MPSC EV Technical Conference

January 25, 2024

Keynote Speakers Auto Industry Perspective in Scaling EV Deployment and Charging

Dan Bowerson, Auto Innovators

Mike Maten, GM

Michigan Public Service Commission EV Technical Conference

Auto Industry Perspective in Scaling EV Deployment & Charging

January 25, 2024

State of the EV Industry

The Future is Electric

ELECTRIC VEHICLE & BATTERY PRODUCTION AND R&D LOCATIONS RESEARCH & DEVELOPMENT BILLIO In 2019, the National Science Foundation estimated the auto industry spent more than \$23B in R&D in the U.S. alone. **EV Production State Status** EV Production State **EV Assembly Plants** EV Assembly Plant Future EV Production State Future EV Assembly Plant **Battery Plants** Open Battery Plant Additional EV Facilities Announced Battery Plant R&D

ELECTRIFYING INVESTMENTS

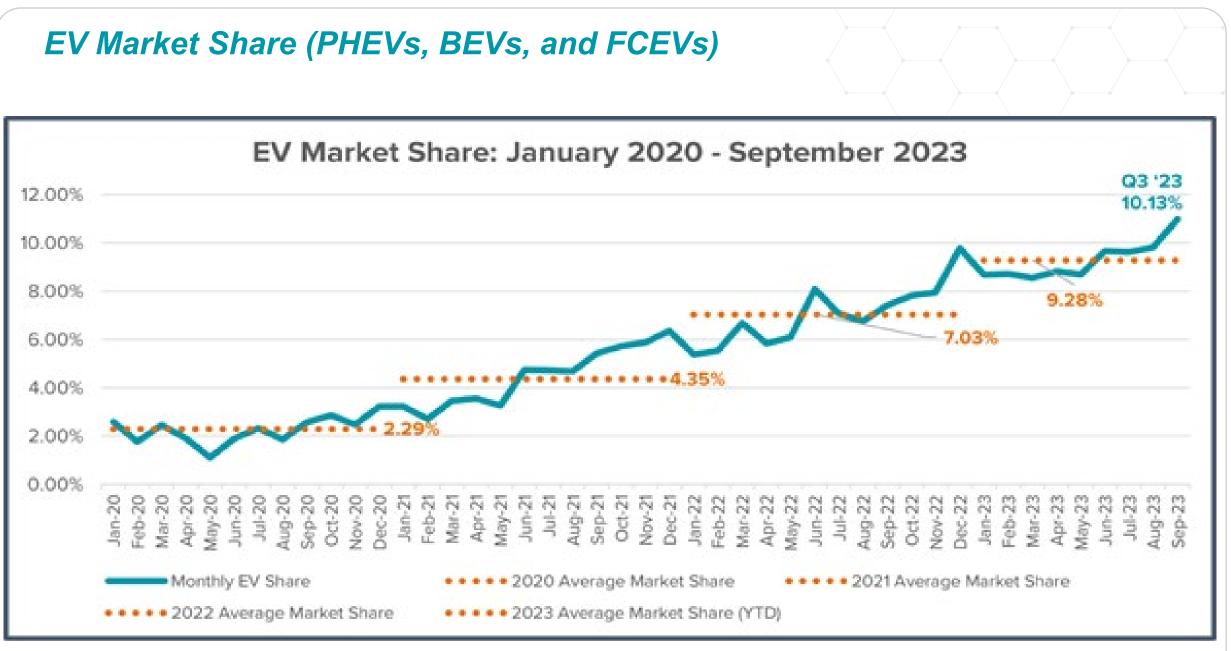
On a global scale, automakers are planning to spend an estimated \$1.2 trillion through 2030 to develop and build new battery-powered vehicles.

From new assembly plants and battery factories to retooling and upgrading existing facilities, the automotive industry is investing in vehicle electrification.

Since 2017, automakers and thier battery partners have already committed to investing over \$125 billion specifically in the U.S. to electrify products, and the U.S. continues to gain investment dollars as more of these planned investments are allocated.

BATTERY PLANT MANUFACTUING CAPACITY IN THE U.S. INCREASING 649%

99 GWh


643 GWh

742 GW

to grow about 2,300 GWh by 2025.

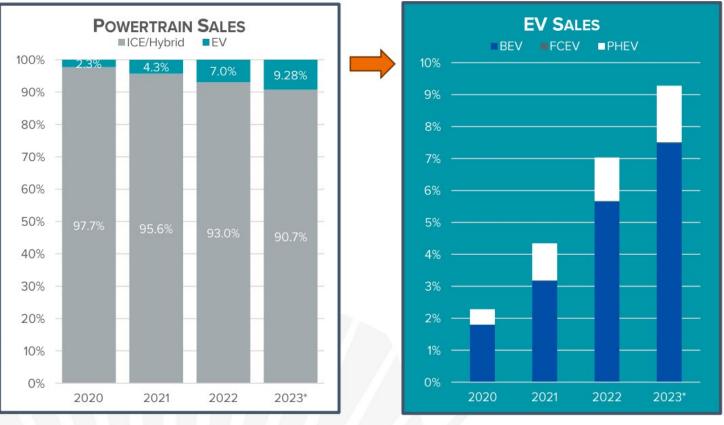
In 2020, there was about 630 GWh of global

battery production capacity, which is expected

EV Sales by Segment

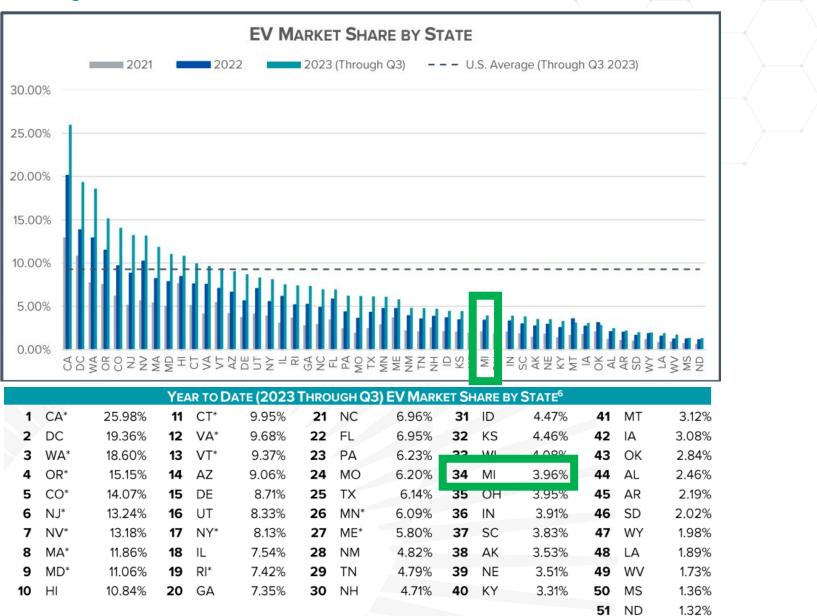
EV MODEL AVAILABILITY 111 Vehicle Models Sold in Q3 2023:

61 Battery Electric Vehicles

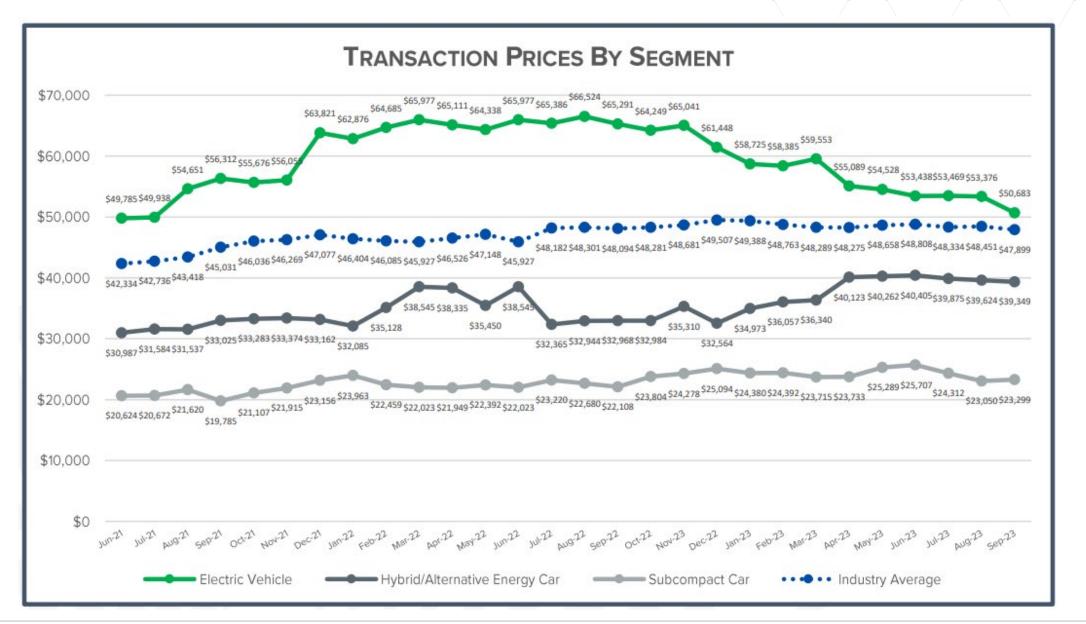

- 21 Cars
- 33 Utility Vehicles
- 4 Pickups
- 3 Vans

48 Plug-in Hybrid Vehicles

- 17 Cars
- 30 Utility Vehicles
- 1 Van


2 Fuel Cell Electric Vehicles

- 1 Car
- 1 Utility Vehicle


*2023 through Q3

EV Market Share by State

7

EV Transaction Prices

State of the EV Charging Industry

Infrastructure by State

Public Charging Outlets And Registerd EVs (as of 9/30/2023)									
	EV Level 2	EV DC Fast	H2** Fueling	Total	Percent EVs of Total VIO***	Share of Registered EVs****	EVs Per Charger	EVs Per 10K Residents	
AK	75	28	-	103	0.53%	0.08%	30	41.24	
AL	523	299	-	822	0.29%	0.37%	18	30.45	
AR	665	108	-	773	0.28%	0.19%	10	25.47	
AZ	2,252	909	-	3,161	1.46%	2.52%	32	140.89	
CA*	31,568	9,710	58	41,336	4.56%	35.52%	34	359.68	
CO*	3,908	857	-	4,765	1.81%	2.48%	21	174.58	
CT*	1,516	391	-	1,907	1.34%	1.02%	21	114.1	
DC	907	48	-	955	2.96%	0.25%	11	144.74	
DE	266	171	-	437	1.10%	0.25%	23	103.80	
FL	6,296	2,041	-	8,337	1.32%	6.23%	30	117.13	
GA	3,359	950	-	4,309	0.96%	2.27%	21	86.29	
HI	703	47	1	751	2.49%	0.71%	38	199.40	
IA	486	280	-	766	0.40%	0.32%	17	40.35	
ID	256	110	-	366	0.57%	0.28%	31	64.49	
IL	2,251	920	-	3,171	1.08%	2.74%	35	86.24	
IN	877	439	-	1,316	0.51%	0.79%	24	47.50	
KS	854	203	-	1,057	0.48%	/ / 0.35%	13	48.3	
KY	544	177	-	721	0.33%	0.34%	19	30.70	
LA	406	215	-	621	0.27%	0.25%	/ / 16	21.89	
MA*	5,559	633	-	6,192	1.76%	2.41%	16	139.7	
MD*	3,511	840	-	4,351	/ / 1.62%	/ /2.07%	19	137.55	
ME	769	216	-	985	0.95%	0.32%	13	94.7:	
MI	2,239	640	-	2,879	/ / 0.70%	/ / 1.50%	V 21	60.08	
MN*	1420	384		1804	0.82%	107%	24	76.44	
MO	2,099	361	-	2,460	0.56%	0.81%	13	52.68	
MS	281	112	-	393	0.15%	0.11%	12	15.3	
МТ	169	152	1.	321	0.37%	/ /0.14%	18	54.56	
NC	2 462	900		2 262	0.93%	100%	24	76.95	

Q3 2023*

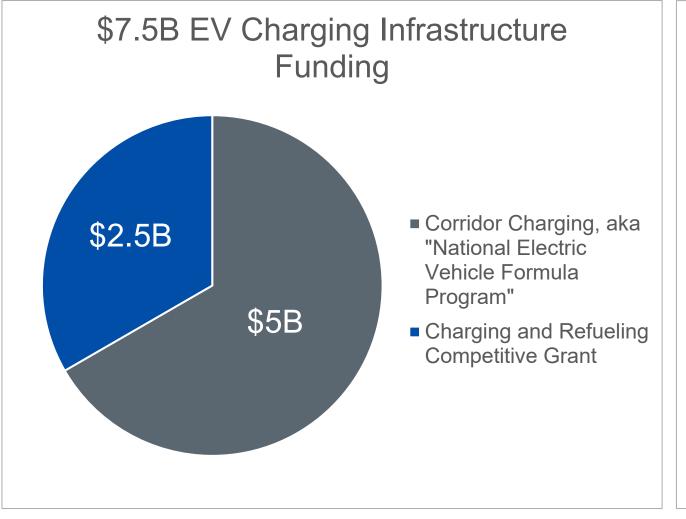
Level 2: 116,692 EVSE Ports

DC Fast: 34,611 EVSE Ports

U.S. Total: 151,303 EVSE Ports

2030 Projected Need

Level 2: 1,250,000 EVSE Ports


DC Fast: 182,000 EVSE Ports

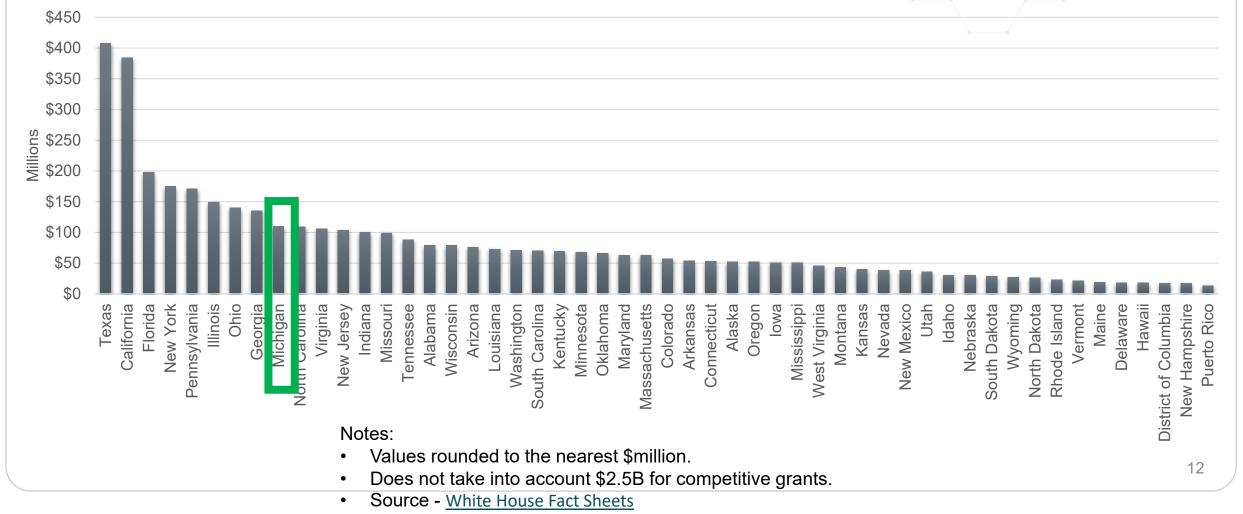
U.S. Total: 1.4 million EVSE Ports

Sources:

- U.S. Dept. of Energy AFDC as of 9/30/23
- NREL, The 2030 National Charging Network Estimating U.S. Light-Duty Demand for EV Charging Infrastructure (2023) 10

Bipartisan Infrastructure Law – EV Charging Funding

National EV Formula Program


- FY22 FY26; Federal share = 80%
- Funds allocated to states using formula (23 U.S. Code § 104 subsection (c))
- To be used for EV charging on alternative fuel corridors
 - If alt. fuel corridors fully built out, funding may be used for publicly available chargers
- States submitted plans to DOT on intended funding usage
- DOT and DOE must provide guidance to states to prioritize investments, i.e.:
 - "current and anticipated market demands for [EV] charging infrastructure, including with regard to power levels and charging speed, and minimizing the time to charge current and anticipated vehicles"

Charging and Refueling Infrastructure Grants

- FY22 FY26; Federal share up to 80%
- Charging and hydrogen, propane, and natural gas fueling
- 50% along FHWA-designated Alt. Fuel Corridors & 50% "Community Grants"
- Publicly accessible projects outside of Alt. Fuel Corridors given priority for rural, low income and underserved communities, and multi-unit dwellings

Bipartisan Infrastructure Law – NEVI

EV Charging Investment in BIL National Electric Vehicle Infrastructure Formula Program

EV Opportunities for Utilities

Utility Engagement in EV Charging

Deploying charging infrastructure

- Authorize targeted utility investment in charging infrastructure (including make-ready).
- Draw on lessons learned across the industry to avoid pilot program repetition.
- Direct utilities to develop plans that provide a transportation electrification roadmap.

