

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

The Widdicomb Building 601 Fifth Street NW Suite 102 Grand Rapids, MI 49504 T: 616.956.6123 F: 616.288.3327 www.rosewestra.com

Sent Via Email: hendershotta@michigan.gov

November 30, 2018 File: 16.0062677.81

Ms. Abigail Hendershott
Michigan Department of Environmental Quality
5th Floor – Unit 10
350 Ottawa Avenue NE
Grand Rapids, MI 49503

Re: Wolverine World Wide, Inc.

Lamoreaux Farms Source Investigation Summary Report

Dear Ms. Hendershott:

Rose & Westra, a Division of GZA GeoEnvironmental, Inc. (R&W/GZA) is presenting this Lamoreaux Farms Soil Investigation Report (Report) on behalf of Wolverine World Wide, Inc. (Wolverine). This Report pertains to the property located at 2105 10 Mile Road, Rockford, Michigan ("Site").

The MDEQ reported that Wolverine waste may have been disposed at a gravel pit near the Site. Based on our evaluation of historical aerial photographs, a portion of a gravel pit was previously located on the northern portion of the Site. Figure 1 presents a Site Plan which includes the overlay of the historical gravel pit on a current aerial photograph.

The aerial photographs suggest disturbances in the gravel pit area ceased by 1965. A 1953 aerial photograph shows the delineation of the gravel pit north of the Site, in the area of the Lady Lauren cul-de-sac of the Wellington Ridge Development. The 1955 aerial photograph shows the gravel pit extended to the south onto the Site as well as roads providing access to the gravel pit from the south (traversing the Site). The 1965 aerial photograph shows significant vegetative growth in the former gravel pit area (including both the northern area shown on the 1953 aerial photograph and the southern expansion shown on the 1955 aerial photograph). Accordingly, it appears that if waste was disposed of on the Site, it would have ceased by the early 1960s.

Soil Investigation

R&W/GZA utilized a triangular grid approach to the soil investigation shown on Figure 2. The grid points were located approximately 60 feet apart. The 60-ft grid interval was selected based on the EPA statistical model and reflects a 95% confidence level of finding a potential source if it is present.

Borings were advanced using direct push methods to approximately 20-feet below ground surface (bgs). This depth was selected based on our experience with the identified waste depths at the former House Street Disposal site. The soil was logged as well as screened at 2-foot intervals using a photoionization detector (PID) and XRF. For borings where no visual, XRF, or PID screening indicated the likely presence of waste, two samples were collected for laboratory analysis. One sample was collected from a random depth within the top 10 feet and submitted for full laboratory analysis (as listed below). The second

sample was collected from a random interval in the lower 10 ft of the boring and submitted for PFAS analysis only.

The samples were analyzed for the following analytes in accordance with both the Quality Assurance Project Plan (QAPP) developed by R&W/GZA for the EPA and the PFAS QAPP developed for MDEQ:

- Volatile organic compounds (VOCs);
- Semi-volatile organic compounds (SVOCs);
- Metals Al, Sb, As, Ba, Be, B, Cd, Cr Total, Cr VI, Co, Cu, Fe, Pb, Mg, Hg, Mo, Ni, Se, Ag, Na, Ti, Tl, V, and Zn (TAL metals);
- Acetate;
- Formate;
- Total ammonia, nitrate, and nitrite;
- · Chloride;
- Cyanide (total and available);
- Total phosphorus;
- Sulfate and sulfide.
- Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by DOD QSM v1.1 (PFAS).

Excess soil was containerized in 55-gallon open-top steel drums and temporarily stored at the Tannery property. Containerized soil will be characterized and sampled. Once analytical results are received, soil will be handled appropriately based on contents.

Investigation Results

Tables 1 through 6 summarize the laboratory data. VOCs and SVOCs were not measured at concentrations greater than Michigan's Part 201 generic residential criteria. Figures 2A, 2B, and 2C depict soil results. Soil boring logs are included in Attachment 1.

There were no constituents detected at concentrations greater than the MDEQ Direct Contact Criteria or Particulate Soil Inhalation Criteria. The following metals were detected at the referenced locations at concentrations greater than the Michigan's generic residential drinking water protection criteria (DWPC):

- Aluminum (SB-01, SB-06, SB-13, SB-15, SB-21, SB-22, SB-23, SB-24, SB-25, SB-27, SB-28, SB-29);
- Arsenic (SB-27);
- Boron (SB-15);
- Cobalt (SB-23);
- Iron (SB-15, SB-23, SB-29);

- Magnesium (SB-02, SB-03, SB-04, SB-07, SB-08, SB-09, SB-10, SB-11, SB-12, SB-13, SB-16, SB-26, SB-27);
 and,
- Molybdenum (SB-26).

The following metals were detected at the referenced locations at concentrations greater than the Michigan's generic groundwater/surface water interface protection criteria (GSIPC):

- Cobalt (SB-23);
- Selenium (SB-23, SB-29);
- Molybdenum (SB-26); and,
- Arsenic (SB-27).

Phosphorus (all locations) and total cyanide (SB-13) were the only general chemistry compounds detected greater than the GSIPC. Michigan does not have default background concentrations for phosphorus, but in R&W/GZA's experience, it is often found at concentrations ranging in several hundred mg/kg in active and former farm fields.

PFOS concentrations were greater than the GSIP at one location, SB-04 from 1-3 feet bgs.

Monitoring wells located near Lamoreaux Farms were sampled earlier in 2018 for the same constituents. Only aluminum and iron were detected at concentrations greater than the generic Residential Drinking Water Criteria in any of the monitoring wells. The higher concentrations of aluminum in groundwater do not correlate with the higher concentrations of PFOS in groundwater. There were no detections greater than the Groundwater Surface Water Interface Criteria with the exception of PFOS. Tables 7 and 8 present metals and PFAS data for monitoring wells near Lamoreaux Farms.

There are no concentrations greater than direct contact or soil inhalation criteria. Drinking water exposure is the primary potential concern. Residents in the Wellington Ridge neighborhood, located closest to the Lamoreaux Farms investigation area, have all been offered bottled water and either a whole house filter or a point of use filter for their home.

Sincerely,

Rose & Westra, a Division of GZA GeoEnvironmental, Inc.

Leslie M. Nelson, P.E.

Senior Project Manager

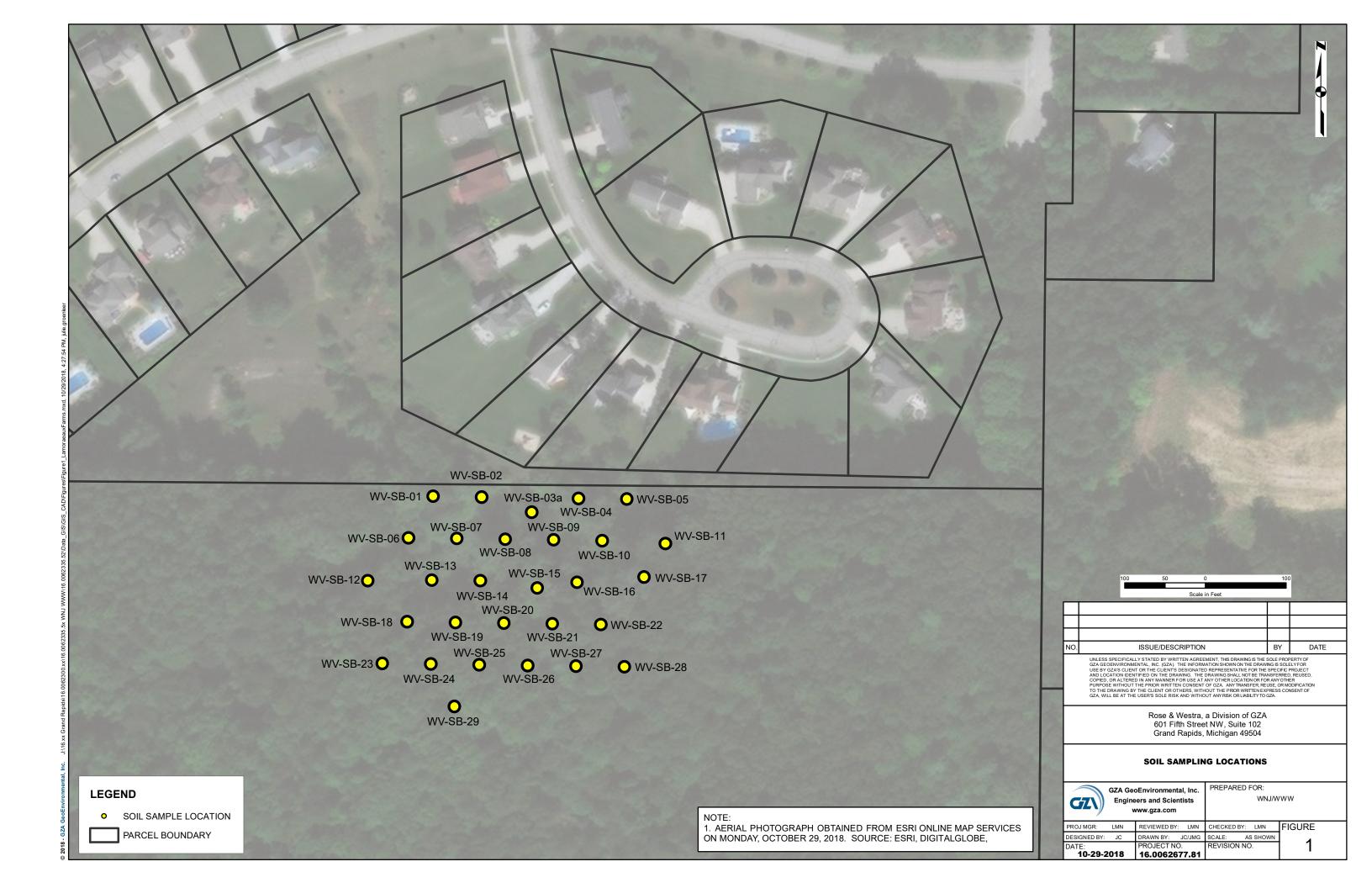
Jeslie Holes

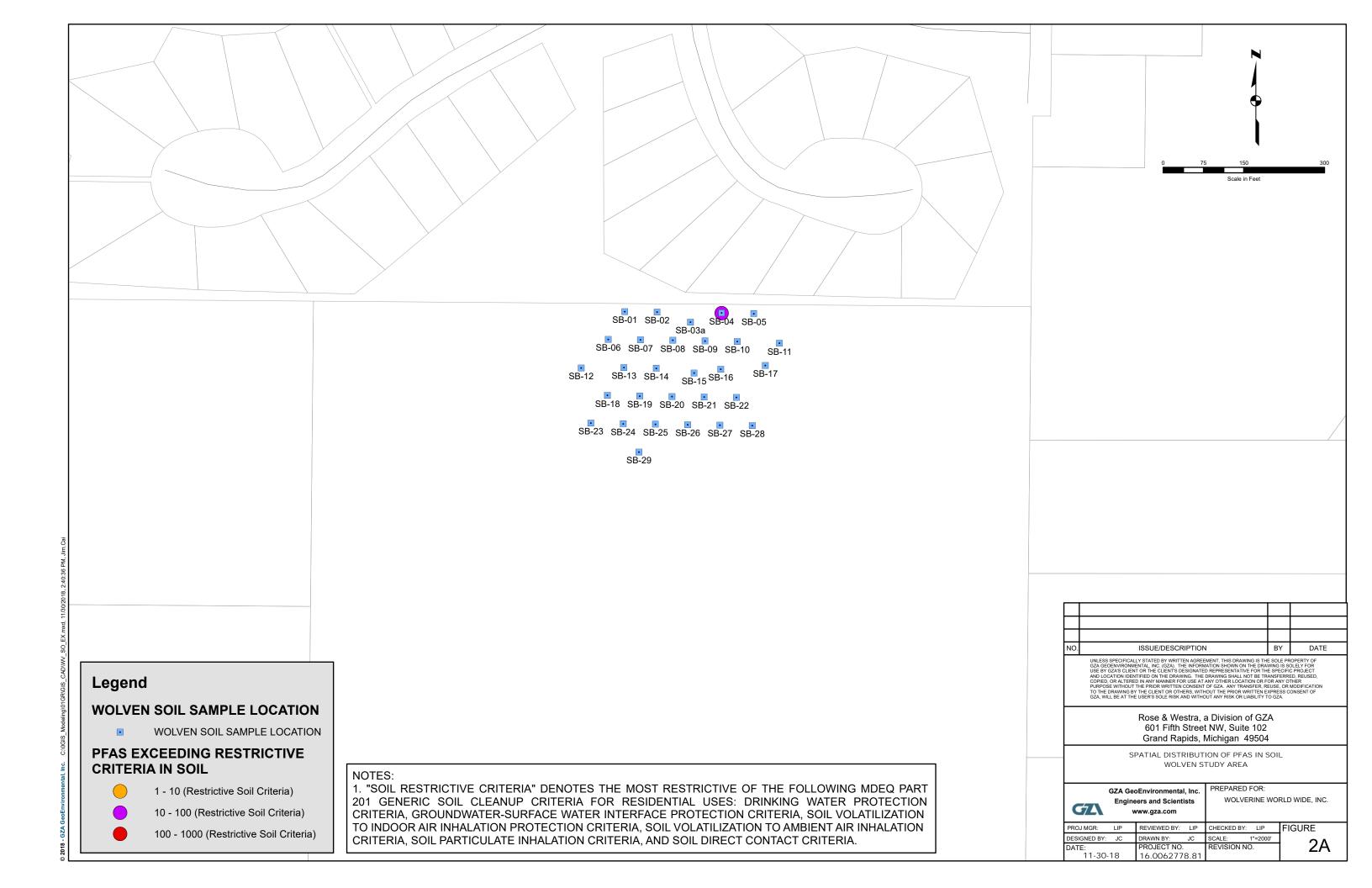
Mark Westra

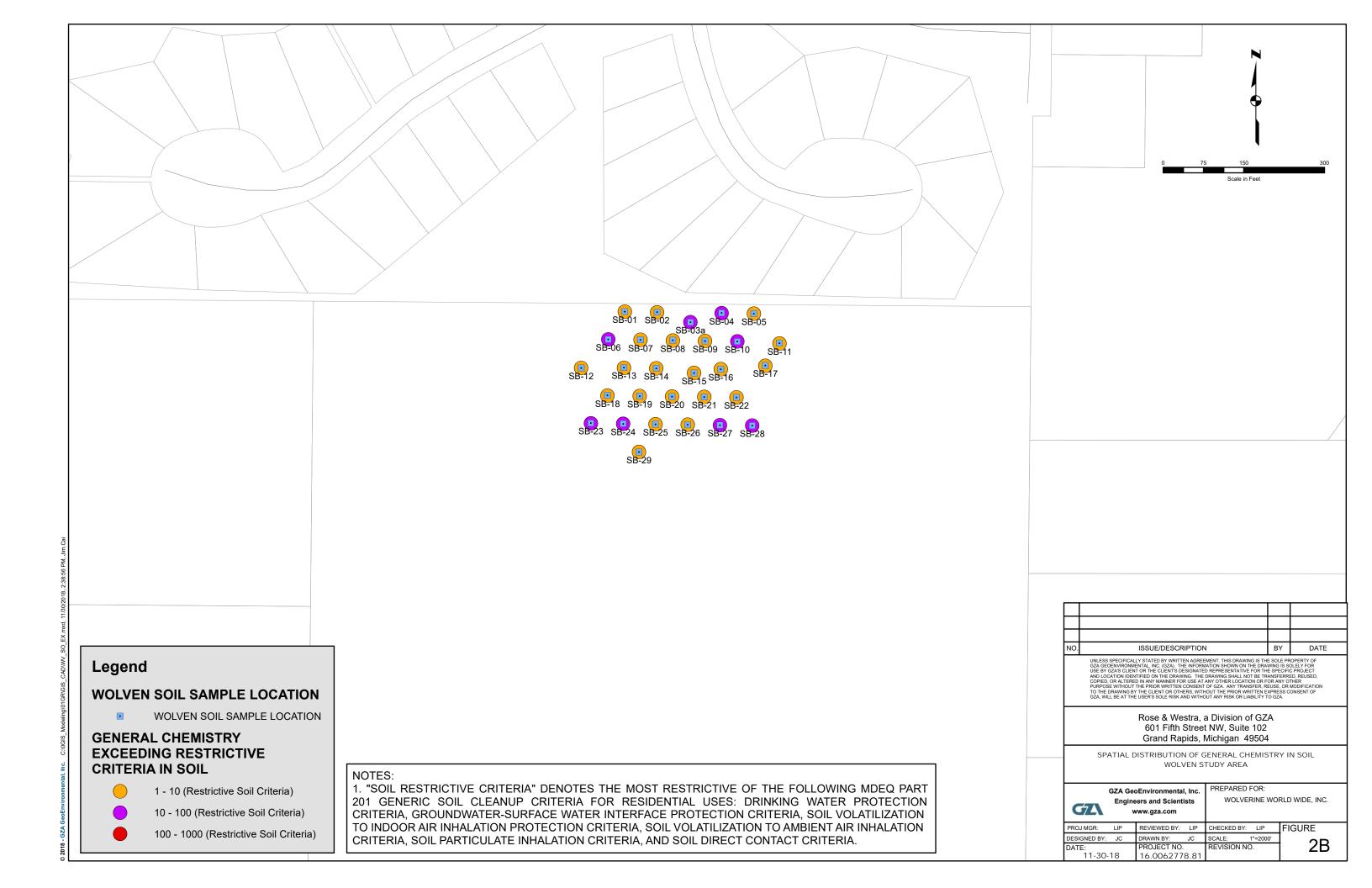
Associate Principal

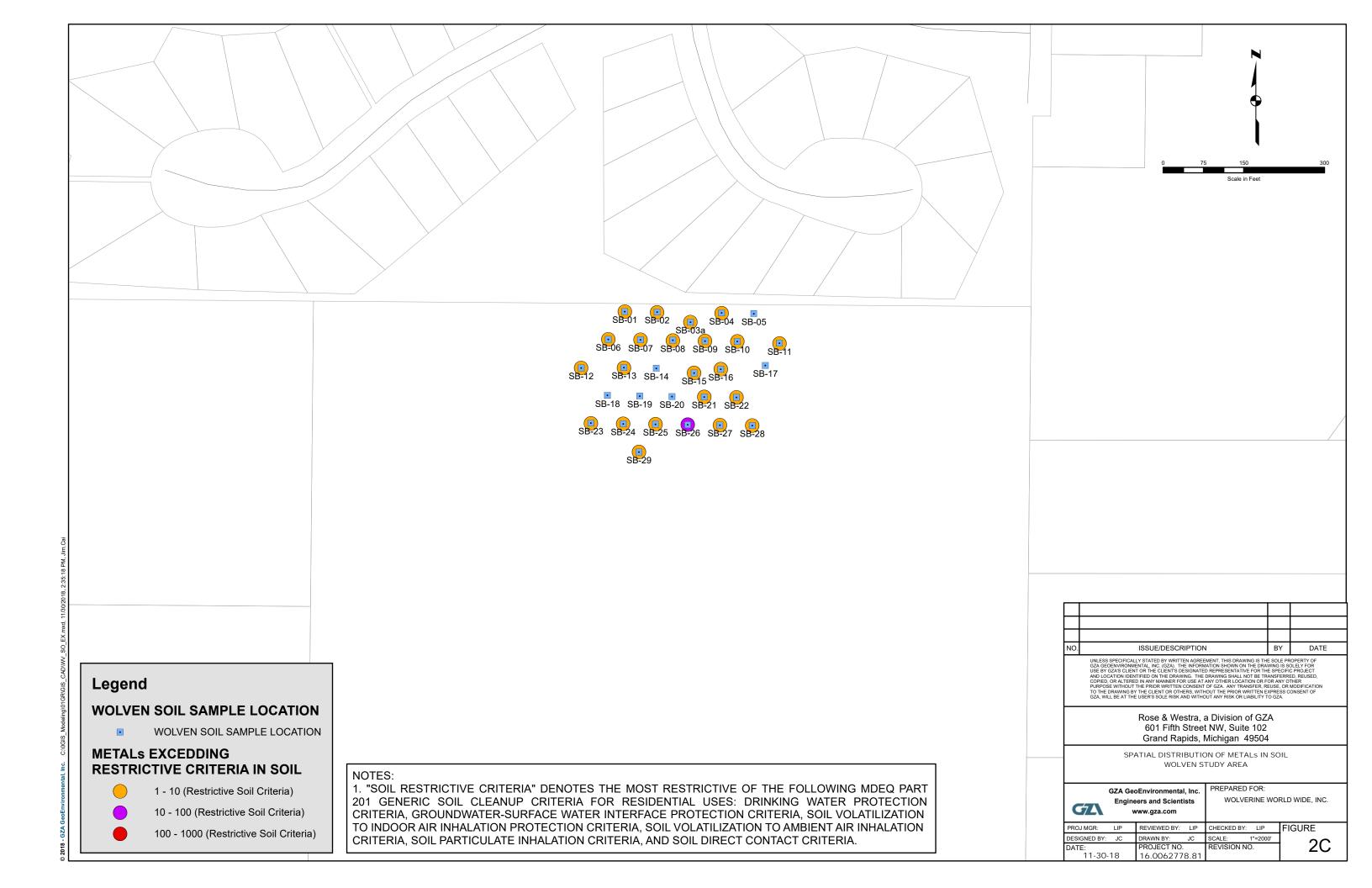
Attachments: Figures

Tables


Attachment 1: Soil Boring Logs


Imn/maw


c/enc: Mr. Dave Latchana – Wolverine World Wide, Inc. via email David.Latchana@wwwinc.com


Mr. John V. Byl – Warner Norcross & Judd LLP via email jbyl@wnj.com

j:\62000\626xx\62677.81 - wolven-jewell investigation\lamoreaux farms property\2018 report\62677.81 lamoreaux farms investigation report_f.doc

Sample Location	Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-01	WV-SB-02	WV-SB-03a	WV-SB-04	WV-SB-04	WV-SB-05	WV-SB-06	WV-SB-07	WV-SB-08	WV-SB-09	WV-SB-10	WV-SB-11
Sample Name	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-01 (7-9)	WV-SB-02 (7-9)	WV-SB-03a (2-4)	WV-SB-04 (1-3)	WV-5B-04 (1-3)	WV-SB-05 (5-7)	WV-SB-06 (2-4)	WV-SB-07 (7-9)	WV-SB-08 (6-8)	WV-SB-09 (7-9)	WV-SB-10 (6-8)	WV-SB-11 (8-10)
Depth Interval (Feet below ground surface)	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	7 - 9	7 - 9	2 - 4	1 - 3	1 - 3	5 - 7	2 - 4	7 - 9	6 - 8	7 - 9	6 - 8	8 - 10
Laboratory Sample ID(s)	Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI19030-006	TI19030-001	TI19030-008	TI19030-010	TI19030-011	TI19030-013	TI25013-001	TI19030-005	TI19030-003	TI20083-001	TI20083-003	TI26013-001
Sample Date		Interface		Inhalation			9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/24/2018	9/18/2018	9/18/2018	9/19/2018	9/19/2018	9/25/2018
Parameter (μg/kg)																		
Acetone	15,000	34,000	290,000,000 (C)	130,000,000	390,000,000,000	23,000,000	<540	<530	<510	<520	<520	<550	120 [J]	<540	<510	110 [J]	150 [J]	<560
Benzene	100	240 (X)	1,600	13,000	380,000,000	180,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Bromodichloromethane	1,600 (W)	ID	1,200	9,100	84,000,000	110,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Bromoform	1,600 (W)	ID	150,000	900,000	2,800,000,000	820,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
2-Butanone (MEK)	260,000	44,000	54,000,000 (C)	29,000,000	67,000,000,000	120,000,000 (C, DD)	<540	<530	<510	<520	<520	<550	<570	<540	<510	<520	<580	<560
Bromomethane (Methyl bromide)	200	100	860	11,000	330,000,000	320,000	<110	<110	<100	<100	<100	<110	<110	<110	<100	<100	<120	<110
Carbon disulfide	16,000	ID	76,000.00	1,300,000	47,000,000,000	7,200,000 (C, DD)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Carbon tetrachloride	100	94 (X)	190	3,500	130,000,000	96,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Chlorobenzene	2,000	500	120,000	770,000	4,700,000,000	4300000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Chloroethane	8,600	3,400 (X)	2,900,000 (C)	30,000,000	670,000,000,000	2600000 (C)	<110	<110	<100	<100	<100	<110	<110	<110	<100	<100	<120	<110
Chloroform	1,600 (W)	7,000	7,200	45,000	1,300,000,000	1,200,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Chloromethane (Methyl chloride)	5,200	7,000 ID	2,300	40,000	4,900,000,000	1,600,000 (C)	<54 <54	<53 <53	<51	<52 <52	<52 <52	<55	<57	<54	<51	<52 <52	<58	<56
, , ,	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			, , , ,	<54 <54			<52 <52					1	-		
Cyclohexane	NCL 10 (M)	NCL	NCL 330	NCL 360	NCL F60,000	NCL	.	<53	<51		<52	<55	<57	<54	<51	<52	<58	<56
1,2-Dibromo-3-chloropropane (DBCP)	10 (M)	ID	220	260	560,000	4400 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Dibromochloromethane	1,600 (W)	ID ID	3,900	24,000	130,000,000	110,000.00	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,2-Dibromoethane (EDB)	20 (M)	20 (X)	670	1,700	14,000,000	92	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,2-Dichlorobenzene	14,000	280	11,000,000 (C)	39,000,000	100,000,000,000	19,000,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,3-Dichlorobenzene	170	680	26,000	79,000	200,000,000	200,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,4-Dichlorobenzene	1,700	360	19,000	77,000	450,000,000	400,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Dichlorodifluoromethane	95,000	ID	900,000	53,000,000	3,300,000,000,000	52,000,000 (C)	<110	<110	<100	<100	<100	<110	<110	<110	<100	<100	<120	<110
1,1-Dichloroethane	18,000	15,000	230,000	2,100,000	33,000,000,000	27,000,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,2-Dichloroethane	100	120 (X)	2,100	6,200	120,000,000	91,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,1-Dichloroethene	140	2,600	62	1,100	62,000,000	200,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
cis-1,2-Dichloroethene	1,400	12,000	22,000	180,000	2,300,000,000	2,500,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
trans-1,2-Dichloroethene	2,000	9,400 (X)	23,000	280,000	4,700,000,000	3,800,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,2-Dichloropropane	100	180 (X)	4,000	25,000	270,000,000	140,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
cis-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
trans-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,3-Dichloropropene (Calculated: cis + trans)	1,500	360	87,000	720,000	10,000,000,000	22,000,000 (C)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	170	100 (X)	1,000	18,000	780,000,000	10,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
2-Hexanone	20,000	ID	990,000	1,100,000	2,700,000,000	32,000,000 (C)	<540	<530	<510	<520	<520	<550	<570	<540	<510	<520	<580	<560
Isopropylbenzene	91,000	3,200	400,000 (C)	1,700,000	5,800,000,000	25,000,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Methyl acetate	NCL	NCL	NCL	NCL	NCL	NCL	<54	<53	29 [J]	28 [J]	<52	<55	<57	<54	27 [J]	<52	<58	<56
Methyl tertiary butyl ether (MTBE)	800	2,000 (X)	9,900,000 (C)	25,000,000	200,000,000,000	1,500,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
4-Methyl-2-pentanone	36,000	ID	37,000,000 (C)	45,000,000	140,000,000,000	56,000,000 (C)	<540	<530	<510	<520	<520	<550	<570	<540	<510	<520	<580	<560
Methylcyclohexane	NCL	NCL	NCL NCL	NCL	NCL	NCL	<270	<270	<250	<260	<260	<270	<290	<270	<250	<260	<290	<280
Methylene chloride	100	940 (X)	45,000	210,000	6,600,000,000	1,300,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Styrene	2,700	530 (X)	250,000	970,000	5,500,000,000	400,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,1,2,2-Tetrachloroethane	170	64 (X)	4,300	10,000	54,000,000	53,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Tetrachloroethene	100	220 (X)	11,000	170,000	2,700,000,000	200,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Toluene	16,000	5,400	330,000 (C)	2,800,000	27,000,000,000	50,000,000 (C)	<54	<53 <53	<51	<52	<52 <52	<55	<57	<54	<51	<52 <52	<58	<56
1,1,2-Trichloro-1,2,2-Trifluoroethane	9,000,000 (C)	1,700	5,100,000 (C)	180,000,000	5,100,000,000,000	1,000,000,000 (C,D)	<54 <54	<53 <53	<51 <51	<52 <52	<52 <52	<55 <55	<57	<54 <54	<51 <51	<52 <52	<58 <58	<56 <56
, ,		· · · · · · · · · · · · · · · · · · ·	<u> </u>			, , , , , ,									1	-		
1,2,4-Trichlorobenzene	4,200	4700 (X)	9,600,000 (C)	28,000,000	25,000,000,000	990,000 (DD)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,1,1-Trichloroethane	4,000	1,800	250,000	3,800,000	67,000,000,000	500,000,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
1,1,2-Trichloroethane	100	240 (X)	4,600	17,000	190,000,000	180,000	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Trichloroethene	100	580 (X)	1,000	11,000	130,000,000	110,000 (DD)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Trichlorofluoromethane	52,000	NA	2,800,000 (C)	92,000,000	3,800,000,000,000	79,000,000 (C)	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Vinyl chloride	40	40 (X)	270	4,200	350,000,000	3,800	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Xylenes (total)	5,600	980	6,300,000 (C)	46,000,000	290,000,000,000	410,000,000 (C)	<110	<110	<100	<100	<100	<110	<110	<110	<100	<100	<120	<110
m+p - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
o - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	<54	<53	<51	<52	<52	<55	<57	<54	<51	<52	<58	<56
Trihalomethanes (Calculation:	4.005.000																	
Bromodichloromentane + Bromoform + Chloroform + Dibromochloromethane)	1,600 (W)	NCL	NCL	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
chiororomi i pipromochioromethalle)	1		1		1	1	I	İ.		l .	1	1	1	1	1	1	1	1

