Oscoda Area and Former Wurtsmith Air Force Base PFAS Update Meeting

The Webinar will Begin Shortly

September 20, 2022

MPART

Webinar Housekeeping

All lines are muted during the webinar.

We are recording this webinar

How to ask a question in Zoom

Submit your questions using the "Q/A" box in at the bottom of your screen.

Click the "hand" icon at the bottom of your screen.

Type #2 to raise your hand.

Welcome

Abigail Hendershott

MPART Executive Director

Michigan Department of Environment, Great Lakes and Energy

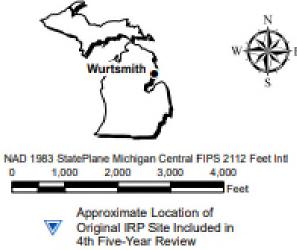
Introductions, Logistics and Agenda

- Introductions
- Agenda:
 - Michigan Department of Environment, Great Lakes, and Energy (EGLE)
 Update
 - Michigan Department of Health and Human Services (MDHHS) Update
 - Comments, Questions, and Answers
 - Meeting Conclusion

** This meeting is being recorded. **

Former Wurtsmith Air Force Base

Beth Place, Project Manager Remediation and Redevelopment Division 517-899-7924 placeb1@michigan.gov


Former Wurtsmith Air Force Base

- 1923 Established
- 1993 Officially closed under the Base Realignment and Closure decision, 1991
- Most Acreage has been transferred for reuse.
- Air Force is the lead
- Comprehensive Environmental Response, and Liability Act (CERCLA)

Wurtsmith

'Historical' Environmental Response

Source: Bay West 4th Five Year Review Work Plan, 2019

Treatment System

MPART

EGLE PFAS Response

- Groundwater
- Surface Water
- Soil
- Fish
- Wildlife
- Residential Wells
- Research
- Michigan.gov/Wurtsmith

Air Force PFAS Response

Preliminary Assessment Site Inspection

Remedial Investigation

Other/Removal Actions

FT02 Pump and Treatment System (PTS)

Removal Actions

Central Treatment System (Arrow and Benzene PTSs)

- Mission Street PTS
- Soil Removal at FT02

Interim Remedial Actions

Treatment System

https://ar.afcec-cloud.af.mil/

MPART

Interim Remedial Actions

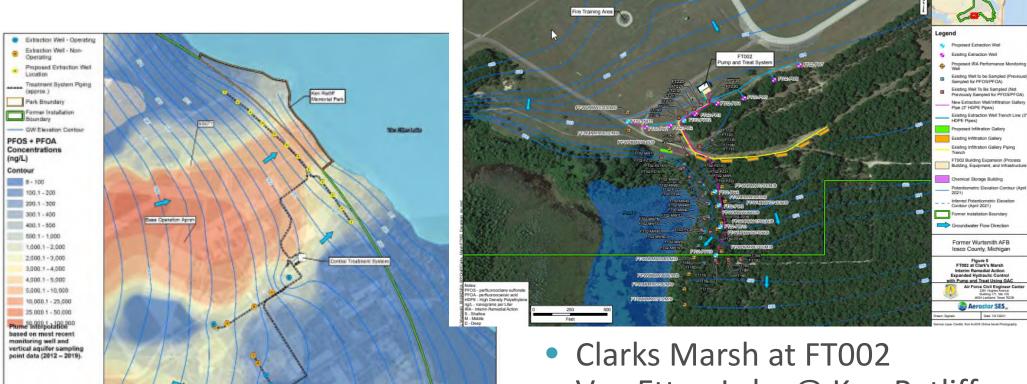
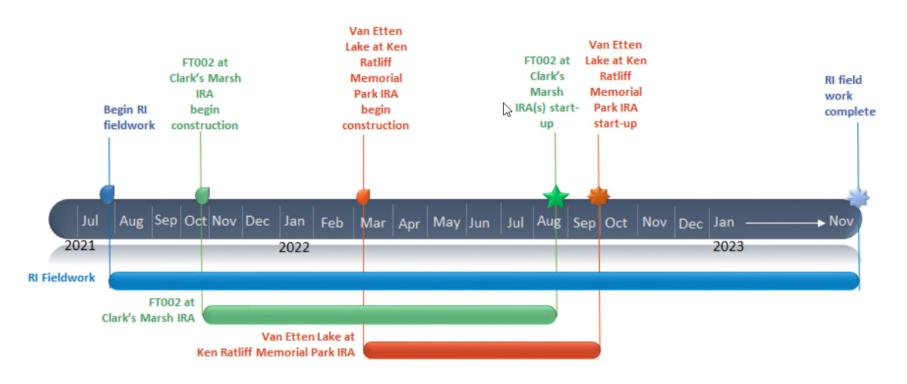