Planning and Financing Grid Upgrades

- Assess the ability of the current distribution system planning and financing to accommodate the scale of grid upgrades that will be driven by widespread EV adoption
- "Future proof" sites based on input from EVSPs, hosts, and fleet owners.
- Systematic planning for grid upgrades based on expected acceleration of EV adoption.

Vehicle Grid Integration

Rates and managed charging are the key to capturing the benefits of EVs

- Commercial and industrial EV rates
- Time of Use rates (whole house and EV-only)
- Include EVs in Demand Response (DR) programs
- Scale up pilots to full scale
- Build on the experience of other states.

Technology & Standards

- Include options for EV drivers to participate in EV rates and DR programs by leveraging telematics.
- Coordination between utilities and regulators developing submetering standards.
- Programs and policies that compensate EV drivers for exporting power to the grid.
- Streamlined interconnection rules for bidirectional EVs that are consistent and informed by learnings from other jurisdictions.
- Build off successful V2X pilots and demonstrations.

Dan Bowerson Vice President, Energy & Environment dbowerson@autosinnovate.org

EV Infrastructure & Charging

Michael Maten Director, EV Policy and Regulatory Affairs – General Motors January 2024

US EV Launches - Ultium

Underpinning our EV launches in the US is the Ultium architecture

EV Battery Cell Plant Investment

expanding access & improving experience

2020	2021	2023	2024+	
		155		
metro	home	highway	NACS	
Support EVgo to build 3,250 DCFC in top 50 metros	Free or subsidized turnkey home installation	Co-invest with PFJ to build 2,000 highway DCFC every 50 miles	Support J3400 (NACS) Expansion, Access to Tesla's Superchargers	

recently announced

Charging Joint Venture, deploying 30,000 DC chargers across North America

HONDA

И В НУЛПОВІ

NACS Adoption

- Industry is moving to the North American Charging Standard – SAE J3400
 - First GM EV with NACS in CY2025
 - SAE released J3400 TIR in December
 - Most of industry has now announced NACS adoption

• GM customers will be able to access Tesla Superchargers

- 2x the fast chargers available today
- Combined Charging System (CCS)to-NACS adapter available early 2024

WHY?

- Accelerate convergence to a single standard
- Accelerate customer confidence & EV adoption
- Improve customer experience with better availability, ergonomics, reliability

GM Energy Expanding DC Fast Charger Network

EV INFRASTRUCTURE AND GRID INTEGRATION

Policy Opportunities

Proactive Utility & Grid Planning

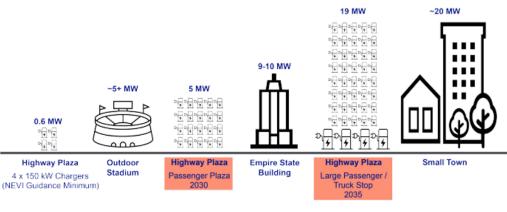
Ongoing Work

Equipment Standardization

Additional Funding

Streamlined Permitting & Approval Processes

Charging Reliability & Customer Experience



Research & Roadmaps

EV INFRASTRUCTURE BUILDOUT: NEEDS AND POLICY CONSIDERATIONS

- Needs: DOE calls for 181.5k DCFC by 2030 for light duty
 - Sites can take years to permit, construct, energize
 - Supply chain constraints are adding to delays
- Today: Only 37,000 DCFC nationwide
 - Many "charging deserts" remain
 - Reliability, charging speed, queuing are all issues
- Customer Experience: deploying chargers is not enough
 - Overall customer experience needs improvement
 - Public charging can be more expensive than gas
- Utility Role: utilities and regulators are key partners
 - Demand charges can kill charging business case
 - Utility upgrades can be costly and slow
 - Regulatory construct needs to evolve
- Policy: funding is necessary but not sufficient
 - \$5B NEVI is a "down payment," not a panacea
 - State and local policy are key enablers/barriers

Timely Deployment Requires Utility/Regulatory Innovation

Source: National Grid Study, November 2022

- Charging sites often require substantial upgrades on fast timelines
- Proactive upgrades and regulatory approvals may be needed
- Utility practices will need to evolve to enable faster energization

Thank you.

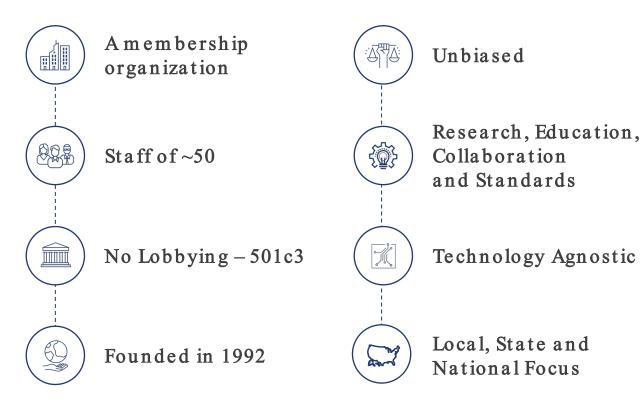
How to Drive Equity in EV Deployment

Shatina Jones Diversity, Equity and Inclusion Officer, MPSC

Brittany Blair Research and Industry Strategy Analyst, SEPA

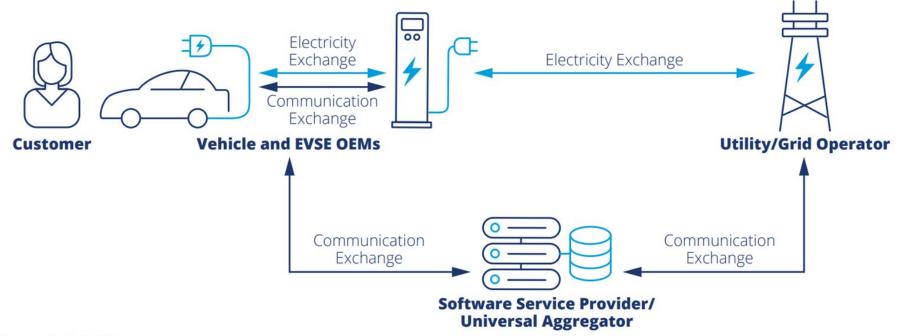
Natalie King Founder and CEO, Dunamis Clean Energy Partners LCC

Quinn Parker CEO, Encolor

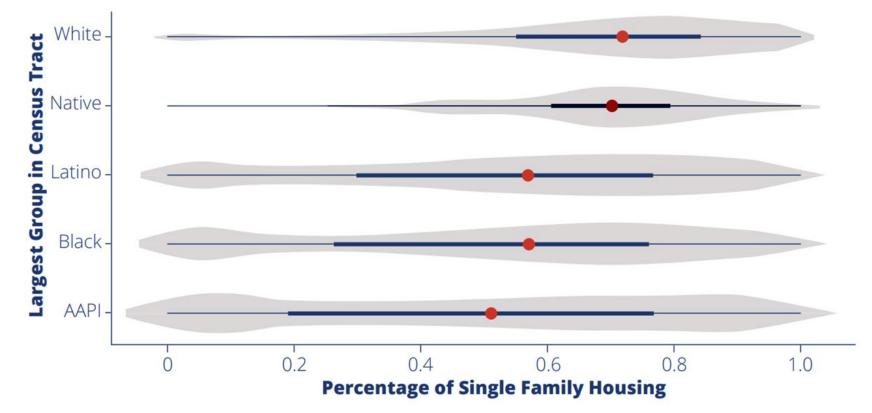

Kom al Doshi Director of Mobility, Walker-Miller Energy Services

Cici Vu Associate Director of Climate, DNV

Who is SEPA?



EV Ecosystem



Source: SEPA. (2023).

Charging Challenges

Source: Brooking Metro, n.d., Brooking Analysis of 2015-2019 American Community Survey Fiver-year Estimates. Reformatted by SEPA.

Key Barriers to Equitable EV Adoption

Vehicle, Charger, and Installation Costs

Education

Fair Distribution of Benefits

EV Equity Resource

Program

Outreach

Programs

Services

Funding

Smart Electric Power Alliance Managed Infrastructure **Ride Sharing Rebates & Subsidies** Charging Assistance **Benchmarking** Equitable **Education &** New & Multi-unit Micro Residential Time-of Use Pre-owned EV Transportation Electrification Dwelling e-Mobility **EVSE** Rebate Rebates Managed Electric Shared Commercial Fleet Advisory Charging School Buses **EVSE** Rebate Mobility Program Design and Benchmarking Toolkit November 2022 Make-ready Subsidized Public **Public Transit** Residential & Matchmaker & L2 & DCFC Commerical Sales Portals **Workforce Development Equity & Community Training** Source: SEPA, 2022

Website Link: https://sepapower.org/resource/benchmarking-equitable-transportation-electrification/

BUNAMS CHARGE

- First African-American, Female-Owned EV Charging manufacturer in the world
- Spin-off of Division of Successful
 12-year-old Cleantech Company
- High-quality EV Charging Solutions
 'Made in America'
- Focused on Innovation and Sustainability
- Committed to Promoting Diversity
 and Inclusivity in the EV Industry

Interconnection Opportunities and Obstacles for V2H and V2G

Jesse Harlow Interconnection & Distributed Energy Resources Manager, MPSC

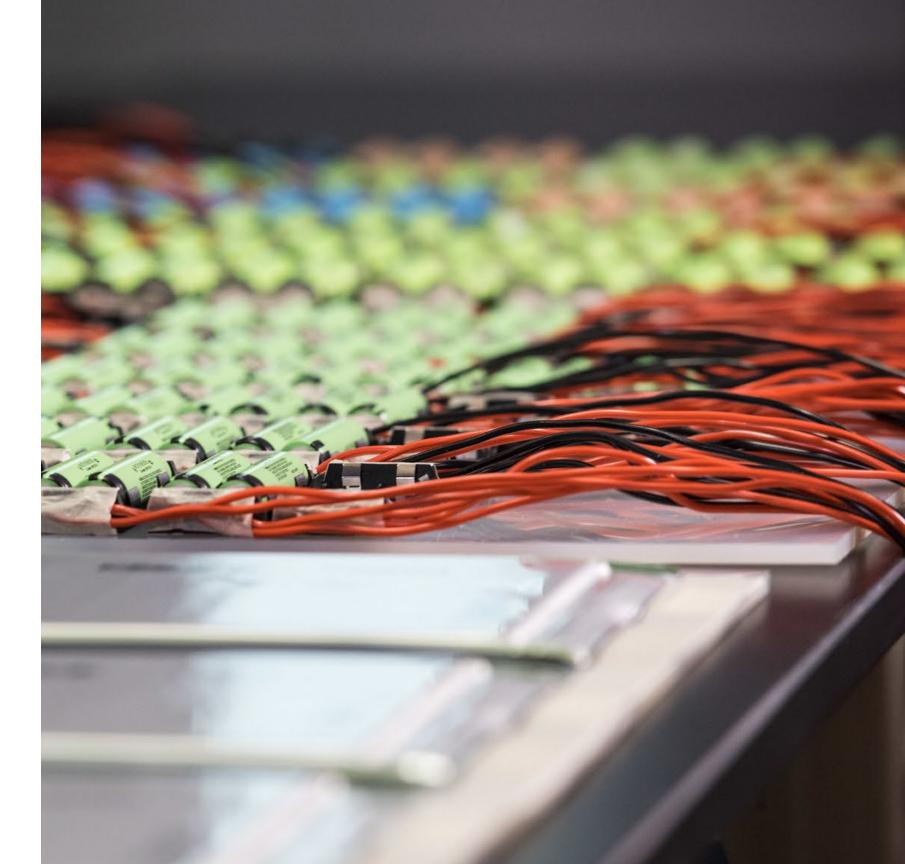
Haukur "Hawk" Asgeirsson Standards Development, IEEE and SAE

Valerie J.M Brader Shareholder, Rivenoak Law, On behalf of Ford

Steve Letendre, PhD Senior Director of Regulatory Affairs, Fermata Energy

Richard Mueller Engineering Manager for New Technology, Standards and Grid Interconnection, DTE Electric

Standards for Bi-Directional Electric Vehicles


January 25, 2024

MPSC Electric Vehicle Technical Conference

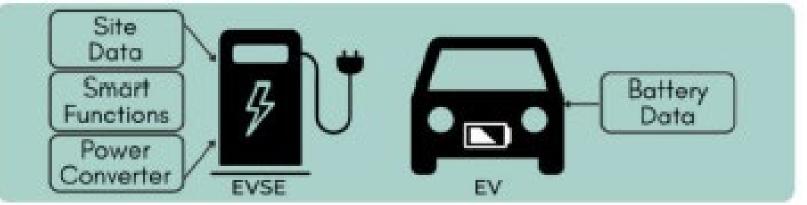
Hawk Asgeirsson

PNNL is operated by Battelle for the U.S. Department of Energy

- Types of Inverter System for EVs
- Standards for bi-directional EVs (V2G & V2H)
 - Grid standards IEEE
 - EV standards SAE
 - Consumer safety standards UL listed and labeled
- EV Charging Station EVSE (electric vehicle supply equipment)
 - DC Operation or fast charging
 - AC Operation

2

EV Capable of bi-directional exchange of power between an EV and an electric power system


Types of Inverter Systems (V2G/V2H)

Pacific

Northwest

 V2G-DC the EVSE contains the grid interactive inverter that interacts with the EV and the local EPS

V2G-DC

 V2G-AC the EVSE interacts with the on-board EV inverter and the local EPS

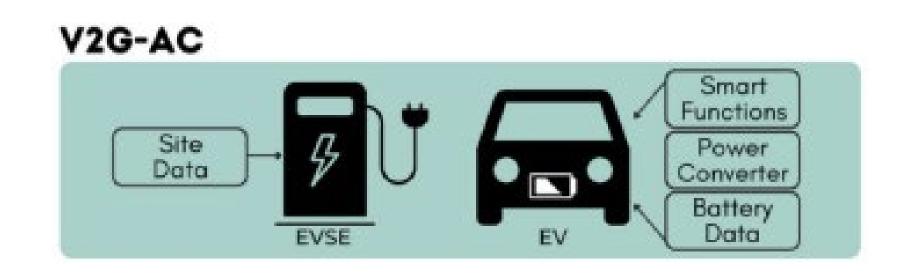
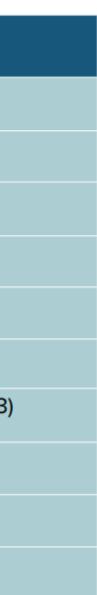


Diagram Source, Interstate Renewable Energy Council (IREC) https://irecusa.org/wp-content/uploads/2022/01/Paving_the_Way_V2G-Standards_Jan.2022_FINAL.pdf

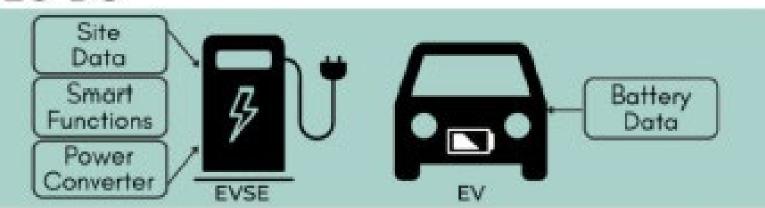


Key Standards

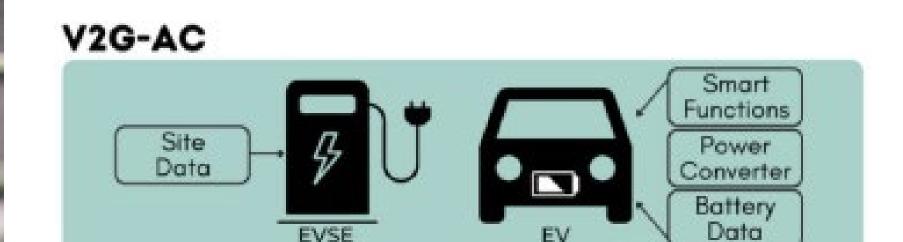
Table 1: V2G-Applicable Standards by Certification Topic

Scope	Standards & Protocols
Interconnection	IEEE 1547-2018
	IEEE 1547.1-2020
EVSE Safety & Functionality	UL 1741
	UL 9741
Vehicle Functions	SAE J2836/3
	SAE J3072
Communication	IEEE 2030.5-2018 (SAE J2847/3)
	OCPP
	OpenADR
	ISO 15118