	1	ı	I		1	ı	I	1				1	T			1	I	
Sample Location	Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-12	WV-SB-13	WV-SB-14	WV-SB-14	WV-SB-15	WV-SB-16	WV-SB-17	WV-SB-18	WV-SB-19	WV-SB-20	WV-SB-21	WV-SB-22
Sample Name	Residential Soil Cleanup Criteria –	Cleanup Criteria –	Residential Soil Cleanup Criteria –	Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil	WV-SB-12 (7-9)	WV-SB-13 (3-5)	WV-SB-14 (8-10)	WV-5B-14 (8-10)	WV-SB-15 (1-3)	WV-SB-16 (4-6)	WV-SB-17 (1-3)	WV-SB-18 (1-3)	WV-SB-19 (1-3)	WV-SB-20 (6-8)	WV-SB-21 (7-9)	WV-SB-22 (0-2)
Depth Interval (Feet below ground surface)	Drinking Water	Groundwater	Soil Volatilization to	Infinite Source	Particulate Soil	Cleanup Criteria –	7 - 9	3 - 5	8 - 10	8 - 10	1 - 3	4 - 6	1 - 3	1 - 3	1 - 3	6 - 8	7 - 9	0 - 2
Laboratory Sample ID(s)	Protection	Surface Water Interface	Indoor Air Inhalation	Volatile Soil Inhalation	Inhalation	Direct Contact	TI20083-014	TI25013-002	TI20083-007	TI20083-008	TI20083-010	TI20083-005	TI25013-015	TI25013-003	TI25013-005	TI25013-007	TI25013-010	TI25013-013
Sample Date		interrace		IIIIIaiatioii			9/19/2018	9/24/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018
Parameter (μg/kg)																		
Acetone	15,000	34,000	290,000,000 (C)	130,000,000	390,000,000,000	23,000,000	<510	<450	<580	<610	<530	<540	110 [J]	130 [J]	<580	130 [J]	120 [J]	<550
Benzene	100	240 (X)	1,600	13,000	380,000,000	180,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Bromodichloromethane	1,600 (W)	ID	1,200	9,100	84,000,000	110,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Bromoform	1,600 (W)	ID	150,000	900,000	2,800,000,000	820,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
2-Butanone (MEK)	260,000	44,000	54,000,000 (C)	29,000,000	67,000,000,000	120,000,000 (C, DD)	<510	<450	<580	<610	<530	<540	<520	<570	<580	<590	<570	<550
Bromomethane (Methyl bromide)	200	100	860	11,000	330,000,000	320,000	<100	<91	<120	<120	<110	<110	<100	<110	<120	<120	<110	<110
Carbon disulfide	16,000	ID	76,000.00	1,300,000	47,000,000,000	7,200,000 (C, DD)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Carbon tetrachloride	100	94 (X)	190	3,500	130,000,000	96,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Chlorobenzene	2,000	500	120,000	770,000	4,700,000,000	4300000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Chloroethane	8,600	3,400 (X)	2,900,000 (C)	30,000,000	670,000,000,000	2600000 (C)	<100	<91	<120	<120	<110	<110	<100	<110	<120	<120	<110	<110
Chloroform	1,600 (W)	7,000	7,200	45,000	1,300,000,000	1,200,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Chloromethane (Methyl chloride)	5,200	ID	2,300	40,000	4,900,000,000	1,600,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Cyclohexane	NCL	NCL	NCL	NCL	NCL	NCL	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,2-Dibromo-3-chloropropane (DBCP)	10 (M)	ID	220	260	560,000	4400 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Dibromochloromethane	1,600 (W)	ID	3,900	24,000	130,000,000	110,000.00	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,2-Dibromoethane (EDB)	20 (M)	20 (X)	670	1,700	14,000,000	92	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,2-Dichlorobenzene	14,000	280	11,000,000 (C)	39,000,000	100,000,000,000	19,000,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,3-Dichlorobenzene	170	680	26,000	79,000	200,000,000	200,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,4-Dichlorobenzene	1,700	360	19,000	77,000	450,000,000	400,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Dichlorodifluoromethane	95,000	ID	900,000	53,000,000	3,300,000,000,000	52,000,000 (C)	<100	<91	<120	<120	<110	<110	<100	<110	<120	<120	<110	<110
1,1-Dichloroethane	18,000	15,000	230,000	2,100,000	33,000,000,000	27,000,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,2-Dichloroethane	100	120 (X)	2,100	6,200	120,000,000	91,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,1-Dichloroethene	140	2,600	62	1,100	62,000,000	200,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
cis-1,2-Dichloroethene	1,400	12,000	22,000	180,000	2,300,000,000	2,500,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
trans-1,2-Dichloroethene	2,000	9,400 (X)	23,000	280,000	4,700,000,000	3,800,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,2-Dichloropropane	100	180 (X)	4,000	25,000	270,000,000	140,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
cis-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
trans-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,3-Dichloropropene (Calculated: cis + trans)	1,500	360	87,000	720,000	10,000,000,000	22,000,000 (C)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	170	100 (X)	1,000	18,000	780,000,000	10,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
2-Hexanone	20,000	ID	990,000	1,100,000	2,700,000,000	32,000,000 (C)	<510	<450	<580	<610	<530	<540	<520	<570	<580	<590	<570	<550
Isopropylbenzene	91,000	3,200	400,000 (C)	1,700,000	5,800,000,000	25,000,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Methyl acetate	NCL	NCL	NCL	NCL	NCL	NCL	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	24 [J]	<55
Methyl tertiary butyl ether (MTBE)	800	2,000 (X)	9,900,000 (C)	25,000,000	200,000,000,000	1,500,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
4-Methyl-2-pentanone	36,000	ID	37,000,000 (C)	45,000,000	140,000,000,000	56,000,000 (C)	<510	<450	<580	<610	<530	<540	<520	<570	<580	<590	<570	<550
Methylcyclohexane	NCL	NCL	NCL	NCL	NCL	NCL	<250	<230	<290	<300	<270	<270	<260	<280	<290	<290	<290	<270
Methylene chloride	100	940 (X)	45,000	210,000	6,600,000,000	1,300,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Styrene	2,700	530 (X)	250,000	970,000	5,500,000,000	400,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,1,2,2-Tetrachloroethane	170	64 (X)	4,300	10,000	54,000,000	53,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Tetrachloroethene	100	220 (X)	11,000	170,000	2,700,000,000	200,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Toluene	16,000	5,400	330,000 (C)	2,800,000	27,000,000,000	50,000,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,1,2-Trichloro-1,2,2-Trifluoroethane	9,000,000 (C)	1,700	5,100,000 (C)	180,000,000	5,100,000,000,000	1,000,000,000 (C,D)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,2,4-Trichlorobenzene	4,200	4700 (X)	9,600,000 (C)	28,000,000	25,000,000,000	990,000 (DD)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,1,1-Trichloroethane	4,000	1,800	250,000	3,800,000	67,000,000,000	500,000,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
1,1,2-Trichloroethane	100	240 (X)	4,600	17,000	190,000,000	180,000	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Trichloroethene	100	580 (X)	1,000	11,000	130,000,000	110,000 (DD)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Trichlorofluoromethane	52,000	NA 10 (V)	2,800,000 (C)	92,000,000	3,800,000,000,000	79,000,000 (C)	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Vinyl chloride	40	40 (X)	270	4,200	350,000,000	3,800	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Xylenes (total)	5,600	980	6,300,000 (C)	46,000,000	290,000,000,000	410,000,000 (C)	<100	<91	<120	<120	<110	<110	<100	<110	<120	<120	<110	<110
m+p - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
o - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	<51	<45	<58	<61	<53	<54	<52	<57	<58	<59	<57	<55
Trihalomethanes (Calculation: Bromodichloromentane + Bromoform +	1,600 (W)	NCL	NCL	NCL	NCL	NCL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform + Dibromochloromethane)	2,000 (**)	1402	1402	1402	1102	1402			110	110	110		110	110				110
		•		•		•		•										

Sample Location	Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-23	WV-SB-24	WV-SB-25	WV-SB-26	WV-SB-27	WV-SB-28	WV-SB-29
Sample Name	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-23 (4-6)	WV-SB-24 (7-9)	WV-SB-25 (1-3)	WV-SB-26 (6-8)	WV-SB-27 (7-9)	WV-SB-28 (0-2)	WV-SB-29 (2-4)
Depth Interval (Feet below ground surface)	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	4 - 6	7 - 9	1 - 3	6 - 8	7 - 9	0 - 2	2 - 4
Laboratory Sample ID(s)	Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI26013-009	TI26013-011	TI26013-012	TI26013-016	TI26013-006	TI26013-003	TI26013-014
Sample Date	1	Interface		Inhalation			9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/25/2018	9/25/2018	9/26/2018
Parameter (µg/kg)													
Acetone	15,000	34,000	290,000,000 (C)	130,000,000	390,000,000,000	23,000,000	<620	<500	<530	<640	<600	<550	<570
Benzene	100	240 (X)	1,600	13,000	380,000,000	180,000	<62	<50	<53	<64	<60	<55	<57
Bromodichloromethane	1,600 (W)	ID	1,200	9,100	84,000,000	110,000	<62	<50	<53	<64	<60	<55	<57
Bromoform	1,600 (W)	ID	150,000	900,000	2,800,000,000	820,000	<62	<50	<53	<64	<60	<55	<57
2-Butanone (MEK)	260,000	44,000	54,000,000 (C)	29,000,000	67,000,000,000	120,000,000 (C, DD)	<620	<500	<530	<640	<600	<550	<570
Bromomethane (Methyl bromide)	200	100	860	11,000	330,000,000	320,000	<120	<100	<110	<130	<120	<110	<110
Carbon disulfide	16,000	ID	76,000.00	1,300,000	47,000,000,000	7,200,000 (C, DD)	<62	<50	<53	<64	<60	<55	<57
Carbon tetrachloride	100	94 (X)	190	3,500	130,000,000	96,000	<62	<50	<53	<64	<60	<55	<57
	2,000	500	120,000	770,000	4,700,000,000	4300000 (C)	<62	<50	<53	<64	<60	<55	<57
Chlorobenzene	·			-									
Chloroethane	8,600	3,400 (X)	2,900,000 (C)	30,000,000	670,000,000,000	2600000 (C)	<120	<100	<110	<130	<120	<110	<110
Chloropothana (Mathyl chlorida)	1,600 (W)	7,000	7,200	45,000	1,300,000,000	1,200,000	<62	<50	<53	<64	<60	<55	<57
Chloromethane (Methyl chloride)	5,200	ID	2,300	40,000	4,900,000,000	1,600,000 (C)	<62	<50	<53	<64	<60	<55	<57
Cyclohexane	NCL	NCL	NCL	NCL	NCL Scoon	NCL	<62	<50	<53	<64	<60	<55	<57
1,2-Dibromo-3-chloropropane (DBCP)	10 (M)	ID	220	260	560,000	4400 (C)	<62	<50	<53	<64	<60	<55	<57
Dibromochloromethane	1,600 (W)	ID	3,900	24,000	130,000,000	110,000.00	<62	<50	<53	<64	<60	<55	<57
1,2-Dibromoethane (EDB)	20 (M)	20 (X)	670	1,700	14,000,000	92	<62	<50	<53	<64	<60	<55	<57
1,2-Dichlorobenzene	14,000	280	11,000,000 (C)	39,000,000	100,000,000,000	19,000,000 (C)	<62	<50	<53	<64	<60	<55	<57
1,3-Dichlorobenzene	170	680	26,000	79,000	200,000,000	200,000 (C)	<62	<50	<53	<64	<60	<55	<57
1,4-Dichlorobenzene	1,700	360	19,000	77,000	450,000,000	400,000	<62	<50	<53	<64	<60	<55	<57
Dichlorodifluoromethane	95,000	ID	900,000	53,000,000	3,300,000,000,000	52,000,000 (C)	<120	<100	<110	<130	<120	<110	<110
1,1-Dichloroethane	18,000	15,000	230,000	2,100,000	33,000,000,000	27,000,000 (C)	<62	<50	<53	<64	<60	<55	<57
1,2-Dichloroethane	100	120 (X)	2,100	6,200	120,000,000	91,000	<62	<50	<53	<64	<60	<55	<57
1,1-Dichloroethene	140	2,600	62	1,100	62,000,000	200,000	<62	<50	<53	<64	<60	<55	<57
cis-1,2-Dichloroethene	1,400	12,000	22,000	180,000	2,300,000,000	2,500,000 (C)	<62	<50	<53	<64	<60	<55	<57
trans-1,2-Dichloroethene	2,000	9,400 (X)	23,000	280,000	4,700,000,000	3,800,000 (C)	<62	<50	<53	<64	<60	<55	<57
1,2-Dichloropropane	100	180 (X)	4,000	25,000	270,000,000	140,000	<62	<50	<53	<64	<60	<55	<57
cis-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	<62	<50	<53	<64	<60	<55	<57
trans-1,3-Dichloropropene	NCL	NCL	NCL	NCL	NCL	NCL	<62	<50	<53	<64	<60	<55	<57
1,3-Dichloropropene (Calculated: cis + trans)	1,500	360	87,000	720,000	10,000,000,000	22,000,000 (C)	ND						
Ethylbenzene	170	100 (X)	1,000	18,000	780,000,000	10,000	<62	<50	<53	<64	<60	<55	<57
2-Hexanone	20,000	ID	990,000	1,100,000	2,700,000,000	32,000,000 (C)	<620	<500	<530	<640	<600	<550	<570
Isopropylbenzene	91,000	3,200	400,000 (C)	1,700,000	5,800,000,000	25,000,000 (C)	<62	<50	<53	<64	<60	<55	<57
Methyl acetate	NCL	NCL	NCL	NCL	NCL	NCL	<62	<50	<53	<64	<60	<55	<57
Methyl tertiary butyl ether (MTBE)	800	2,000 (X)	9,900,000 (C)	25,000,000	200,000,000,000	1,500,000	<62	<50	<53	<64	<60	<55	<57
4-Methyl-2-pentanone	36,000	ID	37,000,000 (C)	45,000,000	140,000,000,000	56,000,000 (C)	<620	<500	<530	<640	<600	<550	<570
Methylcyclohexane	NCL	NCL	NCL NCL	NCL	NCL	NCL NCL	<310	<250	<270	<320	<300	<270	<280
Methylene chloride	100	940 (X)	45,000	210,000	6,600,000,000	1,300,000	<62	<50	<53	<64	<60	<55	<57
Styrene	2,700	530 (X)	250,000	970,000	5,500,000,000	400,000	<62	<50	<53	<64	<60	<55	<57
1,1,2,2-Tetrachloroethane	170	64 (X)	4,300	10,000	54,000,000	53,000	<62	<50	<53	<64	<60	<55	<57
Tetrachloroethene	100	220 (X)	11,000	170,000	2,700,000,000	200,000 (C)	<62	<50	<53	<64	<60	<55	<57
Toluene	16,000	5,400	330,000 (C)	2,800,000	27,000,000,000	50,000,000 (C)	<62	<50	<53 <53	<64	<60	<55	<57
1,1,2-Trichloro-1,2,2-Trifluoroethane	9,000,000 (C)	1,700	5,100,000 (C)	180,000,000	5,100,000,000,000	1,000,000,000 (C,D)	<62	<50 <50	<53 <53	<64	<60	<55	<57
							<62	<50	<53	<64	<60	<55 <55	<57
1,2,4-Trichlorobenzene	4,200	4700 (X)	9,600,000 (C)	28,000,000	25,000,000,000	990,000 (DD)							1
1,1,1-Trichloroethane	4,000	1,800	250,000	3,800,000	67,000,000,000	500,000,000 (C)	<62	<50	<53	<64	<60	<55	<57
1,1,2-Trichloroethane	100	240 (X)	4,600	17,000	190,000,000	180,000	<62	<50	<53	<64	<60	<55	<57
Trichloroethene	100	580 (X)	1,000	11,000	130,000,000	110,000 (DD)	<62	<50	<53	<64	<60	<55	<57
Trichlorofluoromethane	52,000	NA	2,800,000 (C)	92,000,000	3,800,000,000,000	79,000,000 (C)	<62	<50	<53	<64	<60	<55	<57
Vinyl chloride	40	40 (X)	270	4,200	350,000,000	3,800	<62	<50	<53	<64	<60	<55	<57
Xylenes (total)	5,600	980	6,300,000 (C)	46,000,000	290,000,000,000	410,000,000 (C)	<120	<100	<110	<130	<120	<110	<110
m+p - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	<62	<50	<53	<64	<60	<55	<57
o - Xylenes	NCL	NCL	NCL	NCL	NCL	NCL	<62	<50	<53	<64	<60	<55	<57
Trihalomethanes (Calculation: Bromodichloromentane + Bromoform +	1,600 (W)	NCL	NCL	NCL	NCL	NCL	ND						

Sample Location	Dart 201 Cararia	Part 201 Generic	Down 201 Companie	Part 201 Generic	Part 201 Caracia		WV-SB-01	WV-SB-02	WV-SB-03a	WV-SB-04	WV-SB-04	WV-SB-05	WV-SB-06	WV-SB-07	WV-SB-08	WV-SB-09	WV-SB-10	WV-SB-11
Sample Name	Part 201 Generic Residential Soil	Groundwater Cleanup Criteria –	Part 201 Generic Residential Soil	Residential Soil Cleanup Criteria –	Part 201 Generic Residential Soil	Part 201 Generic Residential Soil	WV-SB-01 (7-9)	WV-SB-02 (7-9)	WV-SB-03a (2-4)	WV-SB-04 (1-3)	WV-5B-U4 (1-3)	WV-SB-05 (5-7)	WV-SB-06 (2-4)	WV-SB-07 (7-9)	WV-SB-08 (6-8)	WV-SB-09 (7-9)	WV-SB-10 (6-8)	WV-SB-11 (8-10)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Groundwater	Cleanup Criteria –	Infinite Source	Cleanup Criteria –	Cleanup Criteria –	7 - 9	7-9	2 - 4	1-3	1 - 3	5 - 7	2 - 4	7 - 9	6 - 8	7 - 9	6-8	8 - 10
Laboratory Sample ID(s)	Drinking Water Protection	Surface Water	Soil Volatilization to Indoor Air Inhalation	Volatile Soil	Particulate Soil Inhalation	Direct Contact	TI19030-006	TI19030-001	TI19030-008	TI19030-010	TI19030-011	TI19030-013	TI25013-001	TI19030-005	TI19030-003	TI20083-001	TI20083-003	TI26013-001
Sample Date	Frotection	Interface	IIIdooi Ali IIIIlalatioii	Inhalation	IIIIIaiatioii		9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/24/2018	9/18/2018	9/18/2018	9/19/2018	9/19/2018	9/25/2018
Parameter (µg/kg)							3/10/2010	3/10/2010	3/10/2010	3/10/2010	3/10/2010	3/10/2010	3/2 1/2020	3/10/2010	3/10/2010	3/13/2010	3,13,2010	3/23/2010
Acenaphthene	300,000	8,700	190,000,000	81,000,000	14,000,000,000	41,000,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Acenaphthylene	5,900	ID	1,600,000	2,200,000	2,300,000,000	1,600,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Acetophenone	30,000	ID	120.000.000 (C)	44,000,000	33,000,000,000	47,000,000 (C)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Anthracene	41,000	ID	1,000,000,000 (D)	1,400,000,000	67,000,000,000	230,000,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Atrazine	60	150	NLV	NLV	ID	71,000 (DD)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Benzidine	1,000 (M)	1,000 (M)	NLV	NLV	46,000	1,000 (M)	<360	<340	<350	<350	<350	<340	<1,800	<360	<360	<340	<360	<330
Benzo(a)anthracene	NLL	NLL	NLV	NLV	ID	20,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Benzo(a)pyrene	NLL	NLL	NLV	NLV	1,500,000	2,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Benzo(b)fluoranthene	NLL	NLL	ID	ID	ID	20,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Benzo(g,h,i)perylene	NLL	NLL	NLV	NLV	800,000,000	2,500,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Benzo(k)fluoranthene	NLL	NLL	NLV	NLV	ID	200,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Butyl benzyl phthalate	2,200,000 (C)	13,000 (X)	NLV	NLV	47,000,000,000	36,000,000 (C)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Caprolactam	120,000	NA	NLV	NLV	670,000,000	53,000,000 (DD)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Carbazole	9,400	1,100	NLV	NLV	62,000,000	530,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
4-Chloro-3-methyl phenol	5,800	280	NLV	NLV	ID	4,500,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
bis(2-Chloroethyl)ether	100	100 (M)	8,300	3,800	9,400,000	13,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2-Chloronaphthalene	620,000	NA	ID	ID	ID	56,000,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2-Chlorophenol	900	360	430,000 ID	960,000 ID	1,200,000,000	1,400,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Chrysene Dibenzo(a,h)anthracene	NLL NLL	NLL NLL	NLV	NLV	ID ID	2,000,000	<14 <14	<13 <13	<14 <14	<14 <14	<14 <14	<13 <13	<72 <72	<14 <14	<14 <14	<13 <13	<14 <14	<13 <13
Dibenzofuran	ID	1,700	2,000,000	130,000	6,700,000	2,000 ID	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
3,3'-Dichlorobenzidine	2,000 (M)	2,000 (M)	NLV	NLV	6,500,000	6,600	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2,4-Dichlorophenol	1,500	330 (M)	NLV	NLV	5,100,000,000	660,000 (DD)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Diethylphthalate	110,000	2,200	NLV	NLV	3,300,000,000	170,000,000 (C)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Dimethyl phthalate	1,500,000 (C)	NA	NLV	NLV	3,300,000,000	1,000,000,000 (C,D)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2,4-Dimethylphenol	7,400	7,600	NLV	NLV	4,700,000,000	11,000,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Di-n-butyl phthalate	960,000 (C)	11,000	NLV	NLV	3,300,000,000	27,000,000 (C)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
4,6-Dinitro-2-methylphenol	830 (M)	NA	NLV	NLV	130,000,000	79,000	<360	<340	<350	<350	<350	<340	<1,800	<360	<360	<340	<360	<330
2,4-Dinitrotoluene	430	NA	NLV	NLV	16,000,000	48,000	<140	<130	<140	<140	<140	<130	<720	<140	<140	<130	<140	<130
Di-n-octylphthalate	100,000,000	ID	NLV	NLV	31,000,000,000	6,900,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
1,2-Diphenylhydrazine(as azobenzene)	4,200	ID	6,100,000	630,000	100,000,000	140,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
bis(2-Ethylhexyl)phthalate	NLL	NLL	NLV	NLV	700,000,000	2,800,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Fluoranthene	730,000	5,500	1,000,000,000 (D)	740,000,000	9,300,000,000	46,000,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Fluorene	390,000	5,300	580,000,000	130,000,000	9,300,000,000	27,000,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Hexachlorobenzene	1,800	350 91	41,000 130,000	17,000 130,000	6,800,000	8,900 100,000	<73 <73	<69	<71 <71	<70 <70	<71 <71	<68 <68	<370 <370	<73	<73 <73	<68	<74 <74	<67 <67
Hexachlorobutadiene Hexachlorocyclopentadiene	26,000 320,000	ID ID	30,000	50,000	140,000,000 13,000,000	2,300,000 (C)	<73 <360	<69 <340	<350	<350	<350	<68 <340	<1,800	<73 <360	<360	<68 <340	<360	<330
Hexachloroethane	430	310 (X)	40,000	550,000	230,000,000	230,000 (C)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Indeno(1,2,3-c,d)pyrene	NLL	NLL	40,000 NLV	930,000 NLV	230,000,000 ID	20,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Isophorone	15,000	6,200 (X)	NLV	NLV	12,000,000,000	4,800,000 (C)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2-Methylnaphthalene	57,000	4,200	2,700,000	1,500,000	670,000,000	8,100,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
2-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
3+4-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	<140	<130	<140	<140	<140	<130	<720	<140	<140	<130	<140	<130
Naphthalene	35,000	730	250,000	300,000	200,000,000	16,000,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Nitrobenzene	330 (M)	330 (X)	91,000	54,000	47,000,000	100,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2-Nitrophenol	400	ID	NLV	NLV	ID	630,000	<140	<130	<140	<140	<140	<130	<720	<140	<140	<130	<140	<130
N-Nitrosodi-n-propylamine	330 (M)	NA	NLV	NLV	1,600,000	1,200	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
N-Nitrosodiphenylamine (Diphenylamine)	5,400	NA	NLV	NLV	2,200,000,000	1,700,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Pentachlorophenol	22	17,000 (G,X)	NLV	NLV	100,000,000	90,000	<360	<340	<350	<350	<350	<340	<1,800	<360	<360	<340	<360	<330
Phenanthrene	56,000	2,100	2,800,000	160,000	6,700,000	1,600,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
Phenol	88,000	9,000	NLV	NLV	40,000,000,000	40,000,000 (C, DD)	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
Pyrene	480,000	ID	1,000,000,000 (D)	650,000,000	6,700,000,000	29,000,000	<14	<13	<14	<14	<14	<13	<72	<14	<14	<13	<14	<13
2,4,5-Trichlorophenol	39,000	NA	NLV	NLV	23,000,000,000	23,000,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67
2,4,6-Trichlorophenol	2,400	330 (M)	NLV	NLV	1,000,000,000	710,000	<73	<69	<71	<70	<71	<68	<370	<73	<73	<68	<74	<67

