

The Eat Safe Fish Program Evaluating PFAS in Fish for Consumption Guidelines

Brandon Reid, Eat Safe Fish Program Manager

Michigan Department of Health and Human Services July 11, 2023

Overview

- Eat Safe Fish (ESF) Program Goals and Guidelines
- Testing Fish Fillets for PFAS
- Fish Consumption Screening Values for PFOS
- Preview of 2023 Eat Safe Fish Guide Updates

Eat Safe Fish Program Goals

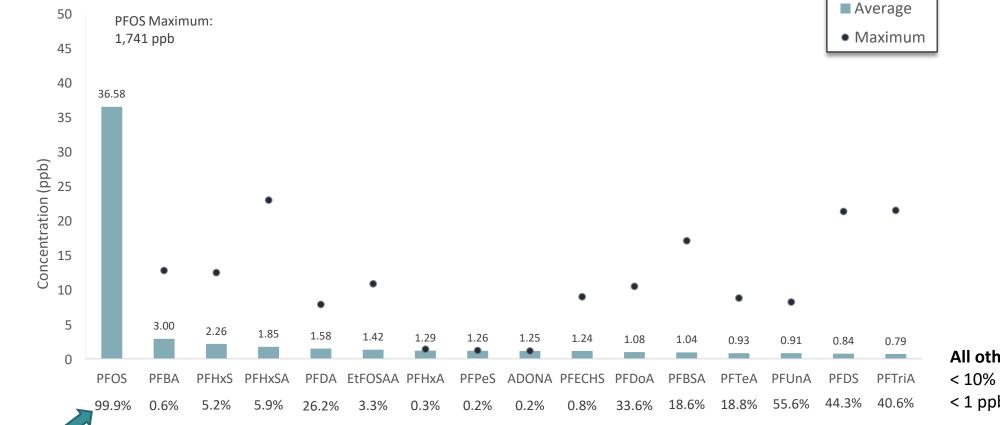
- To promote the safe consumption of fish from Michigan waterbodies.
- To create consumption guidelines based on the health risks of eating fish that contain environmental contaminants, like mercury, PCBs, or PFAS.
- To provide Michiganders with the knowledge they need to make informed decisions about which fish and how much fish to eat.

Eat Safe Fish Consumption Guidelines

- Eat Safe Fish consumption guidelines are recommendations that people can use to guide their decision-making when eating locally caught fish.
- These guidelines are based on chemical levels measured in the edible portions of fish collected from Michigan waterbodies.

Fish Collection and Preparation

- Fish are primarily collected by EGLE's Fish Contaminant Monitoring Program (FCMP).
- EGLE prepares the fish for testing by taking size measurements and removing the edible portion (usually the fillet).
- The edible portion of the fish is then tested for contaminants at the MDHHS laboratory.
- Data from these edible portions are used to inform the Eat Safe Fish consumption guidelines.



Testing Fish for PFAS

- All edible portions of fish submitted to the MDHHS Laboratory are tested for both mercury and PFAS.
 - Some edible portions are also tested for organochlorines, including PCBs, dioxins, and pesticides.
- The MDHHS laboratory currently tests for 39 different PFAS in fish fillets, including perfluorooctane sulfonate (PFOS).
- Over the last two fiscal years (FY2021 and FY2022), MDHHS tested nearly 2,500 fish fillets.
- In total, MDHHS has tested over 5,000 fish fillets for PFAS.

PFAS Concentrations When Detected in Fillets, FY21-22 (n=2,499)

% of fillets with detections Note: these results are <u>not</u> representative for all waterbodies in Michigan. Waterbodies with known or suspected contamination are targeted for fish fillet testing. All other PFAS: < 10% detections < 1 ppb average

Testing Fish for PFAS – Conclusions

- Our data indicate that among PFAS, PFOS is most frequently detected in Michigan fish fillets.
- Among PFAS, PFOS accumulates in Michigan fish fillets at the highest concentrations.
 - The available data do not indicate that other PFAS are accumulating in Michigan fish fillets at levels of a health concern.
- Based on these findings, MDHHS currently uses PFOS concentrations to issue fish consumption guidelines.
 - We will continue to evaluate trends in PFAS data from Michigan fish fillets to assess whether fish consumption guidelines for other PFAS are warranted.

- ESF currently issues statewide consumption guidelines for 16 fish species based on levels of mercury and PCBs.
- MDHHS recommends that people follow statewide consumption guidelines for all fish from inland lakes and rivers that do not have waterbody-specific guidelines.