Source, Interstate Renewable Energy Council (IREC) https://irecusa.org/wp-content/uploads/2022/01/Paving_the_Way_V2G-Standards_Jan.2022_FINAL.pdf

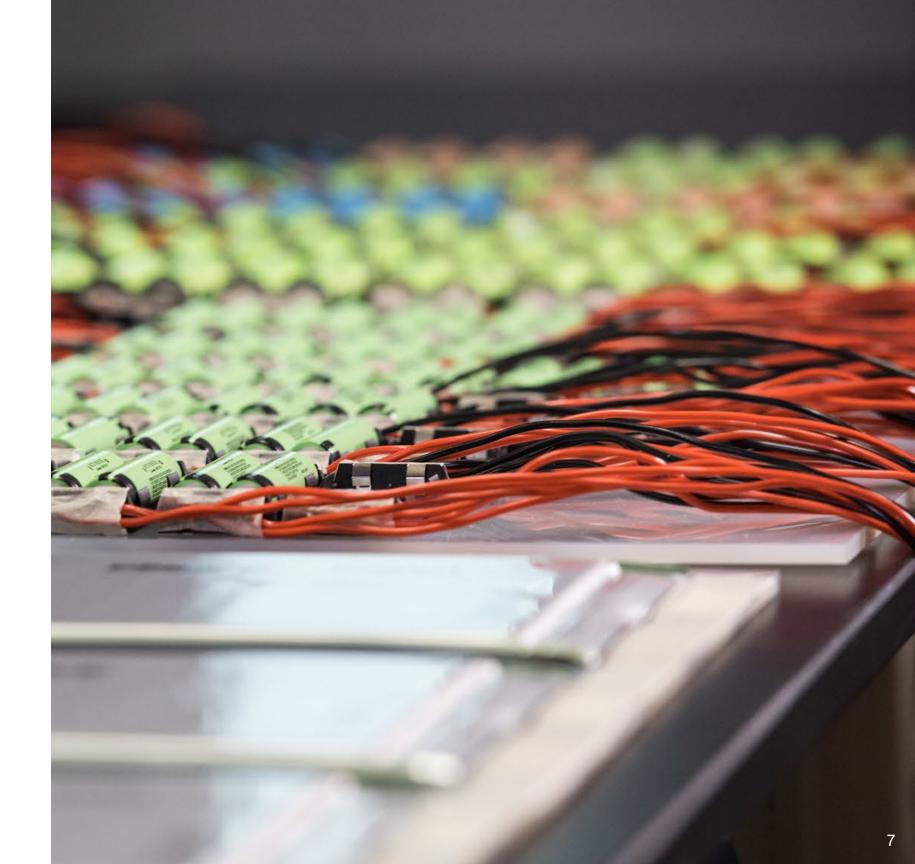


- IEEE 1547, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces
- IEEE 1547.1, IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces
- UL 1741, Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources
- UL 9741, Safety of Bidirectional Electric Vehicle Charging Systems and Equipment
- SAE J3072, Interconnection Requirements for Onboard, Grid Support Inverter Systems – Requires IEEE 1547 Standard for EV inverter



What Standards Apply – Mobile Energy Storage

- IEEE 1547 & 1547.1 inverter in EVSE
- grid interactive inverter
- SAE EV Standards


EV.

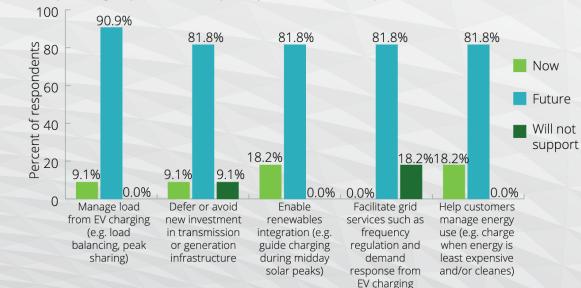
- IEEE 1547 & 1547.1 -Inverter on EV
- UL 1741 SC (Draft) grid interactive inverter
- SAE J3072

UL 9741 references UL 1741

Thank you

Interconnection & EVs: The Need for Clarity *If. When. How. How Long.*

Valerie Brader, Rivenoak Law Group • Jan 2024 Michigan Public Service Commission EV Tech Conference


Nothing in this presentation constitutes or substitutes for legal advice.

Fun EV Tech Conversations

Source: Deloitte 2017 Utility Electric Vehicle Survey

11a

Which of the following goals does your smart charging program currently support or will it support in the future? (Consider the goals below and indicate whether your smart charging program will support it now, in the future, or not at all) This question was directed only to those who responded "Yes" or "Not now, but we are planning to provide this capability in the future" to question 11. (n=11)

Some of what was in the future 6 years ago was discussed yesterday as moving from pilots to permanent.

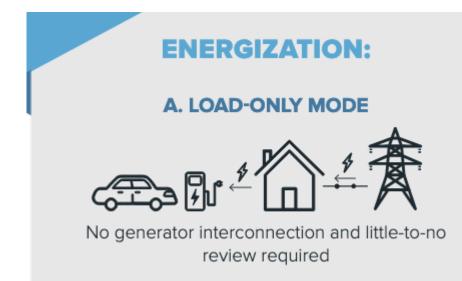
Many of the next wave of innovation people talk about today has a key first step: **interconnection!**

Interconnection: If you need it, you need it.

Interconnection and EVs

The Past: Charging Only, But Often in Home with Solar

Almost all of today's EVs. No interconnection is needed for the vehicle. It is for the solar.


The Past & Present: Non-Parallel Operation

EV that can run your home when power is out (but not otherwise). But sometimes will recharge from solar panels that are interconnected.

The Future:

We don't know, but everyone is anticipating parallel operation and full bi-directionality. That means interconnections.

When You Don't Need One: No Parallel Operation

Clarity Opportunity: Solar + EV

 Load-only EV is added to house with properly interconnected solar, is a new study needed? (No, no parallel operation.)

Graphic source: Vehicle-Grid Integration Council resource

Ford F-150 Backup Power Saves a Michigan Wedding

When You Don't Need One: No Parallel Operation

No generator interconnection and little-to-no review required (e.g., notification-only, similar to fossil-fuel backup generator)

Graphic source: Vehicle-Grid Integration Council resource

Clarity Opportunity: Ford's Home Backup Power

• Backs up home when grid is down. Need interconnect?

No.

When You Do Need One: Parallel Operation

C. PARALLEL, NON-EXPORT (discharge < site load)

Can fit within existing non-exporting small generator interconnection frameworks

Clarity Opportunity: Charging <u>Before</u> Parallel Op.

- A customer needs to be able to charge at home from day one.
- What interconnection procedures would be used? (Should be easier for non-export.)

Graphic source: Vehicle-Grid Integration Council resource

When You Do Need One: Parallel Operation

D. PARALLEL, EXPORT (discharge > site load)

Can fit within existing exporting small generator interconnection frameworks

Clarity Opportunity: Non-Export Discharge vs. Export

 Can vehicle "turn on" additional features as various interconnection milestones met? (i.e. backup only to parallel discharge to exporting)

Utility/Automaker Coordination Opportunities

Fear of the Future

Some utilities struggle to know when to require interconnection because of a fear EVs will change capabilities without notice. Terrible customer experience. Need communication norms and protocols to avoid this.

What about Neighborhood EV #4?

How do we think about distribution circuits that can absorb some EVs in parallel operation but not a lot of them (cost allocation, okaying hookups)? How quickly can neighbor #4 get an interconnection compared to #1-#3 if additional studies/equipment now needed? Can we use geo-fencing and other software fixes to avoid radically different customer timelines?

Rate Design/Interconnection/Software Intersection

If we tell everyone the best rate starts at 10 pm, how do we make sure all EVs don't turn on at the same time, and how does that intersect with interconnection? Does limited export/import to prevent this within a geofence while we get the interconnection done?

EV technical conference

Interconnection Opportunities and Obstacles for V2H and V2G $\,$

1/25/2024

DTE is committed to reducing barriers to electric vehicles and preparing for widespread EV adoption to support the future of mobility

- Improving interconnection procedures to support EVs, V2H and V2G
- Partnering with EV-related businesses with similar goals through the Emerging Tech Fund, a program looking to financially support novel EV solutions
- Evaluating additional funding opportunities through state and federal such as DOE's Vehicle Technology Office
- DTE is currently involved in many EV charging technology projects throughout the service territory
- DTE's Westland DER lab and training center plays a crucial role in testing emerging technologies, such as V2G, ensuring the company stays at the forefront and well prepared for the future

V2H: Backup power that is not able to parallel with the grid

V2G: An interconnection that can be parallel to grid.

There are multiple opportunities to provide streamlined interconnection for V2H and V2G

V2G with certified equipment goes through the process the same as any other storage interconnection

Investigating ways to provide notification for V2H and "V2G capable" to make program sign up and eventual interconnection easier

Communicate process:

- A.
- Guides and knowledge sharing
- Capacity maps (for larger projects)

Streamline process:

- Automating screening
- clearly defining requirements

Standards compliant and tested equipment:

- Listed equipment greatly simplifies review
- device communications will improve grid code compliance

- Hosting Capacity (arcgis.com)

There remain some obstacles to streamlining interconnection for V2G

- Standards and harmonization is still developing:
 - Utilities: UL certified systems increasing rigor and complexity of IEEE1547 with active functions
 - Vehicles: SAE self certified systems new systems

Implementation time:

- Certified products take time to get tested and out to consumers
 - Innovation coming to market faster than standards compliance
- Intermediate products now, more interoperability and capability in the future

Familiarity with system installation requirements by installers, AHJ's and inspectors regarding NEC and utility requirements

More rigorous DER configuration and data management from FERC and markets

The Emerging Technology fund supports a number of V2H projects at DTE to test load management, trial new approaches for underserved communities and test second life applications for EV batteries

Automotive OEM Residential V2H pilot

manage charging and discharging of vehicle through DTE issued demand response events

Curbside EV charging

carshare vehicles and charging ports at income qualifying multi-family housing in DTE territory

Managed EV Charging pilot

Home V2H platform and controller

Load demand management to accommodate EV chargers

The Emerging Technology Fund and DOE support a number of active Projects that are testing the ability to secure the vehicle to grid interaction and provide opportunities for resiliency

EVs@RISC – Department of energy project for EV smart charging interfaces and cyber secure vehicle charge management

Software to streamline and improve Interconnection processes and digitize contracts and validation

Automotive OEM V2G Pilots

V2G pilots at customer homes System integration lab testing

Battery storage units with integrated fast charger & Battery buffer EV fast charger Enables fast charging at constrained locations and opportunities for grid support

Efleet battery support

Reuse and repackaging of transit bus batteries for grid support

V2G combined with managed charging provides opportunities to decrease peak load but also provide support to the grid where vehicles are available at peak times

Fleets and Charging Depots

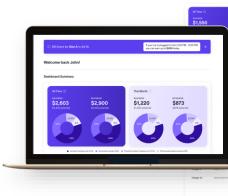
Electric School Busses

Park It. Plug It. Profit.

Interconnection Opportunities and Obstacles for V2H and V2G

Steve Letendre, PhD Senior Director of Regulatory Affairs

January 25, 2024



Fermata Energy V2X Ecosystem

Fermata Energy Cloud Software

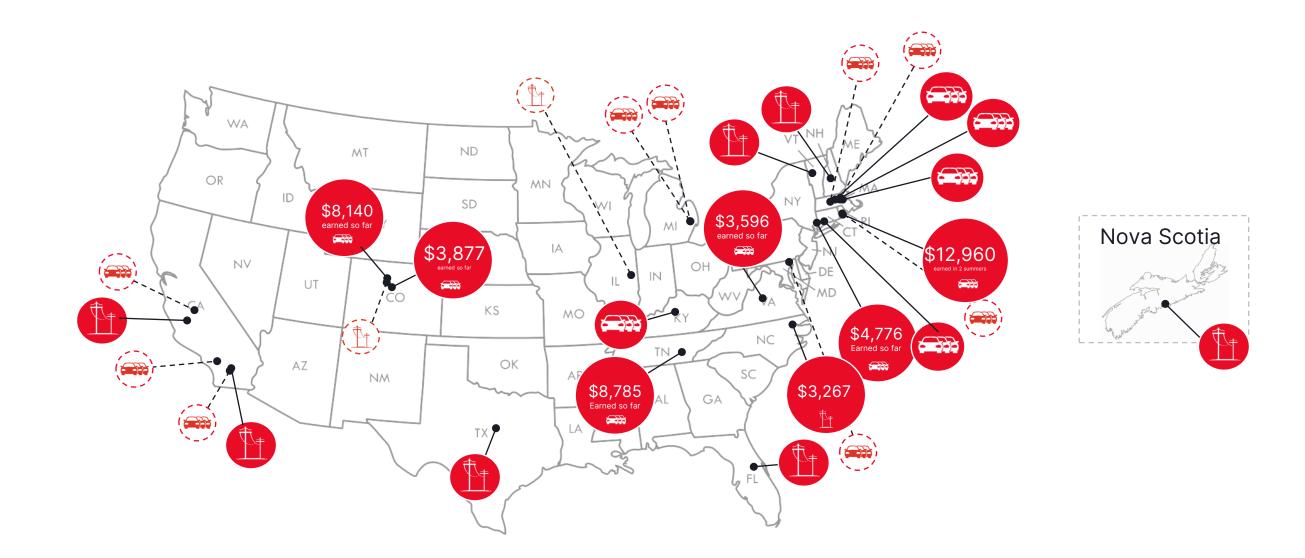
- V2G + V1G operation + reporting
- V2G event notification
- . Charge scheduling
- Site + building load monitoring
- Charger + EV data analytics

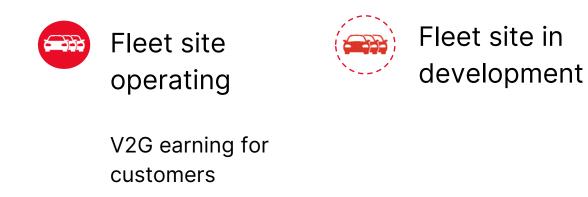
- Manage + Preserve Battery Warranty
- . Lower Total Cost of Ownership

- FE-20 20kW bidirectional charger developed with Heliox
- Integrating with others

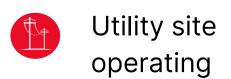
And powerse	This Meetin Excession Conference	500 11.15 15 15 15 15 15		2 11 Dy ~
1940''''''''''' () =	Italia 🔘 =	Mass 🔘 =	Carnet Stanion () ~	
2008	Ø Pugetin	VEK	-3.4560	
20eW	© Properties	VEK VZK	→ -21000	
	 Properties Available Changing 			
204W	C Property Australia C Congreg C Dechemping	VEX	→ -2.4940	
Trees.		V2X V2X	→ -21000	
T264A		VZX VZX Charge Drity	 € -21000 ⇒ -21000 	
2009 2009 2009	O Dechening w Austaine	V2K V2K Charge Driy V2K	 → -24000 → -24000 → -24000 	
2004 Linew Linew Linew Linew 2004	O Dechening w Austaine	VZK VZK Charge Driy VZK Charge Driy	-21000 -21000 -21000	
2009 Linew Linew Linew Linew Linew	O Dechening w Austaine	VZX VZX Charge Dity VZX Charge Dity VZX VZX	 → -2×000 → -2×000 → -2×000 → -2×000 → -2×000 	

- . Load Management
- . Site Resilience Support




- DERMS integration
- Demand Response
- Interconnection
- . Aggregation
- Grid Resiliency Support
- Use Case Development

V2G is Happening Now


Verified V2G operations with

- Utilities
- Federal government
- Municipalities
- Private deployments
- Automotive manufacturers

Jan 2024

Utility site in development

Rhode Island municipal deployment earns \$12,500+

When: Summers 2021, 2022, & 2023

What: Vehicle-to-grid (V2G) demand response using Fermata Energy's V2X bidirectional charging platform

EV Earned: \$12,553 with 1 EV and 1 Fermata Energy V2G bidirectional charging platform

Where: Municipal wastewater treatment facility

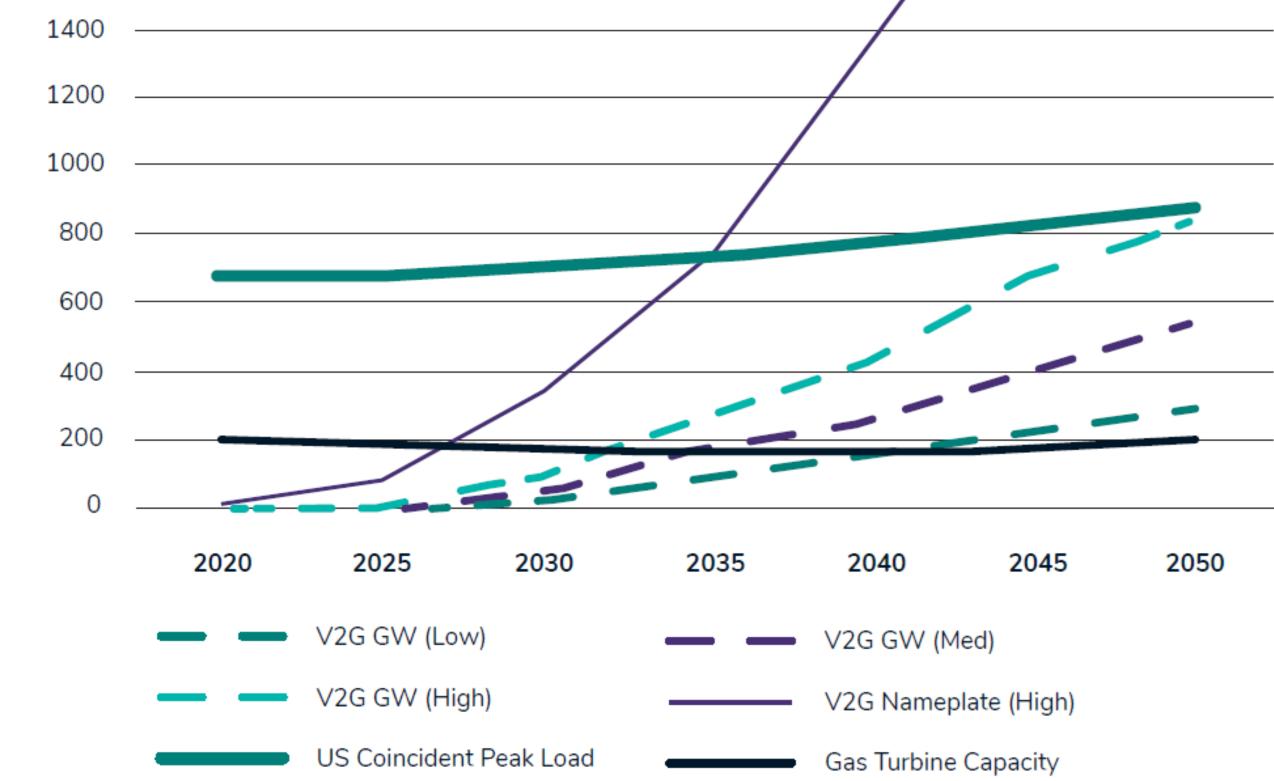
Program: Rhode Island Energy - "Connected Solutions." Discharging energy in an EV battery back to the grid at times of peak grid demand, during 2-3 hour long events in late afternoon.

