## Investigation of Per- and Polyfluoroalkyl Substances (PFAS) City of Cadillac Surface Water Sampling Update May 2025

Per- and polyfluorinated alkyl substances (PFAS) are a very large class of man-made organic chemicals that have been used in numerous industrial processes and consumer products for over 60 years. Validated analytical methods are available for relatively few of the thousands of compounds. Much of the environmental monitoring of PFAS in Michigan has focused on measuring perfluorinated chemicals.

Many PFAS are persistent, some bioaccumulate in the environment, and several are toxic to mammals and/or birds in laboratory tests. The toxicities of most PFAS have not been evaluated. Two perfluorinated compounds; perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been the subject of the most toxicological work and environmental monitoring. Both compounds were manufactured intentionally, but they can also be generated as byproducts when other fluorinated compounds break down. Many products containing PFOS and PFOA were historically used in numerous industrial processes including metal plating, textile production and treatment, and specialty paper production. Other PFAS chemicals are still widely used today in industrial and consumer products. Industrial and domestic waste containing these compounds can enter the environment through municipal or private waste treatment systems, stormwater runoff, venting groundwater, or as atmospheric deposition via emissions. In addition, several PFAS are key ingredients in Aqueous Film-Forming Foam (AFFF). These foams have been used extensively in fire suppression training exercises at military bases nationwide as well as in emergency firefighting. In recent years, PFAS have been detected in surface and groundwater near many military facilities. Both PFOS and PFOA have been measured in surface waters across the state, and PFOS has been detected in most fish tissue samples from Michigan waters that have been analyzed for PFAS.

The Michigan Department of Environment, Great Lakes, and Energy (EGLE) has generated Rule 57 surface water quality values for the protection of human health and aquatic life for PFOS, PFOA, perfluorobutane sulfonate (PFBS), perfluorohexanesulphonic acid (PFHxS), and perfluorononanoic acid (PFNA). The Rule 57 Water Quality Values (listed in nanograms per liter which is equivalent to parts per trillion) are as follows:

| PFAS  | Human Noncancer<br>Value (HNV)<br>(drinking) (ng/L)* | HNV<br>(nondrinking)<br>(ng/L) | Final Chronic<br>Value (FCV)<br>(ng/L) | Aquatic<br>Maximum Value<br>(AMV) (ng/L) | Final Acute<br>Value (FAV)<br>(ng/L) |
|-------|------------------------------------------------------|--------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|
| PFOS  | 11                                                   | 12                             | 140,000                                | 780,000                                  | 1,600,000                            |
| PFOA  | 66                                                   | 170                            | 880,000                                | 7,700,000                                | 15,000,000                           |
| PFBS  | 8,300                                                | 670,000                        | 24,000,000                             | 120,000,000                              | 240,000,000                          |
| PFHxS | 59                                                   | 210                            | -                                      | -                                        | -                                    |
| PFNA  | 19                                                   | 30                             | _                                      | _                                        | _                                    |

<sup>(-)</sup> Aquatic Life Values for PFHxS and PFNA are currently under development.

The Aquatic Maximum Value (AMV) is the highest concentration of a substance to which an aquatic community can be exposed briefly without resulting in adverse effects, whereas the Final Chronic Value (FCV) is the highest concentration of a substance to which an aquatic community can be exposed for a long period of time without experiencing adverse effects. The Final Acute Value (FAV) is the value applied directly at the end of an effluent point source for EGLE discharge permitting purposes.

<sup>(\*)</sup> nanograms per liter (ng/L) is equivalent to parts per trillion (ppt)

Surface water sampling was conducted in Cadillac, MI in 2022. No exceedances of Michigan's Rule 57 Water Quality Values were observed, and concentrations of PFAS were predominately at or around background levels.

Sampling of residential wells within the Cadillac, MI area has found detectable concentrations of PFAS and/or concentrations of PFAS exceeding the generic cleanup criteria for groundwater used as drinking water established under Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act (NREPA) [MCL 323.20120a(5)]. This has resulted in numerous areas of interest.

- 1. <u>Wexford-Missaukee Career Technical Center Area of Interest (Cadillac, Wexford County)</u>
- 2. Cadillac Industrial Park Area of Interest (Cadillac, Wexford County)
- 3. Wexford Area of Interest Self-Sampling Investigation (Haring, Clam Lake, Selma, and Boon Townships and City of Cadillac, Wexford County)
- 4. <u>US 131 & Mackinaw Trail Area of Interest (Clam Lake Township, Wexford County)</u>

Samples were collected in accordance with the EGLE Surface Water PFAS Sampling Guidance document (EGLE 2022). Samples were collected by pipette into two polypropylene (PP) bottles (certified PFAS-free). All personnel handling sample bottles used nitrile gloved hands. One replicate sample was collected. One site was randomly selected for the replicate sample.