- MDHHS will issue statewide fish consumption guidelines when:
 - A Contaminant of Concern prompts guidelines for waterbodies that are dispersed across a wide geographic range; and
 - The data support the conclusion that guidelines are appropriate for many species and waterbodies, including those without existing data; and
 - The species-waterbody specific guideline approach is not feasible for every affected waterbody and species given the statewide extent of the contamination.

Source: Michigan Fish Consumption Advisory Program Guidance

- Statewide guidelines for mercury incorporate around 25 years of contaminant data.
 - These data indicate that nearly all fish from waterbodies in Michigan contain mercury.
 - These data also indicate that levels of mercury are consistent across species.
- Statewide guidelines for PCBs incorporate 9 years of contaminant data for carp and 25 years of data for catfish.
 - These data indicate that nearly all carp and catfish in Michigan contain PCBs.

- Currently, ESF does not have a dataset appropriate for issuing statewide consumption guidelines for PFOS.
 - PFOS levels in fish are highly variable across waterbodies and fish species.
 - The current PFOS dataset is skewed towards known/suspected PFAS sites and may not be representative of the average Michigan waterbody.
- ESF will continue to evaluate the appropriateness of statewide PFOS guidelines as more data come in.

Comparison of Michigan's fish PFAS data to recent literature

- Barbo et al. (2023): Locally caught freshwater fish across the United States are a significant source of exposure to PFOS and other perfluorinated compounds.
 - Over 500 composite samples of fish fillets collected across the United States (2013-2015) were analyzed for concentrations of PFAS.
- ESF has also found that fish from Michigan waterbodies can be a significant source of PFOS.
 - However, levels of PFOS are highly variable from waterbody to waterbody.
- Study authors found that PFOS was the largest contributor to total PFAS levels, averaging 74% of the total.
 - Michigan's Fish Contaminant Monitoring Program data: PFOS composes over 88% of total PFAS measured in fish fillets.

Comparison of Michigan's fish PFAS data to recent literature

Ecology Center, Friends of the Rouge, Huron River Watershed Council (2023): Community-Based Study on PFAS in Fish.

- 20 fish from the Huron and Rouge Rivers were collected and tested for PFAS.
- In the study, PFOS was found in every fish tested (whole fish and fillet).
 - Consistent with Michigan FCMP data, which also found PFOS in every fish fillet collected from the Rouge River from 2019-2021 and the Huron River in 2021.
- Eat Safe Fish guidelines are already in place for the Huron River and Rouge River.
 - A large section of the Huron River (N Wixom Rd, Oakland Co. to I-275, Wayne Co.) is currently under a Do Not Eat advisory based on PFOS.
 - Most ESF guidelines in the Rouge River are based on PCBs and mercury, particularly the section of the Middle Branch that includes Newburgh Lake.
 - Bluegill and sunfish in the lower and main branches (downstream of Ford Dam) are the exception (Do Not Eat advisory based on PFOS).

Fish Consumption Screening Values (FCSVs)

- FCSVs are chemical-specific health-based screening values based on toxicity values.
 - EPA Reference Dose (RfD)
 - ATSDR Minimal Risk Levels (MRLs)
- FCSVs are designed to be protective against the most sensitive toxicity endpoint.
- Concentrations of chemicals from edible portions of fish are compared to FCSVs as a basis for consumption guidelines.
- ESF uses the 95% Upper Confidence Limit (95% UCL) of the mean contaminant concentration for comparison with FCSVs.
 - This is a health-protective approach that accounts for variability of chemical concentrations within fish populations.

FCSV Equation for PFOS

 $FCSV = \frac{RfD \times RSC \times BW \times AT}{IR \times EF \times ED}$

Where:

FCSV (Fish Consumption Screening Value)

RfD (Reference Dose) RSC (Relative Source Contribution) BW (Body Weight) AT (Averaging Time) IR (Ingestion Rate) EF (Exposure Frequency) ED (Exposure Duration) = chemical specific, μg/g or pg/g wet weight

- = chemical specific, µg/kg-d or pg/kg-d
- = chemical specific, unitless
- = kg= days= a/day
- = g/day = days/year
- = years

 $FCSV = \frac{RfD \ x \ RSC \ x \ BW \ x \ AT}{IR \ x \ EF \ x \ ED}$

- Reference Dose (RfD)
 - <u>EPA</u>: estimate of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without a significant risk of adverse effects during a lifetime.
 - Based on exposure level at which no adverse effects are observed.
- PFOS RfD for Fish Consumption = 0.014 μg/kg-day
 - Based on repeated dose oral toxicity study in cynomolgus monkeys (Seacat et al. 2002).
 - Critical effect: reduced cholesterol and thyroid hormone levels.
 - Uncertainty factors applied (person-person variability, and animal-person extrapolation).