"These results help to give us confidence that **electric vehicles can be a reliable partner in providing a clean and resilient electricity grid** for the future," said John Isberg, Vice President of Customer Sales and Solutions at National Grid (now a Rhode Island Energy project).

V2B nonprofit carshare generates \$3,870+ in savings with century-old building

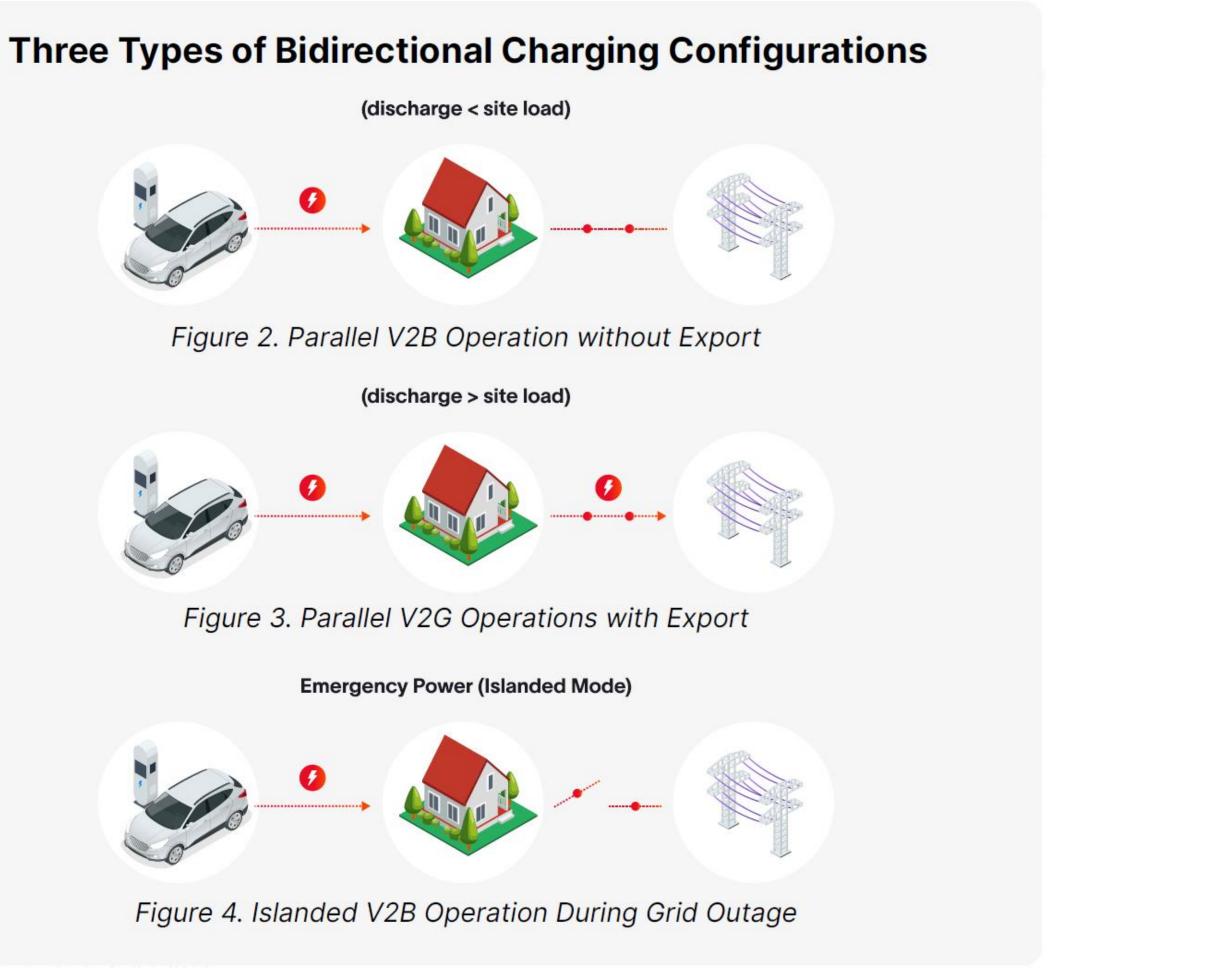
When: Ongoing - activated June 2021

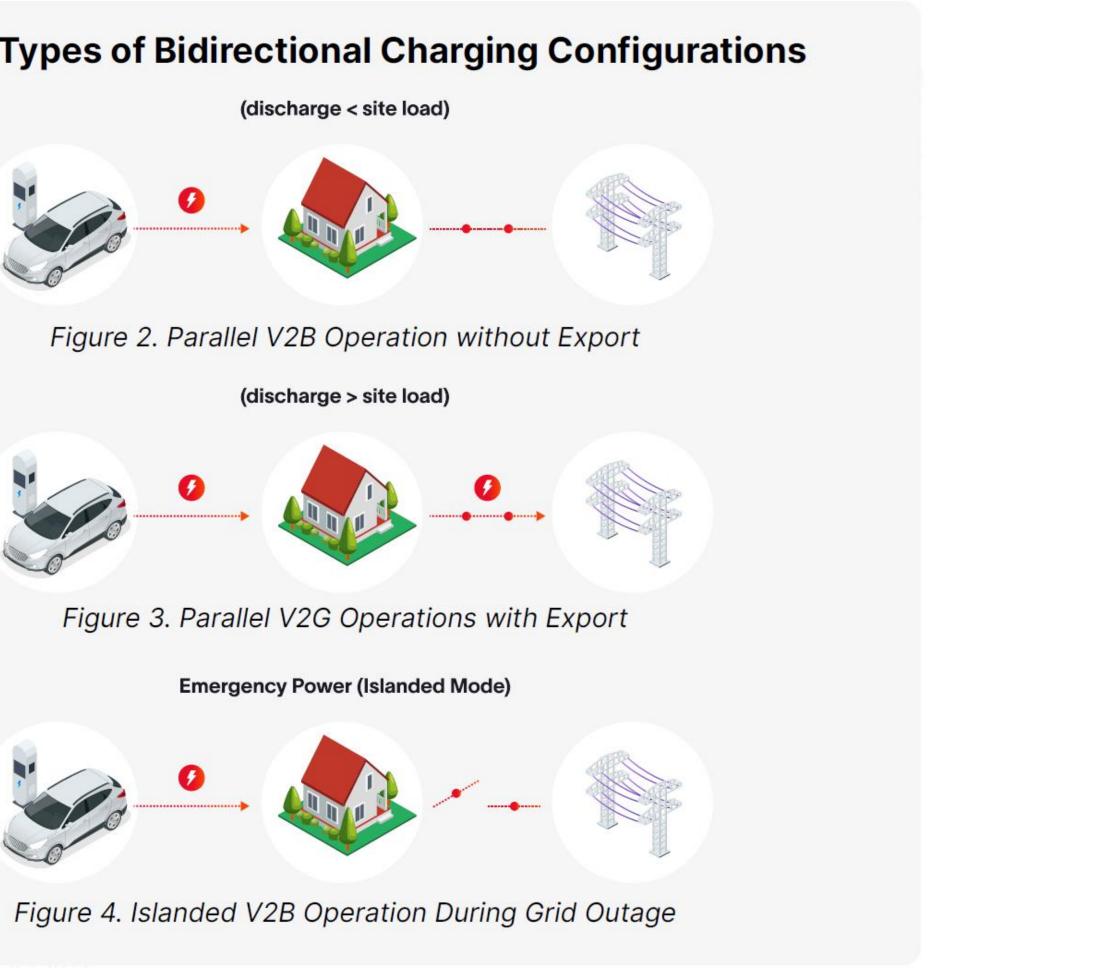
What: Vehicle-to-building (V2B) demand charge management + carshare

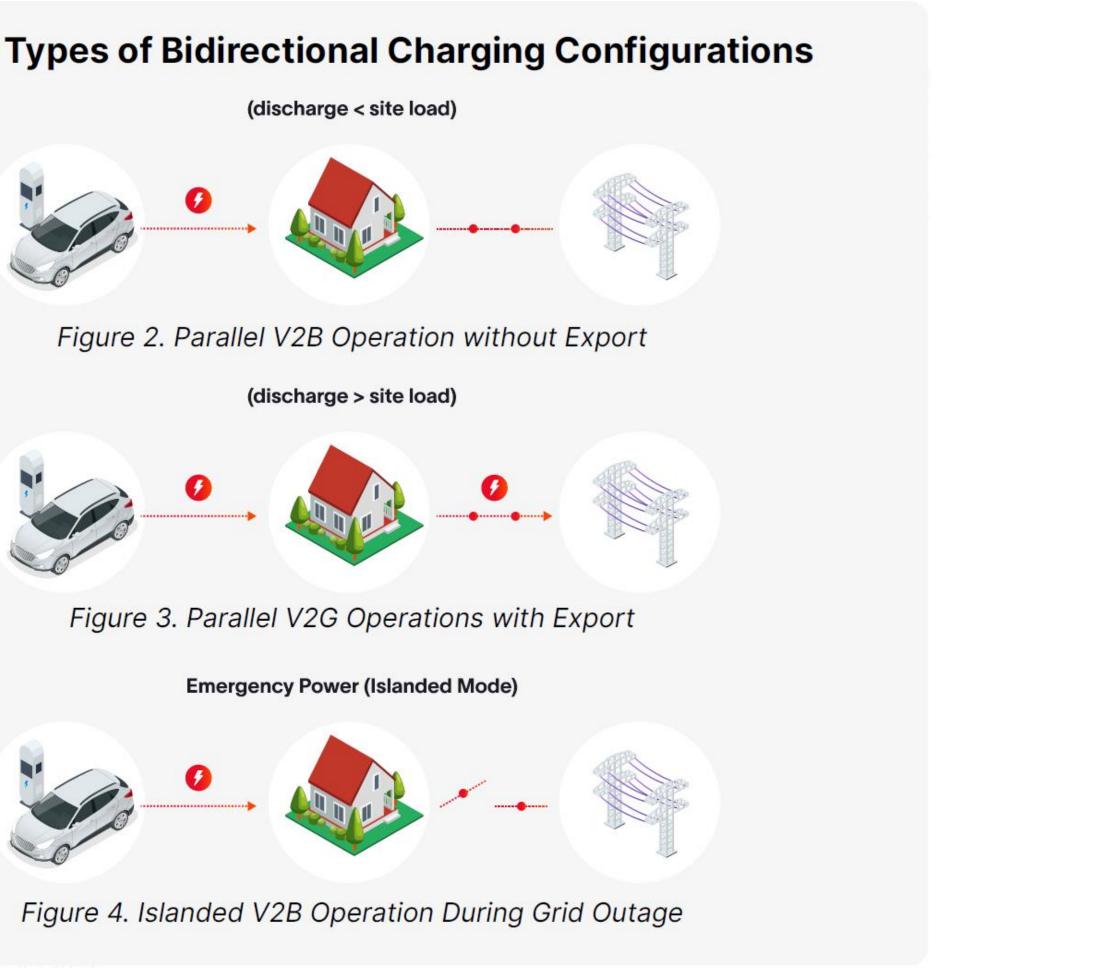

EV Delivers Savings: \$3,870+ with 1 EV and 1 Fermata Energy bidirectional charging platform

Where: The Alliance Center in Denver, CO - the first all electric building in Denver

Program: Reduced demand charge on electricity bills by discharging energy in an EV battery to offset high building electricity consumption. The project has provided CO Car Share members access to an emissions-free transportation option.







EPRI Projected V2G capacity based on EIA projections of EV populations Source: Presented at an October, 2022 EPRI Webex

Š

Opportunities to Scale Bidirectional Charging

- Parity with Stationary Storage incentive programs comparable to those for stationary storage integrate V2X in utility planning processes
- Make-Ready and EV Charging Infrastructure **Funding Access**
 - access for bidirectional chargers to utility makeready funding opportunities
 - technology-neutral rebates for V2G chargers and associated equipment

V2X Environmental Benefits

Using the batteries in EVs to do double duty by providing both mobility and grid storage capabilities offers significant environmental benefits:

- reduced resource extraction and processing provides emissions benefits
- land use impacts from resource extraction and siting stationary storage projects are reduced
- reduce renewable energy curtailments to near zero

A mining pit in Yuqia, Qinghai, China. (<u>source</u>)

Conclusions

- A renewable grid requires massive amounts of energy storage
- Bidirectional EVSE have been successfully interconnected in numerous jourisdictions (recognize V2X as an eligible technology)
- The pace and scale of stationary storage deployments may not meet grid-scale storage needs
- V2X is a big, cheap, fast, and clean complement to stationary storage
- EVs with V2X technology represent a new class of grid resource that is not well understood:
 - ubiquitous throughout the distribution system
 - extremely fast responding
 - controlled very precisely in response to grid conditions
- Policymakers and regulators should incentivized bidirectional charging as a complement to stationary battery storage

Thank you.