Sample Location	Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-12	WV-SB-13	WV-SB-14	WV-SB-14	WV-SB-15	WV-SB-16	WV-SB-17	WV-SB-18	WV-SB-19	WV-SB-20	WV-SB-21	WV-SB-22
Sample Name	Residential Soil Cleanup Criteria –	Cleanup Criteria –	Residential Soil Cleanup Criteria –	Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil	WV-SB-12 (7-9)	WV-SB-13 (3-5)	WV-SB-14 (8-10)	WV-SB-14 (8-10)	WV-SB-15 (1-3)	WV-SB-16 (4-6)	WV-SB-17 (1-3)	WV-SB-18 (1-3)	WV-SB-19 (1-3)	WV-SB-20 (6-8)	WV-SB-21 (7-9)	WV-SB-22 (0-2)
Depth Interval (Feet below ground surface)	Drinking Water	Groundwater	Soil Volatilization to	Infinite Source	Particulate Soil	Cleanup Criteria –	7 - 9	3 - 5	8 - 10	8 - 10	1 - 3	4 - 6	1 - 3	1 - 3	1 - 3	6 - 8	7 - 9	0 - 2
Laboratory Sample ID(s)	Protection	Surface Water Interface	Indoor Air Inhalation	Volatile Soil Inhalation	Inhalation	Direct Contact	TI20083-014	TI25013-002	TI20083-007	TI20083-008	TI20083-010	TI20083-005	TI25013-015	TI25013-003	TI25013-005	TI25013-007	TI25013-010	TI25013-013
Sample Date		interrace		IIIIIalatioii			9/19/2018	9/24/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018
Parameter (µg/kg)																		
Acenaphthene	300,000	8,700	190,000,000	81,000,000	14,000,000,000	41,000,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Acenaphthylene	5,900	ID	1,600,000	2,200,000	2,300,000,000	1,600,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Acetophenone	30,000	ID	120,000,000 (C)	44,000,000	33,000,000,000	47,000,000 (C)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Anthracene	41,000	ID	1,000,000,000 (D)	1,400,000,000	67,000,000,000	230,000,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Atrazine	60	150	NLV	NLV	ID	71,000 (DD)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Benzidine	1,000 (M)	1,000 (M)	NLV	NLV	46,000	1,000 (M)	<330	<350	<340	<330	<360	<350	<340	<360	<330	<340	<340	<360
Benzo(a)anthracene	NLL	NLL	NLV	NLV	ID	20,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Benzo(a)pyrene	NLL	NLL	NLV	NLV	1,500,000	2,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Benzo(b)fluoranthene	NLL	NLL	ID	ID	ID	20,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Benzo(g,h,i)perylene	NLL	NLL	NLV	NLV	800,000,000	2,500,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Benzo(k)fluoranthene	NLL	NLL	NLV	NLV	ID	200,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Butyl benzyl phthalate	2,200,000 (C)	13,000 (X)	NLV	NLV	47,000,000,000	36,000,000 (C)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
		15,000 (A) NA	 				<67		<69	<67	1	<70	<68	•	<67	<68	<68	<74
Carparala	120,000		NLV	NLV	670,000,000	53,000,000 (DD)		<70			<73			<73				+
Carbazole	9,400	1,100	NLV	NLV	62,000,000	530,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
4-Chloro-3-methyl phenol	5,800	280	NLV	NLV	ID	4,500,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
bis(2-Chloroethyl)ether	100	100 (M)	8,300	3,800	9,400,000	13,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
2-Chloronaphthalene	620,000	NA	ID too see	ID	ID	56,000,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
2-Chlorophenol	900	360	430,000	960,000	1,200,000,000	1,400,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Chrysene	NLL	NLL	ID	ID	ID	2,000,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Dibenzo(a,h)anthracene	NLL	NLL	NLV	NLV	ID	2,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Dibenzofuran	ID	1,700	2,000,000	130,000	6,700,000	ID	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
3,3'-Dichlorobenzidine	2,000 (M)	2,000 (M)	NLV	NLV	6,500,000	6,600	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
2,4-Dichlorophenol	1,500	330 (M)	NLV	NLV	5,100,000,000	660,000 (DD)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Diethylphthalate	110,000	2,200	NLV	NLV	3,300,000,000	170,000,000 (C)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Dimethyl phthalate	1,500,000 (C)	NA	NLV	NLV	3,300,000,000	1,000,000,000 (C,D)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
2,4-Dimethylphenol	7,400	7,600	NLV	NLV	4,700,000,000	11,000,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Di-n-butyl phthalate	960,000 (C)	11,000	NLV	NLV	3,300,000,000	27,000,000 (C)	<67	19 [J]	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
4,6-Dinitro-2-methylphenol	830 (M)	NA	NLV	NLV	130,000,000	79,000	<330	<350	<340	<330	<360	<350	<340	<360	<330	<340	<340	<360
2,4-Dinitrotoluene	430	NA	NLV	NLV	16,000,000	48,000	<130	<140	<130	<130	<140	<140	<130	<140	<130	<130	<130	<140
Di-n-octylphthalate	100,000,000	ID	NLV	NLV	31,000,000,000	6,900,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
1,2-Diphenylhydrazine(as azobenzene)	4,200	ID	6,100,000	630,000	100,000,000	140,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
bis(2-Ethylhexyl)phthalate	NLL	NLL	NLV	NLV	700,000,000	2,800,000	<67	36 [J]	<69	<67	<73	<70	<68	<73	<67	<68	<68	37 [J]
Fluoranthene	730,000	5,500	1,000,000,000 (D)	740,000,000	9,300,000,000	46,000,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Fluorene	390,000	5,300	580,000,000	130,000,000	9,300,000,000	27,000,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Hexachlorobenzene	1,800	350	41,000	17,000	6,800,000	8,900	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Hexachlorobutadiene	26,000	91	130,000	130,000	140,000,000	100,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Hexachlorocyclopentadiene	320,000	ID	30,000	50,000	13,000,000	2,300,000 (C)	<330	<350	<340	<330	<360	<350	<340	<360	<330	<340	<340	<360
Hexachloroethane	430	310 (X)	40,000	550,000	230,000,000	230,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Indeno(1,2,3-c,d)pyrene	NLL	NLL	NLV	NLV	ID	20,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Isophorone	15,000	6,200 (X)	NLV	NLV	12,000,000,000	4,800,000 (C)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
2-Methylnaphthalene	57,000	4,200	2,700,000	1,500,000	670,000,000	8,100,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
2-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
3+4-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	<130	<140	<130	<130	<140	<140	<130	<140	<130	<130	<130	<140
Naphthalene	35,000	730	250,000	300,000	200,000,000	16,000,000	<130	<140	<13	<130	<140	<140	<13	<140	<13	<130	<130	<140
Nitrobenzene	330 (M)	330 (X)	91,000	54,000	47,000,000	100,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
	400	330 (A)	91,000 NLV	NLV	47,000,000 ID	630,000	<130	<140	<130	<130	<140	<140	<130	<140	<130	<130	<130	<140
2-Nitrophenol	330 (M)	NA	NLV NLV	NLV	1,600,000	1,200	<67	<70	<69	<67	<73	<70	<68	<73	<67	<130 <68	<130 <68	<74
N-Nitrosodi-n-propylamine			+								1			•			<68	+
N-Nitrosodiphenylamine (Diphenylamine)	5,400	NA 17 000 (C V)	NLV	NLV	2,200,000,000	1,700,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68		<74
Pentachlorophenol	22	17,000 (G,X)	NLV	NLV	100,000,000	90,000	<330	<350	<340	<330	<360	<350	<340	<360	<330	<340	<340	<360
Phenanthrene	56,000	2,100	2,800,000	160,000	6,700,000	1,600,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
Phenol _	88,000	9,000	NLV	NLV	40,000,000,000	40,000,000 (C, DD)	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
Pyrene	480,000	ID	1,000,000,000 (D)	650,000,000	6,700,000,000	29,000,000	<13	<14	<13	<13	<14	<14	<13	<14	<13	<13	<13	<14
2,4,5-Trichlorophenol	39,000	NA	NLV	NLV	23,000,000,000	23,000,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74
2,4,6-Trichlorophenol	2,400	330 (M)	NLV	NLV	1,000,000,000	710,000	<67	<70	<69	<67	<73	<70	<68	<73	<67	<68	<68	<74

Sample Location	Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-23	WV-SB-24	WV-SB-25	WV-SB-26	WV-SB-27	WV-SB-28	WV-SB-29
Sample Name	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-23 (4-6)	WV-SB-24 (7-9)	WV-SB-25 (1-3)	WV-SB-26 (6-8)	WV-SB-27 (7-9)	WV-SB-28 (0-2)	WV-SB-29 (2-4)
Depth Interval (Feet below ground surface)	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	4 - 6	7 - 9	1 - 3	6 - 8	7 - 9	0 - 2	2 - 4
Laboratory Sample ID(s)	Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI26013-009	TI26013-011	TI26013-012	TI26013-016	TI26013-006	TI26013-003	TI26013-014
Sample Date	Trotection	Interface	macor 7 m minutation	Inhalation	mindideton		9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/25/2018	9/25/2018	9/26/2018
Parameter (µg/kg)							3/20/2010	3,20,2010	3/20/2020	3/20/2010	3/23/2020	3/23/2020	3/20/2010
Acenaphthene	300,000	8,700	190,000,000	81,000,000	14,000,000,000	41,000,000	<15	<14	<14	<14	<15	<14	<15
•	5,900	ID			2,300,000,000		<15	<14	<14	<14	<15	<14	<15
Acenaphthylene 	•		1,600,000	2,200,000		1,600,000							
Acetophenone	30,000	ID	120,000,000 (C)	44,000,000	33,000,000,000	47,000,000 (C)	<78	<74	<75	<73	<75	<72	<77
Anthracene	41,000	ID	1,000,000,000 (D)	1,400,000,000	67,000,000,000	230,000,000	<15	<14	<14	<14	<15	<14	<15
Atrazine	60	150	NLV	NLV	ID	71,000 (DD)	<78	<74	<75	<73	<75	<72	<77
Benzidine	1,000 (M)	1,000 (M)	NLV	NLV	46,000	1,000 (M)	<390	<370	<370	<360	<370	<360	<380
Benzo(a)anthracene	NLL	NLL	NLV	NLV	ID	20,000	<15	<14	<14	<14	<15	<14	<15
Benzo(a)pyrene	NLL	NLL	NLV	NLV	1,500,000	2,000	<15	<14	<14	<14	<15	<14	<15
Benzo(b)fluoranthene	NLL	NLL	ID	ID	ID	20,000	<15	<14	<14	<14	<15	<14	<15
Benzo(g,h,i)perylene	NLL	NLL	NLV	NLV	800,000,000	2,500,000	<15	<14	<14	<14	<15	<14	<15
Benzo(k)fluoranthene	NLL	NLL	NLV	NLV	ID	200,000	<15	<14	<14	<14	<15	<14	<15
Butyl benzyl phthalate	2,200,000 (C)	13,000 (X)	NLV	NLV	47,000,000,000	36,000,000 (C)	<78	<74	<75	<73	<75	<72	<77
Caprolactam	120,000	NA	NLV	NLV	670,000,000	53,000,000 (DD)	<78	<74	<75	<73	<75	<72	<77
Carbazole	9,400	1,100	NLV	NLV	62,000,000	530,000	<78	<74	<75	<73	<75	<72	<77
	5,800	280	NLV	NLV	62,000,000 ID	4,500,000	<78	<74	<75	<73	<75	<72	<77
4-Chloro-3-methyl phenol	ł												
bis(2-Chloroethyl)ether	100	100 (M)	8,300	3,800	9,400,000	13,000	<78	<74	<75	<73	<75	<72	<77
2-Chloronaphthalene	620,000	NA	ID	ID	ID	56,000,000	<78	<74	<75	<73	<75	<72	<77
2-Chlorophenol	900	360	430,000	960,000	1,200,000,000	1,400,000	<78	<74	<75	<73	<75	<72	<77
Chrysene	NLL	NLL	ID	ID	ID	2,000,000	<15	<14	<14	<14	<15	<14	<15
Dibenzo(a,h)anthracene	NLL	NLL	NLV	NLV	ID	2,000	<15	<14	<14	<14	<15	<14	<15
Dibenzofuran	ID	1,700	2,000,000	130,000	6,700,000	ID	<78	<74	<75	<73	<75	<72	<77
3,3'-Dichlorobenzidine	2,000 (M)	2,000 (M)	NLV	NLV	6,500,000	6,600	<78	<74	<75	<73	<75	<72	<77
2,4-Dichlorophenol	1,500	330 (M)	NLV	NLV	5,100,000,000	660,000 (DD)	<78	<74	<75	<73	<75	<72	<77
Diethylphthalate	110,000	2,200	NLV	NLV	3,300,000,000	170,000,000 (C)	<78	<74	<75	<73	<75	<72	<77
Dimethyl phthalate	1,500,000 (C)	NA	NLV	NLV	3,300,000,000	1,000,000,000 (C,D)	<78	<74	<75	<73	<75	<72	<77
2,4-Dimethylphenol	7,400	7,600	NLV	NLV	4,700,000,000	11,000,000	<78	<74	<75	<73	<75	<72	<77
Di-n-butyl phthalate	960,000 (C)	11,000	NLV	NLV	3,300,000,000	27,000,000 (C)	<78	<74	<75	<73	<75	<72	<77
	830 (M)	NA	NLV	NLV	130,000,000		<390	<370	<370	<360	<370	<360	<380
4,6-Dinitro-2-methylphenol	•		1			79,000							
2,4-Dinitrotoluene	430	NA	NLV	NLV	16,000,000	48,000	<150	<140	<140	<140	<150	<140	<150
Di-n-octylphthalate	100,000,000	ID	NLV	NLV	31,000,000,000	6,900,000	<78	<74	<75	<73	<75	<72	<77
1,2-Diphenylhydrazine(as azobenzene)	4,200	ID	6,100,000	630,000	100,000,000	140,000	<78	<74	<75	<73	<75	<72	<77
bis(2-Ethylhexyl)phthalate	NLL	NLL	NLV	NLV	700,000,000	2,800,000	<78	<74	<75	<73	<75	<72	<77
Fluoranthene	730,000	5,500	1,000,000,000 (D)	740,000,000	9,300,000,000	46,000,000	<15	<14	<14	<14	<15	<14	<15
Fluorene	390,000	5,300	580,000,000	130,000,000	9,300,000,000	27,000,000	<15	<14	<14	<14	<15	<14	<15
Hexachlorobenzene	1,800	350	41,000	17,000	6,800,000	8,900	<78	<74	<75	<73	<75	<72	<77
Hexachlorobutadiene	26,000	91	130,000	130,000	140,000,000	100,000	<78	<74	<75	<73	<75	<72	<77
Hexachlorocyclopentadiene	320,000	ID	30,000	50,000	13,000,000	2,300,000 (C)	<390	<370	<370	<360	<370	<360	<380
Hexachloroethane	430	310 (X)	40,000	550,000	230,000,000	230,000	<78	<74	<75	<73	<75	<72	<77
Indeno(1,2,3-c,d)pyrene	NLL	NLL	NLV	NLV	ID	20,000	<15	<14	<14	<14	<15	<14	<15
Isophorone	15,000	6,200 (X)	NLV	NLV	12,000,000,000	4,800,000 (C)	<78	<74	<75	<73	<75	<72	<77
2-Methylnaphthalene	57,000	4,200	2,700,000	1,500,000	670,000,000		<15	<14		<14	<15	<14	<15
· '	ł	4,200 NCL				8,100,000	<78	<74	<14 <75		<75	<72	<77
2-Methylphenol	NCL		NCL	NCL	NCL	NCL				<73			
3+4-Methylphenol	NCL	NCL	NCL	NCL	NCL	NCL	<150	<140	<140	<140	<150	<140	<150
Naphthalene	35,000	730	250,000	300,000	200,000,000	16,000,000	<15	<14	<14	<14	<15	<14	<15
Nitrobenzene	330 (M)	330 (X)	91,000	54,000	47,000,000	100,000	<78	<74	<75	<73	<75	<72	<77
2-Nitrophenol	400	ID	NLV	NLV	ID	630,000	<150	<140	<140	<140	<150	<140	<150
N-Nitrosodi-n-propylamine	330 (M)	NA	NLV	NLV	1,600,000	1,200	<78	<74	<75	<73	<75	<72	<77
N-Nitrosodiphenylamine (Diphenylamine)	5,400	NA	NLV	NLV	2,200,000,000	1,700,000	<78	<74	<75	<73	<75	<72	<77
Pentachlorophenol	22	17,000 (G,X)	NLV	NLV	100,000,000	90,000	<390	<370	<370	<360	<370	<360	<380
Phenanthrene	56,000	2,100	2,800,000	160,000	6,700,000	1,600,000	<15	<14	<14	<14	<15	<14	<15
Phenol	88,000	9,000	NLV	NLV	40,000,000,000	40,000,000 (C, DD)	<78	<74	<75	<73	<75	<72	<77
Pyrene	480,000	ID	1,000,000,000 (D)	650,000,000	6,700,000,000	29,000,000	<15	<14	<14	<14	<15	<14	<15
. ,	+55,000		±,000,000,000 (D)	030,000,000	0,700,000,000	23,000,000	-13	,14	-14	-74	113	·14	
2,4,5-Trichlorophenol	39,000	NA	NLV	NLV	23,000,000,000	23,000,000	<78	<74	<75	<73	<75	<72	<77

12/9/2018

		1	1	<u> </u>	r		1	T.	r	1			,		r	1	1		,
Sample Location		Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-01	WV-SB-02	WV-SB-03a	WV-SB-04	WV-SB-04	WV-SB-05	WV-SB-06	WV-SB-07	WV-SB-08	WV-SB-09	WV-SB-10	WV-SB-11
Sample Name	Statewide Default	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-01 (7-9)	WV-SB-02 (7-9)	WV-SB-03a (2-4)	WV-SB-04 (1-3)	WV-5B-U4 (1-3)	WV-SB-05 (5-7)	WV-SB-06 (2-4)	WV-SB-07 (7-9)	WV-SB-08 (6-8)	WV-SB-09 (7-9)	WV-SB-10 (6-8)	WV-SB-11 (8-10)
Depth Interval (Feet below ground surface)	Background	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	7 - 9	7 - 9	2 - 4	1 - 3	1 - 3	5 - 7	2 - 4	7 - 9	6 - 8	7 - 9	6 - 8	8 - 10
Laboratory Sample ID(s)		Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI19030-006	TI19030-001	TI19030-008	TI19030-010	TI19030-011	TI19030-013	TI25013-001	TI19030-005	TI19030-003	TI20083-001	TI20083-003	TI26013-001
Sample Date			Interface		Inhalation			9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/24/2018	9/18/2018	9/18/2018	9/19/2018	9/19/2018	9/25/2018
Parameter (µg/kg)																			
Aluminum	6,900,000	1,000	NA	NLV	NLV	ID	50,000,000 (DD)	9,800,000	2,800,000	4,100,000	5,900,000	5,300,000	1,100,000	8,900,000	6,500,000	3,500,000	2,200,000	4,700,000	1,100,000
Antimony	NA	4,300	1,200 (X)	NLV	NLV	13,000,000	180,000	<530	<440	<420	<470	<490	<510	<480	<480	210 [J]	<440	<460	<510
Arsenic	5,800	4,600	4,600	NLV	NLV	720,000	7,600	1,800	5,400	5,300	3,100	3,300	480 [J]	3,200	3,200	1,300	1,700	1,500	1,400
Barium	75,000	1,300,000	660,000 (G)	NLV	NLV	330,000,000	37,000,000	24,000	11,000	13,000	18,000	17,000	4,900	24,000	18,000	12,000	8,200	17,000	3,400
Beryllium	NA	51,000	320,000 (G)	NLV	NLV	1,300,000	410,000	250	140	190	240	220	71 [J]	460	250	170	120	230	<100
Boron	NA	10,000	80,000 (X)	NLV	NLV	ID	48,000,000 (DD)	3,700 [J]	6,000 [J]	10,000 [J]	6,400 [J]	7,200 [J]	2,800 [J]	<13,000	5,100 [J]	6,000 [J]	4,700 [J]	8,500 [J]	<13,000
Cadmium	1,200	6,000	3,000 (G,X)	NLV	NLV	1,700,000	550,000	<140	43 [J]	34 [J]	29 [J]	37 [J]	<130	48 [J]	<130	<130	33 [J]	28 [J]	<130
Chromium, Total	18,000	NCL	NCL	NCL	NCL	NCL	NCL	10,000	6,300	7,900	8,800	7,800	2,100	15,000	9,100	5,500	6,500	7,100	3,200
Chromium VI	NA	30,000	3,300	NLV	NLV	260,000	2,500,000	<1,100	<1,000	<1,100	<1,100	<1,100	<1,000	<1,100	<1,100	<1,100	<1,000	<1,100	<1,000
Chromium III (Calculated: Total - Chromium	NA	1,000,000,000 (D)	100,0000,000 (G,X)	NLV	NLV	330,000,000	790,000,000	10,000	6,300	7,900	8,800	7,800	2,100	15,000	9,100	5,500	6,500	7,100	3,200
Cobalt	6,800	800	2,000	NLV	NLV	13,000,000	2,600,000	2,500	2,600	3,300	2,800	2,900	790 [J]	5,200	2,600	1,900	2,100	2,500	1,000 [J]
Copper	32,000	5,800,000	100,000 (G)	NLV	NLV	130,000,000	20,000,000	3,200	6,800	8,000	5,700	6,600	1,400	9,900	4,100	3,700	4,700	5,000	2,400 [B]
Iron	12,000,000	6,000	NA	NLV	NLV	ID	160,000,000	8,200,000 [B]	8,800,000 [B]	9,500,000 [B]	8,300,000 [B]	8,700,000 [B]	2,200,000 [B]	12,000,000	7,700,000 [B]	5,500,000 [B]	7,100,000	7,200,000	2,300,000
Lead	21,000	700,000	2,500,000 (G,X)	NLV	NLV	100,000,000	400,000	3,800	3,000	8,700	4,700	4,100	1,000	6,800	4,300	2,300	2,300	2,600	1,400
Magnesium	NA	8,000,000	NA	NLV	NLV	6,700,000,000	1,000,000,000 (D)	1,800,000	41,000,000	41,000,000	21,000,000	23,000,000	7,800,000	1,600,000	16,000,000	21,000,000	38,000,000	25,000,000	8,700,000
Mercury	130	1,700	50 (M)	48,000	52,000	20,000,000	160,000	<83	<85	<82	<84	<79	<80	<82	<83	<88	<83	<89	<83
Molybdenum	NA	1,500	2,400 (X)	NLV	NLV	ID	2,600,000	<2,700	<2,200	<2,100	<2,300	<2,400	<2,500	<2,400	<2,400	<2,400	<2,200	<2,300	<2,600
Nickel	20,000	100,000	100,000 (G)	NLV	NLV	13,000,000	40,000,000	6,000	6,900	7,900	7,200	7,000	1,800	12,000	5,800	4,600	5,500	6,200	2,400
Selenium	410	4,000	400	NLV	NLV	130,000,000	2,600,000	<1,400	<1,200	<1,100	<1,200	<1,300	<1,300	<1,300	<1,300	<1,300	<1,100	<1,200	<1,300
Silver	1,000	4,500	100 (M)	NLV	NLV	6,700,000	2,500,000	<270	<220	<210	<230	<240	<250	<240	<240	<240	<220	<230	<260
Sodium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<110,000	90,000	62,000 [J]	<94,000	<97,000	<100,000	<97,000	<96,000	<97,000	42,000 [J]	36,000 [J]	<100,000
Thallium	NA	2,300	1,400 (X)	NLV	NLV	13,000,000	35,000	67 [J]	140	56 [J]	58 [J]	75 [J]	<130	130	61 [J]	61 [J]	38 [J]	43 [J]	86 [J]
Titanium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	270,000	170,000	220,000	220,000	200,000	83,000	330,000	200,000	190,000	200,000	230,000	83,000
Vanadium	NA	72,000	430,000	NLV	NLV	ID	750,000 (DD)	17,000	9,100	12,000	14,000	13,000	3,500	24,000	14,000	8,900	11,000	11,000	5,200
Zinc	47,000	2,400,000	230,000 (G)	NLV	NLV	ID	170,000,000	15,000	19,000	21,000	18,000	21,000	4,700	25,000	13,000	11,000	13,000	13,000	7,400 [B]

12/9/2018

	1	1	1	1	ī	ı	1	ī	Î	i	i	1	1	1	1			ī	1
Sample Location		Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-12	WV-SB-13	WV-SB-14	WV-SB-14	WV-SB-15	WV-SB-16	WV-SB-17	WV-SB-18	WV-SB-19	WV-SB-20	WV-SB-21	WV-SB-22
Sample Name	Statewide Default	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-12 (7-9)	WV-SB-13 (3-5)	WV-SB-14 (8-10)	WV-5B-14 (8-10)	WV-SB-15 (1-3)	WV-SB-16 (4-6)	WV-SB-17 (1-3)	WV-SB-18 (1-3)	WV-SB-19 (1-3)	WV-SB-20 (6-8)	WV-SB-21 (7-9)	WV-SB-22 (0-2)
Depth Interval (Feet below ground surface)	Background	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	7 - 9	3 - 5	8 - 10	8 - 10	1-3	4 - 6	1 - 3	1 - 3	1 - 3	6 - 8	7 - 9	0 - 2
Laboratory Sample ID(s)		Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI20083-014	TI25013-002	TI20083-007	TI20083-008	TI20083-010	TI20083-005	TI25013-015	TI25013-003	TI25013-005	TI25013-007	TI25013-010	TI25013-013
Sample Date			Interface		Inhalation			9/19/2018	9/24/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018
Parameter (µg/kg)																			
Aluminum	6,900,000	1,000	NA	NLV	NLV	ID	50,000,000 (DD)	3,500,000	8,600,000	6,600,000	6,000,000	22,000,000	1,300,000	3,500,000	4,200,000	2,600,000	4,400,000	8,500,000	9,500,000
Antimony	NA	4,300	1,200 (X)	NLV	NLV	13,000,000	180,000	<450	<500	250 [J]	<430	<490	<450	<520	<450	190 [J]	<480	<510	<430
Arsenic	5,800	4,600	4,600	NLV	NLV	720,000	7,600	2,100	3,100	2,400	2,200	4,700	570	660	1,600	830	2,700	2,400	2,500
Barium	75,000	1,300,000	660,000 (G)	NLV	NLV	330,000,000	37,000,000	8,200	32,000	21,000	20,000	60,000	4,400	17,000	14,000	6,200	20,000	28,000	30,000
Beryllium	NA	51,000	320,000 (G)	NLV	NLV	1,300,000	410,000	180	460	310	270	750	80 [J]	150	170	100	280	400	320
Boron	NA	10,000	80,000 (X)	NLV	NLV	ID	48,000,000 (DD)	7,400 [J]	2,900 [J]	4,600 [J]	4,500 [J]	13,000	2,400 [J]	<13,000	<12,000	<12,000	<13,000	<13,000	<11,000
Cadmium	1,200	6,000	3,000 (G,X)	NLV	NLV	1,700,000	550,000	27 [J]	36 [J]	<100	<110	29 [J]	<120	<130	25 [J]	<120	38 [J]	<130	21 [J]
Chromium, Total	18,000	NCL	NCL	NCL	NCL	NCL	NCL	8,000	17,000	8,300	7,400	24,000	2,900	5,800	6,800	4,900	7,500	12,000	12,000
Chromium VI	NA	30,000	3,300	NLV	NLV	260,000	2,500,000	<1,000	<1,100	<1,000	<1,000	<1,100	<1,100	<1,000	<1,100	<1,000	<1,000	<1,100	<1,100
Chromium III (Calculated: Total - Chromium	NA	1,000,000,000 (D)	100,0000,000 (G,X)	NLV	NLV	330,000,000	790,000,000	8,000	17,000	8,300	7,400	24,000	2,900	5,800	6,800	4,900	7,500	12,000	12,000
Cobalt	6,800	800	2,000	NLV	NLV	13,000,000	2,600,000	2,200	5,100	2,500	2,300	5,600	860 [J]	1,400	2,300	1,300	2,200	3,300	3,200
Copper	32,000	5,800,000	100,000 (G)	NLV	NLV	130,000,000	20,000,000	6,300	11,000	6,000	5,500	14,000	1,600	1,800	2,800	1,700	5,900	6,500	5,500
Iron	12,000,000	6,000	NA	NLV	NLV	ID	160,000,000	7,000,000	12,000,000	7,100,000	6,400,000	17,000,000	3,200,000	3,900,000	5,900,000	3,900,000	7,600,000	9,500,000	9,300,000
Lead	21,000	700,000	2,500,000 (G,X)	NLV	NLV	100,000,000	400,000	3,100	5,400	3,400	3,200	8,100	1,200	2,000	3,100	1,800	3,400	4,300	4,900
Magnesium	NA	8,000,000	NA	NLV	NLV	6,700,000,000	1,000,000,000 (D)	23,000,000	8,800,000	1,500,000	1,300,000	4,700,000	12,000,000	530,000	700,000	650,000	3,400,000	1,100,000	960,000
Mercury	130	1,700	50 (M)	48,000	52,000	20,000,000	160,000	<85	<89	<83	<81	34 [J]	<85	<84	<90	<82	<79	<88	<86
Molybdenum	NA	1,500	2,400 (X)	NLV	NLV	ID	2,600,000	<2,200	<2,500	<2,000	<2,100	<2,400	<2,300	<2,600	<2,300	<2,300	<2,400	<2,600	<2,100
Nickel	20,000	100,000	100,000 (G)	NLV	NLV	13,000,000	40,000,000	5,800	13,000	6,100	5,600	18,000	2,000	3,900	4,900	3,500	8,500	8,600	8,700
Selenium	410	4,000	400	NLV	NLV	130,000,000	2,600,000	<1,200	<1,300	<1,000	<1,100	<1,300	<1,200	<1,300	<1,200	<1,200	<1,300	<1,300	<1,100
Silver	1,000	4,500	100 (M)	NLV	NLV	6,700,000	2,500,000	<220	<250	<200	<210	<240	<230	<260	<230	<230	<240	<260	<210
Sodium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	33,000 [J]	36,000 [J]	<80,000	<85,000	<98,000	<90,000	<100,000	<90,000	<92,000	<97,000	<100,000	<86,000
Thallium	NA	2,300	1,400 (X)	NLV	NLV	13,000,000	35,000	34 [J]	120 [J]	68 [J]	49 [J]	150	<120	34 [J]	50 [J]	44 [J]	74 [J]	88 [J]	93 [J]
Titanium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	190,000	340,000	200,000	190,000	300,000	140,000	120,000	190,000	140,000	160,000	240,000	210,000
Vanadium	NA	72,000	430,000	NLV	NLV	ID	750,000 (DD)	11,000	23,000	13,000	12,000	31,000	5,900	7,700	12,000	8,200	13,000	18,000	19,000
Zinc	47,000	2,400,000	230,000 (G)	NLV	NLV	ID	170,000,000	13,000	24,000	14,000	12,000	28,000	5,300	10,000	11,000	7,300	17,000	18,000	18,000