Figure 2: PFOS Concentrations in Groundwater at Ken Ratliff Memorial Park and Proposed Location of Hydraulic Control System for Alternatives 2 and 3

Van Etten Lake @ Ken Ratliff
 Memorial Park



August 17, 2022

Project Timeline

Your Success is Our Mission!

Innovate, Accelerate, Thrive - The Air Force at 75

10

MPART

Air Force Information

Source: https://ar.afcec-cloud.af.mil/

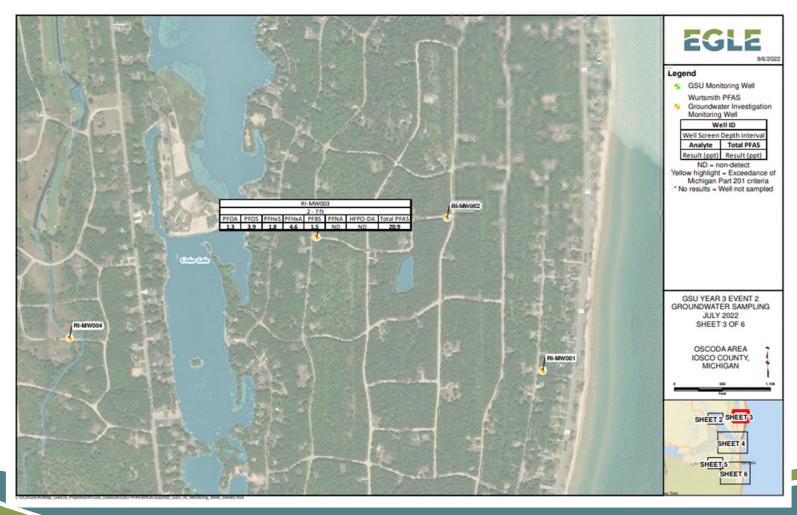
AIR FORCE CIVIL ENGINEER CENTER WURTSMITH RAB DOCUMENTS **RAB Documents RAB Member Application RAB Operating Procedures** Info Posters Existing Hydraulic GW Fxisting IRA Design Central Control Plume Wells Approach Treatment System RAB Meeting Date Meeting Video Recording PFHXS (Poster) PFNA (Poster) Public Presentation PFOA (Poster) Notice PFOS (Poster) RAB Acronym List Wurtsmith IRA Sites (Poster) Meeting Video Recording PFHXS (Poster) PFNA (Poster) Public May 18, 2022 Agenda Presentation Minutes PFOA (Poster) Notice

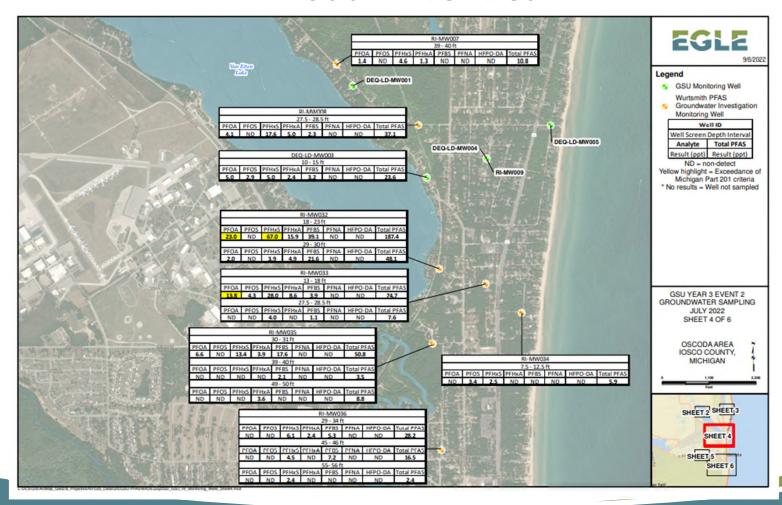
PFOS (Poster)

