incentives?
- Utility involvement
 - Make-Ready
 - Direct Investment
 - V2X & Energy Services
 - Regulatory and Legislative Barriers

Thank you.

Joshua Williams Joshua@highlandfleets.com

Microgrid and Energy Storage Lessons Learned from Fort Custer, Michigan

Major General (Retired) Mike Stone Senior Counsel at Warner, Norcross + Judd

May 22, 2023

© 2022 Warner Norcross + Judd LLP These materials are for educational use only. This is not legal advice and does not create an attorney-client relationship. The Opportunity and The Team

In 2015, the Department of Defense (DoD) Environmental Security Technology Certification Program (ESTCP) recognized the critical need for power system resiliency, soliciting environmental and energy technologies for demonstration and validation to improve energy security on military installations. A team was formed between Eaton, the Michigan Army National Guard, MK Advisors and Consumers Energy under the leadership of Electricore Inc.

-Edward Buck, Senior Specialist Engineer, Eaton https://www.eaton.com/content/dam/eaton/services/eess/eess -documents/eaton-gov-fort-custer-white-paper-wp027019enen-us.pdf

Why Fort Custer in Augusta, Michigan?

Photo By Master Sgt. Helen Miller | The new solar array at the Fort Custer Training Center in Augusta, Mich., is comprised of 780 panels each rated at 330 watts yielding a capacity of 257,400 kilowatts of power. Construction of the solar field began in early May 2015.

The Battle Creek area is home to the Fort Custer Training Center (Army), the Defense Logistics Agency, the 110th Air Wing (Air National Guard), US Marine Corps Reserves, the Michigan Youth Challenge Program (State and Federal) as well as the Veterans Affairs Agency. At the time of these projects, Fort Custer was a finalist for an East Coast Missile Defense site projected to come with \$2.2B in new investments to the area.

The Requirements

I wanted the lights to stay on when the grid went down, so the National Guard could respond when needed; to make sure we were competitive for the Missile program; and to make other federal assets competitive with other States to protect federal jobs.

The Department of Defense wanted to analyze potential replication of the lessons learned for other military installations.

- Utilization of existing assets to improve the economic feasibility of a microgrid
- Engineering of a cost recovery mechanism for exported power
- Investigation of the potential to share resources between Fort Custer and neighboring federal facilities

The Solution

The microgrid solution required the management of a mix of geographically distributed energy resources across the facility. To build this microgrid, advanced control system expertise was required to integrate an existing solar photovoltaic (PV) plant, new energy storage assets and existing backup diesel generators for grid-connected operation. Grid connection of the microgrid required extensive interaction with the region's utility provider and regulatory officials, as well as the development of new energy export approaches, policies and procedures. To demonstrate improved economic feasibility, the team developed the microgrid by maximizing existing assets.

The Results 1 of 2

The customized microgrid infrastructure created a modular and scalable solution that can be applied to sites throughout the U.S. where military bases are closely located. The ability to seamlessly island, control the demand to a set point, and even export excess energy onto the utility grid to support other loads on the regional distribution system can be used by the neighboring federal facilities or Consumers Energy to optimize grid stability and reliability. The model also shows how utilizing existing backup power infrastructure to build a customized microgrid can dramatically reduce the cost to implement energy surety goals.

The Results 2 of 2

A key accomplishment of the project was adding gridconnection support alongside advanced automation and control features to legacy diesel generator, solar PV and battery storage assets to maximize economic viability. During grid outages, the solar PV system is supported by energy storage to regulate local demand and even enable Fort Custer to support closely sited facilities. This over-the fence powering capability can also help reduce the investment required for neighboring facilities to support mission-critical energy resiliency initiatives.

Key Findings 1 of 2

Project findings prove the demonstration is able to effectively enhance power surety, energy resilience, distributed generation management and demand response, while contributing to the critical power needs of nearby military installations.

Key Findings 2 of 2

An additional challenge for future applications involves the depth of communication and coordination required between grid operators and microgrid operators, especially in the context of power export to nearby facilities and ownership of infrastructure and equipment. If nearby microgrid facilities coordinate with each other, they must keep in mind the electrical infrastructure separating their facilities is generally owned by the local utility, which will seek to mitigate risk to its own equipment. Eaton recommends the application of equipment protection measures such as fault detection and surge protective devices to help in this regard.