											•			
Sample Location		Part 201 Generic	Part 201 Generic Groundwater	Part 201 Generic	Part 201 Generic Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-23	WV-SB-24	WV-SB-25	WV-SB-26	WV-SB-27	WV-SB-28	WV-SB-29
Sample Name	Statewide Default	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-23 (4-6)	WV-SB-24 (7-9)	WV-SB-25 (1-3)	WV-SB-26 (6-8)	WV-SB-27 (7-9)	WV-SB-28 (0-2)	WV-SB-29 (2-4)
Depth Interval (Feet below ground surface)	Background	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	4 - 6	7 - 9	1-3	6 - 8	7 - 9	0 - 2	2 - 4
Laboratory Sample ID(s)		Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI26013-009	TI26013-011	TI26013-012	TI26013-016	TI26013-006	TI26013-003	TI26013-014
Sample Date			Interface		Inhalation			9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/25/2018	9/25/2018	9/26/2018
Parameter (µg/kg)														
Aluminum	6,900,000	1,000	NA	NLV	NLV	ID	50,000,000 (DD)	18,000,000	11,000,000	7,900,000	3,400,000	9,500,000	8,600,000	15,000,000
Antimony	NA	4,300	1,200 (X)	NLV	NLV	13,000,000	180,000	<520	<550	<550	<550	<570	<510	<550
Arsenic	5,800	4,600	4,600	NLV	NLV	720,000	7,600	5,300	3,700	2,700	2,800	7,100	2,900	4,300
Barium	75,000	1,300,000	660,000 (G)	NLV	NLV	330,000,000	37,000,000	73,000	38,000	20,000	9,100	37,000	31,000	57,000
Beryllium	NA	51,000	320,000 (G)	NLV	NLV	1,300,000	410,000	130	100 [J]	84 [J]	55 [J]	97 [J]	74 [J]	130
Boron	NA	10,000	80,000 (X)	NLV	NLV	ID	48,000,000 (DD)	3,400 [J]	2,800 [J]	<14,000	<14,000	3,100 [J]	<13,000	3,600 [J]
Cadmium	1,200	6,000	3,000 (G,X)	NLV	NLV	1,700,000	550,000	44 [J]	<140	<140	39 [J]	34 [J]	47 [J]	34 [J]
Chromium, Total	18,000	NCL	NCL	NCL	NCL	NCL	NCL	26,000	17,000	13,000	260,000	16,000	12,000	21,000
Chromium VI	NA	30,000	3,300	NLV	NLV	260,000	2,500,000	<1,200	<1,100	<1,100	<1,100	<1,200	<1,100	<1,200
Chromium III (Calculated: Total - Chromium VI)	NA	1,000,000,000 (D)	100,0000,000 (G,X)	NLV	NLV	330,000,000	790,000,000	26,000	17,000	13,000	260,000	16,000	12,000	21,000
Cobalt	6,800	800	2,000	NLV	NLV	13,000,000	2,600,000	7,500	4,700	4,500	4,000	4,900	3,500	6,700
Copper	32,000	5,800,000	100,000 (G)	NLV	NLV	130,000,000	20,000,000	20,000 [B]	13,000 [B]	8,100 [B]	14,000 [B]	11,000 [B]	6,700 [B]	16,000 [B]
Iron	12,000,000	6,000	NA	NLV	NLV	ID	160,000,000	17,000,000	11,000,000	8,300,000	11,000,000	11,000,000	8,300,000	15,000,000
Lead	21,000	700,000	2,500,000 (G,X)	NLV	NLV	100,000,000	400,000	8,300	5,600	4,800	3,100	5,600	5,500	7,300
Magnesium	NA	8,000,000	NA	NLV	NLV	6,700,000,000	1,000,000,000 (D)	2,900,000	1,800,000	1,300,000	14,000,000	10,000,000	1,200,000	2,300,000
Mercury	130	1,700	50 (M)	48,000	52,000	20,000,000	160,000	23 [J]	<90	<90	<90	<89	<84	<91
Molybdenum	NA	1,500	2,400 (X)	NLV	NLV	ID	2,600,000	<2,600	<2,800	<2,700	120,000	<2,800	<2,600	<2,700
Nickel	20,000	100,000	100,000 (G)	NLV	NLV	13,000,000	40,000,000	20,000	13,000	8,500	18,000	14,000	9,400	18,000
Selenium	410	4,000	400	NLV	NLV	130,000,000	2,600,000	530 [J]	<1,400	<1,400	<1,400	<1,500	<1,300	540 [J]
Silver	1,000	4,500	100 (M)	NLV	NLV	6,700,000	2,500,000	<260	<280	<270	<270	<280	<260	<270
Sodium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	<100,000	<110,000	<110,000	51,000 [J]	70,000 [J]	<100,000	<110,000
Thallium	NA	2,300	1,400 (X)	NLV	NLV	13,000,000	35,000	160	130 [J]	69 [J]	36 [J]	130 [J]	100 [J]	140
Titanium	NCL	NCL	NCL	NCL	NCL	NCL	NCL	340,000	350,000	290,000	180,000	280,000	220,000	330,000
Vanadium	NA	72,000	430,000	NLV	NLV	ID	750,000 (DD)	37,000	25,000	21,000	25,000	26,000	18,000	31,000
Zinc	47,000	2,400,000	230,000 (G)	NLV	NLV	ID	170,000,000	37,000 [B]	24,000 [B]	17,000 [B]	12,000 [B]	23,000 [B]	21,000 [B]	33,000 [B]

SUMMARY OF SOIL SAMPLE ANALYSIS - General Chemistry Lamoraeux Farms Site Algoma Township, Kent County, Michigan

Sample Location	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic		WV-SB-01	WV-SB-02	WV-SB-03a	WV-SB-04	WV-SB-04	WV-SB-05	WV-SB-06	WV-SB-07	WV-SB-08	WV-SB-09	WV-SB-10	WV-SB-11
Sample Name	Residential Soil	Groundwater	Residential Soil	Residential Soil	Residential Soil	Part 201 Generic	WV-SB-01 (7-9)	WV-SB-02 (7-9)	WV-SB-03a (2-4)	WV-SB-04 (1-3)	WV-SB-04 (1-3)	WV-SB-05 (5-7)	WV-SB-06 (2-4)	WV-SB-07 (7-9)	WV-SB-08 (6-8)	WV-SB-09 (7-9)	WV-SB-10 (6-8)	WV-SB-11 (8-10)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Cleanup Criteria –	Cleanup Criteria – Infinite Source	Cleanup Criteria –	Residential Soil Cleanup Criteria –	7 - 9	7 - 9	2 - 4	1 - 3	1 - 3	5 - 7	2 - 4	7 - 9	6 - 8	7 - 9	6 - 8	8 - 10
Laboratory Sample ID(s)	Drinking Water	Surface Water	Soil Volatilization to	Volatile Soil	Particulate Soil	Direct Contact	19030-006 &	19030-001 &	1119030-008 &	19030-010 &	1119030-011 & 180911/0-07A	1119030-013 &	19001619 014	1119030-005 &	1119030-003 &	1120083-001 &	1120083-003 &	120013-001 & 18001603-01A
Sample Date	Protection	Interface	Indoor Air Inhalation	Inhalation	Inhalation		9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/24/2018	9/18/2018	9/18/2018	9/19/2018	9/19/2018	9/25/2018
Parameter (μg/kg)																		
Acetic Acid	84,000	180,000 (G)	NLV	NLV	17,000,000,000	130,000,000	<21,000	<20,000	<20,000	<20,000	<20,000	<20,000	<21,000	<22,000	<21,000	<19,000	<20,000	<18,000
Formic Acid	200,000	ID	1,500,000	210,000	130,000,000	320,000,000 (C)	<21,000	<20,000	<20,000	<20,000	<20,000	<20,000	<21,000	<22,000	<21,000	<19,000	<20,000	<18,000
Cyanide - Total	4,000	100	NLV	NLV	250,000	12,000	100 [BJ]	50 [BJ]	41 [BJ]	74 [BJ]	72 [BJ]	39 [BJ]	48 [BJ]	6.7 [BJ]	40 [BJ]	44 [BJ]	59 [BJ]	61 [BJ]
Cyanide, Available	NCL	NCL	NCL	NCL	NCL	NCL	<43	<41	<42	<42	<43	<41	62	<44	<43	<41	<44	<41
Ammonia - N (gas diffusion)	NCL	NCL	NCL	NCL	NCL	NCL	<1,100	<1,000	<1,100	<1,100	<1,100	<1,000	<1,100	<1,100	<1,100	<1,000	<1,100	<1,000
Nitrate-Nitrite - N (soluble)	NCL	NCL	NCL	NCL	NCL	NCL	270	250	140 [J]	300	250	190 [J]	210 [J]	220	170 [J]	300	310	<210
Nitrate-Nitrite - N + Ammonia - N (Calculated)	200,000 (N)	NCL	NCL	NCL	NCL	NCL	270	250	140	300	250	190	210	220	170	300	310	ND
Chloride (soluble)	5,000,000	1,000,000 (X)	NLV	NLV	ID	500,000 (F)	2,800 [J]	8,400 [J]	7,400 [J]	3,000 [J]	3,300 [J]	3,600 [J]	<11,000	3,000 [J]	3,500 [J]	4,300 [J]	4,500 [J]	3,000 [J]
Phosphorus	1,300,000	20,000 (EE)	NLV	NLV	67,000,000	1,000,000,000 (D)	59,000	160,000	260,000	210,000	140,000	48,000	260,000	76,000	110,000	170,000	210,000	47,000
Sulfate (soluble)	5,000,000	NA	NLV	NLV	ID	ID	<11,000	<10,000	<11,000	<11,000	<11,000	<10,000	<11,000	<11,000	<11,000	<10,000	<11,000	<10,000
Sulfide (Acid Soluble)	NCL	NCL	NCL	NCL	NCL	NCL	<110,000	<100,000	<110,000	<110,000	<110,000	<100,000	<110,000	<110,000	<110,000	<100,000	<110,000	<100,000

SUMMARY OF SOIL SAMPLE ANALYSIS - General Chemistry Lamoraeux Farms Site Algoma Township, Kent County, Michigan

Sample Location	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic		WV-SB-12	WV-SB-13	WV-SB-14	WV-SB-14	WV-SB-15	WV-SB-16	WV-SB-17	WV-SB-18	WV-SB-19	WV-SB-20	WV-SB-21	WV-SB-22
Sample Name	Residential Soil	Groundwater	Residential Soil	Residential Soil	Residential Soil	Part 201 Generic	WV-SB-12 (7-9)	WV-SB-13 (3-5)	WV-SB-14 (8-10)	WV-5B-14 (8-10)	WV-SB-15 (1-3)	WV-SB-16 (4-6)	WV-SB-17 (1-3)	WV-SB-18 (1-3)	WV-SB-19 (1-3)	WV-SB-20 (6-8)	WV-SB-21 (7-9)	WV-SB-22 (0-2)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Cleanup Criteria –	Cleanup Criteria – Infinite Source	Cleanup Criteria –	Residential Soil Cleanup Criteria –	7 - 9	3 - 5	8 - 10	8 - 10	1 - 3	4 - 6	1 - 3	1 - 3	1 - 3	6 - 8	7 - 9	0 - 2
Laboratory Sample ID(s)	Drinking Water	Surface Water	Soil Volatilization to	Volatile Soil	Particulate Soil	Direct Contact	1120083-014 &	1125013-002 &	19001269 044	1120083-008 &	1120083-010 & 18091268-06A	1120083-005 &	1125013-015 &	19001619 024	1125013-005 &	19001619 044	19001619 064	1125013-013 & 18001618-07A
Sample Date	Protection	Interface	Indoor Air Inhalation	Inhalation	Inhalation		9/19/2018	9/24/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018
Parameter (μg/kg)																		
Acetic Acid	84,000	180,000 (G)	NLV	NLV	17,000,000,000	130,000,000	<19,000	<21,000	<19,000	<20,000	<23,000	<20,000	<20,000	<21,000	<21,000	<19,000	<22,000	<20,000
Formic Acid	200,000	ID	1,500,000	210,000	130,000,000	320,000,000 (C)	<19,000	<21,000	<19,000	<20,000	<23,000	<20,000	<20,000	<21,000	<21,000	<19,000	<22,000	<20,000
Cyanide - Total	4,000	100	NLV	NLV	250,000	12,000	59 [BJ]	120 [BJ]	59 [BJ]	57 [BJ]	79 [BJ]	39 [BJ]	29 [BJ]	<130	51 [BJ]	67 [BJ]	61 [BJ]	78 [BJ]
Cyanide, Available	NCL	NCL	NCL	NCL	NCL	NCL	<41	<47	<41	<42	<45	<42	<40	85	<41	<41	<44	<44
Ammonia - N (gas diffusion)	NCL	NCL	NCL	NCL	NCL	NCL	<1,000	<1,100	<1,000	<1,000	<1,100	<1,100	<1,000	480 [BJ]	<1,000	<1,000	<1,100	520 [J]
Nitrate-Nitrite - N (soluble)	NCL	NCL	NCL	NCL	NCL	NCL	150 [J]	510	42 [J]	73 [J]	100 [J]	130 [J]	95 [J]	46 [J]	46 [J]	140 [J]	110 [J]	120 [J]
Nitrate-Nitrite - N + Ammonia - N (Calculated)	200,000 (N)	NCL	NCL	NCL	NCL	NCL	150	510	42	73	100	130	95	530	46	140	110	640
Chloride (soluble)	5,000,000	1,000,000 (X)	NLV	NLV	ID	500,000 (F)	2,700 [J]	2,200 [J]	<10,000	<10,000	<11,000	2,400 [J]	<10,000	<11,000	<10,000	<10,000	<11,000	<11,000
Phosphorus	1,300,000	20,000 (EE)	NLV	NLV	67,000,000	1,000,000,000 (D)	170,000	160,000	75,000	88,000	140,000	100,000	180,000	140,000	95,000	100,000	92,000	100,000
Sulfate (soluble)	5,000,000	NA	NLV	NLV	ID	ID	<10,000	<11,000	<10,000	<10,000	<11,000	<11,000	<10,000	<11,000	<10,000	<10,000	<11,000	<11,000
Sulfide (Acid Soluble)	NCL	NCL	NCL	NCL	NCL	NCL	<110,000	<120,000	<100,000	<110,000	<120,000	<110,000	<100,000	<110,000	<110,000	<100,000	<110,000	<110,000

SUMMARY OF SOIL SAMPLE ANALYSIS - General Chemistry Lamoraeux Farms Site Algoma Township, Kent County, Michigan

Sample Location	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic		WV-SB-23	WV-SB-24	WV-SB-25	WV-SB-26	WV-SB-27	WV-SB-28	WV-SB-29
Sample Name	Residential Soil	Groundwater	Residential Soil	Residential Soil	Residential Soil	Part 201 Generic	WV-SB-23 (4-6)	WV-SB-24 (7-9)	WV-SB-25 (1-3)	WV-SB-26 (6-8)	WV-SB-27 (7-9)	WV-SB-28 (0-2)	WV-SB-29 (2-4)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Cleanup Criteria –	Cleanup Criteria – Infinite Source	Cleanup Criteria –	Residential Soil Cleanup Criteria –	4 - 6	7 - 9	1-3	6 - 8	7 - 9	0 - 2	2 - 4
Laboratory Sample ID(s)	Drinking Water	Surface Water	Soil Volatilization to	Volatile Soil	Particulate Soil	Direct Contact	1126013-009 & 18001808-01A	120013-011 & 12001202-024	190013-012 &	1120013-016 & 18001808-05A	1126013-006 & 18001603-03A	1120013-003 & 18001603-03A	1125013-014 & 18091808-04A
Sample Date	Protection	Interface	Indoor Air Inhalation	Inhalation	Inhalation		9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/25/2018	9/25/2018	9/26/2018
Parameter (µg/kg)													
Acetic Acid	84,000	180,000 (G)	NLV	NLV	17,000,000,000	130,000,000	<21,000	<20,000	<22,000	<21,000	<21,000	<20,000	<21,000
Formic Acid	200,000	ID	1,500,000	210,000	130,000,000	320,000,000 (C)	<21,000	<20,000	<22,000	<21,000	<21,000	<20,000	<21,000
Cyanide - Total	4,000	100	NLV	NLV	250,000	12,000	83 [BJ]	90 [BJ]	47 [BJ]	60 [BJ]	42 [BJ]	100 [BJ]	71 [BJ]
Cyanide, Available	NCL	NCL	NCL	NCL	NCL	NCL	<46	<44	<44	<41	<44	56	<44
Ammonia - N (gas diffusion)	NCL	NCL	NCL	NCL	NCL	NCL	<1,200	<1,100	<1,100	<1,100	<1,200	540 [J]	<1,200
Nitrate-Nitrite - N (soluble)	NCL	NCL	NCL	NCL	NCL	NCL	84 [J]	400	500	220	91 [J]	170 [J]	650
Nitrate-Nitrite - N + Ammonia - N (Calculated)	200,000 (N)	NCL	NCL	NCL	NCL	NCL	84	400	500	220	91	710	650
Chloride (soluble)	5,000,000	1,000,000 (X)	NLV	NLV	ID	500,000 (F)	3,400 [J]	<11,000	<11,000	3,300 [J]	3,700 [J]	2,900 [J]	<12,000
Phosphorus	1,300,000	20,000 (EE)	NLV	NLV	67,000,000	1,000,000,000 (D)	320,000	510,000	110,000	110,000	380,000	210,000	130,000
Sulfate (soluble)	5,000,000	NA	NLV	NLV	ID	ID	<12,000	<11,000	<11,000	<11,000	14,000	<11,000	<12,000
Sulfide (Acid Soluble)	NCL	NCL	NCL	NCL	NCL	NCL	<120,000	<110,000	<110,000	<100,000	<110,000	<110,000	<110,000

Cample Legation	1	Part 201 Generic		Part 201 Generic	ı	ı	WV-SB-01	WV-SB-01	WV-SB-02	WV-SB-02	WV-SB-03a	WV-SB-03a	WV-SB-04	WV-SB-04	WV-SB-04	WV-SB-05	WV-SB-05	WV-SB-06
Sample Location	Part 201 Generic	Groundwater	Part 201 Generic	Residential Soil	Part 201 Generic	Part 201 Generic		+						WV-5B-04 WV-5B-04 (1-				
Sample Name	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-01 (7-9)	WV-SB-01 (16-18)	WV-SB-02 (7-9)	WV-SB-02 (12-14)	· · · · ·	WV-SB-032 (17-19)	WV-SB-04 (1-3)	3/D11b	WV-SB-04 (11-13)	WV-SB-05 (5-7)	WV-SB-05 (15-17)	WV-SB-06 (2-4)
Depth Interval (Feet below ground surface)	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	7 - 9	16 - 18	7 - 9	12 - 14	2 - 4	17 - 19	1 - 3	1 - 3	11 - 13	5 - 7	15 - 17	2 - 4
Laboratory Sample ID(s)	Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI19030-006	TI19030-007	TI19030-001	TI19030-002	TI19030-008	TI19030-009	TI19030-010	TI19030-011	TI19030-012	TI19030-013	TI19030-014	TI25013-001
Sample Date		Interface		Inhalation			9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/24/2018
Parameter (μg/kg)	1																	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<10	<9.9	<10	<10	<8.9	<9.5	<11	<10	<10	<9.8	<11	<10
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<10	<9.9	<10	<10	<8.9	<9.5	<11	<10	<10	<9.8	<11	<10
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.1	<2	<2	<2.1	<1.8	<1.9	<2.2	<2	<2	<2	<2.2	<2.1
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.1	<2	<2	<2.1	<1.8	<1.9	<2.2	<2	<2	<2	<2.2	<2.1
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorooctanoic acid (PFOA)	NCL	350 (X)	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2
Perfluorooctane sulfonic acid (PFOS)	NCL	0.22 (X)	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	7.1	6.4	<5.1	<4.9	<5.6	<5.2
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.1	<4.9	<5	<5.2	<4.5	<4.8	<5.6	<5.1	<5.1	<4.9	<5.6	<5.2

Sample Location		Part 201 Generic		Part 201 Generic			WV-SB-06	WV-SB-07	WV-SB-07	WV-SB-08	WV-SB-08	WV-SB-09	WV-SB-09	WV-SB-10	WV-SB-10	WV-SB-11	WV-SB-11	WV-SB-12
Sample Name	Part 201 Generic	Groundwater	Part 201 Generic	Residential Soil	Part 201 Generic	Part 201 Generic	WV-SB-06 (10-12)	WV-SB-07 (7-9)	WV-SB-07 (13-15)	WV-SB-08 (6-8)	WV-SB-08 (14-16)	WV-SB-09 (7-9)	WV-SB-09 (17-19)	WV-SB-10 (6-8)	WV-SB-10 (16-18)	WV-SB-11 (8-10)		WV-SB-12 (7-9)
Depth Interval (Feet below ground surface)	Residential Soil Cleanup Criteria –	Cleanup Criteria –	Residential Soil Cleanup Criteria –	Cleanup Criteria –	Residential Soil Cleanup Criteria –	Residential Soil	10 - 12	7 - 9	13 - 15	6 - 8	14 - 16	7 - 9	17 - 19	6 - 8	16 - 18	8 - 10	16 - 18	7 - 9
	Drinking Water	Groundwater	Soil Volatilization to	Infinite Source	Particulate Soil	Cleanup Criteria –	TI20083-012	7 - 9 TI19030-005	TI19030-016	TI19030-003	TI19030-004	7 - 9 TI20083-001	TI20083-002	TI20083-003	TI20083-004	8 - 10 TI26013-001	TI26013-002	7 - 9 TI20083-014
Laboratory Sample ID(s) Sample Date	Protection	Surface Water Interface	Indoor Air Inhalation	Volatile Soil Inhalation	Inhalation	Direct Contact	9/19/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/25/2018	9/25/2018	9/19/2018
Parameter (µg/kg)		interrace	+	innalation			9/19/2018	9/18/2018	9/18/2018	9/18/2018	9/18/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/25/2018	9/25/2018	9/19/2018
11 67 67	NG	NC	NC	NC	NG	NC	-4.4	.4.4	-44	.0.6	.0.0	.0.0	.44	.4.4	.0.7	.10	:10	-44
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<11	<11	<11	<9.6	<9.9	<9.9	<11	<11	<9.7	<10	<10	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<11	<11	<11	<9.6	<9.9	<9.9	<11	<11	<9.7	<10	<10	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.3	<2.2	<2.1	<1.9	<2	<2	<2.2	<2.2	<1.9	<2.1	<2.1	<2.1
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.3	<2.2	<2.1	<1.9	<2	<2	<2.2	<2.2	<1.9	<2.1	<2.1	<2.1
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorooctanoic acid (PFOA)	NCL	350 (X)	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluorooctane sulfonic acid (PFOS)	NCL	0.22 (X)	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.6	<5.6	<5.3	<4.8	<5	<5	<5.4	<5.6	<4.9	<5.2	<5.2	<5.3

Sample Location		Part 201 Generic	T T	Part 201 Generic	1	1	WV-SB-12	WV-SB-13	WV-SB-13	WV-SB-14	WV-SB-14	WV-SB-14	WV-SB-15	WV-SB-15	WV-SB-16	WV-SB-16	WV-SB-17	WV-SB-17
•	Part 201 Generic	Groundwater	Part 201 Generic	Residential Soil	Part 201 Generic	Part 201 Generic					WV-5B-14 (8-10)	-						
Sample Name	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-12 (14-16)	WV-SB-13 (3-5)	WV-SB-13 (15-17)	WV-SB-14 (8-10)	DIID	WV-SB-14 (12-14)	WV-SB-15 (1-3)	WV-SB-15 (18-20)	WV-SB-16 (4-6)	WV-SB-16 (14-16)	WV-SB-17 (1-3)	WV-SB-17 (18-20)
Depth Interval (Feet below ground surface)	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	14 - 16	3 - 5	15 - 17	8 - 10	8 - 10	12 - 14	1 - 3	18 - 20	4 - 6	14 - 16	1 - 3	18 - 20
Laboratory Sample ID(s)	Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI25013-009	TI25013-002	TI20083-013	TI20083-007	TI20083-008	TI20083-009	TI20083-010	TI20083-011	TI20083-005	TI20083-006	TI25013-015	TI26013-005
Sample Date		Interface		Inhalation			9/24/2018	9/24/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/24/2018	9/25/2018
Parameter (μg/kg)																		
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<9.7	<9.7	<10	<9.2	<9.8	<11	<11	<10	<10	<8.9	<10	<9.4
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<9.7	<9.7	<10	<9.2	<9.8	<11	<11	<10	<10	<8.9	<10	<9.4
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<1.9	<1.9	<2	<1.8	<2	<2.2	<2.1	<2.1	<2	<1.8	<2.1	<1.9
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<1.9	<1.9	<2	<1.8	<2	<2.2	<2.1	<2.1	<2	<1.8	<2.1	<1.9
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorooctanoic acid (PFOA)	NCL	350 (X)	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluorooctane sulfonic acid (PFOS)	NCL	0.22 (X)	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	<4.8	<4.8	<5	<4.6	<4.9	<5.5	<5.3	<5.2	<5.1	<4.4	<5.2	<4.7

Sample Location		Part 201 Generic	T T	Part 201 Generic	I	I	WV-SB-18	WV-SB-18	WV-SB-19	WV-SB-19	WV-SB-20	WV-SB-20	WV-SB-21	WV-SB-21	WV-SB-21	WV-SB-22	WV-SB-22	WV-SB-23
'	Part 201 Generic	Groundwater	Part 201 Generic	Residential Soil	Part 201 Generic	Part 201 Generic									MA-28-51 (15-		-	+
Sample Name	Residential Soil	Cleanup Criteria –	Residential Soil	Cleanup Criteria –	Residential Soil	Residential Soil	WV-SB-18 (1-3)	WV-SB-18 (11-13)	WV-SB-19 (1-3)	WV-SB-19 (18-20)	WV-SB-20 (6-8)	WV-SB-20 (11-13)	WV-SB-21 (7-9)	WV-SB-21 (12-14)	14\DLIP	WV-SB-22 (0-2)	WV-SB-22 (13-15)	WV-SB-23 (4-6)
Depth Interval (Feet below ground surface)	Cleanup Criteria – Drinking Water	Groundwater	Cleanup Criteria – Soil Volatilization to	Infinite Source	Cleanup Criteria – Particulate Soil	Cleanup Criteria –	1 - 3	11 - 13	1 - 3	18 - 20	6 - 8	11 - 13	7 - 9	12 - 14	12 - 14	0 - 2	13 - 15	4 - 6
Laboratory Sample ID(s)	Protection	Surface Water	Indoor Air Inhalation	Volatile Soil	Inhalation	Direct Contact	TI25013-003	TI25013-004	TI25013-005	TI25013-006	TI25013-007	TI25013-008	TI25013-010	TI25013-011	TI25013-012	TI25013-013	TI25013-014	TI26013-009
Sample Date		Interface		Inhalation			9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/26/2018
Parameter (μg/kg)																		
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<10	<11	<10	<10	<9.6	<9.7	<10	<10	<10	<11	<11	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<10	<11	<10	<10	<9.6	<9.7	<10	<10	<10	<11	<11	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2	<2.1	<2.1	<2.1	<1.9	<1.9	<2	<2	<2.1	<2.3	<2.1	<2.2
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2	<2.1	<2.1	<2.1	<1.9	<1.9	<2	<2	<2.1	<2.3	<2.1	<2.2
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorooctanoic acid (PFOA)	NCL	350 (X)	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluorooctane sulfonic acid (PFOS)	NCL	0.22 (X)	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5	<5.3	<5.2	<5.2	<4.8	<4.8	<5.1	<5	<5.2	<5.7	<5.4	<5.5

Sample Location	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic		WV-SB-23	WV-SB-24	WV-SB-24	WV-SB-25	WV-SB-25	WV-SB-26	WV-SB-26	WV-SB-27	WV-SB-27	WV-SB-28	WV-SB-28	WV-SB-29
Sample Name	Residential Soil	Groundwater	Residential Soil	Residential Soil	Residential Soil	Part 201 Generic	WV-SB-23 (15-17)	WV-SB-24 (7-9)	WV-SB-24 (12-14)	WV-SB-25 (1-3)	WV-SB-25 (13-15)	WV-SB-26 (6-8)	WV-SB-26 (18-20)	WV-SB-27 (7-9)	WV-SB-27 (13-15)	WV-SB-28 (0-2)	WV-SB-28 (15-17)	WV-SB-29 (2-4)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Cleanup Criteria –	Cleanup Criteria – Infinite Source	Cleanup Criteria –	Residential Soil	15 - 17	7 - 9	12 - 14	1-3	13 - 15	6 - 8	18 - 20	7 - 9	13 - 15	0 - 2	15 - 17	2 - 4
Laboratory Sample ID(s)	Drinking Water	Surface Water	Soil Volatilization to	Volatile Source	Particulate Soil	Cleanup Criteria – Direct Contact	TI26013-010	TI26013-011	TI26013-018	TI26013-012	TI26013-013	TI26013-016	TI26013-017	TI26013-006	TI26013-007	TI26013-003	TI26013-004	TI26013-014
Sample Date	Protection	Interface	Indoor Air Inhalation	Inhalation	Inhalation	Direct contact	9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/25/2018	9/25/2018	9/25/2018	9/25/2018	9/26/2018
Parameter (μg/kg)																		
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<11	<10	<11	<10	<11	<11	<9.6	<11	<9.5	<11	<11	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<11	16	<11	<10	<11	<11	<9.6	<11	<9.5	<11	<11	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.2	<2.1	<2.1	<2	<2.1	<2.2	<1.9	<2.2	<1.9	<2.2	<2.3	<2.2
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.2	<2.1	<2.1	<2	<2.1	<2.2	<1.9	<2.2	<1.9	<2.2	<2.3	<2.2
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorooctanoic acid (PFOA)	NCL	350 (X)	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluorooctane sulfonic acid (PFOS)	NCL	0.22 (X)	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.4	<5.1	<5.4	<5	<5.3	<5.4	<4.8	<5.6	<4.7	<5.5	<5.6	<5.6

TABLE 5

SUMMARY OF SOIL SAMPLE ANALYSIS - PFAS Lamoraeux Farms Site

Algoma Township, Kent County, Michigan

16.0062677.81 Page 18 of 19 See After Table 5 For Notes 12/9/2018

Sample Location	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic	Part 201 Generic		WV-SB-29
Sample Name	Residential Soil	Groundwater	Residential Soil	Residential Soil	Residential Soil	Part 201 Generic	WV-SB-29 (12-14)
Depth Interval (Feet below ground surface)	Cleanup Criteria –	Cleanup Criteria – Groundwater	Cleanup Criteria –	Cleanup Criteria – Infinite Source	Cleanup Criteria –	Residential Soil Cleanup Criteria –	12 - 14
Laboratory Sample ID(s)	Drinking Water	Surface Water	Soil Volatilization to	Volatile Soil	Particulate Soil	Direct Contact	TI26013-015
Sample Date	Protection	Interface	Indoor Air Inhalation	Inhalation	Inhalation		9/26/2018
Parameter (μg/kg)							
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<11
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NCL	NCL	NCL	NCL	NCL	NCL	<11
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.1
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<2.1
Perfluorobutane sulfonic acid (PFBS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorodecane sulfonic acid (PFDS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluoroheptane sulfonic acid (PFHpS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorononane sulfonic acid (PFNS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorooctane sulfonamide (FOSA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluoropentane sulfonic acid (PFPeS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorohexane sulfonic acid (PFHxS)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorobutanoic acid (PFBA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorodecanoic acid (PFDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorododecanoic acid (PFDoDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluoroheptanoic acid (PFHpA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorohexanoic acid (PFHxA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorononanoic acid (PFNA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorooctanoic acid (PFOA)	NCL	350 (X)	NCL	NCL	NCL	NCL	<5.3
Perfluoropentanoic acid (PFPeA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorotetradecanoic acid (PFTeDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorotridecanoic acid (PFTrDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3
Perfluorooctane sulfonic acid (PFOS)	NCL	0.22 (X)	NCL	NCL	NCL	NCL	<5.3
Perfluoroundecanoic acid (PFUnDA)	NCL	NCL	NCL	NCL	NCL	NCL	<5.3

NOTES:

- 1. Concentration and criteria units are micrograms per kilogram (µg/kg) or parts per billion (ppb). Calculated criteria and concentrations are rounded to two significant digits and "ND" indicates the parameters used in the calculation were not detected.
- 2. Michigan Part 201 Groundwater Cleanup Criteria are based on "Table 2, Soil: Residential Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Tier I Risk Based Screening Levels,"

Michigan Administrative Code, Cleanup Criteria Requirements for Response Activity, Rules 299.46 and 299.49, effective December 30, 2013; updated June 25, 2018.