 $FCSV = \frac{RfD \ x \ RSC \ x \ BW \ x \ AT}{IR \ x \ EF \ x \ ED}$

Relative Source Contribution (RSC)

- Portion of exposure to a chemical that can be attributed to eating fish.
- Accounts for exposure to chemicals from other sources (food, drinking water, air).
- If exposure is only expected from fish consumption, an RSC of 1 is assigned.
- PFOS RSC for Fish Consumption = 1

• Body Weight (BW)

• Body weight of the individual consuming fish.

Ingestion Rate (IR)

- Weight of fish consumed per meal.
- IR is assumed to be proportional to BW, at a rate of 1 ounce of fillet per 10 kg of body weight.
 - See table.
- These assumptions standardize Eat Safe Fish guidelines so that they are the same for people of varying body weights.

FCSV=	$\frac{RfD \ x \ RSC \ x \ BW \ x \ AT}{}$
1030-	IR x EF x ED

Body Weight (BW)	Ingestion Rate (IR) per Meal	Ratio IR:BW
kg	ounces	
10	1.0	0.10
20	2.0	0.10
30	3.0	0.10
40	4.0	0.10
50	5.0	0.10
60	6.0	0.10
70	7.0	0.10
80	8.0	0.10
90	9.0	0.10
100	10.0	0.10
110	11.0	0.10
120	12.0	0.10
130	13.0	0.10

• Exposure Frequency (EF)

- Number of fish meals per year.
- Used to calculate meal categories.

• Exposure Duration (ED)

- Assumed number of years of exposure.
- Default = 70 years
- Averaging Time (AT)
 - Time period over which exposure is averaged.
 - Default = 25,550 days (70 years)

 $FCSV = \frac{RfD \ x \ RSC \ x \ BW \ x \ AT}{FCSV}$

IR x EF x ED

EF, ED, and AT are the same for each fish contaminant.

Meal Category	DDT, DDE, DDD	Dioxins/Furans/co- planar PCBs	Mercury	PCBs
meals per month	µg/g (ppm)ª	pg TEQ/g (ppt-TEQ) ^b	µg/g (ppm)ª	µg/g (ppm) ^a
16	≤ 0.11	≤ 0.5	≤ 0.07	≤ 0.01
12	>0.11 to 0.15	>0.5 to 0.6	>0.07 to 0.09	>0.01 to 0.02
8	>0.15 to 0.23	>0.6 to 0.9	>0.09 to 0.13	>0.02 to 0.03
4	>0.23 to 0.45	>0.9 to 1.9	>0.13 to 0.27	>0.03 to 0.05
2	>0.45 to 0.91	>1.9 to 3.7	>0.27 to 0.53	>0.05 to 0.11
1	>0.91 to 1.8	>3.7 to 7.5	>0.53 to 1.1	>0.11 to 0.21
6 meals per year	>1.8 to 3.7	>7.5 to 15	>1.1 to 2.2	>0.21 to 0.43
Limited	>3.7 to 20	>15 to 90	NA	>0.43 to 2.7
Do Not Eat	>20	>90	>2.2	>2.7
Meal Category	PFOS	Selenium	Total Toxaphene	Toxaphene Parlars 26, 50, 62 (∑3PC 26,50,62)
meals per month	µg/g (ppm)ª	µg/g (ppm)ª	µg/g (ppm)ª	µg/g (ppm) ^a
16	≤ 0.009	≤ 2.3	≤ 0.02	≤ 0.001
12	>0.009 to 0.013	>2.3 to 3.1	>0.02 to 0.03	>0.001 to 0.002
8	>0.013 to 0.019	>3.1 to 4.6	>0.03 to 0.05	>0.002 to 0.003
4	>0.019 to 0.038	>4.6 to 9.2	>0.05 to 0.09	>0.003 to 0.006
2	>0.038 to 0.075	>9.2 to 17	>0.09 to 0.18	>0.006 to 0.011
1	>0.075 to 0.15	NA	>0.18 to 0.36	>0.011 to 0.023
6 meals per year	>0.15 to 0.3	NA	>0.36 to 0.73	>0.023 to 0.046
Limited	NA	NA	>0.73 to 4.5	>0.046 to 0.28

Table 1. Fish Consumption Screening Values (FSCV) for DDT plus metabolites, dioxin-like chemicals, mercury, PCBs, PFOS, selenium, and toxaphene.

^a: micrograms of chemical per gram of wet weight fish tissue (µg/g) that is the same as parts per million (ppm).