For more information, please visit

www.fermataenergy.com

or contact

Steve Letendre, PhD - Senior Director of Regulatory Affairs

steve@fermataenergy.com

U.S. DEPARTMENT OF ENERGY **EVGrid Assist** ACCELERATING THE TRANSITION

VGI Emphasis 1/25/2024

Lee Slezak Vehicle Technologies Office

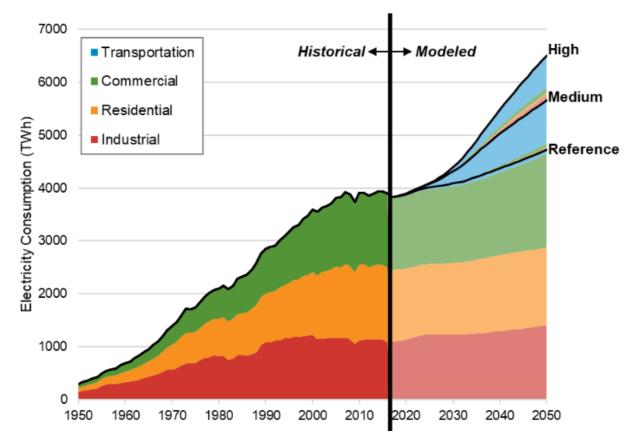
Vision

Millions of highly electrified vehicles – both large concentrated fleets and small dispersed vehicles - actively connected to the grid, that help support a decarbonized, secure and reliable grid by 2030

Note: Focus on VGI, but with an eye towards broader cross-technology activities

Goals

- Speed up deployment
- Ensure affordability for customer and system, downward pressure on rates
- Leverage all approaches rates, regulation, technology etc.
- Increase confidence and investment by institutions/actors

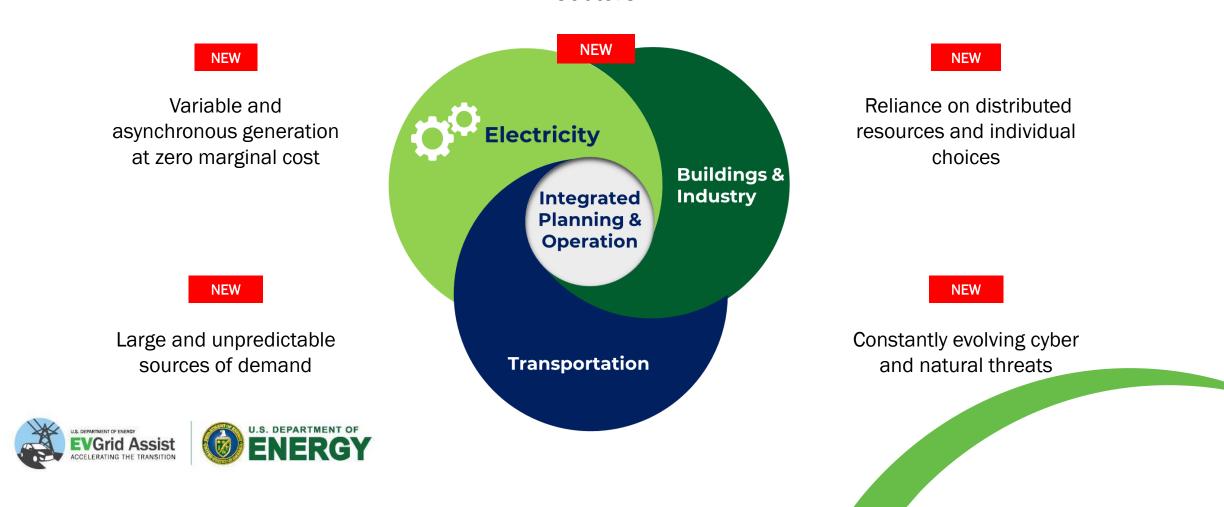

Transportation Electrification is Happening Now

- What's happening
 - Rapid deployment of cost-effective electric vehicles
 - Increasing consumer demand
- Resulting Impact

DEPARTMENT OF ENERGY

Assist

- Largest projected new load growth with different operational characteristics
- Brings together electricity and transportation sector in unprecedented ways
- Heightened need for coordination among stakeholders and proactive decision making


Electrification Futures Study: A Technical Evaluation of the Impacts of an Electrified U.S. Energy System | Energy Analysis | NREL

Concurrent Transformations

Requires unprecedented coordination

Decarbonizing the full energy system requires **major changes** in system planning and operation, regulation, and market design – and **unprecedented coordination** between previously disparate

sectors

Why Emphasize VGI?

1. Business as usual will not meet the pace and scale of the transition

- Load management is critical to ensure reliability and affordability; traditional supply-driven strategies are not sufficient
- > New grid capabilities are essential to fully integrate EVs

2. VGI maximizes use of existing grid capacities

- Grid enhancements can be deferred
- Allows for better alignment of charging infrastructure and grid upgrade planning
- New communications and control technologies/approaches can improve grid operational efficiencies

How is VGI Emphasized?

1. DOE's Evs@Scale National Lab Consortium

- R&D on Smart Charge Management, High Power and Advanced Charging Equipment and Facilities, and Cyber-physical Security Technologies
- Supporting Codes and Standards development and validated test procedures

2. Funding Opportunity Announcement (FOA) Projects

- Accelerate final development, validation, and market introduction of nearmarket technologies
- Offset costs and risks with Federal funding
- All funded projects must include a market introduction strategy/plan to be executed upon successful demonstration

Thank you for your time and attention.

Lee Slezak Lee.Slezak@EE.DOE.GOV

EV Cost-of-Service, Tariffs, and Rate. Oh My!

Kayla Gibbs Commissioner Advisor, MPSC

Andy Satchwell Research Scientist and Deputy Leader, Lawrence Berkeley National Lab

Bill Ehrlich Charging Policy Advisor, Tesla

Tyrel Zich Regional Vice President of Regulatory Policy, Xcel Energy

Phil Jones President, Phil Jones Consulting LLC Slide

Alliance for Transportation Electrification

RATE DESIGN FOR ELECTRIC VEHICLES

Presentation to Michigan PSC EV Technical Workshop (Case No. U21492)

> Presented by Philip B. Jones ATE Executive Director Former Washington UTC Commissioner Past President of NARUC

> > January 25, 2024

Rate Design Principles

- ✓ ATE's Rate Design Whitepaper: A useful document for commissioners, staff, and parties in state proceedings.
- ✓ Recognizes that each state and utility are different, with unique precedents and rules for cost of service.
- \checkmark Rates must meet the J&R standard and be sustainable over time.

Bonbright's	Four Functions

Capital Attraction Function	Efficiency Incentive Function
Establishes revenue requirements to attract adequate investment.	Regulation intended to compel market-like performance.
Demand Control Function	Income-Distributive Function

Principles of Public Utility Rates

Second Edition

by JAMES C. BONBRIGHT ALBERT L. DANIELSEN DAVID R. KAMERSCHEN

with assistance of JOHN B. LEGLER

- Benefit customers electricity vs gasoline (or diesel)
- Benefit the system increased utilization
- Achieve policy goals (e.g., health, carbon / GHG)
- Retain cost-reflective rates

Issues to be considered

- Beneficial electrification
- Benefit-Cost Analysis
- ► Public policy

- ► Flexibility
- ► Equity
- Technology treatment

- Managed charging (passive / active)
- Long-term vs transitional

Commercial Rates: Demand Charges

Key components of rates:

- Fixed / customer charge
- Delivery charge (sometimes)
- Energy charge (kWh)
- Demand charge (kW)

The EV market requires pervasive
 DC fast charging infrastructure and
 reliable home charging.

- Public DC fast charging (as well as certain other types) incurs high fixed demand charges, but utilization can be low.
- When utilization is low there are few kWh to spread demand charges across, which drives up the effective price per kWh.

✓ Commercial rates are complex, highly varied, and little-understood.

 \checkmark Demand charges are typically the most contentious issue.

EV Charging Use Cases

Use-case	Tariff	Typical Peak Load (kW)	Utilization	Demand Charges*	Flexible use**	Comments
Single-family	Residential	< 10	Low	No	Yes	About 80% of charging occurs at home when driver has access to dedicated and owned parking.
Multi-family / townhouses	Commercial	7 to 100 +	Low	Yes	Yes	Difficult use case as these are commercial customers; some utilities may offer a rate similar to single-family residential.
Workplace and Commercial (light-duty; trucks/buses)	Commercial	7 to 100 +	High	Yes	Varies	Loads are generally easier to predict with load profiles; can benefit from V1G solutions, such as TOU.
Public DC Fast	Commercial	500 to 2,000	Varies by location	Yes	No	Utilization often too low to be economic in early years; opportunistic charging; load profiles more unpredictable.

* Varies by utility and peak load

** Flexible loads can utilize managed charging to benefit from TOU pricing; requires smart meter or reliance on EVSE or EV for metering

Demand Charge Models

Model	Description	Sample Utility
Transitional Treatment	When low utilization results in high per-kWh costs, Commission directs a demand charge mitigation for temporal period, such as 10 years	SCE (CA)
Demand Limiter	Predefined maximum charge per kWh (could be measured over 12 months). Rate may also have a predefined sunset period.	FPL (FL) and APS (AZ)
Subscription Rate (Flat)	This rate structure offers a flat demand charge which covers up to a certain peak load; cost-based; usually includes TOU	PG&E and SDG&E (CA)
CoS Without Demand Charge	Appropriate for low-load factor applications, with lower voltage levels, both Level 2 and DCFC stations (along with other C&I customers)	Dominion (VA)
Varying Demand Charge Discounts based on Utilization	Low or reduced demand charge below certain utilization, demand charge increases as utilization increases until 100% demand charge is reached.	Con Edison (NY)
Embedded in Other Volumetric Component	Similar to the CoS without demand charge (Dominion cited above), but explicitly increases energy charge (volumetric), e.g., for multi-family units	Pepco (DC)
Sliding scale discounts	Demand charge is mitigated at low power factors, then increased, as utilization increases. For a defined period, such as 5 or 10 years	National Grid (MA and NY) (Phase In rate)
Energy storage	Battery energy storage solutions (static, or BESS) may be deployed by customers, or customers/host sites can purchase equipment with such attributes	

National Grid (MA) Sliding Scale Demand Charge

Demand charge discounts will vary based on load factor

Load factor =	Billed Energy in kWh
Luau laciul -	Billed Demand in kW x Hours in Billing Period

oad Factor ("LF") Threshold	Enrollment Years	Demand Charge Discount
None	1	100%
LF <= 5%	2 to 9	100%
5% < LF <= 10%	2 to 9	75%
10% < LF <= 15%	2 to 9	50%
LF > 15%	2 to 9	0%

- ✓ Annual evaluations are made to determine applicability
- ✓ Applies only to commercial class with general service rates
- ✓ Four load brackets (see table)

- ✓ Discount phases out at 15% load-factor
- ✓ Approved for 10 years
- ✓ Similar framework coming soon in New York

Equity and Residential Rate Design

Utility rates and programs are increasingly statutorily required to be socially equitable, particularly for residential customers in disadvantaged communities

One of Bonbright's core and time-tested principles is the incomedistributive function, which today may be referred to as equity

Customary offerings for low and moderate income ratepayers include:

- ✓ Bill discounts
- \checkmark Assistance with arrearages
- \checkmark Home weatherization and other energy efficiency measures

Two approaches to implementing equity-oriented programs

- 1. Compensation Standard: Reflects flow of funds between consumer and utility relative to other costs of consumers in society
- 2. Income-qualified, or "quasi-tax" standard. This is the so-called ability-to-pay principle.

To achieve social equity, one can argue that the taxpayer – through legislative actions – should bear the burden of such equity costs in energy delivery and ratemaking, and not just the "ratepayer."

In the EV space, many utilities are offering residential rebates for EVSE or installation with enhanced levels for income-qualified customers (usually 2x), targeted or preferential assistance, enhanced vehicle (both pre-owned and new) rebates, etc.

A variety of programs and rates could be tested here, and they would stretch the boundaries of the distributive function of ratemaking, such as:

- Free or heavily discounted transit fares for battery electric buses
- Rebates to drivers for TNCs that live in and serve disadvantaged communities with a ride-hailing company
- Rebates for car- sharing organizations (CBOs) that serve underserved communities

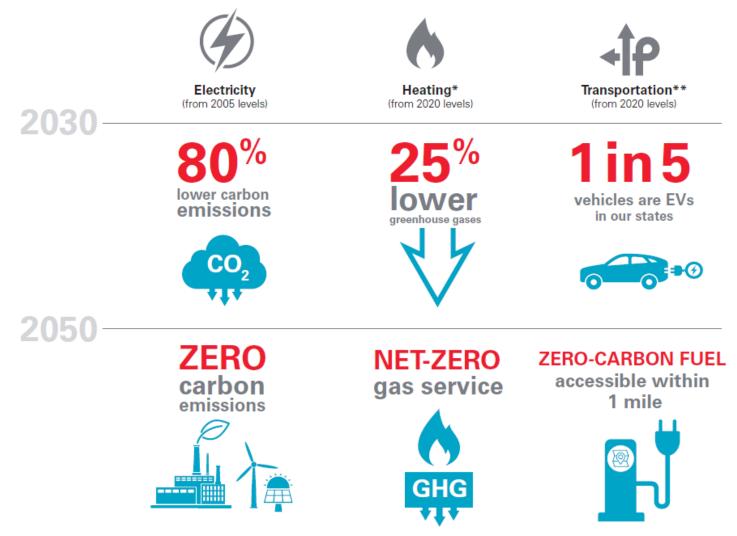
- **Conclusions**
 - Retain Basic Principles
 - Utilization, or low load factors for utility and grid, are the key challenges in the market transformation from early to mature phase;
 - We continue to oppose purely volumetric rates, rates based solely on SRMC (short-run marginal cost). Separate rate class for EV are possible, but cost allocation in commercial class may offer better solution;

- Rates should be based on CoS in the long-term in all cases, avoiding long-term cost shifts between customers and rate classes ("subsidies")
- We support demand charges as a basis for EVSE rates in the medium and long-term, while recognizing there may be a need for short-term mitigation. There are also viable alternatives to demand charges in some cases
- Equity issues in ratemaking, although contentious, can be accommodated but should be dealt with carefully and with a certain time horizon.

Alliance for Transportation Electrification

Philip B. Jones Executive Director

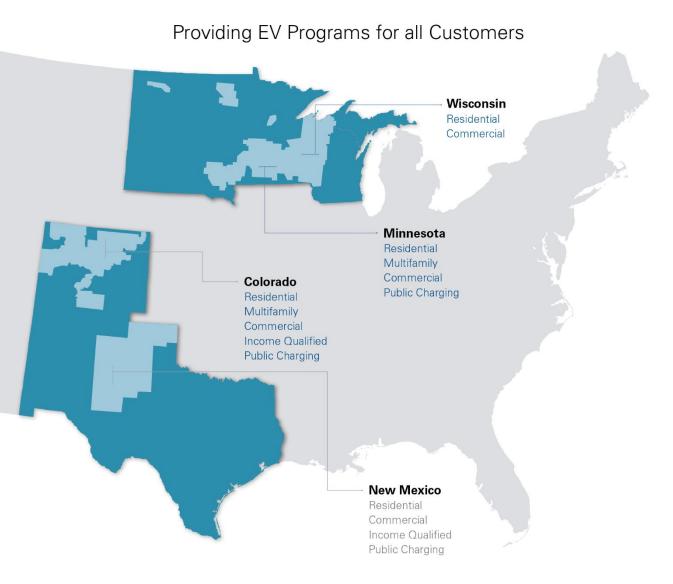
1402 Third Avenue, Suite 1315 Seattle, WA 98101 Office: 206-453-4157 phil@evtransportationalliance.org