The 'So What' for the MPSC

-This project was part of a grander vision to enable energy security and resiliency. We were close to offering the MPSC the opportunity to bring 11-12 M/Ws of new power online (funded by DoE on Fort Custer) to service a 4 to 6 square mile area encompassing federal assets and local businesses.

-The project took a monumental effort on the part of the stakeholders. For instance, MK Advisors volunteered all of their time to make sure that this was a success. Consumer's Energy committed a significant amount of time without compensation.

-It required more professionals than originally projected and the technology 'was not ready for prime time'. For instance, the energy storage costs were beyond the budget.

-Lots of learning must occur (and/or training) for future projects like this to succeed.

Michigan Public Service Commission

Challenges to Enhanced Resilience Community Resilience Hubs

May 22, 2023 By Diane Mills CEM President, Occupant Care

Agenda

- 1 What are "Community Resilience Hubs" and their purpose?
- 2 How vulnerable are they to grid outages in Michigan?
- 3 What are the key challenges to enhanced resilience?
- 4 Two Examples: DOE GRIP* grant Concept Paper** and DOE Renew America's School Concept Paper*** and Application***
- 5 Economic Barriers
- 6 Technical, Design, and Procurement Barriers
- 7 Utility and Collaboration Barriers
- 8 Community Benefits
- * Grid Resilience and Innovation Partnerships
- ** Written and submitted in partnership with Occupant Care, 5 Lakes Energy, MPSC, and EGLE
- *** Written and submitted in partnership with Occupant Care and Pewamo-Westphalia Community Schools

What are Community Resilience Hubs and their purpose?

• HUBS

- Warming / Cooling Centers
- Warming / Cooling Centers with limited food/snacks
- Typically smaller, community-owned or municipal buildings
- Most not available overnight or evenings
- Information and services

SHELTERS

- Overnight Emergency Shelters (personal emergencies)
- Disaster Shelters (emergency disaster relief and shelter usually in coordination with ARC/FEMA)
 - Safe place to sleep, eat, hydrate, shower, obtain health services
 - Typically large, publicly owned buildings
 - Information and services

"Grid resilience doesn't stop at the point the power goes out. It ends when people feel safe and have recovered. Hubs and shelters help fill that gap."

Diane Mills CEM, Occupant Care

How vulnerable are hubs and shelters to grid outages?

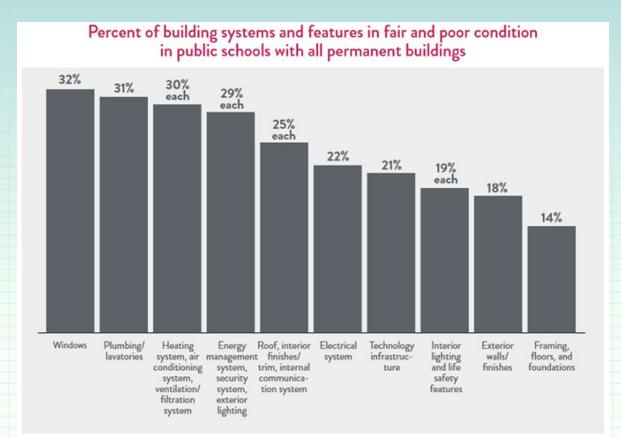
- Nationwide, outages caused by extreme weather events have increased 67 percent since 2000, according to a Climate Central <u>analysis</u>. Michigan fared the worst, with 111 major weather-related outages between 2000 and 2019. (<u>https://www.climatecentral.org/research</u>)
- The problems with grid outages are more complex in rural communities.
- Hubs: Could be less vulnerable to grid outages with solar and batteries backup
- Disaster Emergency Shelters:
 - Building pre-identified by FEMA/ARC not energy ready for grid outages
 - Requires solar, batteries, and generators
 - Buildings often are middle schools and/or high schools which have commercial kitchens, showers (locker rooms), & gymnasiums capable of overnight sheltering and require additional building upgrades

"I don't use 'if'. ... It is when, <u>when</u> these emergencies happen."

- Lucy Easthope, Disaster Recovery Expert and author of "When the Dust Settles" What are the challenges to Enhanced Resilience at Community Resilience Hubs?

- Last mile of grid resilience
- Economic barriers
- Technical barriers
- Design barriers
- Utility barriers
- Collaboration barriers
- Procurement barriers

"The key reason for failure is denial."