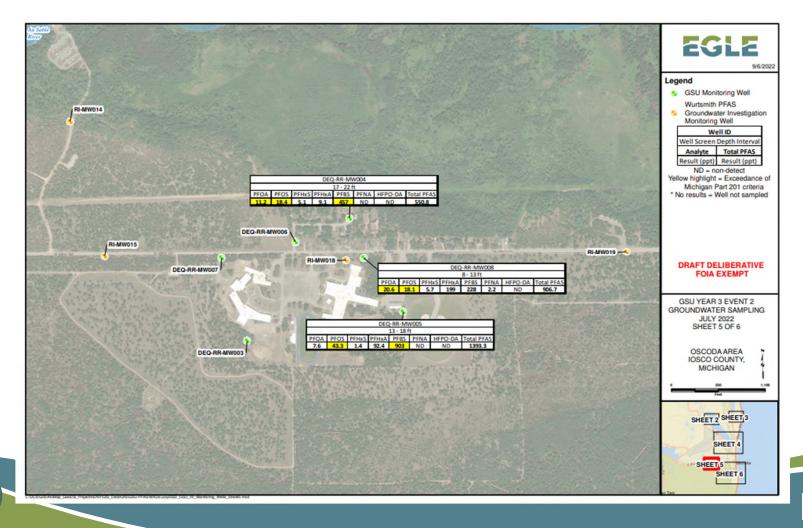
https://www.afcec.af.mil/Home/BRAC/Wurtsmith/RAB.aspx

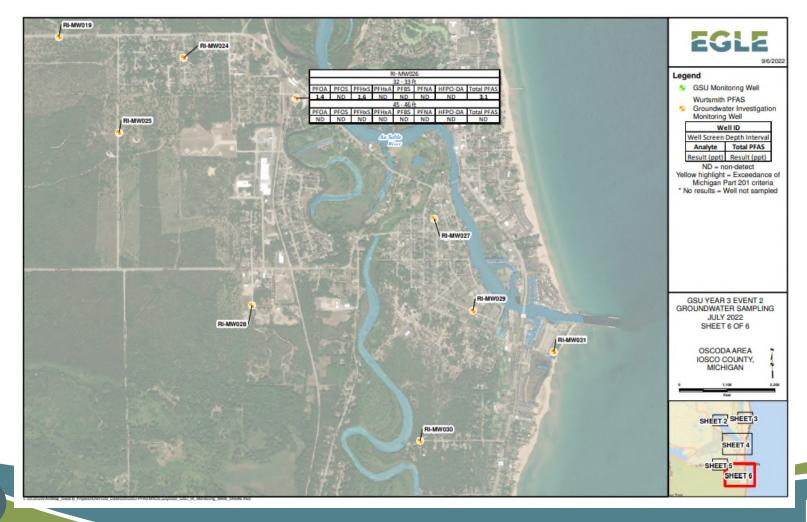
Oscoda Area Sites

Lynn Gosson | 989-225-0161 | gossonl1@michigan.gov Remediation and Redevelopment Division