All samples were delivered to the analytical laboratory within the required holding period for surface water PFAS samples. Samples were analyzed for selected PFAS, as described in the Quality Assurance Project Plan (QAPP; EGLE 2022) and listed in Table 2.

## References:

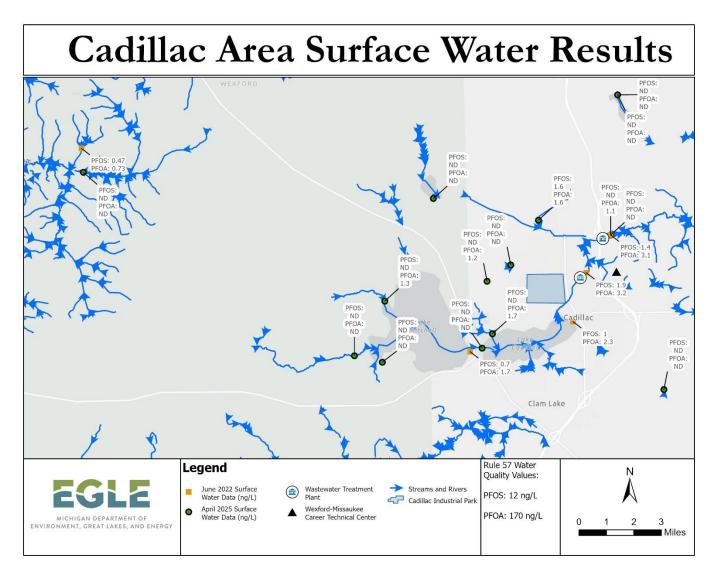
Michigan Department of Environmental, Great Lakes, and Energy. (2022). Surface Water PFAS Sampling Guidance.

Michigan Department of Environment, Great Lakes, and Energy. (2022). Michigan Surface Water Perfluoroalkyl and Polyfluoroalkyl Compound (PFAS) Investigation: Quality Assurance Project Plan (QAPP).

Sampling Update By: Geoff Rhodes, Toxicologist

Anne Tavalire, Regional Pretreatment Program Specialist

Water Resources Division


Michigan Department of Environment, Great Lakes, and Energy

**Table 1.** PFOS, PFOA, PFBS, PFHxS, and PFNA concentrations in surface water samples collected at locations in Cadillac, Michigan in May 2025. None of the samples exceeded the Rule 57 HNV (nondrinking) criteria.

| Sample ID        | Sample Location Description                | Latitude  | Longitude  | PFOS<br>(ng/L)            | PFOA<br>(ng/L)            | PFBS<br>(ng/L)            | PFHxS<br>(ng/L)           | PFNA<br>(ng/L)            |
|------------------|--------------------------------------------|-----------|------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 42-CAP-<br>0010  | South 39 1/2<br>Road                       | 44.270506 | -85.435151 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | <2.0                      |
| 42-BERL-<br>0010 | DNR Boat launch<br>East 44 Road            | 44.223452 | -85.354371 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | 1.0                       |
| 42-BRC-<br>0010  | West Lake<br>Mitchell Drive                | 44.256813 | -85.501529 | <2.0                      | 1.3                       | <2.0                      | <2.0                      | 1.5                       |
| 42-CM-<br>0280   | Off 43 ½ Rd<br>bridge                      | 44.281778 | -85.382434 | <2.0                      | <2.0                      | 1.85                      | 0.8                       | <2.0                      |
| 42-CM-<br>0280R  | Off 43 ½ Rd<br>bridge -Replicate           | 44.281778 | -85.382434 | <2.0                      | 1.1                       | 1.6                       | 0.9                       | <2.0                      |
| 42-CD-<br>0010   | Clay Drive                                 | 44.287383 | -85.420543 | 1.6                       | 1.6                       | 1.8                       | 1.0                       | 1.6                       |
| 42-LC-<br>0020   | William Mitchell<br>State Park             | 44.239056 | -85.450169 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | <2.0                      |
| 42-LMT-<br>0020  | DNR Boat launch<br>Hemlock<br>Campground   | 44.233779 | -85.502821 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | <2.0                      |
| 42-LL-<br>0010   | East Long Lake<br>Road Boat Launch         | 44.334606 | -85.37881  | <2.0                      | <2.0                      | <2.0                      | <2.0                      | <2.0                      |
| 42-LL-<br>0010D  | East Long Lake Road Boat Launch -Duplicate | 44.334606 | -85.37881  | <2.0                      | <2.0                      | <2.0                      | <2.0                      | 1.2                       |
| 42-MTC-<br>0010  | West Lake<br>Mitchell Drive                | 44.236228 | -85.517514 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | <2.0                      |
| 42-MSPC-<br>0010 | North Blvd                                 | 44.244469 | -85.444775 | <2.0                      | 1.7                       | 1.1                       | <2.0                      | <2.0                      |
| 42-SD-<br>0010   | South 39 Road                              | 44.289358 | -85.436909 | Dry;<br>Did Not<br>Sample |
| 42-WGD-<br>0020  | Weigel Street                              | 44.264346 | -85.447578 | <2.0                      | 1.2                       | 1.4                       | <2.0                      | <2.0                      |
| 37-SGC-<br>0060  | South 17 Road                              | 44.305391 | -85.660396 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | <2.0                      |
| 42-PL-<br>0010   | Pleasant Lake                              | 44.295498 | -85.475894 | <2.0                      | <2.0                      | <2.0                      | <2.0                      | 1.0                       |