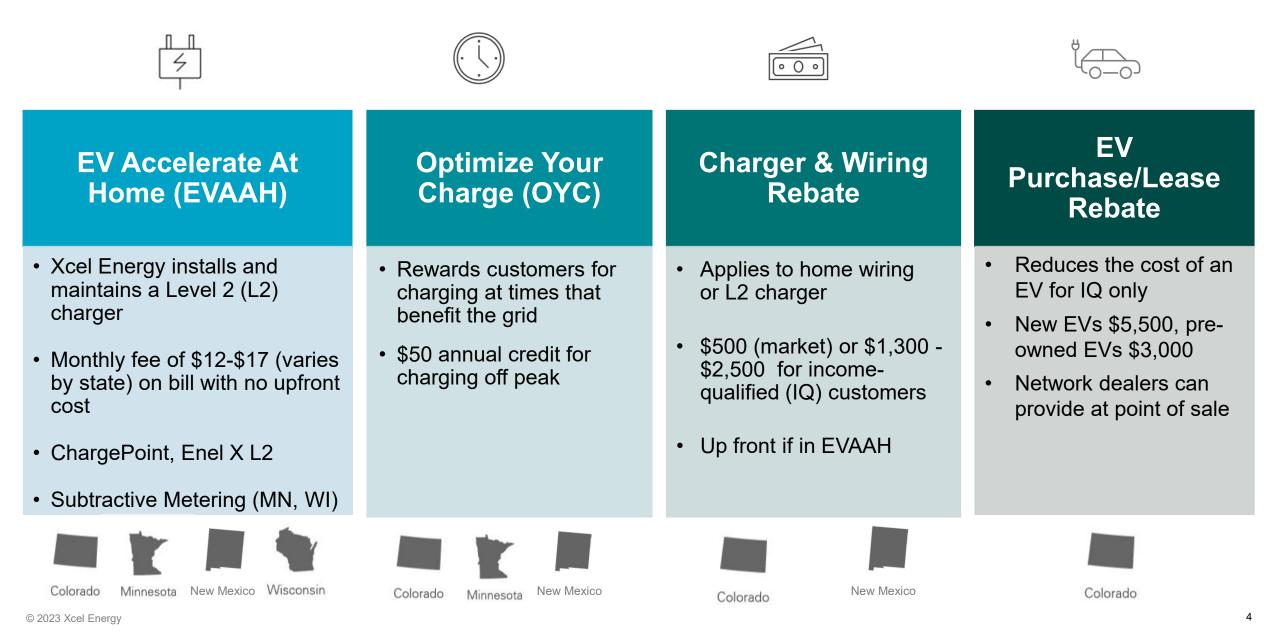

EV RATE DESIGN

Tyrel Zich Regional Vice President, Regulatory Policy

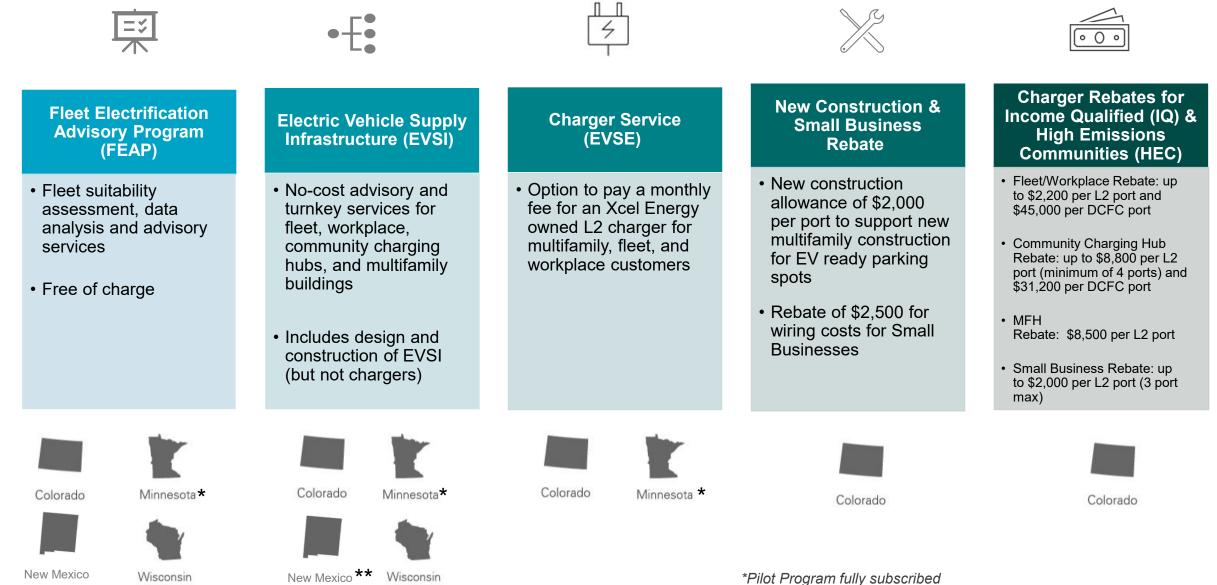
January 2024

Xcel Energy Net-Zero Energy Provider by 2050


Goals that cover all the ways our customers use energy


*Spans natural gas supply, delivery and customer use **Includes the Xcel Energy fleet; zero-carbon fuel is electricity or other clean energy

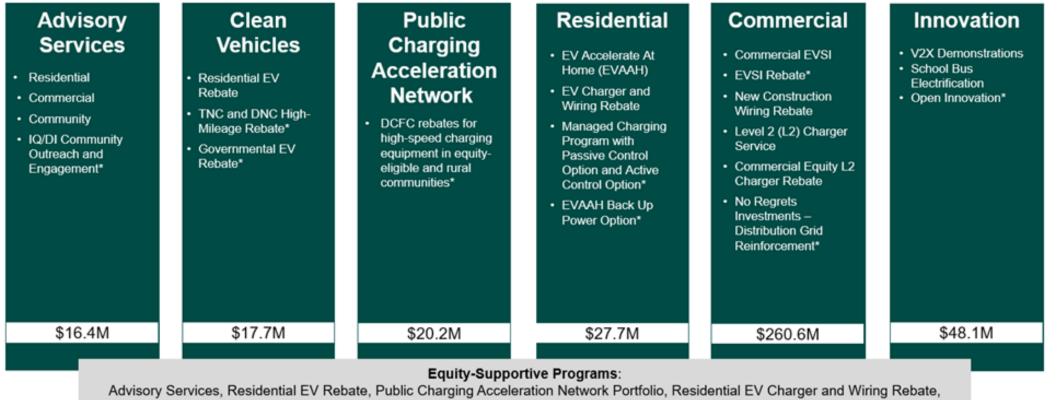
Innovative EV Solutions


Our innovative programs raise awareness, reduce up-front costs, and make it easier for customers to charge electric vehicles on low cost, low carbon energy in a way that's good for the grid

Xcel Energy Residential EV Programs - Overview

Xcel Energy Commercial EV Programs - Overview

© 2023 Xcel Energy


**Program currently available for some but not all charging use cases

ACTIVE EV PROCEEDINGS IN CO, MN, & WI

2024-2026 Colorado Transportation Electrification Plan

- Filed on May 15, 2023. Building upon current TEP programs to leverage customer and stakeholder feedback, enhance operational excellence and incorporate lessons learned.
- Approximately \$440 million three-year budget. Hearings scheduled for early 2024 with a decision expected in mid-2024.

Commercial Equity L2 Charger Rebate, Commercial EVSI, School Bus Electrification, and Open Innovation

2024-2026 Minnesota Transportation Electrification Plan

- Filed on November 1, 2023 with a total budget of approximately \$45 million
- We expect a decision from the Minnesota Public Utilities Commission in April 2024

Residential Programs & Managed Charging

- Proposal to expand EV Subscription Service Pilot into permanent program
- Proposed Home Wiring Rebate to remove large upfront cost barrier to residential charging

Commercial EV Pilot Bridge

 Bridge funding for fleet and public charging pilots to provide services for interested customers in our pipeline

Electric School Bus Demonstration

 Electric School Bus Demo to support electrification of school buses in our communities and test vehicle-to-grid (V2G) technology

Public DCFC Market Analysis

 Worked with stakeholders and industry participants to assess deployment plans and customer needs in MN

2024 Test Year Wisconsin Rate Case

- Filed on April 1, 2023
- We received a decision from the Wisconsin Public Service Commission in December 2023

Commercial **Public Charging Residential** Programs Programs Modified residential Simplified EVSI Incentive • Approval of ~\$2M for **Utility-Owned Public** program to create a Bring • Established Multi-Family Your Own Charger Charging in 2024 Housing EVSI Program (BYOC) model. • Operated by the Utility or a Partner

EV COST ALLOCATION

Cost Allocation of EV Programs (Wisconsin) Wisconsin Docket 5-EI-158: Investigation of EV Policy and Regulation

- Commission encourages utilities to propose EV programs to address a) rates related to EV charging, b) load management efforts to control charging, c) initiatives to address upfront purchase costs of EVs and charging equipment
- Program proposals must include "a description of proposed accounting procedures that explains how program costs will be recovered through rates in accordance with cost causation principles"

Cost Allocation of EV Programs (Wisconsin) Xcel Energy Program Cost Allocation in Wisconsin

- Residential: Revenue, capital and O&M of EVSE direct assigned to residential class.
- Commercial: Revenue, capital and O&M of EVSE and EVSI allocated among commercial rate classes based on proportion of program rate base in each class
- Company-Owned Public Charging: Revenue, capital and O&M of EVSE and EVSI allocated among all rate classes based on proportion of EVs in each class

Specific EV Customer Class Pros and Cons

- EV use cases vary greatly with correspondingly varied load profiles (residential, workplace, fleet, public, mixed-use, etc.).
- Low penetration of EVs means load profiles may vary greatly creating uncertainty about the appropriate allocation of costs to the EV class.
- Customer classes are typically established based on load characteristics (residential vs non-residential, peak demand, and service voltage) rather than enduse. There are some exceptions (lighting, water pumping, etc.).
- Colorado and New Mexico use rate recovery riders to track and recover EV program costs. Other states recover EV program costs in base rates and/or from participants as applicable.

EV RATE DESIGN

EV Tariffs and Rate Design Specific EV Tariffs

- Many EV use cases can benefit greatly from EV-specific rate options:
 - Time Varying Rates (modern three-part Time-of-Day rates)
 - Critical Peak Pricing
 - Appropriately Designed Demand Charges
- EV specific rates, just like standard rate options should follow cost causation principles and establish appropriate price signals.
- Alternative rate options can benefit other energy end-uses, not just EVs.

EVR-1 Rate Design (Wisconsin) Residential Electric Vehicle Service Program

Peak Periods

	Time	Days	
On-Peak	12:00 pm – 8:00 pm	Mon-Fri (Excluding holidays)	
Intermediate-Peak 8:00 am – 12:00 pm		All Days	
Intermediate-Peak 8:00 pm – 12:00 am		All Days	
Intermediate-Peak 12:00 pm – 8:00 pm		Sat-Sun and Holidays	
Off-Peak	12:00 am – 8:00 am	All Days	

	EVR-1 Rate
Customer Charges	
Bundled Service	\$18.00/month
Bring Your Own Charger	\$8.00/month
Delivery Charges	
On-Peak	June – September 6.960¢/kWh October – May 4.360¢/kWh
Intermediate-Peak	4.360¢/kWh
Off-Peak	2.300¢/kWh
Energy Charges	
On-Peak	June – September 14.400¢/kWh October – May 9.500¢/kWh
Intermediate-Peak	9.500¢/kWh
Off-Peak	4.850¢/kWh

Commercial EV Rates Demand Charges and Alternatives

- Use existing commercial tariffs for commercial EV use cases (Wisconsin)
 - Demand limiters or other rate design approaches can mitigate the need for EV-specific tariffs
- Use alternative tariffs for commercial EV use cases:
 - Energy-Only Pricing (Colorado)
 - Critical Peak Pricing (Colorado)
 - Demand Charge Holidays

How We Determine Demand Charges (Wisconsin)

- Demand Charges recover all distribution costs and <u>a portion</u> of fixed production and transmission costs.
- **Customer Demand Charges** 12-month maximum demand
 - Recover fixed distribution costs, goal is to recover 100% of distribution costs.
- On-Peak Demand Charges current month maximum on-peak (9am to 9pm weekday) demand
 - Recover a portion of fixed production and transmission costs.
- Only a portion of fixed P&T costs should be recovered in demand charges to reflect the fact that customers of differing load factors have a varying probability of their load being coincident with the system peak and consequently driving peak demand costs (The Bary Curve).
- In addition to recovering a portion of P&T costs in energy charges, we also use **Demand Limiters and High Load** Factor Credits to further differentiate peak demand cost causality among customers with varying load factors.
- Low load factor EV use cases share characteristics with other low load factor use cases (grain driers, car crushers, agriculture, etc.).
- For more information see Direct Testimony of Ryan Moldenhauer and Rebuttal Testimony of Tyrel Zich in Xcel Energy's latest Wisconsin Electric rate case (PSCW Docket No. 4220-UR-126).

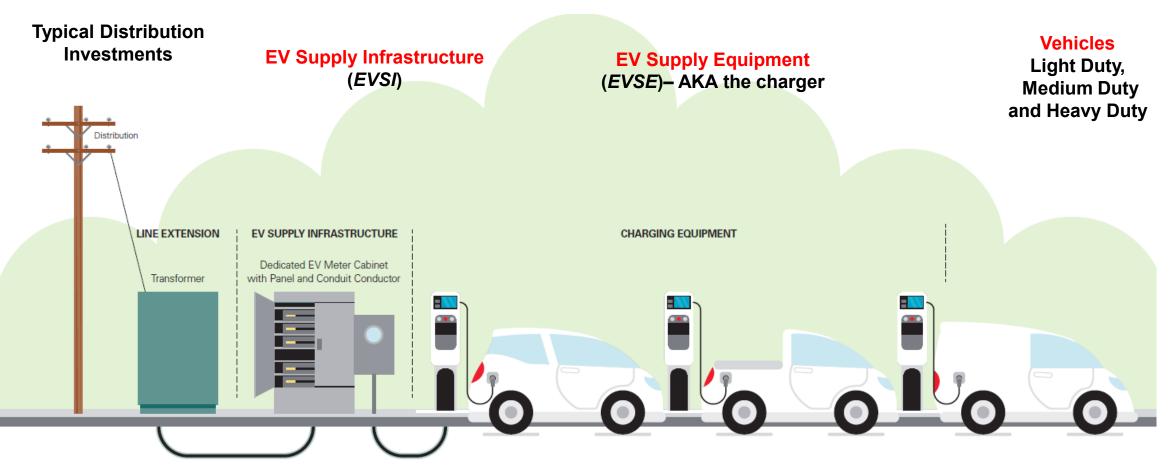
How Demand Limiters Support Low Load Factor Customers

- Demand limiters adjust all demand billing units to mitigate the impact of demand charges for <u>all</u> low load factor customers.
 - "In no month will the billing demand be greater than the value in kW determined by dividing the kWh sales for the billing month by 150 hours."
- Demand limiters create a predictable fixed per kWh price for low load factor customers equivalent to an energy-only tariff.
- Demand limiters do not necessitate the selection of a specific load factor as the basis for the energy-only tariff.
- Demand limiters automatically transition customers to lower average prices as load factors increase.
- Demand limiters are difficult to explain to EVSE owners and for all C&I customers. This is a solvable problem with advisory services.

Table 1: Demand Limiter			
	Cg-9 Current Rates	Cg-9 Energy-Only	
Cg-9 Demand Charge Cg-9 kWh Equivalent Demand Charge*	\$13.00 per kW	\$0.13 per kWh	
Charger Capacity kW Hours of Use kWh Use Limited Demand kW**	1 350 x 100	$50 \\ 00 \\ 0 = 35,000 \\ 100 = 350$	
Bill Impact Effective per kWh Price	\$13 x 350 = \$4,550 \$0.13 per kWh	\$0.13 x 35,000 = \$4,550 \$0.13 per kWh	

* At 100 Hours Use (\$13.00 / 100 Hours Use = \$0.13 per kWh)

** In no month will the kW demand be greater than dividing the kWh sales by 100/150 hours.


S-EV and S-EV-CPP Rate Design (Colorado) Rate Options for Commercial Fleets and Public Charging Stations

- Reduced demand charges to accommodate lower utilization as industry is still growing
- CPP rate option preferable for commercial fleets with ability to respond to events when called (4-hour events, up to 15 events per year)
- Non-CPP rate option (S-EV) was introduced in response to feedback from public charging stations that found it difficult to respond to events

	S-EV Rate	S-EV-CPP Rate
S&F Charge	\$59.21/month	\$59.21/month
Dist. Demand Charge	\$3.01/kW-month	\$3.01/kW-month
Energy Charges		
Summer On-Peak	\$0.13024/kWh	\$0.06935/kWh
Summer Off-Peak	\$0.02605/kWh	\$0.01387/kWh
Winter On-Peak	\$0.06512/kWh	\$0.03467/kWh
Winter Off-Peak	\$0.01302/kWh	\$0.00693/kWh
CPP Charge	N/A	\$1.44/kWh
On-Peak Hours	2pm – 10pm, non-holiday weekdays	2pm – 10pm, non-holiday weekdays

Overview – EV Ecosystem and Terminology

Clean Transportation Vision

Our Vision is to enable one out of five vehicles in the areas we serve to be electric by 2030 and all vehicles to run on carbon-free electricity or other clean energy by 2050

ZERO CARBON ENERGY

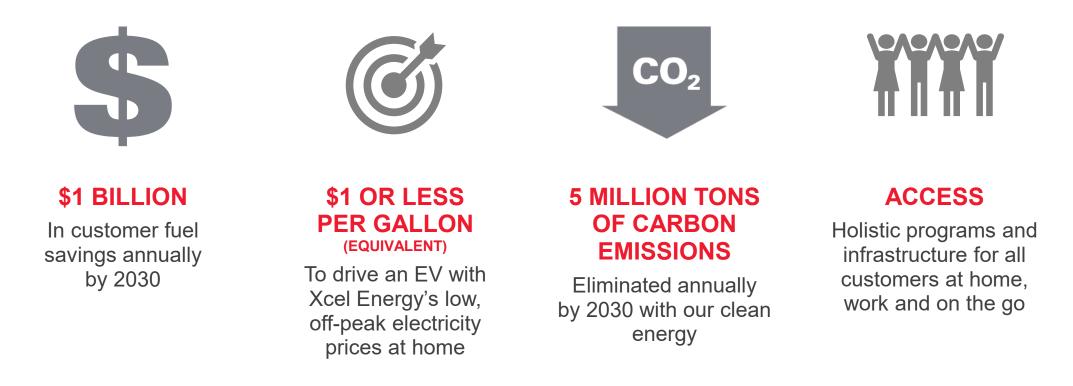
Provide the fueling infrastructure and energy system to run all vehicles on carbon-free electricity or other clean energy

EASY CHARGING

All customers can conveniently access affordable EV charging at home or within one mile of home

ACCESS

Underserved communities can participate in our programs and the related economic development benefits



XCEL ENERGY FLEET

Our entire fleet runs on carbon free electricity or other clean energy

Achieving the Vision – 2030 Benefits

Enabling one out of five vehicles in the areas we serve to be electric by 2030 delivers significant benefits