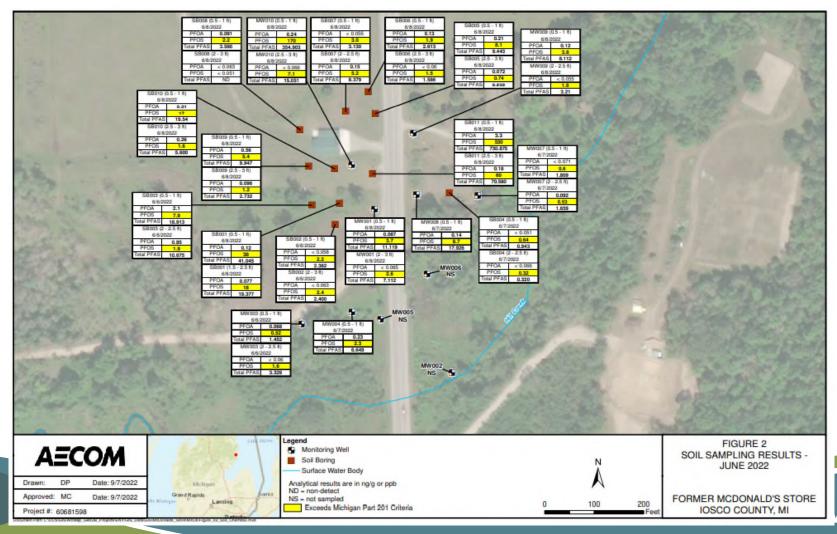

Oscoda Township & Au Sable Township EGLE Groundwater Monitoring Well Locations

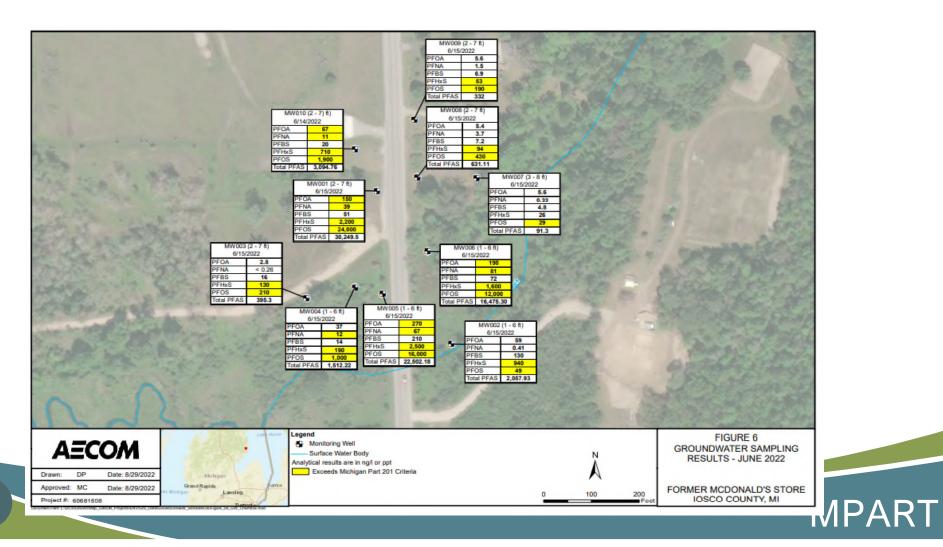

Colbath Road Area

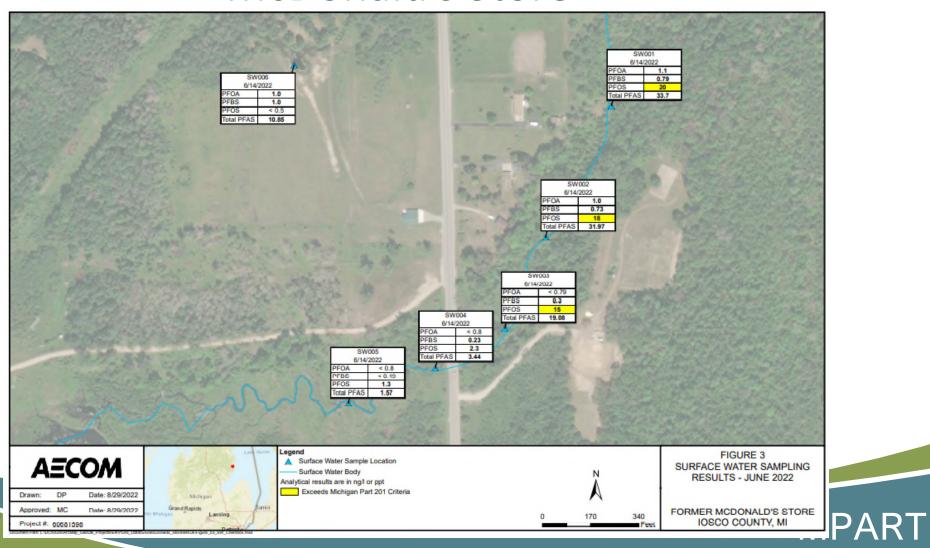

Cedar Lake Area

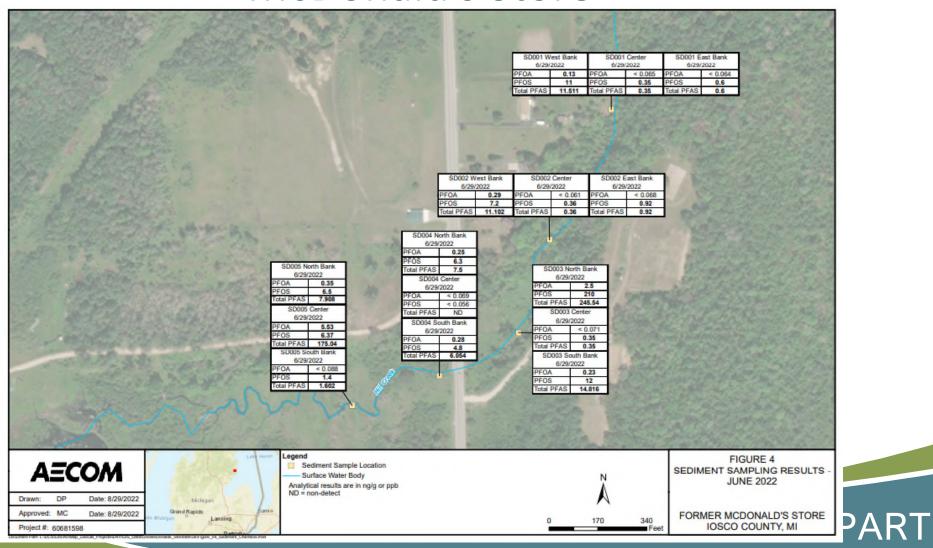

Loud Drive Area

River Road Oscoda Schools Area




Au Sable Township




Au Sable Township – Smith Street Area

PFAS and Health

Puneet Vij | 517-582-4104 | vijp@michigan.gov
Toxicologist, ATSDR Unit
Toxicology and Assessment Section
Division of Environmental Health

Overview

- Health effects associated with PFAS
- Private Residential Well Resampling Effort
 - –Round 3 (Ongoing)
- Fish sampling updates

Associated Human Health Outcomes PFOA and/or PFOS

- Reduced fertility
- High blood pressure or pre-eclampsia in pregnant women
- Small decreases in infant birth weight
- Higher cholesterol
 - Especially total cholesterol and LDL cholesterol

Associated Human Health Outcomes PFOA and/or PFOS, continued