Abbreviations Include:

"ID" indicates insufficient data to develop criterion.

"NA" indicates a criterion or value is not available or, in the case of background, not applicable.

"NCL" indicates no criterion listed in MDEQ Table 2.

"NLL" indicates the substance is not likely to leach under most soil conditions.

"NLV" indicates the substance is not likely to volatilize under most conditions.

- (B) Background, as defined in R 299.1(b), may be substituted if higher than the calculated cleanup criterion. Background levels may be less than criteria for some inorganic compounds.
- (C) The criterion developed under R 299.20 to R 299.26 exceeds the chemical-specific soil saturation screening level (Cat).
- (D) The calculated criterion exceeds 100 percent, hence it is reduced to 100 percent or 1.0E+9 ppb.
- (F) Criterion is based on adverse impacts to plant life and phytotoxicity.
- (G) Groundwater surface water interface protection (GSIP) criterion depends on the pH or water hardness, or both, of the receiving surface water.

MDEQ's Footnote (G) GSI/GSIPC Calculation spreadsheet was utilized to calculate GSI criterion presented. The Rogue River is the receiving surface water for the Site. Hardness (220 mg CaCQ/L) and pH (7.5 standard units) used in the calculations were the lowest (most-conservative) of the calculated mean and median of the Rogue River surface water samples (TA-SW-01, TA-SW-02, TA-SW-05, and TA-SW-07) collected in Rockford rounded to two significant digits and water hardness or pH for the Rogue River near Rockford published in United States Geological Survey Circular 323, "Water Resources of the Grand Rapids Area, Michigan," Table 1, 1954.

- (M) Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the target detection limit.
- (N) Where leaching to groundwater is a relevant pathway, soil concentrations of all potential sources of nitrate-nitrogen (e.g., ammonia-N, nitrite-N, nitrate-N) shall not, when added together, exceed the nitrate drinking water protection criterion of 2.0E+5µg/kg.
- (P) Total cyanide methods or method OIA-1677 shall be used to quantify cyanide concentrations for compliance with soil criteria.
- (W) Concentrations of trihalomethanes in groundwater shall be added together to determine compliance with the drinking water protection criterion of 1,600 µg/kg.
- (X) Soil GSI protection criteria based on the human drinking water value (HDV) shall be as listed in the table in this footnote, except for those values with an asterisk. Soil GSI protection criteria for compounds with an asterisk shall be the greater of 20 times the GSI criterion or the GSI soil-water partition values using the GSI criteria developed with the procedure described in this footnote.
- (DD) Residential direct contact criteria are protective of both prenatal and postnatal exposure.
- (EE) The applicable GSI criteria for phosphorus is 1,000 µg/L. The footnote does not specify a GSIP criterion, however, the GSIP for phosphorus refers to Footnote EE. Conservatively, a value of 20 times the GSI criterion (20,000µg/kg) was used.
- 3. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the Michigan Part 201 Soil Cleanup Criteria. For metals, bold, italic number indicates that the parameter was detected at a concentration greater than both the statewide default background, if available, and the most-restrictive Michigan Part 201 Cleanup Criteria in accordance with Footnote B.
- 4 Abbreviations include:
- "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.
- "DUP" indicates a duplicate sample.
- "B" indicates the parameter was also detected in the method blank.
- "J" indicates the parameter was detected at a concentration greater than the limit of quantitation (LOQ) but less than the detection limit (DL) and the result is estimated.

TABLE 6

SUMMARY OF SOIL SAMPLE ANALYSIS - TCLP METALS Lamoraeux Farms Site Algoma Township, Kent County, Michigan

16.0062677.81 Page 1 of 1 See After Table 6 For Notes 12/9/2018

Sample Location		WV-SB-26
Sample Name	RCRA Maximum	WV-SB-26(6-8)
Depth Interval (Feet below ground surface)	Concentration	6 - 8
Laboratory Sample ID(s)		TI26013-016
Sample Date		09/26/2018
Parameter (μg/L)		
Chromium	5,000	<100

NOTES:

- 1. Concentration and criteria units are micrograms per Liter ($\mu g/L$) or parts per billion (ppb).
- 2. RCRA Maximum Concentration criteria are based on "Table 1, Maximum Concentration of Contaminants for the Toxicity Characteristic," 40 CFR 261.24, last amended March 13, 2002.
- 3. Bold, italic number with thick line border or italic parameter name indicates that parameter was detected above the RCRA Maximum Concentration.
- 4. Abbreviations include:
- "< RL" indicates the parameter was analyzed for but not detected above the method detection limit; RL = Reporting Limit.

TABLE 7 SUMMARY OF GROUNDWATER SAMPLE ANALYSIS - METALS Wolven Study Area Algoma Township, Kent County, Michigan

				•		•										•	
Location	Part 201 Generic	Part 201 Generic Groundwater	MW-WV-1	MW-WV-2D	MW-WV-2S	MW-WV-3D	MW-WV-3D	MW-WV-3S	MW-WV-4	MW-WV-5D	MW-WV-5S	MW-WV-6D	MW-WV-6S	MW-WV-8D	MW-WV-8M	MW-WV-8S	MW-WV-9
Sample Name	Residential Groundwater	Cleanup Criteria - Groundwater	MW-WV-1	MW-WV-2D	MW-WV-2S	MW-WV-3D	MW-WV-3D (DUP)	MW-WV-3S	MW-WV-4	MW-WV-5D	MW-WV-5S	MW-WV-6D	MW-WV-6S	MW-WV-8D	MW-WV-8M	MW-WV-8S	MW-WV-9
Laboratory Sample ID	Cleanup Criteria -	Surface Water	TC30010-002	TC30010-009	TC30010-005	TC30010-008	TC30010-006	TC30010-007	TE25018-002	TC30010-001	TC30010-003	TD28005-001	TD28005-002	TG07028-003	TG07028-002	TG07028-001	TG07028-004
Sample Date	Drinking Water Uses	Interface	03/28/2018	03/29/2018	03/29/2018	03/29/2018	03/29/2018	03/29/2018	05/23/2018	03/28/2018	03/28/2018	04/25/2018	04/25/2018	07/05/2018	07/05/2018	07/05/2018	07/05/2018
Parameter (μg/L)																	
Aluminum	50	NA	530	72	87	71	140	650	410	55	<40	57	40	96	49	43	1,300
Antimony	6	130	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic	10	10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2.9	<2	<2	<2
Barium	2,000	NA	190	97	42	25	25	50	86	24	22	93	23	62	88	17	73
Beryllium	4	NA	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Cadmium	5	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	NA	NA	87,000	120,000	86,000	74,000	69,000	16,000	49,000	96,000	99,000	61,000	61,000	46,000	150,000	99,000	66,000
Chromium	NA	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cobalt	40	100	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Copper	1,000	NA	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Iron	300	NA	1,600	480	230	230	400	3,600	690	250	200	360	110	260	500	360	1,500
Lead	4	NA	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Magnesium	400,000	NA	33,000	30,000	27,000	24,000	22,000	6,300	16,000	30,000	30,000	32,000	17,000	16,000	49,000	30,000	27,000
Mercury	2	0.0013	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	73	3,200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	12	<10	<10	13
Nickel	100	NA	<5	8.9	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Potassium	NA	NA	2,300	3,800	2,400	1,100	1,100	1,700	1,500	1,400	1,300	4,200	2,000	5,900	2,000	1,500	4,700
Selenium	50	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Silver	34	0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sodium	NA	NA	17,000	12,000	31,000	25,000	23,000	9,500	10,000	33,000	24,000	210,000	290,000	15,000	230,000	67,000	8,900
Thallium	2	3.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vanadium	4.5	27	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Zinc	2,400	NA	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

TABLE 8SUMMARY OF GROUNDWATER ANALYTICAL DATA - PFAS

AL DATA - PFAS
lichigan

Wolven Study Area Algoma Township, Kent County, Michigan

				1		1							
LOCATION			MW-WV-1	MW-WV-2D	MW-WV-2S	MW-WV-3D	MW-WV-3D	MW-WV-3S	MW-WV-4	MW-WV-5D	MW-WV-5S	MW-WV-6D	MW-WV-6S
SAMPLE NAME	PART 201 GENERIC RESIDENTIAL GROUNDWATER CLEANUP	PART 201 GENERIC GROUNDWATER CLEANUP	MW-WV-1	MW-WV-2D	MW-WV-2S	MW-WV-3D	MW-WV-3D (DUP)	MW-WV-3S	MW-WV-4	MW-WV-5D	MW-WV-5S	MW-WV-6D	MW-WV-6S
LB ID	CRITERIA - DRINKING WATER	CRITERIA - GROUNDWATER SURFACE WATER INTERFACE	TC30012-002	TC30012-006	TC30012-010	TC30012-008	TC30012-011	TC30012-009	TE25018-002	TC30012-004	TC30012-003	TD12014-001	TD12014-003
SAMPLE DATE		007.02 1771.2.1.177.27.02	03/28/2018	03/29/2018	03/29/2018	03/29/2018	03/29/2018	03/29/2018	05/23/2018	03/28/2018	03/28/2018	04/11/2018	04/11/2018
Parameter (ng/l)													
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NA	NA	<7	<7.2	<7.4	<7.5	<7.5	<7	<3.5	<7.2	<7.1	<7.5	<7.3
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NA	NA	<7	<7.2	<7.4	<7.5	<7.5	<7	<3.5	<7.2	<7.1	<7.5	<7.3
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NA	NA	<7	<7.2	<7.4	<7.5	<7.5	<7	<3.5	<7.2	<7.1	<7.5	<7.3
N-Ethyl perfluorooctane sulfonamidoethanol	NA	NA											
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NA	NA	<14	<14	<15	<15	<15	<14	<7	<14	<14	<15	<15
N-Methyl perfluorooctane sulfonamidoethanol	NA	NA											
Perfluorobutane sulfonic acid (PFBS)	NA	NA	46	56	17	6.4	6.6	4.9	<3.5	8.3	6	18	7.8
Perfluorobutanoic acid (PFBA)	NA	NA	31	26	11	<3.7	<3.8	5.3 Q	<3.5	<3.6	<3.6	5	<3.6
Perfluorodecane sulfonic acid (PFDS)	NA	NA	<3.5	<3.6	<3.7	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorodecanoic acid (PFDA)	NA	NA	<3.5	<3.6	<3.7	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorododecanoic acid (PFDoDA)	NA	NA	<3.5	<3.6	<3.7	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluoroheptane sulfonic acid (PFHpS)	NA	NA	230	15	74	<3.7	<3.8	9.2	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluoroheptanoic acid (PFHpA)	NA	NA	250	150	33	<3.7	<3.8	11	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorohexane sulfonic acid (PFHxS)	NA	NA	1,100	350	80	4.2	4.7	23	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorohexanoic acid (PFHxA)	NA	NA	100	81	23	<3.7	<3.8	6.1	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorononanoic acid (PFNA)	NA	NA	15	<3.6	5.8	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorooctane sulfonamide (FOSA)	NA	NA	<7	<7.2	<7.4	<7.5	<7.5	<7	<3.5	<7.2	<7.1	<7.5	<7.3
Perfluorooctane sulfonic acid (PFOS)	70	12	7,300	64	3,200	<3.7	<3.8	230	<3.5	<3.6	<3.6	<3.8	4.8
Perfluorooctanoic acid (PFOA)	70	12,000.00	3,300	970	320	<3.7	<3.8	93	<1.7	<3.6	<3.6	<3.8	6.9
Perfluoropentanoic acid (PFPeA)	NA	NA	39	33	14	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorotetradecanoic acid (PFTeDA)	NA	NA	<7	<7.2	<7.4	<7.5	<7.5	<7	<3.5	<7.2	<7.1	<7.5	<7.3
Perfluorotridecanoic acid (PFTrDA)	NA	NA	<3.5	<3.6	<3.7	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluoroundecanoic acid (PFUnDA)	NA	NA	<3.5	<3.6	<3.7	<3.7	<3.8	<3.5	<3.5	<3.6	<3.6	<3.8	<3.6
Perfluorononane sulfonic acid (PFNS)	NA	NA	<7	<7.2	<7.4	<7.5	<7.5	<7	<7	<7.2	<7.1	<7.5	<7.3
Perfluoropentane sulfonic acid (PFPeS)	NA	NA	140	140	18	<3.7	<3.8	5	<3.5	<3.6	<3.6	<3.8	<3.6

16.0062776.81

See After Table 8 For Notes

Page 2 of 4

12/9/2018

TABLE 8

SUMMARY OF GROUNDWATER ANALYTICAL DATA - PFAS

Wolven Study Area

Algoma Township, Kent County, Michigan

16.0062776.81 Page 3 of 4 See After Table 8 For Notes 12/9/2018

LOCATION			MW-WV-8D	MW-WV-8M	MW-WV-8S	MW-WV-9
SAMPLE NAME	PART 201 GENERIC RESIDENTIAL	PART 201 GENERIC GROUNDWATER CLEANUP	MW-WV-8D	MW-WV-8M	MW-WV-8S	MW-WV-9
LB ID	GROUNDWATER CLEANUP CRITERIA - DRINKING WATER	CRITERIA - GROUNDWATER	TG07028-003	TG07028-002	TG07028-001	TG07028-004
SAMPLE DATE		SURFACE WATER INTERFACE	07/05/2018	07/05/2018	07/05/2018	07/05/2018
Parameter (ng/l)						
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	NA	NA	<3.5	<3.5	<3.5	<3.5
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	NA	NA	<3.5	<3.5	<3.5	<3.5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	NA	NA	<3.5	<3.5	<3.5	<3.5
N-Ethyl perfluorooctane sulfonamidoethanol	NA	NA				
N-Methyl perfluorooctane sulfonamide (MeFOSA)	NA	NA	<6.9	<7	<6.9	<7
N-Methyl perfluorooctane sulfonamidoethanol	NA	NA				
Perfluorobutane sulfonic acid (PFBS)	NA	NA	<3.5	73	18	11
Perfluorobutanoic acid (PFBA)	NA	NA	<3.5	8.5	6	6.3
Perfluorodecane sulfonic acid (PFDS)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluorodecanoic acid (PFDA)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluorododecanoic acid (PFDoDA)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluoroheptane sulfonic acid (PFHpS)	NA	NA	<3.5	<3.5	<3.5	26
Perfluoroheptanoic acid (PFHpA)	NA	NA	<3.5	4.2	5.1	40
Perfluorohexane sulfonic acid (PFHxS)	NA	NA	<3.5	10	16	110
Perfluorohexanoic acid (PFHxA)	NA	NA	<3.5	8.7	4.5	19
Perfluorononanoic acid (PFNA)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluorooctane sulfonamide (FOSA)	NA	NA	<3.5	<3.5	<3.5	31
Perfluorooctane sulfonic acid (PFOS)	70	12	<3.5	4.5	42	590
Perfluorooctanoic acid (PFOA)	70	12,000.00	4.8	28	50	470
Perfluoropentanoic acid (PFPeA)	NA	NA	<3.5	8.1	<3.5	7.1
Perfluorotetradecanoic acid (PFTeDA)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluorotridecanoic acid (PFTrDA)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluoroundecanoic acid (PFUnDA)	NA	NA	<3.5	<3.5	<3.5	<3.5
Perfluorononane sulfonic acid (PFNS)	NA	NA	<6.9	<7	<6.9	<7
Perfluoropentane sulfonic acid (PFPeS)	NA	NA	<3.5	<3.5	4	33

TABLES 7 AND 8 NOTES

Wolven Study Area Algoma Township, Kent County, Michigan

16.0062677.81 Page 4 of 4 12/9/2018

NOTES:

- 1. Concentration and criteria units for metals are micrograms per liter (µg/L) or parts per billion (ppb); "< RL" indicates the compound was analyzed for but not detected above the method detection limit; RL = Reporting Limit
- 2. Concentration and criteria units for PFAS are nano-grams per liter (ng/L) or parts per trillion (ppt); "< RL" indicates the compound was analyzed for but not detected above the method detection limit; RL = Reporting Limit
- 3. Bold indicates that compound was detected above the RL. Italic number with thick line border or italic chemical indicates that compound was detected above the Michigan Part 201 groundwater cleanup criteria.
- 3. Michigan Part 201 groundwater cleanup criteria protective of drinking water uses and Michigan Part 201 groundwater surface water interface criteria were based on MDEQ 's Table 1, Groundwater: Residential and Nonresidential, Part 201 Generic Cleanup Criteria and Screening Levels, June 2018.
- 4. The cleanup criteria of 70 ppt was established for the combined concentrations of PFOA and PFOS.

GZA GeoEnvironmental, Inc. Engineers and Scientists

Wolverine World Wide

Boring No.: WV-SB-01

Wolven Avenue Area Algoma Twp, Kent County, Michigan Page: ___1__ of _ File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-11-18 / 9-11-18 Date Start/Finish: . Boring Location: <u>594,329.93 N, 12,795,792.16 E</u> GS Elev.: 866.26' _ Datum: __ NAD 83

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

Auger/

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

Surveyed By: _

_ [San	ipie intorr	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1- 2- 3-	1	60/28	0-5		1.4 ppm	Dark brown, TOPSOIL. Changing at 0.3 feet to: Brown, fine to coarse SAND, some Gravel, trace Silt, moist. Changing at 0.9 feet to: Brown, SILT, some Gravel, trace fine Sand, moist. Changing at 2.0 feet to: Brown, SILT, trace fine Sand, moist. Changing at 2.3 feet to: NO RECOVERY.	0.3' TOPSOIL 0.9' SAND SILT 2.3' NO RECOVERY	1	None
4- 5-	2	60/50	5-10		3.3 ppm	NO RECOVERY. Changing at 5.8 feet to:	5.8'		
6- 7- 8-					3.9 ppm	Brown, fine SAND and SILT, moist. Changing at 9.0 feet to: Gray and brown, fine to coarse SAND, some Gravel, moist.	SAND and SILT	2	
9-	3	60/44	10-15		4.9 ppm 3.7 ppm	NO RECOVERY. Changing at 11.3 feet to: Brown, fine to coarse SAND, some Gravel,	9' SAND 10' NO RECOVERY		
11- 12- 13-					3.4 ppm	dry. Changing at 12.0 feet to: Brown, fine to coarse SAND, some Gravel, moist.	SAND		
14— 15— 16—	4	60/43	15-20		3.8 ppm 4.7 ppm	NO RECOVERY. Changing at 16.4 feet to: Brown, fine to coarse SAND, some Gravel, dry. Changing at 17.0 feet to: Brown, fine to	15' NO RECOVERY		
17— 18—					3.1 ppm	coarse SAND and GRAVEL, moist.	17' SAND SAND and GRAVEL	3	
19 - 20 - 21 -					3.9 ppm	Bottom of Borehole at 20.0 Feet	20'	4 5	
22-									

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

R

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: WV-SB-01

GS Elev.: 871.10'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: _

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-02 Page: ___1__ of _

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-12-18 / 9-12-18 Date Start/Finish: . **Boring Location:** <u>594,329.07 N, 12,795,852.16 E</u>

Sample Information

Algoma Twp, Kent County, Michigan Auger/ Sampler

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: __ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

Surveyed By: _

_		Sarr	ipie intorn	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/42	0-5		4.8 ppm	Dark brown, TOPSOIL, moist. Changing at 0.4 feet to: Light brown, fine to coarse SAND, some Gravel, trace Silt, moist with light brown Silt lenses from 2.0 to 2.2 feet.	0.4' TOPSOIL SAND	1	None
2- 3-					5.5 ppm	Changing at 3.5 feet to: NO RECOVERY.	3.5'		
4- 5-		00/00	- 40			NO 2500V5DV 01 1 1 1 2 0 1 1 1	NO RECOVERY		
6-	2	60/36	5-10			NO RECOVERY. Changing at 7.0 feet to: Light brown, fine to coarse SAND, some Gravel, trace Silt, moist.	7'		
7- 8-					3.5 ppm		SAND	2	
9- 10-	3	36/31	10-13		5.0 ppm 4.5 ppm	NO RECOVERY. Changing at 10.4 feet to:	10' 10.4' NO		
11-	3	30/31	10-13		ч.о ррш	Light brown, fine to coarse SAND, some Gravel, trace Silt, moist.	RECOVERY		
12- 13-	4	24/18	13-15		5.2 ppm 5.5 ppm	NO RECOVERY. Changing at 13.5 feet to:	13' 13.5' NO RECOVERY	3	
4- 5-	5	60/32	15-20		4.6 ppm	Light brown, fine to coarse SAND, some Gravel, trace Silt, moist. NO RECOVERY. Changing at 17.3 feet to:	SAND 15' NO		
6- 7-	J	30,02	10-20			Brown and white, fine to coarse SAND, some Gravel, little Rock fragments, little Silt, moist. Changing at 19.1 feet to: Brown,	RECOVERY		
8-					3.2 ppm	SILT, little fine Sand, moist. Changing at 19.4 feet to: Brown, fine to coarse SAND, some Gravel, little Silt, moist.	17.3' SAND		
9- :0-					3.8 ppm	Bottom of Borehole at 20.0 Feet	19.1' 19.4' SILT 20' SAND	4	
1- 2-								5	
_									

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

R

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

GS Elev.: 864.51'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: __

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-03A Page: ____1 __ of .

Jobsite Services Contractor: **Bob Miller** Foreman: _

Algoma Twp, Kent County, Michigan Auger/

Sampler

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Sheryl Stephenson Logged by: . 9-13-18 / 9-13-18 Date Start/Finish: **Boring Location:** <u>594,310.35 N, 12,795,914.13 E</u>

Sample Information

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By:

GROUNDWATER READINGS

_		Jan	ibie illioli	ilation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/32	0-5		5.2 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown, fine to coarse SAND, little Gravel, little Silt, moist with Rock fragments from 0.3 to 0.4 feet. Changing at	0.1' TOPSOIL / SAND	1	None
2- 3- 4-					4.0 ppm	2.8 feet to: NO RECOVERY.	2.8' NO RECOVERY	2	
5— 6—	2	60/48	5-10		6.1 ppm	NO RECOVERY. Changing at 6.0 feet to: Brown, fine to coarse SAND and GRAVEL, little Silt, moist.	6'		
7- 8-					5.3 ppm	illie Siit, Moist.	SAND and GRAVEL		
9- 10-					5.5 ppm		10'		
11 – 12 –	3	60/60	10-15		6.1 ppm	Brown, fine to coarse SAND, some Gravel, little Silt, moist. Changing at 12.0 feet to: Tan, fine SAND, trace Silt, moist with Gravel lenses from 12.5 to 1.6 feet. Changing at	SAND		
13-					4.5 ppm	14.0 feet to: Tan, fine to medium ŠAND, little Gravel, trace Silt, moist.			
14 — 15 —	4	60/42	15-20		4.7 ppm 2.1 ppm	NO RECOVERY. Changing at 16.5 feet to: Tan, fine SAND, trace Silt, moist. Changing	15' NO RECOVERY	_	
16- 17-					4.4 ppm	at 17.0 feet to: Brown, fine to coarse SAND, some Silt, little Gravel, moist. Changing at 19.5 feet to: Tan, fine to medium SAND, trace Silt, moist.	16.5' SAND	3	
18- 19-					1.8 ppm				
20 – 21 –						Bottom of Borehole at 20.0 Feet	20'	4 5	
22 –									

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: WV-SB-03A

GZA GeoEnvironmental, Inc. Engineers and Scientists

Wolverine World Wide

Wolven Avenue Area

WV-SB-04 Boring No.: __ Page: ____1 __ of .