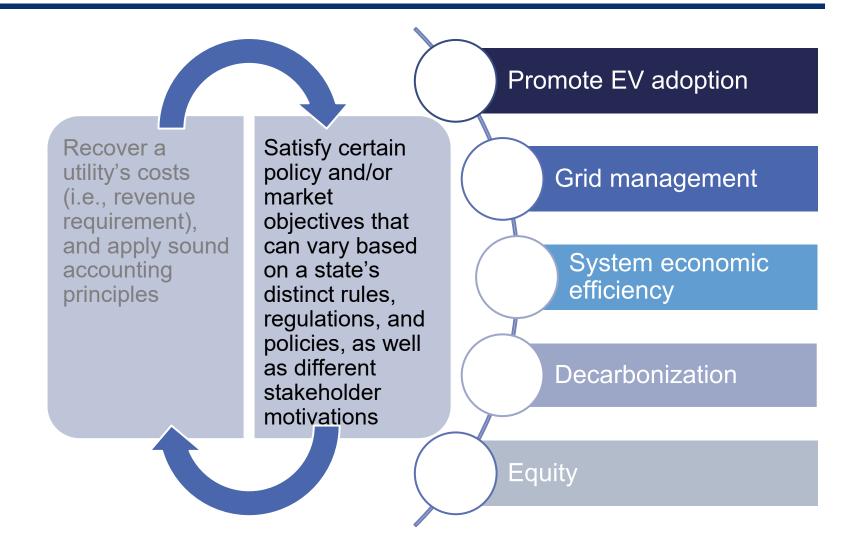
Note that one out of five vehicles being electric by 2030 is the equivalent to at least 1.5 million EVs on our roads

Electric Vehicle Rate Design Theory and Practice

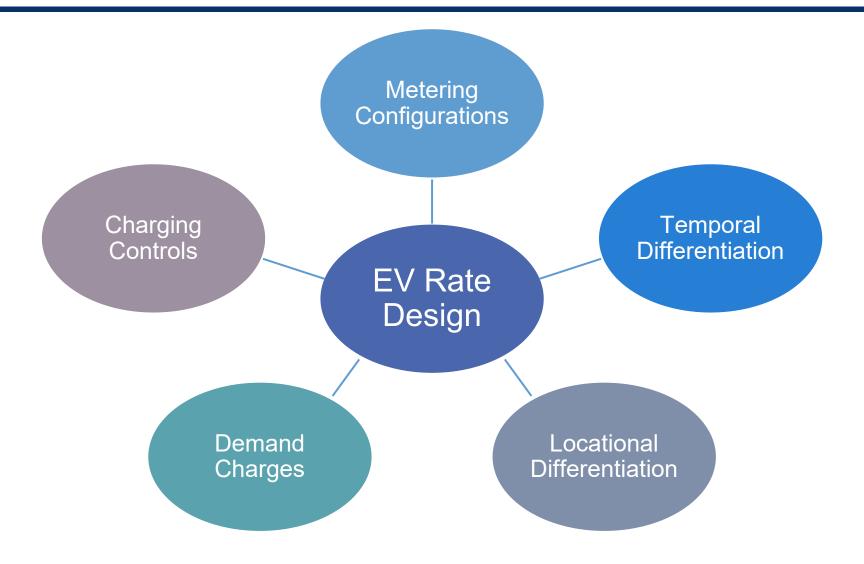
Andy Satchwell, Berkeley Lab

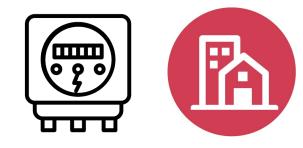
January 25, 2024 Michigan Public Service Commission Electric Vehicle Technical Conference

This work was funded by the U.S. Department of Energy's Office of Electricity under Contract No. DE-AC02-05CH11231.



Retail rates are designed based on two broad concepts


Policy-driven objectives that may be used as the basis for EV retail rate design

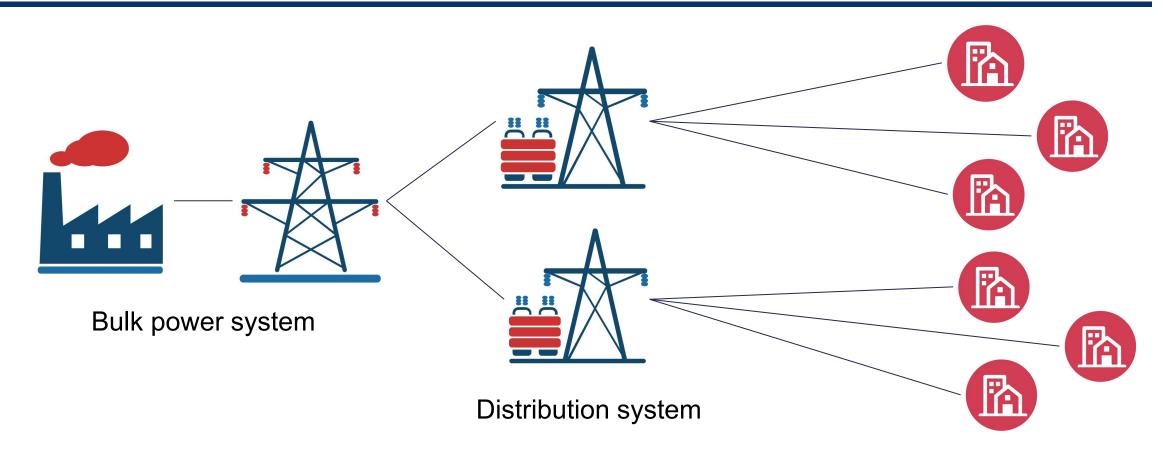

Source: Cappers and Satchwell (2023). EV Retail Rate Design. Available at: <u>https://emp.lbl.gov/publications/ev-retail-</u>rate-design-101

EV rate design typically comprised of five different components

Metering configurations

Whole home/facility consumption via account meter

EV charging consumption via account meter


Submetering via EVSE or vehicle

Temporal differentiation

Locational differentiation

Site-specific

Demand charges

✓ Max demand period
 ✓ Demand ratchet
 ✓ Seasonal
 ✓ Coincident peak
 ✓ Non-coincident peak

IOUs are mostly offering simple overnight TOU rates for EV charging

	Resid	lential	Comn	nercial	Utility-	Owned
	1 st Most Offered	2 nd Most Offered	1 st Most Offered	2 nd Most Offered	1 st Most Offered	2 nd Most Offered
Whole Premise Metering	0	•	0	0	0	0
Dedicated EV Metering	•	0	٠		0	0
Flat or Block Energy Charge	0	0	0	0	•	0
TOU Energy Charge	•	•	•		0	•
Traditional Demand Charge	0	0	0	0	0	0
Alternative Demand Charge	0	0	٠	0	0	0
Geographic Differentiation	0	0	0	0	0	0
Control Tech Requirement	0	0	0	0	0	0
Count / % of Class Total	25 / 46%	16 / 30%	13 / 27%	13 / 27%	16 / 60%	8 / 30%

Source: Cappers et al. (2023). A Snapshot of EV-Specific Rate Designs Among U.S. Investor-Owned Electric Utilities. Report and rates database available at: <u>https://emp.lbl.gov/publications/snapshot-ev-specific-rate-designs</u>

Forward-looking considerations for EV rate design

Implications of EV rate designs for other DER objectives and policies

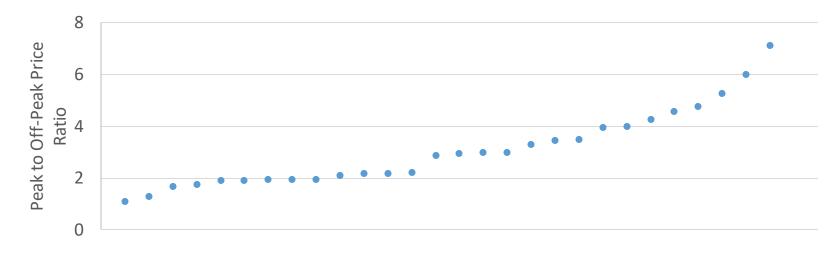
Alignment of system value with EV charging Revisiting EV rate designs as EV deployments increase and/or system conditions change

Contact

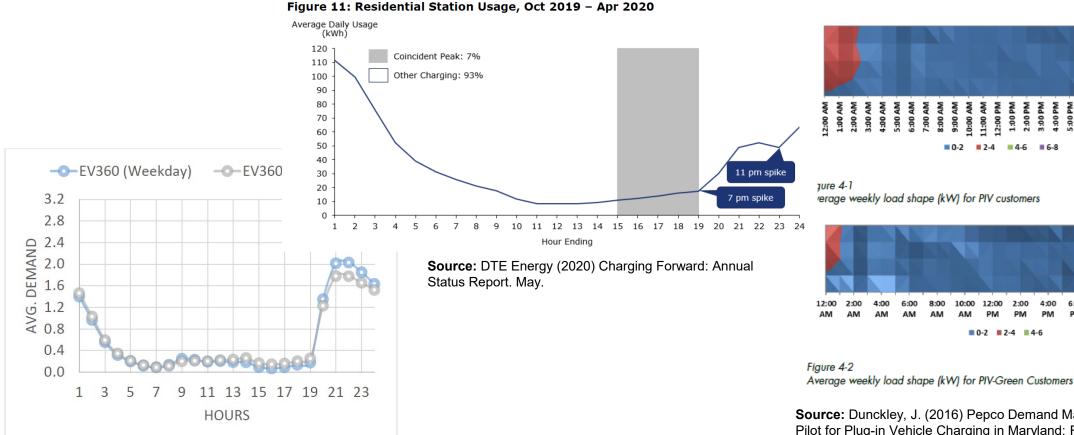
Andrew Satchwell | ASatchwell@lbl.gov

For more information

Download publications from the Electricity Markets & Policy: <u>https://emp.lbl.gov/publications</u> **Sign up** for our email list: <u>https://emp.lbl.gov/mailing-list</u> **Follow** the Electricity Markets & Policy on Twitter: @BerkeleyLabEMP



Appended slides on customer response to EV retail rates



Do customers respond to EV rates?

- Reviewed eleven (11) evaluation reports of EV rate offerings published between 2013-2020
- Most evaluation reports were outcomes of short-term (6 months 2 years) pilots; very few system-wide roll outs were evaluated
- □ Pilots were evenly split between having whole house vs. EV-only metering
- Most pilots had at least a 2:1 peak-to-off peak price ratio and a small number had 4:1 or greater price ratio

Properly designed rates can be an effective tool for managing EV charging behavior

Source: McDougall, L., Donnelly, A. and Chandra, K. (2019) Austin Energy's Residential "Off Peak" Electric Vehicle Charging Subscription Pilot: Approach, Findings, and Utility Toolkit. EV360 Whitepaper. Austin Energy, Austin, TX. **Source:** Dunckley, J. (2016) Pepco Demand Management Pilot for Plug-in Vehicle Charging in Maryland: Final Report -Results, Insights, and Customer Metrics. Electric Power Research Institute, Palo Alto, CA. May. 3002008798. Friday

Thursd ay

Wednesday

Tuesday

Monday

0:00

Friday

Thursday Wednesday

Tuesday

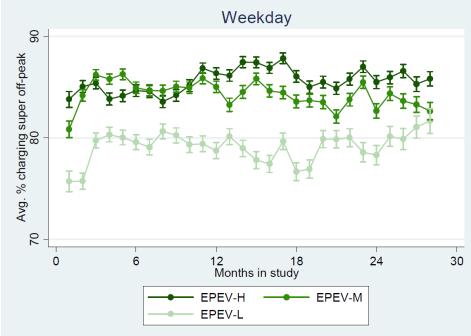
Monday

6:00

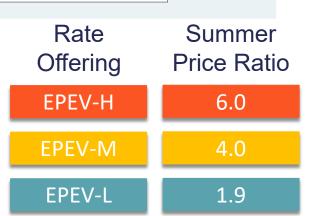
PM

8:00 10:00

PM PM


The higher the price ratio, the more off-peak charging is pursued

Tests of Pairw	vise Differences in Percenta	ge Charging Shares Betwee	n Rate		Rate	Summer
Day Type	Charging Share	EPEVL – EPEVM	EPEVL – EPEVH	EPEVM – EPEVH	Offering	Price Ratio
Maakday	% Peak	1.8	3.08	1.29		C O
Weekday	% Super Off-Peak	-4.16	-6.04	-1.87	EPEV-H	6.0
Weekend	% Peak	2.33	3.25	0.92		
Weekend	% Super Off-Peak	-4.06	-6.62	-2.55	EPEV-M	4.0
	Significant @ 1%					1.0
	Significant @ 5%				EPEV-L	1.9
	Not Significant @ 5%					

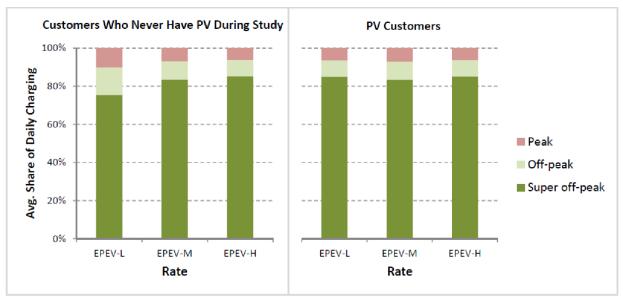

Source: Cook, J., Churchill, C. and George, S. (2014) Final Evaluation for San Diego Gas & Electric's Plug-in Electric Vehicle Tou Pricing and Technology Study. Nexant Inc. Prepared for San Diego Gas & Electric.

- Values in the table represent differences in the share of charging load for customers on different rates
- Comparing customers on lowest price ratio (EPEV-L) and customers on highest price ratio (EPEV-H) shows lowest price ratio customers had larger share of peak period consumption but highest price ratio customers had larger share of super off-peak consumption

The higher the price ratio, the quicker customers learn to shift charging to the off-peak period

Source: Cook, J., Churchill, C. and George, S. (2014) Final Evaluation for San Diego Gas & Electric's Plug-in Electric Vehicle Tou Pricing and Technology Study. Nexant Inc. Prepared for San Diego Gas & Electric.

- Figure depicts the monthly share of charging that occurred as a function of the number of months after a customer started in the study
- Customers on EPEV-H (highest price ratio) exhibited consistent charging behavior through the entire duration of the study
- Customers on EPEV-L and EPEV-M increased charging consumption in super off-peak period by 1.8%-2.9% per month for the first four months, but remained relatively stable thereafter


Customers are more responsive to changes in the peak or off-peak prices, but less so super off-peak

- Charging timers likely made it easier for customers to charge in the overnight super off-peak hours (12-5AM)
- Customer schedules likely limited long charging events to the off-peak (5AM-12PM and 8PM-12AM) or especially the super off-peak period
- Customers also did not seem to differentiate much between the onpeak and off-peak period in their EV charging decisions

		Peak to Super	Peak to Off-Peak
		Off-Peak Ratio	Ratio
Summer	EPEV-L	1.9	1.6
	EPEV-M	4.0	1.6
	EPEV-H	6.0	2.6
Winter	EPEV-L	1.3	1.1
	EPEV-M	2.9	1.4
	EPEV-H	4.6	2.5

Source: Cook, J., Churchill, C. and George, S. (2014) Final Evaluation for San Diego Gas & Electric's Plug-in Electric Vehicle Tou Pricing and Technology Study. Nexant Inc. Prepared for San Diego Gas & Electric.

Customers who owned a PV system are significantly less responsive to prices than their non-PV counterparts

Source: Cook, J., Churchill, C. and George, S. (2014) Final Evaluation for San Diego Gas & Electric's Plug-in Electric Vehicle Tou Pricing and Technology Study. Nexant Inc. Prepared for San Diego Gas & Electric.