- Thyroid disease
- Liver damage
- Decreased immune system response to vaccines
- Developing certain types of cancer
 - In particular, kidney and testicular cancers*

* PFOA only

Round 3: Residential Private Wells Resampling Effort Summary

	MDHHS Resampling Effort (Round 3)		
Sampling Season	Summer 2022		
# Homes Sampled	225		
# Non-Detect	44 out of 70		
# Detect below all CVs	23 out of 70		
# Detect at or above one or more CV	3 out of 70		
Range Total PFAS	2.1 to 143.9 ppt		

Avoid Foam

- Foam may have high amounts of PFAS
- Rinse off foam after contact

- Do not allow pets to drink foamy water
- Rinse pets with fresh water after contact with foam

Additional Resources

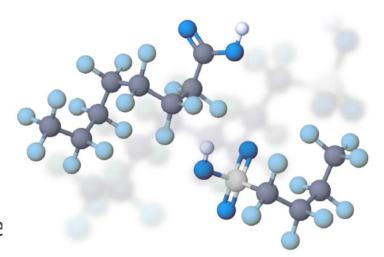
- Michigan PFAS Action Response Team (MPART) www.michigan.gov/pfasresponse
- More info about ESF guidelines
 <u>www.michigan.gov/EatSafeFish</u>
- Agency for Toxic Substances and Disease Registry (ATSDR) https://www.atsdr.cdc.gov/pfas/