Algoma Twp, Kent County, Michigan Auger/

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-12-18 / 9-12-18 Date Start/Finish: Boring Location: <u>594,327.34 N, 12,795,972.15 E</u> GS Elev.: 863.57' Datum: _ NAD 83

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

Surveyed By:

_	Sample Information								
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/36	0-5		6.2 ppm	Dark brown, TOPSOIL, moist. Changing at 0.4 feet to: Brown, fine to medium SAND, little Silt, little Gravel, moist with Rock	0.4' TOPSOIL SAND	1 2	None
2-					5.5 ppm	fragments a from 2.6 to 2.7 feet. Changing at 3.0 feet to: NO RECOVERY.		_	
3-							NO NO		
4 —							RECOVERY		
5-	2	60/48	5-10		6.3 ppm	NO RECOVERY. Changing at 5.5 feet to:	5.5'		
6-	_	007.0	0 10			Tan, fine to medium SAND, moist. Changing at 9.0 feet to: Brown, fine to	SAND		
7-						coarse SAND, some Silt, some Gravel and Rock fragments, moist.			
					4.3 ppm	TOOK Hagilients, Holst.			
8-									
9-					7.9 ppm		101		
10 —	3	12/12	10-11		7.6 ppm	Brown and tan, fine to coarse SAND and	10SAND and SILT -		
11 —	4	18/18	11-12.5		7.7 ppm	SILT, trace Gravel, moist. Changing at 10.2 feet to: Brown, SAND and GRAVEL, some	11' GRAVEL 11.6' SAND	3	
12-						\Silt, moist. Brown, fine to coarse SAND, little Gravel,	12' Clayey SILT 12.5' SAND and		
13-	5	30/16	12.5-15		4.1 ppm	trace Silt, moist. Changing at 11.6 feet to: Brown, Clayey SILT, moist. Changing at	GRAVEL 13.2' NO RECOVERY		
14 —						\ 12.0 feet to: Brown, fine to coarse SAND and GRAVEL, moist.	SAND and SILT		
15-					2.1 ppm	NO RECOVERY. Changing at 13.2 feet to: Brown, fine to medium SAND and SILT,	14.5' 15' SAND and GRAVEL		
	6	60/46	15-20		3.3 ppm	trace Gravel, trace Organic Matter (wood debris), dry (potential Sluff). Changing at	NO RECOVERY		
16-						\ \ 14.5 feet to: Brown, fine to coarse SAND and GRAVEL, little Silt, moist.	SAND and SILT		
17 —					5.5 ppm	NO RECOVERY. Changing at 16.2 feet to: Brown, SAND and SILT, little Gravel, moist.	SAND		
18-						Changing at 17.0 feet to: Light brown and white, fine to coarse SAND, some Gravel,	SAND and SILT		
19-					7.1 ppm	little Silt, moist. Changing at 18.0 feet to: Brown, SAND and SILT, trace Gravel,	19' SAND		
20 —						moist. Changing at 19.0 feet to: Tan, fine to medium SAND, little Silt, trace Gravel,	20'	4	
21-						\moist.		5	
22-						Bottom of Borehole at 20.0 Feet			

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: WV-SB-04

GS Elev.: 865.41'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: __

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-05 Page: ___1__ of _

File No.: 16.0062677.81

Algoma Twp, Kent County, Michigan Auger/

Sampler

Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-13-18 / 9-13-18 Date Start/Finish: . Boring Location: <u>594,326.49 N, 12,796,032.14 E</u>

Sample Information

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By: _

GROUNDWATER READINGS

_	Sample information								·		
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed		
1- 2- 3- 4-	1	60/36	0-5		3.7 ppm 4.5 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown, fine to coarse SAND, little Silt, little Gravel, moist. Changing at 1.6 feet to: Tan, fine to medium SAND, little Gravel, trace Silt, moist. Changing at 2.0 feet to: Tan, fine to medium SAND, trace Silt, moist. Changing a 3.0 feet to: NO RECOVERY.	D ₁ 1 TOPSOIL SAND 3' NO RECOVERY	1	None		
5- 6-	2	60/48	5-10		1.5 ppm 1,6 ppm	NO RECOVERY. Changing at 6.0 feet to: Tan, fine SAND, trace Silt, moist with brown, Sand and Silt lenses from 6.5 to 6.7	6' SAND	2			
7- 8- 9-					2.4 ppm 2.3 ppm	feet. Changing at 7.0 feet to: Tan, fine SAND, trace Silt, moist. Changing at 8.8 feet to: Brown, fine to coarse SAND, some Silt, little Gravel, moist. Changing at 9.8 feet to: Brown, fine to medium SAND, trace Silt, moist.	SAND				
10 – 11 –	3	60/60	10-15		8.7 ppm	Tan, fine SAND, trace Silt, moist. Changing at 11.4 feet to: Tan, fine to coarse SAND, little Silt, trace Gravel, moist. Changing at 12.0 feet to: Tan, fine to coarse SAND,					
12- 13- 14-					6.4 ppm	some Gravel, little Silt, moist. Changing at 12.1 feet to: Tan, fine SAND, moist. Changing at 13.1 feet to: White and gray, SAND and GRAVEL, little Silt, moist.	13.1' SAND and GRAVEL				
					4.6 ppm		15'				
15 – 16 –	4	60/43	15-20		13.9 ppm	NO RECOVERY. Changing at 15.4 feet to: Tan, fine to medium SAND, little to trace Silt, moist. Changing at 17.0 feet to: Brown, fine to medium SAND, little Silt, moist.	15.4' NO RECOVERY SAND	3			
17 – 18 –					7.0 ppm	Changing at 17.5 feet to: White and gray, fine to coarse SAND and GRAVEL, little Silt, moist.	17.5' SAND and GRAVEL				
19-					6.5 ppm						
20 –						Bottom of Borehole at 20.0 Feet	20'	4 5			
21-											
22 –											

R E M A R K S

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

GS Elev.: 865.34'

GZA GeoEnvironmental, Inc. Engineers and Scientists

Datum: _

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-06 Page: ____1 of _

File No.: 16.0062677.81

Survey Date:

Algoma Twp, Kent County, Michigan Auger/

GROUNDWATER READINGS

Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-11-18 / 9-11-18 Date Start/Finish: **Boring Location:** <u>594,278.41 N, 12,795,761.42 E</u>

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By:

_	Gampio información								
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1- 2- 3- 4-	1	60/33	0-5		4.6 ppm 6.5 ppm	Dark brown, TOPSOIL, moist. Changing at 0.4 feet to: Brown, fine to coarse SAND, some Silt, little Organic Matter (roots), moist. Changing at 0.7 feet to: Brown, fine SAND and SILT, moist. Changing at 2.0 feet to: Brown, SILT & CLAY, little Gravel, trace fine Sand, moist. Changing at 2.8 feet to: NO RECOVERY.	0.4' TOPSOIL 0.7' SAND SAND and SILT 2' SILT & CLAY 2.8' NO RECOVERY	2	None
5- 6- 7- 8-	2	60/24	5-10		5.6 ppm	NO RECOVERY. Changing at 8.0 feet to: Brown, SILT & CLAY, trace fine Sand, moist. Changing at 8.7 feet to: ROCK fragments. Changing at 8.9 feet to: Brown and orange, SAND and SILT, moist. Changing at 9.0 feet to: Brown, SILT & CLAY, trace fine Sand, moist.	8' SILT & CLAY 8.7'		
9- 10- 11- 12-	3	60/60	10-15		3.9 ppm 2.7 ppm 3.1 ppm	Brown, SILT, trace Clay, trace fine Sand, trace Gravel, moist. Changing at 12.3 feet to: Light brown, fine SAND and SILT, moist. Changing at 13.6 feet to: Brown, Clayey SILT, trace fine Sand, moist. Changing at	9 ROCK Fragments 10SAND and SILT SILT & CLAY SILT	3	
13- 14- 15- 16-	4	30/30	15-17.5		4.2 ppm 3.5 ppm	14.2 feet to: Light brown, fine to medium SAND, some Silt, moist. Changing at 13.6 feet to: Brown, Clayey SILT, trace fine Sand, moist. Changing at 14.2 feet to: Light brown, fine to medium SAND, some Silt, moist. Brown, SILT, trace fine Sand, little Rock fragments, moist. Changing at 15.2 feet to: Brown, fine to coarse SAND, little Gravel, moist.	13.6' 14.2Clayey SILT SAND 15' 45.2' SILT SAND		
17- 18- 19- 20-	5	30/26	17.5-20		5.3 ppm 2.9 ppm 3.9 ppm	NO RECOVERY. Changing at 17.8 feet to: Brown, fine to coarse SAND, trace Gravel, moist. Changing at 19.5 feet to: Brown and tan, fine to coarse SAND, trace Gravel, moist Bottom of Borehole at 20.0 Feet	17.5' 17.8' NO RECOVERY SAND	4	
21 – 22 –						DOLLOTE OF BOTEFIOIE AL 20.0 Feet		5	

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

GS Elev.: 868.08'

GZA GeoEnvironmental, Inc. Engineers and Scientists

__ Datum: __

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-07

Page: ___1__ of ___1 File No.: 16.0062677.81 Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: ___ Sheryl Stephenson Logged by: _ 9-11-18 / 9-11-18 Date Start/Finish: _ Boring Location: <u>594,277.54 N, 12,795,821.41 E</u> Hammer Wt.: ___

Sample Information

Algoma Twp, Kent County, Michigan Auger/ Sampler

NA

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: ___ NA NA NA NA Hammer Fall: ____

NA

TOC Elev.: __

		GROUND	WAIERR	EADINGS	
_	Date	Time	Depth	Casing	Stab
	NM	NM	NM	NM	NM
Γ					
Г					

Surveyed By: NA Survey Date:

_	Sample Information			nation				40		
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed	
	1	60/39	0-5		0.9 ppm	Dark brown, TOPSOIL, some Organic	0.5' TOPSOIL	1	None	
1-						Matter (leaf debris), moist. Changing at 0.5 feet to: Brown, fine to coarse SAND, some	1' SAND SAND and SILT			
						Gravel, little Silt, moist. Changing at 1.0 feet	SAIND and SILT			
2-					1.3 ppm	to: Brown, SAND and SILT, trace Gravel, moist. Changing at 3.2 feet to: NO				
3-						RECOVERY.	3.2'			
							NO RECOVERY			
4-										
5-	2	60/40	5-10		1.8 ppm	NO RECOVERY. Changing at 6.7 feet to:				
6-	_		0 10			Brown and orange, SAND and SILT, moist.				
١						Changing at 8.0 feet to: ROCK fragments. Changing at 8.1 feet to: Brown, fine to	6.7'			
7-					1.8 ppm	coarse SAND, some Gravel, little Silt, moist.	SAND and SILT	2		
8-							8'			
							Rock Fragments / SAND			
9-					1.8 ppm					
10-		00/40	40.45		0.4	NO DECOVERY OF A 14 F. C.	10'			
	3	60/42	10-15		2.1 ppm	NO RECOVERY. Changing at 10.5 feet to: Brown, fine to coarse SAND, little Gravel,	NO RECOVERY			
11-						moist. Changing at 12.8 feet to: Tan, fine to	11.5'			
12-					1.9 ppm	medium SAND, trace Silt, moist. Changing at 13.8 feet to: Brown, Clayey SILT, trace	SAND			
					1.5 ррш	fine Sand, moist. Changing at 14.6 feet to:				
13-						Brown and tan, fine SAND, some Silt, moist.	13.8'	3		
14-					2.6 ppm		Clayey SILT			
,,							14.6' 15' SAND			
15-	4	60/34	15-20			NO RECOVERY. Changing at 17.1 feet to:	NO RECOVERY			
16-						Brown, SAND and SILT, moist. Changing at 17.4 feet to: Tan, fine SAND, moist.				
17-						Changing at 17.9 feet to: Brown, fine to	17.1'			
''					2.2 ppm	coarse SAND, trace Gravel, moist. Changing at 19.0 feet to: Brown, fine to	1754AND and SILT SAND			
18						coarse SAND, little Gravel, moist.	SAND			
19-										
.					2.7 ppm		20'			
20						Bottom of Borehole at 20.0 Feet	20	4		
21-								5		
22 –										

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account of the country of the

Borehole was backfilled with drill cuttings upon completion.

GS Elev.: 869.14'

Contractor:

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: __

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-08

Page: ___1__ of _ File No.: 16.0062677.81

Jobsite Services **Bob Miller**

NAD 83

Algoma Twp, Kent County, Michigan Auger/ Sampler

Check: Leslie Nelson

Survey Date:

Foreman: _ Sheryl Stephenson Logged by: . 9-12-18 / 9-12-18 Date Start/Finish: **Boring Location:** <u>594,276.68 N, 12,795,881.40 E</u>

Sample Information

Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Casing

Date Depth Casing Stab Time NM NM

NA

Surveyed By:

GROUNDWATER READINGS

_	Sample information			Hation				10		
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed	
1- 2- 3- 4-	1	60/36	0-5		5.9 ppm 6.5 ppm	Dark brown, TOPSOIL, moist. Changing at 0.4 feet to: Light brown, fine to coarse SAND, little Gravel, little Silt, moist. Changing at 2.5 feet to: Orange, fine to medium SAND, little Silt, moist. Changing at 3.0 feet to: NO RECOVERY.	0.4' TOPSOIL SAND 3' NO RECOVERY	1	None	
5- 6- 7- 8-	2	60/45	5-10		7.6 ppm 7.9 ppm	NO RECOVERY. Changing at 6.2 feet to: Brown, Clayey SILT, trace fine Sand, moist. Changing at 6.8 feet to: Tan, fine SAND, moist. Changing at 7.3 feet to: Light brown, SILT, moist. Changing at 7.6 feet to: Tan, fine SAND, moist. Changing at 8.2 feet to: Light brown, SILT, moist. Changing at 8.5 feet to: Tan, fine SAND, moist. Changing at	6.2' 6.8' Clayey SILT 7.3' SAND 7.6' SILT 8.2' SAND 8.5' SILT	2		
9- 10- 11- 12- 13-	3	60/56	10-15		7.8 ppm 6.1 ppm 6.9 ppm	8.8 feet to: Brown, SAND and GRAVEL, little Silt, moist. Changing at 9.0 feet to: Light brown, fine to coarse SAND, some Cobbles, little Gravel, little Silt, moist. Changing at 9.8 feet to: Light brown, SILT, moist. NO RECOVERY. Changing at 10.3 feet to: Brown, SILT, moist. Changing at 10.6 feet to: Tan, fine to medium SAND, little Gravel, trace Silt, moist. Changing at 11.7 feet to: Tan fine to medium SAND, trace Silt, moist.	88 SAND and 9 98 GRAVEL TO SAND 10.6 NO RECOVERY SAND			
14- 15- 16- 17-	4	60/48	15-20		7.7 ppm 5.0 ppm 3.8 ppm	NO RECOVERY. Changing at 16.0 feet to: Tan, fine to medium SAND, trace Silt, moist.	15' NO 16' RECOVERY SAND	3		
18- 19- 20-					5.0 ppm	Bottom of Borehole at 20.0 Feet	20'	4 5		
21 – 22 –										

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account of the country of the

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-09 Page: ____1 of _

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: .

Algoma Twp, Kent County, Michigan Auger/

Sampler

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

9-12-18 / 9-12-18 Date Start/Finish: **Boring Location:** <u>594,275.82 N, 12,795,941.40 E</u> GS Elev.: 865.48 NAD 83 _ Datum: __

Sample Information

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By:

GROUNDWATER READINGS

_			.p.o						
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/31	0-5		5.6 ppm	Dark brown, TOPSOIL, moist. Changing at 0.3 feet to: Brown, fine to coarse SAND and GRAVEL, some Silt, moist. Changing at 2.6 feet to: NO RECOVERY.	93' TOPSOIL SAND and GRAVEL	1	None
3-					7.0 ppm		2.6' NO RECOVERY		
4- 5-	2	60/48	5-10		5.2 ppm	NO RECOVERY. Changing at 6.0 feet to:			
6- 7-	_				6.8 ppm	Orange and brown, fine to medium SAND, little Silt, moist. Changing at: 7.0 feet to: Brown, fine to coarse SAND and GRAVEL, little Silt, moist. Changing at 9.0 feet to:	6' SAND 7' SAND and		
8- 9-						Tan, fine to medium SAND, trace Silt, moist.	GRAVEL	2	
10-	3	60/60	10-15		7.3 ppm 6.6 ppm	Tan, fine to medium SAND, trace Silt, moist. Changing at 11.4 feet to: Tan, fine SAND,	SAND		
11 <i>-</i>					6.4 ppm	moist with Gravel lenses from 12.6 to 12.7 feet.			
13 — 14 —					6.4 ppm				
15 — 16 —	4	30/42	15-17.5		6.5 ppm	Tan, fine to medium SAND, moist. Changing at 16.0 feet to: Brown, SILT, moist.	16'		
17 — 18 —	5	30/30	17.5-20		6.8 ppm 5.6 ppm	Brown, SILT, moist. Changing at 17.8 feet to: Tan, fine SAND, moist.	17.8' SAND	3	
19- 20-					6.1 ppm	Bottom of Borehole at 20.0 Feet	20'	4	
21 – 22 –						Doctorii di Dordridio di 20.0 1 661		5	

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account of the country of the

- Borehole was backfilled with drill cuttings upon completion.

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Datum: _

NAD 83

Wolverine World Wide Wolven Avenue Area

Sampler

Boring No.: WV-SB-10

Page: ____1 of _ File No.: 16.0062677.81

Algoma Twp, Kent County, Michigan Auger/

Surveyed By:

Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-13-18 / 9-13-18 Date Start/Finish: Boring Location: <u>594,274.96 N, 12,796,001.39 E</u> GS Elev.: 865.94'

Sample Information

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

_	Sample information			nauon								
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed			
1-	1	60/36	0-5		4.8 ppm 5. ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown, fine to coarse SAND and GRAVEL, little Silt, moist. Changing at 2.0 feet to: Brown, fine to coarse SAND, some Gravel, little Silt, moist. Changing at 3.0 feet to: NO RECOVERY.	D ₁ ' TOPSOIL SAND and GRAVEL 2' SAND	1	None			
3- 4- 5-		00/54	5.40		50,,,,,		NO RECOVERY					
6- 7-	2	60/54	5-10		5.2 ppm	NO RECOVERY. Changing at 5.5 feet to: Brown, fine to coarse SAND, little Silt, trace Gravel, moist with brown, Sand and Silt lense from 6.1 to 6.2 feet. Changing at 6.5 feet to: Brown, SILT, moist. Changing at 7.1 feet to: Tan, fine SAND, moist. Changing at	5.5' SAND 6.5' 7.1' SAND	2				
9- 10-	3	60/60	10-15		5.8 ppm 6.5 ppm	8.3 feet to: Brown, SAND and GRAVEL, moist. Tan, fine to medium SAND, trace Silt, moist	8.3' SAND and GRAVEL 10' SAND					
11- 12-		33,35	10-13		1.8 ppm	with brown, Silt lense from 13.1 to 13.3 feet.						
13- 14- 15-		60/60	45.00		2.3 ppm	Drawer fire to seems CANID some Consul						
16- 17-	4	60/60	15-20		8.3 ppm 6.1 ppm	Brown, fine to coarse SAND, some Gravel, little Silt, moist Changing at 15.8 feet to: Tan, fine to medium SAND, moist with slight discoloration from 16.1 to 16.2 feet. Gravel lenses from 19.5 to 20 feet.		3				
18- 19-	5	30	17.5-20		6.1 ppm		20'					
20 – 21 – 22 –						Bottom of Borehole at 20.0 Feet		4 5				

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Datum: _

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-11 Page: ____1 of _

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-14-18 / 9-14-18 Date Start/Finish: Boring Location: <u>594,271.30 N, 12,796,079.77 E</u> GS Elev.: 881.31'

Sample Information

Algoma Twp, Kent County, Michigan Auger/ Sampler Casing

Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By:

GROUNDWATER READINGS

_	Sample information			ilation							
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed		
1- 2- 3-	1	60/28	0-5		1.1 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Tan, fine to coarse SAND, little Gravel, little Silt, moist. Changing at 1.8 feet to: Tan, fine to medium SAND, trace Silt, moist. Changing at 2.3 feet to: NO RECOVERY.	D ₁ 1 TOPSOIL SAND 2.3' NO RECOVERY	1	None		
4- 5-	2	60/45	5-10		2.4 ppm	NO RECOVERY. Changing at 5.2 feet to: Tan and brown, fine to medium SAND,					
6- 7- 8-					2.8 ppm	some Silt, trace Gravel, moist with brown, Sand and Silt lense (possible TOPSOIL) from 5.8 to 5.9 feet). Changing at 7.0 feet to: Tan, fine SAND and SILT, moist. Changing at 7.6 feet to: Tan, fine to medium SAND, trace Silt, trace Gravel, moist.	6.2' SAND	2			
9- 10-	3	60/60	10-15		1.1 ppm 3.0 ppm	Brown and tan, fine SAND and SILT, trace					
11- 12- 13-					3.1 ppm	Gravel, moist. Changing 11.0 feet to: Tan, fine to medium SAND, trace Silt, trace Gravel, moist. Changing at 14.0 feet to: Tan, fine to coarse SAND, little Gravel, trace Silt, moist.					
14 — 15 —	4	60/48	15-20		2.7 ppm 3.3 ppm	NO RECOVERY. Changing at 16.0 feet to:	15' NO				
16- 17-	4	00/40	13-20		0.9 ppm	Brown, fine to medium SAND, some Silt, moist. Changing at 17.0 feet to: Brown and tan, fine to coarse SAND and GRAVEL, little Silt, moist.	16' RECOVERY	3			
18- 19-					3.0 ppm						
20 — 21 —						Bottom of Borehole at 20.0 Feet	20'	4 5			
22-											

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite action of the control of the c

Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

GS Elev.: 868.37'

GZA GeoEnvironmental, Inc. Engineers and Scientists

Datum: _

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-12

Page: ___1__ of _ File No.: 16.0062677.81

Algoma Twp, Kent County, Michigan Auger/

Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-11-18 / 9-11-18 Date Start/Finish: . **Boring Location:** <u>594,225.42 N, 12,795,711.04 E</u>

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By: _

GROUNDWATER READINGS

_	Sample Information							1.0			
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed		
1-	1	60/39	0-5		4.3 ppm	Dark brown, TOPSOIL, moist. Changing at 0.3 feet to: Dark brown, SAND and SILT, trace Gravel, trace Organic Matter (roots), moist. Changing at 1.0 foot to: Brown and	0.3' TOPSOIL SAND and SILT 1' SAND	1	None		
2- 3-					6.6 ppm	orange, fine SAND, some Silt, little Gravel, moist. Changing at 3.0 feet to: Tan, fine to medium SAND, trace Silt, moist. Changing at 3.2 feet to: NO RECOVERY.	3.2'				
4-							NO RECOVERY				
5- 6-	2	60/36	5-10			NO RECOVERY. Changing at 7.0 feet to: Brown and orange, fine to medium SAND, some Silt, trace Gravel, moist. Changing at 8.0 feet to: Tan and brown, fine SAND,					
7- 8-					3.8 ppm	some Silt, moist. Changing at 9.3 feet to: Tan, fine to medium SAND, trace Silt, moist.	7' SAND	2			
9-					4.8 ppm		10'				
11-	3	60/43	10-15		4.4 ppm	NO RECOVERY. Changing at 11.4 feet to: Tan, fine to coarse SAND, moist. Changing at 12.0 feet to: Tan, fine to coarse SAND, trace Gravel, moist. Changing at 14.0 feet	NO RECOVERY 11.4' SAND				
12- 13-					2.3 ppm	to: Brown, fine to coarse SAND, some Silt, trace Gravel, moist.					
14-					2.3 ppm			3			
15-	4	18/18	15-16.5		2.2 ppm 2.1 ppm	Brown, fine to coarse SAND, some Silt, little Gravel, moist. Changing at 16.0 feet to: Brown, SILT, trace fine Sand, trace Gravel, moist.	16' 16.5' SILT	4			
17-						Bottom of Borehole at 16.5 Feet		4 5			
18- 19-											
19-											

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

R E M

A R K S

GS Elev.: 868.23'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: __

NAD 83

Wolverine World Wide Wolven Avenue Area

Boring No.: WV-SB-13

Page: ___1__ of _

Algoma Twp, Kent County, Michigan Auger/

Time

Date

Surveyed By: _

File No.: 16.0062677.81 Check: Leslie Nelson

Stab

Casing

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-12-18 / 9-12-18 Date Start/Finish: _ **Boring Location:** <u>594,226.02 N, 12,795,790.66 E</u>

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: __ NA NA Hammer Fall: ____ NA NA TOC Elev.: __

NM NM

NA

GROUNDWATER READINGS

Depth

_	Sample Information			nation				40.			
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed		
1-	1	60/44	0-5		5.2 ppm 3.0 ppm	Dark brown, TOPSOIL, moist. Changing at 0.3 feet to: Brown, SILT, trace fine Sand, trace Gravel, moist. Changing at 1.8 feet to: Brown and red, Claeyey SILT, trace fine Sand, trace Gravel, moist. Changing at 3.0 feet to: Brown, SAND and GRAVEL, some Silt, moist. Changing at 3.8 feet to: NO	0.3' TOPSOIL SILT 1.8' Clayey SILT	1	None		
3- 4-					3.9 ppm	RECOVERY.	SAND and GRAVEL NO RECOVERY	2			
5- 6-	2	60/44	5-10		5.2 ppm	NO RECOVERY. Changing at 6.5 feet to: Brown, SAND and GRAVEL, some Silt, moist. Changing at 8.0 feet to: Brown, fine SAND and SILT, trace Gravel, moist.	6.4' SAND and				
7- 8-					5.8 ppm	Changing at 9.0 feet to: Brown and orange, fine SAND and SILT, trace Gravel, moist.	GRAVEL 8' SAND and SILT	_			
9-					4.2 ppm						
10 — 11 —	3	60/40	10-15		1.5 ppm	NO RECOVERY. Changing at 11.8 feet to: Tan, fine to medium SAND, little Gravel, trace Silt, moist. Changing at 12.2 feet to: Brown, fine to coarse SAND and GRAVEL,	NO RECOVERY				
12- 13-					4.7 ppm	little Silt, moist. Changing at 12.7 feet to: Orange, fine to medium SAND, little Silt, moist. Changing at 14.8 feet to: Brown, SILT, moist.	11.8' 12.2' SAND 12.7' SAND and SAND				
14 –					3.4 ppm						
15— 16—	4	30/30	15-17.5		9.0 ppm	Brown, CLAY & SILT, trace Gravel, trace fine Sand, dry.	14.8' 15' SILT CLAY & SILT	3			
17-					6.1 ppm						
18-					11.77	Bottom of Borehole at 17.5 Feet		4 5			
19-											
							20'				

R E M A R K S

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

GS Elev.: 869.54'

GZA GeoEnvironmental, Inc. Engineers and Scientists

Datum: _

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-14

Page: ___1__ of _ File No.: 16.0062677.81

Survey Date:

Algoma Twp, Kent County, Michigan Auger/

Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-11-18 / 9-11-18 Date Start/Finish: . **Boring Location:** <u>594,225.16 N, 12,795,850.67 E</u>

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

Surveyed By: _

Sample Information			ilation					
No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1	60/36	0-5		2.2 ppm	Dark brown, TOPSOIL, moist. Changing at 0.4 feet to: Brown, fine SAND, some Silt,	0.4' TOPSOIL SAND	1	None
					SAND and SILT, moist. Changing at 2.5 feet	SAND and SILT		
				2.0 ppm	moist. Changing at 3.0 feet to: NO	2.5' 3' SAND		
						RECOVERY		
2	60/39	5-10		3.6 ppm	NO RECOVERY Changing at 6.8 feet to:			
_		0.0			Brown and tan, fine to medium SAND, some Silt, moist. Changing at 8.0 feet to: ROCK			
				5.6 ppm	fine to medium SAND, some Silt, little	SAND		
					Brown and tan, fine SAND, some Silt, moist.		2	
				2.4 ppm		SAND		
3	60/43	10-15		4.2 ppm	NO RECOVERY. Tan, fine SAND, trace Silt, moist. Changing at 12.0 feet to: Tan, fine to	NO RECOVERY		
					medium SAND, trace Silt, moist.	11.4' SAND		
				3.7 ppm			3	
				4.0				
1	60/36	15 20		4.0 ppm	NO PECOVERY Changing at 17.0 foot to:	15'		
7	00/00	13-20			Tan, fine to medium SAND, trace Silt, moist.	RECOVERY		
				1.5 ppm		17' SAND		
				3.7 ppm				
					Bottom of Borehole at 20.0 Feet	20'	4 5	
	2	No. Pen./Rec. (in.) 1 60/36 2 60/39	No. Pen./ Rec. (in.) Depth (Ft.) 1 60/36 0-5 2 60/39 5-10 3 60/43 10-15	No. Pen./ Rec. (in.) Depth (Ft.) Blows (/6") 1 60/36 0-5 2 60/39 5-10 3 60/43 10-15	No. Pen./ Rec. (in.) Depth (Ft.) Blows (/6") Test Data 1	No. Pen./Rec. (in.) Depth Rec. (in.) Depth Re	No. Pen.l. Rec. (in.) Depth (Ft.) Blows (fe") Data Description & Classification Desc.	No. Pen./ Rec. (in.) Depth (Ft.) Blows (Ft.) Data Description & Classification Desc. Pen./ (in.) Desc. (in.)

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite action of the control of the c

Borehole was backfilled with drill cuttings upon completion.