^b: picograms of toxic equivalents calculated according to US EPA methods⁷ per gram of wet weight fish tissue (pg TEQ/g) that is the same as parts per trillion of toxic equivalents (ppt-TEQ).

FCSV Examples

Sample Group #1 (n=10)

- Mercury 95% UCL: 0.67 ppm
 - Meal Category: 1
- PFOS 95% UCL: 0.015 ppm
 - Meal Category: 8
- Final Meal Category: 1/month based on Mercury

Sample Group #2 (n=10)

- Mercury 95% UCL: 0.21 ppm
 - Meal Category: 4
- PFOS 95% UCL: 0.055 ppm
 - Meal Category: 2
- Final Meal Category: 2/month based on PFOS

Table 1. Fish Consumption	Screening Values (FSCV) for DDT plus metabolites, dioxin-like
chemicals, mercury, PCBs,	PFOS, selenium, and toxaphene.

Meal Category	DDT, DDE, DDD	Dioxins/Furans/co- planar PCBs	Mercury	PCBs
meals per month	µg/g (ppm)ª	pg TEQ/g (ppt-TEQ) ^b	µg/g (ppm)ª	µg/g (ppm)ª
16	≤ 0.11	≤ 0.5	≤ 0.07	≤ 0.01
12	>0.11 to 0.15	>0.5 to 0.6	>0.07 to 0.09	>0.01 to 0.02
8	>0.15 to 0.23	>0.6 to 0.9	>0.09 to 0.13	>0.02 to 0.03
4	>0.23 to 0.45	>0.9 to 1.9	>0.13 to 0.27	>0.03 to 0.05
2	>0.45 to 0.91	>1.9 to 3.7	>0.27 to 0.53	>0.05 to 0.11
1	>0.91 to 1.8	>3.7 to 7.5	>0.53 to 1.1	>0.11 to 0.21
6 meals per year	>1.8 to 3.7	>7.5 to 15	>1.1 to 2.2	>0.21 to 0.43
Limited	>3.7 to 20	>15 to 90	NA	>0.43 to 2.7
Do Not Eat	>20	>90	>2.2	>2.7
Meal Category	PFOS	Selenium	Total Toxaphene	Toxaphene Parlars 26, 50, 62 (∑3PC 26,50,62)
meals per month	µg/g (ppm)ª	µg/g (ppm)ª	µg/g (ppm)ª	µg/g (ppm)ª
16	≤ 0.009	≤ 2.3	≤ 0.02	≤ 0.001
12	>0.009 to 0.013	>2.3 to 3.1	>0.02 to 0.03	>0.001 to 0.002
8	>0.013 to 0.019	>3.1 to 4.6	>0.03 to 0.05	>0.002 to 0.003
4	>0.019 to 0.038	>4.6 to 9.2	>0.05 to 0.09	>0.003 to 0.006
2	>0.038 to 0.075	>9.2 to 17	>0.09 to 0.18	>0.006 to 0.011
1	>0.075 to 0.15	NA	>0.18 to 0.36	>0.011 to 0.023
6 meals per year	>0.15 to 0.3	NA	>0.36 to 0.73	>0.023 to 0.046
Limited	NA	NA	>0.73 to 4.5	>0.046 to 0.28

a: micrograms of chemical per gram of wet weight fish tissue (µg/g) that is the same as parts per million (ppm).

^b: picograms of toxic equivalents calculated according to US EPA methods⁷ per gram of wet weight fish tissue (pg TEQ/g) that is the same as parts per trillion of toxic equivalents (ppt-TEQ).

Future FCSV Values for PFOS

- MDHHS is currently reviewing its FCSVs for PFOS to determine whether they continue to be health-protective in light of evolving science.
- This review includes analysis of available toxicological and epidemiological studies on potential health effects related to PFOS.
- If MDHHS determines that the existing FCSVs need to be updated, MDHHS will review and issue new FCSVs.
- MDHHS is planning to complete its review of PFOS FCSVs in time to incorporate any guideline changes into the 2024 Update to the Eat Safe Fish Guide.

Updates in the 2023 Eat Safe Fish Guide

- The 2023 version of the Eat Safe Fish Guide is in the final stages of review.
- The 2023 version will include 291 new or updated fish consumption guidelines.
- Fish from 56 new waterbodies were tested for the first time.
 - Total number of waterbodies in the Eat Safe Fish Guide now over 550.

Thank you!

For more information on the Eat Safe Fish program, please visit michigan.gov/eatsafefish

Brandon Reid Eat Safe Fish Program Manager Michigan Department of Health and Human Services