Derivation of Water Quality Values for Perfluorooctanoic acid (PFOA) and Perfluorobutane sulfonic acid (PFBS)

Kevin Cox, MPH JD

Toxicologist Manager
Water Resources Division
517- 388 - 6961 | CoxK12@michigan.gov

PFOA and PFBS Water Quality Values


MI EGLE has established a new Water Quality Value (WQV) for perfluorobutane sulfonic acid (PFBS) and has revised the existing WQV for perfluorooctanoic acid (PFOA)

PFAS	HNV* (drinking) (ng/L)	HNV* (nondrinking) (ng/L)	FCV* (ng/L)	AMV* (ng/L)	FAV* (ng/L)
PFOA (Previous)	420	12,000	880,000	7,700,000	15,000,000
PFOA (Revised)	<mark>66</mark>	<mark>170</mark>	880,000	7,700,000	15,000,000
PFBS (New)	<mark>8,300</mark>	<mark>670,000</mark>	<mark>24,000,0000</mark>	120,000,000	240,000,000

^{*}Human Noncancer Value (HNV), Final Chronic Value (FCV), Aquatic Maximum Value (AMV), Final Acute Value (FAV)

What are "Rule 57" Water Quality Values?

- Water Quality Values (WQVs) are promulgated under Michigan Rule 323.1057 within Part 4: Water Quality Standards
 - Narrative procedure for calculating WQVs to protect humans, wildlife, and aquatic life
 - WQVs are applicable to the Great Lakes, the connecting waters, and all other surface waters of the state
 - Unless site-specific values have been derived

How are "Rule 57" WQVs Used?

- Part 4 Water Quality Standards require that all Designated Uses of receiving water must be protected:
 - Agriculture, navigation, industrial water supply, public water supply at point of water intake, warmwater or coldwater fish, other indigenous aquatic life and wildlife, fish consumption, partial body contact water recreation and total body contact water recreation.
- Follow Michigan Part 8 Rules, WQVs are used to help determine limits for discharging pollutants from water treatment plants, industrial and commercial facilities, and other regulated entities

What are "Rule 57" values?

https://www.michigan.gov/egle/about/organization/water-resources/assessment-michigan-waters/rule-57-water-quality-values

Aquatic Life Values

Final Acute Value (FAV)
Final Chronic Value (FCV)

Aquatic Maximum Value (AMV)

Wildlife Values

Wildlife Value (WV)

Human Health Values

Human Noncancer Value (HNV)

- -Drinking Water
- -Non-Drinking Water

Human Cancer Value (HCV)

- -Drinking Water
- -Non-Drinking Water

Aquatic Toxicity Values

Final Chronic Value (FCV):

The level of a substance or a mixture of substances that does not allow injurious or debilitating effects in an aquatic organism resulting from repeated long-term exposure to a substance relative to the organism's lifespan

Final Acute Value (FAV):

The level of a chemical or mixture of chemicals that does not allow the mortality or other specified response of aquatic organisms to exceed 50% when exposed for 96 hours, except where a shorter time period is appropriate for certain species.

Aquatic Maximum Value (AMV):

The highest concentration of a material in the ambient water column to which an aquatic community can be exposed briefly without resulting in unacceptable effects. Set equal to one half of the FAV.

Human Health Values

Human Noncancer Value (HNV):

The maximum ambient water concentration at which adverse noncancer effects are not likely to occur from lifetime exposure through drinking water, fish, and water-related recreation activities

Human Cancer Value (HCV):

The maximum ambient water concentration at which a lifetime of exposure from either drinking water, fish, and water-related recreation activities will represent an extra risk of contracting cancer of 1 in 100,000

Drinking Water or Non-Drinking Water Values?

"Drinking Water" HNVs and HCVs are relevant for surface waters designated and protected as public water supply sources (The Great Lakes and Connecting Channels and other surface waters within 3000 feet of a point of water intake). Calculated using an assumed water consumption of 2 liters per day.