R

_ Datum: __

NAD 83

Wolverine World Wide Wolven Avenue Area

Surveyed By:

Boring No.: WV-SB-15

Page: ____1 of _ File No.: 16.0062677.81

Survey Date:

Algoma Twp, Kent County, Michigan Auger/

Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-13-18 / 9-13-18 Date Start/Finish: . Boring Location: <u>594,216.42 N, 12,795,921.06 E</u> GS Elev.: 875.42'

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

GROUNDWATER READINGS

_	Sample information			nation					-		
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed		
1- 2- 3- 4-	1	60/40	0-5		4.0 ppm	Dark brown, TOPSOIL, moist. Changing at 0.5 feet to: Brown, SAND and SILT, trace Gravel, moist. Changing at 1.3 feet to: Brown and orange, SILT & CLAY, moist. Changing at 2.3 feet to: Brown, fine to coarse SAND, little Silt, trace Gravel, moist. Changing at 3.0 feet to: Tan, fine to medium SAND, trace Silt, moist. Changing at 3.4 feet to: NO RECOVERY.	0.5' TOPSOIL SAND and SILT SILT & CLAY 2.3' SAND 3.3' NO RECOVERY	2	None		
5- 6- 7- 8- 9-	2	60/40	5-10		3.0 ppm 1.8 ppm 4.9 ppm	NO RECOVERY. Changing at 1.7 feet to: Tan, fine to medium SAND, some Silt, moist. Changing at 7.0 feet to: Dark brown, SAND and SILT, little Organics (possible TOPSOIL). Changing at 7.2 feet to: Tan and orange, fine to medium SAND, trace Silt, moist. Changing at 8.1 feet to: Light brown, SILT, moist. Changing at 9.0 feet to: Light brown, SILT, dry. Changing at 9.5 feet to: Tan, fine to medium SAND, dry.	6.7' 7' SAND SAND and SILT 8.1' SAND SILT 9.5'				
10 11 12 13 14	3	60/53	10-15		4.4 ppm 3.9 ppm	NO RECOVERY. Changing at 10.6 feet to: Tan, fine SAND, dry. Changing at 11.1 to: Tan and brown, SILT, dry. Changing at 12.0 feet to: Tan, fine SAND, moist.	10' SAND 10.6'RECOVERY 11.1' SAND SILT 12' SAND				
15- 16- 17- 18- 19-		60/50	15-20		4.6 ppm 4.5 ppm 4.4 ppm	NO RECOVERY. Tan, fine SAND, moist with slight discoloration. Changing at 17.0 feet to: Tan, fine to medium SAND, trace Silt, moist.	NO 15.8RECOVERY SAND	3			
20 – 21 – 22 –					4.4 ppm	Bottom of Borehole at 20.0 Feet	20'	4 5			

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

GS Elev.: 870.26'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: __

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-16 Page: ___1__ of _

File No.: 16.0062677.81 Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-13-18 / 9-13-18 Date Start/Finish: . **Boring Location:** <u>594,223.43 N, 12,795,970.64 E</u> Hammer Wt.: _

Sample Information

Algoma Twp, Kent County, Michigan Auger/ Sampler Casing Type: Direct Push MacroCore

NA

NA

O.D. / I.D.: __

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA NA Hammer Fall: ___ NA NA NA TOC Elev.: _ Surveyed By: _ Survey Date:

2.25"

NA

_		Jan	ipie intorn	ilation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/33	0-5		1.0 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Tan, fine to medium SAND, trace Gravel, moist. Changing at 0.5 feet to:	0.1' TOPSOIL SAND	1	None
2-					5.0 ppm	Tan, fine SAND, moist. Changing at 2.2 feet to: Tan, fine to medium SAND, moist. Changing at 2.8 feet to: NO RECOVERY.	2.8'		
3- 4-							NO RECOVERY	2	
5-	2	60/60	5-10		3.3 ppm	Brown, SAND and SILT, dry (possible	5' 5.3SAND and SILT SAND		
6- 7-						SLUFF). Changing at 5.3 feet to: Tan, fine to medium SAND, moist with slight discoloration). Changing at 5.6 feet to: Tan, fine SAND, moist. Changing at 7.5 feet to:	OAND		
8-					3.3 ppm	Tan, fine to medium SAND, moist. Changing at 9.0 feet to: Brown, SILT, little fine Sand, trace Gravel, moist. Changing at			
9- 10-					5.9 ppm	9.6 feet to: Tan, fine SAND, moist.	9' 9.6' SILT SAND		
11-	3	60/60	10-15		3.7 ppm	Tan, fine to medium SAND, trace Silt, moist with slight discoloration. Changing at 10.8 feet to: Brown, SAND and SILT, moist.	10.9' SAND and SILT SAND		
12- 13-					3.3 ppm	Changing at 11.0 feet to: Tan, fine to medium SAND, moist. Changing at 14.0 feet to: Tan, fine to medium SAND, trace gravel, moist.	SAND		
14-								3	
6-	4	60/60	15-20		5.0 ppm	Light tan and white, fine SAND, trace Silt, moist with slight discoloration. Changing at 16.3 feet to: Tan, fine to medium SAND,			
7-					3.0 ppm	moist.			
8-									
19 - 20 -					3.7 ppm	Bottom of Borehole at 20.0 Feet	20'	4	
11-						DOLLOTTI OF DOTETIONE AT 20.0 Feet		5	
22-									

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

R

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

GS Elev.: 885.96'

Contractor:

GZA GeoEnvironmental, Inc. Engineers and Scientists

Jobsite Services

Datum: __

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-17 Page: ___1__ of _

Survey Date:

File No.: 16.0062677.81

Surveyed By: _

Algoma Twp, Kent County, Michigan Auger/

Sampler

Check: Leslie Nelson **GROUNDWATER READINGS**

Bob Miller Foreman: _ Sheryl Stephenson Logged by: _ 9-14-18 / 9-14-18 Date Start/Finish: . Boring Location: <u>594,229.89 N, 12,796,053.56 E</u>

Sample Information

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

_ L		Jan	ibie iiiioii	iiation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1- 2- 3- 4-	1	60/30	0-5		1.8 ppm	Dark brown, SAND and SILT, moist (TOPSOIL). Changing at 0.5 feet to: Orange, fine SAND and SILT, moist. Changing at 2.0 feet to: Tan, fine SAND, little Silt, moist. Changing at 2.5 feet to: NO RECOVERY.	SAND (TOPSOIL) SAND 2.5' NO RECOVERY	2	None
5- 6- 7- 8-	2	60/38	5-10		3.0 ppm	NO RECOVERY. Changing at 7.0 feet to: Tan, fine SAND, trace Silt, moist. Changing at 7.8 feet to: Brown, SANd and SILT, dry. Changing at 8.8 feet to: Light tan, SILT, dry. Changing at 9.4 feet to: Light brown and tan, fine SAND, trace Silt, moist.	7' SAND 7.8' SAND and SILT 8.8'	-	
9- 0- 1- 2- 3-	3	60/34	10-15		1.3 ppm 1.9 ppm	NO RECOVERY. Changing at 12.1 feet to: Tan and brown, fine SAND, little Silt, moist. Changing at 12.9 feet to: Tan, fine to coarse SAND, little Gravel, trace Silt, dry. Light brown, Silt lenses from 14.8 to 14.8 feet.	9.4' SAND NO RECOVERY 12.1' SAND		
4- 5- 6- 7- 8- 9-	4	60/48	15-20		3.8 ppm 1.8 ppm 3.8 ppm 3.8 ppm	NO RECOVERY. Changing at 16.0 feet to: Light brown, fine to coarse SAND and SILT, trace Gravel, dry. Changing at 17.0 feet to: White and gray, fine to coarse SAND and SILT, trace Gravel, dry. Changing at 17.8 feet to: Light brown, fine to coarse SAND and SILT, some Gravel, dry.	15' NO RECOVERY 16' SAND and SILT	3	
20 - 21 - 22 -						Bottom of Borehole at 20.0 Feet	20'	4 5	

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

R E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA_CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

GS Elev.: 867.12'

GZA GeoEnvironmental, Inc. Engineers and Scientists

__ Datum: __

NAD 83

Wolverine World Wide

Algoma Twp, Kent County, Michigan

Wolven Avenue Area

NA

NA

NA

Boring No.: WV-SB-18 Page: ___1__ of _

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: ___ Sheryl Stephenson Logged by: _ 9-12-18 / 9-12-18 Date Start/Finish: _ Boring Location: 594,174.50 N, 12,795,759.92 E

Sample Information

Auger/ Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA

NA

NA

Hammer Wt.: __

Hammer Fall: ____

TOC Elev.: __

GROUNDWATER READINGS Date Depth Casing Stab Time NM

NA

Surveyed By: _

ا ہے ا	Sample Information			nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/39	0-5		2.6 ppm	Dark brown, TOPSOIL, moist. Changing at 0.8 feet to: Brown and orange, SAND and SILT, moist. Changing at 3.0 feet to: Brown and red, CLAY & SILT, moist. Changing at	TOPSOIL 0.8' SAND and SILT	1 2	None
2-					2.9 ppm	3.2 feet to: NO RECOVERY.			
3- 4-							3.2'CLAY & SILT NO RECOVERY		
5-	2	60/42	5-10		4.5 ppm	NO RECOVERY. Changing at 6.5 feet to: Brown, SILT & CLAY, trace Gravel, trace			
6- 7-						fine Sand, moist.	6.5' SILT & CLAY	_	
8-					1.8 ppm				
9-					3.3 ppm		10'		
10-	3	60/36	10-15		5.6 ppm	Brown, Silty CLAY, trace Gravel, dry. Changing at 13.0 feet to: Brown, CLAY & SILT, trace fine Sand, moist. Changing at 13.7 feet to: Brown, Silty CLAY, trace	Silty CLAY	3	
12-					5.6 ppm	Gravel, dry.	13'		
13-					5.0 ppm		CLAY & SILT 13.7' Silty CLAY		
15-	4	30/30	15-17.5		5.0 ppm	Brown, Silty CLAY, trace Gravel, dry.			
16- 17-									
					5.2 ppm	Bottom of Borehole at 17.5 Feet	17.5'	5	
18-						DOLLOTTI OF DOTETIONE AL 17.3 FEEL		5	
19-									

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

6267781 WWW WOLVEN AVENUE.GPJ GZA_CORP.GDT 11/30/18 E M A R K S

> Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Contractor:

Foreman: _

Logged by: .

Date Start/Finish:

GZA GeoEnvironmental, Inc. Engineers and Scientists

Sheryl Stephenson

9-11-18 / 9-11-18

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-19 Page: ____1 of _

Check: Leslie Nelson

File No.: 16.0062677.81

Jobsite Services Auger/ Sampler **Bob Miller** Casing

Algoma Twp, Kent County, Michigan

MacroCore

2.25"

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

Boring Location: <u>594,173.64 N, 12,795,819.91 E</u> GS Elev.: 870.77' NAD 83 _ Datum: __

Sample Information

NA NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Type: Direct Push

O.D. / I.D.: __

NA Surveyed By: Survey Date:

_		Saii	ibie iiiioii	nauon					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
	1	60/36	0-5		3.4 ppm	Dark brown, TOPSOIL, moist. Changing at	0.4' TOPSOIL SAND	1	None
1 –						0.4 feet to: Brown and orange, fine SAND and SILT, moist. Changing at 2.0 feet to:	SAND	2	
2-					0.0	Tan and orange, fine SAND, some Silt moist. Changing at 3.0 feet to: NO	2'		
					3.8 ppm	RECOVERY.	NO RECOVERY		
3-									
4-									
5-	2	60/42	5-10		4.6 ppm	NO DECOVERY Changing at 6 F fact to			
6-		00/42	3-10		4.0 ppiii	NO RECOVERY. Changing at 6.5 feet to: Brown and tan, fine to medium SAND, trace			
0						Silt, moist. Changing at 7.5 feet to: Tan and orange, fine to medium SAND, some Silt,	6.5' SAND	4	
7-					0.9 ppm	moist.	0, 1, 1, 2		
8-									
9-									
					4.0 ppm		10'		
10 —	3	60/48	10-15		3.5 ppm	NO RECOVERY. Changing at 11.0 feet to:	NO RECOVERY	1	
11-						Brown, SILT, trace fine Sand, trace Gravel, moist. Changing at 11.8 feet to: Brown, fine	11' SILT	-	
12-						SAND, trace Silt, moist. Changing at 12.0 feet to: Tan and brown, fine to medium	11.8' SAND	-	
					3.8 ppm	SAND, trace Silt, trace Gravel, moist.			
13 –						Changing at 13.0 feet to: Light brown, fine to coarse SAND, little Gravel, moist.			
14 —					2.2 ppm				
15-	_	00/40	45.00		2 2	NO DECOVERY Observing at 40.0 foot to	15' NO	↓	
10	4	60/48	15-20		3.3 ppm	NO RECOVERY. Changing at 16.0 feet to: Tan, fine to medium SAND, little Gravel,	RECOVERY		
16-						trace Silt, moist.	SAND	7	
17 —					3.0 ppm				
18-								3	
10-								3	
19 –					3.9 ppm		001		
20 —						Bottom of Borehole at 20.0 Feet	20'	4	
21-								5	
22-									
	I	1	I	1	1		1	1 1	

E M A R K S

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-20 Page: ___1__ of _

File No.: <u>16.0062677.81</u>

Jobsite Services Contractor: **Bob Miller** Foreman: _

Algoma Twp, Kent County, Michigan Auger/ Sampler

Check: Leslie Nelson

Casing

Survey Date:

Stab

NM

Sheryl Stephenson Logged by: _ 9-13-18 / 9-13-18 Date Start/Finish: . Boring Location: <u>594,172.77 N, 12,795,879.90 E</u> GS Elev.: 871.54' _ Datum: _ NAD 83

Sample Information

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: ___ NA NA TOC Elev.: _

NA

Date

NM

Surveyed By: _

Time

GROUNDWATER READINGS

Depth

_		San	ipie intorr	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/32	0-5		3.0 ppm	Dark brown, TOPSOIL, moist. Changing at 0.4 feet to: Brown and orange, SAND and SILT. Changing at 2.7 feet to: NO RECOVERY.	0.4' TOPSOIL SAND and SILT	1	None
2- 3-					3.8 ppm	NESSVEIN.	2.7' NO RECOVERY		
4- 5-	2	60/40	5-10		3.0 ppm	NO RECOVERY. Changing at 6.8 feet to:			
6- 7-					2.0 ppm	Tan, fine to medium SAND and SILT, moist. Changing at 7.0 feet to: Tan and brown, fine to medium SAND, little Silt, trace Gravel, moist.	6.8' -7' SAND and SILT	2	
8- 9-					4.4 ppm				
10 — 11 —	3	60/45	10-15		4.5 ppm	NO RECOVERY. Changing at 11.2 feet to: Tan, fine SAND and SILT, trace Gravel, dry. Changing at 11.8 feet to: Brown, fine to	NO RECOVERY 11.2' SAND	3	
12- 13-					2.7 ppm	coarse SAND, little Gravel, trace Silt, moist.	SAIND		
14 — 15 —					3.6 ppm		15'		
16 —	4	60/56	15-20		3.9 ppm	NO RECOVERY. Changing at 15.3 feet to: Brown, SAND and SILT, trace Gravel, dry. Changing at 16.3 feet to: Tan, fine to medium SAND, trace Silt, moist. Changing	15.3' NO RECOVERY 16SAND and SILT SAND		
17— 18—					3.5 ppm	at 18.3 feet to: Tan, fine to medium SAND, little Gravel, trace Silt, moist. Changing at 19.0 feet to: Tan, fine to coarse SAND, little Gravel, moist.			
19 — 20 —					3.0 ppm	Bottom of Borehole at 20.0 Feet	20'	4	
21 – 22 –								5	

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

R

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-21 Page: ___1__ of _

File No.: <u>16.0062677.81</u> Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-17-18 / 9-17-18 Date Start/Finish:

Algoma Twp, Kent County, Michigan Auger/

Sampler

MacroCore

NM

GROUNDWATER READINGS Date Depth Casing Stab Time NM

Boring Location: <u>594,171.91 N, 12,795,939.90 E</u> GS Elev.: 875.33' _ Datum: _ NAD 83

Sample Information

NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Casing

Type: Direct Push

NA Surveyed By: Survey Date:

_		Saii	ibie iiiioii	Hation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
	1	60/24	0-5		1.1 ppm	Dark brown, TOPSOIL, moist. Changing at	0.4SAND and SILT	1	None
1-						0.4 feet to: Brown, SAND and SILT, moist. Changing at 2.0 to: NO RECOVERY.	NO RECOVERY		
2-									
3-									
4-									
5-	2	60/42	5-10		2.0 ppm	NO RECOVERY. Changing at 5.5 feet to:			
6-		00/12	0.10			Brown, SAND and SILT, moist. Changing at 7.0 feet to: Brown, Clayey SILT, little fine	6.5'		
7-					1.5 ppm	Sand, dry. Changing at 7.9 feet to: Brown, SAND and SILT, dry. Changing at 9.0 feet	7' SAND and SILT Clayey SILT	2	
_					1.0 ppiii	to: Brown, fine to coarse SAND, little Gravel,	7.9']	
8-						little Silt, dry.	SAND and SILT		
9-					2.0 ppm		9' SAND		
10					pp		10'		
10 –	3	60/32	10-15			NO RECOVERY. Changing at 12.3 feet to:	NO RECOVERY		
11-						Brown and tan, fine to medium SAND, little Silt, moist with brown, Silt lenses from 13.1	TREGOVER (
40						to 13.2 feet. Changing at 14.0 feet to: Tan,			
12-					2.5 ppm	fine to medium SAND, trace Silt, moist.	12.3' SAND	3	
13 —									
11									
14 —					2.8 ppm				
15-	4	60/51	15-20		0.8 ppm	NO RECOVERY. Changing at 15.8 feet to:	15' NO	1	
16-			10 20		"	Brown, fine to medium SAND, little Silt,	15.8RECOVERY SAND		
10-						moist. Changing at 16.7 feet to: Tan and brown, fine to coarse SAND, little Gravel,	SAIND		
17 —					1.6 ppm	trace Silt, moist.			
18-									
10									
19-					1.6 ppm				
20-							20'] ,	
20						Bottom of Borehole at 20.0 Feet		4 5	
21-									
22-									
	l		İ	1			1		

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

GS Elev.: 878.74'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: _

NAD 83

Wolverine World Wide

Wolven Avenue Area Algoma Twp, Kent County, Michigan Boring No.: WV-SB-22 Page: ___1__ of _

File No.: <u>16.0062677.81</u> Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-14-18 / 9-14-18 Date Start/Finish: Boring Location: <u>594,171.05 N, 12,795,999.90 E</u>

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Auger/

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

Surveyed By:

_		Oun	ibie illioli	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/18	0-5		2.9 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown and orange, Clayey SILT, trace fine Sand, moist. Changing at 2.0 feet	0.1' TOPSOIL Clayey SILT	1 2	None
2- 3-						to: NO RECOVERY.	NO RECOVERY		
4-									
5- 6-	2	60/36	5-10			NO RECOVERY. Changing at 7.0 feet to: Orange and brown, fine to medium SAND, some Silt, moist with brown, Sand and Silt			
7- 8-					3.0 ppm	lenses from 7.2 to 7.3 feet. Changing at 7.8 feet to: Tan, fine to coarse SAND, little Gravel, little Silt, moist.	7' SAND		
9-					2.6 ppm		10'		
10 — 11 —	3	60/36	10-15			NO RECOVERY. Changing at 12.7 feet to: Tan, fine to coarse SAND, dry. Changing at 13.0 feet to: Light brown, SILT, moist. Changing at 14.0 feet to: Light brown, SILT,	NO RECOVERY		
12- 13-					1.6 ppm	trace fine Sand, moist.	12.7' SAND	3	
14-					2.8 ppm		14' SILT 15'	3	
15— 16—	4	60/40	15-20		2.9 ppm	Brown, fine to medium SAND, trace Gravel, trace Silt, moist. Changing at 16.8 feet to: Brown, SAND and SILT, trace Gravel,	NO RECOVERY		
17— 18—					3.5 ppm	moist. Changing at 17.0 feet to: Brown, fine to medium SAND, trace Gravel, trace Silt, moist. Changing at 17.8 feet to: Tan, fine to medium SAND, moist.	17SAND and SILT SAND		
19-					2.2 ppm		20'		
20 — 21 —						Bottom of Borehole at 20.0 Feet		4 5	
22 –									

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Wolverine World Wide

Wolven Avenue Area Algoma Twp, Kent County, Michigan Boring No.: WV-SB-23

Page: ___1__ of _ File No.: <u>16.0062677.81</u> Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-12-18 / 9-12-18 Date Start/Finish: . Boring Location: <u>594,122.97 N, 12,795,729.17 E</u> Hammer Wt.: _ GS Elev.: 866.37' Datum: _ NAD 83

Sample Information

Auger/ Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA NA NA Hammer Fall: ___ NA NA TOC Elev.: _

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

NA

Surveyed By: _

_		Sam	ipie intorn	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1-	1	60/50	0-5		1.3 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown, fine SAND and SILT, moist. Changing at 2.0 feet to: Brown,	SAND and SILT	1	None
2-					1.9 ppm	Clayey SILT, some fine Sand, moist. Changing at 1.6 feet to: Light brown, fine SAND and SILT, moist. Changing at 4.1 feet	2' Clayey SILT		
3- 4-					1.6 ppm	to: NO RECOVERY.	3.6' 4. SAND and SILT NO	2	
5- 6-	2	60/60	5-10		1.9 ppm	Brown, CLAY & SILT, little fine to medium Sand, dry. Changing at 6.4 feet to: Brown,	5' RECOVERY CLAY & SILT		
7-					1.8 ppm	SILT, trace fine Sand, trace Clay, trace Gravel, moist. Changing at 7.7 feet to: Brown, SILT, trace fine Sand, trace Clay, trace Gravel, moist.	6.4' SILT 7.7'		
8- 9-					2.0 ppm	,	CLAY		
10-	3	30/30	10-12.5		3.0 ppm	Brown, Silty CLAY, trace Gravel, dry.			
11- 12-					3.3 ppm		12.5'		
13- 14-	4	30/30	12.5-15		3.3 ppm	Brown, Silty CLAY, trace Gravel, dry.	Silty CLAY		
15-	5	24/24	15-17		2.8 ppm 2.5 ppm	Brown, Silty CLAY, trace Gravel, dry.		3	
16 – 17 –						Data de Constituir de Constitu	17'	4	
18-						Bottom of Borehole at 17.0 Feet		5	
19 – 20 –									
21-									
22-									

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

Borehole was backfilled with drill cuttings upon completion.

R E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Contractor:

GZA GeoEnvironmental, Inc. Engineers and Scientists

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-24

Page: ___1__ of ___ File No.: 16.0062677.81

Jobsite Services Auger/ Casing

Algoma Twp, Kent County, Michigan Sampler

Check: Leslie Nelson

Survey Date:

Foreman: ___ **Bob Miller** Sheryl Stephenson Logged by: _ 9-12-18 / 9-12-18 Date Start/Finish: _ Boring Location: <u>594,122.11 N, 12,795,789.16 E</u> Hammer Wt.: ___

Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: ___ NA NA NA NA Hammer Fall: ____ NA NA TOC Elev.: ___

Date Depth Casing Stab NM NM

GROUNDWATER READINGS

GS Elev.: 868.85 Datum: NAD 83

Surveyed By: NA Sample Information Depth Remarks **Equipment Installed** Pen./ Depth **Blows** Test Sample Stratum No. Rec. Description & Classification (Ft.) (/6")Data Desc. (in.) Dark brown, TOPSOIL, moist. Changing at 60/36 1.0 ppm TOPSOIL 1 0-5 1 None 0.6 feet to: Brown and orange, SAND and SILT, trace Gravel, moist. Changing at 3.0 SAND 1-SAND and SILT feet to: NO RECOVERY. 3.5 ppm NO RECOVERY 4 5 2 60/51 5-10 2.1 ppm NO RECOVERY. Changing at 5.8 feet to: Brown and red. SAND and SILT. moist. 6 SAND and SILT Changing at 7.0 feet to: Brown, SILT, some fine Sand, trace Gravel, moist. Changing at 7.2 feet to: Light tan, SILT, moist. Changing 1.5 ppm SILT 2 at 8.6 feet to: Tan, fine SAND, moist. 7.6' SAND 8 Changing at 8.8 feet to: Light tan, SILT, moist. 9 2.9 ppm 9.8' SILT 10 3 24/24 10-12 2.9 ppm Brown, SILT, trace Gravel, moist. Changing at 11.0 feet to: Light gray, fine to coarse 11' 11 SAND, some Gravel, little Silt, moist. SAND Changing at 12.0 feet to: NO RECOVERY. 12 Changing at 12.4 feet to: Light brown, fine to NO 3.2 ppm 3 coarse SAND, little Gravel, moist. RECOVERY 13 14 1.9 ppm 15 60/48 1.9 ppm NO RECOVERY. Changing at 16.0 feet to: NO RECOVERY 4 15-20

6267781 WWW WOLVEN AVENUE.GPJ R Е

М Α R

WELL S

16-

17

20

21 22

CORP.GDT 18 19

GZA

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withinkae 2000 photoforlization detector equipped with a 10.6 eV above background levels are shown in parts per million (ppm) of isobutylene. Background was measured at 0.2 ppm.
 Soil sample was collected from approximately 7.0 to 9.0 feet below ground surface and submitted for analytical laboratory testing.
 Soil sample was collected from approximately 12.0 to 14.0 feet below ground surface and submitted for analytical laboratory testing.
 Groundwater was not encountered during drilling or upon completion.

Light brown and tan, fine to medium SAND,

SAND

20'

trace Silt, moist with traces of light brown,

Silt from 17.6 to 17.8 feet.

Bottom of Borehole at 20.0 Feet

2.7 ppm

2.9 ppm

5. Borehole was backfilled with drill cuttings upon completion.

Wolverine World Wide

Algoma Twp, Kent County, Michigan

NA

NA

Wolven Avenue Area

Boring No.: WV-SB-25

Page: ___1__ of _ File No.: <u>16.0062677.81</u> Check: Leslie Nelson

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-17-18 / 9-17-18 Date Start/Finish: .

Boring Location: <u>594,121.25 N, 12,795,849.16 E</u>

NAD 83

Auger/ Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __

GROUNDWATER READINGS Date Depth Casing Stab Time NM NM

GS Elev.: 873.18' __ Datum: __ Hammer Fall: ___ NA NA NA TOC Elev.: _ Surveyed By: _ Survey Date: Sample Information

NA

NA

Hammer Wt.: _

_		San	ipie intorr	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
	1	60/39	0-5		2.6 ppm	Dark brown, TOPSOIL, moist. Changing at	0.5' TOPSOIL	1	None
1-						0.5 feet to: Brown, SAND and SILT, moist. Changing at 0.6 feet to: Brown, tan and	SAND	2	
0						orange, fine to medium SAND, little Silt,		2	
2-					2.5 ppm	moist. Changing at 3.2 feet to: NO RECOVERY.	2.6'		
3-							NO RECOVERY		
4-									
_									
5-	2	60/36	5-10			NO RECOVERY. Changing at 9.0 feet to: Tan, fine to coarse SAND, trace Silt, moist.			
6-						Tan, line to coarse SAND, trace Siit, moist.			
7-					4.0		7'		
					1.6 ppm		SAND		
8-									
9-					1.6 ppm				
10 —		00/00	10.45		0.4	T 5 1 000 1111 0 1			
	3	60/60	10-15		3.4 ppm	Tan, fine to coarse SAND, little Gravel, trace Silt, moist. Changing at 12.0 feet to:			
11 —						Tan, fine to coarse SAND, trace Silt, trace Gravel, moist. Changing at 14.0 feet to:			
12-					3.4 ppm	Tan, fine to medium SAND, trace Silt, moist.			
13 —									
								3	
14 —					2.8 ppm				
15 —	4	60/60	15-20		4.3 ppm	Gray and white, fine SAND, some Silt, trace			
16-	·		.0 20			Gravel, dry. Changing at 16.7 feet to: Tan,			
						fine to medium SAND, trace Silt, moist. Changing at 17.9 feet to: Brown, fine to			
17 —					1.6 ppm	coarse SAND and GRAVEL, little Silt, moist with orange, fine to medium Sand lenses at			
18 –						19.9 to 20.0 feet.	17.9' SAND and		
19 —							GRAVEL		
19					2.7 ppm		19.9'		
20 —						Bottom of Borehole at 20.0 Feet	20' SAND	4	
21 —								5	
22									
22 –									

R E M

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a finite account with a finite account with a finite account with a finite account with a finite account with a finite account acc

- Borehole was backfilled with drill cuttings upon completion.