Peter Drucker

Two Examples

- GRIP GRID RESILIENCY GRANT CONCEPT PAPER focused on the "last mile" or "weak link" in building grid resiliency: What happens to people during a grid outage due to disaster event?
 - \$150M to provide "Electrification" and renewable energy to 10-15 MS/HS already identified as
 possible disaster shelters located in disadvantages communities as defined by the Justice40
 Initiative
 - Upgrade electrical systems, convert HVAC to geothermal (provides AC), add solar, batteries, and generators capable of running 24/7 for days
 - Used a database of schools Occupant Care had already audited to estimate costs
- RENEW AMERICA'S SCHOOLS GRANT APPLICATION
 - Concept Paper accepted and Application submitted focused on rural school district (disadvantaged per Justice 40 Initiative).
 - Convert steam/hydronic boilers to geothermal, LED light upgrade, new roof, solar, batteries and generator, collaborations, and included student outcomes.
 - \$15M to provide "Electrification"

Economic Barriers

U.S. Department of Education, National Center for Education Statistics, Institute of Education Sciences, "Condition of America's Public School Facilities: 2012

Technical, Design, and Procurement Barriers

Updated Project Cost Estimates January 23, 2023						
Traditional HVAC Upgrade						
Traditional HVAC Upgrade	\$ 2,750,000.00					
Traditional Controls Upgrade	\$ 250,000.00					
LED Lighting Upgrade	\$ 250,000.00					
Electrical Service Upgrade	\$ 50,000.00					
Roof and Building Envelope	\$ 1,000,000.00					
Traditional HVAC Upgrade Total	\$ 4,300,000.00					
Convert to Geothermal additional cost	\$ 5,000,000.00					
Microgrid Solar, Battery, and Generators	\$ 3,000,000.00					
Total Upgrade Estimated Cost	\$ 12,300,000.00					
With 20% contingency	\$ 14,760,000.00					

Utility and Collaboration Barriers

Decision makers

- School Boards and Administrators
- Governing Entities and Building Codes
- Utilities Demand response programs and special rates
- MISO Capacity requirements
- Emergency Operations (188 disaster relief organizations in MI)
 - American Red Cross, FEMA, Salvation Army, Michigan State Police
 - County programs
 - Municipal programs

• Vendors and solution providers

- Engineering and design (mechanical, electrical, structural)
- Procurement (HVAC, controls, solar, LED lighting, electrical, ...
- Funding and financing (ESPC, PPA, Michigan Saves, grants, rebates, better rates, DR)
- Staff training
- Measurement and Verification plans
- EV Charging Stations

Community Benefits (Justice40 Priorities in DAC)

- Decrease in energy burden
- Decrease environmental exposure
- Increase clean energy jobs, job pipeline and access, and career track job training
- Increase clean energy enterprise creation and contracting
- Increase energy democracy
- Increased access to low-cost capital
- Increase parity in clean energy technology access and adoption
- Increase reliability, resilience, and infrastructure to support reliability and resilience

Using 2 examples: Cost for one shelter per county in 83 MI counties: \$830M - \$1.245B Estimate cost ratios 60/40 to 50/50 Electrification/Shelter energy infrastructure Approximately 42,500+ people shelter capacity Approximately 83 MW added grid capacity – very flexible

Up Next:

4:00 pm MPSC Reliability Data Collection Template

MPSC Reliability Webpage

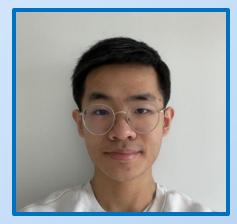
Jessica Duell, MPSC 4:00-4:15pm

Up Next:

4:15 pm Data and Mapping

Panel: Data & Mapping – Gaps & Solutions

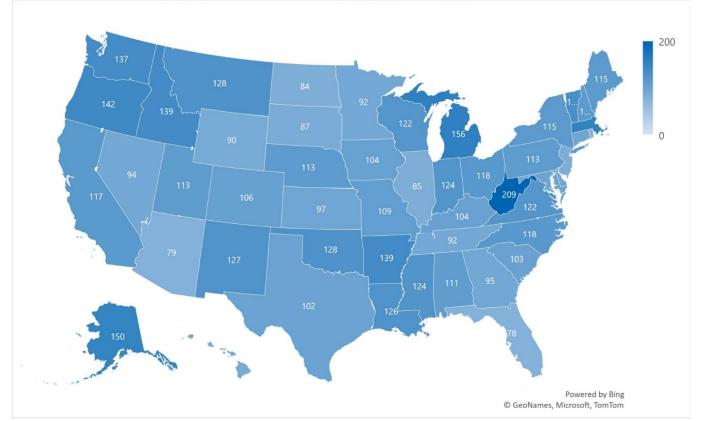
Moderator:



Joy Wang, Ph.D. Manager Distribution Planning Michigan Public Service Commission

Amy Bandyk Executive Director Citizens Utility Board of MI

Eric Lau Senior Software Engineer The Michigan Daily


Tera Dornfeld, Ph.D. Analyst & Public Engagement Specialist Minnesota Public Utilities Commission

Hanna Terwilliger Senior Rates Analyst Minnesota Public Utilities Commission

Reliability In Michigan

Figure 18: 2020 Customer Average Interruption Duration Index (CAIDI) without Major Event Days in Minutes

Source: CUB of Michigan Utility Performance Report

Circuit-Level Picture Not Enough

Consumers Energy (electric)

1.64 million residential customers

/

2,355 distribution circuits

= 696.4 res. customers per circuit

DTE Electric

2.04 million residential customers

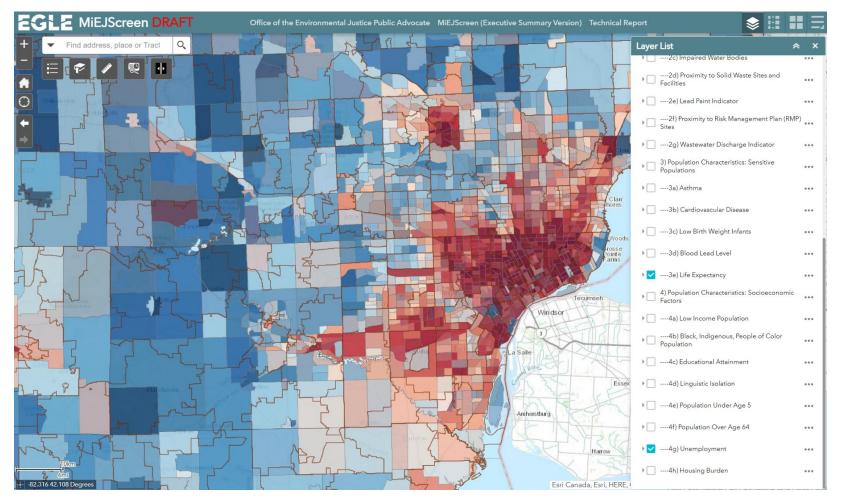
/

3,486 distribution circuits

= 585.2 res. customers per circuit

New Template Asks for Census Tract/Zip Code-Level Data

WORST PERFORMING CIRCUITS DURING THE MONTH AND YEAR


(1) For each electric utility with 1,000,000 or more customers, a list of its 10 worst performing circuits for the prior month in terms of SAIDI and SAIFI. For each listed circuit, provide the following information below. (2) For each electric utility or cooperative with less than 1,000,000 customers, a list of the worst performing 1% of circuits for the prior month in terms of SAIDI and SAIFI. For each listed circuit, provide the following information below.

Item/Area		Circuit 1	Circuit 2	Circuit 3	Circuit 4	Circuit 5	Circuit 6	Circu
Circuit Na								
Circuit Number								
SAIDI all weather (monthly)	Residential							
	Commercial							
	Industrial							
	Overall							
SAIDI excluding MEDs (annual only)	Residential							
	Commercial							
	Industrial							
	Overall							
Circuit Length (miles)								
Number of Customers Served	Residential							
	Commercial							
	Industrial							
Substation Name								
Location of Circuit Span - Zip Codes								
Location of Circuit Span - Census Tracts								
Last Circuit Trim								
List of Outages and Causes								