"Non-Drinking" values are calculated using an assumed incidental ingestion of 0.01 liters per day

Human Non-Cancer Value vs. Human Cancer Value

HNV =
$$\frac{ADE X BW X RSC}{WC + [(FC_{TL3} X BAF_3) + (FC_{TL4} X BAF_4)]}$$

ADE = acceptable daily exposure (mg/kg-day) from key study

$$HCV = \frac{RAD X BW}{WC + [(FC_{TL3} X BAF_3) + (FC_{TL4} X BAF_4)]}$$

RAD = risk associated dose (mg/kg-day) set at excess cancer risk of 1 in 100,000

Acceptable Daily Exposure

$$ADE(\frac{mg}{kg*day}) = \frac{Key\ Study\ NOAEL\ (or\ LOAEL)}{\sum\ Uncertainty\ Factor\ (UF)}$$

$$UF_{A} = \text{Across species}\ (1\ \text{to}\ 10)$$

$$UF_{H} = \text{Sensitive humans}\ (1\ \text{to}\ 10)$$

$$UF_{S} = \text{Subchronic to chronic}\ (1\ \text{to}\ 10)$$

$$UF_{A} = \text{Acute to subchronic}\ (1\ \text{to}\ 3)$$

$$UF_{L} = \text{LOAEL to}\ NOAEL\ (1\ \text{to}\ 10)$$

$$UF_{D} = \text{Database}\ (1\ \text{to}\ 10)$$

HNV Derivation: Consumption

WC +
$$[(FC_{TL3} X BAF_3) + (FC_{TL4} X BAF_4)]$$

BAF = Human Health Bioaccumulation Factor for edible portion (L/kg)

- Compound specific information is utilized
- Is the compound lipophilic (compound concentration can be related to the amount of fat in fish)?
- Does the compound bio-magnify (concentrations within fish increase up the food chain)?

Guidance and preferred approaches for BAF development are promulgated within Rule 57

Revised PFOA WQV

	Prior WQV (2011)	Revised WQV (2022)
Human Health Water Quality Values	420 ng/L (drinking) 12,000 ng/L (non-drinking)	66 ng/L (drinking) 170 ng/L (non-drinking)
Key Study	Butenhoff et al. (2002), 26-week oral capsule study in cynomolgus monkeys	Co-key studies, Onishchenko et al. (2011) and Koskela et al. (2016), developmental toxicity studies in C57Bl/6 mice
Critical Effect	Increased absolute liver weights reported at LOAEL of 3 mg/kg-day	Skeletal alteration (bone morphology and bone cell differentiation) in the femurs and tibias at LOAEL of 0.3 mg/kg-day
Toxicokinetic Parameters	Monkey body burden at LOAEL = 90.9 mg/kg Serum $T_{1/2}$ = 1378 days (Olsen et al., 2007) Human Equivalent LOAEL = 0.046	V_d = 0.17 L/kg (Thompson et al., 2010) Serum $T_{1/2}$ = 840 days (Bartell et al., 2010) Human Equivalent LOAEL = 0.00116 mg/kg-day
Uncertainty Factors	3000x (3x Interspecies, 10x Intraspecies, 10x LOAEL, 10x Duration)	300x (3x Interspecies, 10x Intraspecies, 3x LOAEL, 3x Database)
ADE	0.0000153 mg/kg-day	0.0000039 mg/kg-day
BAF Values	4 (based on published data in Rainbow Trout)	85 (based on Michigan FCMP data)

Revised PFOA WQV

Key Study / Critical Effect:

Onishchenko et al. (2011) and Koskela et al. (2016) developmental toxicity studies and the critical effect used in the revised WQV are the same as identified in the Michigan Drinking Water MCL.

Toxicokinetics:

2022 WQV approach adopted same toxicokinetic adjustment as identified in the Michigan Drinking Water MCL based on steady-state serum concentrations resulting in more conservative adjustment factor

Bioaccumulation Factors:

Prior WQV in 2011 relied on a BAF value of 4 identified in rainbow trout (Martin et al., 2003) as well as supporting field data from Minnesota Pollution Control Agency. Revised value used field data from Michigan FCMP using multiple trophic 3 and trophic 4 fish species.