GS Elev.: <u>876.8</u>4'

GZA GeoEnvironmental, Inc. Engineers and Scientists

_ Datum: __

NAD 83

Wolverine World Wide

NA

NA

Wolven Avenue Area Algoma Twp, Kent County, Michigan Boring No.: WV-SB-26 Page: ____1 of _

File No.: <u>16.0062677.81</u> Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: _ 9-17-18 / 9-17-18 Date Start/Finish: _ Boring Location: <u>594,120.39 N, 12,795,909.15 E</u> Hammer Wt.: __

Auger/ Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA

NA

NA

Hammer Fall: ___

TOC Elev.: __

GROUNDWATER READINGS Date Depth Casing Stab NM NM

NA

Surveyed By: _

Depth							Surveyed By: NA Survey Date:		
בֿ	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1- 2- 3-	1	60/36	0-5		2.3 ppm 0.9 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown, SAND and SILT, moist. Changing at 0.6 feet to: Brown, Clayey SILT, little fine Sand, moist. Changing at 1.3 feet to: Green, crushed ROCK. Changing at 1.5 feet to: Brown, Clayey SILT, little fine Sand, moist with fine Gravel lenses at 3.8 feet.	0,1 TOPSOIL 6 SAND and SILT 1.4 SILT 5 Crushed ROCK SILT	1	None
1— 5— 6—	2	60/42	5-10		1.0 ppm	NO RECOVERY. Changing at 6.5 feet to: Tan, fine SAND and SILT, dry. Changing at 7.9 feet to: Tan, fine to medium SAND, moist.	NO RECOVERY 6.5' 7' SAND and SILT SAND	2	
3-)- !-	3	60/48	10-15		2.3 ppm 4.1 ppm 5.4 ppm	NO RECOVERY. Changing at 11.0 feet to: Tan, fine SAND, moist with slight discoloration. Changing at 12.0 feet to: Tan, fine SAND, moist with slight discoloration.	10' NO NO 11' RECOVERY SAND		
	4	60/54	15-20		5.3 ppm 3.5 ppm 4.6 ppm	NO RECOVERY. Changing at 15.5 feet to: Tan and brown, fine SAND and SILT, moist. Changing at 16.0 feet to: Tan, fine to medium SAND, moist with slight discoloration. Changing at 17.8 feet to:	15' NO 15.5' NO 16 SAND and SILT SAND		
					4.6 ppm	Brown and tan, fine to coarse SAND, little Gravel, trace Silt, moist. White rocked noted at 18.5 feet. Bottom of Borehole at 20.0 Feet	20'	3 4 5	

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

E M A R K S

6267781 WWW WOLVEN AVENUE.GPJ GZA_CORP.GDT 11/30/18

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

_ Datum: __

NAD 83

Wolverine World Wide

Wolven Avenue Area

Boring No.: WV-SB-27 Page: ____1 of _

Algoma Twp, Kent County, Michigan Auger/

File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-17-18 / 9-17-18 Date Start/Finish: **Boring Location:** <u>594,119.52 N, 12,795,969.14 E</u> GS Elev.: 878.65'

Sample Information

Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

Surveyed By:

GROUNDWATER READINGS

_		Oan	ibie illioli	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
1- 2- 3-	1	60/26	0-5		3.4 ppm 1.4 ppm	Dark brown, TOPSOIL, moist. Changing 0.1 feet to: Light brown, SAND and SILT, moist. Changing at 1.0 foot to: Brown and orange tint, Clayey SILT, little fine Sand, dry. Changing at 2.1 feet to: NO RECOVERY.	TOPSOIL 1' SAND and SILT 2' 2(1' SILT NO RECOVERY	1	None
4- 5- 6-	2	60/28	5-10			NO RECOVERY. Changing at 7.7 feet to: Brown, CLAY & SILT, dry. Changing at 7.8 feet to: Brown, fine to coarse SAND, little			
7- 8- 9-					2.9 ppm	Gravel, little Silt, moist. Changing at 9.5 feet to: Brown, SAND and SILT, moist.	7.7' 7.8'CLAY & SILT SAND	2	
10-	3	60/48	10-15		1.2 ppm 1.3 ppm	NO RECOVERY. Changing at 11.0 feet to: Brown, Clayey SILT, little to some fine to	9.5' 10SAND and SILT NO RECOVERY		
11- 12- 13- 14-					1.1 ppm	trace Gravel, moist. Changing at 11.5 feet to: Brown, Clayey SILT, trace fine Sand, trace Gravel, moist. Changing at 12.7 feet to: Light brown, fine to coarse SAND, little Gravel, little Silt, dry. Changing at 14.0 feet to: Brown and tan, fine to medium SAND, little Gravel, trace Silt, dry.	11' SILT 12.7' SAND	3	
15— 16—	4	60/42	15-20		1.7 ppm	NO RECOVERY. Changing at 16.5 feet to: Brown, Clayey SILT, little fine to coarse Sand, moist. Changing at 17.2 feet to: White, fine SAND, some Silt, trace Gravel,	15' NO RECOVERY 16.5' Clayeye SILT 17.2'		
17— 18— 19—					4.2 ppm 4.3 ppm	dry. Changing at 18.0 feet to: Brown, fine to coarse SAND, little Gravel, little Silt, dry. Changing at 19.0 feet to: Brown, fine to coarse SAND, little Gravel, little Silt, moist. Changing at 19.8 feet to: Orange, fine to	SAND and SILT 19' SAND		
20 – 21 –					4.3 ррп	medium SAND and SILT, moist. Bottom of Borehole at 20.0 Feet	19.8' 20SAND and SILT	4 5	
22-									

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account of the country of the

Borehole was backfilled with drill cuttings upon completion.

Wolverine World Wide

Wolven Avenue Area

Sampler

Boring No.: WV-SB-28

Page: ___1__ of ___1 File No.: <u>16.0062677.81</u>

Algoma Twp, Kent County, Michigan Auger/

Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: __ **Bob Miller** Foreman: ___ Sheryl Stephenson Logged by: _ 9-14-18 / 9-14-18 Date Start/Finish: _ Boring Location: <u>594,118.66 N, 12,796,029.14 E</u> Hammer Wt.: ___

GS Elev.: 881.26' Datum: NAD 83

Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: ___ NA NA NA NA Hammer Fall: ____ NA NA TOC Elev.: ___

GROUNDWATER READINGS Date Depth Casing Stab NM NM

NA

Surveyed By: _

		San	iple Inforr	nation					
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed
	1	60/44	0-5	-1.4 ppm	1.4 ppm	Dark brown, SAND and SILT, moist.	SAND and SILT	1	None
1-						Changing at 0.5 feet to: Light brown, fine SAND and SILT, moist. Changing at 1.0 feet	1' Clayey SILT	2	
2-				-2.7 ppm	2.7 ppm	to: Brown, orange, Clayeye SILT, little fine Sand, moist. Changing at 2.8 feet to: Light			
3-						brown, SILT, little fine Sand, dry. Changing at 3.8 feet to: NO RECOVERY.	2.9' SILT	-	
4-							3.8'		
5-							NO RECOVERY 5'		
	2	60/60	5-10	-2.7 ppm	2.7 ppm	Brown, Silty CLAY, dry, trace Rock fragments, dry.	Silty CLAY		
6-						\$			
7-				-4.2 ppm	4.2 ppm				
8-									
9-				-2.8 ppm	2.8 ppm				
10-	3	60/60	10-15	-3.3 ppm	3.3 ppm	Brown, Silty CLAY, dry.			-
11-						, , , ,			
12-				-3.9 ppm	3.9 ppm				
13-				-5.9 ppiii	э.э ррш				
14 –									
15-	4	60/60	15-20	-5.0 ppm	5.0 ppm	Brown, Silty CLAY, dry.		3	-
16-									
17-				-2.7 ppm	2.7 ppm				
18-									
19-				-4.2 ppm	4.2 ppm				
20-						Bottom of Borehole at 20.0 Feet	20'	4	
21-						Detail of Borolloid at 20.0 1 dot		5	
22-									

E M A R K S

- 1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

Datum: _

NAD 83

Wolverine World Wide

Boring No.: WV-SB-29

Wolven Avenue Area Algoma Twp, Kent County, Michigan

Surveyed By:

Page: ____1 of _ File No.: 16.0062677.81 Check: Leslie Nelson

Survey Date:

Jobsite Services Contractor: **Bob Miller** Foreman: _ Sheryl Stephenson Logged by: . 9-17-18 / 9-17-18 Date Start/Finish: **Boring Location:** <u>594,069.73 N, 12,795,818.41 E</u> GS Elev.: 870.49'

Sample Information

Auger/ Sampler Casing Type: Direct Push MacroCore NA 2.25" O.D. / I.D.: __ NA NA Hammer Wt.: _ NA NA Hammer Fall: __ NA NA TOC Elev.: _

Date Depth Casing Stab Time NM NM

NA

GROUNDWATER READINGS

_	Sample information											
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipment Installed			
1-	1	60/36	0-5		2.2 ppm	Dark brown, TOPSOIL, moist. Changing at 0.1 feet to: Brown, SILT, moist. Changing at 0.6 feet to: Light brown, fine to medium SAND, some Silt, trace Gravel, moist.	0.1' TOPSOIL 0.6' SILT SAND	1 2	None			
2- 3-					3.8 ppm	Changing at 2.3 feet to: Brown, SILT & CLAY, trace fine Sand, moist. Changing at 3.0 feet to: NO RECOVERY.	SILT & CLAY 3' NO RECOVERY					
4-					4.3 ppm							
5- 6-	2	60/46	5-10			NO RECOVERY. Changing at 6.2 feet to: Brown, Silty CLAY, trace fine Sand, dry. Changing at 7.6 feet to: Orange and brown,	6.2'					
7-					0.2 ppm	SAND and SILT, trace Gravel, moist. Changing at 9.0 feet to: Light brown, Clayey SILT, trace fine Sand, moist. Changing at	Silty CLAY					
8- 9-					0.7	9.5 feet to: Tan, fine to medium SAND, trace Silt, moist.	SAND and SILT					
10-					2.7 ppm		9.5' Clayey SILT 10' SAND					
11-	3	60/48	10-15		3.8 ppm	NO RECOVERY. changing at 11.0 feet to: Tan, fine SAND, trace Silt, moist. Changing at 12.0 feet to: Tan, fine SAND, little Silt,	NO RECOVERY SAND					
12- 13-					4.1 ppm	moist. Changing at 12.5 feet to: Tan, fine to coarse SAND, trace Gravel, moist. Changing at 13.0 feet to: Light brown, SILT, moist. Changing at 13.5 feet to: Tan, fine to	13'					
14-					4.2 ppm	medium SAND, moist. Changing at 14.0 feet to: Tan, fine to medium SAND, moist. Changing at 14.7 feet to: Tan, fine SAND,	13.5' SILT SAND					
15-	4	60/48	15-20		2.2 ppm	moist. NO RECOVERY. Changing at 16.0 feet to:	NO RECOVERY	3				
16-						Tan, fine to medium SAND, slightly discolored, moist. Changing at 19.4 feet to: Tan, fine SAND, moist.	SAND	$ \ $				
17 –					3.0 ppm	i aii, iiile saind, iiioist.						
18-												
19-					3.2 ppm							
20 –						Bottom of Borehole at 20.0 Feet	20'	4 5				
21-								5				
22-												

1. Field screening of samples for organic vapors was performed with a MiniRae 2000 photoionization detector equipped with a 10.6 eV lamp. Readings ried screening of samples for organic vapors was performed with a withright account with a finite account with a withright account with a withright account with a withright account with a withright account acc

- Borehole was backfilled with drill cuttings upon completion.

Boring Location: ___

GS Elev.: __

GeoEnvironmental, Inc. Engineers and Scientists

Wolverine World Wide Wolven Avenue Area

Boring No.: WV-SB-7/MW-WV7

Page: ___1 __ of ___6 File No.: 16.0062677.81

Survey Date: .

Algoma Twp, Kent County, Michigan Auger/

Casing

NA

NA

Surveyed By: NA

Check: Leslie Nelson

Jobsite Services Contractor: __ Jerry Zach/Travis Foreman: ___ John Morehouse Logged by: _ 10-23-18 / 10-25-18 Date Start/Finish: ____

_____ Datum: ___

Type: Hollow Stem Auger Split Spoon O.D. / I.D.: 12.25" / 4.25" 2.0" / 1 3/8" Hammer Wt.: NA

Hammer Fall: ____

TOC Elev.: ____

NAD 83

140lbs 30.0"

NA

Sampler

Date Depth Casing Stab Time NM

GROUNDWATER READINGS

	Sample Information					Surveyed by Survey Bate				
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks		Equipment Installed PROTECTIVE CASING
1-	1	24/20.4	0-2	2-2 2-2	ND	Very dark brown, fine grained SAND, some Silt, trace Gravel, moist. Changing at 0.4 feet to: Dark yellowish-brown to yellowish-brown, very fine grained SAND and SILT, moist. Changing at 1.7 feet to: NO RECOVERY.	0.4' SAND SAND and SILT	1		Sand
3-	2	24/15.6	2-4	1-2 1-1	ND	Yellowish-brown, very fine grained SAND and SILT, moist. Changing at 3.3 feet to: NO RECOVERY.	2' NO RECOVERY SAND and SILT			
4-	3	24/19.2	4-6	1-4 3-2	ND	Yellowish-brown to brown, CLAY & SILT, moist. Changing at 4.6 feet to:	NO RECOVERY 4' CLAY & SILT 4.6' SAND			
5- 6-	4	24/12	6-8	1-1	ND	Yellowish-brown, fine to medium grained SAND, trace Silt, moist. Changing at 5.6 feet to: NO RECOVERY. Yellowish-brown, fine to coarse grained	5.6' NO 6' RECOVERY			
7-	4	24/12	0-0	1-1	NB	SAND, little Gravel, trace Silt, moist. Changing at 7.0 feet to: NO RECOVERY.	SAND 7' NO RECOVERY			
8- 9-	5	24/6	8-10	1-1 1-1	ND	Yellowish-brown, fine to coarse grained SAND, little Gravel, trace Silt, moist. Changing at 8.5 feet to: NO RECOVERY.	SAND 8.5' NO RECOVERY			
10-	6	24/12	10-12	1-1 2-2	ND	Yellowish-brown, fine to coarse grained SAND, little Gravel, trace Silt, moist. Changing at 10.6 feet to: Pale brown to light yellowish-brown, fine SAND, trace Silt,	10' SAND			
12-	7	24/16.8	12-14	2-3 3-3	ND	moist. Changing at 11.0 feet to: NO RECOVERY. Pale brown to light yellowish-brown, fine SAND, trace Silt, moist. Changing at 12.7	RECOVERY 12' SAND			
13-						feet to: Brown, fine to medium SAND, trace Silt, wet. Changing at 13.4 feet to: NO RECOVERY.	13.4' NO 14' RECOVERY	2		
14-	8	24/15.6	14-16	3-2 3-4	ND	Brown, fine to medium SAND, trace Silt, wet. Changing at 15.3 feet to: NO RECOVERY.	SAND			

1. Field screening of samples for organic vapors was performed with a MiniRae 3000 photoionization detector equipped with a 10.6 eV lamp. Readings above background levels are shown in parts per million by volume (ppmv) of isobutylene. ND indicates nothing detected (<0.1 ppmv).

2. Groundwater was encountered at approximately 12.7 feet below ground surface.

Wolverine World Wide GZA GeoEnvironmental, Inc.

Wolven Avenue Area Algoma Twp, Kent County, Michigan

Boring No.:WV-SB-7/MW-WV7D Page: ____2 of ___6

File No.: 16.0062677.81 Leslie Nelson

	Sam	ple Inforn	nation				¯ Cheo		41 4 11 1
No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	-quipm	ent Installed
						15.3' SAND			
						RECOVERY			
9	24/16.8	16-18	2-2 3-4	ND	Brown, fine to medium SAND, trace Silt, wet. Changing at 17.4 feet to: NO RECOVERY.	SAND			
						17 4'			
						NO			
10	24/19.2	18-20	0-2 3-6	ND	Brown, fine to medium SAND, trace Silt, wet. Changing at 19.6 feet to: NO	SAND			
					REGOVERT.				
						19.6'			
						20' RECOVERY			
11	24/16.8	20-22	5-6 5-11	ND	Brown, fine to medium SAND, trace Silt, wet. Changing at 21.4 feet to: NO RECOVERY.	SAND			
						21.4'			
						NO RECOVERY			
12	24/19.2	22-24	8-12	ND	Brown, fine to medium SAND, trace Silt,	SAND			
			13-11		trace Gravel, wet. Changing at 23.6 feet to:				
					INU RECOVERY.				
						23.6'			
						NO 24' RECOVERY			
13	24/15.6	24-26	1-1 1-1	ND	Brown, fine to medium SAND, trace Silt,	SAND			
					NO RECOVERY.				
						25.3'			
						RECOVERY			
14	24/14.4	26-28	1-1	ND	Brown, fine to medium SAND, trace Silt,	SAND			
			2-0		trace Gravel, wet. Changing at 27.2 feet to:				
					NO NECOVERT.	27.2'			
						NO			
						28'			
15	24/21.6	28-30	1-1 1-2	ND		SAND			
					NO RECOVERY.				
						29.8'			
16	24/16.8	30-32	0-0	ND	Brown, fine to medium SAND, trace Silt,	RECOVERY /			
			1-1		trace Gravel, wet. Changing at 31.4 feet to:	SAND			
					NO RECOVERY.				
	1					31.4' NO			
			1	1		32' RECOVERY			
17	24/20.4	32-34	0-1	ND	Brown, fine to medium SAND, trace Silt,	SAND			
	9 10 11 12 13 14 15	9 24/16.8 10 24/19.2 11 24/16.8 12 24/19.2 13 24/15.6 14 24/14.4 15 24/21.6	9 24/16.8 16-18 10 24/19.2 18-20 11 24/16.8 20-22 12 24/19.2 22-24 13 24/15.6 24-26 14 24/14.4 26-28 15 24/21.6 28-30	(in.) (Ft.) (76°) 9 24/16.8 16-18 2-2 3-4 10 24/19.2 18-20 0-2 3-6 11 24/16.8 20-22 5-6 5-11 12 24/19.2 22-24 8-12 13-11 13 24/15.6 24-26 1-1 1-1 14 24/14.4 26-28 1-1 2-0 15 24/21.6 28-30 1-1 1-2	9 24/16.8 16-18 2-2 ND 10 24/19.2 18-20 0-2 ND 11 24/16.8 20-22 5-6 5-11 ND 12 24/19.2 22-24 8-12 ND 13 24/15.6 24-26 1-1 ND 14 24/14.4 26-28 1-1 ND 15 24/21.6 28-30 1-1 ND	9	9 24/16.8 16-18 2-2 3-4 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 17.4 feet to: NO RECOVERY. 10 24/19.2 18-20 0-2 3-6 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 19.6 feet to: NO RECOVERY. 11 24/16.8 20-22 5-6 5-11 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 21.4 feet to: NO RECOVERY. 12 24/19.2 22-24 8-12 13-11 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 23.6 feet to: NO RECOVERY. 13 24/15.6 24-26 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 25.3 feet to: NO RECOVERY. 14 24/14.4 26-28 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 15 24/21.6 28-30 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 16 24/21.6 28-30 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 16 24/21.6 28-30 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 29.8 feet to: NO RECOVERY. 17 NO RECOVERY SAND	9 24/16.8 16-18 2-2 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 17.4 feet to: NO RECOVERY. 10 24/19.2 18-20 0-2 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 19.6 feet to: NO RECOVERY. 11 24/16.8 20-22 5-6 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 21.4 feet to: NO RECOVERY. 12 24/19.2 22-24 8-12 13-11 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 21.4 feet to: NO RECOVERY. 13 24/15.6 24-26 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 23.6 feet to: NO RECOVERY. 14 24/14.4 26-28 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 25.3 feet to: NO RECOVERY. 15 24/21.6 28-30 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 16 24/16.8 30-32 0-0 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 16 24/16.8 30-32 0-0 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 29.8 feet to: NO RECOVERY. 17	9 24/16.8 16-18 2-2 3-4 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 17.4 feet to: NO RECOVERY 10 24/19.2 18-20 0-2 3-6 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 19.6 feet to: NO RECOVERY 11 24/16.8 20-22 5-6 5-11 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 21.4 feet to: NO RECOVERY. 12 24/19.2 22-24 8-12 ND Brown, fine to medium SAND, trace Silt, wet. Changing at 21.4 feet to: NO RECOVERY. 13 24/15.6 24-26 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 23.6 feet to: NO RECOVERY. 14 24/14.4 26-28 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 15 24/21.6 28-30 1-1 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 27.2 feet to: NO RECOVERY. 16 24/16.8 30-32 0-0 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 29.8 feet to: NO RECOVERY. 16 24/16.8 30-32 0-0 ND Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 29.8 feet to: NO RECOVERY.

Wolverine World Wide

Wolven Avenue Area

Algoma Twp, Kent County, Michigan

Boring No.:WV-SB-7/MW-WV7D Page: ___3 __ of ___6

File No.: 16.0062677.81 Leslie Nelson

							(v)	Equipment Installed
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum besc.	Equipment Installed
33-						trace Gravel, wet. Changing at 33.7 feet to: NO RECOVERY.	SAND	
34 — 35 —	18	24/22.8	34-36	1-2 4-5	ND	Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 35.9 feet to: NO RECOVERY.	33.7' 34' NO RECOVERY SAND	
36 — 37 —	19	24/10.8	36-38	1-2 1-4	ND	Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 36.9 feet to: NO RECOVERY.	35.9' RECOVERY SAND 36.9' NO RECOVERY	
38 — 39 —	20	24/12	38-40	1-0 4-4	ND	Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 38.9 feet to: Brown, GRAVEL, some fine to coarse grained Sand, trace Silt, wet. Changing at 38.9 feet to: NO RECOVERY.	38' SAND 38.9' NO RECOVERY	
10 — 11 —	21	24/15.6	40-42	1-1 1-2	ND	Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 41.3 feet to: NO RECOVERY.	40' SAND	
12- 13-	22	24/15.6	42-44	1-1 1-1	ND	Brown, fine to medium SAND, trace Silt, trace Gravel, wet. Changing at 43.3 feet to: NO RECOVERY.	NO RECOVERY 42' SAND	
14 — 15 —	23	24/6	44-46	1-1 1-1	ND	Brown, fine to medium SAND, trace Silt, wet. Changing at 44.3 feet to: Brown, fine to medium SAND, little coarse grained Sand, little Gravel, trace Silt, wet. Changing at 44.5 feet to: NO RECOVERY.	NO RECOVERY 44' SAND 44.5' NO RECOVERY	— Bentonite Grout
16- 17-	24	24/9.6	46-48	1-1 3-5	ND	Brown, fine to medium SAND, little coarse grained Sand, little Gravel, trace Silt, wet. Changing at 46.6 feet to: Brown, GRAVEL and fine to coarse grained Sand, trace Silt, wet. Changing at 46.8 feet to: NO	46' SAND 46.6' 46.8' GRAVEL NO RECOVERY	
.8− .9−	25	24/10.8	48-50	2-3 4-7	ND	RECOVERY. Brown, fine to medium SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 48.9 feet to: NO RECOVERY.	48.9' NO RECOVERY	
R E M							50'	

GZA GeoEnvironmental, Inc. Engineers and Scientists

Wolverine World Wide

Wolven Avenue Area

Algoma Twp, Kent County, Michigan

Boring No.:WV-SB-7/MW-WV7D Page: ___4 __ of ___6

File No.: 16.0062677.81 Leslie Nelson

	No.	Pen./						σ l			
2		Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equ	ipment Insta	alled
51-	26	24/15.6	50-52	1-1 2-2	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet; with thin lenses of yellowish-brown, Silty Clay, moist. Changing at 51.3 feet to: NO RECOVERY.	SAND 51.3' NO RECOVERY	_			
52 2 53 -	27	24/15.6	52-54	0-0 2-9	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 53.2 feet to: Brown, GRAVEL and fine to coarse grained Sand, trace Silt, wet. Changing at 53.3 feet to: No RECOVERY.	52' SAND 53.2' 53.3' GRAVEL NO				
54 — 2 55 —	28	24/10.8	54-56	1-1 2-3	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Silt, wet. Changing at 54.9 feet to: NO RECOVERY.	54.9' NO RECOVERY				
56 – ₂	29	24/4.8	56-58	1-0 2-4	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 56.3 feet to: Brown, GRAVEL, trace Silt, wet. Changing at 56.4 feet to: NO RECOVERY.	56' 56.3' SAND 56.4' GRAVEL NO RECOVERY				
58 — 3 59 —	30	24/13.2	58-60	1-2 2-3	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 59.1 feet to: NO RECOVERY.	58' SAND 59.1' NO RECOVERY				
60 – 3 61 –	31	24/9.6	60-62	1-2 6-11	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 60.8 feet to: NO RECOVERY.	60' SAND 60.8' NO RECOVERY				
62 3 63 -	32	24/18	62-64	1-4 7-11	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 63.5 feet to: NO RECOVERY.	62' SAND				
64 – 3 65 –	33	24/13.2	64-66	1-2 3-6	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 65.1 feet to: NO RECOVERY.	NO 64' RECOVERY SAND				
66 - 3	34	24/16.8	66-68	2-3 5-8	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 67.4 feet to: NO RECOVERY.	RECOVERY 66' SAND				

Wolverine World Wide

Wolven Avenue Area

Algoma Twp, Kent County, Michigan

Page: 5 of 6 File No.: 16.0062677.81 Check: Leslie Nelson

		Sam	ple Inforn	nation			iviioriigari	Check:	Leslie Nelson
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks dinba	ment Installed
68- 69-	35	24/21.6	68-70	1-1 2-3	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 69.8 feet to: NO RECOVERY.	NO 68' RECOVERY SAND		
70- 71-	36	24/21.6	70-72	1-2 2-4	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 71.8 feet to: NO RECOVERY.	69.8' 70' NO RECOVERY SAND		-
72- 73-	37	24/12	72-74	1-0 0-1	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 73.0 feet to: NO RECOVERY.	71.8' 72' NO RECOVERY SAND 73' NO RECOVERY		
74 — 75 —	38	24/15.6	74-76	2-3 4-9	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 75.3 feet to: NO RECOVERY.	74' SAND 75.3'		-
76-	39	24/19.2	76-78	1-2 5-6	ND	Brown, fine to medium grained SAND, trace coarse grained Sand, trace Gravel, trace Silt, wet. Changing at 77.2 feet to: Brown, fine to coarse grained SAND, some Gravel, trace Silt, wet. Changing at 77.6 feet to: NO RECOVERY.	76' SAND		
78- 79-	40	24/12	78-80	2-1 4-5	ND	Brown, fine to coarse grained SAND, some Gravel, trace Silt, wet. Changing at 79.0 feet to: NO RECOVERY.	78' RECOVERY SAND 79' NO RECOVERY		
80 — 81 —	41	24/24	80-82	2-3 5-18	ND	Brown, fine to medium grained SAND, some Gravel, trace Silt, wet.	80' SAND		-
82- 83-	42	24/10.8	82-84	7-11 15-27	ND	Brown, GRAVEL, some fine to coarse grained SAND, wet. Changing at 82.9 feet to: NO RECOVERY.	82' GRAVEL 82.9' NO RECOVERY		
84-	43	24/19.2	84-86	23-27 35-25	ND	Yellowish-brown, GRAVEL, some Silty Sand, wet. Changing at 85.5 feet to: Yellowish-brown, GRAVEL, trace Silt, wet.	84' GRAVEL		

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Boring No.: WV-SB-7/MW-WV7[

30RING_WELL 6267781 WWW WOLVEN AVENUE.GPJ GZA_CORP.GDT 11/30/18

REMARKS

Wolverine World Wide Wolven Avenue Area

Algoma Twp, Kent County, Michigan

Boring No.:WV-SB-7/MW-WV7D Page: 6 of 6

File No.: 16.0062677.81 Leslie Nelson

۔ اے		Sam	ple Inforn	nation				10	Check:	Leslie Nelson
Depth	No.	Pen./ Rec. (in.)	Depth (Ft.)	Blows (/6")	Test Data	Sample Description & Classification	Stratum Desc.	Remarks	Equipn	nent Installed
86 – 87 –	44	24/8.4	86-88	6-8 19-29	ND	Changing at 85.6 feet to: NO RECOVERY. Brown, fine to coarse grained SAND, some Gravel, trace Silt, wet. Changing at 86.7 feet to: NO RECOVERY.	GRAVEL 85.6' NO 86' RECOVERY SAND 86.7' NO RECOVERY			
88 — 89 —	45	24/24	88-90	3-4 10-17	ND	Brown, fine to coarse grained SAND, some Gravel, trace Silt, wet. Changing at 88.8 feet to: Yellowish-brown, GRAVEL, trace Silt, wet.	88' SAND 88.8' GRAVEL			
90-	46	24/7.2	90-92	14-35 40-50/5"	ND	Yellowish-brown, GRAVEL and fine to coarse grained SAND, little Silt, moist to wet. Changing at 90.6 feet to: NO RECOVERY.	90.6' NO RECOVERY			—Filter Sand
92-	47	24/14.4	92-94	4-8 12-10	ND	Yellowish-brown, GRAVEL and fine to coarse grained SAND, little Silt, moist to wet. Changing at 93.0 feet to: Very dark grayish-brown, Silty CLAY, moist. Changing at 93.2 feet to: NO RECOVERY.	92' GRAVEL 93' 93.2' CLAY NO			—2-Inch PVC Well Screer
94 —	48	24/24	94-96	17-24 26-50	ND	Very dark grayish-brown, Silty CLAY, moist.	RECOVERY 94' Silty CLAY			
95 - 96 -						Bottom of Borehole at 96.0 Feet	96'	3		
97-										
98-										
99-										
01-										
02-				1-4: 1	1-		halama i i	_		
01- 02- 3 8 8 8 8 8 8	s. Monit	oring well	was ınstal	iea in borel	noie upor	n completion. Well screen set from 90.2 to 95.0 feet	pelow ground surfa	ce.		
						soil types, transitions may be gradual. Water level readings			Boring No.	: WV-SB-7/MW-V