MiEJScreen

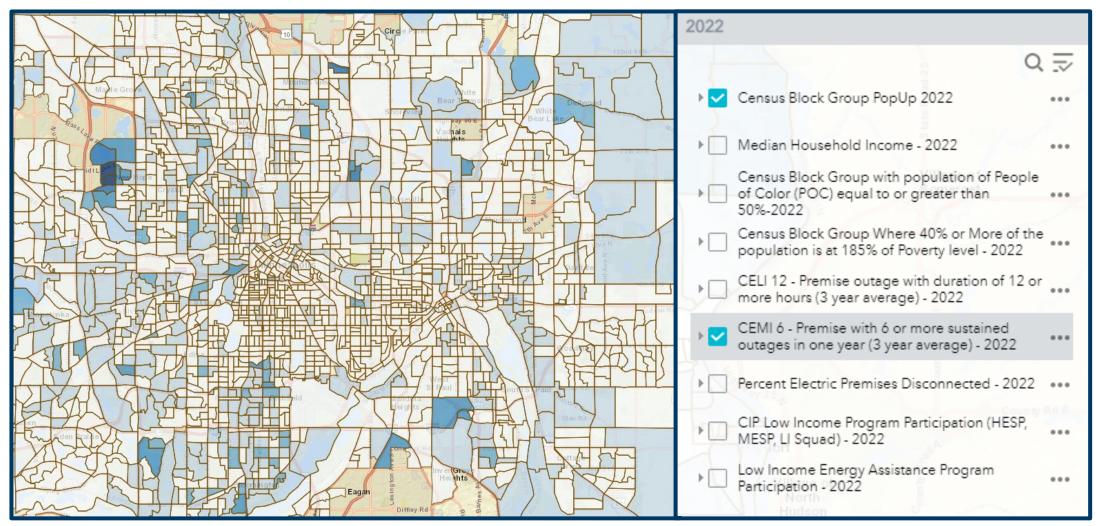
- Developed by Michigan EGLE
- Example of data that could be combined with outage data

Mapping Reliability and Equity

Hanna Terwilliger, Rates Analyst

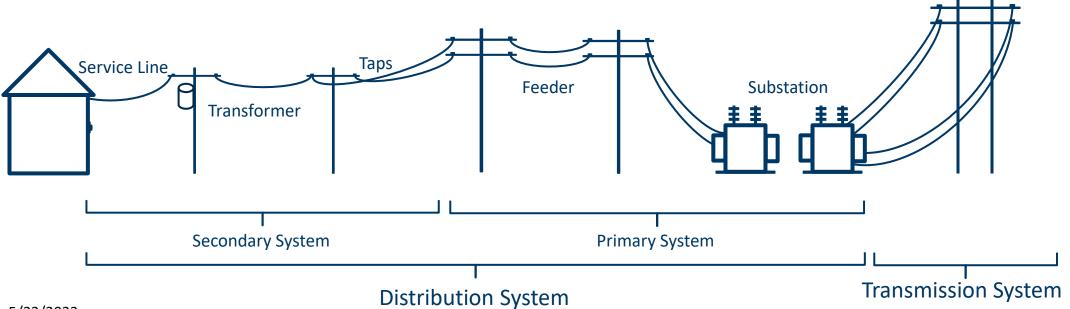
Tera Dornfeld, Public Engagement Regulatory Specialist

https://mn.gov/puc


The ideas expressed are the views of the presenter, and not the Minnesota Public Utilities Commission.

Creation of the Interactive Map

- Map developed as part of Performance Based Ratemaking (PBR) docket for Xcel Energy
- Reliability metrics
 - Customers Experiencing Multiple Interruptions (CEMI) 6 or more sustained interruptions in a year
 - Customers Experiencing Lengthy Interruptions (CELI) 12 hours or longer interruption in a year
- Demographic indicators: using Minnesota Pollution Control Agency "Environmental Justice Areas of Concern" thresholds
 - Census tracts that have at least 40% of people reported income less than 185% of the federal poverty level
 - Census tracts that have 50% or more people of color
 - Federally recognized Indian Tribes


Xcel Electric Service Quality Interactive Map

https://xeago.maps.arcgis.com/apps/webappviewer/index.html?id=6b87f4d407864b939bcea05aad05bdd1

Data challenges

- Aligning geographic boundaries
- System vs customer level metrics
- Data privacy and security concerns

Thank You!