Table 2. Per- and polyfluoroalkyl substances (PFAS) analyzed in surface water

| Compound                                            | Abbreviation | CAS#        |
|-----------------------------------------------------|--------------|-------------|
| Perfluorotetradecanoic acid                         | PFTeA        | 376-06-7    |
| Perfluorotridecanoic acid                           | PFTriA       | 72629-94-8  |
| Perfluorododecanoic acid                            | PFDoA        | 307-55-1    |
| Perfluoroundecanoic acid                            | PFUnA        | 2058-94-8   |
| Perfluorodecanoic acid                              | PFDA         | 335-76-2    |
| Perfluorononanoic acid                              | PFNA         | 375-95-1    |
| Perfluorooctanoic acid                              | PFOA         | 335-67-1    |
| Perfluoroheptanoic acid                             | PFHpA        | 375-85-9    |
| Perfluorohexanoic acid                              | PFHxA        | 307-24-4    |
| Perfluoropentanoic acid                             | PFPeA        | 2706-90-3   |
| Perfluorobutanoic acid                              | PFBA         | 375-22-4    |
| Perfluorodecanesulfonic acid                        | PFDS         | 335-77-3    |
| Perfluorononanesulfonic acid                        | PFNS         | 68259-12-1  |
| Perfluorooctanesulfonic acid                        | PFOS         | 1763-23-1   |
| Perfluoroheptanesulfonic acid                       | PFHpS        | 375-92-8    |
| Perfluorohexanesulfonic acid                        | PFHxS        | 355-46-4    |
| Perfluoropentanesulfonic acid                       | PFPeS        | 2706-91-4   |
| Perfluorobutanesulfonic acid                        | PFBS         | 375-73-5    |
| Perfluorooctanesulfonamide                          | PFOSA        | 754-91-6    |
| Fluorotelomer sulphonic acid 8:2                    | FTS 8:2      | 39108-34-4  |
| Fluorotelomer sulphonic acid 6:2                    | FTS 6:2      | 27619-97-2  |
| Fluorotelomer sulphonic acid 4:2                    | FTS 4:2      | 757124-72-4 |
| 2-N-Ethylperfluorooctanesulfonamidoacetic acid      | N-EtFOSAA    | 2991-50-6   |
| 2-N-Methylperfluorooctanesulfonamidoacetic acid     | N-MeFOSAA    | 2355-31-9   |
| Hexafluoropropylene oxide dimer acid                | HFPO-DA      | 13252-13-6  |
| 11-chloroeicosafluoro-3 oxaundecane-1-sulfonic acid | 11CI-PF3OUdS | 763051-92-9 |
| 9-chlorohexadecafluoro-3-oxanone1-sulfonic acid     | 9CI-PF3ONS   | 756426-58-1 |
| 4,8-dioxa-3H-perfluorononanoic acid                 | ADONA        | 919005-14-4 |
| Perfluoroethylcyclohexane sulfonate                 | PFECHS       | 67584-42-3  |
| Perfluorobutylsulfonamide                           | PFBSA        | 30334-69-1  |
| Perfluorohexanesulfonamide                          | PFHxSA       | 41997-13-1  |



**Figure 1.** Overview map of surface water PFOS and PFOA concentrations (ng/L) at locations collected in Cadillac, Michigan in May 2025.