PFBS WQV

	New WQV (2022)
Human Health Water Quality Values	8,337 ng/L (drinking) 672,000 ng/L (non-drinking)
Key Study	Feng et al. (2017), developmental study in ICR mice exposed on gestation days 1 through 20
Critical Effect	Decreased serum total thyroxine (T ₄) in newborn mice with a resulting HED-BMDL _{0.5SD} of 0.093 mg/kg-day
Toxicokinetic Parameters	Human equivalent dose adjustment based on serum half-life (mouse $T_{1/2} = 4.5$ hr, human $T_{1/2} = 1,050$ hr)
Uncertainty Factors	300x (3x Interspecies, 10x Intraspecies, 10x Database)
ADE	0.0003 mg/kg-day
BAF Value	1 (based on published data and lack of monitoring detections)

Summary

Revised PFOA WQV

- The PFOA WQV have been updated to incorporate more recent toxicity, pharmacokinetic, and environmental fate data
- The key study and critical effect selected mirror those utilized in the development of the Michigan drinking water MCL for PFOA
- Revised BAF were developed based on FCMP data collected in multiple species
- Aquatic Toxicity Values did not change from 2011 assessment

New PFBS WQV

- Human health WQVs based on same key study and critical effect as Michigan drinking water
 MCL value for PFBS
- Updated point of departure reflective of the final U.S. EPA Human Health Toxicity Values published in 2021
- Tier II Aquatic Toxicity Values developed based on limited available data

PFAS Water Quality Values

The majority of surface water samples collected are compared to the Human Non-Cancer Values (HNV), non-drinking water:

PFOA	170 ppt
PFOS	12 ppt
PFBS	670,000 ppt

If surface water samples are collected directly from a waterbody that is also used as a source for drinking water, then surface water samples are compared to the Human Non-Cancer Values (HNV), drinking water:

PFOA	66 ppt
PFOS	11 ppt
PFBS	8,300 ppt

(ppt = parts per trillion)

Questions?

Introduction

Kevin Cox, Toxicology Manager for the Water Toxics Unit with the Surface Water Assessment Section (SWAS)

- Started at EGLE in June 2022
- Prior role of Principal Research Toxicologist at NSF International, which focused on chemical risk and hazard assessment service offerings in support of internal and external clients
- Authored numerous chemical risk assessments evaluating exposure from unregulated drinking water contaminants, dietary supplement ingredients, toy product materials, and pool and spa treatment chemicals
- Part of the Michigan PFAS Action Response Team Science
 Advisory Workgroup tasked with reviewing existing and proposed health-based drinking water standards for PFAS for the State of Michigan

Comments, Questions, and Answers

MPART

How to ask a question in Zoom

Submit your questions using the "Q/A" box in at the bottom of your screen.

Click the "hand" icon at the bottom of your screen.

Type #2 to raise your hand.

Michigan.gov/PFASResponse website

Michigan releases 2022 Eat Safe Fish Guides to help residents learn about and plan for local fish consumption

Updates include a "Do Not Eat" fish advisory for bluegill and sunfish in parts of the Rouge River and lifting of a "Do Not Eat" fish advisory for parts of the Huron River

These guides can help Michiganders plan their fish consumption to minimize exposure to chemicals that can build up in fish, while still getting all the health benefits of eating fish.

The regional guides provide guidelines for eating locally caught fish. Guidelines are based on levels of chemicals found in the portions of fish that people eat – typically the filets.

Read the full press release

Michigan.gov/EatSafeFish

MPART PFAS Geographic Information System

This app features several datasets as part of Michigan PFAS Action Response Tearn (MPART)'s efforts:

- 1. PFAS Sites (official list of PFAS sites in Michigan)
- PFAS Surface Water Sampling (PFAS concentrations in surface water samples collected by EGLE)
- 3. Statewide Testing Initiative of Public Water Supplies Hexbins and Results Table (PFAS

MICHIGAN PFAS ACTION RESPONSE TEAM (MPART)

Michigan.gov/PFASResponse

Thank you!

We will post a recording and closed-captioned copy of tonight's conversation on our website in the next few days.