Hanna Terwilliger & Tera Dornfeld

Hanna.Terwilliger@state.mn.us & Tera.Dornfeld@state.mn.us

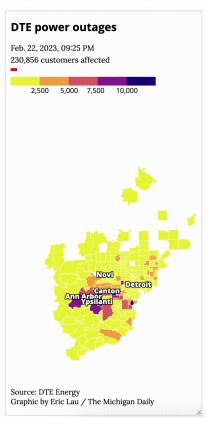
Ę

DTE Data Dive

A reflection on data from the February power outages


Eric Lau (<u>ericlau@umich.edu</u>) The Michigan Daily Senior Software Engineer

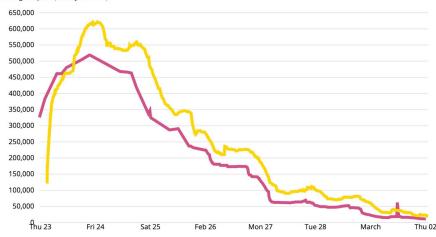
Michigan Public Service Commission Resilience Tech Conference — Data and Mapping: Gaps and Solutions May 22, 2023


Data temporality

The road ahead

At 9PM on Thursday night, over 600,000 DTE customers in Southeastern Michigan reported experiencing power outages.

Read about the accuracy of the numbers provided by DTE. Chart: Eric Lau • Source: DTE Energy • Created with Datawrapper


References

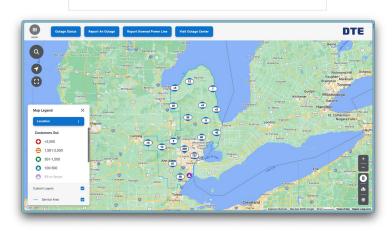
<u>Massive power outage in Ann Arbor leaves thousands in the dark</u> (The Michigan Daily) <u>DTE Outage Tracker</u> (GitHub)

Data discrepancies

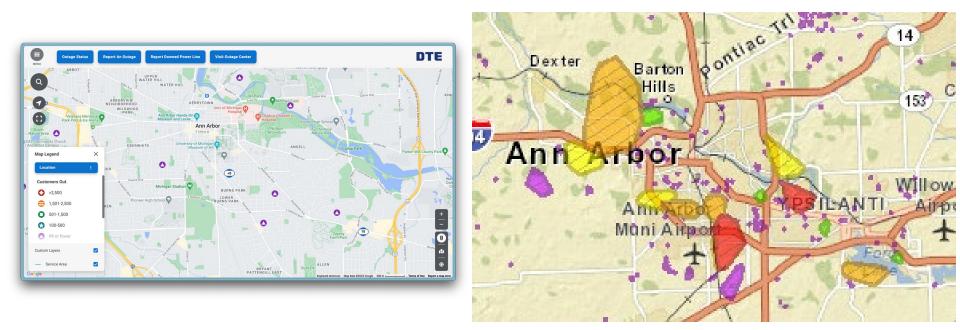
The disparity in DTE's outage numbers

The number of customers without power as reported by DTE on their outage homepage has been consistently lower than the number reported through their outage map API.

Note: Dashboard data prior to February 26th came from a compilation of Twitter screenshots of the dashboard. Source: DTE Energy Graphic by Eric Lau / The Michigan Daily


References

Homepage dashboard
 Outage map API (total by ZIP Code)


DTE Energy undercounts service interruptions on power outage website (WDET) The disparity in DTE's outage numbers (Twitter) DTE outage center (DTE) DTE outage map (DTE)

Last Updated: Friday, May 19, 2023 1:00 PM

Data granularity

References DTE outage map (DTE) Damn Arbor (Twitter)

Up Next:

4:45 pm How to submit comments

4:50 pm Closing Remarks

To submit a comment

Written Comments – Case No. U-21388

1. Email to:

LARA-MPSC-commissioners2@michigan.gov

2. Mail to: Michigan Public Service Commission P.O. Box 30221 Lansing, MI 48909

For IT assistance, e-mail: LARA-MPSC-EVENT-IT@michigan.gov

To enable closed captioning: 1.) Click the "more" button

at the top of your screen

2.) Click on "Language and speech" 3.) Click on "Turn on live captions"

Do you have a question or need to file a complaint?

Contact the MPSC's Customer Assistance Team

By Phone: 1-800-292-9555

By Mail: MPSC Customer Assistance PO Box 30221 Lansing, MI 48909

Information on filing a complaint is available at Michigan.Gov/UtilityComplaints

To enable closed captioning: 1.) Click the "more" button at the top of your screen 2.) Click on "Language and speech" 3.) Click on "Turn on live captions"

Up Next:

4:45 pm How to submit comments

4:50 pm Closing Remarks