 PV owners exhibit more consistent shares of charging by period across the three rates relative to non-PV owners

Selling PV electricity back to the grid may be valued more highly by customers than using it to charge their EV

PV owners may have certain characteristics that cause them to place an even higher premium on charging overnight regardless of the prices they face

TEELE

Tesla's Mission

Accelerate the world's transition to sustainable energy

Tesla Charging Goals

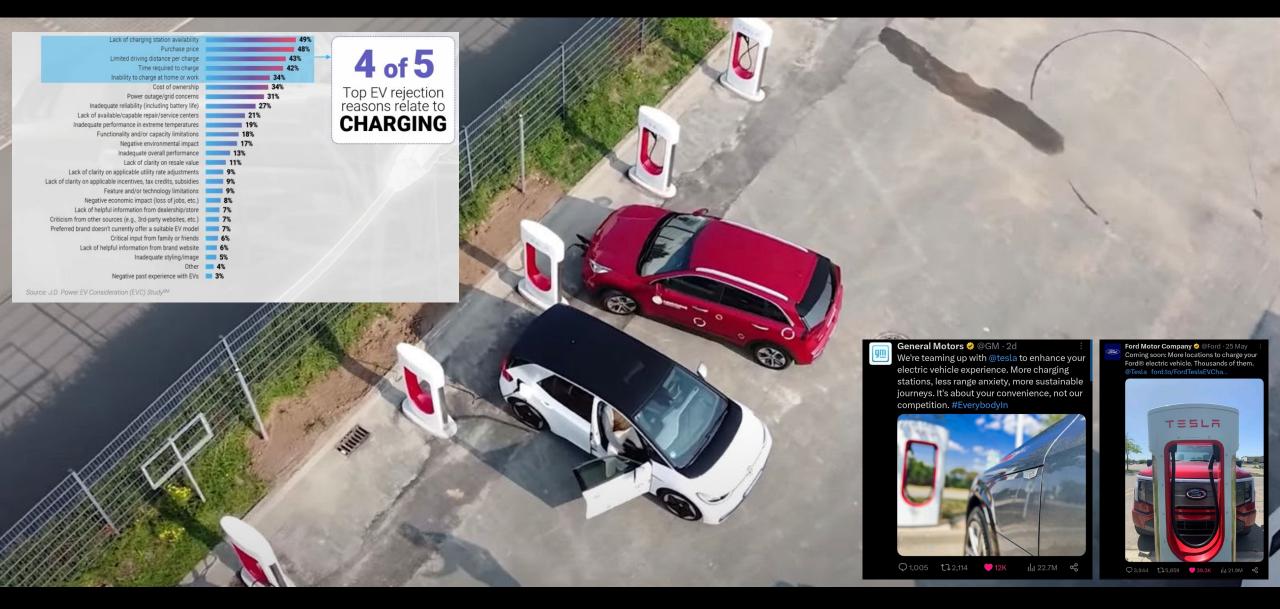
Supply needed EV charging cleanly, conveniently, and cost-effectively

Where You Park

Destination Charging

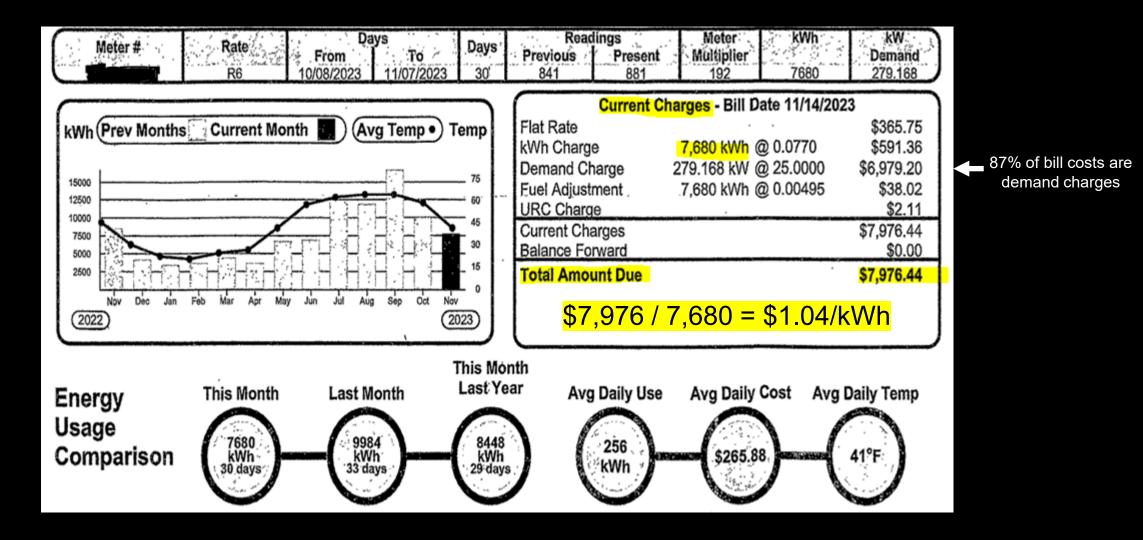
Supercharging

EV Charging Use Cases


Commercial

- Public Charging (DC, L2)
- Workplace
- Fleet (DC, L2)
- Medium/Heavy-Duty

Residential


- Residential Single-Family
- Multi-Unit Dwelling (MUD)
- Low-Moderate Income (LMI)

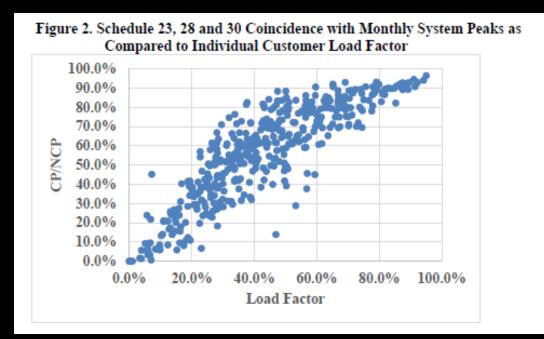
Provide Charging for All

Why Commercial EV Rates?

Demand charges applied to public DC fast charging can result in high costs per kWH.

Why are demand charges problematic for public DC fast charging sites?

DC fast charging sites have lower utilization (aka "load factors") than average commercial customer.


State	Residential	Commercial	Industrial	Transportation	Total
New England	24.73	18.13	15.02	11.37	20.47
Connecticut	24.61	18.54	15.07	18.07	21.08
Maine	22.44	15.40	11.03		17.44
Massachusetts	25.97	18.67	17.06	7.08	21.2
New Hampshire	25.46	i 18.69	15.15		21.0
Rhode Island	23.21	16.23	17.96	17.52	19.30
Vermont	19.93	3 17.29	11.88		16.99
Middle Atlantic	18.43	15.17	8.42	12.82	15.02
New Jersey	16.74	13.75	12.12	12.90	14.80
New York	22.08	18.19	7.55	13.84	18.3
Pennsylvania	15.94	10.73	8.21	7.81	11.8
East North Central	15.36	5 11.61	8.24	7.51	11.7
Illinois	15.65	i 11.32	8.57	7.21	11.9
Indiana	14.59	12.86	8.65	13.03	11.6
Michigan	17.86	i 12.55	8.33	12.35	13.2
Ohio	13.85	i 10.39	7.45	8.54	10.6
Wisconsin	15.62	11.85	8.49	16.55	11.9

Public DC fast charging site from previous slide had very low utilization (load factor ~4%).

Do public DC fast chargers contribute to system peaks?

Due to the generally lower utilization ("load factor") of public DC fast chargers, contribution is lower.

OREGON PACIFIC POWER DATA

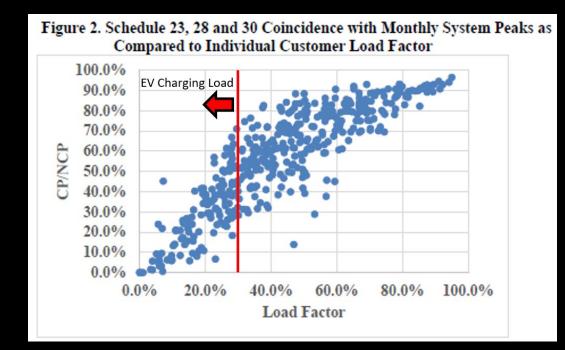
XCEL ENERGY COLORADO S-EV 2.0

S-EV 2.0

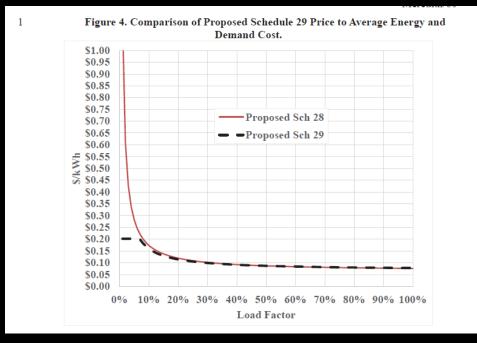
© 2021 Xcel Energ

Cost Allocation Results

- 36 percent lower overall rates
- 56 percent lower demand charge
- · Forecasted bill savings range from 34 to 44 percent


•		o summer coincide	ent peak (4CP) is	substantially lower than
	other C&I customers		SG Total	SG Unitized Load
		Individual May Domand	4 142 622 MM	1.00 KM

Individual Max Demand	4,142,632 kW	1.00 kW
Annual Energy	12,658,300,130 kWh	3,056 kWh
Load Factor	34.9%	34.9%
4CP - AED	2,268,867 kW	0.55 kW
NCP	2,723,015 kW	0.66 kW
	EV Charging Total	S-EV Unitized Data
Individual Max Demand	EV Charging Total 6,571 kW	
Individual Max Demand Annual Energy		S-EV Unitized Data 1.00 kW 868 kWh
	6,571 kW	1.00 kW
Annual Energy	6,571 kW 5,704,906 kWh	1.00 kW 868 kWh


DC fast charging ranges from <5% load factor up to 30% load factor on the high end.

CASE STUDY: Pacific Power Oregon (Schedule 29)

Existing Real-World Data

Customer Rate Solution

"Contribution to Summer peaks is substantially lower than other C&I customers"

XCEL ENERGY COLORADO S-EV 2.0

S-EV 2.0 Cost Allocation Results

- 36 percent lower overall rates
- 56 percent lower demand charge
- Forecasted bill savings range from 34 to 44 percent
- Why? Contribution to summer coincident peak (4CP) is substantially lower than other C&I customers

	SG TOLAI	36 Unitized Load
individual Max Dema	and 4, 142,632 KW	1.00 KW
Annual Energy	12,658,300,130 kWh	3,056 kWh
Load Factor	34.9%	34.9%
4CP - AED	2,268,867 kW	0.55 kW
NCP	2,723,015 kW	0.66 kW
	EV Charging Total	S-EV Unitized Data
Individual Max Dema	and 6,571 kW	1.00 kW
Annual Energy	5,704,906 kWh	868 kWh
Load Factor	9.9%	9.9%
4CP - AED	1,235 kW	0.19 kW
NCP	2,625 kW	0.40 kW
	2,023 KW	0.40 KVV

"A rose by any other name . . . "

EV Rate Structure / Approach	State Examples	Utility Examples
EV Time-of-Use (TOU) Rates	CO, KS	Xcel Colorado (S-EV)Evergy Kansas (BEVCS)
Demand Charge Holiday/Discount	CA, MD, NJ, PA, WA	 SCE (EV-TOU-9) MD EDCs Demand Charge Discount NJ (PSE&G and JCP&L) PECO (EV-FC)
Demand Limiters and kWh-per-kW blocks	FL, MN, OR, UT, WY	 FPL Xcel MN (Rule of 100) Pacific Power OR (Schedule 29) RMP Wyoming (Schedule 29)
Load Factor Tranches	MA, NY	 Massachusetts (Eversource & NatGrid) New York (Joint Utilities)

EV TOU Example: Evergy

Hevergy

- Low demand charge ~\$3/kW of Demand
- Three-period time-of-use (TOU) rate
 - On-Peak, Off-Peak, Super Off-Peak
- 4-month summer season
- 2pm to 8pm Weekday On-Peak, year round
- Strong On-Peak price signal
- **Strong** Super Off-Peak price signal
- SIMPLE AND STRAIGHTFORWARD!

No supplement or separate understar shall modify the tariff as shown her		Sheet	2 of 4 Sheets	
	BUSINESS EV CHARGING	G SERVICE		
RATE FOR SERVICE				
A. Customer Charge	e (Per Month)		\$ 105.97	
B. Facility Charge (er kW of Billing Demand per month)	\$ 3.069	
C. Energy Charge pe	er Pricing Period (Per kWh)	Summer Season	Winter Season	
On-Peak Period		\$0.17979	\$0.11522	
Off-Peak Period		\$0.08298	\$0.05458	
Super Off-Peak P	eriod	\$0.02755	\$0.02416	
D. Carbon Free Ene	rgy Option Charge (Per kWh)	\$0.00250		

MINIMUM MONTHLY BILL

The Minimum Monthly Bill shall be equal to the sum of the Customer Charge and Facilities Charge.

SEASONS

The Summer Season is four consecutive months, beginning and effective June 1 and ending September 30 inclusive. The Winter Season is eight consecutive months, beginning and effective October 1 and ending May 31. Customer bills for meter reading periods including one or more days in both seasons will reflect the usage in each season.

BUSINESS EV CHARGING SERVICE

PRICING PERIODS

Pricing periods are established in Central Time year-round. The hours for each pricing period are as follows:

On-Peak: Super Off-Peak Off- Peak Period: 2 p.m. – 8 p.m., Monday through Friday, excluding Holidays 12 a.m. – 6 a.m. every day All other hours

Volumetric Example: Eversource CT

Eversource Connecticut's Electric Vehicle Rate Rider:

- IF "<u>a rate component of such schedule is priced on a demand basis (i.e., per kW or per kVA), the EV customer</u> <u>under this Rider will be subject to a charge determined on an equivalent per kWh basis using the corresponding</u> average price of such rate component."
- EV Rate Rider converts rate components billed on a demand basis to a customer average kWh value
 - Based on what an average customer would pay per kWh for these demand components effectively converts demand components to <u>ALL-VOLUMETRIC kWh</u> basis at the <u>commercial customer class avg load factor</u>.

EVERS©URCE

• Applies the customer average kWh value to the EV charging customer.

Load Factor Limits: APS Rate Rider DCFC

- Similar to Ameren's Rider EVCP
- Limits Billing Demand based on declining Load Factor conversion over 10 years.
- Starts at 25% Load Factor Limit
- Equivalent to 182.5 hour "demand limiter"
- A customer who uses 18,250 kWh per month would pay NO MORE THAN 18,250 kWh / 182.5 hr = <u>100 kW billed</u> <u>demand</u>
- A customer who uses 36,500 kWh per month would pay NO MORE THAN 36,500 kWh / 182.5 hr = <u>200 kW billed</u> <u>demand</u>

LOAD FACTOR LIMITS

Monthly billing demands are limited to a kW no higher than that which would result in the applicable load factor limit, based on the customer's kWh usage, and billing days during the month. The monthly load factor limits are:

	Monthly Cycle Bills beginning with cycle 1 Between	Load Factor Limit
Period One	July 1, 2021 through June 30, 2025	<mark>25%</mark>
Period Two	July 1, 2025 through June 30, 2028	20%
Period Three	July 1, 2028 through June 30, 2031	15%

The monthly billing demand shall be the lower of:

- 1. The Billing Demand metered and calculated according to the parent rate schedule, or
- 2. The Limited Demand which equals:
 - a. Period One (Monthly Billed kWh) / [25%*Days*24 hours]
 - b. Period Two (Monthly Billed kWh) / [20%*Days*24 hours]
 - c. Period Three (Monthly Billed kWh) / [15%*Days*24 hours]

Rate Limiter: Dominion VA

GS-2 Intermediate General Service Schedule

- Regular commercial rate that is beneficial for EV charging.
- Technology neutral rate, applicable to all non-residential customers,
- GS-2 is billed as an all-volumetric rate at usage levels below 200 kWh per kW (~27% load factor)
- Above 200 kWh per kW (~27% load factor) rate is automatically billed with a demand charge and correspondingly lower energy charge.
- Very simple rate for customers with automatic switchover point for their benefit.

Load Factor Tranches: National Grid MA & ConEd NY

Load Factor ("LF") Threshold	Enrollment Years	Demand Charge Discount
None	1	100%
LF <= 5%	2 to 9	100%
5% < LF <= 10%	2 to 9	75%
10% < LF <= 15%	2 to 9	50%
LF > 15%	2 to 9	0%

nationalgrid

Load factor =

Billed Energy in kWh

Billed Demand in kWh x Hours in Billing Period

	CONSOLIDATED			W TORK, INC.	
		Case 22-E	-0236		
CECONY <mark>EV Phase</mark>	e-In Rates Summary for SC9 R	ate I & II (Based	d on 2022 Rate	Level)	
	Customer Charge	100%	100%	100%	100%
	Energy Charge	100%	75%	50%	25%
	Demand Charge	0%	25%	50%	75%
		LF <= 10%	10% < LF <= 15%	15% < LF <= 20%	<mark>20% < LF < 25%</mark>
6C9 Rate I (LT)		<u>Tier 1</u>	<u>Tier 2</u>	<u>Tier 3</u>	Tier 4

CONSOLIDATED EDISON COMPANY OF NEW YORK INC

EV RATE DESIGN PRINCIPLES

Non-residential EV rate(s):

- Technology agnostic and accessible to all non-residential EV customers.
- Available to new and existing stations.
- Optional
- Consider the needs of all use cases, including fleet charging.
- Incentivize intelligent and manageable scheduling where appropriate.
- Provide certainty and stability for long-term investments.

Thank You for Joining!

